1
|
Lipovka A, Fatkullin M, Averkiev A, Pavlova M, Adiraju A, Weheabby S, Al-Hamry A, Kanoun O, Pašti I, Lazarevic-Pasti T, Rodriguez RD, Sheremet E. Surface-Enhanced Raman Spectroscopy and Electrochemistry: The Ultimate Chemical Sensing and Manipulation Combination. Crit Rev Anal Chem 2024; 54:110-134. [PMID: 35435777 DOI: 10.1080/10408347.2022.2063683] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
One of the lessons we learned from the COVID-19 pandemic is that the need for ultrasensitive detection systems is now more critical than ever. While sensors' sensitivity, portability, selectivity, and low cost are crucial, new ways to couple synergistic methods enable the highest performance levels. This review article critically discusses the synergetic combinations of optical and electrochemical methods. We also discuss three key application fields-energy, biomedicine, and environment. Finally, we selected the most promising approaches and examples, the open challenges in sensing, and ways to overcome them. We expect this work to set a clear reference for developing and understanding strategies, pros and cons of different combinations of electrochemical and optical sensors integrated into a single device.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Olfa Kanoun
- Technische Universität Chemnitz, Chemnitz, Germany
| | - Igor Pašti
- Faculty of Physical Chemistry, University of Belgrade, Belgrade, Serbia
| | - Tamara Lazarevic-Pasti
- Department of Physical Chemistry, "VINČA" Institute of Nuclear Sciences - National Institute of thе Republic of Serbia, University of Belgrade, Vinca, Serbia
| | | | | |
Collapse
|
2
|
Ortiz-Dosal A, Rodríguez-Aranda MC, Ortiz-Dosal LC, Núñez-Leyva JM, Rivera-Pérez E, Cuellar Camacho JL, Ávila-Delgadillo JR, Kolosovas-Machuca ES. Quasi-spherical silver nanoparticles for human prolactin detection by surface-enhanced Raman spectroscopy. RSC Adv 2024; 14:6998-7005. [PMID: 38414989 PMCID: PMC10897535 DOI: 10.1039/d3ra06366f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 02/20/2024] [Indexed: 02/29/2024] Open
Abstract
Prolactin is a polypeptide hormone made of 199 amino acids; 50% of the amino acid chain forms helices, and the rest forms loops. This hormone is typically related to initiating and maintaining lactation, although it is also elevated in various pathological conditions. Serum prolactin levels of 2 to 18 ng ml-1 in men, up to 30 ng ml-1 in women, and 10 to 210 ng ml-1 in pregnant women are considered normal. Immunoassay techniques used for detection are susceptible to error in different clinical conditions. Surface-enhanced Raman spectroscopy (SERS) is a technique that allows for obtaining the protein spectrum in a simple, fast, and reproducible manner. Nonetheless, proper characterization of human prolactin's Raman/SERS spectrum at different concentrations has so far not been deeply discussed. This study aims to characterize the Raman spectrum of human prolactin at physiological concentrations using silver nanoparticles (AgNPs) as the SERS substrate. The Raman spectrum of prolactin at 20 ng ul-1 was acquired. Quasi-spherical AgNPs were obtained using chemical synthesis. For SERS characterization, decreasing dilutions of the protein were made by adding deionized water and then a 1 : 1 volume of the AgNPs colloid. For each mixture, the Raman spectrum was determined. The spectrum of prolactin by SERS was obtained with a concentration of up to 0.1 ng ml-1. It showed characteristic bands corresponding to the side chains of aromatic amino acids in the protein's primary structure and the alpha helices of the secondary structure of prolactin. In conclusion, using quasi-spherical silver nanoparticles as the SERS substrate, the Raman spectrum of human prolactin at physiological concentration was determined.
Collapse
Affiliation(s)
- Alejandra Ortiz-Dosal
- Cátedras CONAHCYT - Facultad de Ciencias Universidad Autónoma de San Luis Potosí 1570 Parque Chapultepec Ave 78295 San Luis Potosí Mexico
| | - M C Rodríguez-Aranda
- Coordinación para la Innovación y Aplicación de la Ciencia y la Tecnología, Universidad Autónoma de San Luis Potosí 550 Sierra Leona Ave 78210 San Luis Potosí Mexico
- Facultad de Ciencias, Universidad Autónoma de San Luis Potosí 1570 Parque Chapultepec Ave 78295 San Luis Potosí Mexico
| | - Luis Carlos Ortiz-Dosal
- Maestría en Ciencia e Ingeniería de los Materiales (MCIM-UAZ), Universidad Autónoma de Zacatecas 801 López Velarde St 9800 Zacatecas Mexico
| | - Juan Manuel Núñez-Leyva
- Posdoctorado, CONAHCYT Mexico
- Maestría en Ciencia e Ingeniería de los Materiales (MCIM-UAZ), Universidad Autónoma de Zacatecas 801 López Velarde St 9800 Zacatecas Mexico
| | - Emmanuel Rivera-Pérez
- Coordinación para la Innovación y Aplicación de la Ciencia y la Tecnología, Universidad Autónoma de San Luis Potosí 550 Sierra Leona Ave 78210 San Luis Potosí Mexico
- Facultad de Ciencias, Universidad Autónoma de San Luis Potosí 1570 Parque Chapultepec Ave 78295 San Luis Potosí Mexico
| | - José Luis Cuellar Camacho
- Facultad de Ciencias, Universidad Autónoma de San Luis Potosí 1570 Parque Chapultepec Ave 78295 San Luis Potosí Mexico
| | - Julián Rosendo Ávila-Delgadillo
- Doctorado Institucional en Ingeniería y Ciencia de Materiales (DICIM-UASLP), Universidad Autónoma de San Luis Potosí 550 Sierra Leona Ave 78210 San Luis Potosí Mexico
- Coordinación para la Innovación y Aplicación de la Ciencia y la Tecnología, Universidad Autónoma de San Luis Potosí 550 Sierra Leona Ave 78210 San Luis Potosí Mexico
| | - Eleazar Samuel Kolosovas-Machuca
- Coordinación para la Innovación y Aplicación de la Ciencia y la Tecnología, Universidad Autónoma de San Luis Potosí 550 Sierra Leona Ave 78210 San Luis Potosí Mexico
- Facultad de Ciencias, Universidad Autónoma de San Luis Potosí 1570 Parque Chapultepec Ave 78295 San Luis Potosí Mexico
| |
Collapse
|
3
|
Wu S, Huang Y, Wen J, Huang J, Ma G, Liu Y, Tan H. Multiplex Aptamer-Based Fluorescence Assay Using Magnetism-Encoded Nanoparticles for Simultaneous Detection of Multiple Pathogenic Bacteria. Anal Chem 2024; 96:2341-2350. [PMID: 38300877 DOI: 10.1021/acs.analchem.3c03628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2024]
Abstract
Multiplex assay has emerged as a robust and versatile method for the simultaneous detection of multiple analytes in a single test. However, challenges in terms of poor accuracy and complexity remained. In this work, we developed a multiplex aptamer-based fluorescence assay using magnetism-encoded nanoparticles for the simultaneous detection of multiple pathogenic bacteria. The encapsulation of different amounts of Fe3O4 nanoparticles in zeolitic imidazolate framework-90 (ZIF-90) leads to the formation of Fe3O4@ZIF-90 (FZ) composites with distinct magnetism strengths. By functionalizing a specific aptamer on the surface of the FZ composites, target bacteria can be specifically and precisely separated from a mixed sample in a sequential manner. This property allows for the simultaneous quantitative analysis of multiple target bacteria by using a single-color fluorescence label, thereby resulting in minimal spectral crosstalk interference and improved accuracy. The successful determination of multiple bacteria in contaminated milk samples demonstrates the applicability of this multiplex assay in complex biological matrices. Compared to conventional multiplex fluorescence assays, this approach offers distinct advantages of simplicity, efficiency, and implementation. We believe that this study can provide valuable insights into the development of the multiplex assay while introducing a new method for the simultaneous detection of multiple bacteria.
Collapse
Affiliation(s)
- Sixuan Wu
- Key Laboratory of Chemical Biology of Jiangxi Province, College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang 330022, P. R. China
| | - Yingjie Huang
- Key Laboratory of Chemical Biology of Jiangxi Province, College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang 330022, P. R. China
| | - Jin Wen
- Key Laboratory of Chemical Biology of Jiangxi Province, College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang 330022, P. R. China
| | - Jiang Huang
- Key Laboratory of Chemical Biology of Jiangxi Province, College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang 330022, P. R. China
| | - Guangran Ma
- Key Laboratory of Chemical Biology of Jiangxi Province, College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang 330022, P. R. China
| | - Yongjun Liu
- Key Laboratory of Chemical Biology of Jiangxi Province, College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang 330022, P. R. China
| | - Hongliang Tan
- Key Laboratory of Chemical Biology of Jiangxi Province, College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang 330022, P. R. China
| |
Collapse
|
4
|
Jin H, Liu T, Sun D. Target-induced hot spot construction for sensitive and selective surface-enhanced Raman scattering detection of matrix metalloproteinase MMP-9. Mikrochim Acta 2024; 191:105. [PMID: 38240894 PMCID: PMC10798921 DOI: 10.1007/s00604-024-06183-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 01/01/2024] [Indexed: 01/22/2024]
Abstract
Studies have found that matrix metalloproteinase-9 (MMP-9) plays a significant role in cancer cell invasion, metastasis, and tumor growth. But it is a challenge to go for highly sensitive and selective detection and targeting of MMP-9 due to the similar structure and function of the MMP proteins family. Herein, a novel surface-enhanced Raman scattering (SERS) sensing strategy was developed based on the aptamer-induced SERS "hot spot" formation for the extremely sensitive and selective determination of MMP-9. To develop the nanosensor, one group of gold nanospheres was modified with MMP-9 aptamer and its complementary strand DNA1, while DNA2 (complementary to DNA1) and the probe molecule 5,5'-dithiobis-(2-nitrobenzoic acid) (DTNB) were grafted on the surface of the other group of gold nanospheres. In the absence of MMP-9, DTNB located on the 13-nm gold nanospheres has only generated a very weak SERS signal. However, when MMP-9 is present, the aptamer preferentially binds to the MMP-9 to construct MMP-9-aptamer complex. The bare DNA1 can recognize and bind to DNA2, which causes them to move in close proximity and create a SERS hot spot effect. Due to this action, the SERS signal of DTNB located at the nanoparticle gap is greatly enhanced, achieving highly sensitive detection of MMP-9. Since the hot spot effect is caused by the aptamer that specifically recognizes MMP-9, the approach exhibits excellent selectivity for MMP-9 detection. Based on the benefits of both high sensitivity and excellent selectivity, this method was used to distinguish the difference in MMP-9 levels between normal and cancer cells as well as the expression of MMP-9 from cancer cells with different degrees of metastasis. In addition, this strategy can accurately reflect the dynamic changes in intracellular MMP-9 levels, stimulated by the MMP-9 activator and inhibitor. This strategy is expected to be transformed into a new technique for diagnosis of specific cancers related to MMP-9 and assessing the extent of cancer occurrence, development and metastasis.
Collapse
Affiliation(s)
- Huihui Jin
- School of Pharmacy, Nantong University, Nantong, 226001, Jiangsu, China
| | - Tianqing Liu
- NICM Health Research Institute, Western Sydney University, Westmead, NSW, 2145, Australia.
| | - Dan Sun
- School of Pharmacy, Nantong University, Nantong, 226001, Jiangsu, China.
| |
Collapse
|
5
|
Ilyas A, Dyussupova A, Sultangaziyev A, Shevchenko Y, Filchakova O, Bukasov R. SERS immuno- and apta-assays in biosensing/bio-detection: Performance comparison, clinical applications, challenges. Talanta 2023; 265:124818. [PMID: 37453393 DOI: 10.1016/j.talanta.2023.124818] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 06/09/2023] [Accepted: 06/12/2023] [Indexed: 07/18/2023]
Abstract
Surface Enhanced Raman Spectroscopy is increasingly used as a sensitive bioanalytical tool for detection of variety of analytes ranging from viruses and bacteria to cancer biomarkers and toxins, etc. This comprehensive review describes principles of operation and compares the performance of immunoassays and aptamer assays with Surface Enhanced Raman scattering (SERS) detection to each other and to some other bioassay methods, including ELISA and fluorescence assays. Both immuno- and aptamer-based assays are categorized into assay on solid substrates, assays with magnetic nanoparticles and assays in laminar flow or/and strip assays. The best performing and recent examples of assays in each category are described in the text and illustrated in the figures. The average performance, particularly, limit of detection (LOD) for each of those methods reflected in 9 tables of the manuscript and average LODs are calculated and compared. We found out that, on average, there is some advantage in terms of LOD for SERS immunoassays (0.5 pM median LOD of 88 papers) vs SERS aptamer-based assays (1.7 pM median LOD of 51 papers). We also tabulated and analyzed the clinical performance of SERS immune and aptamer assays, where selectivity, specificity, and accuracy are reported, we summarized the best examples. We also reviewed challenges to SERS bioassay performance and real-life application, including non-specific protein binding, nanoparticle aggregation, limited nanotag stability, sometimes, relatively long time to results, etc. The proposed solutions to those challenges are also discussed in the review. Overall, this review may be interesting not only to bioanalytical chemist, but to medical and life science researchers who are interested in improvement of bioanalyte detection and diagnostics.
