1
|
Yu Z, Tong W, Shi J, Chen S, Shui L, Chen H, Shi L, Jin J, Zhu Y. Droplet Impedance Feedback-Enabled Microsampling Microfluidic Device for Precise Chemical Information Monitoring. Anal Chem 2024; 96:16946-16954. [PMID: 39387494 DOI: 10.1021/acs.analchem.4c04081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2024]
Abstract
Microelectrodes have transformed our understanding of spatiotemporal responses to electrical stimulation. However, biological signals are often molecular, complicating the capture of intricate chemical signals. The microfluidic chip developed in this paper accurately measures droplet volume by using impedance analysis. The utilization of droplet volume as a feedback signal for precise microsampling pressure control ensures that microsampling remains unaffected by droplet volume influence. Once the microsampling is complete, chemiluminescence detection enables high temporal resolution and continuous and sensitive monitoring of chemical information within the droplets. Experimental verification shows that the chip can avoid volume influence through impedance feedback, achieving consistent and stable microampling at the nanoliter level (0-3 nL). In just 0.3 s, it can perform sensitive chemiluminescence detection of H2O2 and glucose within droplets. The linear detection ranges for these analytes are 10-50,000 and 20-600 μM, respectively, with the limit of detection being 0.648 and 0.334 μM. The significance of this chip lies in its ability to reveal changes in both electrical and chemical signals during transient biological processes. Its potential applications are numerous, encompassing a wide range of emerging areas such as single-cell analysis, cell communication, and cellular immunity.
Collapse
Affiliation(s)
- Zhihang Yu
- Center for Microflows and Nanoflows, School of Mechanical Engineering and Automation, Harbin Institute of Technology, Shenzhen, Shenzhen 518055, China
| | - Wenqiang Tong
- Center for Microflows and Nanoflows, School of Mechanical Engineering and Automation, Harbin Institute of Technology, Shenzhen, Shenzhen 518055, China
| | - Jiaming Shi
- Center for Microflows and Nanoflows, School of Mechanical Engineering and Automation, Harbin Institute of Technology, Shenzhen, Shenzhen 518055, China
| | - Siyuan Chen
- Center for Microflows and Nanoflows, School of Mechanical Engineering and Automation, Harbin Institute of Technology, Shenzhen, Shenzhen 518055, China
| | - Lingling Shui
- Joint International Laboratory of Optofluidic Technology and System, National Center for International Research on Green Optoelectronics, School of Information and Optoelectronic Science and Engineering, South China Normal University, Guangzhou 510006, China
| | - Huaying Chen
- Center for Microflows and Nanoflows, School of Mechanical Engineering and Automation, Harbin Institute of Technology, Shenzhen, Shenzhen 518055, China
| | - Liuyong Shi
- Mechanical and Electrical Engineering College, Hainan University, Haikou 570228, China
| | - Jing Jin
- Center for Microflows and Nanoflows, School of Mechanical Engineering and Automation, Harbin Institute of Technology, Shenzhen, Shenzhen 518055, China
| | - Yonggang Zhu
- Center for Microflows and Nanoflows, School of Mechanical Engineering and Automation, Harbin Institute of Technology, Shenzhen, Shenzhen 518055, China
| |
Collapse
|
2
|
Ngocho K, Yang X, Wang Z, Hu C, Yang X, Shi H, Wang K, Liu J. Synthetic Cells from Droplet-Based Microfluidics for Biosensing and Biomedical Applications. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2400086. [PMID: 38563581 DOI: 10.1002/smll.202400086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 03/13/2024] [Indexed: 04/04/2024]
Abstract
Synthetic cells function as biological mimics of natural cells by mimicking salient features of cells such as metabolism, response to stimuli, gene expression, direct metabolism, and high stability. Droplet-based microfluidic technology presents the opportunity for encapsulating biological functional components in uni-lamellar liposome or polymer droplets. Verified by its success in the fabrication of synthetic cells, microfluidic technology is widely replacing conventional labor-intensive, expensive, and sophisticated techniques justified by its ability to miniaturize and perform batch production operations. In this review, an overview of recent research on the preparation of synthetic cells through droplet-based microfluidics is provided. Different synthetic cells including lipid vesicles (liposome), polymer vesicles (polymersome), coacervate microdroplets, and colloidosomes, are systematically discussed. Efforts are then made to discuss the design of a variety of microfluidic chips for synthetic cell preparation since the combination of microfluidics with bottom-up synthetic biology allows for reproductive and tunable construction of batches of synthetic cell models from simple structures to higher hierarchical structures. The recent advances aimed at exploiting them in biosensors and other biomedical applications are then discussed. Finally, some perspectives on the challenges and future developments of synthetic cell research with microfluidics for biomimetic science and biomedical applications are provided.
