1
|
Haque M, Chutia J, Mondal A, Quraishi S, Kumari K, Marboh EWM, Aguan K, Singha Roy A. Formation of CdTe core and CdTe@ZnTe core-shell quantum dots via hydrothermal approach using dual capping agents: deciphering the food dye sensing and protein binding applications. Phys Chem Chem Phys 2024; 26:22941-22958. [PMID: 39171443 DOI: 10.1039/d4cp02225d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/23/2024]
Abstract
Excessive use of food coloring agents in the food industry to make the food more attractive or improve the taste has caused various health and ecological problems. Therefore, it is necessary to develop a reliable, sensitive, and selective sensing probe to detect food dyes in different food products for future industrial processing and biosafety. In recent decades, surface-functionalized quantum dots (QDs), owing to their unique optical properties, have gained tremendous interest for a wide range of applications, including biomedical, bioimaging and sensing applications. Herein, we have reported the synthesis of excellent colloidal stable and highly luminescent CdTe core and CdTe@ZnTe core-shell QDs using dual functionalizing agents, polyvinyl pyrrolidone and vitamin C. The synthesized QDs were explored as excellent sensing probes for the food dyes carmoisine, Ponceau 4R and tartrazine with limit of detection (LOD) values of 0.097 ± 0.006, 0.147 ± 0.001 and 0.044 ± 0.001 μM for CdTe-PVP QDs and 0.079 ± 0.001, 0.114 ± 0.002 and 0.042 ± 0.001 μM for CdTe@ZnTe-PVP QDs, respectively. The sensitivity of the synthesized QDs for the food dyes was also investigated in real samples (soft drinks and medications). Moreover, considering the potential effects of QDs as therapeutics or nano-drug carriers, the interactions between the synthesized QDs and carrier protein human serum albumin (HSA) were investigated. The binding affinity was observed to be in the order of 104 M-1. QDs were found to quench the intrinsic fluorescence of HSA, and both types of quenching (static and dynamic) occur via electrostatic interactions in association with hydrophobic forces without any significant alteration in the protein structure.
Collapse
Affiliation(s)
- Mahabul Haque
- Department of Chemical and Biological Sciences, National Institute of Technology Meghalaya, Shillong, 793003, India.
| | - Jintu Chutia
- Department of Chemical and Biological Sciences, National Institute of Technology Meghalaya, Shillong, 793003, India.
| | - Amarjyoti Mondal
- Department of Chemical and Biological Sciences, National Institute of Technology Meghalaya, Shillong, 793003, India.
| | - Sana Quraishi
- Department of Chemical and Biological Sciences, National Institute of Technology Meghalaya, Shillong, 793003, India.
| | - Kalpana Kumari
- Department of Bioscience and Bioengineering, Indian Institute of Technology, Guwahati, 781039, India
| | - Erica W M Marboh
- Department of Biotechnology & Bioinformatics, North-Eastern Hill University, Shillong 793022, India
| | - Kripamoy Aguan
- Department of Biotechnology & Bioinformatics, North-Eastern Hill University, Shillong 793022, India
| | - Atanu Singha Roy
- Department of Chemical and Biological Sciences, National Institute of Technology Meghalaya, Shillong, 793003, India.
| |
Collapse
|
2
|
Haque M, Kalita M, Chamlagai D, Lyndem S, Koley S, Kumari P, Aguan K, Singha Roy A. Human serum albumin directed formation of cadmium telluride quantum dots: Applications in biosensing, anti-bacterial activities and cell cytotoxicity measurements. Int J Biol Macromol 2024; 268:131862. [PMID: 38670183 DOI: 10.1016/j.ijbiomac.2024.131862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 04/22/2024] [Accepted: 04/23/2024] [Indexed: 04/28/2024]
Abstract
Although cadmium-based quantum dots (QDs) are highly promising candidates for numerous biological applications, their intrinsic toxicity limits their pertinency in living systems. Surface functionalization of QDs with appropriate molecules could reduce the toxicity level. Herein, we have synthesized the smaller sized (1-5 nm) aqueous-compatible biogenic CdTe QDs using human serum albumin (HSA) as a surface passivating agent via a greener approach. HSA-functionalized CdTe QDs have been explored in multiple in vitro sensing and biological applications, namely, (1) sensing, (2) anti-bacterial and (3) anti-cancer properties. Using CdTe-HSA QDs as a fluorescence probe, a simple fluorometric method has been developed for highly sensitive and selective detection of blood marker bilirubin and hazardous Hg2+ ion with a limit of detection (LOD) of 3.38 and 0.53 ng/mL, respectively. CdTe-HSA QDs also acts as a sensor for standard antibiotics, tetracycline and rifampicin with LOD values of 41.34 and 114.99 ng/mL, respectively. Nano-sized biogenic CdTe-HSA QDs have shown promising anti-bacterial activities against both gram-negative, E. coli and gram-positive, E. faecalis strains confirming more effectiveness against E. faecalis strains. The treatment of human cervical cancer cell lines (HeLa cells) with the synthesized QDs reflected the proficient cytotoxic properties of QDs.
Collapse
Affiliation(s)
- Mahabul Haque
- Department of Chemistry, National Institute of Technology Meghalaya, Shillong 793003, India
| | - Mitul Kalita
- Department of Chemistry, National Institute of Technology Meghalaya, Shillong 793003, India
| | - Dipak Chamlagai
- Department of Chemistry, North-Eastern Hill University, Shillong 793022, India
| | - Sona Lyndem
- Department of Chemistry, National Institute of Technology Meghalaya, Shillong 793003, India
| | - Sudipta Koley
- Department of Physics, Amity Institute of Applied Sciences, Amity University, Kolkata 700135, India
| | - Puja Kumari
- Department of Biotechnology & Bioinformatics, North-Eastern Hill University, Shillong 793022, India
| | - Kripamoy Aguan
- Department of Biotechnology & Bioinformatics, North-Eastern Hill University, Shillong 793022, India
| | - Atanu Singha Roy
- Department of Chemistry, National Institute of Technology Meghalaya, Shillong 793003, India.
| |
Collapse
|
3
|
Vaishanav SK, Korram J, Verma TK, Jadhav SK, Nagwanshi R, Satnami ML. Antibacterial Activity of CdTe/ZnS Quantum Dot-β Lactum Antibiotic Conjugates. J Fluoresc 2024; 34:833-846. [PMID: 37389712 DOI: 10.1007/s10895-023-03316-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 06/13/2023] [Indexed: 07/01/2023]
Abstract
β-Lactum antibiotics are broad class of antibiotics which kills bacteria by inhibiting the formation of peptidoglycan that constitutes the bacterial cell wall. The resistance that develops in bacteria for antibiotics led the scientific world to think about the future aspects for modifying the way through which antibiotics are acted on the bacteria and become lethal for them. In this consequence, the potential of latest marketed antibiotics e.g. Amoxiciline (I), ceftazidim (II) have been evaluated after being conjugated with quantum dots. The surface of quantum dots has been conjugated with antibiotics by carbodiimide coupling with the help of 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide (EDC) and N-hydroxysuccinimide (NHS) as conjugating agent between antibiotic and functionalized quantum dots. The antibacterial properties of QD-conjugated antibiotics have been determined by disc diffusion assay. The potency of QD-conjugated antibiotics has been estimated by determining their MIC50 for the selected strain of Gram-negative (Escherichia coli) and Gram-positive (Staphylococcus aureus) bacteria. Minimum inhibitory concentration study, minimum bactericidal concentration and growth pattern analysis revealed that QD-antibiotic conjugates showed slightly more prospective than pure native antibiotics against both Gram-negative (Escherichia coli) and Gram-positive (Staphylococcus aureus) bacteria.
Collapse
Affiliation(s)
- Sandeep K Vaishanav
- State Forensic Science Laboratory, Police line Campus, Tikrapara, Raipur, C.G., 492001, India
| | - Jyoti Korram
- School of Studies in Chemistry, Pt. Ravishankar Shukla University, Raipur, C.G., 492010, India
| | - Tikendra K Verma
- Laxman Prasad Baidh Govt. Girls College, Bemetara, C.G., 491335, India
| | - S K Jadhav
- School of Studies in Biotechnology, Pt. Ravishankar Shukla University, Raipur, C.G., 492010, India
| | - Rekha Nagwanshi
- Department of Chemistry, Govt. Madhav P. G. Science College, Ujjain, M. P., 456010, India
| | - Manmohan L Satnami
- School of Studies in Chemistry, Pt. Ravishankar Shukla University, Raipur, C.G., 492010, India.
| |
Collapse
|
4
|
Davodabadi F, Mirinejad S, Fathi-Karkan S, Majidpour M, Ajalli N, Sheervalilou R, Sargazi S, Rozmus D, Rahdar A, Diez-Pascual AM. Aptamer-functionalized quantum dots as theranostic nanotools against cancer and bacterial infections: A comprehensive overview of recent trends. Biotechnol Prog 2023; 39:e3366. [PMID: 37222166 DOI: 10.1002/btpr.3366] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 04/21/2023] [Accepted: 05/09/2023] [Indexed: 05/25/2023]
Abstract
Aptamers (Apts) are synthetic nucleic acid ligands that can be engineered to target various molecules, including amino acids, proteins, and pharmaceuticals. Through a series of adsorption, recovery, and amplification steps, Apts are extracted from combinatorial libraries of synthesized nucleic acids. Using aptasensors in bioanalysis and biomedicine can be improved by combining them with nanomaterials. Moreover, Apt-associated nanomaterials, including liposomes, polymeric, dendrimers, carbon nanomaterials, silica, nanorods, magnetic NPs, and quantum dots (QDs), have been widely used as promising nanotools in biomedicine. Following surface modifications and conjugation with appropriate functional groups, these nanomaterials can be successfully used in aptasensing. Advanced biological assays can use Apts immobilized on QD surfaces through physical interaction and chemical bonding. Accordingly, modern QD aptasensing platforms rely on interactions between QDs, Apts, and targets to detect them. QD-Apt conjugates can be used to directly detect prostate, ovarian, colorectal, and lung cancers or simultaneously detect biomarkers associated with these malignancies. Tenascin-C, mucin 1, prostate-specific antigen, prostate-specific membrane antigen, nucleolin, growth factors, and exosomes are among the cancer biomarkers that can be sensitively detected using such bioconjugates. Furthermore, Apt-conjugated QDs have shown great potential for controlling bacterial infections such as Bacillus thuringiensis, Pseudomonas aeruginosa, Escherichia coli, Acinetobacter baumannii, Campylobacter jejuni, Staphylococcus aureus, and Salmonella typhimurium. This comprehensive review discusses recent advancements in the design of QD-Apt bioconjugates and their applications in cancer and bacterial theranostics.
