1
|
Hidaka M, Kojima M, Sakai S. Micromixer driven by bubble-induced acoustic microstreaming for multi-ink 3D bioprinting. LAB ON A CHIP 2024; 24:4571-4580. [PMID: 39221588 DOI: 10.1039/d4lc00552j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Recently, the 3D printing of cell-laden hydrogel structures, known as bioprinting, has received increasing attention owing to advances in tissue engineering and drug screening. However, a micromixing technology that efficiently mixes viscous bioinks under mild conditions is needed. Therefore, this study presents a novel method for achieving homogeneous mixing of multiple inks in 3D bioprinting through acoustic stimulation. This technique involves generating an acoustic microstream through bubble oscillations inside a 3D bioprinting nozzle. We determined the optimal hole design for trapping a bubble, hole arrangement, and voltage for efficient mixing, resulting in a four-fold increase in mixing efficiency compared to a single bubble arrangement. Subsequently, we propose a nozzle design for efficient mixing during bioprinting. The proposed nozzle design enabled the successful printing of line structures with a uniform mixture of different viscous bioinks, achieving a mixing efficiency of over 80% for mixing 0.5-1.0 wt% sodium alginate aqueous solutions. Additionally, acoustic stimulation had no adverse effects on cell viability, maintaining a high cell viability of 88% after extrusion. This study presents the first use of a bubble micromixer in 3D bioprinting, demonstrating gentle yet effective multi-ink mixing. We believe this approach will broaden 3D printing applications, particularly for constructing functional structures in 3D bioprinting.
Collapse
Affiliation(s)
- Mitsuyuki Hidaka
- Division of Chemical Engineering, Department of Materials Engineering Science, Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyama-cho, Toyonaka, Osaka, Japan.
| | - Masaru Kojima
- Division of Chemical Engineering, Department of Materials Engineering Science, Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyama-cho, Toyonaka, Osaka, Japan.
| | - Shinji Sakai
- Division of Chemical Engineering, Department of Materials Engineering Science, Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyama-cho, Toyonaka, Osaka, Japan.
| |
Collapse
|
2
|
Coates IA, Pan W, Saccone MA, Lipkowitz G, Ilyin D, Driskill MM, Dulay MT, Frank CW, Shaqfeh ESG, DeSimone JM. High-resolution stereolithography: Negative spaces enabled by control of fluid mechanics. Proc Natl Acad Sci U S A 2024; 121:e2405382121. [PMID: 39231205 PMCID: PMC11406279 DOI: 10.1073/pnas.2405382121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 07/30/2024] [Indexed: 09/06/2024] Open
Abstract
Stereolithography enables the fabrication of three-dimensional (3D) freeform structures via light-induced polymerization. However, the accumulation of ultraviolet dose within resin trapped in negative spaces, such as microfluidic channels or voids, can result in the unintended closing, referred to as overcuring, of these negative spaces. We report the use of injection continuous liquid interface production to continuously displace resin at risk of overcuring in negative spaces created in previous layers with fresh resin to mitigate the loss of Z-axis resolution. We demonstrate the ability to resolve 50-μm microchannels, breaking the historical relationship between resin properties and negative space resolution. With this approach, we fabricated proof-of-concept 3D free-form microfluidic devices with improved design freedom over device material selection and resulting properties.
Collapse
Affiliation(s)
- Ian A Coates
- Department of Chemical Engineering, Stanford University, Stanford, CA 94305
| | - William Pan
- Department of Mechanical Engineering, Stanford University, Stanford, CA 94305
| | - Max A Saccone
- Department of Chemical Engineering, Stanford University, Stanford, CA 94305
- Department of Radiology, Stanford University, Stanford, CA 94305
| | - Gabriel Lipkowitz
- Department of Mechanical Engineering, Stanford University, Stanford, CA 94305
| | - Dan Ilyin
- Department of Mechanical Engineering, Stanford University, Stanford, CA 94305
| | - Madison M Driskill
- Department of Chemical Engineering, Stanford University, Stanford, CA 94305
| | - Maria T Dulay
- Department of Radiology, Stanford University, Stanford, CA 94305
| | - Curtis W Frank
- Department of Chemical Engineering, Stanford University, Stanford, CA 94305
| | - Eric S G Shaqfeh
- Department of Chemical Engineering, Stanford University, Stanford, CA 94305
- Department of Mechanical Engineering, Stanford University, Stanford, CA 94305
| | - Joseph M DeSimone
- Department of Chemical Engineering, Stanford University, Stanford, CA 94305
- Department of Radiology, Stanford University, Stanford, CA 94305
| |
Collapse
|
3
|
Novotny J, Svobodova Z, Ilicova M, Hruskova D, Kostalova J, Bilkova Z, Foret F. Advantages of stereolithographic 3D printing in the fabrication of the Affiblot device for dot-blot assays. Mikrochim Acta 2024; 191:442. [PMID: 38954238 PMCID: PMC11219379 DOI: 10.1007/s00604-024-06512-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 06/15/2024] [Indexed: 07/04/2024]
Abstract
In stereolithographic (SLA) 3D printing, objects are constructed by exposing layers of photocurable resin to UV light. It is a highly user-friendly fabrication method that opens a possibility for technology sharing through CAD file online libraries. Here, we present a prototyping procedure of a microfluidics-enhanced dot-blot device (Affiblot) designed for simple and inexpensive screening of affinity molecule characteristics (antibodies, oligonucleotides, cell receptors, etc.). The incorporation of microfluidic features makes sample processing user-friendly, less time-consuming, and less laborious, all performed completely on-device, distinguishing it from other dot-blot devices. Initially, the Affiblot device was fabricated using CNC machining, which required significant investment in manual post-processing and resulted in low reproducibility. Utilization of SLA 3D printing reduced the amount of manual post-processing, which significantly streamlined the prototyping process. Moreover, it enabled the fabrication of previously impossible features, including internal fluidic channels. While 3D printing of sub-millimeter microchannels usually requires custom-built printers, we were able to fabricate microfluidic features on a readily available commercial printer. Open microchannels in the size range 200-300 μm could be fabricated with reliable repeatability and sealed with a replaceable foil. Economic aspects of device fabrication are also discussed.
Collapse
Affiliation(s)
- Jakub Novotny
- Institute of Analytical Chemistry of the CAS, v. v. i., Veveri 967/97, 60200, Brno, Czech Republic.
| | - Zuzana Svobodova
- Department of Biological and Medical Sciences, Faculty of Pharmacy in Hradec Kralove, Charles University, Pardubice, Czech Republic.
| | - Marie Ilicova
- Department of Biological and Medical Sciences, Faculty of Pharmacy in Hradec Kralove, Charles University, Pardubice, Czech Republic
| | - Dominika Hruskova
- Department of Economy and Management of Chemical and Foodstuff Industry, Faculty of Chemical Technology, University of Pardubice, Pardubice, Czech Republic
| | - Jana Kostalova
- Department of Economy and Management of Chemical and Foodstuff Industry, Faculty of Chemical Technology, University of Pardubice, Pardubice, Czech Republic
| | - Zuzana Bilkova
- Department of Biological and Biochemical Sciences, Faculty of Chemical Technology, University of Pardubice, Pardubice, Czech Republic
| | - Frantisek Foret
- Institute of Analytical Chemistry of the CAS, v. v. i., Veveri 967/97, 60200, Brno, Czech Republic
| |
Collapse
|
4
|
Fei X, Liang D, Zhao H, Yang Y, Yin M, He Z, Liu Z, Fan X. Preparation of chitosan-hyaluronic acid microcapsules and its dynamic release behavior analysis in a 3D-printed microchannel system: Exploration and verification. Int J Biol Macromol 2024; 273:133031. [PMID: 38866283 DOI: 10.1016/j.ijbiomac.2024.133031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 05/28/2024] [Accepted: 06/07/2024] [Indexed: 06/14/2024]
Abstract
This research focuses on the challenges of efficiently constructing drug carriers and evaluating their dynamic release in vitro simulation. By using pickering emulsion and layer-by-layer self-assembly methods. The microcapsules had tea tree oil as the core material, SiO2 nanoparticles as stabilizers, and chitosan and hyaluronic acid as shell materials. The microencapsulation mechanism, as well as the effects of core-shell mass ratio and stirring, were discussed. Specifically, a dynamic circulation simulation microchannel system was designed and manufactured based on 3D printing technology. In this simulation system, the release rate of microcapsules is accelerated and the trend changes, with its behavior aligning with the Boltzmann model. The study demonstrates the advantages of self-assembled inorganic-organic drug-loaded microcapsules in terms of controllable fabrication and ease of functional modification, and shows the potential of 3D printed cyclic microchannel systems in terms of operability and simulation fidelity in drug and physiological analysis.
Collapse
Affiliation(s)
- Xuening Fei
- School of Science, Tianjin Engineering Technology Center of Chemical Wastewater Source Reduction and Recycling, Tianjin Chengjian University, Tianjin 300384, China; School of Environmental Science and Safety Engineering, Tianjin University of Technology, Tianjin 300384, China
| | - Dongchi Liang
- School of Science, Tianjin Engineering Technology Center of Chemical Wastewater Source Reduction and Recycling, Tianjin Chengjian University, Tianjin 300384, China
| | - Hongbin Zhao
- School of Science, Tianjin Engineering Technology Center of Chemical Wastewater Source Reduction and Recycling, Tianjin Chengjian University, Tianjin 300384, China; State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Functional Polymer Materials, College of Chemistry, Nankai University, Tianjin 300071, China; Rianlon Corporation, Tianjin 300480, China.
| | - Yanzi Yang
- School of Science, Tianjin Engineering Technology Center of Chemical Wastewater Source Reduction and Recycling, Tianjin Chengjian University, Tianjin 300384, China
| | - Mingyang Yin
- School of Science, Tianjin Engineering Technology Center of Chemical Wastewater Source Reduction and Recycling, Tianjin Chengjian University, Tianjin 300384, China
| | - Zhengkuan He
- School of Science, Tianjin Engineering Technology Center of Chemical Wastewater Source Reduction and Recycling, Tianjin Chengjian University, Tianjin 300384, China
| | - Zunfeng Liu
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Functional Polymer Materials, College of Chemistry, Nankai University, Tianjin 300071, China
| | | |
Collapse
|
5
|
Tunstall-García H, Lawson T, Benincasa KA, Prentice AW, Saravanamuttu K, Evans RC. Interplay of Luminophores and Photoinitiators during Synthesis of Bulk and Patterned Luminescent Photopolymer Blends. ACS APPLIED POLYMER MATERIALS 2024; 6:6314-6322. [PMID: 38903400 PMCID: PMC11186006 DOI: 10.1021/acsapm.4c00484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 05/07/2024] [Accepted: 05/07/2024] [Indexed: 06/22/2024]
Abstract
Four-dimensional printing with embedded photoluminescence is emerging as an exciting area in additive manufacturing. Slim polymer films patterned with three-dimensional lattices of multimode cylindrical waveguides (waveguide-encoded lattices, WELs) with enhanced fields of view can be fabricated by localizing light as self-trapped beams within a photopolymerizable formulation. Luminescent WELs have potential applications as solar cell coatings and smart planar optical components. However, as luminophore-photoinitiator interactions are expected to change the photopolymerization kinetics, the design of robust luminescent photopolymer sols is nontrivial. Here, we use model photopolymer systems based on methacrylate-siloxane and epoxide homopolymers and their blends to investigate the influence of the luminophore Lumogen Violet (LV) on the photolysis kinetics of the Omnirad 784 photoinitiator through UV-vis absorbance spectroscopy. Initial rate analysis with different bulk polymers reveals differences in the pseudo-first-order rate constants in the absence and presence of LV, with a notable increase (∼40%) in the photolysis rate for the 1:1 blend. Fluorescence quenching studies, coupled with density functional theory calculations, establish that these differences arise due to electron transfer from the photoexcited LV to the ground-state photoinitiator molecules. We also demonstrate an in situ UV-vis absorbance technique that enables real-time monitoring of both waveguide formation and photoinitiator consumption during the fabrication of WELs. The in situ photolysis kinetics confirm that LV-photoinitiator interactions also influence the photopolymerization process during WEL formation. Our findings show that luminophores play a noninnocent role in photopolymerization and highlight the necessity for both careful consideration of the photopolymer formulation and a real-time monitoring approach to enable the fabrication of high-quality micropatterned luminescent polymeric films.
Collapse
Affiliation(s)
- Helen Tunstall-García
- Department
of Materials Science and Metallurgy, University
of Cambridge, Cambridge CB3 0FS, U.K.
| | - Takashi Lawson
- Department
of Materials Science and Metallurgy, University
of Cambridge, Cambridge CB3 0FS, U.K.
| | - Kathryn A. Benincasa
- Department
of Chemistry and Chemical Biology, McMaster
University, Hamilton L8S 4M1, Canada
| | - Andrew W. Prentice
- School
of Engineering & Physical Sciences, Heriot-Watt University, Edinburgh EH14 4AS, U.K.
| | | | - Rachel C. Evans
- Department
of Materials Science and Metallurgy, University
of Cambridge, Cambridge CB3 0FS, U.K.
| |
Collapse
|
6
|
Carnero B, Radziunas-Salinas Y, Rodiño-Janeiro BK, Ballesta SV, Flores-Arias MT. Versatile hybrid technique for passive straight micromixer manufacturing by combining pulsed laser ablation, stereolithographic 3D printing and computational fluid dynamics. LAB ON A CHIP 2024; 24:2669-2682. [PMID: 38651171 DOI: 10.1039/d4lc00009a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/25/2024]
Abstract
There is a need to develop new and versatile fabrication methods to achieve efficient mixing of fluids in microfluidic channels using microstructures. This work presents a new technique that combines stereolithography (SLA) and pulsed laser ablation (PLA) to manufacture a straight micromixer for uniform mixing of two samples. Computational fluid dynamics (CFD) simulation is performed to deeply understand the physical mechanisms of the process. The results suggest that this new optical technique holds the potential to become a versatile hybrid technique for manufacturing remarkable mixing microfluidic devices.
Collapse
Affiliation(s)
- Bastián Carnero
- Photonics4Life Research Group, Applied Physics Department, Facultade de Física, iMATUS, Universidade de Santiago de Compostela, Campus Vida, E-15782 Santiago de Compostela, Spain.