Collapse
Affiliation(s)
- Kleins Ngocho
- State key laboratory of Chemo/Biosensing and Chemometrics College of Chemistry and Chemical Engineering Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Hunan University, Changsha, 410082, P. R. China
| | - Xilei Yang
- State key laboratory of Chemo/Biosensing and Chemometrics College of Chemistry and Chemical Engineering Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Hunan University, Changsha, 410082, P. R. China
| | - Zefeng Wang
- State key laboratory of Chemo/Biosensing and Chemometrics College of Chemistry and Chemical Engineering Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Hunan University, Changsha, 410082, P. R. China
| | - Cunjie Hu
- State key laboratory of Chemo/Biosensing and Chemometrics College of Chemistry and Chemical Engineering Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Hunan University, Changsha, 410082, P. R. China
| | - Xiaohai Yang
- State key laboratory of Chemo/Biosensing and Chemometrics College of Chemistry and Chemical Engineering Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Hunan University, Changsha, 410082, P. R. China
| | - Hui Shi
- State key laboratory of Chemo/Biosensing and Chemometrics College of Chemistry and Chemical Engineering Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Hunan University, Changsha, 410082, P. R. China
| | - Kemin Wang
- State key laboratory of Chemo/Biosensing and Chemometrics College of Chemistry and Chemical Engineering Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Hunan University, Changsha, 410082, P. R. China
| | - Jianbo Liu
- State key laboratory of Chemo/Biosensing and Chemometrics College of Chemistry and Chemical Engineering Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Hunan University, Changsha, 410082, P. R. China
| |
Collapse
|
3
|
Zohouri D, Lienard-Mayor T, Obeid S, Taverna M, Mai TD. A review on hyphenation of droplet microfluidics to separation techniques: From instrumental conception to analytical applications for limited sample volumes. Anal Chim Acta 2024; 1291:342090. [PMID: 38280779 DOI: 10.1016/j.aca.2023.342090] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 11/17/2023] [Accepted: 11/28/2023] [Indexed: 01/29/2024]
Abstract
In this study, we review various strategies to couple sample processing in microfluidic droplets with different separation techniques, including liquid chromatography, mass spectrometry, and capillary electrophoresis. Separation techniques interfaced with droplet microfluidics represent an emerging trend in analytical chemistry, in which micro to femtoliter droplets serve as microreactors, a bridge between analytical modules, as well as carriers of target analytes between sample treatment and separation/detection steps. This allows to overcome the hurdles encountered in separation science, notably the low degree of module integration, working volume incompatibility, and cross contamination between different operational stages. For this droplet-separation interfacing purpose, this review covers different instrumental designs from all works on this topic up to May 2023, together with our viewpoints on respective advantages and considerations. Demonstration and performance of droplet-interfaced separation strategies for limited sample volumes are also discussed.
Collapse
Affiliation(s)
- Delaram Zohouri
- Université Paris-Saclay, CNRS, Institut Galien Paris-Saclay, 91400, Orsay, France
| | - Théo Lienard-Mayor
- Université Paris-Saclay, CNRS, Institut Galien Paris-Saclay, 91400, Orsay, France
| | - Sameh Obeid
- Université Paris-Saclay, CNRS, Institut Galien Paris-Saclay, 91400, Orsay, France
| | - Myriam Taverna
- Université Paris-Saclay, CNRS, Institut Galien Paris-Saclay, 91400, Orsay, France
| | - Thanh Duc Mai
- Université Paris-Saclay, CNRS, Institut Galien Paris-Saclay, 91400, Orsay, France.
| |
Collapse
|
4
|
Zhang P, Xu L, Chen H, Abate AR. Flow cytometric printing of double emulsions into open droplet arrays. LAB ON A CHIP 2023; 23:2371-2377. [PMID: 37070963 DOI: 10.1039/d3lc00151b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Delivery of double emulsions in air is crucial for their applications in mass spectrometry, bioanalytics, and material synthesis. However, while methods have been developed to generate double emulsions in air, controlled printing of double emulsion droplets has not been achieved yet. In this paper, we present an approach for in-air printing of double emulsions on demand. Our approach pre-encapsulates reagents in an emulsion that is reinjected into the device, and generates double emulsions in a microfluidic printhead with spatially patterned wettability. Our device allows sorting of ejected double emulsion droplets in real-time, allowing deterministic printing of each droplet to be selected with the desired inner cores. Our method provides a general platform for building printed double emulsion droplet arrays of defined composition at scale.
Collapse
Affiliation(s)
- Pengfei Zhang
- School of Mechanical Engineering and Automation, Beihang University, Beijing, China
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, CA, USA.
| | - Linfeng Xu
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, CA, USA.
| | - Huawei Chen
- School of Mechanical Engineering and Automation, Beihang University, Beijing, China
| | - Adam R Abate
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, CA, USA.