Collapse
Affiliation(s)
- Fatemeh Davodabadi
- Department of Biology, Faculty of Basic Science, Payame Noor University, Tehran, Iran
| | - Shekoufeh Mirinejad
- Cellular and Molecular Research Center, Research Institute of Cellular and Molecular Sciences in Infectious Diseases, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Sonia Fathi-Karkan
- Department of Advanced Sciences and Technologies in Medicine, School of Medicine, North Khorasan University of Medical Sciences, Bojnurd, Iran
- Natural Products and Medicinal Plants Research Center, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Mahdi Majidpour
- Cellular and Molecular Research Center, Research Institute of Cellular and Molecular Sciences in Infectious Diseases, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Narges Ajalli
- Department of Chemical Engineering, Faculty of Engineering, University of Tehran, Tehran, Iran
| | | | - Saman Sargazi
- Cellular and Molecular Research Center, Research Institute of Cellular and Molecular Sciences in Infectious Diseases, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Dominika Rozmus
- Department of Biochemistry, Faculty of Biology and Biotechnology, University of Warmia and Mazury, Olsztyn, Poland
| | - Abbas Rahdar
- Department of Physics, University of Zabol, Zabol, Iran
| | - Ana M Diez-Pascual
- Universidad de Alcalá, Facultad de Ciencias, Departamento de Quimica Analitica, Quimica Fisica e Ingenieria Quimica, Madrid, Spain
| |
Collapse
|
5
|
Wang J, Dong W, Yang X, Li Y, Jin B. Biosensors based on DNA-functionalized CdTe quantum dots for the enhanced electrochemical detection of human-IgG. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2023. [PMID: 37424508 DOI: 10.1039/d3ay00676j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/11/2023]
Abstract
Electrochemical detection of human-IgG via biosensors is vital in clinical diagnostics, owing to their simple equipment, facile operation, high selectivity, economical, short diagnostic time, fast response, and easy miniaturization, but the need to improve sensitivity for protein detection is still a barrier limiting its wider practical applications. A hypersensitized electrochemical biosensor based on steric effects for IgG detection was developed in this work. The results indicate that IgG-modified sig-DNA attached to CdTe quantum dots (CdTe-sig-DNA) limited the ability of CdTe-sig-DNA or CdTe-sig-DNA-IgG conjugate to hybridize through the captured DNA strand (cap-DNA) immobilized on a chitosan/nitrogen-doped carbon nanocomposite (CS/N-C) modified glassy carbon electrode surface (GCE). The concentration of IgG based on CdTe concentration was detected by differential pulse anode stripping voltammetry (DPASV) on the electrode surface. The efficiency for hybridizing CdTe-sig-DNA with cap-DNA was found to be logarithmically inverse to the concentration of IgG attached. A highly sensitive and selective detection of IgG from 5 pM to 50 μM with a relatively low detection limit of 1.7 pM was achieved. Therefore, the steric hindrance effect of IgG limited the quantity of DNA that could be functionalized on CdTe QDs, significantly improving the signal, and providing a practical strategy for the clinical analysis of IgG.
Collapse
Affiliation(s)
- Jiajia Wang
- Department of Chemistry, Anhui University, Hefei 230601, China.
| | - Wenhui Dong
- Department of Chemistry, Anhui University, Hefei 230601, China.
| | - Xiaomin Yang
- Respiratory Medicine Department, The First People's Hospital of Chuzhou, Chuzhou 239001, China
| | - Yanan Li
- Department of Chemistry, Anhui University, Hefei 230601, China.
| | - Baokang Jin
- Department of Chemistry, Anhui University, Hefei 230601, China.
| |
Collapse
|
6
|
Wang J, Yang B, Yu X, Chen S, Li W, Hong X. The impact of Zn doping on CdTe quantum dots-protein corona formation and the subsequent toxicity at the molecular and cellular level. Chem Biol Interact 2023; 373:110370. [PMID: 36731594 DOI: 10.1016/j.cbi.2023.110370] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 11/21/2022] [Accepted: 01/26/2023] [Indexed: 01/31/2023]
Abstract
Understanding the formation of protein corona (PC) is of vital importance for exploring the toxicity of nanoparticles and promoting their safe applications. In this study, CdTe QDs doping with 0, 1%, 5% and 10% Zn were synthesized using one-pot hydrothermal methods. Afterwards, this study explored and compared the formation of pure and Zn doped-QDs PC as well as the subsequent molecular and cellular toxicity. Result found that Zn doping regulated the toxicity of Cd-QDs by controlling their ability to adsorb serum proteins. The adsorption to Cd-QDs induced the dispersion, unfolding, secondary structural changes and the activity loss of bovine serum albumin (BSA). Among the synthesized Cd-QDs, 10%Zn-QDs exhibited the highest fluorescence quantum yield and lowest molecular toxicity. The formations of pure QDs and 10%Zn-QDs with BSA corona are majorly driven by different forces with different patterns. The regulation of BSA on the cytotoxicity differences of pure QDs and 10%Zn-QDs was similar with fetal bovine serum, proving the significant contribution of BSA to the cytotoxicity of Cd-QDs PC. Compared with pure QDs PC, the higher cytotoxicity and oxidative stress level of 10%Zn-QDs PC were correlated with higher intracellular [Cd2+]. Both larger amount of BSA adsorption and higher level of intracellular reactive oxygen species could accelerate the dissolution rates of 10%Zn-QDs and thus result in higher intracellular [Cd2+].
Collapse
Affiliation(s)
- Jing Wang
- School of Environmental and Material Engineering, Yantai University, 30# Qingquan Road, Yantai, 264005, PR China.
| | - Bin Yang
- School of Environmental and Material Engineering, Yantai University, 30# Qingquan Road, Yantai, 264005, PR China
| | - Xinping Yu
- School of Environmental and Material Engineering, Yantai University, 30# Qingquan Road, Yantai, 264005, PR China
| | - Shuji Chen
- School of Environmental and Material Engineering, Yantai University, 30# Qingquan Road, Yantai, 264005, PR China
| | - Wenxin Li
- School of Environmental and Material Engineering, Yantai University, 30# Qingquan Road, Yantai, 264005, PR China
| | - Xu Hong
- School of Environmental and Material Engineering, Yantai University, 30# Qingquan Road, Yantai, 264005, PR China
| |
Collapse
|
7
|
Bai C, Yao Y, Wang Z, Huang X, Wei T, Zou L, Liu N, Zhang T, Tang M. CdTe quantum dots trigger oxidative stress and endoplasmic reticulum stress-induced apoptosis and autophagy in rat Schwann cell line RSC96. J Appl Toxicol 2022; 42:1962-1977. [PMID: 35857417 DOI: 10.1002/jat.4367] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 06/28/2022] [Accepted: 07/14/2022] [Indexed: 11/07/2022]
Abstract
In the current study, the cytotoxicity and mechanisms of cadmium telluride quantum dots (CdTe QDs) on RSC96 cells were evaluated by exposing different doses of CdTe QDs for 24 h. Two types of cell death, including apoptosis and autophagy, as well as two important organelles, mitochondria and endoplasmic reticulum, were focused after CdTe QDs exposure. The results showed that CdTe QDs induced apoptosis in RSC96 cells in a concentration-dependent manner; promoted the accumulation of intracellular reactive oxygen species; decreased the mitochondrial membrane potential; caused the release of cytochrome c; and also increased the expression of Bcl-2 associated X protein, caspase-3, and cytochrome c proteins and decreased the expression of Bcl-2 protein. Further results also confirmed that CdTe QDs could be internalized by RSC96 cells, and the exposure and internalization of CdTe QDs could induce excessive endoplasmic reticulum stress in the cells, and the expression levels of binding immunoglobulin protein, C/EBP homologous protein, and caspase12 proteins were increased in a concentration-dependent manner. Moreover, autophagy-related proteins LC3II, Beclin1, and P62 all increased after CdTe QDs exposure, suggesting that CdTe QDs exposure both promoted autophagosome formation and inhibited autophagosome degradation, and that CdTe QDs affected the autophagic flow in RSC96 cells. In conclusion, CdTe QDs are able to cause apoptosis and autophagy in RSC96 cells through mitochondrial and endoplasmic reticulum stress pathways, and the possible neurotoxicity of CdTe QDs should be further investigated.
Collapse
Affiliation(s)
- Changcun Bai
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, People's Republic of China
| | - Yongshuai Yao
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, People's Republic of China
| | - Zhihui Wang
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, People's Republic of China
| | - Xiaoquan Huang
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, People's Republic of China
| | - Tingting Wei
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, People's Republic of China
| | - Lingyue Zou
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, People's Republic of China
| | - Na Liu
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, People's Republic of China
| | - Ting Zhang
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, People's Republic of China
| | - Meng Tang
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, People's Republic of China
| |
Collapse
|
8
|
Abstract
Quantum dots (QDs) possess exceptional optoelectronic properties that enable their use in the most diverse applications, namely, in the medical field. The prevalence of cancer has increased and has been considered the major cause of death worldwide. Thus, there has been a great demand for new methodologies for diagnosing and monitoring cancer in cells to provide an earlier prognosis of the disease and contribute to the effectiveness of treatment. Several molecules in the human body can be considered relevant as cancer markers. Studies published over recent years have revealed that micro ribonucleic acids (miRNAs) play a crucial role in this pathology, since they are responsible for some physiological processes of the cell cycle and, most important, they are overexpressed in cancer cells. Thus, the analytical sensing of miRNA has gained importance to provide monitoring during cancer treatment, allowing the evaluation of the disease's evolution. Recent methodologies based on nanochemistry use fluorescent quantum dots for sensing of the miRNA. Combining the unique characteristics of QDs, namely, their fluorescence capacity, and the fact that miRNA presents an aberrant expression in cancer cells, the researchers created diverse strategies for miRNA monitoring. This review aims to present an overview of the recent use of QDs as biosensors in miRNA detection, also highlighting some tutorial descriptions of the synthesis methods of QDs, possible surface modification, and functionalization approaches.