- BFlow SL, Edificio Emprendia, Campus Vida, Santiago de Compostela, E-15706, Spain
| | - Yago Radziunas-Salinas
- Photonics4Life Research Group, Applied Physics Department, Facultade de Física, iMATUS, Universidade de Santiago de Compostela, Campus Vida, E-15782 Santiago de Compostela, Spain.
| | | | - Sylvana Varela Ballesta
- BFlow SL, Edificio Emprendia, Campus Vida, Santiago de Compostela, E-15706, Spain
- Departament d'Enginyeria Mecànica, Universitat Rovira i Virgili, Tarragona, E-43007, Spain
| | - M Teresa Flores-Arias
- Photonics4Life Research Group, Applied Physics Department, Facultade de Física, iMATUS, Universidade de Santiago de Compostela, Campus Vida, E-15782 Santiago de Compostela, Spain.
| |
Collapse
|
7
|
Mohammadi M, Ahmed Qadir S, Mahmood Faraj A, Hamid Shareef O, Mahmoodi H, Mahmoudi F, Moradi S. Navigating the future: Microfluidics charting new routes in drug delivery. Int J Pharm 2024:124142. [PMID: 38648941 DOI: 10.1016/j.ijpharm.2024.124142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 03/30/2024] [Accepted: 04/18/2024] [Indexed: 04/25/2024]
Abstract
Microfluidics has emerged as a transformative force in the field of drug delivery, offering innovative avenues to produce a diverse range of nano drug delivery systems. Thanks to its precise manipulation of small fluid volumes and its exceptional command over the physicochemical characteristics of nanoparticles, this technology is notably able to enhance the pharmacokinetics of drugs. It has initiated a revolutionary phase in the domain of drug delivery, presenting a multitude of compelling advantages when it comes to developing nanocarriers tailored for the delivery of poorly soluble medications. These advantages represent a substantial departure from conventional drug delivery methodologies, marking a paradigm shift in pharmaceutical research and development. Furthermore, microfluidic platformsmay be strategically devised to facilitate targeted drug delivery with the objective of enhancing the localized bioavailability of pharmaceutical substances. In this paper, we have comprehensively investigated a range of significant microfluidic techniques used in the production of nanoscale drug delivery systems. This comprehensive review can serve as a valuable reference and offer insightful guidance for the development and optimization of numerous microfluidics-fabricated nanocarriers.
Collapse
Affiliation(s)
- Mohammad Mohammadi
- Department of Medical Nanotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Syamand Ahmed Qadir
- Department of Medical Laboratory Techniques, Halabja Technical Institute, Research Center, Sulaimani Polytechnic University, Sulaymaniyah, Iraq
| | - Aryan Mahmood Faraj
- Department of Medical Laboratory Sciences, Halabja Technical College of Applied Sciences, Sulaimani Polytechnic University, Halabja, Iraq
| | - Osama Hamid Shareef
- Department of Medical Laboratory Techniques, Halabja Technical Institute, Research Center, Sulaimani Polytechnic University, Sulaymaniyah, Iraq
| | - Hassan Mahmoodi
- Department of Medical Laboratory Sciences, School of Paramedical Sciences, Iran University of Medical Sciences, Tehran, Iran
| | - Fatemeh Mahmoudi
- Department of Medical Nanotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Sajad Moradi
- Nano Drug Delivery Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| |
Collapse
|
8
|
Zhao M, Yang J, Li Z, Zeng Y, Tao C, Dai B, Zhang D, Yamaguchi Y. High-throughput 3D microfluidic chip for generation of concentration gradients and mixture combinations. LAB ON A CHIP 2024; 24:2280-2286. [PMID: 38506153 DOI: 10.1039/d3lc00822c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/21/2024]
Abstract
Concentration gradient generation and mixed combinations of multiple solutions are of great value in the field of biomedical research. However, existing concentration gradient generators for single or two-drug solutions cannot simultaneously achieve multiple concentration gradient formations and mixed solution combinations. Furthermore, the whole system was huge, and required expensive auxiliary equipment, which may lead to complex operations. To address this problem, we devised a novel 3D microchannel network design, which is capable of creating all the desired mixture combinations and concentration gradients of given small amounts of the input solutions. As a proof of concept, the device we presented was verified by both colorimetric and fluorescence detection methods to test the efficiency. This can enable the implementation of one to three solutions with no driving pump and facilitate unique multiple types of more concentration gradients and mixture combinations in a single operation. We envision that this will be a promising candidate for the development of simplified methods for screening of the appropriate concentration and combination, such as various drug screening applications.
Collapse
Affiliation(s)
- Mingwei Zhao
- Engineering Research Center of Optical Instrument and System, Key Lab of Optical Instruments and Equipment for Medical Engineering, Ministry of Education, Shanghai Key Lab of Modern Optical System, University of Shanghai for Science and Technology, Shanghai 200093, China.
| | - Jing Yang
- Anhui Sanlian University, Hefei 230000, China
| | - Zhenqing Li
- Engineering Research Center of Optical Instrument and System, Key Lab of Optical Instruments and Equipment for Medical Engineering, Ministry of Education, Shanghai Key Lab of Modern Optical System, University of Shanghai for Science and Technology, Shanghai 200093, China.
| | - Yuan Zeng
- College of Medical Imaging, Shanghai University of Medicine and Health Sciences, Shanghai 201318, China
| | - Chunxian Tao
- Engineering Research Center of Optical Instrument and System, Key Lab of Optical Instruments and Equipment for Medical Engineering, Ministry of Education, Shanghai Key Lab of Modern Optical System, University of Shanghai for Science and Technology, Shanghai 200093, China.
| | - Bo Dai
- Engineering Research Center of Optical Instrument and System, Key Lab of Optical Instruments and Equipment for Medical Engineering, Ministry of Education, Shanghai Key Lab of Modern Optical System, University of Shanghai for Science and Technology, Shanghai 200093, China.
| | - Dawei Zhang
- Engineering Research Center of Optical Instrument and System, Key Lab of Optical Instruments and Equipment for Medical Engineering, Ministry of Education, Shanghai Key Lab of Modern Optical System, University of Shanghai for Science and Technology, Shanghai 200093, China.
| | - Yoshinori Yamaguchi
- Picotecbio-Waseda Joint Research Lab, Comprehensive Research Organization, Waseda University, 94-A203, 1011, NishiTomita, Honjo, Saitama, 367-0035, Japan
| |
Collapse
|
9
|
Pradela Filho LA, Paixão TRLC, Nordin GP, Woolley AT. Leveraging the third dimension in microfluidic devices using 3D printing: no longer just scratching the surface. Anal Bioanal Chem 2024; 416:2031-2037. [PMID: 37470814 PMCID: PMC10799186 DOI: 10.1007/s00216-023-04862-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 07/07/2023] [Accepted: 07/10/2023] [Indexed: 07/21/2023]
Abstract
3D printers utilize cutting-edge technologies to create three-dimensional objects and are attractive tools for engineering compact microfluidic platforms with complex architectures for chemical and biochemical analyses. 3D printing's popularity is associated with the freedom of creating intricate designs using inexpensive instrumentation, and these tools can produce miniaturized platforms in minutes, facilitating fabrication scaleup. This work discusses key challenges in producing three-dimensional microfluidic structures using currently available 3D printers, addressing considerations about printer capabilities and software limitations encountered in the design and processing of new architectures. This article further communicates the benefits of using three-dimensional structures, including the ability to scalably produce miniaturized analytical systems and the possibility of combining them with multiple processes, such as mixing, pumping, pre-concentration, and detection. Besides increasing analytical applicability, such three-dimensional architectures are important in the eventual design of commercial devices since they can decrease user interferences and reduce the volume of reagents or samples required, making assays more reliable and rapid. Moreover, this manuscript provides insights into research directions involving 3D-printed microfluidic devices. Finally, this work offers an outlook for future developments to provide and take advantage of 3D microfluidic functionality in 3D printing. Graphical abstract Creating three-dimensional microfluidic structures using 3D printing will enable key advances and novel applications in (bio)chemical analysis.
Collapse
Affiliation(s)
- Lauro A Pradela Filho
- Department of Chemistry, University of São Paulo, São Paulo, SP, Brazil
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT, USA
| | | | - Gregory P Nordin
- Department of Electrical and Computer Engineering, Brigham Young University, Provo, UT, USA
| | - Adam T Woolley
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT, USA.
| |
Collapse
|
10
|
Huang Q, Yang T, Song Y, Sun W, Xu J, Cheng Y, Yin R, Zhu L, Zhang M, Ma L, Li H, Zhang H. A three-dimensional (3D) liver-kidney on a chip with a biomimicking circulating system for drug safety evaluation. LAB ON A CHIP 2024; 24:1715-1726. [PMID: 38328873 DOI: 10.1039/d3lc00980g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2024]
Abstract
The liver and kidney are the major detoxifying organs in the human body and play an important role in pharmacokinetics. Drug-induced hepatotoxicity and nephrotoxicity can cause irreversible damage to the liver and kidney and are a major cause of drug failure in later stages. Both animal models and conventional cell culture have a number of limitations, such as animal ethics and gene mismatching and there is an urgent need to develop a new drug toxicity evaluation approach. In this paper, a 3D liver-kidney on a chip with a biomimicking circulating system (LKOCBCS) was constructed to obtain kidney and liver models in vitro for drug safety evaluation. LKOCBCS, which has a parallel circulating system mimicking biological circulation, consists of 3D biomimetic tissue of liver lobules similar to that of the human liver constructed by 3D bioprinting and renal proximal tubule barriers fabricated by ultrafast laser assisted etching. The proposed LKOCBCS facilitates the communication between the liver and the kidney, including the exchange of nutrients, compounds, and metabolites. The results revealed that the glucose concentration and cell metabolism stabilized after 7 days. A dynamically repeated low-dose administration of cyclosporine A (CsA) was fed to the system, and hepatotoxicity and nephrotoxicity were observed on day 3 according to the changes in toxicity markers. The high levels of drug induced biomarkers expressed in LKOCBCS indicate that this system is more sensitive than the monoculture liver chip and it is highly potential in replacing animal models for effective drug toxicity screening.
Collapse
Affiliation(s)
- Qihong Huang
- School of Mechanical and Power Engineering, East China University of Science and Technology, Shanghai 200237, China.
| | - Tianhao Yang
- School of Mechanical and Power Engineering, East China University of Science and Technology, Shanghai 200237, China.
| | - Yunpeng Song
- School of Physics and Electronic Science, East China Normal University, Shanghai 200062, China.
| | - Wenxuan Sun
- School of Mechanical and Power Engineering, East China University of Science and Technology, Shanghai 200237, China.
| | - Jian Xu
- School of Physics and Electronic Science, East China Normal University, Shanghai 200062, China.
| | - Ya Cheng
- School of Physics and Electronic Science, East China Normal University, Shanghai 200062, China.
| | - Ruixue Yin
- School of Mechanical and Power Engineering, East China University of Science and Technology, Shanghai 200237, China.
| | - Lili Zhu
- School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Mengting Zhang
- School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Lei Ma
- School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Honglin Li
- School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Hongbo Zhang
- School of Mechanical and Power Engineering, East China University of Science and Technology, Shanghai 200237, China.
| |
Collapse
|
11
|
Amini A, Themelis T, Ottevaere H, De Vos J, Eeltink S. Digital light processing 3D printing of microfluidic devices targeting high-pressure liquid-phase separations. Mikrochim Acta 2024; 191:171. [PMID: 38430344 DOI: 10.1007/s00604-024-06256-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Accepted: 02/11/2024] [Indexed: 03/03/2024]
Abstract
This paper focuses on 3D printing using digital light processing (DLP) to create microchannel devices with inner diameters of 100, 200, and 500 µm and cater flow-through applications within the realm of analytical chemistry, in particular high-pressure liquid chromatographic separations. Effects of layer thickness and exposure time on channel dimensions and surface roughness were systematically investigated. Utilizing a commercially accessible 3D printer and acrylate resin formulation, we fabricated 100-500 µm i.d. squared and circular channel designs minimizing average surface roughness (< 20%) by applying a 20-µm layer thickness and exposure times ranging from 1.1 to 0.7 s. Pressure resistance was measured by encasing microdevices in an aluminum chip holder that integrated flat-bottom polyetheretherketon (PEEK) nanoports allowing to establish the micro-to-macro interface to the HPLC instrument. After thermal post-curing and finetuning the clamping force of the chip holder, a maximum pressure resistance of 650 bar (1.5% RSD) was reached (n = 3). A polymer monolithic support structure was successfully synthesized in situ with the confines of a 500 µm i.d. 3D printed microchannel. A proof-of-concept of a reversed-phase chromatographic gradient separation of intact proteins is demonstrated using an aqueous-organic mobile-phase with isopropanol as organic modifier.
Collapse
Affiliation(s)
- Ali Amini
- Vrije Universiteit Brussel (VUB), Department of Chemical Engineering, Pleinlaan 2, B-1050, Brussels, Belgium
| | - Thomas Themelis
- Vrije Universiteit Brussel (VUB), Department of Chemical Engineering, Pleinlaan 2, B-1050, Brussels, Belgium
| | - Heidi Ottevaere
- Vrije Universiteit Brussel (VUB), Department of Applied Physics and Photonics, Brussels Photonics, Brussels, Belgium
| | - Jelle De Vos
- Vrije Universiteit Brussel (VUB), Department of Chemical Engineering, Pleinlaan 2, B-1050, Brussels, Belgium
- RIC Group, President Kennedypark 26, B-8500, Kortrijk, Belgium
| | - Sebastiaan Eeltink
- Vrije Universiteit Brussel (VUB), Department of Chemical Engineering, Pleinlaan 2, B-1050, Brussels, Belgium.
| |
Collapse
|
12
|
Alioglu MA, Yilmaz YO, Gerhard EM, Pal V, Gupta D, Rizvi SHA, Ozbolat IT. A Versatile Photocrosslinkable Silicone Composite for 3D Printing Applications. ADVANCED MATERIALS TECHNOLOGIES 2024; 9:2301858. [PMID: 38883438 PMCID: PMC11178280 DOI: 10.1002/admt.202301858] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Indexed: 06/18/2024]
Abstract
Embedded printing has emerged as a valuable tool for fabricating complex structures and microfluidic devices. Currently, an ample of amount of research is going on to develop new materials to advance its capabilities and increase its potential applications. Here, we demonstrate a novel, transparent, printable, photocrosslinkable, and tuneable silicone composite that can be utilized as a support bath or an extrudable ink for embedded printing. Its properties can be tuned to achieve ideal rheological properties, such as optimal self-recovery and yield stress, for use in 3D printing. When used as a support bath, it facilitated the generation microfluidic devices with circular channels of diameter up to 30 μm. To demonstrate its utility, flow focusing microfluidic devices were fabricated for generation of Janus microrods, which can be easily modified for multitude of applications. When used as an extrudable ink, 3D printing of complex-shaped constructs were achieved with integrated electronics, which greatly extends its potential applications towards soft robotics. Further, its biocompatibility was tested with multiple cell types to validate its applicability for tissue engineering. Altogether, this material offers a myriad of potential applications (i.e., soft robotics, microfluidics, bioprinting) by providing a facile approach to develop complicated 3D structures and interconnected channels.