Collapse
Affiliation(s)
- Aisha Ilyas
- Department of Chemistry, SSH, Nazarbayev University, Astana, Kazakhstan
| | | | | | - Yegor Shevchenko
- Department of Chemistry, SSH, Nazarbayev University, Astana, Kazakhstan
| | - Olena Filchakova
- Department of Biology, SSH, Nazarbayev University, Astana, Kazakhstan
| | - Rostislav Bukasov
- Department of Chemistry, SSH, Nazarbayev University, Astana, Kazakhstan.
| |
Collapse
|
6
|
Jie Z, Liu J, Ying Y, Yang H. O-phthalaldehyde assisted surface enhanced Raman spectroscopy selective determination of trace homocysteine in serum. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 287:122048. [PMID: 36368268 DOI: 10.1016/j.saa.2022.122048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 10/11/2022] [Accepted: 10/23/2022] [Indexed: 06/16/2023]
Abstract
High plasma homocysteine (Hcy) levels may indicate cardiovascular disease. However, sensitive and selective determination of Hcy remains a major challenge. Herein, we present a sensing strategy for Hcy by surface enhanced Raman scattering (SERS) method along with a specific reaction of o-phthalaldehyde (OPA) and Hcy. The obtained adduct 2-(1-carboxyl-3-thiopropyl)-1-isoindolinone (Hcy-OPA) can be directly detected by SERS using gold nanoparticles (Au NPs) as the substrate. The developed SERS method displays superior sensitivity (low detection limit of 2.50 × 10-12 mol L-1) with a broad linear range (5.00 × 10-10 -5.00 × 10-6 mol L-1). As a proof of real application, it can be used to detect Hcy in bovine serum samples with a concentration as low as 5.00 × 10-9 mol L-1, which is free from the interference of the other amino acids and glutathione.
Collapse
Affiliation(s)
- Zhishun Jie
- The Education Ministry Key Lab of Resource Chemistry, Joint International Research Laboratory of Resource Chemistry, Ministry of Education, and Shanghai Key Laboratory of Rare Earth Functional Materials, College of Chemistry and Materials Science, Shanghai Normal University, Shanghai 200234, China
| | - Jia Liu
- The Education Ministry Key Lab of Resource Chemistry, Joint International Research Laboratory of Resource Chemistry, Ministry of Education, and Shanghai Key Laboratory of Rare Earth Functional Materials, College of Chemistry and Materials Science, Shanghai Normal University, Shanghai 200234, China
| | - Ye Ying
- The Education Ministry Key Lab of Resource Chemistry, Joint International Research Laboratory of Resource Chemistry, Ministry of Education, and Shanghai Key Laboratory of Rare Earth Functional Materials, College of Chemistry and Materials Science, Shanghai Normal University, Shanghai 200234, China.
| | - Haifeng Yang
- The Education Ministry Key Lab of Resource Chemistry, Joint International Research Laboratory of Resource Chemistry, Ministry of Education, and Shanghai Key Laboratory of Rare Earth Functional Materials, College of Chemistry and Materials Science, Shanghai Normal University, Shanghai 200234, China.
| |
Collapse
|
7
|
Tatar AS, Farcău C, Vulpoi A, Boca S, Astilean S. Development and evaluation of a gold nanourchin (GNU)-based sandwich architecture for SERS immunosensing in liquid. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 273:121069. [PMID: 35231760 DOI: 10.1016/j.saa.2022.121069] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 02/17/2022] [Accepted: 02/20/2022] [Indexed: 06/14/2023]
Abstract
Nanosensors represent a class of emerging promising nanotools that can be used for the rapid, sensitive and specific detection of relevant molecules such as biomarkers of cancer or other diseases. The sensing platforms that rely on the exceptional physical properties of colloidal gold nanoparticles have gained a special attraction and various architectural designs were proposed with the aim of rapid and real-time detection, identification and monitoring of the capturing events. Moreover, biomarker sensing in liquid samples allows a more facile implementation of the nanosensors by circumventing the need for invasive practices such as biopsies, in favor of non-invasive investigations with potential for use as point-of-care assays. Herein, we propose a sandwich-type surface enhanced Raman scattering (SERS) immuno-nanosensor which is aimed for detecting and quantifying Carcinoembryonic antigen-related cell adhesion molecule 5 (CEA-CAM5), a protein involved in intercellular adhesion and signaling pathways that acts as a tumor marker in several types of cancer. For constructing the proposed system, colloidal gold nano spheres (GNS) and gold nano-urchins (GNU) were chemically synthesized, labeled with SERS active molecules, conjugated with polymers, functionalized with antibodies as capturing substrates and tested in two different sensing configurations: pairs of GNUs-GNUs and GNUs-GNSs. When the target antigen is present in the analyte solution, nanoparticle bridging occurs and a subsequent amplification of the characteristic Raman signal of the label molecule appears due to the formation of hot-spots in interparticle gaps. The capability of observing small analyte concentrations in liquid samples with an easy-to-handle portable Raman device makes the proposed system feasible for rapid, non-invasive and cost-effective clinical or laboratory use.
Collapse
Affiliation(s)
- Andra-Sorina Tatar
- Nanobiophotonics and Laser Microspectroscopy Center, Interdisciplinary Research Institute in Bio-Nano-Sciences, Babes-Bolyai University, 42 Treboniu Laurian Street, 400271 Cluj-Napoca, Romania
| | - Cosmin Farcău
- Nanobiophotonics and Laser Microspectroscopy Center, Interdisciplinary Research Institute in Bio-Nano-Sciences, Babes-Bolyai University, 42 Treboniu Laurian Street, 400271 Cluj-Napoca, Romania; National Institute for Research and Development of Isotopic and Molecular Technologies, 67-103 Donat, 400293 Cluj-Napoca, Romania.
| | - Adriana Vulpoi
- Nanostructured Materials and Bio-Nano-Interfaces Center, Interdisciplinary Research Institute in Bio-Nano-Sciences, Babes-Bolyai University, 42 Treboniu Laurian Street, 400271 Cluj-Napoca, Romania.
| | - Sanda Boca
- Nanobiophotonics and Laser Microspectroscopy Center, Interdisciplinary Research Institute in Bio-Nano-Sciences, Babes-Bolyai University, 42 Treboniu Laurian Street, 400271 Cluj-Napoca, Romania.
| | - Simion Astilean
- Nanobiophotonics and Laser Microspectroscopy Center, Interdisciplinary Research Institute in Bio-Nano-Sciences, Babes-Bolyai University, 42 Treboniu Laurian Street, 400271 Cluj-Napoca, Romania; Biomolecular Physics Department, Faculty of Physics, Babes-Bolyai University, 1 Kogalniceanu Street, 400084 Cluj-Napoca, Romania.
| |
Collapse
|
8
|
Zhou Y, Liu J, Dong H, Liu Z, Wang L, Li Q, Ren J, Zhang Y, Xu M. Target-induced silver nanocluster generation for highly sensitive electrochemical aptasensor towards cell-secreted interferon-γ. Biosens Bioelectron 2022; 203:114042. [DOI: 10.1016/j.bios.2022.114042] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 01/07/2022] [Accepted: 01/24/2022] [Indexed: 11/25/2022]
|
9
|
Liu X, Lin X, Pan X, Gai H. Multiplexed Homogeneous Immunoassay Based on Counting Single Immunocomplexes together with Dark-Field and Fluorescence Microscopy. Anal Chem 2022; 94:5830-5837. [PMID: 35380795 DOI: 10.1021/acs.analchem.1c05269] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The development of multiplexed immunoassays is impeded by the difficulty in distinguishing labeled immunocomplexes from free probes and nonspecifically bound probes. Here, we attempted to overcome this issue by counting core-satellite-structured immunocomplexes simultaneously using dark-field and fluorescence microscopy. The tumor biomarkers of carcinoembryonic antigen (CEA), α-fetoprotein (AFP), and prostate-specific antigen (PSA) were chosen as model targets. Gold nanoparticles (AuNPs) with diameters of 70 nm were coated with the detection antibodies of the three targets. Quantum dot (QD) 525, QD 585, and QD 655 were modified with the capture antibodies of CEA, AFP, and PSA, respectively. Then, an immunocomplex containing one AuNP and one or several QDs was formed, whereas free and nonspecifically bound probes had either one AuNP or one QD. When observed with a transmission grating-based spectral microscope, the immunocomplexes had overlapping scattering and fluorescent spectral images and were therefore identified and quantified precisely. The biomarkers inside the immunocomplexes were recognized on the basis of the fluorescent first-order streaks of the QDs. Model biomarkers in buffer and in 12.6% blank plasma were quantified for validation. The limits of detection for CEA, PSA, and AFP in buffer were in dozens of femtomolar and were close to those in blank plasma. The results demonstrated that our approach worked well in distinguishing immunocomplexes from free and nonspecifically bound probes. The successful quantification of the three targets in five human plasma samples verified the reliability of our method in clinical applications.
Collapse
Affiliation(s)
- Xiaojun Liu
- School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou 221116, Jiangsu, China
| | - Xinyi Lin
- School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou 221116, Jiangsu, China
| | - Xiaoyan Pan
- School of Medicine, the Second Affiliated Hospital of Zhejiang University, Hangzhou 310009, Zhejiang, China
| | - Hongwei Gai
- School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou 221116, Jiangsu, China
| |
Collapse
|
10
|
Yang SJ, Lee JU, Jeon MJ, Sim SJ. Highly sensitive surface-enhanced Raman scattering-based immunosensor incorporating half antibody-fragment for quantitative detection of Alzheimer's disease biomarker in blood. Anal Chim Acta 2022; 1195:339445. [DOI: 10.1016/j.aca.2022.339445] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 01/03/2022] [Accepted: 01/03/2022] [Indexed: 11/15/2022]
|
11
|
Huang L, Qiu S, Liu Z, Wu S, Tang Q, Liao X, Gao F. Proximity hybridization induced DNA assembly for label-free surface-enhanced Raman spectroscopic detection of carcinoembryonic antigen. Anal Chim Acta 2022; 1191:339314. [PMID: 35033249 DOI: 10.1016/j.aca.2021.339314] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 11/17/2021] [Accepted: 11/21/2021] [Indexed: 11/17/2022]
Abstract
In our research, label-free and surface-enhanced Raman dyes-free Raman spectroscopy which was used to detect carcinoembryonic antigen (CEA) according to poly adenine (Poly A)-regulated self-assembly methods was developed and studied. CEA induced partial hybridization of Ab-H2 and Ab-H1, and Ab-H1-CEA-Ab-H2 (a sandwich proximity CEA-DNA complex) was formed, which unfolded molecular beacon 1 (MB1) and modified the substrate. Subsequently, MB2-AuNPs were hybridized with MB1, and Ab-H1-CEA-Ab-H2 was released via toehold regulated displacements of DNA strands. Therefore, hybridization processes of MB2 and MB1 were induced and promoted by CEA-DNA complexes which worked as catalysts. The misplaced target then induced a next round of strand exchange, and the signals for determination of CEA were amplified by AuNPs absorbed on the substrate. It was indicated that the spectral characteristics of adenine at 736 cm-1 were consistent with the SERS spectrum of DNA. Adenine acted as an internal marker for label-free SERS detection of CEA. Moreover, satisfactory stability and reproducibility were found. Meanwhile, the antibody could specifically recognize the corresponding antigen. Since adenine was dominant in SERS spectra, which was also proximal to Au surface, the sensitivity of the novel method was high without modifications. The analytical performance of this method in determining serum CEA was satisfactory.