Collapse
Affiliation(s)
- Catarina
S. M. Martins
- International
Iberian Nanotechnology Laboratory, 4715-330 Braga, Portugal,LAQV,
REQUIMTE, Laboratory of Applied Chemistry, Department of Chemical
Sciences, Faculty of Pharmacy, University
of Porto, Rua de Jorge Viterbo Ferreira, No. 228, 4050-313 Porto, Portugal
| | - Alec P. LaGrow
- International
Iberian Nanotechnology Laboratory, 4715-330 Braga, Portugal
| | - João A. V. Prior
- LAQV,
REQUIMTE, Laboratory of Applied Chemistry, Department of Chemical
Sciences, Faculty of Pharmacy, University
of Porto, Rua de Jorge Viterbo Ferreira, No. 228, 4050-313 Porto, Portugal,
| |
Collapse
|
9
|
Liang L, Chen M, Tong Y, Tan W, Chen Z. Detection of Mycobacterium Tuberculosis IS6110 gene fragment by fluorescent biosensor based on FRET between two-dimensional metal-organic framework and quantum dots-labeled DNA probe. Anal Chim Acta 2021; 1186:339090. [PMID: 34756272 DOI: 10.1016/j.aca.2021.339090] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Revised: 09/14/2021] [Accepted: 09/20/2021] [Indexed: 01/21/2023]
Abstract
Herein, a universal fluorescent biosensor was developed for detecting Mycobacterium Tuberculosis (MTB) specific insertion sequence IS6110 gene fragment based on Förster resonance energy transfer (FRET) strategy. CdTe quantum dots (QDs), with excellent luminous performance, were used to label single-stranded DNA (ssDNA) as fluorescence donor (QDs-DNA), in which the ssDNA was complementary to the IS6110 gene fragment. A new type of two-dimensional metal-organic framework (Cu-TCPP) was served as an acceptor. The Cu-TCPP exhibited a higher affinity towards ssDNA than double-stranded DNA (dsDNA). In the absence of targets, the fluorescence of QDs-DNA was quenched - due to the π-π stacking interactions between Cu-TCPP and ssDNA. Otherwise, QDs-DNA hybridized with the target to form a double helix and the fluorescence maintained in a target-concentration dependent manner. Excess QDs-DNA would be quenched and produced negligible background signal. The fluorescent sensor possessed a linear range from 0.05 nM to 1.0 nM with a low detection limit of 35 pM. Furthermore, we successfully applied this biosensing system to detect clinical sputum samples. This method displayed high sensitivity, specificity and great potentials in the early diagnosis of Tuberculosis.
Collapse
Affiliation(s)
- Lushan Liang
- School of Pharmaceutical Science, Sun Yat-sen University, Guangzhou, 510006, China
| | - Meng Chen
- School of Pharmaceutical Science, Sun Yat-sen University, Guangzhou, 510006, China
| | - Yanli Tong
- Guangdong Second Provincial General Hospital, Guangzhou, 510310, China.
| | - Weiguo Tan
- Shenzhen Center for Chronic Disease Control, Shenzhen, 518000, China
| | - Zuanguang Chen
- School of Pharmaceutical Science, Sun Yat-sen University, Guangzhou, 510006, China.
| |
Collapse
|
10
|
Wang J, Yu X, Zheng X. Influence of zinc doping on the molecular biocompatibility of cadmium-based quantum dots: Insights from the interaction with trypsin. Chem Biol Interact 2021; 351:109716. [PMID: 34688612 DOI: 10.1016/j.cbi.2021.109716] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 09/21/2021] [Accepted: 10/20/2021] [Indexed: 12/20/2022]
Abstract
Doping quantum dots (QDs) with extra element presents a promising future for their applications in the fields of environmental monitoring, commercial products and biomedical sciences. However, it remains unknown for the influence of doping on the molecular biocompatibility of QDs and the underlying mechanisms of the interaction between doped-QDs and protein molecules. Using the "one-pot" method, we synthesized N-acetyl-l-cysteine capped CdTe: Zn2+ QDs with higher fluorescence quantum yield, improved stability and better molecular biocompatibility compared with undoped CdTe QDs. Using digestive enzyme trypsin (TRY) as the protein model, the interactions of undoped QDs and Zn-doped QDs with TRY as well as the underlying mechanisms were investigated using multi-spectroscopy, isothermal titration calorimetry and dialysis techniques. Van der Waals forces and hydrogen bonds are the major driving forces in the interaction of both QDs with TRY, which leading to the loosening of protein skeleton and tertiary structural changes. Compared with undoped QDs, Zn-doped QDs bind less amount of TRY with a higher affinity and then release higher amount of Cd. Zn-doped QDs have a less stimulating impact on TRY activity by decreasing TRY binding and reducing Cd binding to TRY. Taken all together, Zn-doped QDs offer a safer alternative for the applications of QDs by reducing unwanted interactions with proteins and improving biocompatibility at the molecular level.
Collapse
Affiliation(s)
- Jing Wang
- School of Environmental and Material Engineering, Yantai University, 30# Qingquan Road, Yantai, 264005, PR China.
| | - Xinping Yu
- School of Environmental and Material Engineering, Yantai University, 30# Qingquan Road, Yantai, 264005, PR China
| | - Xiaolin Zheng
- School of Environmental and Material Engineering, Yantai University, 30# Qingquan Road, Yantai, 264005, PR China
| |
Collapse
|
11
|
Lv J, Liu S, Miao Y. Synthesis of biological quantum dots based on single-strand DNA and its application in melamine detection. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2021; 248:119254. [PMID: 33310270 DOI: 10.1016/j.saa.2020.119254] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 11/24/2020] [Accepted: 11/26/2020] [Indexed: 06/12/2023]
Abstract
By taking TC base-rich single-stranded DNA (ssDNA) as the raw material, a fluorescent biological quantum dots (Bio-dots) probe was prepared in one step through hydrothermal method, where its lifetime was greatly extended in comparison with Carbon quantum dots (CQDs), reaching 10.7 ns. The fluorescent detection of melamine in milk samples was realized by using the base pairing principle. Under the optimal conditions, the linear range of Bio-dots probe fluorescence sensor for melamine detection is 5-600 μM, and the detection limit is (3σ) 1.4 μM. Bio-dots can not only emit photoluminescence, but also detect target molecules as a functional recognition group. As the raw material ssDNA was basically non-toxic and there was no toxic substances participated in its synmanuscript process, this Bio-dots probe was a kind of green and environmentally-friendly photoluminescent functional material.
Collapse
Affiliation(s)
- Jinzhi Lv
- Shanxi Normal University, Linfen 041004, PR China.
| | - Shuying Liu
- Shanxi Normal University, Linfen 041004, PR China
| | - Yanming Miao
- Shanxi Normal University, Linfen 041004, PR China
| |
Collapse
|
12
|
Ducongé F. Aptamers for Molecular Imaging. Mol Imaging 2021. [DOI: 10.1016/b978-0-12-816386-3.00034-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
13
|
Calzada V. Aptamers in Diagnostic and Molecular Imaging Applications. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2020; 174:141-160. [PMID: 31848635 DOI: 10.1007/10_2019_115] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The origin of the term diagnostic comes from the Greek word gnosis, meaning "to know." In medicine, a diagnostic can predict the pathology risk, disease status, treatment, and prognosis, even following therapy. An early and correct diagnosis is necessary for an efficient treatment. Moreover, it is possible to predict if and why a therapy will be successful or fail, enabling the timely application of alternative therapeutic strategies. Available diagnostics are due to the advances in biotechnology; however, more sensitive, low-cost, and noninvasive methodologies are still a challenge. Knowledge about molecular characteristics provide personalized information, which is the goal of future medicine. Today, multiple diagnostic techniques have emerged, with which it is possible to distinguish molecular patterns.In this way, aptamers are the perfect tools to recognize molecular targets and can be easily modified to confer additional functions. Their versatile characteristics and low cost make aptamers ideal for diagnostic applications.This chapter is a review of aptamer-based diagnostics in biomedicine, with a special focus on probe design and molecular imaging. Graphical Abstract.
Collapse
Affiliation(s)
- Victoria Calzada
- Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay.
| |
Collapse
|
14
|
Zeng Y, Pan L, Wang J, Fan Y, Shu Y, Pang D, Zhang Z. Interfacial Synthesis of Ag
2
S/ZnS Core/Shell Quantum Dots in a Droplet Microreactor. ChemistrySelect 2020. [DOI: 10.1002/slct.202001126] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
| | | | - Ji Wang
- Wuhan University Wuhan 430072 P. R. China
| | | | - Yun Shu
- School of Chemistry and Chemical Engineering Yangzhou University Yangzhou 225002 P.R.China
| | | | | |
Collapse
|
15
|
Beyond native deoxyribonucleic acid, templating fluorescent nanomaterials for bioanalytical applications: A review. Anal Chim Acta 2020; 1105:11-27. [DOI: 10.1016/j.aca.2020.01.023] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Revised: 01/10/2020] [Accepted: 01/10/2020] [Indexed: 12/16/2022]
|
16
|
Odeh F, Nsairat H, Alshaer W, Ismail MA, Esawi E, Qaqish B, Bawab AA, Ismail SI. Aptamers Chemistry: Chemical Modifications and Conjugation Strategies. Molecules 2019; 25:E3. [PMID: 31861277 PMCID: PMC6982925 DOI: 10.3390/molecules25010003] [Citation(s) in RCA: 190] [Impact Index Per Article: 38.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2019] [Revised: 12/14/2019] [Accepted: 12/17/2019] [Indexed: 12/21/2022] Open
Abstract
Soon after they were first described in 1990, aptamers were largely recognized as a new class of biological ligands that can rival antibodies in various analytical, diagnostic, and therapeutic applications. Aptamers are short single-stranded RNA or DNA oligonucleotides capable of folding into complex 3D structures, enabling them to bind to a large variety of targets ranging from small ions to an entire organism. Their high binding specificity and affinity make them comparable to antibodies, but they are superior regarding a longer shelf life, simple production and chemical modification, in addition to low toxicity and immunogenicity. In the past three decades, aptamers have been used in a plethora of therapeutics and drug delivery systems that involve innovative delivery mechanisms and carrying various types of drug cargos. However, the successful translation of aptamer research from bench to bedside has been challenged by several limitations that slow down the realization of promising aptamer applications as therapeutics at the clinical level. The main limitations include the susceptibility to degradation by nucleases, fast renal clearance, low thermal stability, and the limited functional group diversity. The solution to overcome such limitations lies in the chemistry of aptamers. The current review will focus on the recent arts of aptamer chemistry that have been evolved to refine the pharmacological properties of aptamers. Moreover, this review will analyze the advantages and disadvantages of such chemical modifications and how they impact the pharmacological properties of aptamers. Finally, this review will summarize the conjugation strategies of aptamers to nanocarriers for developing targeted drug delivery systems.
Collapse
Affiliation(s)
- Fadwa Odeh
- Faculty of Science, The University of Jordan, Amman 11942, Jordan; (F.O.); (H.N.); (A.A.B.)
- Hamdi Mango Center for Scientific Research, The University of Jordan, Amman 11942, Jordan
| | - Hamdi Nsairat
- Faculty of Science, The University of Jordan, Amman 11942, Jordan; (F.O.); (H.N.); (A.A.B.)
| | - Walhan Alshaer
- Cell Therapy Center, The University of Jordan, Amman 11942, Jordan
| | - Mohammad A. Ismail
- Faculty of Medicine, The University of Jordan, Amman 11942, Jordan; (M.A.I.); (E.E.); (B.Q.); (S.I.I.)
| | - Ezaldeen Esawi
- Faculty of Medicine, The University of Jordan, Amman 11942, Jordan; (M.A.I.); (E.E.); (B.Q.); (S.I.I.)
| | - Baraa Qaqish
- Faculty of Medicine, The University of Jordan, Amman 11942, Jordan; (M.A.I.); (E.E.); (B.Q.); (S.I.I.)
| | - Abeer Al Bawab
- Faculty of Science, The University of Jordan, Amman 11942, Jordan; (F.O.); (H.N.); (A.A.B.)