Collapse
Affiliation(s)
- Mecit Altan Alioglu
- The Huck Institutes of the Life Sciences, Penn State University, University Park, PA 16802, USA
- Engineering Science and Mechanics Department, Penn State University, University Park, PA 16802, USA
| | - Yasar Ozer Yilmaz
- The Huck Institutes of the Life Sciences, Penn State University, University Park, PA 16802, USA
- Engineering Science and Mechanics Department, Penn State University, University Park, PA 16802, USA
- Department of Nanoscience and Nanoengineering, Istanbul Technical University, Istanbul 34469, Turkey
| | - Ethan Michael Gerhard
- The Huck Institutes of the Life Sciences, Penn State University, University Park, PA 16802, USA
- Department of Biomedical Engineering, Penn State University, University Park, PA 16802, USA
| | - Vaibhav Pal
- The Huck Institutes of the Life Sciences, Penn State University, University Park, PA 16802, USA
- Department of Chemistry, Penn State University, University Park, PA 16802, USA
| | - Deepak Gupta
- The Huck Institutes of the Life Sciences, Penn State University, University Park, PA 16802, USA
- Engineering Science and Mechanics Department, Penn State University, University Park, PA 16802, USA
| | - Syed Hasan Askari Rizvi
- The Huck Institutes of the Life Sciences, Penn State University, University Park, PA 16802, USA
- Engineering Science and Mechanics Department, Penn State University, University Park, PA 16802, USA
| | - Ibrahim T. Ozbolat
- The Huck Institutes of the Life Sciences, Penn State University, University Park, PA 16802, USA
- Engineering Science and Mechanics Department, Penn State University, University Park, PA 16802, USA
- Department of Biomedical Engineering, Penn State University, University Park, PA 16802, USA
- Materials Research Institute, Penn State University, University Park, PA 16802, USA
- Department of Neurosurgery, Penn State College of Medicine, Hershey 17033, PA, USA
- Penn State Cancer Institute, Penn State University, Hershey 17033, PA, USA
- Department of Medical Oncology, Cukurova University, Adana 01130, Turkey
| |
Collapse
|
13
|
Ahmed MAM, Jurczak KM, Lynn NS, Mulder JPSH, Verpoorte EMJ, Nagelkerke A. Rapid prototyping of PMMA-based microfluidic spheroid-on-a-chip models using micromilling and vapour-assisted thermal bonding. Sci Rep 2024; 14:2831. [PMID: 38310102 PMCID: PMC10838337 DOI: 10.1038/s41598-024-53266-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 01/30/2024] [Indexed: 02/05/2024] Open
Abstract
The application of microfluidic devices as next-generation cell and tissue culture systems has increased impressively in the last decades. With that, a plethora of materials as well as fabrication methods for these devices have emerged. Here, we describe the rapid prototyping of microfluidic devices, using micromilling and vapour-assisted thermal bonding of polymethyl methacrylate (PMMA), to create a spheroid-on-a-chip culture system. Surface roughness of the micromilled structures was assessed using scanning electron microscopy (SEM) and atomic force microscopy (AFM), showing that the fabrication procedure can impact the surface quality of micromilled substrates with milling tracks that can be readily observed in micromilled channels. A roughness of approximately 153 nm was created. Chloroform vapour-assisted bonding was used for simultaneous surface smoothing and bonding. A 30-s treatment with chloroform-vapour was able to reduce the surface roughness and smooth it to approximately 39 nm roughness. Subsequent bonding of multilayer PMMA-based microfluidic chips created a durable assembly, as shown by tensile testing. MDA-MB-231 breast cancer cells were cultured as multicellular tumour spheroids in the device and their characteristics evaluated using immunofluorescence staining. Spheroids could be successfully maintained for at least three weeks. They consisted of a characteristic hypoxic core, along with expression of the quiescence marker, p27kip1. This core was surrounded by a ring of Ki67-positive, proliferative cells. Overall, the method described represents a versatile approach to generate microfluidic devices compatible with biological applications.
Collapse
Affiliation(s)
- Monieb A M Ahmed
- Pharmaceutical Analysis, Groningen Research Institute of Pharmacy, University of Groningen, Groningen, The Netherlands
| | - Klaudia M Jurczak
- W.J. Kolff Institute for Biomedical Engineering and Materials Science, University Medical Center Groningen, Groningen, The Netherlands
- Department of Surgery, University Medical Center Groningen, Groningen, The Netherlands
| | - N Scott Lynn
- Institute of Physics, Czech Academy of Sciences, Prague, Czech Republic
| | - Jean-Paul S H Mulder
- Pharmaceutical Analysis, Groningen Research Institute of Pharmacy, University of Groningen, Groningen, The Netherlands
| | - Elisabeth M J Verpoorte
- Pharmaceutical Analysis, Groningen Research Institute of Pharmacy, University of Groningen, Groningen, The Netherlands
| | - Anika Nagelkerke
- Pharmaceutical Analysis, Groningen Research Institute of Pharmacy, University of Groningen, Groningen, The Netherlands.
| |
Collapse
|
14
|
Jambhulkar S, Ravichandran D, Zhu Y, Thippanna V, Ramanathan A, Patil D, Fonseca N, Thummalapalli SV, Sundaravadivelan B, Sun A, Xu W, Yang S, Kannan AM, Golan Y, Lancaster J, Chen L, Joyee EB, Song K. Nanoparticle Assembly: From Self-Organization to Controlled Micropatterning for Enhanced Functionalities. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2306394. [PMID: 37775949 DOI: 10.1002/smll.202306394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 09/02/2023] [Indexed: 10/01/2023]
Abstract
Nanoparticles form long-range micropatterns via self-assembly or directed self-assembly with superior mechanical, electrical, optical, magnetic, chemical, and other functional properties for broad applications, such as structural supports, thermal exchangers, optoelectronics, microelectronics, and robotics. The precisely defined particle assembly at the nanoscale with simultaneously scalable patterning at the microscale is indispensable for enabling functionality and improving the performance of devices. This article provides a comprehensive review of nanoparticle assembly formed primarily via the balance of forces at the nanoscale (e.g., van der Waals, colloidal, capillary, convection, and chemical forces) and nanoparticle-template interactions (e.g., physical confinement, chemical functionalization, additive layer-upon-layer). The review commences with a general overview of nanoparticle self-assembly, with the state-of-the-art literature review and motivation. It subsequently reviews the recent progress in nanoparticle assembly without the presence of surface templates. Manufacturing techniques for surface template fabrication and their influence on nanoparticle assembly efficiency and effectiveness are then explored. The primary focus is the spatial organization and orientational preference of nanoparticles on non-templated and pre-templated surfaces in a controlled manner. Moreover, the article discusses broad applications of micropatterned surfaces, encompassing various fields. Finally, the review concludes with a summary of manufacturing methods, their limitations, and future trends in nanoparticle assembly.
Collapse
Affiliation(s)
- Sayli Jambhulkar
- Systems Engineering, School of Manufacturing Systems and Networks (MSN), Ira A. Fulton Schools of Engineering, Arizona State University (ASU), Mesa, AZ, 85212, USA
| | - Dharneedar Ravichandran
- Manufacturing Engineering, School of Manufacturing Systems and Networks (MSN), Ira A. Fulton Schools of Engineering, Arizona State University (ASU), Mesa, AZ, 85212, USA
| | - Yuxiang Zhu
- Manufacturing Engineering, School of Manufacturing Systems and Networks (MSN), Ira A. Fulton Schools of Engineering, Arizona State University (ASU), Mesa, AZ, 85212, USA
| | - Varunkumar Thippanna
- Manufacturing Engineering, School of Manufacturing Systems and Networks (MSN), Ira A. Fulton Schools of Engineering, Arizona State University (ASU), Mesa, AZ, 85212, USA
| | - Arunachalam Ramanathan
- Manufacturing Engineering, School of Manufacturing Systems and Networks (MSN), Ira A. Fulton Schools of Engineering, Arizona State University (ASU), Mesa, AZ, 85212, USA
| | - Dhanush Patil
- Manufacturing Engineering, School of Manufacturing Systems and Networks (MSN), Ira A. Fulton Schools of Engineering, Arizona State University (ASU), Mesa, AZ, 85212, USA
| | - Nathan Fonseca
- Manufacturing Engineering, School of Manufacturing Systems and Networks (MSN), Ira A. Fulton Schools of Engineering, Arizona State University (ASU), Mesa, AZ, 85212, USA
| | - Sri Vaishnavi Thummalapalli
- Manufacturing Engineering, School of Manufacturing Systems and Networks (MSN), Ira A. Fulton Schools of Engineering, Arizona State University (ASU), Mesa, AZ, 85212, USA
| | - Barath Sundaravadivelan
- Department of Mechanical and Aerospace Engineering, School for Engineering of Matter, Transport & Energy, Ira A. Fulton Schools of Engineering, Arizona State University (ASU), Tempe, AZ, 85281, USA
| | - Allen Sun
- Department of Chemistry, Stony Brook University, Stony Brook, NY, 11794, USA
| | - Weiheng Xu
- Systems Engineering, School of Manufacturing Systems and Networks (MSN), Ira A. Fulton Schools of Engineering, Arizona State University (ASU), Mesa, AZ, 85212, USA
| | - Sui Yang
- Materials Science and Engineering, School for Engineering of Matter, Transport and Energy (SEMTE), Arizona State University (ASU), Tempe, AZ, 85287, USA
| | - Arunachala Mada Kannan
- The Polytechnic School (TPS), Ira A. Fulton Schools of Engineering, Arizona State University (ASU), Mesa, AZ, 85212, USA
| | - Yuval Golan
- Department of Materials Engineering and the Ilse Katz Institute for Nanoscale Science and Technology, Ben-Gurion University of the Negev, Beer Sheva, 8410501, Israel
| | - Jessica Lancaster
- Department of Immunology, Mayo Clinic Arizona, 13400 E Shea Blvd, Scottsdale, AZ, 85259, USA
| | - Lei Chen
- Mechanical Engineering, University of Michigan-Dearborn, 4901 Evergreen Rd, Dearborn, MI, 48128, USA
| | - Erina B Joyee
- Mechanical Engineering and Engineering Science, University of North Carolina, Charlotte, 9201 University City Blvd, Charlotte, NC, 28223, USA
| | - Kenan Song
- School of Environmental, Civil, Agricultural, and Mechanical Engineering (ECAM), College of Engineering, University of Georgia (UGA), Athens, GA, 30602, USA
- Adjunct Professor of School of Manufacturing Systems and Networks (MSN), Ira A. Fulton Schools of Engineering, Arizona State University (ASU), Mesa, AZ, 85212, USA
| |
Collapse
|
15
|
Paul AA, Aladese AD, Marks RS. Additive Manufacturing Applications in Biosensors Technologies. BIOSENSORS 2024; 14:60. [PMID: 38391979 PMCID: PMC10887193 DOI: 10.3390/bios14020060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 01/18/2024] [Accepted: 01/20/2024] [Indexed: 02/24/2024]
Abstract
Three-dimensional (3D) printing technology, also known as additive manufacturing (AM), has emerged as an attractive state-of-the-art tool for precisely fabricating functional materials with complex geometries, championing several advancements in tissue engineering, regenerative medicine, and therapeutics. However, this technology has an untapped potential for biotechnological applications, such as sensor and biosensor development. By exploring these avenues, the scope of 3D printing technology can be expanded and pave the way for groundbreaking innovations in the biotechnology field. Indeed, new printing materials and printers would offer new possibilities for seamlessly incorporating biological functionalities within the growing 3D scaffolds. Herein, we review the additive manufacturing applications in biosensor technologies with a particular emphasis on extrusion-based 3D printing modalities. We highlight the application of natural, synthetic, and composite biomaterials as 3D-printed soft hydrogels. Emphasis is placed on the approach by which the sensing molecules are introduced during the fabrication process. Finally, future perspectives are provided.
Collapse
Affiliation(s)
- Abraham Abbey Paul
- Avram and Stella Goldstein-Goren Department of Biotechnology Engineering, Ben-Gurion University of the Negev, Be’er Sheva 84105, Israel;
| | - Adedamola D. Aladese
- Department of Physics and Material Science, University of Memphis, Memphis, TN 38152, USA;
| | - Robert S. Marks
- Avram and Stella Goldstein-Goren Department of Biotechnology Engineering, Ben-Gurion University of the Negev, Be’er Sheva 84105, Israel;
- Ilse Katz Centre for Nanoscale Science and Technology, Ben-Gurion University of the Negev, Be’er Sheva 84105, Israel
| |
Collapse
|
16
|
Nottelet B, Buwalda S, van Nostrum CF, Zhao X, Deng C, Zhong Z, Cheah E, Svirskis D, Trayford C, van Rijt S, Ménard-Moyon C, Kumar R, Kehr NS, de Barros NR, Khademhosseini A, Kim HJ, Vermonden T. Roadmap on multifunctional materials for drug delivery. JPHYS MATERIALS 2024; 7:012502. [PMID: 38144214 PMCID: PMC10734278 DOI: 10.1088/2515-7639/ad05e8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 09/29/2023] [Accepted: 10/23/2023] [Indexed: 12/26/2023]
Abstract
This Roadmap on drug delivery aims to cover some of the most recent advances in the field of materials for drug delivery systems (DDSs) and emphasizes the role that multifunctional materials play in advancing the performance of modern DDSs in the context of the most current challenges presented. The Roadmap is comprised of multiple sections, each of which introduces the status of the field, the current and future challenges faced, and a perspective of the required advances necessary for biomaterial science to tackle these challenges. It is our hope that this collective vision will contribute to the initiation of conversation and collaboration across all areas of multifunctional materials for DDSs. We stress that this article is not meant to be a fully comprehensive review but rather an up-to-date snapshot of different areas of research, with a minimal number of references that focus upon the very latest research developments.