- California Institute for Quantitative Biosciences, University of California, San Francisco, San Francisco, CA, USA
| |
Collapse
|
5
|
A spiral microfluidic chip endows high efficiency single cell alignment at extremely low flow for ICP-MS analysis. Microchem J 2023. [DOI: 10.1016/j.microc.2023.108635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/14/2023]
|
6
|
da Silva ABS, Arruda MAZ. Single-cell ICP-MS to address the role of trace elements at a cellular level. J Trace Elem Med Biol 2023; 75:127086. [PMID: 36215757 DOI: 10.1016/j.jtemb.2022.127086] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 09/20/2022] [Accepted: 09/22/2022] [Indexed: 12/13/2022]
Abstract
The heterogeneity properties shown by cells or unicellular organisms have led to the development of analytical methods at the single-cell level. In this sense, considering the importance of trace elements in these biological systems, the inductively coupled plasma mass spectrometer (ICP-MS) configured for analyzing single cell has presented a high potential to assess the evaluation of elements in cells. Moreover, advances in instrumentation, such as coupling laser ablation to the tandem configuration (ICP-MS/MS), or alternative mass analyzers (ICP-SFMS and ICP-TOFMS), brought significant benefits, including sensitivity improvement, high-resolution imaging, and the cell fingerprint. From this perspective, the single-cell ICP-MS has been widely reported in studies involving many fields, from oncology to environmental research. Hence, it has contributed to finding important results, such as elucidating nanoparticle toxicity at the cellular level and vaccine development. Therefore, in this review, the theory of single-cell ICP-MS analysis is explored, and the applications in this field are pointed out. In addition, the instrumentation advances for single-cell ICP-MS are addressed.
Collapse
Affiliation(s)
- Ana Beatriz Santos da Silva
- Spectrometry, Sample Preparation and Mechanization Group, Institute of Chemistry, University of Campinas - Unicamp, P.O. Box 6154, Campinas, SP 13083-970, Brazil; National Institute of Science and Technology for Bioanalytics, Institute of Chemistry, University of Campinas - Unicamp, P.O. Box 6154, Campinas, SP 13083-970, Brazil.
| | - Marco Aurélio Zezzi Arruda
- Spectrometry, Sample Preparation and Mechanization Group, Institute of Chemistry, University of Campinas - Unicamp, P.O. Box 6154, Campinas, SP 13083-970, Brazil; National Institute of Science and Technology for Bioanalytics, Institute of Chemistry, University of Campinas - Unicamp, P.O. Box 6154, Campinas, SP 13083-970, Brazil
| |
Collapse
|
7
|
Mavrakis E, Toprakcioglu Z, Lydakis-Simantiris N, Knowles TPJ, Pergantis SA. A chip-based supersonic microfluidic nebulizer for efficient sample introduction into inductively coupled plasma - Mass spectrometry. Anal Chim Acta 2022; 1229:340342. [PMID: 36156219 DOI: 10.1016/j.aca.2022.340342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 08/29/2022] [Accepted: 08/31/2022] [Indexed: 11/29/2022]
Abstract
As the use of microfluidic chips for handling biological samples is increasing, so is the need for combining them with powerful analytical techniques for metal determination such as inductively-coupled plasma mass spectrometry (ICP-MS). So far, coupling a microfluidic chip to an ICP-MS has been demonstrated mainly through the use of conventional pneumatic micro-flow nebulizers. However, disadvantages associated with the use of such nebulizers entail dead volume issues and liquid suction exerted on the outlet channel of the chip. Herein, we propose that a microfluidic chip, bearing a pneumatic nozzle for liquid nebulization, has the potential to advance metal determination in chip-based ICP-MS. More specifically, we demonstrate for the first time that the coupling of a chip-based supersonic microfluidic nebulizer (chip-μf-Neb) to an ICP-MS can be conveniently achieved through the use of a spray chamber with a laminar flow makeup gas. Operation of the combined system was evaluated at low liquid flow rates across 0.5-20 μL min-1, while nebulization and makeup argon (Ar) gas flow rates were optimized with respect to maximizing indium (In) sensitivity and minimizing oxide formation; a maximum sensitivity of 40000 cps (μg L-1)-1 was achieved at 10 μL min-1. The system was further evaluated for its performance in single-particle analysis, featuring a transport efficiency of 46% for Ag nanoparticles. Finally, the capabilities for conducting single-cell analysis were demonstrated with the detection of 80Se and 75As in individual Chlamydomas reinhardtii cells, which were previously incubated in 20 μM of selenate and 300 μM of arsenate, respectively. Efficient operation at low liquid flow rates along with the absence of self-aspiration render this nebulizer a promising tool for combining the powerful field of microfluidics with metal quantitation by means of ICP-MS.
Collapse
Affiliation(s)
- E Mavrakis
- Environmental Chemical Processes Laboratory, Department of Chemistry, University of Crete, Voutes Campus, Heraklion, 70013, Greece
| | - Z Toprakcioglu
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| | - N Lydakis-Simantiris
- Laboratory of Biological & Biotechnological Applications, Department of Agriculture, Hellenic Mediterranean University, Estavromenos, Heraklion, 71410, Greece; Hellenic Mediterranean University Research Center, Institute of Agri-food and Life Sciences, Heraklion, Crete, Greece
| | - T P J Knowles
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom; Cavendish Laboratory, University of Cambridge, Cambridge CB3 0HE, United Kingdom.
| | - S A Pergantis
- Environmental Chemical Processes Laboratory, Department of Chemistry, University of Crete, Voutes Campus, Heraklion, 70013, Greece.