Collapse
Affiliation(s)
- Longjian Huang
- West Guangxi Key Laboratory for Prevention and Treatment of High-Incidence Diseases, Youjiang Medical University for Nationalities, 533000, Baise, China
| | - Shang Qiu
- School of Pharmacy, Xuzhou Medical University, 221004, Xuzhou, China
| | - Zhao Liu
- School of Pharmacy, Xuzhou Medical University, 221004, Xuzhou, China
| | - Shengyue Wu
- School of Pharmacy, Xuzhou Medical University, 221004, Xuzhou, China
| | - Qianli Tang
- West Guangxi Key Laboratory for Prevention and Treatment of High-Incidence Diseases, Youjiang Medical University for Nationalities, 533000, Baise, China
| | - Xianjiu Liao
- West Guangxi Key Laboratory for Prevention and Treatment of High-Incidence Diseases, Youjiang Medical University for Nationalities, 533000, Baise, China.
| | - Fenglei Gao
- School of Pharmacy, Xuzhou Medical University, 221004, Xuzhou, China.
| |
Collapse
|
12
|
Yin X, Chen B, He M, Hu B. A Homogeneous Multicomponent Nucleic Acid Enzyme Assay for Universal Nucleic Acid Detection by Single-Particle Inductively Coupled Plasma Mass Spectrometry. Anal Chem 2021; 93:4952-4959. [PMID: 33689302 DOI: 10.1021/acs.analchem.0c05444] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Single-particle inductively coupled plasma mass spectrometry (SP-ICP-MS) has great potential for sensitive analysis of nucleic acids; however, it usually requires separation of target-induced nanoparticle reporters, and the sequence of probes on nanoparticle reporters has to be tuned for each target accordingly. Here, we developed a homogeneous multicomponent nucleic acid enzyme (MNAzyme) assay for universal nucleic acid detection. The two components of MNAzyme contain target recognition sites, substrate binding sites, and a catalytic core. Only in the presence of a specific nucleic acid target, the MNAzyme will assemble to trigger its nucleic acid enzyme activity and cleave its substrate (Linker DNA). The Linker DNA could link gold nanoparticle (AuNP) probes to form a larger assembled particle, while the cleavage of Linker DNA will disturb the linkage between probes, inducing a smaller assembled particle. The assembled particles with different sizes could be differentiated and sensitively detected in SP-ICP-MS, which also enables the tolerance of a complex matrix. By simply altering the sequences of the target recognition sites in MNAzyme, we applied the assay for two types of nucleic acids (long strand DNA and short strand RNA), malaria DNA and miRNA-10b. With increasing the target concentration, the signal intensity of each assembled particle decreases, but the frequency of assembled particle pulse increases. Both targets could be quantitatively detected from 0.1 to 25 pmol L-1 with high specificity in serum samples. The developed MNAzyme-SP-ICP-MS assay possesses simple operation in a homogeneous reaction, easy tunability for multiple types of nucleic acid targets, and good compatibility with clinic samples.
Collapse
Affiliation(s)
- Xiao Yin
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), Department of Chemistry, Wuhan University, Wuhan 430072, China
| | - Beibei Chen
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), Department of Chemistry, Wuhan University, Wuhan 430072, China
| | - Man He
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), Department of Chemistry, Wuhan University, Wuhan 430072, China
| | - Bin Hu
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), Department of Chemistry, Wuhan University, Wuhan 430072, China
| |
Collapse
|
13
|
Liu X, Sun Y, Lin X, Pan X, Wu Z, Gai H. Digital Duplex Homogeneous Immunoassay by Counting Immunocomplex Labeled with Quantum Dots. Anal Chem 2021; 93:3089-3095. [DOI: 10.1021/acs.analchem.0c04020] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Xiaojun Liu
- School of Chemistry and Materials Science, Jiangsu Normal University, 101 Shanghai Road, Tongshan District, Xuzhou 221116, Jiangsu, China
| | - Yuanyuan Sun
- School of Chemistry and Materials Science, Jiangsu Normal University, 101 Shanghai Road, Tongshan District, Xuzhou 221116, Jiangsu, China
| | - Xinyi Lin
- School of Chemistry and Materials Science, Jiangsu Normal University, 101 Shanghai Road, Tongshan District, Xuzhou 221116, Jiangsu, China
| | - Xiaoyan Pan
- School of Medicine, The Second Affiliated Hospital of Zhejiang University, 88 Jiefang Road, Shangcheng District, Hangzhou 310009, Zhejiang, China
| | - Zhangjian Wu
- School of Chemistry and Materials Science, Jiangsu Normal University, 101 Shanghai Road, Tongshan District, Xuzhou 221116, Jiangsu, China
| | - Hongwei Gai
- School of Chemistry and Materials Science, Jiangsu Normal University, 101 Shanghai Road, Tongshan District, Xuzhou 221116, Jiangsu, China
| |
Collapse
|
14
|
Tadesse LF, Safir F, Ho CS, Hasbach X, Khuri-Yakub BP, Jeffrey SS, Saleh AAE, Dionne J. Toward rapid infectious disease diagnosis with advances in surface-enhanced Raman spectroscopy. J Chem Phys 2021; 152:240902. [PMID: 32610995 DOI: 10.1063/1.5142767] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
In a pandemic era, rapid infectious disease diagnosis is essential. Surface-enhanced Raman spectroscopy (SERS) promises sensitive and specific diagnosis including rapid point-of-care detection and drug susceptibility testing. SERS utilizes inelastic light scattering arising from the interaction of incident photons with molecular vibrations, enhanced by orders of magnitude with resonant metallic or dielectric nanostructures. While SERS provides a spectral fingerprint of the sample, clinical translation is lagged due to challenges in consistency of spectral enhancement, complexity in spectral interpretation, insufficient specificity and sensitivity, and inefficient workflow from patient sample collection to spectral acquisition. Here, we highlight the recent, complementary advances that address these shortcomings, including (1) design of label-free SERS substrates and data processing algorithms that improve spectral signal and interpretability, essential for broad pathogen screening assays; (2) development of new capture and affinity agents, such as aptamers and polymers, critical for determining the presence or absence of particular pathogens; and (3) microfluidic and bioprinting platforms for efficient clinical sample processing. We also describe the development of low-cost, point-of-care, optical SERS hardware. Our paper focuses on SERS for viral and bacterial detection, in hopes of accelerating infectious disease diagnosis, monitoring, and vaccine development. With advances in SERS substrates, machine learning, and microfluidics and bioprinting, the specificity, sensitivity, and speed of SERS can be readily translated from laboratory bench to patient bedside, accelerating point-of-care diagnosis, personalized medicine, and precision health.
Collapse
Affiliation(s)
- Loza F Tadesse
- Department of Bioengineering, Stanford University School of Medicine and School of Engineering, Stanford, California 94305, USA
| | - Fareeha Safir
- Department of Mechanical Engineering, Stanford University School of Engineering, Stanford, California 94305, USA
| | - Chi-Sing Ho
- Department of Applied Physics, Stanford University School of Humanities and Sciences, Stanford, California 94305, USA
| | - Ximena Hasbach
- Department of Materials Science and Engineering, Stanford University School of Engineering, Stanford, California 94305, USA
| | - Butrus Pierre Khuri-Yakub
- Department of Electrical Engineering, Stanford University School of Engineering, Stanford, California 94305, USA
| | - Stefanie S Jeffrey
- Department of Surgery, Stanford University School of Medicine, Stanford, California 94305, USA
| | - Amr A E Saleh
- Department of Materials Science and Engineering, Stanford University School of Engineering, Stanford, California 94305, USA
| | - Jennifer Dionne
- Department of Materials Science and Engineering, Stanford University School of Engineering, Stanford, California 94305, USA
| |
Collapse
|
15
|
Cui Y, Zheng J, Zhuang W, Wang H. A target-activated plasmon coupling surface-enhanced Raman scattering platform for the highly sensitive and reproducible detection of miRNA-21. NEW J CHEM 2021. [DOI: 10.1039/d1nj00173f] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
We have developed an SERS-based platform for the miRNA-21 assay with nucleic acid and Raman dye-modified AuNPs as capture substrates.
Collapse
Affiliation(s)
- Yanfang Cui
- Department of Clinical Laboratory
- Binzhou Medical University Hospital
- Binzhou
- P. R. China
| | - Jing Zheng
- Science and Technology Division
- Binzhou Medical University Hospital
- Binzhou
- P. R. China
| | - Wei Zhuang
- Department of Clinical Laboratory
- Binzhou Medical University Hospital
- Binzhou
- P. R. China
| | - Haiwang Wang
- College of Biological Sciences and Technology
- University of Jinan
- Jinan
- P. R. China
- Institute of Disaster Medicine
| |
Collapse
|
16
|
Loredo-García E, Ortiz-Dosal A, Núñez-Leyva JM, Cuellar Camacho JL, Alegría-Torres JA, García-Torres L, Navarro-Contreras HR, Kolosovas-Machuca ES. TNF-α detection using gold nanoparticles as a surface-enhanced Raman spectroscopy substrate. Nanomedicine (Lond) 2020; 16:51-61. [PMID: 33356556 DOI: 10.2217/nnm-2020-0307] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Background: TNF-α is a cytokine involved in inflammation. Surface-enhanced Raman spectroscopy (SERS) could be useful in its detection. Aim: Identify the TNF-α in an aqueous solution, using gold nanoparticles (AuNPs) as a SERS substrate. Materials & methods: Raman and SERS spectra were obtained from TNF-α samples, combined with AuNPs, with decreasing concentrations of TNF-α. The samples were analyzed using optical transmission spectroscopy, dynamic light scattering, and transmission electron microscopy. Results: Transmission electron microscopy/dynamic light scattering determined a change in the average diameter of the TNF-α/AuNPs (∼9.6 nm). Raman bands obtained were associated with aromatic amino acid side chains. We observe Raman signals for TNF-α concentrations as low as 0.125 pg/ml. Conclusion: TNF-α signal at physiological concentrations was determined with SERS.
Collapse
Affiliation(s)
- Elizabeth Loredo-García
- Coordinación para la Innovación y Aplicación de la Ciencia y la Tecnología, Universidad Autónoma de San Luis Potosí. 550 Sierra Leona Ave., 78210 San Luis Potosí, SLP, México
| | - Alejandra Ortiz-Dosal
- Doctorado Institucional en Ingeniería y Ciencia de Materiales (DICIM-UASLP), Universidad Autónoma de San Luis Potosí. 550 Sierra Leona Ave., 78210 San Luis Potosí, SLP, México
| | - Juan Manuel Núñez-Leyva
- Doctorado Institucional en Ingeniería y Ciencia de Materiales (DICIM-UASLP), Universidad Autónoma de San Luis Potosí. 550 Sierra Leona Ave., 78210 San Luis Potosí, SLP, México
| | - José Luis Cuellar Camacho
- Institute of Chemistry & Biochemistry, Freie Universität Berlin, Takustraße 3, 14195 Berlin, Germany
| | - Jorge Alejandro Alegría-Torres
- Departamento de Farmacia, División de Ciencias Naturales y Exactas, Universidad de Guanajuato. Noria Alta s/n, 36050, Guanajuato, Gto., México
| | - Lizeth García-Torres
- Laboratorio de Investigación Molecular en Nutrición (LIMON), Universidad del Centro de México, UCEM, Capitán Caldera 75, 78250, San Luis Potosí, SLP, México
| | - Hugo Ricardo Navarro-Contreras
- Coordinación para la Innovación y Aplicación de la Ciencia y la Tecnología, Universidad Autónoma de San Luis Potosí. 550 Sierra Leona Ave., 78210 San Luis Potosí, SLP, México
| | - Eleazar Samuel Kolosovas-Machuca
- Coordinación para la Innovación y Aplicación de la Ciencia y la Tecnología, Universidad Autónoma de San Luis Potosí. 550 Sierra Leona Ave., 78210 San Luis Potosí, SLP, México
| |
Collapse
|
17
|
Abstract
The last two decades have seen great advancements in fundamental understanding and applications of metallic nanoparticles stabilized by mixed-ligand monolayers. Identifying and controlling the organization of multiple ligands in the nanoparticle monolayer has been studied, and its effect on particle properties has been examined. Mixed-ligand protected particles have shown advantages over monoligand protected particles in fields such as catalysis, self-assembly, imaging, and drug delivery. In this Review, the use of mixed-ligand monolayer protected nanoparticles for sensing applications will be examined. This is the first time this subject is examined as a whole. Mixed-ligand nanoparticle-based sensors are revealed to be divided into four groups, each of which will be discussed. The first group consists of ligands that work cooperatively to improve the sensors' properties. In the second group, multiple ligands are utilized for sensing multiple analytes. The third group combines ligands used for analyte recognition and signal production. In the final group, a sensitive, but unstable, functional ligand is combined with a stabilizing ligand. The Review will conclude by discussing future challenges and potential research directions for this promising subject.
Collapse
Affiliation(s)
- Offer Zeiri
- Department of Analytical Chemistry, NRCN, P.O. Box 9001, Beer-Sheva 84190, Israel
| |
Collapse
|
18
|
Huang Z, Li Z, Jiang M, Liu R, Lv Y. Homogeneous Multiplex Immunoassay for One-Step Pancreatic Cancer Biomarker Evaluation. Anal Chem 2020; 92:16105-16112. [DOI: 10.1021/acs.analchem.0c03780] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Zili Huang
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu, Sichuan 610064, China
| | - Ziyan Li
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu, Sichuan 610064, China
| | - Min Jiang
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu, Sichuan 610064, China
| | - Rui Liu
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu, Sichuan 610064, China
| | - Yi Lv
- Analytical & Testing Center, Sichuan University, Chengdu 610064, China
| |
Collapse
|
19
|
Gulati S, Singh P, Diwan A, Mongia A, Kumar S. Functionalized gold nanoparticles: promising and efficient diagnostic and therapeutic tools for HIV/AIDS. RSC Med Chem 2020; 11:1252-1266. [PMID: 34095839 PMCID: PMC8126886 DOI: 10.1039/d0md00298d] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Accepted: 08/31/2020] [Indexed: 02/05/2023] Open
Abstract
Functionalized gold nanoparticles are recognized as promising vehicles in the diagnosis and treatment of human immunodeficiency virus (HIV) owing to their excellent biocompatibility with biomolecules (like DNA or RNA), their potential for multivalency and their unique optical and structural properties. In this context, this review article focuses on the diverse detection abilities and delivery and uptake methodologies of HIV by targeting genes and proteins using gold nanoparticles on the basis of different shapes and sizes in order to promote its effective expression. In addition, recent trends in gold nanoparticle mediated HIV detection, delivery and uptake and treatment are highlighted considering their cytotoxic effects on healthy human cells.