Collapse
Affiliation(s)
- Benjamin Nottelet
- IBMM, Univ Montpellier, CNRS, ENSCM, Montpellier, France
- Department of Pharmacy, Nîmes University Hospital, Univ Montpellier, 30900 Nimes, France
| | - Sytze Buwalda
- MINES Paris, PSL University, Center for Materials Forming, 06904 Sophia Antipolis, France
| | | | - Xiaofei Zhao
- Biomedical Polymers Laboratory, College of Chemistry, Chemical Engineering and Materials Science, and State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou 215123, People’s Republic of China
| | - Chao Deng
- Biomedical Polymers Laboratory, College of Chemistry, Chemical Engineering and Materials Science, and State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou 215123, People’s Republic of China
| | - Zhiyuan Zhong
- Biomedical Polymers Laboratory, College of Chemistry, Chemical Engineering and Materials Science, and State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou 215123, People’s Republic of China
| | - Ernest Cheah
- School of Pharmacy, University of Auckland, 85 Park Road, Grafton, Auckland 1023, New Zealand
| | - Darren Svirskis
- School of Pharmacy, University of Auckland, 85 Park Road, Grafton, Auckland 1023, New Zealand
| | - Chloe Trayford
- Department of Instructive Biomaterials Engineering, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, PO Box 616, 6200 MD Maastricht, The Netherlands
| | - Sabine van Rijt
- Department of Instructive Biomaterials Engineering, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, PO Box 616, 6200 MD Maastricht, The Netherlands
| | - Cécilia Ménard-Moyon
- CNRS, Immunology, Immunopathology and Therapeutic Chemistry, UPR 3572, 67000 Strasbourg, France
| | - Ravi Kumar
- Physikalisches Institute and Center of Soft Nanoscience, University of Münster, Münster, Germany
| | - Nermin Seda Kehr
- Physikalisches Institute and Center of Soft Nanoscience, University of Münster, Münster, Germany
- Department of Chemistry, Izmir Institute of Technology, Izmir, Turkey
| | - Natan Roberto de Barros
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA 90274, United States of America
| | - Ali Khademhosseini
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA 90274, United States of America
| | - Han-Jun Kim
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA 90274, United States of America
- College of Pharmacy, Korea University, Sejong 30019, Republic of Korea
| | - Tina Vermonden
- Utrecht Institute for Pharmaceutical Sciences, Utrecht,The Netherlands
| |
Collapse
|
17
|
Borenstein JT, Cummins G, Dutta A, Hamad E, Hughes MP, Jiang X, Lee HH, Lei KF, Tang XS, Zheng Y, Chen J. Bionanotechnology and bioMEMS (BNM): state-of-the-art applications, opportunities, and challenges. LAB ON A CHIP 2023; 23:4928-4949. [PMID: 37916434 DOI: 10.1039/d3lc00296a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2023]
Abstract
The development of micro- and nanotechnology for biomedical applications has defined the cutting edge of medical technology for over three decades, as advancements in fabrication technology developed originally in the semiconductor industry have been applied to solving ever-more complex problems in medicine and biology. These technologies are ideally suited to interfacing with life sciences, since they are on the scale lengths as cells (microns) and biomacromolecules (nanometers). In this paper, we review the state of the art in bionanotechnology and bioMEMS (collectively BNM), including developments and challenges in the areas of BNM, such as microfluidic organ-on-chip devices, oral drug delivery, emerging technologies for managing infectious diseases, 3D printed microfluidic devices, AC electrokinetics, flexible MEMS devices, implantable microdevices, paper-based microfluidic platforms for cellular analysis, and wearable sensors for point-of-care testing.
Collapse
Affiliation(s)
| | - Gerard Cummins
- School of Engineering, University of Birmingham, Edgbaston, B15 2TT, UK.
| | - Abhishek Dutta
- Department of Electrical & Computer Engineering, University of Connecticut, USA.
| | - Eyad Hamad
- Biomedical Engineering Department, School of Applied Medical Sciences, German Jordanian University, Amman, Jordan.
| | - Michael Pycraft Hughes
- Department of Biomedical Engineering, Khalifa University, Abu Dhabi, United Arab Emirates.
| | - Xingyu Jiang
- Department of Biomedical Engineering, Southern University of Science and Technology, China.
| | - Hyowon Hugh Lee
- Weldon School of Biomedical Engineering, Center for Implantable Devices, Purdue University, West Lafayette, IN, USA.
| | | | | | | | - Jie Chen
- Department of Electrical and Computer Engineering, University of Alberta, Edmonton, AB T6G 2R3, Canada.
| |
Collapse
|
18
|
Poskus MD, Wang T, Deng Y, Borcherding S, Atkinson J, Zervantonakis IK. Fabrication of 3D-printed molds for polydimethylsiloxane-based microfluidic devices using a liquid crystal display-based vat photopolymerization process: printing quality, drug response and 3D invasion cell culture assays. MICROSYSTEMS & NANOENGINEERING 2023; 9:140. [PMID: 37954040 PMCID: PMC10632127 DOI: 10.1038/s41378-023-00607-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 08/10/2023] [Accepted: 09/11/2023] [Indexed: 11/14/2023]
Abstract
Microfluidic platforms enable more precise control of biological stimuli and environment dimensionality than conventional macroscale cell-based assays; however, long fabrication times and high-cost specialized equipment limit the widespread adoption of microfluidic technologies. Recent improvements in vat photopolymerization three-dimensional (3D) printing technologies such as liquid crystal display (LCD) printing offer rapid prototyping and a cost-effective solution to microfluidic fabrication. Limited information is available about how 3D printing parameters and resin cytocompatibility impact the performance of 3D-printed molds for the fabrication of polydimethylsiloxane (PDMS)-based microfluidic platforms for cellular studies. Using a low-cost, commercially available LCD-based 3D printer, we assessed the cytocompatibility of several resins, optimized fabrication parameters, and characterized the minimum feature size. We evaluated the response to both cytotoxic chemotherapy and targeted kinase therapies in microfluidic devices fabricated using our 3D-printed molds and demonstrated the establishment of flow-based concentration gradients. Furthermore, we monitored real-time cancer cell and fibroblast migration in a 3D matrix environment that was dependent on environmental signals. These results demonstrate how vat photopolymerization LCD-based fabrication can accelerate the prototyping of microfluidic platforms with increased accessibility and resolution for PDMS-based cell culture assays.
Collapse
Affiliation(s)
- Matthew D. Poskus
- Department of Bioengineering, UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA USA
| | - Tuo Wang
- Department of Bioengineering, UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA USA
| | - Yuxuan Deng
- Department of Bioengineering, UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA USA
| | - Sydney Borcherding
- Department of Bioengineering, UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA USA
| | - Jake Atkinson
- Department of Bioengineering, UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA USA
| | - Ioannis K. Zervantonakis
- Department of Bioengineering, UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA USA
- McGowan Institute of Regenerative Medicine, Pittsburgh, PA USA
| |
Collapse
|
19
|
Moetazedian A, Candeo A, Liu S, Hughes A, Nasrollahi V, Saadat M, Bassi A, Grover LM, Cox LR, Poologasundarampillai G. Versatile Microfluidics for Biofabrication Platforms Enabled by an Agile and Inexpensive Fabrication Pipeline. Adv Healthc Mater 2023; 12:e2300636. [PMID: 37186512 PMCID: PMC11468497 DOI: 10.1002/adhm.202300636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Indexed: 05/17/2023]
Abstract
Microfluidics have transformed diagnosis and screening in regenerative medicine. Recently, they are showing much promise in biofabrication. However, their adoption is inhibited by costly and drawn-out lithographic processes thus limiting progress. Here, multi-material fibers with complex core-shell geometries with sizes matching those of human arteries and arterioles are fabricated employing versatile microfluidic devices produced using an agile and inexpensive manufacturing pipeline. The pipeline consists of material extrusion additive manufacturing with an innovative continuously varied extrusion (CONVEX) approach to produce microfluidics with complex seamless geometries including, novel variable-width zigzag (V-zigzag) mixers with channel widths ranging from 100-400 µm and hydrodynamic flow-focusing components. The microfluidic systems facilitated rapid mixing of fluids by decelerating the fluids at specific zones to allow for increased diffusion across the interfaces. Better mixing even at high flow rates (100-1000 µL min-1 ) whilst avoiding turbulence led to high cell cytocompatibility (>86%) even when 100 µm nozzles are used. The presented 3D-printed microfluidic system is versatile, simple and efficient, offering a great potential to significantly advance the microfluidic platform in regenerative medicine.
Collapse
Affiliation(s)
- Amirpasha Moetazedian
- School of DentistryInstitute of Clinical SciencesUniversity of BirminghamEdgbastonBirminghamB5 7EGUK
- EPSRC Future Metrology HubSchool of Computing and EngineeringUniversity of HuddersfieldHuddersfieldHD1 3DUK
| | - Alessia Candeo
- Dipartimento di FisicaPolitecnico di MilanoPiazza Leonardo da Vinci 32Milano20133Italy
| | - Siyun Liu
- School of DentistryInstitute of Clinical SciencesUniversity of BirminghamEdgbastonBirminghamB5 7EGUK
| | - Arran Hughes
- Department of Mechanical EngineeringUniversity of BirminghamEdgbastonBirminghamB15 2TTUK
| | - Vahid Nasrollahi
- Department of Mechanical EngineeringUniversity of BirminghamEdgbastonBirminghamB15 2TTUK
| | - Mozafar Saadat
- Department of Mechanical EngineeringUniversity of BirminghamEdgbastonBirminghamB15 2TTUK
| | - Andrea Bassi
- Dipartimento di FisicaPolitecnico di MilanoPiazza Leonardo da Vinci 32Milano20133Italy
| | - Liam M. Grover
- School of Chemical EngineeringUniversity of BirminghamEdgbastonBirminghamB15 2TTUK
| | - Liam R. Cox
- School of ChemistryUniversity of BirminghamEdgbastonBirminghamB15 2TTUK
| | | |
Collapse
|
20
|
Orabi M, Lo JF. Emerging Advances in Microfluidic Hydrogel Droplets for Tissue Engineering and STEM Cell Mechanobiology. Gels 2023; 9:790. [PMID: 37888363 PMCID: PMC10606214 DOI: 10.3390/gels9100790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 09/26/2023] [Accepted: 09/27/2023] [Indexed: 10/28/2023] Open
Abstract
Hydrogel droplets are biodegradable and biocompatible materials with promising applications in tissue engineering, cell encapsulation, and clinical treatments. They represent a well-controlled microstructure to bridge the spatial divide between two-dimensional cell cultures and three-dimensional tissues, toward the recreation of entire organs. The applications of hydrogel droplets in regenerative medicine require a thorough understanding of microfluidic techniques, the biocompatibility of hydrogel materials, and droplet production and manipulation mechanisms. Although hydrogel droplets were well studied, several emerging advances promise to extend current applications to tissue engineering and beyond. Hydrogel droplets can be designed with high surface-to-volume ratios and a variety of matrix microstructures. Microfluidics provides precise control of the flow patterns required for droplet generation, leading to tight distributions of particle size, shape, matrix, and mechanical properties in the resultant microparticles. This review focuses on recent advances in microfluidic hydrogel droplet generation. First, the theoretical principles of microfluidics, materials used in fabrication, and new 3D fabrication techniques were discussed. Then, the hydrogels used in droplet generation and their cell and tissue engineering applications were reviewed. Finally, droplet generation mechanisms were addressed, such as droplet production, droplet manipulation, and surfactants used to prevent coalescence. Lastly, we propose that microfluidic hydrogel droplets can enable novel shear-related tissue engineering and regeneration studies.
Collapse
Affiliation(s)
| | - Joe F. Lo
- Department of Mechanical Engineering, University of Michigan, 4901 Evergreen Road, Dearborn, MI 48128, USA;
| |
Collapse
|
21
|
Boaks M, Roper C, Viglione M, Hooper K, Woolley AT, Christensen KA, Nordin GP. Biocompatible High-Resolution 3D-Printed Microfluidic Devices: Integrated Cell Chemotaxis Demonstration. MICROMACHINES 2023; 14:1589. [PMID: 37630125 PMCID: PMC10456398 DOI: 10.3390/mi14081589] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Revised: 08/09/2023] [Accepted: 08/09/2023] [Indexed: 08/27/2023]
Abstract
We demonstrate a method to effectively 3D print microfluidic devices with high-resolution features using a biocompatible resin based on avobenzone as the UV absorber. Our method relies on spectrally shaping the 3D printer source spectrum so that it is fully overlapped by avobenzone's absorption spectrum. Complete overlap is essential to effectively limit the optical penetration depth, which is required to achieve high out-of-plane resolution. We demonstrate the high resolution in practice by 3D printing 15 μm square pillars in a microfluidic chamber, where the pillars are separated by 7.7 μm and are printed with 5 μm layers. Furthermore, we show reliable membrane valves and pumps using the biocompatible resin. Valves are tested to 1,000,000 actuations with no observable degradation in performance. Finally, we create a concentration gradient generation (CG) component and utilize it in two device designs for cell chemotaxis studies. The first design relies on an external dual syringe pump to generate source and sink flows to supply the CG channel, while the second is a complete integrated device incorporating on-chip pumps, valves, and reservoirs. Both device types are seeded with adherent cells that are subjected to a chemoattractant CG, and both show clear evidence of chemotactic cellular migration. Moreover, the integrated device demonstrates cellular migration comparable to the external syringe pump device. This demonstration illustrates the effectiveness of our integrated chemotactic assay approach and high-resolution biocompatible resin 3D printing fabrication process. In addition, our 3D printing process has been tuned for rapid fabrication, as printing times for the two device designs are, respectively, 8 and 15 min.