| |
Collapse
|
8
|
Kajner G, Kéri A, Bélteki Á, Valkai S, Dér A, Geretovszky Z, Galbács G. Multifunctional microfluidic chips for the single particle inductively coupled plasma mass spectrometry analysis of inorganic nanoparticles. LAB ON A CHIP 2022; 22:2766-2776. [PMID: 35786729 DOI: 10.1039/d2lc00377e] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
This study aimed at exploiting the so far unexploited potential of carrying out on-line sample pretreatment steps on microfluidic chips for single particle inductively coupled plasma mass spectrometry (spICP-MS) measurements, and demonstrating their ability to practically facilitate most of the simpler tasks involved in the spICP-MS analysis of nanoparticles. For this purpose, polydimethylsiloxane microfluidic chips, capable of high-range dilution and sample injection were made by casting, using high-precision, 3D-printed molds. Optimization of their geometry and functions was done by running several hydrodynamic simulations and by gravimetric, fluorescence enhanced microscope imaging and solution-based ICP-MS experiments. On the optimized microfluidic chips, several experiments were done, demonstrating the benefits of the approach and these devices, such as the determination of nanoparticle concentration using only a few tens of microliters of sample, elimination of solute interferences by dilution, solution-based size calibration and characterisation of binary nanoparticles. Due to the unique design of the chips, they can be linked together to extend the dilution range of the system by more than a magnitude per chip. This feature was also demonstrated in applications requiring multiple-magnitude dilution rates, when two chips were sequentially coupled.
Collapse
Affiliation(s)
- Gyula Kajner
- Dept. of Inorg, and Anal. Chem, Univ. of Szeged, Dóm sq. 7, H-6720 Szeged, Hungary.
| | - Albert Kéri
- Dept. of Inorg, and Anal. Chem, Univ. of Szeged, Dóm sq. 7, H-6720 Szeged, Hungary.
| | - Ádám Bélteki
- Dept. of Inorg, and Anal. Chem, Univ. of Szeged, Dóm sq. 7, H-6720 Szeged, Hungary.
| | - Sándor Valkai
- Inst. of Biophys, Biol. Res. Cent, Temesvári blvd. 62, H-6726 Szeged, Hungary
| | - András Dér
- Inst. of Biophys, Biol. Res. Cent, Temesvári blvd. 62, H-6726 Szeged, Hungary
| | - Zsolt Geretovszky
- Dept. of Opt, and Quant. Electr. Univ. of Szeged, Dóm sq. 9, H-6720 Szeged, Hungary
| | - Gábor Galbács
- Dept. of Inorg, and Anal. Chem, Univ. of Szeged, Dóm sq. 7, H-6720 Szeged, Hungary.
| |
Collapse
|
9
|
Michalke B. Review about Powerful Combinations of Advanced and Hyphenated Sample Introduction Techniques with Inductively Coupled Plasma-Mass Spectrometry (ICP-MS) for Elucidating Trace Element Species in Pathologic Conditions on a Molecular Level. Int J Mol Sci 2022; 23:ijms23116109. [PMID: 35682788 PMCID: PMC9181184 DOI: 10.3390/ijms23116109] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 05/23/2022] [Accepted: 05/27/2022] [Indexed: 02/05/2023] Open
Abstract
Element analysis in clinical or biological samples is important due to the essential role in clinical diagnostics, drug development, and drug-effect monitoring. Particularly, the specific forms of element binding, actual redox state, or their spatial distribution in tissue or in single cells are of interest in medical research. This review summarized exciting combinations of sophisticated sample delivery systems hyphenated to inductively coupled plasma-mass spectrometry (ICP-MS), enabling a broadening of information beyond the well-established outstanding detection capability. Deeper insights into pathological disease processes or intracellular distribution of active substances were provided, enabling a better understanding of biological processes and their dynamics. Examples were presented from spatial elemental mapping in tissue, cells, or spheroids, also considering elemental tagging. The use of natural or artificial tags for drug monitoring was shown. In the context of oxidative stress and ferroptosis iron, redox speciation gained importance. Quantification methods for Fe2+, Fe3+, and ferritin-bound iron were introduced. In Wilson’s disease, free and exchangeable copper play decisive roles; the respective paragraph provided information about hyphenated Cu speciation techniques, which provide their fast and reliable quantification. Finally, single cell ICP-MS provides highly valuable information on cell-to-cell variance, insights into uptake of metal-containing drugs, and their accumulation and release on the single-cell level.