Collapse
Affiliation(s)
- Shikha Gulati
- Department of Chemistry, Sri Venkateswara College, University of Delhi Delhi-110021 India
| | - Parinita Singh
- Department of Chemistry, Sri Venkateswara College, University of Delhi Delhi-110021 India
| | - Anchita Diwan
- Department of Chemistry, Sri Venkateswara College, University of Delhi Delhi-110021 India
| | - Ayush Mongia
- Department of Chemistry, Sri Venkateswara College, University of Delhi Delhi-110021 India
| | - Sanjay Kumar
- Department of Chemistry, Sri Venkateswara College, University of Delhi Delhi-110021 India
| |
Collapse
|
20
|
Pellas V, Hu D, Mazouzi Y, Mimoun Y, Blanchard J, Guibert C, Salmain M, Boujday S. Gold Nanorods for LSPR Biosensing: Synthesis, Coating by Silica, and Bioanalytical Applications. BIOSENSORS 2020; 10:E146. [PMID: 33080925 PMCID: PMC7603250 DOI: 10.3390/bios10100146] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 10/12/2020] [Accepted: 10/13/2020] [Indexed: 12/20/2022]
Abstract
Nanoparticles made of coinage metals are well known to display unique optical properties stemming from the localized surface plasmon resonance (LSPR) phenomenon, allowing their use as transducers in various biosensing configurations. While most of the reports initially dealt with spherical gold nanoparticles owing to their ease of synthesis, the interest in gold nanorods (AuNR) as plasmonic biosensors is rising steadily. These anisotropic nanoparticles exhibit, on top of the LSPR band in the blue range common with spherical nanoparticles, a longitudinal LSPR band, in all respects superior, and in particular in terms of sensitivity to the surrounding media and LSPR-biosensing. However, AuNRs synthesis and their further functionalization are less straightforward and require thorough processing. In this paper, we intend to give an up-to-date overview of gold nanorods in LSPR biosensing, starting from a critical review of the recent findings on AuNR synthesis and the main challenges related to it. We further highlight the various strategies set up to coat AuNR with a silica shell of controlled thickness and porosity compatible with LSPR-biosensing. Then, we provide a survey of the methods employed to attach various bioreceptors to AuNR. Finally, the most representative examples of AuNR-based LSPR biosensors are reviewed with a focus put on their analytical performances.
Collapse
Affiliation(s)
- Vincent Pellas
- Laboratoire de Réactivité de Surface (LRS), Sorbonne Université, CNRS, UMR 7197, 4 Place Jussieu, F-75005 Paris, France; (V.P.); (D.H.); (Y.M.); (Y.M.); (J.B.); (C.G.)
- Institut Parisien de Chimie Moléculaire (IPCM), Sorbonne Université, CNRS, 4 Place Jussieu, F-75005 Paris, France
| | - David Hu
- Laboratoire de Réactivité de Surface (LRS), Sorbonne Université, CNRS, UMR 7197, 4 Place Jussieu, F-75005 Paris, France; (V.P.); (D.H.); (Y.M.); (Y.M.); (J.B.); (C.G.)
| | - Yacine Mazouzi
- Laboratoire de Réactivité de Surface (LRS), Sorbonne Université, CNRS, UMR 7197, 4 Place Jussieu, F-75005 Paris, France; (V.P.); (D.H.); (Y.M.); (Y.M.); (J.B.); (C.G.)
| | - Yoan Mimoun
- Laboratoire de Réactivité de Surface (LRS), Sorbonne Université, CNRS, UMR 7197, 4 Place Jussieu, F-75005 Paris, France; (V.P.); (D.H.); (Y.M.); (Y.M.); (J.B.); (C.G.)
| | - Juliette Blanchard
- Laboratoire de Réactivité de Surface (LRS), Sorbonne Université, CNRS, UMR 7197, 4 Place Jussieu, F-75005 Paris, France; (V.P.); (D.H.); (Y.M.); (Y.M.); (J.B.); (C.G.)
| | - Clément Guibert
- Laboratoire de Réactivité de Surface (LRS), Sorbonne Université, CNRS, UMR 7197, 4 Place Jussieu, F-75005 Paris, France; (V.P.); (D.H.); (Y.M.); (Y.M.); (J.B.); (C.G.)
| | - Michèle Salmain
- Institut Parisien de Chimie Moléculaire (IPCM), Sorbonne Université, CNRS, 4 Place Jussieu, F-75005 Paris, France
| | - Souhir Boujday
- Laboratoire de Réactivité de Surface (LRS), Sorbonne Université, CNRS, UMR 7197, 4 Place Jussieu, F-75005 Paris, France; (V.P.); (D.H.); (Y.M.); (Y.M.); (J.B.); (C.G.)
| |
Collapse
|
21
|
Zhang L, Mazouzi Y, Salmain M, Liedberg B, Boujday S. Antibody-Gold Nanoparticle Bioconjugates for Biosensors: Synthesis, Characterization and Selected Applications. Biosens Bioelectron 2020; 165:112370. [DOI: 10.1016/j.bios.2020.112370] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 06/04/2020] [Accepted: 06/05/2020] [Indexed: 01/22/2023]
|
22
|
Akama K, Noji H. Multiplexed homogeneous digital immunoassay based on single-particle motion analysis. LAB ON A CHIP 2020; 20:2113-2121. [PMID: 32347266 DOI: 10.1039/d0lc00079e] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Homogeneous digital immunoassay is a powerful analytical method for highly sensitive protein biomarker detection with a simple protocol. However, it has not been multiplexed yet. In this study, we developed a multiplexed homogeneous digital immunoassay based on single-particle motion analysis (digital homogeneous non-enzyme-linked immunosorbent assay, digital Ho-Non ELISA). In this assay, multiple target antigen molecules react with the optical subpopulation of magnetic nanobeads labeled with fluorescent dyes and capture antigen-specific antibodies. Then, these beads are magnetically pulled into femtoliter-sized reactors. The surface of these reactors is modified with multiple detection antibodies specific to each antigen by molecular tethers. Each antigen on the particles reacts with the detection antibodies anchored to the surface of the reactors. Magnetic force enhances the efficiency of bead encapsulation in the reactors, and subsequent physical compartmentalization of beads enhances the binding efficiency of the antigen-antibody reaction. The tethered beads show characteristic Brownian motion distinct from free diffusion or non-specific binding of the antigen-free beads. The color of the beads is attributed to target-identification, and the number of tethered beads is attributed to the concentration of the specific target. We measured two biomarkers (PSA and IL6) as model targets by multiplexed digital Ho-Non ELISA. Our method showed higher sensitivity compared to previous digital Ho-Non ELISA and could detect multiple targets simultaneously with the same performance as in single-plex detection. This new strategy has the potential to open a new avenue for next-generation multiplexed immunoassays in in vitro diagnostics.
Collapse
Affiliation(s)
- Kenji Akama
- Department of Applied Chemistry, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan.
| | | |
Collapse
|
23
|
Dey S, Trau M, Koo KM. Surface-Enhanced Raman Spectroscopy for Cancer Immunotherapy Applications: Opportunities, Challenges, and Current Progress in Nanomaterial Strategies. NANOMATERIALS (BASEL, SWITZERLAND) 2020; 10:E1145. [PMID: 32545182 PMCID: PMC7353228 DOI: 10.3390/nano10061145] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 06/05/2020] [Accepted: 06/06/2020] [Indexed: 02/06/2023]
Abstract
Cancer immunotherapy encompasses a variety of approaches which target or use a patient's immune system components to eliminate cancer. Notably, the current use of immune checkpoint inhibitors to target immune checkpoint receptors such as CTLA-4 or PD-1 has led to remarkable treatment responses in a variety of cancers. To predict cancer patients' immunotherapy responses effectively and efficiently, multiplexed immunoassays have been shown to be advantageous in sensing multiple immunomarkers of the tumor microenvironment simultaneously for patient stratification. Surface-enhanced Raman spectroscopy (SERS) is well-regarded for its capabilities in multiplexed bioassays and has been increasingly demonstrated in cancer immunotherapy applications in recent years. This review focuses on SERS-active nanomaterials in the modern literature which have shown promise for enabling cancer patient-tailored immunotherapies, including multiplexed in vitro and in vivo immunomarker sensing and imaging, as well as immunotherapy drug screening and delivery.
Collapse
Affiliation(s)
- Shuvashis Dey
- Centre for Personalized Nanomedicine, Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, QLD 4072, Australia
| | - Matt Trau
- Centre for Personalized Nanomedicine, Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, QLD 4072, Australia
- School of Chemistry and Molecular Biosciences, the University of Queensland, Brisbane, QLD 4072, Australia
| | - Kevin M. Koo
- XING Technologies Pty Ltd., Brisbane, QLD 4073, Australia
- The University of Queensland Centre for Clinical Research (UQCCR), Brisbane, QLD 4029, Australia
| |
Collapse
|
24
|
Mozhgani SH, Kermani HA, Norouzi M, Arabi M, Soltani S. Nanotechnology based strategies for HIV-1 and HTLV-1 retroviruses gene detection. Heliyon 2020; 6:e04048. [PMID: 32490248 PMCID: PMC7260287 DOI: 10.1016/j.heliyon.2020.e04048] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Revised: 05/15/2020] [Accepted: 05/19/2020] [Indexed: 12/11/2022] Open
Abstract
Early detection of retroviruses including human T-cell lymphotropic virus and human immunodeficiency virus in the human body is indispensable to prevent retroviral infection propagation and improve clinical treatment. Until now, diverse techniques have been employed for the early detection of viruses. Traditional methods are time-consuming, resource-intensive, and laborious performing. Therefore, designing and constructing a selective and sensitive diagnosis system to detect serious diseases is highly demanded. Genetic detection with high sensitivity has striking significance for the early detection and remedy of disparate pathogenic diseases. The nucleic acid biosensors are based on the identification of specific DNA sequences in biological samples. Nanotechnology has an important impact on the development of sensitive biosensors. Different kinds of nanomaterials include nanoparticles, nanoclusters, quantum dots, carbon nanotubes, nanocomposites, etc., with different properties have been used to improve the performance of biosensors. Recently, DNA nanobiosensors are developed to provide simple, fast, selective, low-cost, and sensitive detection of infectious diseases. In this paper, the research progresses of nano genosensors for the detection of HIV-1 and HTLV-1 viruses, based on electrochemical, optical, and photoelectrochemical platforms are overviewed.
Collapse
Affiliation(s)
- Sayed-Hamidreza Mozhgani
- Department of Microbiology, School of Medicine, Alborz University of Medical Sciences, Karaj, Iran.,Non-communicable Diseases Research Center, Alborz University of Medical Sciences, Karaj, Iran
| | - Hanie Ahmadzade Kermani
- Department of Virology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Mehdi Norouzi
- Department of Virology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran.,Research Center for Clinical Virology, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohsen Arabi
- Department of Physiology, Pharmacology and Medical Physics, School of Medicine, Alborz University of Medical Sciences, Karaj, Iran
| | - Saber Soltani
- Department of Virology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
25
|
Abstract
Human immunodeficiency virus (HIV), a type of lentivirus (a subgroup of retrovirus), causes acquired immunodeficiency syndrome (AIDS). This pathophysiologic state destroys the immune system allowing opportunistic infections, cancer and other life-threatening diseases to thrive. Although many analytic tools including enzyme-linked immunoassay (ELISA), indirect and line immunoassay, Western blotting, radio-immunoprecipitation, nucleic acid amplification testing (NAAT) have been developed to detect HIV, recent developments in nanosensor technology have prompted its use as a novel diagnostic approach. Nanosensors provide analytical information about behavior and characteristics of particles by using biochemical reactions mediated by enzymes, immune components, cells and tissues. These reactions are transformed into decipherable signals, i.e., electrical, thermal, optical, using nano to micro scale technology. Nanosensors are capable of both quantitative and qualitative detection of HIV, are highly specific and sensitive and provide rapid reproducible results. Nanosensor technology can trace infant infection during mother-to-child transmission, the latent HIV pool and monitor anti-HIV therapy. In this chapter, we review nanosensor analytics including electrochemical, optical, piezoelectric, SERS-based lateral flow assay, microfluidic channel-based biosensors in the detection of HIV. Other techniques in combination with different biorecognition elements (aptamers, antibodies, oligonucleotides) are also discussed.