- Hamdi Mango Center for Scientific Research, The University of Jordan, Amman 11942, Jordan
| | - Said I. Ismail
- Faculty of Medicine, The University of Jordan, Amman 11942, Jordan; (M.A.I.); (E.E.); (B.Q.); (S.I.I.)
- Qatar Genome Project, Qatar Foundation, Doha 5825, Qatar
| |
Collapse
|
17
|
Yang Y, Mao G, Ji X, He Z. DNA-templated quantum dots and their applications in biosensors, bioimaging, and therapy. J Mater Chem B 2019; 8:9-17. [PMID: 31750850 DOI: 10.1039/c9tb01870k] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Over the past 10 years, DNA functionalized quantum dots (QDs) have attracted considerable attention in sensing and imaging of disease-relevant biological targets, as well as cancer therapy. Considerable efforts have been devoted to obtaining DNA functionalized QDs with enhanced stability and quantum yield. Here, we focus on a one-pot method, in which phosphorothioate-modified DNA is used as the co-ligand on the basis of the strong binding of sulfur and Cd2+. After a short summary of the preparation of DNA-templated QDs, versatile bioapplications based on the constructed ratiometric fluorescent probes, nanobeacons and multiple bottom-up assemblies will be discussed. A substantial part of the review will focus on these applications, ranging from small molecule, biological macromolecule, cancer cell and pathogen sensing to in vitro and in vivo imaging. Besides, drug or siRNA delivery based on DNA-templated QD assemblies will also be briefly discussed here.
Collapse
Affiliation(s)
- Yeling Yang
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, People's Republic of China.
| | - Guobin Mao
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, People's Republic of China.
| | - Xinghu Ji
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, People's Republic of China.
| | - Zhike He
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, People's Republic of China.
| |
Collapse
|
18
|
Ma Y, Mao G, Huang W, Wu G, Yin W, Ji X, Deng Z, Cai Z, Zhang XE, He Z, Cui Z. Quantum Dot Nanobeacons for Single RNA Labeling and Imaging. J Am Chem Soc 2019; 141:13454-13458. [PMID: 31339040 DOI: 10.1021/jacs.9b04659] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Yingxin Ma
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, P. R. China
- Key Laboratory of Medical Reprogramming Technology, Shenzhen Second People’s Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen University School of Medicine, Shenzhen P. R. China
| | - Guobin Mao
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Sciences, Wuhan University, Wuhan, Hubei, P. R. China
| | - Weiren Huang
- Key Laboratory of Medical Reprogramming Technology, Shenzhen Second People’s Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen University School of Medicine, Shenzhen P. R. China
| | - Guoqiang Wu
- Key Laboratory of Medical Reprogramming Technology, Shenzhen Second People’s Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen University School of Medicine, Shenzhen P. R. China
| | - Wen Yin
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, P. R. China
| | - Xinghu Ji
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Sciences, Wuhan University, Wuhan, Hubei, P. R. China
| | - Zishi Deng
- Key Laboratory of Medical Reprogramming Technology, Shenzhen Second People’s Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen University School of Medicine, Shenzhen P. R. China
| | - Zhiming Cai
- Key Laboratory of Medical Reprogramming Technology, Shenzhen Second People’s Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen University School of Medicine, Shenzhen P. R. China
| | - Xian-En Zhang
- National Key Laboratory of Biomacromolecules, CAS Center for Biological Macromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, P. R. China
| | - Zhike He
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Sciences, Wuhan University, Wuhan, Hubei, P. R. China
| | - Zongqiang Cui
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, P. R. China
| |
Collapse
|
19
|
Safari M, Najafi S, Arkan E, Amani S, Shahlaei M. Facile aqueous synthesis of Ni-doped CdTe quantum dots as fluorescent probes for detecting pyrazinamide in plasma. Microchem J 2019. [DOI: 10.1016/j.microc.2019.01.019] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
20
|
Miao Y, Sun X, Lv J, Yan G. Preparation of Single-Stranded DNA-Templated Room-Temperature Phosphorescent Quantum Dots and Their Application for Mercury(II) Detection in Environmental and Biological Fluids. Anal Chem 2019; 91:5036-5042. [DOI: 10.1021/acs.analchem.8b05099] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Yanming Miao
- School of Life Science, Shanxi Normal University, Linfen 041004, P. R. China
| | - Xiaojie Sun
- School of Life Science, Shanxi Normal University, Linfen 041004, P. R. China
| | - Jinzhi Lv
- School of Life Science, Shanxi Normal University, Linfen 041004, P. R. China
| | - Guiqin Yan
- School of Life Science, Shanxi Normal University, Linfen 041004, P. R. China
| |
Collapse
|
21
|
Liu Y, Mao G, Wang W, Tian S, Ji X, Liu M, He Z. In situ synthesis of photoluminescence-quenching nanopaper for rapid and robust detection of pathogens and proteins. Chem Commun (Camb) 2019; 55:2660-2663. [PMID: 30742193 DOI: 10.1039/c8cc09991j] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
A green and facile method is presented for in situ synthesis of a novel photoluminescence-quenching nanopaper with a highly-efficient quenching ability, rapid reaction time and long-term storage. The as-prepared nanopaper is further used to construct an aptasensor platform with high performance, rapidness and robustness.
Collapse
Affiliation(s)
- Yucheng Liu
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China.
| | | | | | | | | | | | | |
Collapse
|
22
|
Zhang J, Lan T, Lu Y. Molecular Engineering of Functional Nucleic Acid Nanomaterials toward In Vivo Applications. Adv Healthc Mater 2019; 8:e1801158. [PMID: 30725526 PMCID: PMC6426685 DOI: 10.1002/adhm.201801158] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Revised: 01/14/2019] [Indexed: 12/25/2022]
Abstract
Recent advances in nanotechnology and engineering have generated many nanomaterials with unique physical and chemical properties. Over the past decade, numerous nanomaterials are introduced into many research areas, such as sensors for environmental monitoring, food safety, point-of-care diagnostics, and as transducers for solar energy transfer. Meanwhile, functional nucleic acids (FNAs), including nucleic acid enzymes, aptamers, and aptazymes, have attracted major attention from the biomedical community due to their unique target recognition and catalytic properties. Benefiting from the recent progress of molecular engineering strategies, the physicochemical properties of nanomaterials are endowed by the target recognition and catalytic activity of FNAs in the presence of a target analyte, resulting in numerous smart nanoprobes for diverse applications including intracellular imaging, drug delivery, in vivo imaging, and tumor therapy. This progress report focuses on the recent advances in designing and engineering FNA-based nanomaterials, highlighting the functional outcomes toward in vivo applications. The challenges and opportunities for the future translation of FNA-based nanomaterials into clinical applications are also discussed.
Collapse
Affiliation(s)
- JingJing Zhang
- Department of Chemistry, University of Illinois at Urbana-Champaign, 601 S. Mathews Ave., Urbana, IL, 61801, USA
| | - Tian Lan
- GlucoSentient, Inc., 2100 S. Oak Street Suite 101, Champaign, IL, 61820, USA
| | - Yi Lu
- Department of Chemistry, University of Illinois at Urbana-Champaign, 601 S. Mathews Ave., Urbana, IL, 61801, USA
| |
Collapse
|
23
|
Nanotechnology in the diagnosis and treatment of lung cancer. Pharmacol Ther 2019; 198:189-205. [PMID: 30796927 DOI: 10.1016/j.pharmthera.2019.02.010] [Citation(s) in RCA: 74] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Accepted: 02/11/2019] [Indexed: 02/07/2023]
Abstract
Lung cancer is an umbrella term for a subset of heterogeneous diseases that are collectively responsible for the most cancer-related deaths worldwide. Despite the tremendous progress made in understanding lung tumour biology, advances in early diagnosis, multimodal therapy and deciphering molecular mechanisms of drug resistance, overall curative outcomes remain low, especially in metastatic disease. Nanotechnology, in particular nanoparticles (NPs), continue to progressively impact the way by which tumours are diagnosed and treated. The unique physicochemical properties of materials at the nanoscale grant access to a diverse molecular toolkit that can be manipulated for use in respiratory oncology. This realisation has resulted in several clinically approved NP formulations and many more in clinical trials. However, NPs are not a panacea and have yet to be utilised to maximal effect in lung cancer, and medicine in a wider context. This review serves to: describe the complexity of lung cancer, the current diagnostic and therapeutic environment, and highlight the recent advancements of nanotechnology based approaches in diagnosis and treatment of respiratory malignancies. Finally, a brief outlook on the future directions of nanomedicine is provided; presently the full potential of the field is yet to be realised. By gleaning lessons and integrating advancements from neighbouring disciplines, nanomedicine can be elevated to a position where the current barriers that stymie full clinical impact are lifted.
Collapse
|
24
|
Kulkarni NS, Guererro Y, Gupta N, Muth A, Gupta V. Exploring potential of quantum dots as dual modality for cancer therapy and diagnosis. J Drug Deliv Sci Technol 2019. [DOI: 10.1016/j.jddst.2018.12.010] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
25
|
Yousefi M, Dehghani S, Nosrati R, Zare H, Evazalipour M, Mosafer J, Tehrani BS, Pasdar A, Mokhtarzadeh A, Ramezani M. Aptasensors as a new sensing technology developed for the detection of MUC1 mucin: A review. Biosens Bioelectron 2019; 130:1-19. [PMID: 30716589 DOI: 10.1016/j.bios.2019.01.015] [Citation(s) in RCA: 78] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2018] [Revised: 12/31/2018] [Accepted: 01/04/2019] [Indexed: 02/07/2023]
Abstract
Mucin 1 protein (MUC1) is a membrane-associated glycoprotein overexpressed in the majority of human malignancies and considered as a predominant protein biomarker in cancers. Owing to the crucial role of MUC1 in cancer dissemination and metastasis, detection and quantification of this biomarker is of great importance in clinical diagnostics. Today, there exist a wide variety of strategies for the determination of various types of disease biomarkers, especially MUC1. In this regard, aptamers, as artificial single-stranded DNA or RNA oligonucleotides with catalytic and receptor properties, have drawn lots of attention for the development of biosensing platforms. So far, various sensitivity-enhancement techniques in combination with a broad range of smart nanomaterials have integrated into the design of novel aptamer-based biosensors (aptasensors) to improve detection limit and sensitivity of analyte determination. This review article provides a brief classification and description of the research progresses of aptamer-based biosensors and nanobiosensors for the detection and quantitative determination of MUC1 based on optical and electrochemical platforms.