Collapse
Affiliation(s)
- Mawla Boaks
- Department of Electrical and Computer Engineering, Brigham Young University, Provo, UT 84602, USA
| | - Connor Roper
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT 84602, USA
| | - Matthew Viglione
- Department of Electrical and Computer Engineering, Brigham Young University, Provo, UT 84602, USA
| | - Kent Hooper
- Department of Mechanical Engineering, Brigham Young University, Provo, UT 84602, USA
| | - Adam T. Woolley
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT 84602, USA
| | - Kenneth A. Christensen
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT 84602, USA
| | - Gregory P. Nordin
- Department of Electrical and Computer Engineering, Brigham Young University, Provo, UT 84602, USA
| |
Collapse
|
22
|
Milton LA, Viglione MS, Ong LJY, Nordin GP, Toh YC. Vat photopolymerization 3D printed microfluidic devices for organ-on-a-chip applications. LAB ON A CHIP 2023; 23:3537-3560. [PMID: 37476860 PMCID: PMC10448871 DOI: 10.1039/d3lc00094j] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/22/2023]
Abstract
Organs-on-a-chip, or OoCs, are microfluidic tissue culture devices with micro-scaled architectures that repeatedly achieve biomimicry of biological phenomena. They are well positioned to become the primary pre-clinical testing modality as they possess high translational value. Current methods of fabrication have facilitated the development of many custom OoCs that have generated promising results. However, the reliance on microfabrication and soft lithographic fabrication techniques has limited their prototyping turnover rate and scalability. Additive manufacturing, known commonly as 3D printing, shows promise to expedite this prototyping process, while also making fabrication easier and more reproducible. We briefly introduce common 3D printing modalities before identifying two sub-types of vat photopolymerization - stereolithography (SLA) and digital light processing (DLP) - as the most advantageous fabrication methods for the future of OoC development. We then outline the motivations for shifting to 3D printing, the requirements for 3D printed OoCs to be competitive with the current state of the art, and several considerations for achieving successful 3D printed OoC devices touching on design and fabrication techniques, including a survey of commercial and custom 3D printers and resins. In all, we aim to form a guide for the end-user to facilitate the in-house generation of 3D printed OoCs, along with the future translation of these important devices.
Collapse
Affiliation(s)
- Laura A Milton
- School of Mechanical, Medical and Process Engineering, Queensland University of Technology, Brisbane, Australia.
- Centre for Biomedical Technologies, Queensland University of Technology, Brisbane, Australia
| | - Matthew S Viglione
- Department of Electrical and Computer Engineering, Brigham Young University, Provo, Utah, USA.
| | - Louis Jun Ye Ong
- School of Mechanical, Medical and Process Engineering, Queensland University of Technology, Brisbane, Australia.
- Centre for Biomedical Technologies, Queensland University of Technology, Brisbane, Australia
- Max Planck Queensland Centre (MPQC) for the Materials Science of Extracellular Matrices, Queensland University of Technology, Brisbane, Australia
| | - Gregory P Nordin
- Department of Electrical and Computer Engineering, Brigham Young University, Provo, Utah, USA.
| | - Yi-Chin Toh
- School of Mechanical, Medical and Process Engineering, Queensland University of Technology, Brisbane, Australia.
- Centre for Biomedical Technologies, Queensland University of Technology, Brisbane, Australia
- Max Planck Queensland Centre (MPQC) for the Materials Science of Extracellular Matrices, Queensland University of Technology, Brisbane, Australia
- Centre for Microbiome Research, Queensland University of Technology, Brisbane, Australia
| |
Collapse
|
23
|
Chu CH, Burentugs E, Lee D, Owens JM, Liu R, Frazier AB, Sarioglu AF. Centrifugation-Assisted Three-Dimensional Printing of Devices Embedded with Fully Enclosed Microchannels. 3D PRINTING AND ADDITIVE MANUFACTURING 2023; 10:609-618. [PMID: 37609578 PMCID: PMC10440665 DOI: 10.1089/3dp.2021.0133] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/24/2023]
Abstract
The challenges in reliably removing the sacrificial material from fully enclosed microfluidic channels hinder the use of three-dimensional (3D) printing to create microfluidic devices with intricate geometries. With advances in printer resolution, the etching of sacrificial materials from increasingly smaller channels is poised to be a bottleneck using the existing techniques. In this study, we introduce a microfabrication approach that utilizes centrifugation to effortlessly and efficiently remove the sacrificial materials from 3D-printed microfluidic devices with densely packed microfeatures. We characterize the process by measuring the etch rate under different centrifugal forces and developed a theoretical model to estimate process parameters for a given geometry. The effect of the device layout on the centrifugal etching process is also investigated. We demonstrate the applicability of our approach on devices fabricated using inkjet 3D printing and stereolithography. Finally, the advantages of the introduced approach over commonly used injection-based etching of sacrificial material are experimentally demonstrated in direct comparisons. A robust method to postprocess additively manufactured geometries composed of intricate microfluidic channels can help utilize both the large printing volume and high spatial resolution afforded by 3D printing in creating a variety of devices ranging from scaffolds to large-scale microfluidic assays.
Collapse
Affiliation(s)
- Chia-Heng Chu
- School of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - Enerelt Burentugs
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - Dohwan Lee
- School of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - Jacob M. Owens
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - Ruxiu Liu
- School of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - Albert B. Frazier
- School of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - A. Fatih Sarioglu
- School of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, Georgia, USA
- Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia, USA
- Institute for Electronics and Nanotechnology, Georgia Institute of Technology, Atlanta, Georgia, USA
| |
Collapse
|
24
|
Vedhanayagam A, Golfetto M, Ram JL, Basu AS. Rapid Micromolding of Sub-100 µm Microfluidic Channels Using an 8K Stereolithographic Resin 3D Printer. MICROMACHINES 2023; 14:1519. [PMID: 37630056 PMCID: PMC10456470 DOI: 10.3390/mi14081519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 06/30/2023] [Accepted: 07/08/2023] [Indexed: 08/27/2023]
Abstract
Engineering microfluidic devices relies on the ability to manufacture sub-100 micrometer fluidic channels. Conventional lithographic methods provide high resolution but require costly exposure tools and outsourcing of masks, which extends the turnaround time to several days. The desire to accelerate design/test cycles has motivated the rapid prototyping of microfluidic channels; however, many of these methods (e.g., laser cutters, craft cutters, fused deposition modeling) have feature sizes of several hundred microns or more. In this paper, we describe a 1-day process for fabricating sub-100 µm channels, leveraging a low-cost (USD 600) 8K digital light projection (DLP) 3D resin printer. The soft lithography process includes mold printing, post-treatment, and casting polydimethylsiloxane (PDMS) elastomer. The process can produce microchannels with 44 µm lateral resolution and 25 µm height, posts as small as 400 µm, aspect ratio up to 7, structures with varying z-height, integrated reservoirs for fluidic connections, and a built-in tray for casting. We discuss strategies to obtain reliable structures, prevent mold warpage, facilitate curing and removal of PDMS during molding, and recycle the solvents used in the process. To our knowledge, this is the first low-cost 3D printer that prints extruded structures that can mold sub-100 µm channels, providing a balance between resolution, turnaround time, and cost (~USD 5 for a 2 × 5 × 0.5 cm3 chip) that will be attractive for many microfluidics labs.
Collapse
Affiliation(s)
- Arpith Vedhanayagam
- Electrical and Computer Engineering, Wayne State University, Detroit, MI 48202, USA
| | - Michael Golfetto
- Electrical and Computer Engineering, Wayne State University, Detroit, MI 48202, USA
| | - Jeffrey L. Ram
- Department of Physiology, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | - Amar S. Basu
- Electrical and Computer Engineering, Wayne State University, Detroit, MI 48202, USA
| |
Collapse
|
25
|
Hinnen H, Viglione M, Munro TR, Woolley AT, Nordin GP. 3D-Printed Microfluidic One-Way Valves and Pumps. MICROMACHINES 2023; 14:1286. [PMID: 37512597 PMCID: PMC10384158 DOI: 10.3390/mi14071286] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Revised: 06/17/2023] [Accepted: 06/20/2023] [Indexed: 07/30/2023]
Abstract
New microfluidic lab-on-a-chip capabilities are enabled by broadening the toolkit of devices that can be created using microfabrication processes. For example, complex geometries made possible by 3D printing can be used to approach microfluidic design and application in new or enhanced ways. In this paper, we demonstrate three distinct designs for microfluidic one-way (check) valves that can be fabricated using digital light processing stereolithography (DLP-SLA) with a poly(ethylene glycol) diacrylate (PEGDA) resin, each with an internal volume of 5-10 nL. By mapping flow rate to pressure in both the forward and reverse directions, we compare the different designs and their operating characteristics. We also demonstrate pumps for each one-way valve design comprised of two one-way valves with a membrane valve displacement chamber between them. An advantage of such pumps is that they require a single pneumatic input instead of three as for conventional 3D-printed pumps. We also characterize the achievable flow rate as a function of the pneumatic control signal period. We show that such pumps can be used to create a single-stage diffusion mixer with significantly reduced pneumatic drive complexity.
Collapse
Affiliation(s)
- Hunter Hinnen
- Department of Electrical & Computer Engineering, Brigham Young University, Provo, UT 84602, USA
| | - Matthew Viglione
- Department of Electrical & Computer Engineering, Brigham Young University, Provo, UT 84602, USA
| | - Troy R. Munro
- Department of Mechanical Engineering, Brigham Young University, Provo, UT 84602, USA
| | - Adam T. Woolley
- Department of Chemistry & Biochemistry, Brigham Young University, Provo, UT 84602, USA
| | - Gregory P. Nordin
- Department of Electrical & Computer Engineering, Brigham Young University, Provo, UT 84602, USA
| |
Collapse
|
26
|
Gao C, Wang F, Hu X, Zhang M. Research on the Analysis and Application of Polymer Materials in Contemporary Sculpture Art Creation. Polymers (Basel) 2023; 15:2727. [PMID: 37376373 DOI: 10.3390/polym15122727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 06/10/2023] [Accepted: 06/16/2023] [Indexed: 06/29/2023] Open
Abstract
The application of polymer materials in sculpture art creation is extensive and plays a significant role in the development of sculpture art. This article aims to systematically explore the application of polymer materials in contemporary sculpture art creation. The research comprehensively applies various techniques such as literature research, data comparison, and case analysis to explore in detail the ways, methods, and paths of polymer materials employed in the shaping, decoration, and protection of sculptural artworks. First, the article analyzes three methods of shaping sculpture artworks with polymer materials (casting, printing, and constructing). Secondly, it explores two techniques of using polymer materials to adorn sculpture artworks (coloring and imitating texture); then it discusses the significant approach of using polymer materials to protect sculptural artworks (protective spray film). Finally, the research identifies the merits and demerits of using polymer materials in contemporary sculpture art creation. The findings of this study are expected to enrich the effective application of polymer materials in contemporary sculpture art creation and offer novel techniques and ideas for contemporary sculpture art creators.
Collapse
Affiliation(s)
- Chao Gao
- School of Design, Jiangnan University, Wuxi 214000, China
| | - Feng Wang
- School of Design, Jiangnan University, Wuxi 214000, China
| | - Xiaobing Hu
- Fine Art School, Anqing Normal University, Anqing 246001, China
| | - Ming Zhang
- School of Design and Art, Jingdezhen Ceramic University, Jingdezhen 333403, China
| |
Collapse
|
27
|
Niu W, Yang M, Liu Y, Gong Y, Xu Y. Cross Algorithm of Additive Manufacturing Micromixers. 3D PRINTING AND ADDITIVE MANUFACTURING 2023; 10:490-499. [PMID: 37346180 PMCID: PMC10280174 DOI: 10.1089/3dp.2021.0245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/23/2023]
Abstract
Additive manufacturing (AM) that is currently being used to process micromixers has many issues regarding the structural integrity of the micromixers. To solve these issues, in this article, we propose a cross-sectional contour extraction algorithm based on computed tomography (CT) scan data to nondestructively detect the size deviation of micromixers generated by AM. Herein, we take a square wave micromixer and a three-dimensional (3D) circular micromixer as examples to characterize the size deviation. We reconstruct the surface model of the micromixer from CT scan data, which is referred to as the reconstructed model, and extract the central axis of the micromixer reconstructed model. Subsequently, a dividing plane perpendicular to the central axis is established, which is then used to cut the reconstructed model to obtain the cross-sectional contour of the channel. Finally, size inspection is conducted on the extracted cross-sectional contour. The standard deviations of the channel width and height for the square wave micromixer are 0.0271 and 0.0175, respectively, and those for the 3D circular micromixer are 0.0122 and 0.0144, respectively. Through uncertainty analysis, the errors calculated based on the design size are -1.70%, +0.48%, +0.23%, -1.86%, -5.23%, and -0.90%, respectively, which shows that this method can meet the needs of measurement.
Collapse
Affiliation(s)
- Wenjie Niu
- School of Mechanical and Electronic Engineering, China University of Petroleum (Huadong), Qingdao, People's Republic of China
| | - Mengxue Yang
- School of Mechanical and Electronic Engineering, China University of Petroleum (Huadong), Qingdao, People's Republic of China
| | - Yu Liu
- School of Mechanical and Electronic Engineering, China University of Petroleum (Huadong), Qingdao, People's Republic of China
| | - Yu Gong
- School of Mechanical and Electronic Engineering, China University of Petroleum (Huadong), Qingdao, People's Republic of China
| | - Ying Xu
- Tianjin Sanying Precision Instruments Co., Ltd., Tianjin, People's Republic of China
| |
Collapse
|
28
|
Amini A, Guijt RM, Themelis T, De Vos J, Eeltink S. Recent developments in digital light processing 3D-printing techniques for microfluidic analytical devices. J Chromatogr A 2023; 1692:463842. [PMID: 36745962 DOI: 10.1016/j.chroma.2023.463842] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 01/19/2023] [Accepted: 01/30/2023] [Indexed: 02/04/2023]
Abstract
Digital light processing (DLP) 3D printing is rapidly advancing and has emerged as a powerful additive manufacturing approach to fabricate analytical microdevices. DLP 3D-printing utilizes a digital micromirror device to direct the projected light and photopolymerize a liquid resin, in a layer-by-layer approach. Advances in vat and lift design, projector technology, and resin composition, allow accurate fabrication of microchannel structures as small as 18 × 20 µm. This review describes the latest advances in DLP 3D-printing technology with respect to instrument set-up and resin formulation and highlights key efforts to fabricate microdevices targeting emerging (bio-)analytical chemistry applications, including colorimetric assays, extraction, and separation.