Collapse
Affiliation(s)
- Sarthak Nandi
- DBT-National Institute of Animal Biotechnology (DBT-NIAB), Hyderabad, Telangana, India
| | - Ayusi Mondal
- DBT-National Institute of Animal Biotechnology (DBT-NIAB), Hyderabad, Telangana, India
| | - Akanksha Roberts
- DBT-National Institute of Animal Biotechnology (DBT-NIAB), Hyderabad, Telangana, India
| | - Sonu Gandhi
- DBT-National Institute of Animal Biotechnology (DBT-NIAB), Hyderabad, Telangana, India.
| |
Collapse
|
26
|
Xia J, Liu Y, Ran M, Lu W, Bi L, Wang Q, Lu D, Cao X. The simultaneous detection of the squamous cell carcinoma antigen and cancer antigen 125 in the cervical cancer serum using nano-Ag polydopamine nanospheres in an SERS-based lateral flow immunoassay. RSC Adv 2020; 10:29156-29170. [PMID: 35521095 PMCID: PMC9055935 DOI: 10.1039/d0ra05207h] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2020] [Accepted: 07/14/2020] [Indexed: 12/15/2022] Open
Abstract
The accurate analysis of tumor related biomarkers is extremely critical in the diagnosis of the early stage cervical cancer. Herein, we designed a novel and inexpensive surface-enhanced Raman scattering-based lateral flow assay (SERS-based LFA) strip with a single test line, which was applied for the rapid and sensitive quantitative simultaneous analysis of SCCA and CA125 in serum samples from patients with cervical cancer. In the presence of target antigens, the monoclonal antibody-coupled and Raman reporter-labeled nano-Ag polydopamine nanospheres (PDA@Ag-NPs) aggregated on the test line modified by the polyclonal antibody to form a double-antibody sandwich structure. The finite difference time domain simulation demonstrated that large number of “hot spots” was generated among the nanogaps of aggregated PDA@AgNPs, which resulted in a huge enhancement of the signal of the Raman reporters. Accordingly, the limit of detection was determined to be 7.156 pg mL−1 for SCCA and 7.182 pg mL−1 for CA125 in phosphate buffer and 8.093 pg mL−1 for SCCA and 7.370 pg mL−1 for CA125 in human serum, revealing high sensitivity of this SERS-based LFA strip. Significantly, the detection of SCCA and CA125 using the SERS-based LFA was observed to have high specificity and reproducibility, and the whole detection was completed within 20 min. Furthermore, the SERS-based LFA and enzyme-linked immunosorbent assay were also employed in serum samples obtained from patients with cervical cancer, cervical intraepithelial neoplasia and healthy subjects, and perfect agreement existed between both the methods. Thus, clinically, the developed SERS-based LFA strip has strong potential for the simultaneous detection of multiple cancer biomarkers in serum. Based on SERS-based lateral flow immunoassay, nano-Ag polydopamine nanospheres was used for detecting squamous cell carcinoma antigen and cancer antigen 125 simultaneously in cervical cancer serum.![]()
Collapse
Affiliation(s)
- Ji Xia
- Department of Obstetrics and Gynecology
- College of Clinical Medicine
- Yangzhou University
- Yangzhou
- PR China
| | - Yifan Liu
- Department of Obstetrics and Gynecology
- College of Clinical Medicine
- Yangzhou University
- Yangzhou
- PR China
| | - Menglin Ran
- Department of Obstetrics and Gynecology
- College of Clinical Medicine
- Yangzhou University
- Yangzhou
- PR China
| | - Wenbo Lu
- Key Laboratory of Magnetic Molecules and Magnetic Information Materials (Ministry of Education)
- School of Chemistry and Material Science
- Shanxi Normal University
- Linfen
- PR China
| | - Liyan Bi
- Transformative Otology and Neuroscience Center
- College of Special Education
- Binzhou Medical University
- Yantai 264003
- PR China
| | - Qian Wang
- Department of Obstetrics and Gynecology
- College of Clinical Medicine
- Yangzhou University
- Yangzhou
- PR China
| | - Dan Lu
- Department of Obstetrics and Gynecology
- College of Clinical Medicine
- Yangzhou University
- Yangzhou
- PR China
| | - Xiaowei Cao
- Department of Obstetrics and Gynecology
- College of Clinical Medicine
- Yangzhou University
- Yangzhou
- PR China
| |
Collapse
|
27
|
Cui Y, Wang H, Liu S, Wang Y, Huang J. Target-activated DNA nanomachines for the ATP detection based on the SERS of plasmonic coupling from gold nanoparticle aggregation. Analyst 2019; 145:445-452. [PMID: 31819931 DOI: 10.1039/c9an02051a] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
The self-assembly of plasmonic nanoparticles provides a powerful approach to generate surface-enhanced Raman scattering (SERS), which promotes the actual applications in chemical and biomolecular analyses. Herein, we developed a facile SERS sensing strategy for an ATP assay with a 3-D DNA nanomachine that walks by the Exo III cleavage, leading to the formation of AuNP aggregates, which resulted in the enhancement of the electromagnetic field. Depending on the target-activated Exo III cleavage, the 3-D nanomachine can walk along the 3-D track on the surface of AuNPs and generate self-assembled hot-spots to enhance the SERS signal of a Raman dye, allowing a homogenous assay of the ATP concentration with high sensitivity and reproducibility. Under optimized experimental conditions, the biosensor detected ATP with a widened dynamic range from 1 pM to 1 × 105 pM with a limit of detection of up to 0.29 pM. Hence, the novel strategy provides a useful and practical platform for the SERS assay of ATP with high sensitivity and repeatability. Besides, this platform shows great potential for applications in high-throughput assays for drug screening and clinical diagnostics.
Collapse
Affiliation(s)
- Yanfang Cui
- Department of Clinical Laboratory, Binzhou Medical University Hospital, Binzhou 256603, P. R. China.
| | - Haiwang Wang
- College of Biological Sciences and Technology, University of Jinan, Jinan 250022, P. R. China
| | - Su Liu
- College of Water Conservancy and Environment, University of Jinan, Jinan 250022, P. R. China
| | - Yu Wang
- Department of Clinical Laboratory, Binzhou Medical University Hospital, Binzhou 256603, P. R. China.
| | - Jiadong Huang
- Department of Clinical Laboratory, Binzhou Medical University Hospital, Binzhou 256603, P. R. China. and Key Laboratory of Chemical Sensing & Analysis in Universities of Shandong, College of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, P. R. China
| |
Collapse
|
28
|
Direct quantification of surface coverage of antibody in IgG-Gold nanoparticles conjugates. Talanta 2019; 204:875-881. [DOI: 10.1016/j.talanta.2019.05.104] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 05/21/2019] [Accepted: 05/27/2019] [Indexed: 12/30/2022]
|
29
|
Li D, Jiang L, Piper JA, Maksymov IS, Greentree AD, Wang E, Wang Y. Sensitive and Multiplexed SERS Nanotags for the Detection of Cytokines Secreted by Lymphoma. ACS Sens 2019; 4:2507-2514. [PMID: 31436434 DOI: 10.1021/acssensors.9b01211] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The sensitive and simultaneous detection of cytokines will provide new insights into the physiological process and disease pathways due to the complex nature of cytokine networks. However, the key challenge is the lack of probes that can simultaneously detect multiple cytokines in a single sample. In this contribution, we proposed an alternative approach for sensitive cytokine detection in a multiplex manner by the use of a new set of surface-enhanced Raman spectroscopy (SERS) nanotags. Typically, the newly designed SERS nanotags are composed of gold nanoparticles as the core, tuneable Raman molecules as the reporters, and a thin silver layer as the shell. As demonstrated through rigorous numerical simulations, enhanced Raman signal is achieved due to a strong localization of light in the 0.2 nm thin, optically deep-subwavelength region between the Au core and the Ag shell. Sensitive detection of cytokines is realized by forming a sandwich immunoassay. The detection limit is down to 4.5 pg mL-1 (S/N = 3). The specificity of the assay is proved as negligible signals were detected for the false targets. Furthermore, multiple cytokines are simultaneously detected in a single assay from the secretion of B-lymphocyte cell line (Raji) after concanavalin A (Con A) stimulation. The results indicate that our method holds a significant potential for sensitive and multiplexed detection of cytokines and offers the opportunity for future applications in clinical settings.
Collapse
Affiliation(s)
- Dan Li
- Department of Molecular Sciences and §Department of Physics and Astronomy, ARC Centre of Excellence for Nanoscale BioPhotonics, Macquarie University, Sydney 2109, Australia
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, Jilin, P. R. China
| | - Lianmei Jiang
- Department of Molecular Sciences and §Department of Physics and Astronomy, ARC Centre of Excellence for Nanoscale BioPhotonics, Macquarie University, Sydney 2109, Australia
| | | | - Ivan S. Maksymov
- ARC Centre of Excellence for Nanoscale BioPhotonics, School of Science, RMIT University, Melbourne 3001, Australia
- Centre for Micro-Photonics, Swinburne University of Technology, Hawthorn 3122, Australia
| | - Andrew D. Greentree
- ARC Centre of Excellence for Nanoscale BioPhotonics, School of Science, RMIT University, Melbourne 3001, Australia
| | - Erkang Wang
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, Jilin, P. R. China
| | - Yuling Wang
- Department of Molecular Sciences and §Department of Physics and Astronomy, ARC Centre of Excellence for Nanoscale BioPhotonics, Macquarie University, Sydney 2109, Australia
| |
Collapse
|
30
|
Vogiazi V, de la Cruz A, Mishra S, Shanov V, Heineman WR, Dionysiou DD. A Comprehensive Review: Development of Electrochemical Biosensors for Detection of Cyanotoxins in Freshwater. ACS Sens 2019; 4:1151-1173. [PMID: 31056912 PMCID: PMC6625642 DOI: 10.1021/acssensors.9b00376] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Cyanobacteria harmful algal blooms are increasing in frequency and cyanotoxins have become an environmental and public concern in the U.S. and worldwide. In this Review, the majority of reported studies and developments of electrochemical affinity biosensors for cyanotoxins are critically reviewed and discussed. Essential background information about cyanobacterial toxins and electrochemical biosensors is combined with the rapidly moving development of electrochemical biosensors for these toxins. Current issues and future challenges for the development of useful electrochemical biosensors for cyanotoxin detection that meet the demands for applications in field freshwater samples are discussed. The major aspects of the entire review article in a prescribed sequence include (i) the state-of-the-art knowledge of the toxicity of cyanotoxins, (ii) important harmful algal bloom events, (iii) advisories, guidelines, and regulations, (iv) conventional analytical methods for determination of cyanotoxins, (v) electrochemical transduction, (vi) recognition receptors, (vii) reported electrochemical biosensors for cyanotoxins, (viii) summary of analytical performance, and (ix) recent advances and future trends. Discussion includes electrochemical techniques and devices, biomolecules with high affinity, numerous array designs, various detection approaches, and research strategies in tailoring the properties of the transducer-biomolecule interface. Scientific and engineering aspects are presented in depth. This review aims to serve as a valuable source to scientists and engineers entering the interdisciplinary field of electrochemical biosensors for detection of cyanotoxins in freshwaters.
Collapse
Affiliation(s)
- Vasileia Vogiazi
- Environmental Engineering and Science Program, Department of Chemical and Environmental Engineering (ChEE) , University of Cincinnati , Cincinnati , Ohio 45221 , United States
| | - Armah de la Cruz
- Office of Research and Development , US Environmental Protection Agency , Cincinnati , Ohio 45220 , United States
| | - Siddharth Mishra
- Mechanical and Materials Engineering , University of Cincinnati , Cincinnati 45221 , Ohio United States
| | - Vesselin Shanov
- Environmental Engineering and Science Program, Department of Chemical and Environmental Engineering (ChEE) , University of Cincinnati , Cincinnati , Ohio 45221 , United States
- Mechanical and Materials Engineering , University of Cincinnati , Cincinnati 45221 , Ohio United States
| | - William R Heineman
- Department of Chemistry , University of Cincinnati , Cincinnati , Ohio 45221 , United States
| | - Dionysios D Dionysiou
- Environmental Engineering and Science Program, Department of Chemical and Environmental Engineering (ChEE) , University of Cincinnati , Cincinnati , Ohio 45221 , United States
| |
Collapse
|
31
|
Han S, Locke AK, Oaks LA, Cheng YSL, Coté GL. Nanoparticle-based assay for detection of S100P mRNA using surface-enhanced Raman spectroscopy. JOURNAL OF BIOMEDICAL OPTICS 2019; 24:1-9. [PMID: 31066245 PMCID: PMC6992957 DOI: 10.1117/1.jbo.24.5.055001] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Accepted: 03/27/2019] [Indexed: 06/09/2023]
Abstract
The focus of this work is toward the development of a point-of-care (POC) handheld technology for the noninvasive early detection of salivary biomarkers. The initial of focus was the detection and quantification of S100 calcium-binding protein P (S100P) mRNA found in whole saliva for use as a potential biomarker for oral cancer. Specifically, a surface-enhanced Raman spectroscopy (SERS)-based approach and assay were designed, developed, and tested for sensitive and rapid detection of S100P mRNA. Gold nanoparticles (AuNPs) were conjugated with oligonucleotides and malachite green isothiocyanate was then used as a Raman reporter molecule. The hybridization of S100P target to DNA-conjugated AuNPs in sandwich assay format in both free solution and a vertical flow chip (VFC) was confirmed using a handheld SERS system. The detection limit of the SERS-based assay in free solution was determined to be 1.1 nM, whereas on the VFC the detection limit was observed to be 10 nM. SERS-based VFCs were also used to quantify the S100P mRNA from saliva samples of oral cancer patients and a healthy group. The result indicated that the amount of S100P mRNA detected for the oral cancer patients is three times higher than that of a healthy group.