Collapse
Affiliation(s)
- Bernhard Michalke
- Research Unit Analytical BioGeoChemistry, Helmholtz Zentrum München-German Research Center for Environmental Health GmbH, 85764 Neuherberg, Germany
| |
Collapse
|
10
|
Chen Z, Chen B, He M, Hu B. Negative Magnetophoresis Focusing Microchips Online-Coupled with ICP-MS for High-Throughput Single-Cell Analysis. Anal Chem 2022; 94:6649-6656. [PMID: 35481740 DOI: 10.1021/acs.analchem.1c04216] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
High-throughput single-cell analysis is critical to elucidate the cell heterogeneity. Recently, droplet microchips using oil/gas phases to generate single-cell encapsulated droplets have been combined with inductively coupled plasma-mass spectrometry (ICP-MS) for determination of trace elements in single cells with a throughput of dozens of cells per min. To improve the sample throughput and avoid the oil phase introduced into ICP-MS, herein, a negative magnetophoresis focusing microchip was established and online-coupled to ICP-MS for single-cell analysis. MCF-7 cells in the paramagnetic salt solution were introduced into the designed focusing microchannel, in which they were focused into a single stream under both the magnetic repulsion force and inertial lift force, and then were introduced into ICP-MS for online single-cell analysis. The important parameters including the chip design, the concentration of the paramagnetic salt solution, flow rate, cell density, and dwell time were optimized. Under the optimal conditions, a high sample throughput of 1390 cells min-1 was obtained. The established online analytical system was applied to study the uptake behaviors of MCF-7 cells for Zn2+ and ZnO nanoparticles (NPs) at a single-cell level. The single-cell analysis results indicate that MCF-7 cells displayed more remarkable heterogeneity when they were treated with ZnO NPs, and the uptake content of ZnO NPs by MCF-7 cells was less than that of Zn2+. Compared with other droplet microdevice-ICP-MS analysis systems, the developed system has the advantages of simple design and fabrication, no organic phase, a high throughput, and a low sample consumption (only 5 μL).
Collapse
Affiliation(s)
- Zhenna Chen
- Department of Chemistry, Wuhan University, Wuhan 430072, China
| | - Beibei Chen
- Department of Chemistry, Wuhan University, Wuhan 430072, China
| | - Man He
- Department of Chemistry, Wuhan University, Wuhan 430072, China
| | - Bin Hu
- Department of Chemistry, Wuhan University, Wuhan 430072, China
| |
Collapse
|
11
|
Resano M, Aramendía M, García-Ruiz E, Bazo A, Bolea-Fernandez E, Vanhaecke F. Living in a transient world: ICP-MS reinvented via time-resolved analysis for monitoring single events. Chem Sci 2022; 13:4436-4473. [PMID: 35656130 PMCID: PMC9020182 DOI: 10.1039/d1sc05452j] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Accepted: 03/14/2022] [Indexed: 11/21/2022] Open
Abstract
After 40 years of development, inductively coupled plasma-mass spectrometry (ICP-MS) can hardly be considered as a novel technique anymore. ICP-MS has become the reference when it comes to multi-element bulk analysis at (ultra)trace levels, as well as to isotope ratio determination for metal(loid)s. However, over the last decade, this technique has managed to uncover an entirely new application field, providing information in a variety of contexts related to the individual analysis of single entities (e.g., nanoparticles, cells, or micro/nanoplastics), thus addressing new societal challenges. And this profound expansion of its application range becomes even more remarkable when considering that it has been made possible in an a priori simple way: by providing faster data acquisition and developing the corresponding theoretical substrate to relate the time-resolved signals thus obtained with the elemental composition of the target entities. This review presents the underlying concepts behind single event-ICP-MS, which are needed to fully understand its potential, highlighting key areas of application (e.g., single particle-ICP-MS or single cell-ICP-MS) as well as of future development (e.g., micro/nanoplastics).
Collapse
Affiliation(s)
- M Resano
- Department of Analytical Chemistry, Aragón Institute of Engineering Research (I3A), University of Zaragoza Pedro Cerbuna 12 50009 Zaragoza Spain
| | - M Aramendía
- Department of Analytical Chemistry, Aragón Institute of Engineering Research (I3A), University of Zaragoza Pedro Cerbuna 12 50009 Zaragoza Spain
- Centro Universitario de la Defensa de Zaragoza Carretera de Huesca s/n 50090 Zaragoza Spain
| | - E García-Ruiz
- Department of Analytical Chemistry, Aragón Institute of Engineering Research (I3A), University of Zaragoza Pedro Cerbuna 12 50009 Zaragoza Spain
| | - A Bazo
- Department of Analytical Chemistry, Aragón Institute of Engineering Research (I3A), University of Zaragoza Pedro Cerbuna 12 50009 Zaragoza Spain
| | - E Bolea-Fernandez
- Ghent University, Department of Chemistry, Atomic & Mass Spectrometry - A&MS Research Unit Campus Sterre, Krijgslaan 281-S12 9000 Ghent Belgium
| | - F Vanhaecke
- Ghent University, Department of Chemistry, Atomic & Mass Spectrometry - A&MS Research Unit Campus Sterre, Krijgslaan 281-S12 9000 Ghent Belgium
| |
Collapse
|
12
|
Chen T, Huang C, Wang Y, Wu J. Microfluidic methods for cell separation and subsequent analysis. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2021.07.067] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
13
|
Bell SE, Park I, Rubakhin SS, Bashir R, Vlasov Y, Sweedler JV. Droplet Microfluidics with MALDI-MS Detection: The Effects of Oil Phases in GABA Analysis. ACS MEASUREMENT SCIENCE AU 2021; 1:147-156. [PMID: 34939077 PMCID: PMC8679089 DOI: 10.1021/acsmeasuresciau.1c00017] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Indexed: 06/01/2023]
Abstract
Microfluidic and mass spectrometry (MS) methods are widely used to sample and probe the chemical composition of biological systems to elucidate chemical correlates of their healthy and disease states. Though matrix-assisted laser desorption/ionization-mass spectrometry (MALDI)-MS has been hyphenated to droplet microfluidics for offline analyses, the effects of parameters related to droplet generation, such as the type of oil phase used, have been understudied. To characterize these effects, five different oil phases were tested in droplet microfluidics for producing samples for MALDI-MS analysis. Picoliter to nanoliter aqueous droplets containing 0.1 to 100 mM γ-aminobutyric acid (GABA) and inorganic salts were generated inside a polydimethylsiloxane microfluidic chip and deposited onto a conductive glass slide. Optical microscopy, Raman spectroscopy, and MALDI-mass spectrometry imaging (MSI) of the droplet samples and surrounding areas revealed patterns of solvent and oil evaporation and analyte deposition. Optical microscopy detected the presence of salt crystals in 50-100 μm diameter dried droplets, and Raman and MSI were used to correlate GABA signals to the visible droplet footprints. MALDI-MS analyses revealed that droplets prepared in the presence of octanol oil led to the poorest detectability of GABA, whereas the oil phases containing FC-40 provided the best detectability; GABA signal was localized to the footprint of 65 pL droplets with a limit of detection of 23 amol. The effect of the surfactant perfluorooctanol on analyte detection was also investigated.