Collapse
Affiliation(s)
- Ali Amini
- Department of Chemical Engineering, Vrije Universiteit Brussel (VUB), Pleinlaan 2, Brussels B-1050, Belgium
| | - Rosanne M Guijt
- Centre for Regional and Rural Futures, Deakin University, Geelong, Australia
| | - Thomas Themelis
- Department of Chemical Engineering, Vrije Universiteit Brussel (VUB), Pleinlaan 2, Brussels B-1050, Belgium
| | - Jelle De Vos
- Department of Chemical Engineering, Vrije Universiteit Brussel (VUB), Pleinlaan 2, Brussels B-1050, Belgium
| | - Sebastiaan Eeltink
- Department of Chemical Engineering, Vrije Universiteit Brussel (VUB), Pleinlaan 2, Brussels B-1050, Belgium.
| |
Collapse
|
29
|
Barzallo D, Palacio E, March J, Ferrer L. 3D printed device coated with solid-phase extraction resin for the on-site extraction of seven sulfonamides from environmental water samples preceding HPLC-DAD analysis. Microchem J 2023. [DOI: 10.1016/j.microc.2023.108609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/11/2023]
|
30
|
Mahapatra B, Bandopadhyay A. Experimental Investigations on Geometry Modulated Solute Mixing in Viscoelastic Media. Ind Eng Chem Res 2023. [DOI: 10.1021/acs.iecr.2c03663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/04/2023]
Affiliation(s)
- Bimalendu Mahapatra
- Department of Mechanical Engineering, Indian Institute of Technology Kharagpur, Kharagpur 721302, West Bengal, India
| | - Aditya Bandopadhyay
- Department of Mechanical Engineering, Indian Institute of Technology Kharagpur, Kharagpur 721302, West Bengal, India
| |
Collapse
|
31
|
Tsiamis A, Buchoux A, Mahon ST, Walton AJ, Smith S, Clarke DJ, Stokes AA. Design and Fabrication of a Fully-Integrated, Miniaturised Fluidic System for the Analysis of Enzyme Kinetics. MICROMACHINES 2023; 14:537. [PMID: 36984943 PMCID: PMC10051508 DOI: 10.3390/mi14030537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 02/23/2023] [Accepted: 02/24/2023] [Indexed: 06/18/2023]
Abstract
The lab-on-a-chip concept, enabled by microfluidic technology, promises the integration of multiple discrete laboratory techniques into a miniaturised system. Research into microfluidics has generally focused on the development of individual elements of the total system (often with relatively limited functionality), without full consideration for integration into a complete fully optimised and miniaturised system. Typically, the operation of many of the reported lab-on-a-chip devices is dependent on the support of a laboratory framework. In this paper, a demonstrator platform for routine laboratory analysis is designed and built, which fully integrates a number of technologies into a single device with multiple domains such as fluidics, electronics, pneumatics, hydraulics, and photonics. This facilitates the delivery of breakthroughs in research, by incorporating all physical requirements into a single device. To highlight this proposed approach, this demonstrator microsystem acts as a fully integrated biochemical assay reaction system. The resulting design determines enzyme kinetics in an automated process and combines reservoirs, three-dimensional fluidic channels, optical sensing, and electronics in a low-cost, low-power and portable package.
Collapse
Affiliation(s)
- Andreas Tsiamis
- School of Engineering, Institute for Integrated Micro and Nano Systems, The University of Edinburgh, The King’s Buildings, Edinburgh EH9 3FF, UK
| | - Anthony Buchoux
- School of Engineering, Institute for Multiscale Thermofluids, The University of Edinburgh, The King’s Buildings, Edinburgh EH9 3LJ, UK
| | - Stephen T. Mahon
- School of Engineering, Institute for Integrated Micro and Nano Systems, The University of Edinburgh, The King’s Buildings, Edinburgh EH9 3FF, UK
| | - Anthony J. Walton
- School of Engineering, Institute for Integrated Micro and Nano Systems, The University of Edinburgh, The King’s Buildings, Edinburgh EH9 3FF, UK
| | - Stewart Smith
- School of Engineering, Institute for Bio-Engineering, The University of Edinburgh, The King’s Buildings, Edinburgh EH9 3FF, UK
| | - David J. Clarke
- EaStCHEM School of Chemistry, The University of Edinburgh, Edinburgh EH9 3FJ, UK
| | - Adam A. Stokes
- School of Engineering, Institute for Integrated Micro and Nano Systems, The University of Edinburgh, The King’s Buildings, Edinburgh EH9 3FF, UK
| |
Collapse
|
32
|
Liu B, Chen C, Ran B, Shi L, Wei J, Jin J, Zhu Y. Numerical Investigation of Flow Patterns and Mixing Characteristics in a 3D Micromixer with Helical Elements over Wide Reynolds Numbers. ADVANCED THEORY AND SIMULATIONS 2023. [DOI: 10.1002/adts.202200671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
Affiliation(s)
- Bo Liu
- School of Science Harbin Institute of Technology, Shenzhen 518055 Shenzhen China
- School of Mechanical Engineering and Automation Harbin Institute of Technology, Shenzhen 518055 Shenzhen China
- Center for Microflows and Nanoflows Harbin Institute of Technology, Shenzhen 518055 Shenzhen China
| | - Chaozhan Chen
- School of Science Harbin Institute of Technology, Shenzhen 518055 Shenzhen China
- School of Mechanical Engineering and Automation Harbin Institute of Technology, Shenzhen 518055 Shenzhen China
- Center for Microflows and Nanoflows Harbin Institute of Technology, Shenzhen 518055 Shenzhen China
| | - Bin Ran
- School of Science Harbin Institute of Technology, Shenzhen 518055 Shenzhen China
- School of Mechanical Engineering and Automation Harbin Institute of Technology, Shenzhen 518055 Shenzhen China
- Center for Microflows and Nanoflows Harbin Institute of Technology, Shenzhen 518055 Shenzhen China
| | - Liuyong Shi
- Mechanical and Electrical Engineering College Hainan University Haikou 570228 China
| | - Jiashen Wei
- Department of Management Tusstar (Shenzhen) Technology Business Incubator Co., Ltd. Shenzhen 518038 China
| | - Jing Jin
- School of Mechanical Engineering and Automation Harbin Institute of Technology, Shenzhen 518055 Shenzhen China
| | - Yonggang Zhu
- School of Science Harbin Institute of Technology, Shenzhen 518055 Shenzhen China
- School of Mechanical Engineering and Automation Harbin Institute of Technology, Shenzhen 518055 Shenzhen China
- Center for Microflows and Nanoflows Harbin Institute of Technology, Shenzhen 518055 Shenzhen China
| |
Collapse
|
33
|
Liu P, Fu L, Li B, Man M, Ji Y, Kang Q, Sun X, Shen D, Chen L. Dissolved oxygen gradient on three dimensionally printed microfluidic platform for studying its effect on fish at three levels: cell, embryo, and larva. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:21978-21989. [PMID: 36282391 DOI: 10.1007/s11356-022-23688-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 10/13/2022] [Indexed: 06/16/2023]
Abstract
A simple and low-cost dissolved oxygen gradient platform of three dimensionally (3D) printed microfluidic chip was developed for cultivating cells, embryos, and larvae of fish. "Christmas tree" structure channel networks generated a dissolved oxygen gradient out of two fluids fed to the device. Polydimethylsiloxane (PDMS) membrane with high biocompatibility was used as the substrate for cell culture in the 3D-printed microfluidic chip, which made the cell analysis easy. The embryos and larvae of fish could be cultured directly in the chip, and their development can be observed in real time with a microscope. Using zebrafish as a model, we assessed the effect of different dissolved oxygen on its cells, embryos, and larvae. Hypoxia induced production of reactive oxygen species (ROS) in zebrafish cells, embryos, and larvae, eventually leading to cell apoptosis and developmental impairment. Hypoxia also increased nitric oxide content in zebrafish cells, which might be a defensive strategy to overcome the adverse effect of hypoxia in fish cells. This is the first platform that could comprehensively investigate the effects of different dissolved oxygen on fish at the cell, embryo, and larva levels, which has great potential in studying the responses of aquatic organisms under different oxygen concentrations.
Collapse
Affiliation(s)
- Ping Liu
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Normal University, Jinan, 250014, China
- CAS Key Laboratory of Coastal Environment Processes and Ecological Remediation, The Research Center for Coastal Environment Engineering and Technology, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, China
| | - Longwen Fu
- CAS Key Laboratory of Coastal Environment Processes and Ecological Remediation, The Research Center for Coastal Environment Engineering and Technology, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, 266071, China
| | - Bowei Li
- CAS Key Laboratory of Coastal Environment Processes and Ecological Remediation, The Research Center for Coastal Environment Engineering and Technology, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, 266071, China
| | - Mingsan Man
- CAS Key Laboratory of Coastal Environment Processes and Ecological Remediation, The Research Center for Coastal Environment Engineering and Technology, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, China
| | - Yunxia Ji
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Normal University, Jinan, 250014, China
| | - Qi Kang
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Normal University, Jinan, 250014, China
| | - Xiyan Sun
- CAS Key Laboratory of Coastal Environment Processes and Ecological Remediation, The Research Center for Coastal Environment Engineering and Technology, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, 266071, China
| | - Dazhong Shen
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Normal University, Jinan, 250014, China.
| | - Lingxin Chen
- CAS Key Laboratory of Coastal Environment Processes and Ecological Remediation, The Research Center for Coastal Environment Engineering and Technology, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, 266071, China
- School of Environmental & Municipal Engineering, Qingdao University of Technology, Qingdao, 266033, China
| |
Collapse
|
34
|
Crucello J, de Oliveira AM, Sampaio NMFM, Hantao LW. Miniaturized systems for gas chromatography: Developments in sample preparation and instrumentation. J Chromatogr A 2022; 1685:463603. [DOI: 10.1016/j.chroma.2022.463603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 10/07/2022] [Accepted: 10/23/2022] [Indexed: 11/07/2022]
|
35
|
Hsiao K, Lee BJ, Samuelsen T, Lipkowitz G, Kronenfeld JM, Ilyn D, Shih A, Dulay MT, Tate L, Shaqfeh ESG, DeSimone JM. Single-digit-micrometer-resolution continuous liquid interface production. SCIENCE ADVANCES 2022; 8:eabq2846. [PMID: 36383664 PMCID: PMC9668307 DOI: 10.1126/sciadv.abq2846] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 09/28/2022] [Indexed: 05/29/2023]
Abstract
To date, a compromise between resolution and print speed has rendered most high-resolution additive manufacturing technologies unscalable with limited applications. By combining a reduction lens optics system for single-digit-micrometer resolution, an in-line camera system for contrast-based sharpness optimization, and continuous liquid interface production (CLIP) technology for high scalability, we introduce a single-digit-micrometer-resolution CLIP-based 3D printer that can create millimeter-scale 3D prints with single-digit-micrometer-resolution features in just a few minutes. A simulation model is developed in parallel to probe the fundamental governing principles in optics, chemical kinetics, and mass transport in the 3D printing process. A print strategy with tunable parameters informed by the simulation model is adopted to achieve both the optimal resolution and the maximum print speed. Together, the high-resolution 3D CLIP printer has opened the door to various applications including, but not limited to, biomedical, MEMS, and microelectronics.
Collapse
Affiliation(s)
- Kaiwen Hsiao
- Department of Radiology, Stanford University, Stanford, CA 94305, USA
| | - Brian J. Lee
- Department of Radiology, Stanford University, Stanford, CA 94305, USA
- Department of Mechanical Engineering, Sungkyunkwan University, Suwon, Republic of Korea
| | - Tim Samuelsen
- Department of Mechanical Engineering, Stanford University, Stanford, CA 94305, USA
| | - Gabriel Lipkowitz
- Department of Mechanical Engineering, Stanford University, Stanford, CA 94305, USA
| | | | - Dan Ilyn
- Department of Mechanical Engineering, Stanford University, Stanford, CA 94305, USA
| | - Audrey Shih
- Department of Chemical Engineering, Stanford University, Stanford, CA 94305, USA
| | - Maria T. Dulay
- Department of Radiology, Stanford University, Stanford, CA 94305, USA
| | - Lee Tate
- Digital Light Innovations, Austin, TX 78728, USA
| | - Eric S. G. Shaqfeh
- Department of Mechanical Engineering, Stanford University, Stanford, CA 94305, USA
- Department of Chemical Engineering, Stanford University, Stanford, CA 94305, USA
| | - Joseph M. DeSimone
- Department of Radiology, Stanford University, Stanford, CA 94305, USA
- Department of Chemical Engineering, Stanford University, Stanford, CA 94305, USA
| |
Collapse
|
36
|
Anyaduba TD, Otoo JA, Schlappi TS. Picoliter Droplet Generation and Dense Bead-in-Droplet Encapsulation via Microfluidic Devices Fabricated via 3D Printed Molds. MICROMACHINES 2022; 13:1946. [PMID: 36363966 PMCID: PMC9695966 DOI: 10.3390/mi13111946] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 11/04/2022] [Accepted: 11/05/2022] [Indexed: 06/16/2023]
Abstract
Picoliter-scale droplets have many applications in chemistry and biology, such as biomolecule synthesis, drug discovery, nucleic acid quantification, and single cell analysis. However, due to the complicated processes used to fabricate microfluidic channels, most picoliter (pL) droplet generation methods are limited to research in laboratories with cleanroom facilities and complex instrumentation. The purpose of this work is to investigate a method that uses 3D printing to fabricate microfluidic devices that can generate droplets with sizes <100 pL and encapsulate single dense beads mechanistically. Our device generated monodisperse droplets as small as ~48 pL and we demonstrated the usefulness of this droplet generation technique in biomolecule analysis by detecting Lactobacillus acidophillus 16s rRNA via digital loop-mediated isothermal amplification (dLAMP). We also designed a mixer that can be integrated into a syringe to overcome dense bead sedimentation and found that the bead-in-droplet (BiD) emulsions created from our device had <2% of the droplets populated with more than 1 bead. This study will enable researchers to create devices that generate pL-scale droplets and encapsulate dense beads with inexpensive and simple instrumentation (3D printer and syringe pump). The rapid prototyping and integration ability of this module with other components or processes can accelerate the development of point-of-care microfluidic devices that use droplet-bead emulsions to analyze biological or chemical samples with high throughput and precision.