Collapse
Affiliation(s)
- Sungyub Han
- Texas A&M University, Department of Biomedical Engineering, College Station, Texas, United States
| | - Andrea K. Locke
- Texas A&M University, Department of Biomedical Engineering, College Station, Texas, United States
- TEES, Center for Remote Health Technologies and Systems, College Station, Texas, United States
| | - Luke A. Oaks
- Texas A&M University, Department of Biomedical Engineering, College Station, Texas, United States
| | | | - Gerard L. Coté
- Texas A&M University, Department of Biomedical Engineering, College Station, Texas, United States
- TEES, Center for Remote Health Technologies and Systems, College Station, Texas, United States
| |
Collapse
|
32
|
Xiong E, Jiang L. An ultrasensitive electrochemical immunoassay based on a proximity hybridization-triggered three-layer cascade signal amplification strategy. Analyst 2019; 144:634-640. [DOI: 10.1039/c8an01800f] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
An ultrasensitive electrochemical immunoassay based on a proximity hybridization-triggered three-layer cascade signal amplification strategy.
Collapse
Affiliation(s)
- Erhu Xiong
- State Key Laboratory of Chemo/Biosensing and Chemometrics
- College of Chemistry and Chemical Engineering
- Hunan University
- Changsha
- P. R. China
| | - Ling Jiang
- State Key Laboratory of Chemo/Biosensing and Chemometrics
- College of Chemistry and Chemical Engineering
- Hunan University
- Changsha
- P. R. China
| |
Collapse
|
33
|
Gao F, Zhou F, Chen S, Yao Y, Wu J, Yin D, Geng D, Wang P. Proximity hybridization triggered rolling-circle amplification for sensitive electrochemical homogeneous immunoassay. Analyst 2018; 142:4308-4316. [PMID: 29053159 DOI: 10.1039/c7an01434a] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
A new homogeneous electrochemical immunoassay strategy was developed for ultrasensitive detection of carcinoembryonic antigen (CEA) based on target-induced proximity hybridization coupled with rolling circle amplification (RCA). The immobilization-free detection of CEA was realized by the use of an uncharged peptide nucleic acid (PNA) probe labeled with ferrocene (Fc) as the electroactive indicator on a negatively charged indium tin oxide (ITO) electrode. In the presence of a target protein and two DNA-labeled antibodies, the proximate complex formed in homogeneous solution could unfold the molecular beacon, and a part of the unfolded molecular beacon as a primer hybridized with the RCA template to initiate the RCA process. Subsequently, the detection probe modified Fc (Fc-PNAs) hybridized with the long amplified DNA products. The consumption of freely diffusible Fc-PNAs (neutrally charged) resulted in a significant reduction of the Fc signal due to the fact that long amplified DNA/Fc-PNA products were electrostatically repelled from the ITO electrode surface. The reduction of the electrochemical signal (signal-off) could indirectly provide the CEA concentration. Under the optimal conditions, CEA detection was implemented in a wide range from 1 pg mL-1 to 10 ng mL-1, with a low detection limit of 0.49 pg mL-1. The proposed strategy exhibited advantages of good selectivity, high sensitivity, acceptable accuracy, and favorable versatility of analytes. Moreover, the practical application value of the system was confirmed by the assay of CEA in human serums with satisfactory results.
Collapse
Affiliation(s)
- Fenglei Gao
- School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou 221116, P. R. China.
| | | | | | | | | | | | | | | |
Collapse
|
34
|
Lara S, Perez-Potti A. Applications of Nanomaterials for Immunosensing. BIOSENSORS-BASEL 2018; 8:bios8040104. [PMID: 30388865 PMCID: PMC6316038 DOI: 10.3390/bios8040104] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Revised: 10/24/2018] [Accepted: 10/29/2018] [Indexed: 12/28/2022]
Abstract
In biomedical science among several other growing fields, the detection of specific biological agents or biomolecular markers, from biological samples is crucial for early diagnosis and decision-making in terms of appropriate treatment, influencing survival rates. In this regard, immunosensors are based on specific antibody-antigen interactions, forming a stable immune complex. The antigen-specific detection antibodies (i.e., biomolecular recognition element) are generally immobilized on the nanomaterial surfaces and their interaction with the biomolecular markers or antigens produces a physico-chemical response that modulates the signal readout. Lowering the detection limits for particular biomolecules is one of the key parameters when designing immunosensors. Thus, their design by combining the specificity and versatility of antibodies with the intrinsic properties of nanomaterials offers a plethora of opportunities for clinical diagnosis. In this review, we show a comprehensive set of recent developments in the field of nanoimmunosensors and how they are progressing the detection and validation for a wide range of different biomarkers in multiple diseases and what are some drawbacks and considerations of the uses of such devices and their expansion.
Collapse
Affiliation(s)
- Sandra Lara
- Centre for BioNano Interactions, School of Chemistry, University College Dublin, D04 V1W8 Dublin, Ireland.
| | - André Perez-Potti
- Centre for BioNano Interactions, School of Chemistry, University College Dublin, D04 V1W8 Dublin, Ireland.
| |
Collapse
|
35
|
Bizzarri AR, Moscetti I, Cannistraro S. Surface enhanced Raman spectroscopy based immunosensor for ultrasensitive and selective detection of wild type p53 and mutant p53R175H. Anal Chim Acta 2018; 1029:86-96. [DOI: 10.1016/j.aca.2018.04.049] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Revised: 04/17/2018] [Accepted: 04/18/2018] [Indexed: 11/26/2022]
|
36
|
Szlag VM, Rodriguez RS, He J, Hudson-Smith N, Kang H, Le N, Reineke TM, Haynes CL. Molecular Affinity Agents for Intrinsic Surface-Enhanced Raman Scattering (SERS) Sensors. ACS APPLIED MATERIALS & INTERFACES 2018; 10:31825-31844. [PMID: 30134102 DOI: 10.1021/acsami.8b10303] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Research at the interface of synthetic materials, biochemistry, and analytical techniques has enabled sensing platforms for applications across many research communities. Herein we review the materials used as affinity agents to create surface-enhanced Raman spectroscopy (SERS) sensors. Our scope includes those affinity agents (antibody, aptamer, small molecule, and polymer) that facilitate the intrinsic detection of targets relevant to biology, medicine, national security, environmental protection, and food safety. We begin with an overview of the analytical technique (SERS) and considerations for its application as a sensor. We subsequently describe four classes of affinity agents, giving a brief overview on affinity, production, attachment chemistry, and first uses with SERS. Additionally, we review the SERS features of the affinity agents, and the analytes detected by intrinsic SERS with that affinity agent class. We conclude with remarks on affinity agent selection for intrinsic SERS sensing platforms.
Collapse
Affiliation(s)
- Victoria M Szlag
- Department of Chemistry , University of Minnesota , Minneapolis , Minnesota 55455 , United States
| | - Rebeca S Rodriguez
- Department of Chemistry , University of Minnesota , Minneapolis , Minnesota 55455 , United States
| | - Jiayi He
- Department of Chemistry , University of Minnesota , Minneapolis , Minnesota 55455 , United States
| | - Natalie Hudson-Smith
- Department of Chemistry , University of Minnesota , Minneapolis , Minnesota 55455 , United States
| | - Hyunho Kang
- Department of Chemistry , University of Minnesota , Minneapolis , Minnesota 55455 , United States
| | - Ngoc Le
- Department of Chemistry , University of Minnesota , Minneapolis , Minnesota 55455 , United States
| | - Theresa M Reineke
- Department of Chemistry , University of Minnesota , Minneapolis , Minnesota 55455 , United States
| | - Christy L Haynes
- Department of Chemistry , University of Minnesota , Minneapolis , Minnesota 55455 , United States
| |
Collapse
|
37
|
Jia M, Li S, Zang L, Lu X, Zhang H. Analysis of Biomolecules Based on the Surface Enhanced Raman Spectroscopy. NANOMATERIALS (BASEL, SWITZERLAND) 2018; 8:E730. [PMID: 30223597 PMCID: PMC6165412 DOI: 10.3390/nano8090730] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Revised: 09/10/2018] [Accepted: 09/14/2018] [Indexed: 12/24/2022]
Abstract
Analyzing biomolecules is essential for disease diagnostics, food safety inspection, environmental monitoring and pharmaceutical development. Surface-enhanced Raman spectroscopy (SERS) is a powerful tool for detecting biomolecules due to its high sensitivity, rapidness and specificity in identifying molecular structures. This review focuses on the SERS analysis of biomolecules originated from humans, animals, plants and microorganisms, combined with nanomaterials as SERS substrates and nanotags. Recent advances in SERS detection of target molecules were summarized with different detection strategies including label-free and label-mediated types. This comprehensive and critical summary of SERS analysis of biomolecules might help researchers from different scientific backgrounds spark new ideas and proposals.
Collapse
Affiliation(s)
- Min Jia
- Shandong Provincial Key Laboratory of Animal Resistance Biology, Institute of Biomedical Sciences, Key Laboratory of Food Nutrition and Safety of Shandong Normal University, College of Life Science, Shandong Normal University, Jinan 250014, China.
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University (BTBU), Beijing 100048, China.
| | - Shenmiao Li
- Food, Nutrition and Health Program, Faculty of Land and Food Systems, The University of British Columbia, Vancouver, BC V6T 1Z4, Canada.
| | - Liguo Zang
- Shandong Provincial Key Laboratory of Animal Resistance Biology, Institute of Biomedical Sciences, Key Laboratory of Food Nutrition and Safety of Shandong Normal University, College of Life Science, Shandong Normal University, Jinan 250014, China.
| | - Xiaonan Lu
- Food, Nutrition and Health Program, Faculty of Land and Food Systems, The University of British Columbia, Vancouver, BC V6T 1Z4, Canada.
| | - Hongyan Zhang
- Shandong Provincial Key Laboratory of Animal Resistance Biology, Institute of Biomedical Sciences, Key Laboratory of Food Nutrition and Safety of Shandong Normal University, College of Life Science, Shandong Normal University, Jinan 250014, China.
| |
Collapse
|
38
|
Hassanain WA, Izake EL, Ayoko GA. Spectroelectrochemical Nanosensor for the Determination of Cystatin C in Human Blood. Anal Chem 2018; 90:10843-10850. [DOI: 10.1021/acs.analchem.8b02121] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Waleed A. Hassanain
- Nanotechnology and Molecular Science Discipline, School of Chemistry, Physics and Mechanical Engineering, Science and Engineering Faculty, Queensland University of Technology, 2 George Street, Brisbane 4000, Australia
| | - Emad L. Izake
- Nanotechnology and Molecular Science Discipline, School of Chemistry, Physics and Mechanical Engineering, Science and Engineering Faculty, Queensland University of Technology, 2 George Street, Brisbane 4000, Australia
| | - Godwin A. Ayoko
- Nanotechnology and Molecular Science Discipline, School of Chemistry, Physics and Mechanical Engineering, Science and Engineering Faculty, Queensland University of Technology, 2 George Street, Brisbane 4000, Australia
| |
Collapse
|
39
|
Yang L, Zhen SJ, Li YF, Huang CZ. Silver nanoparticles deposited on graphene oxide for ultrasensitive surface-enhanced Raman scattering immunoassay of cancer biomarker. NANOSCALE 2018; 10:11942-11947. [PMID: 29901677 DOI: 10.1039/c8nr02820f] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Graphene oxide (GO) exhibits distinctive Raman scattering features for its high frequency D (disordered) and tangential modes (G-band), which are characteristically sharp at 1580 cm-1 and 1350 cm-1, respectively, but are too weak for sensitive quantitation purposes. By depositing silver nanoparticles on the surface of GO in this contribution, both D and G bands of GO become enhanced. The enzyme label of this method controls the dissolution of silver nanoparticles on the surface of GO through hydrogen peroxide which is produced by the oxidation of the enzyme substrate. With the dissolution of the silver nanoparticles a greatly decreased SERS signal of GO was obtained. This strategy involves dual signal amplification of the enzyme and nanocomposites to improve the detection sensitivity. As a proof of concept, prostate specific antigen (PSA), a biomarker for prostate cancer, is successfully detected as a target by forming a sandwich structure in immunoassay. The SERS immunoassay possesses excellent analytical performance in the range 0.5 pg mL-1 to 500 pg mL-1 with a limit of detection of 0.23 pg mL-1, making the detection of PSA serum samples from prostate cancer patients satisfactory, demonstrating that the sensitive enzyme-assisted dissolved AgNPs SERS immunoassay of PSA has potential applications in clinical diagnosis.