Collapse
Affiliation(s)
- Meysam Yousefi
- Department of Medical Genetics, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Sadegh Dehghani
- Department of Medical Biotechnology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Rahim Nosrati
- Cellular and Molecular Research Center, Faculty of Medicine, Guilan University of Medical Sciences, Rasht, Iran; Department of Pharmaceutical Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hamed Zare
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mehdi Evazalipour
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Guilan University of Medical Sciences, Rasht, Iran
| | - Jafar Mosafer
- Department of Laboratory Sciences, School of Paramedical Sciences, Torbat Heydariyeh University of Medical Sciences, Torbat Heydariyeh, Iran
| | - Bahram Soltani Tehrani
- Cellular and Molecular Research Center, Faculty of Medicine, Guilan University of Medical Sciences, Rasht, Iran; Department of Pharmacology, School of Pharmacy, Guilan University of Medical Sciences, Rasht, Iran
| | - Alireza Pasdar
- Department of Medical Genetics, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran; Division of Applied Medicine, Faculty of Medicine, University of Aberdeen, Foresterhill, Aberdeen AB25 2ZD, UK
| | - Ahad Mokhtarzadeh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Biotechnology, Higher Education Institute of Rab-Rashid, Tabriz, Iran.
| | - Mohammad Ramezani
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
26
|
Keçili R, Büyüktiryaki S, Hussain CM. Advancement in bioanalytical science through nanotechnology: Past, present and future. Trends Analyt Chem 2019. [DOI: 10.1016/j.trac.2018.11.012] [Citation(s) in RCA: 72] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
27
|
Miao Y, Wang R, Sun X, Yan G. Preparation of DNA functional phosphorescent quantum dots and application in melamine detection in milk. RSC Adv 2019; 9:21147-21154. [PMID: 35521351 PMCID: PMC9066003 DOI: 10.1039/c9ra03919h] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Accepted: 07/02/2019] [Indexed: 01/01/2023] Open
Abstract
Bio-functionalization of quantum dots (QDs) is of important value in practical applications. With single-stranded DNA (ssDNA) rich in thymine T and thioguanine G taken as the template, a new-type nanocomposite material (ssDNA-PQDs) synthesized from low-toxicity T-ssDNA functionalized Mn–ZnS and room-temperature phosphorescent (RTP) QDs (PQDs) was prepared in this paper by optimizing synthesis conditions, and these ssDNA-PQDs could emit orange RTP signals at 590 nm. As these ssDNA-PQDs are rich in T sequences and T sequences can bond with melamine through the hydrogen-bond interaction, ssDNA-PQDs experience aggregation, thus causing phosphorescent exciton energy transfer (PEET) between ssDNA-PQDs of different particle sizes and their RTP quenching. Based on this principle, an RTP detection method for melamine was established. The linear range and detection limit of the detection method are 0.005–6 mM and 0.0016 mM respectively. As this method is based on the RTP nature of ssDNA-PQDs, it can avoid disturbance from background fluorescence and scattered light of the biological fluid, and it is very suitable for melamine detection in the biological fluid milk. Preparation of phosphorescent quantum dots taking single-stranded DNA as a template and their application to melamine detection in milk.![]()
Collapse
Affiliation(s)
| | - Ruirui Wang
- Shanxi Normal University
- Linfen 041004
- PR China
| | - Xiaojie Sun
- Shanxi Normal University
- Linfen 041004
- PR China
| | - Guiqin Yan
- Shanxi Normal University
- Linfen 041004
- PR China
| |
Collapse
|
28
|
Singh RD, Shandilya R, Bhargava A, Kumar R, Tiwari R, Chaudhury K, Srivastava RK, Goryacheva IY, Mishra PK. Quantum Dot Based Nano-Biosensors for Detection of Circulating Cell Free miRNAs in Lung Carcinogenesis: From Biology to Clinical Translation. Front Genet 2018; 9:616. [PMID: 30574163 PMCID: PMC6291444 DOI: 10.3389/fgene.2018.00616] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2018] [Accepted: 11/23/2018] [Indexed: 12/24/2022] Open
Abstract
Lung cancer is the most frequently occurring malignancy and the leading cause of cancer-related death for men in our country. The only recommended screening method is clinic based low-dose computed tomography (also called a low-dose CT scan, or LDCT). However, the effect of LDCT on overall mortality observed in lung cancer patients is not statistically significant. Over-diagnosis, excessive cost, risks associated with radiation exposure, false positive results and delay in the commencement of the treatment procedure questions the use of LDCT as a reliable technique for population-based screening. Therefore, identification of minimal-invasive biomarkers able to detect malignancies at an early stage might be useful to reduce the disease burden. Circulating nucleic acids are emerging as important source of information for several chronic pathologies including lung cancer. Of these, circulating cell free miRNAs are reported to be closely associated with the clinical outcome of lung cancer patients. Smaller size, sequence homology between species, low concentration and stability are some of the major challenges involved in characterization and specific detection of miRNAs. To circumvent these problems, synthesis of a quantum dot based nano-biosensor might assist in sensitive, specific and cost-effective detection of differentially regulated miRNAs. The wide excitation and narrow emission spectra of these nanoparticles result in excellent fluorescent quantum yields with a broader color spectrum which make them ideal bio-entities for fluorescence resonance energy transfer (FRET) based detection for sequential or simultaneous study of multiple targets. In addition, photo-resistance and higher stability of these nanoparticles allows extensive exposure and offer state-of-the art sensitivity for miRNA targeting. A major obstacle for integrating QDs into clinical application is the QD-associated toxicity. However, the use of non-toxic shells along with surface modification not only overcomes the toxicity issues, but also increases the ability of QDs to quickly detect circulating cell free miRNAs in a non-invasive mode. The present review illustrates the importance of circulating miRNAs in lung cancer diagnosis and highlights the translational prospects of developing QD-based nano-biosensor for rapid early disease detection.
Collapse
Affiliation(s)
- Radha D. Singh
- Department of Molecular Biology, ICMR-National Institute for Research in Environmental Health, Bhopal, India
| | - Ruchita Shandilya
- Department of Molecular Biology, ICMR-National Institute for Research in Environmental Health, Bhopal, India
| | - Arpit Bhargava
- Department of Molecular Biology, ICMR-National Institute for Research in Environmental Health, Bhopal, India
| | - Rajat Kumar
- Department of Molecular Biology, ICMR-National Institute for Research in Environmental Health, Bhopal, India
| | - Rajnarayan Tiwari
- Department of Molecular Biology, ICMR-National Institute for Research in Environmental Health, Bhopal, India
| | - Koel Chaudhury
- School of Medical Science and Technology, Indian Institute of Technology, Kharagpur, India
| | - Rupesh K. Srivastava
- Department of Biotechnology, All India Institute of Medical Sciences, New Delhi, India
| | - Irina Y. Goryacheva
- Department of General and Inorganic Chemistry, Saratov State University, Saratov, Russia
| | - Pradyumna K. Mishra
- Department of Molecular Biology, ICMR-National Institute for Research in Environmental Health, Bhopal, India
| |
Collapse
|
29
|
Alshaer W, Hillaireau H, Fattal E. Aptamer-guided nanomedicines for anticancer drug delivery. Adv Drug Deliv Rev 2018; 134:122-137. [PMID: 30267743 DOI: 10.1016/j.addr.2018.09.011] [Citation(s) in RCA: 116] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Revised: 09/20/2018] [Accepted: 09/24/2018] [Indexed: 02/08/2023]
Abstract
Aptamers are versatile nucleic acid-based macromolecules characterized by their high affinity and specificity to a specific target. Taking advantage of such binding properties, several aptamers have been selected to bind tumor biomarkers and have been used as targeting ligands for the functionalization of nanomedicines. Different functionalization methods have been used to link aptamers to the surface drug nanocarriers. The pre-clinical data of such nanomedicines overall show an enhanced and selective delivery of therapeutic payloads to cancer cells, thereby accelerating steps towards more effective therapeutic systems. This review describes the current advances in the use of aptamers as targeting moieties for the delivery of therapeutic and imaging agents to tumors by conjugation to organic and inorganic nanocarriers.
Collapse
|
30
|
Application of aptamers for in vivo molecular imaging and theranostics. Adv Drug Deliv Rev 2018; 134:94-106. [PMID: 30125606 DOI: 10.1016/j.addr.2018.08.004] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Revised: 07/06/2018] [Accepted: 08/16/2018] [Indexed: 12/11/2022]
Abstract
Nucleic acid aptamers are small three-dimensional structures of oligonucleotides selected to bind to a target of interest with high affinity and specificity. In vitro, aptamers already compete with antibodies to serve as imaging probes, e.g. for microscopy or flow cytometry. However, they are also increasingly used for in vivo molecular imaging. Accordingly, aptamers have been evaluated over the last twenty years in almost every imaging modality, including single photon emission computed tomography, positron emission tomography, magnetic resonance imaging, fluorescence imaging, echography, and x-ray computed tomography. This review focuses on the studies that were conducted in vivo with aptamer-based imaging probes. It also presents how aptamers have been recently used to develop new types of probes for multimodal imaging and theranostic applications.
Collapse
|
31
|
Applying strand displacement amplification to quantum dots-based fluorescent lateral flow assay strips for HIV-DNA detection. Biosens Bioelectron 2018; 105:211-217. [PMID: 29412945 DOI: 10.1016/j.bios.2018.01.039] [Citation(s) in RCA: 84] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2017] [Revised: 01/01/2018] [Accepted: 01/18/2018] [Indexed: 12/11/2022]
Abstract
Up to now, the colloidal gold labeling immunochromatographic test strip is a mature and applicable technology. However, different from the conventional gold nanoparticle, quantum dot (QD) possesses larger specific surface area and better biocompatibility. So, as a novel nanomaterial, QD is capable of assembling more biomolecule which could enhance the sensitivity and accuracy of strips by rationality. Besides, strand displacement amplification was drawn into our test strips in this paper, this assumption made HIV-DNA recycling many times and converting it to plentiful QD-dsDNA (double-stranded deoxyribonucleic acid), where after these nano-structures would be captured by test zone. Meanwhile, the suggested scheme eliminated the hook effect owing to the target drop out of the incorporation on test zone, and any nucleotide sequence or substance which has aptamers can work as the target, such as carcinoembryonic antigen or mycotoxin. This assay realized the detection limit of as low as 0.76 pM (S/N = 3) and the detection range of 1 pM to 10 nM. In the end, we made use of this fluorescent lateral flow assay strips with great reproducibility for detecting HIV-DNA in human serum, that attested this method could be applied to practical application prospectively.