Collapse
Affiliation(s)
- Tochukwu D. Anyaduba
- Keck Graduate Institute, Riggs School of Applied Life Sciences, Claremont, CA 91711, USA
- Abbott Rapid Diagnostics, 4545 Towne Center Ct, La Jolla, San Diego, CA 92121, USA
| | - Jonas A. Otoo
- Keck Graduate Institute, Riggs School of Applied Life Sciences, Claremont, CA 91711, USA
| | - Travis S. Schlappi
- Keck Graduate Institute, Riggs School of Applied Life Sciences, Claremont, CA 91711, USA
| |
Collapse
|
37
|
Zhao L, Wang X. 3D printed microfluidics for cell biological applications. Trends Analyt Chem 2022. [DOI: 10.1016/j.trac.2022.116864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
38
|
Monia Kabandana GK, Zhang T, Chen C. Emerging 3D printing technologies and methodologies for microfluidic development. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2022; 14:2885-2906. [PMID: 35866586 DOI: 10.1039/d2ay00798c] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
This review paper examines recent (mostly 2018 or later) advancements in 3D printed microfluidics. Microfluidic devices are widely applied in various fields such as drug delivery, point-of-care diagnosis, and bioanalytical research. In addition to soft lithography, 3D printing has become an appealing technology to develop microfluidics recently. In this work, three main 3D printing technologies, stereolithography, fused filament deposition, and polyjet, which are commonly used to fabricate microfluidic devices, are thoroughly discussed. The advantages, limitations, and recent microfluidic applications are analyzed. New technical advancements within these technology frameworks are also summarized, which are especially suitable for microfluidic development. Next, new emerging 3D-printing technologies are introduced, including the direct printing of polydimethylsiloxane (PDMS), glass, and biopolymers. Although limited microfluidic applications based on these technologies can be found in the literature, they show high potential to revolutionize the next generation of 3D-printed microfluidic apparatus.
Collapse
Affiliation(s)
- Giraso Keza Monia Kabandana
- Department of Chemistry and Biochemistry, University of Maryland Baltimore County, Baltimore, MD, 21250, USA.
| | - Tao Zhang
- Department of Chemistry and Biochemistry, University of Maryland Baltimore County, Baltimore, MD, 21250, USA.
| | - Chengpeng Chen
- Department of Chemistry and Biochemistry, University of Maryland Baltimore County, Baltimore, MD, 21250, USA.
| |
Collapse
|
39
|
Anshori I, Lukito V, Adhawiyah R, Putri D, Harimurti S, Rajab TLE, Pradana A, Akbar M, Syamsunarno MRAA, Handayani M, Purwidyantri A, Prabowo BA. Versatile and Low-Cost Fabrication of Modular Lock-and-Key Microfluidics for Integrated Connector Mixer Using a Stereolithography 3D Printing. MICROMACHINES 2022; 13:mi13081197. [PMID: 36014119 PMCID: PMC9413493 DOI: 10.3390/mi13081197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 07/24/2022] [Accepted: 07/26/2022] [Indexed: 11/16/2022]
Abstract
We present a low-cost and simple method to fabricate a novel lock-and-key mixer microfluidics using an economic stereolithography (SLA) three-dimensional (3D) printer, which costs less than USD 400 for the investment. The proposed study is promising for a high throughput fabrication module, typically limited by conventional microfluidics fabrications, such as photolithography and polymer-casting methods. We demonstrate the novel modular lock-and-key mixer for the connector and its chamber modules with optimized parameters, such as exposure condition and printing orientation. In addition, the optimization of post-processing was performed to investigate the reliability of the fabricated hollow structures, which are fundamental to creating a fluidic channel or chamber. We found out that by using an inexpensive 3D printer, the fabricated resolution can be pushed down to 850 µm and 550 µm size for squared- and circled-shapes, respectively, by the gradual hollow structure, applying vertical printing orientation. These strategies opened up the possibility of developing straightforward microfluidics platforms that could replace conventional microfluidics mold fabrication methods, such as photolithography and milling, which are costly and time consuming. Considerably cheap commercial resin and its tiny volume employed for a single printing procedure significantly cut down the estimated fabrication cost to less than 50 cents USD/module. The simulation study unravels the prominent properties of the fabricated devices for biological fluid mixers, such as PBS, urine and plasma blood. This study is eminently prospective toward microfluidics application in clinical biosensing, where disposable, low-cost, high-throughput, and reproducible chips are highly required.
Collapse
Affiliation(s)
- Isa Anshori
- Biomedical Engineering Department, School of Electrical Engineering and Informatics, Bandung Institute of Technology, Bandung 40132, Indonesia; (V.L.); (R.A.); (D.P.); (S.H.); (T.L.E.R.)
- Research Center for Nanosciences and Nanotechnology (RCNN), Bandung Institute of Technology, Bandung 40132, Indonesia;
- Correspondence: (I.A.); (B.A.P.)
| | - Vincent Lukito
- Biomedical Engineering Department, School of Electrical Engineering and Informatics, Bandung Institute of Technology, Bandung 40132, Indonesia; (V.L.); (R.A.); (D.P.); (S.H.); (T.L.E.R.)
| | - Rafita Adhawiyah
- Biomedical Engineering Department, School of Electrical Engineering and Informatics, Bandung Institute of Technology, Bandung 40132, Indonesia; (V.L.); (R.A.); (D.P.); (S.H.); (T.L.E.R.)
| | - Delpita Putri
- Biomedical Engineering Department, School of Electrical Engineering and Informatics, Bandung Institute of Technology, Bandung 40132, Indonesia; (V.L.); (R.A.); (D.P.); (S.H.); (T.L.E.R.)
| | - Suksmandhira Harimurti
- Biomedical Engineering Department, School of Electrical Engineering and Informatics, Bandung Institute of Technology, Bandung 40132, Indonesia; (V.L.); (R.A.); (D.P.); (S.H.); (T.L.E.R.)
| | - Tati Latifah Erawati Rajab
- Biomedical Engineering Department, School of Electrical Engineering and Informatics, Bandung Institute of Technology, Bandung 40132, Indonesia; (V.L.); (R.A.); (D.P.); (S.H.); (T.L.E.R.)
| | - Arfat Pradana
- Research Center for Nanosciences and Nanotechnology (RCNN), Bandung Institute of Technology, Bandung 40132, Indonesia;
| | - Mohammad Akbar
- Department of Cardiology and Vascular Medicine, Faculty of Medicine, Universitas Padjadjaran and Dr. Hasan Sadikin General Hospital, Bandung 40161, Indonesia;
| | | | - Murni Handayani
- National Research and Innovation Agency (BRIN), Tangerang Selatan 15314, Indonesia; (M.H.); (A.P.)
| | - Agnes Purwidyantri
- National Research and Innovation Agency (BRIN), Tangerang Selatan 15314, Indonesia; (M.H.); (A.P.)
- International Iberian Nanotechnology Laboratory (INL), 4715-330 Braga, Portugal
| | - Briliant Adhi Prabowo
- National Research and Innovation Agency (BRIN), Tangerang Selatan 15314, Indonesia; (M.H.); (A.P.)
- International Iberian Nanotechnology Laboratory (INL), 4715-330 Braga, Portugal
- Correspondence: (I.A.); (B.A.P.)
| |
Collapse
|
40
|
Eitzmann DR, Anderson JL. Evaluating commercial thermoplastic materials in fused deposition modeling 3D printing for their compatibility with DNA storage and analysis by quantitative polymerase chain reaction. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2022; 14:2682-2688. [PMID: 35766132 DOI: 10.1039/d2ay00772j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Nucleic acids are ubiquitous in biological samples and can be sensitively detected using nucleic acid amplification assays. To achieve highly accurate and reliable results, nucleic acid isolation and purification is often required and can limit the accessibility of these assays. Encapsulation of these workflows onto a single device may be achieved through fabrication methodologies featuring commercial three-dimensional (3D) printers. This study aims to characterize fused deposition modeling (FDM) filaments based on their compatibility with nucleic acid storage using quantitative polymerase chain reaction (qPCR). To study the adsorption of nucleic acids, storage vessels were fabricated using six common thermoplastics including: polylactic acid (PLA), nylon, acrylonitrile butadiene styrene (ABS), co-polyester (CPE), polycarbonate (PC), and polypropylene (PP). DNA adsorption of a short 98 base pair and a longer 830 base pair fragment to the walls of the vessel was shown to vary significantly among the polymer materials as well as the color varieties of the same polymer. PLA storage vessels were found to adsorb the least amount of the 98 base pair DNA after 12 hours of storage in 2.5 M NaCl TE buffer whereas the ABS and PC vessels adsorbed up to 97.2 ± 0.2% and 97.5 ± 0.2%. DNA adsorption could be reduced by decreasing the layer height of the 3D printed object, thereby increasing the functionality of the ABS storage vessel. Nylon was found to desorb qPCR inhibiting components into the stored solution which led to erroneous DNA quantification data from qPCR analysis.
Collapse
Affiliation(s)
- Derek R Eitzmann
- Department of Chemistry, Iowa State University, Ames, Iowa 50011, USA.
| | - Jared L Anderson
- Department of Chemistry, Iowa State University, Ames, Iowa 50011, USA.
| |
Collapse
|
41
|
Guo K, Chen Y, Zhou Z, Zhu S, Ni Z, Xiang N. A novel 3D Tesla valve micromixer for efficient mixing and chitosan nanoparticle production. Electrophoresis 2022; 43:2184-2194. [PMID: 35730399 DOI: 10.1002/elps.202200077] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 05/12/2022] [Accepted: 06/14/2022] [Indexed: 01/21/2023]
Abstract
Current three-dimensional micromixers for continuous flow reactions and nanoparticle synthesis are complex in structure and difficult to fabricate. This paper investigates the design, fabrication, and characterization of a novel micromixer that uses a simple spatial Tesla valve design to achieve efficient mixing of multiple solutions. The flow characteristics and mixing efficiencies of our Tesla valve micromixer are investigated using a combination of numerical simulations and experiments. The results show that in a wide range of flow rates, viscoelastic solutions with different concentrations can be well mixed in our micromixer. Finally, experiments on the synthesis of chitosan nanoparticles are conducted to verify the practicability of our micromixer. Compared with nanoparticles prepared by conventional magnetic stirring, the size of nanoparticles prepared by micromixing is smaller and the distribution is more uniform. Therefore, our Tesla valve micromixer has significant advantages and implications for mixing chemical and biological reactions.
Collapse
Affiliation(s)
- Kefan Guo
- School of Mechanical Engineering, and Jiangsu Key Laboratory for Design and Manufacture of Micro-Nano Biomedical Instruments, Southeast University, Nanjing, P. R. China
| | - Yao Chen
- School of Mechanical Engineering, and Jiangsu Key Laboratory for Design and Manufacture of Micro-Nano Biomedical Instruments, Southeast University, Nanjing, P. R. China
| | - Zheng Zhou
- School of Mechanical Engineering, and Jiangsu Key Laboratory for Design and Manufacture of Micro-Nano Biomedical Instruments, Southeast University, Nanjing, P. R. China
| | - Shu Zhu
- School of Mechanical Engineering, and Jiangsu Key Laboratory for Design and Manufacture of Micro-Nano Biomedical Instruments, Southeast University, Nanjing, P. R. China
| | - Zhonghua Ni
- School of Mechanical Engineering, and Jiangsu Key Laboratory for Design and Manufacture of Micro-Nano Biomedical Instruments, Southeast University, Nanjing, P. R. China
| | - Nan Xiang
- School of Mechanical Engineering, and Jiangsu Key Laboratory for Design and Manufacture of Micro-Nano Biomedical Instruments, Southeast University, Nanjing, P. R. China
| |
Collapse
|
42
|
Review on Recent Advances in Drug Development by Using 3D Printing Technology. Pharm Chem J 2022. [DOI: 10.1007/s11094-022-02630-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
43
|
Muldoon K, Song Y, Ahmad Z, Chen X, Chang MW. High Precision 3D Printing for Micro to Nano Scale Biomedical and Electronic Devices. MICROMACHINES 2022; 13:642. [PMID: 35457946 PMCID: PMC9033068 DOI: 10.3390/mi13040642] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 04/11/2022] [Accepted: 04/16/2022] [Indexed: 12/12/2022]
Abstract
Three dimensional printing (3DP), or additive manufacturing, is an exponentially growing process in the fabrication of various technologies with applications in sectors such as electronics, biomedical, pharmaceutical and tissue engineering. Micro and nano scale printing is encouraging the innovation of the aforementioned sectors, due to the ability to control design, material and chemical properties at a highly precise level, which is advantageous in creating a high surface area to volume ratio and altering the overall products' mechanical and physical properties. In this review, micro/-nano printing technology, mainly related to lithography, inkjet and electrohydrodynamic (EHD) printing and their biomedical and electronic applications will be discussed. The current limitations to micro/-nano printing methods will be examined, covering the difficulty in achieving controlled structures at the miniscule micro and nano scale required for specific applications.
Collapse
Affiliation(s)
- Kirsty Muldoon
- Nanotechnology and Integrated Bioengineering Centre, University of Ulster, Jordanstown Campus, Newtownabbey BT37 0QB, UK;
| | - Yanhua Song
- Key Laboratory for Biomedical Engineering of Education Ministry of China, Zhejiang University, Hangzhou 310027, China;
- Zhejiang Provincial Key Laboratory of Cardio-Cerebral Vascular Detection Technology and Medical Effectiveness Appraisal, Zhejiang University, Hangzhou 310027, China
| | - Zeeshan Ahmad
- School of Pharmacy, De Montfort University, Leicester LE1 9BH, UK;
| | - Xing Chen
- Key Laboratory for Biomedical Engineering of Education Ministry of China, Zhejiang University, Hangzhou 310027, China;
- Zhejiang Provincial Key Laboratory of Cardio-Cerebral Vascular Detection Technology and Medical Effectiveness Appraisal, Zhejiang University, Hangzhou 310027, China
| | - Ming-Wei Chang
- Nanotechnology and Integrated Bioengineering Centre, University of Ulster, Jordanstown Campus, Newtownabbey BT37 0QB, UK;
| |
Collapse
|
44
|
Salmon I, Grebenyuk S, Abdel Fattah AR, Rustandi G, Pilkington T, Verfaillie C, Ranga A. Engineering neurovascular organoids with 3D printed microfluidic chips. LAB ON A CHIP 2022; 22:1615-1629. [PMID: 35333271 DOI: 10.1039/d1lc00535a] [Citation(s) in RCA: 59] [Impact Index Per Article: 29.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
The generation of tissue and organs requires close interaction with vasculature from the earliest moments of embryonic development. Tissue-specific organoids derived from pluripotent stem cells allow for the in vitro recapitulation of elements of embryonic development. However, they are not intrinsically vascularized, which poses a major challenge for their sustained growth, and for understanding the role of vasculature in fate specification and morphogenesis. Current organoid vascularization strategies do not recapitulate the temporal synchronization and spatial orientation needed to ensure in vivo-like early co-development. Here, we developed a human pluripotent stem cell (hPSC)-based approach to generate organoids which interact with vascular cells in a spatially determined manner. The spatial interaction between organoid and vasculature is enabled by the use of a custom designed 3D printed microfluidic chip which allows for a sequential and developmentally matched co-culture system. We show that on-chip hPSC-derived pericytes and endothelial cells sprout and self-assemble into organized vascular networks, and use cerebral organoids as a model system to explore interactions with this de novo generated vasculature. Upon co-development, vascular cells physically interact with the cerebral organoid and form an integrated neurovascular organoid on chip. This 3D printing-based platform is designed to be compatible with any organoid system and is an easy and highly cost-effective way to vascularize organoids. The use of this platform, readily performed in any lab, could open new avenues for understanding and manipulating the co-development of tissue-specific organoids with vasculature.