Collapse
Affiliation(s)
- Lin Yang
- Key Laboratory of Luminescence and Real-Time Analytical Chemistry (Southwest University), Ministry of Education, College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, P. R. China.
| | | | | | | |
Collapse
|
40
|
Lai Y, Schlücker S, Wang Y. Rapid and sensitive SERS detection of the cytokine tumor necrosis factor alpha (tnf-α) in a magnetic bead pull-down assay with purified and highly Raman-active gold nanoparticle clusters. Anal Bioanal Chem 2018; 410:5993-6000. [PMID: 29959484 DOI: 10.1007/s00216-018-1218-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Revised: 06/01/2018] [Accepted: 06/21/2018] [Indexed: 11/25/2022]
Abstract
Tumor necrosis factor alpha (TNF-α) is a cytokine with significance in early diagnosis of cardiovascular diseases, obesity and insulin resistance. We demonstrate the proof of concept for a rapid and sensitive detection of TNF-α using a magnetic bead pull-down assay in combination with surface-enhanced Raman scattering (SERS). The use of purified and highly SERS-active small clusters of gold nanoparticles (AuNP) provides the high sensitivity of the assay with a limit of detection of ca. 1 pg/mL. Continuous density gradient centrifugation was employed for separating the very bright silica-encapsulated AuNP dimers and trimers from the significantly weaker AuNP monomers. Negative control experiments with other cytokines (IL-6, IL-8) and bovine serum albumin (BSA) confirm the high specificity of the assay, but indicate also space for future improvements by further reducing non-specific binding between proteins and the SERS nanotags. The multiplexing potential of this SERS-based detection scheme is exemplarily demonstrated by using a set of three spectrally distinct and highly SERS-active AuNP clusters with unique spectral barcodes. Graphical abstract ᅟ.
Collapse
Affiliation(s)
- Yuming Lai
- National Center for Materials Service Safety, University of Science and Technology Beijing, Beijing, 100083, China
- Department of Chemistry, Center for Nanointegration Duisburg-Essen (CENIDE) and Center of Medical Biotechnology (ZMB), University of Duisburg-Essen, 45141, Essen, Germany
| | - Sebastian Schlücker
- Department of Chemistry, Center for Nanointegration Duisburg-Essen (CENIDE) and Center of Medical Biotechnology (ZMB), University of Duisburg-Essen, 45141, Essen, Germany
| | - Yuling Wang
- Department of Chemistry, Center for Nanointegration Duisburg-Essen (CENIDE) and Center of Medical Biotechnology (ZMB), University of Duisburg-Essen, 45141, Essen, Germany.
- Department of Molecular Sciences and ARC Centre of Excellence for Nanoscale BioPhotonics, Faculty of Science and Engineering, Macquarie University, Sydney, NSW, 2109, Australia.
| |
Collapse
|
41
|
Campu A, Lerouge F, Chateau D, Chaput F, Baldeck P, Parola S, Maniu D, Craciun AM, Vulpoi A, Astilean S, Focsan M. Gold NanoBipyramids Performing as Highly Sensitive Dual-Modal Optical Immunosensors. Anal Chem 2018; 90:8567-8575. [DOI: 10.1021/acs.analchem.8b01689] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Andreea Campu
- Nanobiophotonics and Laser Microspectroscopy Center, Interdisciplinary Research Institute on Bio-Nano-Sciences, Babes-Bolyai University, Treboniu Laurean No.42, Cluj-Napoca 400271, Romania
- Biomolecular Physics Department, Faculty of Physics, Babes-Bolyai University, M Kogalniceanu No. 1, Cluj-Napoca 400084, Romania
| | - Frederic Lerouge
- Ecole Normale Superiéure de Lyon, CNRS, Université Lyon 1, Laboratoire de Chimie UMR 5182, 46, allée d’Italie, F-69364, Lyon Cedex 07, France
| | - Denis Chateau
- Ecole Normale Superiéure de Lyon, CNRS, Université Lyon 1, Laboratoire de Chimie UMR 5182, 46, allée d’Italie, F-69364, Lyon Cedex 07, France
| | - Frederic Chaput
- Ecole Normale Superiéure de Lyon, CNRS, Université Lyon 1, Laboratoire de Chimie UMR 5182, 46, allée d’Italie, F-69364, Lyon Cedex 07, France
| | - Patrice Baldeck
- Ecole Normale Superiéure de Lyon, CNRS, Université Lyon 1, Laboratoire de Chimie UMR 5182, 46, allée d’Italie, F-69364, Lyon Cedex 07, France
| | - Stephane Parola
- Ecole Normale Superiéure de Lyon, CNRS, Université Lyon 1, Laboratoire de Chimie UMR 5182, 46, allée d’Italie, F-69364, Lyon Cedex 07, France
| | - Dana Maniu
- Biomolecular Physics Department, Faculty of Physics, Babes-Bolyai University, M Kogalniceanu No. 1, Cluj-Napoca 400084, Romania
| | - Ana Maria Craciun
- Nanobiophotonics and Laser Microspectroscopy Center, Interdisciplinary Research Institute on Bio-Nano-Sciences, Babes-Bolyai University, Treboniu Laurean No.42, Cluj-Napoca 400271, Romania
| | - Adriana Vulpoi
- Nanostructured Materials and Bio-Nano-Interfaces Center, Interdisciplinary Research Institute on Bio-Nano-Sciences, Babes-Bolyai University, Treboniu Laurian No. 42, Cluj-Napoca 400271, Romania
| | - Simion Astilean
- Nanobiophotonics and Laser Microspectroscopy Center, Interdisciplinary Research Institute on Bio-Nano-Sciences, Babes-Bolyai University, Treboniu Laurean No.42, Cluj-Napoca 400271, Romania
- Biomolecular Physics Department, Faculty of Physics, Babes-Bolyai University, M Kogalniceanu No. 1, Cluj-Napoca 400084, Romania
| | - Monica Focsan
- Nanobiophotonics and Laser Microspectroscopy Center, Interdisciplinary Research Institute on Bio-Nano-Sciences, Babes-Bolyai University, Treboniu Laurean No.42, Cluj-Napoca 400271, Romania
| |
Collapse
|
42
|
Zhao X, Li M, Xu Z. Detection of Foodborne Pathogens by Surface Enhanced Raman Spectroscopy. Front Microbiol 2018; 9:1236. [PMID: 29946307 PMCID: PMC6005832 DOI: 10.3389/fmicb.2018.01236] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2018] [Accepted: 05/22/2018] [Indexed: 01/21/2023] Open
Abstract
Food safety has become an important public health issue in both developed and developing countries. However, as the foodborne illnesses caused by the pollution of foodborne pathogens occurred frequently, which seriously endangered the safety and health of human beings. More importantly, the traditional techniques, such as PCR and enzyme-linked immunosorbent assay, are accurate and effective, but their pretreatments are complex and time-consuming. Therefore, how to detect foodborne pathogens quickly and sensitively has become the key to control food safety. Because of its sensitivity, rapidity, and non-destructive damage to the sample, the surface enhanced Raman scattering (SERS) is considered to be a powerful testing technology that is widely used to different fields. This review aims to give a systematic and comprehensive understanding of SERS for rapid detection of pathogen bacteria. First, the related concepts of SERS are stated, such as its work principal, active substrate, and biochemical origins of the detection of bacteria by SERS. Then the latest progress and applications in food safety, from detection and characterization of targets in label-free method to label method, is summarized. The advantages and limitations of different SERS substrates and methods are discussed. Finally, there are still several hurdles for the further development of SERS techniques into real-world applications. This review comes up with the perspectives on the future trends of the SERS technique in the field of foodborne pathogens detection and some problems to be solved urgently. Therefore, the purpose is mainly to understand the detection of foodborne pathogens and to make further emphasis on the importance of SERS techniques.
Collapse
Affiliation(s)
- Xihong Zhao
- Research Center for Environmental Ecology and Engineering, Key Laboratory for Green Chemical Process of Ministry of Education, Key Laboratory for Hubei Novel Reactor and Green Chemical Technology, School of Environmental Ecology and Biological Engineering, Wuhan Institute of Technology, Wuhan, China
| | - Mei Li
- Research Center for Environmental Ecology and Engineering, Key Laboratory for Green Chemical Process of Ministry of Education, Key Laboratory for Hubei Novel Reactor and Green Chemical Technology, School of Environmental Ecology and Biological Engineering, Wuhan Institute of Technology, Wuhan, China
| | - Zhenbo Xu
- School of Food Science and Engineering, South China University of Technology, Guangzhou, China
| |
Collapse
|
43
|
Li C, Wang L, Luo Y, Liang A, Wen G, Jiang Z. A Sensitive Gold Nanoplasmonic SERS Quantitative Analysis Method for Sulfate in Serum Using Fullerene as Catalyst. NANOMATERIALS 2018; 8:nano8050277. [PMID: 29701650 PMCID: PMC5977291 DOI: 10.3390/nano8050277] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Revised: 04/25/2018] [Accepted: 04/25/2018] [Indexed: 11/16/2022]
Abstract
Fullerene exhibited strong catalysis of the redox reaction between HAuCl₄ and trisodium citrate to form gold nanoplasmon with a strong surface-enhanced Raman scattering (SERS) effect at 1615 cm−1 in the presence of Vitoria blue B molecule probes. When fullerene increased, the SERS peak enhanced linearly due to formation of more AuNPs as substrate. Upon addition of Ba2+, Ba2+ ions adsorb on the fullerene surface to inhibit the catalysis of fullerene that caused the SERS peak decreasing. Analyte SO₄2− combined with Ba2+ to form stable BaSO₄ precipitate to release free fullerene that the catalysis recovered, and the SERS intensity increased linearly. Thus, a new SERS quantitative analysis method was established for the detection of sulfate in serum samples, with a linear range of 0.03⁻3.4 μM.
Collapse
Affiliation(s)
- Chongning Li
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection, (Guangxi Normal University), Ministry of Education, Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin 541004, China.
- School of Food and Bioengineering, Hezhou University, Hezhou 542899, China.
| | - Libing Wang
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection, (Guangxi Normal University), Ministry of Education, Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin 541004, China.
| | - Yanghe Luo
- School of Food and Bioengineering, Hezhou University, Hezhou 542899, China.
| | - Aihui Liang
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection, (Guangxi Normal University), Ministry of Education, Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin 541004, China.
| | - Guiqing Wen
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection, (Guangxi Normal University), Ministry of Education, Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin 541004, China.
| | - Zhiliang Jiang
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection, (Guangxi Normal University), Ministry of Education, Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin 541004, China.
| |
Collapse
|
44
|
Zong C, Xu M, Xu LJ, Wei T, Ma X, Zheng XS, Hu R, Ren B. Surface-Enhanced Raman Spectroscopy for Bioanalysis: Reliability and Challenges. Chem Rev 2018; 118:4946-4980. [PMID: 29638112 DOI: 10.1021/acs.chemrev.7b00668] [Citation(s) in RCA: 887] [Impact Index Per Article: 147.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Surface-enhanced Raman spectroscopy (SERS) inherits the rich chemical fingerprint information on Raman spectroscopy and gains sensitivity by plasmon-enhanced excitation and scattering. In particular, most Raman peaks have a narrow width suitable for multiplex analysis, and the measurements can be conveniently made under ambient and aqueous conditions. These merits make SERS a very promising technique for studying complex biological systems, and SERS has attracted increasing interest in biorelated analysis. However, there are still great challenges that need to be addressed until it can be widely accepted by the biorelated communities, answer interesting biological questions, and solve fatal clinical problems. SERS applications in bioanalysis involve the complex interactions of plasmonic nanomaterials with biological systems and their environments. The reliability becomes the key issue of bioanalytical SERS in order to extract meaningful information from SERS data. This review provides a comprehensive overview of bioanalytical SERS with the main focus on the reliability issue. We first introduce the mechanism of SERS to guide the design of reliable SERS experiments with high detection sensitivity. We then introduce the current understanding of the interaction of nanomaterials with biological systems, mainly living cells, to guide the design of functionalized SERS nanoparticles for target detection. We further introduce the current status of label-free (direct) and labeled (indirect) SERS detections, for systems from biomolecules, to pathogens, to living cells, and we discuss the potential interferences from experimental design, measurement conditions, and data analysis. In the end, we give an outlook of the key challenges in bioanalytical SERS, including reproducibility, sensitivity, and spatial and time resolution.