Collapse
Affiliation(s)
- Sara E. Bell
- Department
of Chemistry, University of Illinois Urbana−Champaign, Urbana, Illinois 61801, United States
- Beckman
Institute for Advanced Science and Technology, University of Illinois Urbana−Champaign, Urbana, Illinois 61801, United States
| | - Insu Park
- Holonyak
Micro & Nanotechnology Laboratory, University
of Illinois Urbana−Champaign, Urbana, Illinois 61801, United States
| | - Stanislav S. Rubakhin
- Department
of Chemistry, University of Illinois Urbana−Champaign, Urbana, Illinois 61801, United States
- Beckman
Institute for Advanced Science and Technology, University of Illinois Urbana−Champaign, Urbana, Illinois 61801, United States
| | - Rashid Bashir
- Beckman
Institute for Advanced Science and Technology, University of Illinois Urbana−Champaign, Urbana, Illinois 61801, United States
- Holonyak
Micro & Nanotechnology Laboratory, University
of Illinois Urbana−Champaign, Urbana, Illinois 61801, United States
- Department
of Electrical and Computer Engineering, University of Illinois Urbana−Champaign, Urbana, Illinois 61801, United States
- Department
of Bioengineering, University of Illinois
at Urbana−Champaign, Urbana, Illinois 61801, United States
| | - Yurii Vlasov
- Beckman
Institute for Advanced Science and Technology, University of Illinois Urbana−Champaign, Urbana, Illinois 61801, United States
- Holonyak
Micro & Nanotechnology Laboratory, University
of Illinois Urbana−Champaign, Urbana, Illinois 61801, United States
- Department
of Electrical and Computer Engineering, University of Illinois Urbana−Champaign, Urbana, Illinois 61801, United States
- Department
of Bioengineering, University of Illinois
at Urbana−Champaign, Urbana, Illinois 61801, United States
| | - Jonathan V. Sweedler
- Department
of Chemistry, University of Illinois Urbana−Champaign, Urbana, Illinois 61801, United States
- Beckman
Institute for Advanced Science and Technology, University of Illinois Urbana−Champaign, Urbana, Illinois 61801, United States
- Department
of Bioengineering, University of Illinois
at Urbana−Champaign, Urbana, Illinois 61801, United States
| |
Collapse
|
14
|
Vonderach T, Günther D. Fundamental studies on droplet throughput and the analysis of single cells using a downward-pointing ICP-time-of-flight mass spectrometer. JOURNAL OF ANALYTICAL ATOMIC SPECTROMETRY 2021; 36:2617-2630. [PMID: 34975187 PMCID: PMC8634884 DOI: 10.1039/d1ja00243k] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/11/2021] [Accepted: 11/10/2021] [Indexed: 06/14/2023]
Abstract
Capabilities of the downwardly oriented inductively coupled plasma mass spectrometer (ICP-MS) recently reported (Vonderach et al. 2021) were studied using a time-of-flight mass spectrometer (TOFMS) yielding benefits for the fast detection of short transient signals containing multi-element information. The previously reported sample inlet configuration for the analysis of microdroplets was equipped with two extra gas inlets for the supply of argon and helium, which enabled a more precise optimization of the sample introduction and operating conditions of the plasma. Furthermore, the sample supply system was operated at elevated temperatures to enhance the desolvation of the droplets prior to their introduction into the plasma. Transient droplet signals with frequencies of up to 1000 Hz were recorded for 74 μm (diameter) sized droplets. The upper detectable droplet size was limited by the droplet generator used and was measured at 93 μm (diameter). The droplets served as the transporter for biological cells so that the described setup could be used to analyze single cells. Mouse lung cells embedded into droplets were detected successfully according to their Cs droplet tracer, Ir nucleus marker, surface markers and the phosphorus content. Transient signals were recorded at a time resolution of 33 μs in order to investigate the signal structure of single droplet-cell events containing multiple elements. Signals between 200-400 μs (FW base) and ≤100 μs (FWHM) in duration were measured. To ensure that the droplet formation process did not affect the sampled cells, different types of cells were localized within the droplets using optical inspection directly after droplet formation and it was possible to observe that cells remained intact with random sampling. The results indicate that a downward-pointing ICP-MS in combination with the microdroplet-based approach can be considered as an alternative to commonly used ICP-MS systems for single cell analysis, and might be suitable for online coupling to flow cytometry.