Collapse
Affiliation(s)
- Idris Salmon
- Laboratory of Bioengineering and Morphogenesis, Biomechanics Section, Department of Mechanical Engineering, KU Leuven, Leuven, Belgium.
| | - Sergei Grebenyuk
- Laboratory of Bioengineering and Morphogenesis, Biomechanics Section, Department of Mechanical Engineering, KU Leuven, Leuven, Belgium.
| | - Abdel Rahman Abdel Fattah
- Laboratory of Bioengineering and Morphogenesis, Biomechanics Section, Department of Mechanical Engineering, KU Leuven, Leuven, Belgium.
| | - Gregorius Rustandi
- Laboratory of Bioengineering and Morphogenesis, Biomechanics Section, Department of Mechanical Engineering, KU Leuven, Leuven, Belgium.
| | | | - Catherine Verfaillie
- Stem Cell and Developmental Biology, Department of Development and Regeneration, KU Leuven, Leuven, Belgium
| | - Adrian Ranga
- Laboratory of Bioengineering and Morphogenesis, Biomechanics Section, Department of Mechanical Engineering, KU Leuven, Leuven, Belgium.
| |
Collapse
|
45
|
Zhang C, Qu M, Fu X, Lin J. Review on Microscale Sensors with 3D Engineered Structures: Fabrication and Applications. SMALL METHODS 2022; 6:e2101384. [PMID: 35088578 DOI: 10.1002/smtd.202101384] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 01/03/2022] [Indexed: 06/14/2023]
Abstract
The intelligence of modern technologies relies on perceptual systems based on microscale sensors. However, because of the traditional top-down fabrication approaches performed on planar silicon wafers, a large proportion of existing microscale sensors have 2D structures, which severely restricts their sensing capabilities. To overcome these restrictions, over the past few decades, increasing efforts have been devoted to developing new fabrication methods for microscale sensors with 3D engineered structures, from bulk chemical etching and 3D printing to molding and stress-induced assembly. Herein, the authors systematically review these fabrication methods based on the applications of the resulting 3D sensors and discuss their advantages compared to their 2D counterparts. This is followed by a perspective on the remaining challenges and possible opportunities.
Collapse
Affiliation(s)
- Cheng Zhang
- College of Engineering, Nanjing Agricultural University, Nanjing, 210031, China
| | - Menglong Qu
- College of Engineering, Nanjing Agricultural University, Nanjing, 210031, China
| | - Xiuqing Fu
- College of Engineering, Nanjing Agricultural University, Nanjing, 210031, China
| | - Jian Lin
- Department of Mechanical and Aerospace Engineering, University of Missouri, Columbia, MO, 65211, USA
- Department of Electrical Engineering and Computer Science, University of Missouri, Columbia, MO, 65211, USA
| |
Collapse
|
46
|
Zhang A, Xu J, Li Y, Hu M, Lin Z, Song Y, Qi J, Chen W, Liu Z, Cheng Y. Three-Dimensional Large-Scale Fused Silica Microfluidic Chips Enabled by Hybrid Laser Microfabrication for Continuous-Flow UV Photochemical Synthesis. MICROMACHINES 2022; 13:mi13040543. [PMID: 35457848 PMCID: PMC9026117 DOI: 10.3390/mi13040543] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 03/26/2022] [Accepted: 03/26/2022] [Indexed: 02/06/2023]
Abstract
We demonstrate a hybrid laser microfabrication approach, which combines the technical merits of ultrafast laser-assisted chemical etching and carbon dioxide laser-induced in situ melting for centimeter-scale and bonding-free fabrication of 3D complex hollow microstructures in fused silica glass. With the developed approach, large-scale fused silica microfluidic chips with integrated 3D cascaded micromixing units can be reliably manufactured. High-performance on-chip mixing and continuous-flow photochemical synthesis under UV irradiation at ~280 nm were demonstrated using the manufactured chip, indicating a powerful capability for versatile fabrication of highly transparent all-glass microfluidic reactors for on-chip photochemical synthesis.
Collapse
Affiliation(s)
- Aodong Zhang
- Engineering Research Center for Nanophotonics and Advanced Instrument, School of Physics and Electronic Science, East China Normal University, Shanghai 200241, China; (A.Z.); (Y.L.); (M.H.)
- State Key Laboratory of Precision Spectroscopy, School of Physics and Electronic Science, East China Normal University, Shanghai 200241, China; (Z.L.); (Y.S.)
- XXL—The Extreme Optoelectromechanics Laboratory, School of Physics and Electronic Science, East China Normal University, Shanghai 200241, China; (J.Q.); (W.C.); (Z.L.)
| | - Jian Xu
- Engineering Research Center for Nanophotonics and Advanced Instrument, School of Physics and Electronic Science, East China Normal University, Shanghai 200241, China; (A.Z.); (Y.L.); (M.H.)
- State Key Laboratory of Precision Spectroscopy, School of Physics and Electronic Science, East China Normal University, Shanghai 200241, China; (Z.L.); (Y.S.)
- XXL—The Extreme Optoelectromechanics Laboratory, School of Physics and Electronic Science, East China Normal University, Shanghai 200241, China; (J.Q.); (W.C.); (Z.L.)
- Correspondence: (J.X.); (Y.C.)
| | - Yucen Li
- Engineering Research Center for Nanophotonics and Advanced Instrument, School of Physics and Electronic Science, East China Normal University, Shanghai 200241, China; (A.Z.); (Y.L.); (M.H.)
| | - Ming Hu
- Engineering Research Center for Nanophotonics and Advanced Instrument, School of Physics and Electronic Science, East China Normal University, Shanghai 200241, China; (A.Z.); (Y.L.); (M.H.)
| | - Zijie Lin
- State Key Laboratory of Precision Spectroscopy, School of Physics and Electronic Science, East China Normal University, Shanghai 200241, China; (Z.L.); (Y.S.)
- XXL—The Extreme Optoelectromechanics Laboratory, School of Physics and Electronic Science, East China Normal University, Shanghai 200241, China; (J.Q.); (W.C.); (Z.L.)
| | - Yunpeng Song
- State Key Laboratory of Precision Spectroscopy, School of Physics and Electronic Science, East China Normal University, Shanghai 200241, China; (Z.L.); (Y.S.)
- XXL—The Extreme Optoelectromechanics Laboratory, School of Physics and Electronic Science, East China Normal University, Shanghai 200241, China; (J.Q.); (W.C.); (Z.L.)
| | - Jia Qi
- XXL—The Extreme Optoelectromechanics Laboratory, School of Physics and Electronic Science, East China Normal University, Shanghai 200241, China; (J.Q.); (W.C.); (Z.L.)
| | - Wei Chen
- XXL—The Extreme Optoelectromechanics Laboratory, School of Physics and Electronic Science, East China Normal University, Shanghai 200241, China; (J.Q.); (W.C.); (Z.L.)
| | - Zhaoxiang Liu
- XXL—The Extreme Optoelectromechanics Laboratory, School of Physics and Electronic Science, East China Normal University, Shanghai 200241, China; (J.Q.); (W.C.); (Z.L.)
| | - Ya Cheng
- Engineering Research Center for Nanophotonics and Advanced Instrument, School of Physics and Electronic Science, East China Normal University, Shanghai 200241, China; (A.Z.); (Y.L.); (M.H.)
- State Key Laboratory of Precision Spectroscopy, School of Physics and Electronic Science, East China Normal University, Shanghai 200241, China; (Z.L.); (Y.S.)
- XXL—The Extreme Optoelectromechanics Laboratory, School of Physics and Electronic Science, East China Normal University, Shanghai 200241, China; (J.Q.); (W.C.); (Z.L.)
- State Key Laboratory of High Field Laser Physics, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800, China
- Correspondence: (J.X.); (Y.C.)
| |
Collapse
|
47
|
Jiang B, White A, Ou W, Van Belleghem S, Stewart S, Shamul JG, Rahaman SO, Fisher JP, He X. Noncovalent reversible binding-enabled facile fabrication of leak-free PDMS microfluidic devices without plasma treatment for convenient cell loading and retrieval. Bioact Mater 2022; 16:346-358. [PMID: 35386332 PMCID: PMC8965690 DOI: 10.1016/j.bioactmat.2022.02.031] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 01/25/2022] [Accepted: 02/24/2022] [Indexed: 12/17/2022] Open
Abstract
The conventional approach for fabricating polydimethylsiloxane (PDMS) microfluidic devices is a lengthy and inconvenient procedure and may require a clean-room microfabrication facility often not readily available. Furthermore, living cells can't survive the oxygen-plasma and high-temperature-baking treatments required for covalent bonding to assemble multiple PDMS parts into a leak-free device, and it is difficult to disassemble the devices because of the irreversible covalent bonding. As a result, seeding/loading cells into and retrieving cells from the devices are challenging. Here, we discovered that decreasing the curing agent for crosslinking the PDMS prepolymer increases the noncovalent binding energy of the resultant PDMS surfaces without plasma or any other treatment. This enables convenient fabrication of leak-free microfluidic devices by noncovalent binding for various biomedical applications that require high pressure/flow rates and/or long-term cell culture, by simply hand-pressing the PDMS parts without plasma or any other treatment to bind/assemble. With this method, multiple types of cells can be conveniently loaded into specific areas of the PDMS parts before assembly and due to the reversible nature of the noncovalent bonding, the assembled device can be easily disassembled by hand peeling for retrieving cells. Combining with 3D printers that are widely available for making masters to eliminate the need of photolithography, this facile yet rigorous fabrication approach is much faster and more convenient for making PDMS microfluidic devices than the conventional oxygen plasma-baking-based irreversible covalent bonding method. The stability of noncovalent PDMS-PDMS binding is dependent on the binding energy instead of the binding strength. The noncovalent binding of a special formulation of PDMS is sufficient for reversible assembly of leak-free microfluidic devices. The noncovalent binding method enables loading multiple types of cells into PDMS parts before assembling into the final device. The PDMS device can be easily dissembled due to the reversible nature of the noncovalent binding for retrieving cells.
Collapse
Affiliation(s)
- Bin Jiang
- Fischell Department of Bioengineering, University of Maryland, College Park, MD, 20742, USA
| | - Alisa White
- Fischell Department of Bioengineering, University of Maryland, College Park, MD, 20742, USA
| | - Wenquan Ou
- Fischell Department of Bioengineering, University of Maryland, College Park, MD, 20742, USA
| | - Sarah Van Belleghem
- Fischell Department of Bioengineering, University of Maryland, College Park, MD, 20742, USA
| | - Samantha Stewart
- Fischell Department of Bioengineering, University of Maryland, College Park, MD, 20742, USA
| | - James G. Shamul
- Fischell Department of Bioengineering, University of Maryland, College Park, MD, 20742, USA
| | - Shaik O. Rahaman
- Department of Nutrition and Food Science, University of Maryland, College Park, MD, 20742, USA
| | - John P. Fisher
- Fischell Department of Bioengineering, University of Maryland, College Park, MD, 20742, USA
| | - Xiaoming He
- Fischell Department of Bioengineering, University of Maryland, College Park, MD, 20742, USA
- Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland, Baltimore, MD, 21201, USA
- Corresponding author. Fischell Department of Bioengineering, University of Maryland, College Park, MD, 20742, USA.
| |
Collapse
|
48
|
Ali MA, Hu C, Yttri EA, Panat R. Recent Advances in 3D Printing of Biomedical Sensing Devices. ADVANCED FUNCTIONAL MATERIALS 2022; 32:2107671. [PMID: 36324737 PMCID: PMC9624470 DOI: 10.1002/adfm.202107671] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Indexed: 05/03/2023]
Abstract
Additive manufacturing, also called 3D printing, is a rapidly evolving technique that allows for the fabrication of functional materials with complex architectures, controlled microstructures, and material combinations. This capability has influenced the field of biomedical sensing devices by enabling the trends of device miniaturization, customization, and elasticity (i.e., having mechanical properties that match with the biological tissue). In this paper, the current state-of-the-art knowledge of biomedical sensors with the unique and unusual properties enabled by 3D printing is reviewed. The review encompasses clinically important areas involving the quantification of biomarkers (neurotransmitters, metabolites, and proteins), soft and implantable sensors, microfluidic biosensors, and wearable haptic sensors. In addition, the rapid sensing of pathogens and pathogen biomarkers enabled by 3D printing, an area of significant interest considering the recent worldwide pandemic caused by the novel coronavirus, is also discussed. It is also described how 3D printing enables critical sensor advantages including lower limit-of-detection, sensitivity, greater sensing range, and the ability for point-of-care diagnostics. Further, manufacturing itself benefits from 3D printing via rapid prototyping, improved resolution, and lower cost. This review provides researchers in academia and industry a comprehensive summary of the novel possibilities opened by the progress in 3D printing technology for a variety of biomedical applications.
Collapse
Affiliation(s)
- Md Azahar Ali
- Department of Mechanical Engineering, Carnegie Mellon University, Pittsburgh, PA 15238, USA
| | - Chunshan Hu
- Department of Mechanical Engineering, Carnegie Mellon University, Pittsburgh, PA 15238, USA
| | - Eric A Yttri
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA 15213, USA
| | - Rahul Panat
- Department of Mechanical Engineering, Carnegie Mellon University, Pittsburgh, PA 15238, USA
| |
Collapse
|
49
|
Namgung H, Kaba AM, Oh H, Jeon H, Yoon J, Lee H, Kim D. Quantitative Determination of 3D-Printing and Surface-Treatment Conditions for Direct-Printed Microfluidic Devices. BIOCHIP JOURNAL 2022. [DOI: 10.1007/s13206-022-00048-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
50
|
Liu B, Ran B, Chen C, Shi L, Liu Y, Chen H, Zhu Y. A low-cost and high-performance 3D micromixer over a wide working range and its application for high-sensitivity biomarker detection. REACT CHEM ENG 2022. [DOI: 10.1039/d2re00103a] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Homogenous mixing in microfluidic devices is often required for efficient chemical and biological reactions.Passive micromixing without external energy input has attracted much research interest. We have developed a high-performance 3D...
Collapse
|