Collapse
|
32
|
Yoon S, Rossi JJ. Targeted Molecular Imaging Using Aptamers in Cancer. Pharmaceuticals (Basel) 2018; 11:ph11030071. [PMID: 30029472 PMCID: PMC6160950 DOI: 10.3390/ph11030071] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Revised: 07/13/2018] [Accepted: 07/17/2018] [Indexed: 12/21/2022] Open
Abstract
Imaging is not only seeing, but also believing. For targeted imaging modalities, nucleic acid aptamers have features such as superior recognition of structural epitopes and quick uptake in target cells. This explains the emergence of an evolved new class of aptamers into a wide spectrum of imaging applications over the last decade. Genetically encoded biosensors tagged with fluorescent RNA aptamers have been developed as intracellular imaging tools to understand cellular signaling and physiology in live cells. Cancer-specific aptamers labeled with fluorescence have been used for assessment of clinical tissue specimens. Aptamers conjugated with gold nanoparticles have been employed to develop innovative mass spectrometry tissue imaging. Also, use of chemically conjugated cancer-specific aptamers as probes for non-invasive and high-resolution imaging has been transformative for in vivo imaging in multiple cancers.
Collapse
Affiliation(s)
- Sorah Yoon
- Department of Molecular and Cellular Biology, Beckman Research Institute of City of Hope, Duarte, CA 91010, USA.
| | - John J Rossi
- Department of Molecular and Cellular Biology, Beckman Research Institute of City of Hope, Duarte, CA 91010, USA.
- Irell and Manella Graduate School of Biological Sciences, Beckman Research Institute of City of Hope, Duarte, CA 91010, USA.
| |
Collapse
|
33
|
Silicon nanodot-based aptasensor for fluorescence turn-on detection of mucin 1 and targeted cancer cell imaging. Anal Chim Acta 2018; 1035:154-160. [PMID: 30224134 DOI: 10.1016/j.aca.2018.06.032] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Revised: 06/04/2018] [Accepted: 06/12/2018] [Indexed: 01/22/2023]
Abstract
We report herein a new dual-color fluorescent aptasensor for detection of tumor marker mucin 1 (MUC1) and targeted imaging of MCF-7 cancer cells based on the specific interaction between MUC1 and its aptamer S2.2. The aptasensor was prepared by covalent attachment of the cyanine (Cy5)-tagged aptamer S2.2 to fluorescent silicon nanodot (SiND). The fluorescence of S2.2-Cy5 could be quenched by the SiND carrier in the absence of MUC1, and its fluorescence was restored in the presence of MUC1 due to structure switching of S2.2. This aptasensor exhibits specificity for MUC1-possitive MCF-7 cells rather than MUC1-negative MCF-10A cells and Vero cells. The SiND plays multiple roles in this fluorescence assay, making the method easier compared with other approaches. The limit of detection and precision of this method for MUC1 was 1.52 nM and 3.6% (10 nM, n = 7), respectively. The linear range was 3.33-250 nM, and the recoveries in spiked human serum were in the range of 87-108%. This is a simple, selective, sensitive and reliable method, which can well achieve not only quantitative analysis of tumor marker but also dual-color visualization of single cancer cells.
Collapse
|
34
|
Zhang Y, Tu J, Wang D, Zhu H, Maity SK, Qu X, Bogaert B, Pei H, Zhang H. Programmable and Multifunctional DNA-Based Materials for Biomedical Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2018; 30:e1703658. [PMID: 29389041 DOI: 10.1002/adma.201703658] [Citation(s) in RCA: 130] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Revised: 09/09/2017] [Indexed: 06/07/2023]
Abstract
DNA encodes the genetic information; recently, it has also become a key player in material science. Given the specific Watson-Crick base-pairing interactions between only four types of nucleotides, well-designed DNA self-assembly can be programmable and predictable. Stem-loops, sticky ends, Holliday junctions, DNA tiles, and lattices are typical motifs for forming DNA-based structures. The oligonucleotides experience thermal annealing in a near-neutral buffer containing a divalent cation (usually Mg2+ ) to produce a variety of DNA nanostructures. These structures not only show beautiful landscape, but can also be endowed with multifaceted functionalities. This Review begins with the fundamental characterization and evolutionary trajectory of DNA-based artificial structures, but concentrates on their biomedical applications. The coverage spans from controlled drug delivery to high therapeutic profile and accurate diagnosis. A variety of DNA-based materials, including aptamers, hydrogels, origamis, and tetrahedrons, are widely utilized in different biomedical fields. In addition, to achieve better performance and functionality, material hybridization is widely witnessed, and DNA nanostructure modification is also discussed. Although there are impressive advances and high expectations, the development of DNA-based structures/technologies is still hindered by several commonly recognized challenges, such as nuclease instability, lack of pharmacokinetics data, and relatively high synthesis cost.
Collapse
Affiliation(s)
- Yuezhou Zhang
- Department of Pharmaceutical Science Laboratory, Åbo Akademi University, 20520, Turku, Finland
| | - Jing Tu
- Department of Pharmaceutical Science Laboratory, Åbo Akademi University, 20520, Turku, Finland
| | - Dongqing Wang
- Department of Radiology, Affiliated Hospital of Jiangsu University Jiangsu University, 212001, Zhenjiang, P. R. China
| | - Haitao Zhu
- Department of Radiology, Affiliated Hospital of Jiangsu University Jiangsu University, 212001, Zhenjiang, P. R. China
| | | | - Xiangmeng Qu
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, 200241, Shanghai, P. R. China
| | - Bram Bogaert
- Department of Pharmaceutical Science Laboratory, Åbo Akademi University, 20520, Turku, Finland
| | - Hao Pei
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, 200241, Shanghai, P. R. China
| | - Hongbo Zhang
- Department of Pharmaceutical Science Laboratory, Åbo Akademi University, 20520, Turku, Finland
- Department of Radiology, Affiliated Hospital of Jiangsu University Jiangsu University, 212001, Zhenjiang, P. R. China
- Turku Center for Biotechnology, Åbo Akademi University, 20520, Turku, Finland
| |
Collapse
|
35
|
Ding C, Zhang C, Yin X, Cao X, Cai M, Xian Y. Near-Infrared Fluorescent Ag 2S Nanodot-Based Signal Amplification for Efficient Detection of Circulating Tumor Cells. Anal Chem 2018; 90:6702-6709. [PMID: 29722265 DOI: 10.1021/acs.analchem.8b00514] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The level of circulating tumor cells (CTCs) plays a critical role in tumor metastasis and personalized therapy, but it is challenging for highly efficient capture and detection of CTCs because of the extremely low concentration in peripheral blood. Herein, we report near-infrared fluorescent Ag2S nanodot-based signal amplification combing with immune-magnetic spheres (IMNs) for highly efficient magnetic capture and ultrasensitive fluorescence labeling of CTCs. The near-infrared fluorescent Ag2S nanoprobe has been successfully constructed through hybridization chain reactions using aptamer-modified Ag2S nanodots, which can extremely improve the imaging sensitivity and reduce background signal of blood samples. Moreover, the antiepithelial-cell-adhesion-molecule (EpCAM) antibody-labeled magnetic nanospheres have been used for highly capture rare tumor cells in whole blood. The near-infrared nanoprobe with signal amplification and IMNs platform exhibits excellent performance in efficient capture and detection of CTCs, which shows great potential in cancer diagnostics and therapeutics.
Collapse
Affiliation(s)
- Caiping Ding
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, Department of Chemistry, School of Chemistry and Molecular Engineering , East China Normal University , Shanghai 200241 , China
| | - Cuiling Zhang
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, Department of Chemistry, School of Chemistry and Molecular Engineering , East China Normal University , Shanghai 200241 , China
| | - Xueyang Yin
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, Department of Chemistry, School of Chemistry and Molecular Engineering , East China Normal University , Shanghai 200241 , China
| | - Xuanyu Cao
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, Department of Chemistry, School of Chemistry and Molecular Engineering , East China Normal University , Shanghai 200241 , China
| | - Meifang Cai
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, Department of Chemistry, School of Chemistry and Molecular Engineering , East China Normal University , Shanghai 200241 , China
| | - Yuezhong Xian
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, Department of Chemistry, School of Chemistry and Molecular Engineering , East China Normal University , Shanghai 200241 , China
| |
Collapse
|
36
|
Kanagasubbulakshmi S, Kadirvelu K. Nano interface potential influences in CdTe quantum dots and biolabeling. APPLIED NANOSCIENCE 2018. [DOI: 10.1007/s13204-018-0774-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Abstract
Nano interface influences in physiochemical properties of quantum dots (QDs) are the challenging approach to tailor its surface functionalities. In this study, a set of polar and non-polar solvents were selected to analyze the influences in solvent-based dynamic radius and surface potential of QDs. From the nano interface chemistry of polar and non-polar solvents, an appropriate mechanism of precipitation and hydrophobic ligand exchange strategy were elucidated by correlating Henry’s equation. Further, the in vitro cytotoxic potential and antimicrobial activity of QDs were assessed to perform biolabeling. From the observations, an appropriate dosage of QDs was fixed to label the animal ((RAW 264.7 cell lines) and bacterial cells (Escherichia coli) for effective cell attachment. Biolabeling was achieved by tailoring nano interface chemistry of QDs without additional support of biomolecules. Bacterial cell wall-based interaction of QDs was evaluated using SEM and EDAX analysis. Thus, provided clear insights into the nano interface chemistry in the development of highly photostable QDs will be helpful in biomedical applications.
Collapse
|
37
|
Tang J, He X, Lei Y, Shi H, Guo Q, Liu J, He D, Yan L, Wang K. Temperature-responsive split aptamers coupled with polymerase chain reaction for label-free and sensitive detection of cancer cells. Chem Commun (Camb) 2018; 53:11889-11892. [PMID: 29043317 DOI: 10.1039/c7cc06218d] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
A label-free and general thermo-controlled split apta-PCR strategy was first developed for the sensitive and specific detection of cancer cells. By integrating the temperature-responsive function of split aptamers with PCR amplification, a facile fluorescence assay of liver cancer SMMC-7721 cells was successfully realized with the detection of as low as 100 cells.