Collapse
Affiliation(s)
- Cheng Zong
- State Key Laboratory of Physical Chemistry of Solid Surfaces, MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, Collaborative Innovation Center of Chemistry for Energy Materials, College of Chemistry and Chemical Engineering , Xiamen University , Xiamen 361005 , China
| | - Mengxi Xu
- State Key Laboratory of Physical Chemistry of Solid Surfaces, MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, Collaborative Innovation Center of Chemistry for Energy Materials, College of Chemistry and Chemical Engineering , Xiamen University , Xiamen 361005 , China
| | - Li-Jia Xu
- State Key Laboratory of Physical Chemistry of Solid Surfaces, MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, Collaborative Innovation Center of Chemistry for Energy Materials, College of Chemistry and Chemical Engineering , Xiamen University , Xiamen 361005 , China
| | - Ting Wei
- State Key Laboratory of Physical Chemistry of Solid Surfaces, MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, Collaborative Innovation Center of Chemistry for Energy Materials, College of Chemistry and Chemical Engineering , Xiamen University , Xiamen 361005 , China
| | - Xin Ma
- State Key Laboratory of Physical Chemistry of Solid Surfaces, MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, Collaborative Innovation Center of Chemistry for Energy Materials, College of Chemistry and Chemical Engineering , Xiamen University , Xiamen 361005 , China
| | - Xiao-Shan Zheng
- State Key Laboratory of Physical Chemistry of Solid Surfaces, MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, Collaborative Innovation Center of Chemistry for Energy Materials, College of Chemistry and Chemical Engineering , Xiamen University , Xiamen 361005 , China
| | - Ren Hu
- State Key Laboratory of Physical Chemistry of Solid Surfaces, MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, Collaborative Innovation Center of Chemistry for Energy Materials, College of Chemistry and Chemical Engineering , Xiamen University , Xiamen 361005 , China
| | - Bin Ren
- State Key Laboratory of Physical Chemistry of Solid Surfaces, MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, Collaborative Innovation Center of Chemistry for Energy Materials, College of Chemistry and Chemical Engineering , Xiamen University , Xiamen 361005 , China
| |
Collapse
|
45
|
Bozkurt AG, Buyukgoz GG, Soforoglu M, Tamer U, Suludere Z, Boyaci IH. Alkaline phosphatase labeled SERS active sandwich immunoassay for detection of Escherichia coli. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2018; 194:8-13. [PMID: 29306060 DOI: 10.1016/j.saa.2017.12.057] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Revised: 12/09/2017] [Accepted: 12/20/2017] [Indexed: 05/18/2023]
Abstract
In this study, a sandwich immunoassay method utilizing enzymatic activity of alkaline phosphatase (ALP) on 5-bromo-4-chloro-3-indolyl phosphate (BCIP) for Escherichia coli (E. coli) detection was developed using surface enhanced Raman spectroscopy (SERS). For this purpose, spherical magnetic gold coated core-shell nanoparticles (MNPs-Au) and rod shape gold nanoparticles (Au-NRs) were synthesized and modified for immunomagnetic separation (IMS) of E. coli from the solution. In order to specify the developed method to ALP activity, Au-NRs were labeled with this enzyme. After successful construction of the immunoassay, BCIP substrate was added to produce the SERS-active product; 5-bromo-4-chloro-3-indole (BCI). A good linearity (R2=0.992) was established between the specific SERS intensity of BCI at 600cm-1 and logarithmic E. coli concentration in the range of 1.7×101-1.7×106cfumL-1. LOD and LOQ values were also calculated and found to be 10cfumL-1 and 30cfumL-1, respectively.
Collapse
Affiliation(s)
- Akif Goktug Bozkurt
- Department of Food Engineering, Faculty of Engineering, Hacettepe University, Beytepe, 06800 Ankara, Turkey
| | - Guluzar Gorkem Buyukgoz
- Department of Food Engineering, Faculty of Engineering, Hacettepe University, Beytepe, 06800 Ankara, Turkey
| | - Mehmet Soforoglu
- Department of Food Engineering, Faculty of Engineering, Hacettepe University, Beytepe, 06800 Ankara, Turkey
| | - Ugur Tamer
- Department of Analytical Chemistry, Faculty of Pharmacy, Gazi University, 06330 Ankara, Turkey
| | - Zekiye Suludere
- Department of Biology, Science Faculty, Gazi University, 06500 Ankara, Turkey
| | - Ismail Hakki Boyaci
- Department of Food Engineering, Faculty of Engineering, Hacettepe University, Beytepe, 06800 Ankara, Turkey.
| |
Collapse
|
46
|
Liu X, Huang C, Dong X, Liang A, Zhang Y, Zhang Q, Wang Q, Gai H. Asynchrony of spectral blue-shifts of quantum dot based digital homogeneous immunoassay. Chem Commun (Camb) 2018; 54:13103-13106. [PMID: 30397699 DOI: 10.1039/c8cc06754f] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
We present a femtomolar digital homogeneous immunoassay for the detection of cancer biomarkers.
Collapse
Affiliation(s)
- Xiaojun Liu
- School of Chemistry and Materials Science
- Jiangsu Normal University
- Xuzhou
- China
| | - Conghui Huang
- School of Chemistry and Materials Science
- Jiangsu Normal University
- Xuzhou
- China
| | - Xiuling Dong
- Oncology Treatment Centre
- Hangzhou Hekang Rehabilitation Hospital
- Hangzhou
- China
| | - Aiye Liang
- Department of Physical Sciences
- Charleston Southern University
- North Charleston
- USA
| | - Yusu Zhang
- School of Chemistry and Materials Science
- Jiangsu Normal University
- Xuzhou
- China
| | - Qingquan Zhang
- School of Chemistry and Materials Science
- Jiangsu Normal University
- Xuzhou
- China
| | - Qi Wang
- Department of Respiratory Medicine
- The Second Affiliated Hospital of Dalian Medical University
- Dalian
- P. R. China
| | - Hongwei Gai
- School of Chemistry and Materials Science
- Jiangsu Normal University
- Xuzhou
- China
| |
Collapse
|
47
|
Xu J, Shi M, Chen W, Huang Y, Fang L, Yao L, Zhao S, Chen ZF, Liang H. A gold nanoparticle-based four-color proximity immunoassay for one-step, multiplexed detection of protein biomarkers using ribonuclease H signal amplification. Chem Commun (Camb) 2018; 54:2719-2722. [DOI: 10.1039/c7cc09404c] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
A gold nanoparticle-based four-color fluorescence proximity immunoassay was developed for multiplexed analysis of protein biomarkers using ribonuclease H signal amplification.
Collapse
Affiliation(s)
- Jiayao Xu
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources
- College of Chemistry and Pharmacy
- Guangxi Normal University
- Guilin
- China
| | - Ming Shi
- Department of Chemistry and Pharmacy
- Guilin Normal College
- Guilin
- China
| | - Wenting Chen
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources
- College of Chemistry and Pharmacy
- Guangxi Normal University
- Guilin
- China
| | - Yong Huang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources
- College of Chemistry and Pharmacy
- Guangxi Normal University
- Guilin
- China
| | - Lina Fang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources
- College of Chemistry and Pharmacy
- Guangxi Normal University
- Guilin
- China
| | - Lifang Yao
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources
- College of Chemistry and Pharmacy
- Guangxi Normal University
- Guilin
- China
| | - Shulin Zhao
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources
- College of Chemistry and Pharmacy
- Guangxi Normal University
- Guilin
- China
| | - Zhen-Feng Chen
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources
- College of Chemistry and Pharmacy
- Guangxi Normal University
- Guilin
- China
| | - Hong Liang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources
- College of Chemistry and Pharmacy
- Guangxi Normal University
- Guilin
- China
| |
Collapse
|
48
|
Kamińska A, Winkler K, Kowalska A, Witkowska E, Szymborski T, Janeczek A, Waluk J. SERS-based Immunoassay in a Microfluidic System for the Multiplexed Recognition of Interleukins from Blood Plasma: Towards Picogram Detection. Sci Rep 2017; 7:10656. [PMID: 28878312 PMCID: PMC5587571 DOI: 10.1038/s41598-017-11152-w] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Accepted: 08/18/2017] [Indexed: 11/09/2022] Open
Abstract
SERS-active nanostructures incorporated into a microfluidic device have been developed for rapid and multiplex monitoring of selected Type 1 cytokine (interleukins: IL-6, IL-8, IL-18) levels in blood plasma. Multiple analyses have been performed by using nanoparticles, each coated with different Raman reporter molecules: 5,5′-dithio-bis(2-nitro-benzoic acid) (DTNB), fuchsin (FC), and p-mercatpobenzoic acid (p-MBA) and with specific antibodies. The multivariate statistical method, principal component analysis (PCA), was applied for segregation of three different antigen-antibody complexes encoded by three Raman reporters (FC, p-MBA, and DTNB) during simultaneous multiplexed detection approach. To the best of our knowledge, we have also presented, for the first time, a possibility for multiplexed quantification of three interleukins: IL-6, IL-8, and IL-18 in blood plasma samples using SERS technique. Our method improves the detection limit in comparison to standard ELISA methods. The low detection limits were estimated to be 2.3 pg·ml−1, 6.5 pg·ml−1, and 4.2 pg·ml−1 in a parallel approach, and 3.8 pg·ml−1, 7.5 pg·ml−1, and 5.2 pg·ml−1 in a simultaneous multiplexed method for IL-6, IL-8, and IL-18, respectively. This demonstrated the sensitivity and reproducibility desirable for analytical examinations.
Collapse
Affiliation(s)
- Agnieszka Kamińska
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224, Warsaw, Poland.
| | - Katarzyna Winkler
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224, Warsaw, Poland
| | - Aneta Kowalska
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224, Warsaw, Poland
| | - Evelin Witkowska
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224, Warsaw, Poland
| | - Tomasz Szymborski
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224, Warsaw, Poland
| | - Anna Janeczek
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224, Warsaw, Poland
| | - Jacek Waluk
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224, Warsaw, Poland.,Faculty of Mathematics and Natural Sciences, College of Science, Cardinal Stefan Wyszyński University, Dewajtis 5, 01-815, Warsaw, Poland
| |
Collapse
|
49
|
Craciun AM, Focsan M, Magyari K, Vulpoi A, Pap Z. Surface Plasmon Resonance or Biocompatibility-Key Properties for Determining the Applicability of Noble Metal Nanoparticles. MATERIALS (BASEL, SWITZERLAND) 2017; 10:E836. [PMID: 28773196 PMCID: PMC5551879 DOI: 10.3390/ma10070836] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Revised: 07/06/2017] [Accepted: 07/10/2017] [Indexed: 12/12/2022]
Abstract
Metal and in particular noble metal nanoparticles represent a very special class of materials which can be applied as prepared or as composite materials. In most of the cases, two main properties are exploited in a vast number of publications: biocompatibility and surface plasmon resonance (SPR). For instance, these two important properties are exploitable in plasmonic diagnostics, bioactive glasses/glass ceramics and catalysis. The most frequently applied noble metal nanoparticle that is universally applicable in all the previously mentioned research areas is gold, although in the case of bioactive glasses/glass ceramics, silver and copper nanoparticles are more frequently applied. The composite partners/supports/matrix/scaffolds for these nanoparticles can vary depending on the chosen application (biopolymers, semiconductor-based composites: TiO₂, WO₃, Bi₂WO₆, biomaterials: SiO₂ or P₂O₅-based glasses and glass ceramics, polymers: polyvinyl alcohol (PVA), Gelatin, polyethylene glycol (PEG), polylactic acid (PLA), etc.). The scientific works on these materials' applicability and the development of new approaches will be targeted in the present review, focusing in several cases on the functioning mechanism and on the role of the noble metal.
Collapse
Affiliation(s)
- Ana Maria Craciun
- Nanobiophotonics and Laser Microspectroscopy Center, Interdisciplinary Research Institute on Bio-Nano-Sciences, Babeș-Bolyai University, 400271 Cluj-Napoca, Romania.
| | - Monica Focsan
- Nanobiophotonics and Laser Microspectroscopy Center, Interdisciplinary Research Institute on Bio-Nano-Sciences, Babeș-Bolyai University, 400271 Cluj-Napoca, Romania.
| | - Klara Magyari
- Nanostructured Materials and Bio-Nano-Interfaces Center, Interdisciplinary Research Institute on Bio-Nano-Sciences, Babeș-Bolyai University, 400271 Cluj-Napoca, Romania.
| | - Adriana Vulpoi
- Nanostructured Materials and Bio-Nano-Interfaces Center, Interdisciplinary Research Institute on Bio-Nano-Sciences, Babeș-Bolyai University, 400271 Cluj-Napoca, Romania.
| | - Zsolt Pap
- Nanostructured Materials and Bio-Nano-Interfaces Center, Interdisciplinary Research Institute on Bio-Nano-Sciences, Babeș-Bolyai University, 400271 Cluj-Napoca, Romania.
- Institute of Environmental Science and Technology, University of Szeged, 6720 Szeged, Hungary.
| |
Collapse
|
50
|
Tripathi P, Upadhyay N, Nara S. Recent advancements in lateral flow immunoassays: A journey for toxin detection in food. Crit Rev Food Sci Nutr 2017; 58:1715-1734. [PMID: 28071928 DOI: 10.1080/10408398.2016.1276048] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Biotechnology embraces various physical and chemical phenomena toward advancement of health diagnostics. Toward such advancement, detection of toxins plays an important role. Toxins produce severe health impacts on consumption with high mortality associated in acute cases. The most prominent route of infection and intoxication is through food matrices. Therefore, rapid detection of toxins at low concentrations is the need of modern diagnostics. Lateral flow immunoassays are one of the emergent and popularly used rapid detection technology developed for detecting various kinds of analytes. This review thus focuses on recent advancements in lateral flow immunoassays for detecting different toxins in agricultural food. Appropriate emphasis was given on how the labels, recognition elements, or detection strategy has laid an impact on improvement in immunochromatographic assays for toxins. The paper also discusses the gradual change in sensitivities and specificities of assays in accordance with the method of food processing used. The review concludes with the major challenges faced by this technology and provides an outlook and insight of ideas to improve it in the future.
Collapse
Affiliation(s)
- Pranav Tripathi
- a Department of Biotechnology , Motilal Nehru National Institute of Technology , Allahabad , Uttar Pradesh , India
| | - Neha Upadhyay
- a Department of Biotechnology , Motilal Nehru National Institute of Technology , Allahabad , Uttar Pradesh , India
| | - Seema Nara
- a Department of Biotechnology , Motilal Nehru National Institute of Technology , Allahabad , Uttar Pradesh , India
| |
Collapse
|