Collapse
Affiliation(s)
- Thomas Vonderach
- Laboratory of Inorganic Chemistry, Department of Chemistry and Applied Biosciences, ETH Zurich Vladimir-Prelog-Weg 1 8093 Zurich Switzerland
| | - Detlef Günther
- Laboratory of Inorganic Chemistry, Department of Chemistry and Applied Biosciences, ETH Zurich Vladimir-Prelog-Weg 1 8093 Zurich Switzerland
| |
Collapse
|
15
|
Duncombe TA, Ponti A, Seebeck FP, Dittrich PS. UV-Vis Spectra-Activated Droplet Sorting for Label-Free Chemical Identification and Collection of Droplets. Anal Chem 2021; 93:13008-13013. [PMID: 34533299 DOI: 10.1021/acs.analchem.1c02822] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
We introduce the UV-vis spectra-activated droplet sorter (UVADS) for high-throughput label-free chemical identification and enzyme screening. In contrast to previous absorbance-based droplet sorters that relied on single-wavelength absorbance in the visible range, our platform collects full UV-vis spectra from 200 to 1050 nm at up to 2100 spectra per second. Our custom-built open-source software application, "SpectraSorter," enables real-time data processing, analysis, visualization, and selection of droplets for sorting with any set of UV-vis spectral features. An optimized UV-vis detection region extended the absorbance path length for droplets and allowed for the direct protein quantification down to 10 μM of bovine serum albumin at 280 nm. UV-vis spectral data can distinguish a variety of different chemicals or spurious events (such as air bubbles) that are inaccessible at a single wavelength. The platform is used to measure ergothionase enzyme activity from monoclonal microcolonies isolated in droplets. In a label-free manner, we directly measure the ergothioneine substrate to thiourocanic acid product conversion while tracking the microcolony formation. UVADS represents an important new tool for high-throughput label-free in-droplet chemical analysis.
Collapse
Affiliation(s)
- Todd A Duncombe
- Department of Biosystems Science and Engineering, ETH Zurich, Mattenstrasse 26, 4058 Basel, Switzerland.,NCCR Molecular Systems Engineering, BPR 1095, Mattenstrasse 24a, 4058 Basel, Switzerland
| | - Aaron Ponti
- Department of Biosystems Science and Engineering, ETH Zurich, Mattenstrasse 26, 4058 Basel, Switzerland
| | - Florian P Seebeck
- NCCR Molecular Systems Engineering, BPR 1095, Mattenstrasse 24a, 4058 Basel, Switzerland.,Department of Chemistry, University of Basel, Mattenstrasse 24a, 4002 Basel, Switzerland
| | - Petra S Dittrich
- Department of Biosystems Science and Engineering, ETH Zurich, Mattenstrasse 26, 4058 Basel, Switzerland.,NCCR Molecular Systems Engineering, BPR 1095, Mattenstrasse 24a, 4058 Basel, Switzerland
| |
Collapse
|
16
|
Mavrakis E, Pergantis SA. Chip-based microfluidics on-line with inductively coupled plasma - mass spectrometry for standard dilution analysis. Anal Chim Acta 2021; 1179:338830. [PMID: 34535263 DOI: 10.1016/j.aca.2021.338830] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 07/01/2021] [Accepted: 07/04/2021] [Indexed: 10/20/2022]
Abstract
Microfluidics coupled on-line with ICP-MS detection can be combined with powerful quantitation procedures that take advantage of internal standardization and standard additions, such as the recently introduced Standard Dilution Analysis (SDA). Although so far used at mL min-1 flow rates, here we demonstrate that SDA can be conveniently employed with a microfluidic chip-based ICP-MS system to improve determination accuracy for various sample types, including water, biological and cell digest samples, analyzed at μL min-1 flow rates. The efficient coupling of a microfluidic chip to ICP-MS was accomplished using a combination of commercially available components, including a pneumatic high-efficiency nebulizer and a spray chamber designed to allow for the addition of a laminar flow makeup gas. The addition of the makeup gas was crucial in order to avoid detrimental suction effects that can disrupt the operation of the microfluidic chip and cause signal instability, while it still allowed for the highly sensitive detection of metal isotopes by using ICP-MS. All mixing and dilution operations of the sample with the two calibration solutions required for SDA were performed in an automated and highly reproducible fashion on the microfluidic chip with the assistance of an external distributor valve. High average recoveries (97.4-100.1%) and low average relative standard deviations (2.9-4.8%) were achieved for the determined elements (Cd, Co, Pb, Cr) across several spiked matrices and certified reference materials, whereas only 140 μL of sample is required for SDA in triplicate or 40 μL for a single analysis. Hence, accuracy, precision, limited sample consumption, and the elimination of the need for manual sample dilution and mixing manipulations are some of the advantages of this newly developed chip-based microfluidic SDA ICP-MS technique.