Collapse
Affiliation(s)
- Jinlu Tang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Hunan University, Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Changsha, Hunan 410082, China.
| | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Mao G, Liu C, Du M, Zhang Y, Ji X, He Z. One-pot synthesis of the stable CdZnTeS quantum dots for the rapid and sensitive detection of copper-activated enzyme. Talanta 2018; 185:123-131. [PMID: 29759178 DOI: 10.1016/j.talanta.2018.03.054] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2017] [Revised: 03/15/2018] [Accepted: 03/16/2018] [Indexed: 10/17/2022]
Abstract
Galactose oxidase is a copper-activated enzyme and have a vital role in metabolism of galactose. Much of the work is focused on determining the amount of galactose in the blood rather than measuring the amount of galactose oxidase to urge the galactosemia patients to restrict milk intake. Here, a simple and effective method was developed for Cu2+ and copper-activated enzyme detection based on homogenous alloyed CdZnTeS quantum dots (QDs). Meso- 2,3-dimercaptosuccinic acid (DMSA) was used as the reducing agent for preparing QDs and the highest quantum yield of CdZnTeS QDs was 69.4%. In addition, the as-prepared CdZnTeS QDs show superior fluorescence properties, such as good photo-/chemical stability. The DMSA was the surface ligand of the QDs, containing abundant -SH and -COOH, thus the surface ligands have a high affinity with Cu2+. Therefore, this developed probe can be applied for Cu2+ and galactose oxidase detection and shows a good sensitivity in the buffer. Then, this probe was successfully used for Cu2+ and galactose oxidase detection in real samples with the satisfactory results. The proposed fluorescence quenching strategy gives a new and simple insight for enzyme assay without the enzyme-catalyzed reaction.
Collapse
Affiliation(s)
- Guobin Mao
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, People's Republic of China
| | - Chen Liu
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, People's Republic of China
| | - Mingyuan Du
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, People's Republic of China
| | - Yuwei Zhang
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, People's Republic of China
| | - Xinghu Ji
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, People's Republic of China
| | - Zhike He
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, People's Republic of China.
| |
Collapse
|
39
|
Hori SI, Herrera A, Rossi JJ, Zhou J. Current Advances in Aptamers for Cancer Diagnosis and Therapy. Cancers (Basel) 2018; 10:cancers10010009. [PMID: 29301363 PMCID: PMC5789359 DOI: 10.3390/cancers10010009] [Citation(s) in RCA: 110] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Revised: 12/22/2017] [Accepted: 12/26/2017] [Indexed: 12/24/2022] Open
Abstract
Nucleic acid aptamers are single-stranded oligonucleotides that interact with target molecules with high affinity and specificity in unique three-dimensional structures. Aptamers are generally isolated by a simple selection process called systematic evolution of ligands by exponential enrichment (SELEX) and then can be chemically synthesized and modified. Because of their high affinity and specificity, aptamers are promising agents for biomarker discovery, as well as cancer diagnosis and therapy. In this review, we present recent progress and challenges in aptamer and SELEX technology and highlight some representative applications of aptamers in cancer therapy.
Collapse
Affiliation(s)
- Shin-Ichiro Hori
- Department of Molecular and Cellular Biology, Beckman Research Institute of City of Hope, 1500 E. Duarte Rd, Duarte, CA 91010, USA.
- Drug Discovery & Disease Research Laboratory, Shionogi & Co., Ltd., 3-1-1, Futaba-cho, Toyonaka, Osaka 561-0825, Japan.
| | - Alberto Herrera
- Department of Molecular and Cellular Biology, Beckman Research Institute of City of Hope, 1500 E. Duarte Rd, Duarte, CA 91010, USA.
- Irell and Manella Graduate School of Biological Sciences, Beckman Research Institute of City of Hope, 1500 E. Duarte Rd, Duarte, CA 91010, USA.
| | - John J Rossi
- Department of Molecular and Cellular Biology, Beckman Research Institute of City of Hope, 1500 E. Duarte Rd, Duarte, CA 91010, USA.
- Irell and Manella Graduate School of Biological Sciences, Beckman Research Institute of City of Hope, 1500 E. Duarte Rd, Duarte, CA 91010, USA.
| | - Jiehua Zhou
- Department of Molecular and Cellular Biology, Beckman Research Institute of City of Hope, 1500 E. Duarte Rd, Duarte, CA 91010, USA.
| |
Collapse
|
40
|
Cao X, Ding C, Zhang C, Gu W, Yan Y, Shi X, Xian Y. Transition metal dichalcogenide quantum dots: synthesis, photoluminescence and biological applications. J Mater Chem B 2018; 6:8011-8036. [DOI: 10.1039/c8tb02519c] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
We introduce the synthesis strategy, photoluminescence features and biological applications of TMD QDs.
Collapse
Affiliation(s)
- Xuanyu Cao
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes
- Department of Chemistry
- School of Chemistry and Molecular Engineering
- East China Normal University
- Shanghai 200241
| | - Caiping Ding
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes
- Department of Chemistry
- School of Chemistry and Molecular Engineering
- East China Normal University
- Shanghai 200241
| | - Cuiling Zhang
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes
- Department of Chemistry
- School of Chemistry and Molecular Engineering
- East China Normal University
- Shanghai 200241
| | - Wei Gu
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes
- Department of Chemistry
- School of Chemistry and Molecular Engineering
- East China Normal University
- Shanghai 200241
| | - Yinghan Yan
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes
- Department of Chemistry
- School of Chemistry and Molecular Engineering
- East China Normal University
- Shanghai 200241
| | - Xinhao Shi
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes
- Department of Chemistry
- School of Chemistry and Molecular Engineering
- East China Normal University
- Shanghai 200241
| | - Yuezhong Xian
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes
- Department of Chemistry
- School of Chemistry and Molecular Engineering
- East China Normal University
- Shanghai 200241
| |
Collapse
|
41
|
Yang CZ, Li LY, Wang XH, Yu SQ, Hu YJ. One-pot synthesis and characterization CdTe:Zn2+
quantum dots and its molecular interaction with calf thymus DNA. J Mol Recognit 2017; 31:e2691. [DOI: 10.1002/jmr.2691] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Revised: 10/31/2017] [Accepted: 11/02/2017] [Indexed: 01/08/2023]
Affiliation(s)
- Cheng-Zhang Yang
- Hubei Key Laboratory of Pollutant Analysis and Reuse Technology, College of Chemistry and Chemical Engineering; Hubei Normal University; Huangshi 435002 China
| | - Lin-Yi Li
- Hubei Key Laboratory of Pollutant Analysis and Reuse Technology, College of Chemistry and Chemical Engineering; Hubei Normal University; Huangshi 435002 China
| | - Xiao-Han Wang
- Hubei Key Laboratory of Pollutant Analysis and Reuse Technology, College of Chemistry and Chemical Engineering; Hubei Normal University; Huangshi 435002 China
| | - Si-Qian Yu
- Hubei Key Laboratory of Pollutant Analysis and Reuse Technology, College of Chemistry and Chemical Engineering; Hubei Normal University; Huangshi 435002 China
| | - Yan-Jun Hu
- Hubei Key Laboratory of Pollutant Analysis and Reuse Technology, College of Chemistry and Chemical Engineering; Hubei Normal University; Huangshi 435002 China
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education); Wuhan University; Wuhan 430072 China
| |
Collapse
|
42
|
Singh S, Jha P, Singh V, Sinha K, Hussain S, Singh MK, Das P. A quantum dot-MUC1 aptamer conjugate for targeted delivery of protoporphyrin IX and specific photokilling of cancer cells through ROS generation. Integr Biol (Camb) 2017; 8:1040-1048. [PMID: 27723851 DOI: 10.1039/c6ib00092d] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Non-targeted photosensitizers lack selectivity that undermines the potential use of photodynamic therapy (PDT). Herein, we report the DNA mediated assembly of a ZnSe/ZnS quantum dot (QD)-photosensitizer (PS)-Mucin 1(MUC1) aptamer conjugate for targeting the MUC1 cancer biomarker and simultaneous generation of reactive oxygen species (ROS). A photosensitizer, protoporphyrin IX (PpIX), was conjugated to a single stranded DNA and self-assembled to a complementary strand that was conjugated to a QD and harboring a MUC1 aptamer sequence. A multistep fluorescence resonance energy transfer (FRET) is shown that involves the QD, PpIX and covalently linked CF™ 633 amine dye (CF dye) to the MUC1 peptide that tracks the potency of the aptamer to attach itself with the MUC1 peptide. Since the absorption spectra of the CF dye overlap with the emission spectra of PpIX, the former acts as an acceptor to PpIX forming a second FRET pair when the dye labeled MUC1 binds to the aptamer. The binding of the QD-PpIX nanoassemblies with MUC1 through the aptamer was further confirmed by gel electrophoresis and circular dichroism studies. The selective photodamage of MUC1 expressing HeLa cervical cancer cells through ROS generation in the presence of the QD-PpIX FRET probe upon irradiation is successfully demonstrated.
Collapse
Affiliation(s)
- Seema Singh
- Department of Chemistry, Indian Institute of Technology Patna, Patna 801103, Bihar, India.
| | - Pravin Jha
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research, Hajipur 844101, Bihar, India
| | - Vandana Singh
- Department of Chemistry, Indian Institute of Technology Patna, Patna 801103, Bihar, India.
| | - Kislay Sinha
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research, Hajipur 844101, Bihar, India
| | - Sahid Hussain
- Department of Chemistry, Indian Institute of Technology Patna, Patna 801103, Bihar, India.
| | - Manoj K Singh
- Atomic and Molecular Physics Division, Bhabha Atomic Research Centre, Mumbai 400085, India.
| | - Prolay Das
- Department of Chemistry, Indian Institute of Technology Patna, Patna 801103, Bihar, India.
| |
Collapse
|
43
|
Catuogno S, Esposito CL. Aptamer Cell-Based Selection: Overview and Advances. Biomedicines 2017; 5:biomedicines5030049. [PMID: 28805744 PMCID: PMC5618307 DOI: 10.3390/biomedicines5030049] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Revised: 08/03/2017] [Accepted: 08/08/2017] [Indexed: 02/07/2023] Open
Abstract
Aptamers are high affinity single-stranded DNA/RNA molecules, produced by a combinatorial procedure named SELEX (Systematic Evolution of Ligands by Exponential enrichment), that are emerging as promising diagnostic and therapeutic tools. Among selection strategies, procedures using living cells as complex targets (referred as "cell-SELEX") have been developed as an effective mean to generate aptamers for heavily modified cell surface proteins, assuring the binding of the target in its native conformation. Here we give an up-to-date overview on cell-SELEX technology, discussing the most recent advances with a particular focus on cancer cell targeting. Examples of the different protocol applications and post-SELEX strategies will be briefly outlined.
Collapse
Affiliation(s)
- Silvia Catuogno
- Istituto di Endocrinologia ed Oncologia Sperimentale "G. Salvatore", CNR, Naples 80100, Italy.
| | - Carla Lucia Esposito
- Istituto di Endocrinologia ed Oncologia Sperimentale "G. Salvatore", CNR, Naples 80100, Italy.
| |
Collapse
|
44
|
Lai Z, Tan J, Wan R, Tan J, Zhang Z, Hu Z, Li J, Yang W, Wang Y, Jiang Y, He J, Yang N, Lu X, Zhao Y. An 'activatable' aptamer-based fluorescence probe for the detection of HepG2 cells. Oncol Rep 2017; 37:2688-2694. [PMID: 28339076 PMCID: PMC5428880 DOI: 10.3892/or.2017.5527] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2016] [Accepted: 03/01/2017] [Indexed: 01/06/2023] Open
Abstract
It is significant to develop a probe with sensitivity and specificity for the detection of cancer cells. The present study aimed to develop an ‘activatable’ aptamer-based fluorescence probe (AAFP) to detect cancer cells and frozen cancer tissue. This AAFP consisted of two fragments: aptamer TLS11a that targets HepG2 cells, and two short extending complementary DNA sequences with a 5′- and 3′-terminus that make the aptamer in hairpin structure a capable quencher to fluorophore. The ability of the AAFP to bind specifically to cancer cells was assessed using flow cytometry, fluorescence spectroscopy and fluorescence microscopy. Its ability to bind to frozen cancer tissue was assessed using fluorescence microscopy. As a result, in the absence of cancer cells, AAFP showed minimal fluorescence, reflecting auto-quenching. In the presence of cancer cells, however, AAFP showed a strong fluorescent signal. Therefore, this AAFP may be a promising tool for sensitive and specific detection of cancer.
Collapse
Affiliation(s)
- Zongqiang Lai
- National Center for International Research of Biological Targeting Diagnosis and Therapy, Guangxi Key Laboratory of Biological Targeting Diagnosis and Therapy Research, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Juntao Tan
- National Center for International Research of Biological Targeting Diagnosis and Therapy, Guangxi Key Laboratory of Biological Targeting Diagnosis and Therapy Research, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Ruirong Wan
- National Center for International Research of Biological Targeting Diagnosis and Therapy, Guangxi Key Laboratory of Biological Targeting Diagnosis and Therapy Research, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Jie Tan
- National Center for International Research of Biological Targeting Diagnosis and Therapy, Guangxi Key Laboratory of Biological Targeting Diagnosis and Therapy Research, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Zhenghua Zhang
- National Center for International Research of Biological Targeting Diagnosis and Therapy, Guangxi Key Laboratory of Biological Targeting Diagnosis and Therapy Research, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Zixi Hu
- National Center for International Research of Biological Targeting Diagnosis and Therapy, Guangxi Key Laboratory of Biological Targeting Diagnosis and Therapy Research, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Jieping Li
- National Center for International Research of Biological Targeting Diagnosis and Therapy, Guangxi Key Laboratory of Biological Targeting Diagnosis and Therapy Research, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Wei Yang
- National Center for International Research of Biological Targeting Diagnosis and Therapy, Guangxi Key Laboratory of Biological Targeting Diagnosis and Therapy Research, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Yiwei Wang
- National Center for International Research of Biological Targeting Diagnosis and Therapy, Guangxi Key Laboratory of Biological Targeting Diagnosis and Therapy Research, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Yafeng Jiang
- National Center for International Research of Biological Targeting Diagnosis and Therapy, Guangxi Key Laboratory of Biological Targeting Diagnosis and Therapy Research, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Jian He
- National Center for International Research of Biological Targeting Diagnosis and Therapy, Guangxi Key Laboratory of Biological Targeting Diagnosis and Therapy Research, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Nuo Yang
- National Center for International Research of Biological Targeting Diagnosis and Therapy, Guangxi Key Laboratory of Biological Targeting Diagnosis and Therapy Research, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Xiaoling Lu
- National Center for International Research of Biological Targeting Diagnosis and Therapy, Guangxi Key Laboratory of Biological Targeting Diagnosis and Therapy Research, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Yongxiang Zhao
- National Center for International Research of Biological Targeting Diagnosis and Therapy, Guangxi Key Laboratory of Biological Targeting Diagnosis and Therapy Research, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| |
Collapse
|
45
|
Impact of surface coating on morphological, optical and photoluminescence properties of YF 3 :Tb 3+ nanoparticles. CHINESE CHEM LETT 2017. [DOI: 10.1016/j.cclet.2016.10.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
46
|
Zhang C, Ding C, Zhou G, Xue Q, Xian Y. One-step synthesis of DNA functionalized cadmium-free quantum dots and its application in FRET-based protein sensing. Anal Chim Acta 2017; 957:63-69. [DOI: 10.1016/j.aca.2016.12.024] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2016] [Accepted: 12/13/2016] [Indexed: 10/20/2022]
|
47
|
Moulick A, Milosavljevic V, Vlachova J, Podgajny R, Hynek D, Kopel P, Adam V. Using CdTe/ZnSe core/shell quantum dots to detect DNA and damage to DNA. Int J Nanomedicine 2017; 12:1277-1291. [PMID: 28243089 PMCID: PMC5317249 DOI: 10.2147/ijn.s121840] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
CdTe/ZnSe core/shell quantum dot (QD), one of the strongest and most highly luminescent nanoparticles, was directly synthesized in an aqueous medium to study its individual interactions with important nucleobases (adenine, guanine, cytosine, and thymine) in detail. The results obtained from the optical analyses indicated that the interactions of the QDs with different nucleobases were different, which reflected in different fluorescent emission maxima and intensities. The difference in the interaction was found due to the different chemical behavior and different sizes of the formed nanoconjugates. An electrochemical study also confirmed that the purines and pyrimidines show different interactions with the core/shell QDs. Based on these phenomena, a novel QD-based method is developed to detect the presence of the DNA, damage to DNA, and mutation. The QDs were successfully applied very easily to detect any change in the sequence (mutation) of DNA. The QDs also showed their ability to detect DNAs directly from the extracts of human cancer (PC3) and normal (PNT1A) cells (detection limit of 500 pM of DNA), which indicates the possibilities to use this easy assay technique to confirm the presence of living organisms in extreme environments.
Collapse
Affiliation(s)
- Amitava Moulick
- Department of Chemistry and Biochemistry, Mendel University; Central European Institute of Technology, Brno University of Technology, Brno, Czech Republic
| | - Vedran Milosavljevic
- Department of Chemistry and Biochemistry, Mendel University; Central European Institute of Technology, Brno University of Technology, Brno, Czech Republic
| | - Jana Vlachova
- Department of Chemistry and Biochemistry, Mendel University; Central European Institute of Technology, Brno University of Technology, Brno, Czech Republic
| | - Robert Podgajny
- Faculty of Chemistry, Jagiellonian University, Krakow, Poland
| | - David Hynek
- Department of Chemistry and Biochemistry, Mendel University; Central European Institute of Technology, Brno University of Technology, Brno, Czech Republic
| | - Pavel Kopel
- Department of Chemistry and Biochemistry, Mendel University; Central European Institute of Technology, Brno University of Technology, Brno, Czech Republic
| | - Vojtech Adam
- Department of Chemistry and Biochemistry, Mendel University; Central European Institute of Technology, Brno University of Technology, Brno, Czech Republic
| |
Collapse
|
48
|
Tang J, Shi H, He X, Lei Y, Guo Q, Wang K, Yan L, He D. Tumor cell-specific split aptamers: target-driven and temperature-controlled self-assembly on the living cell surface. Chem Commun (Camb) 2016; 52:1482-5. [PMID: 26660498 DOI: 10.1039/c5cc08977h] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
An activatable split aptamer probe with target-induced shape change and thermosensitivity was developed. Triggered by proteins on the cell surface, the probe could assemble into a desired binding shape, thus affording a FRET-based tumor cell assay. Moreover, a reversible cell catch/release strategy was realized through mild temperature switching (4°C/37°C).
Collapse
Affiliation(s)
- Jinlu Tang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Hunan University, Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Changsha, 410082, China.
| | - Hui Shi
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Hunan University, Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Changsha, 410082, China.
| | - Xiaoxiao He
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Hunan University, Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Changsha, 410082, China.
| | - Yanli Lei
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Hunan University, Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Changsha, 410082, China.
| | - Qiuping Guo
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Hunan University, Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Changsha, 410082, China.
| | - Kemin Wang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Hunan University, Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Changsha, 410082, China.
| | - Lv'an Yan
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Hunan University, Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Changsha, 410082, China.
| | - Dinggeng He
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Hunan University, Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Changsha, 410082, China.
| |
Collapse
|
49
|
|
50
|
Weichelt R, Leubner S, Henning-Knechtel A, Mertig M, Gaponik N, Schmidt TL, Eychmüller A. Methods to Characterize the Oligonucleotide Functionalization of Quantum Dots. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2016; 12:4763-4771. [PMID: 27409730 DOI: 10.1002/smll.201601525] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2016] [Revised: 06/06/2016] [Indexed: 06/06/2023]
Abstract
Currently, DNA nanotechnology offers the most programmable, scalable, and accurate route for the self-assembly of matter with nanometer precision into 1, 2, or 3D structures. One example is DNA origami that is well suited to serve as a molecularly defined "breadboard", and thus, to organize various nanomaterials such as nanoparticles into hybrid systems. Since the controlled assembly of quantum dots (QDs) is of high interest in the field of photonics and other optoelectronic applications, a more detailed view on the functionalization of QDs with oligonucleotides shall be achieved. In this work, four different methods are presented to characterize the functionalization of thiol-capped cadmium telluride QDs with oligonucleotides and for the precise quantification of the number of oligonucleotides bound to the QD surface. This study enables applications requiring the self-assembly of semiconductor-oligonucleotide hybrid materials and proves the conjugation success in a simple and straightforward manner.
Collapse
Affiliation(s)
- Richard Weichelt
- Physical Chemistry and Center for Advancing Electronics Dresden (cfaed), Technische Universität Dresden, 01062, Dresden, Germany
| | - Susanne Leubner
- Physical Chemistry and Center for Advancing Electronics Dresden (cfaed), Technische Universität Dresden, 01062, Dresden, Germany
| | - Anja Henning-Knechtel
- Physical Chemistry and Center for Advancing Electronics Dresden (cfaed), Technische Universität Dresden, 01062, Dresden, Germany
| | - Michael Mertig
- Physical Chemistry and Center for Advancing Electronics Dresden (cfaed), Technische Universität Dresden, 01062, Dresden, Germany
- Kurt-Schwabe-Institute e.V. Meinsberg, Kurt-Schwabe-Str. 4, 04736, Waldheim, Germany
| | - Nikolai Gaponik
- Physical Chemistry and Center for Advancing Electronics Dresden (cfaed), Technische Universität Dresden, 01062, Dresden, Germany
| | - Thorsten-Lars Schmidt
- Physical Chemistry and Center for Advancing Electronics Dresden (cfaed), Technische Universität Dresden, 01062, Dresden, Germany
| | - Alexander Eychmüller
- Physical Chemistry and Center for Advancing Electronics Dresden (cfaed), Technische Universität Dresden, 01062, Dresden, Germany.
| |
Collapse
|