Collapse
Affiliation(s)
- Emmanouil Mavrakis
- Environmental Chemical Processes Laboratory, Department of Chemistry, University of Crete, Voutes Campus, Heraklion, 70013, Greece
| | - Spiros A Pergantis
- Environmental Chemical Processes Laboratory, Department of Chemistry, University of Crete, Voutes Campus, Heraklion, 70013, Greece.
| |
Collapse
|
17
|
Liu T, Bolea-Fernandez E, Mangodt C, De Wever O, Vanhaecke F. Single-event tandem ICP-mass spectrometry for the quantification of chemotherapeutic drug-derived Pt and endogenous elements in individual human cells. Anal Chim Acta 2021; 1177:338797. [PMID: 34482885 DOI: 10.1016/j.aca.2021.338797] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Revised: 06/05/2021] [Accepted: 06/22/2021] [Indexed: 11/27/2022]
Abstract
Single cell - tandem ICP-mass spectrometry (SC-ICP-MS/MS) was used for the determination of the absolute amount of Pt (coming from exposure to various concentration levels of cisplatin as a chemotherapeutic drug) and five endogenous elements (P, S, Fe, Cu and Zn) in individual human cells of three different types - Raji, Jurkat and Y79. Optimum conditions were obtained by using a sample introduction unit transporting cell suspension containing approx. 5 × 104 cells per mL at a flow rate of 10 μL min-1 to a nebulizer with narrow internal diameter (250 μm i.d.), mounted onto a total consumption spray chamber. Interference-free conditions were obtained in tandem MS mode (i) for P and S by pressurizing the collision/reaction cell (CRC) with O2 and monitoring the PO+ and SO + reaction product ions and (ii) for Fe by pressurizing the CRC with NH3 and monitoring the Fe(NH3)2+ reaction product ion. The quantification approach was validated by comparison of the absolute amounts of the target elements (in fg per cell) as obtained using SC-ICP-MS/MS with those obtained after acid digestion of approx. 2 × 106 cells and subsequent solution ICP-MS/MS analysis ("bulk" analysis). A higher Pt cell content was observed upon increasing the concentration of the cisplatin solution the cells were exposed to during 24 h. The Pt mass per cell (fg) increased linearly as a function of the cisplatin concentration, but a higher Pt uptake was found in the case of Jurkat cells compared to the other cell types. A cell viability assay showed a lack of chemosensitivity to cisplatin below 200 μM for the Raji and Y79 cell line, but an IC50 value of 11.1 ± 1.3 μM for Jurkat cells. This difference in chemo-responsiveness between the different cell types supported the difference in Pt uptake as indicated via SC-ICP-MS analysis. The increasing level of Pt did not have a marked effect on the contents of the endogenous elements monitored in Raji and Y79 cells, but a decrease in the P and S cell content upon increasing cisplatin treatment was observed for Jurkat cells. This can most likely be attributed to stress induced by the chemotherapeutic treatment in cells showing chemosensitivity towards cisplatin. The results also indicate differences in the absolute amount of endogenous element per cell between different cell types, suggesting the potential of SC-ICP-MS as a "metallo-fingerprinting" tool.
Collapse
Affiliation(s)
- Tong Liu
- Ghent University, Department of Chemistry, Atomic & Mass Spectrometry, A&MS Research Group, Campus Sterre, Krijgslaan 281-S12, 9000, Ghent, Belgium; Cancer Research Institute Ghent - CRIG, 9000, Ghent, Belgium
| | - Eduardo Bolea-Fernandez
- Ghent University, Department of Chemistry, Atomic & Mass Spectrometry, A&MS Research Group, Campus Sterre, Krijgslaan 281-S12, 9000, Ghent, Belgium; Cancer Research Institute Ghent - CRIG, 9000, Ghent, Belgium.
| | - Christophe Mangodt
- Ghent University, Department of Human Structure and Repair, Laboratory of Experimental Cancer Research - LECR, C. Heymanslaan 10, 9000, Ghent, Belgium; Cancer Research Institute Ghent - CRIG, 9000, Ghent, Belgium
| | - Olivier De Wever
- Ghent University, Department of Human Structure and Repair, Laboratory of Experimental Cancer Research - LECR, C. Heymanslaan 10, 9000, Ghent, Belgium; Cancer Research Institute Ghent - CRIG, 9000, Ghent, Belgium
| | - Frank Vanhaecke
- Ghent University, Department of Chemistry, Atomic & Mass Spectrometry, A&MS Research Group, Campus Sterre, Krijgslaan 281-S12, 9000, Ghent, Belgium; Cancer Research Institute Ghent - CRIG, 9000, Ghent, Belgium
| |
Collapse
|
18
|
Zhang P, Chang KC, Abate AR. Precision ejection of microfluidic droplets into air with a superhydrophobic outlet. LAB ON A CHIP 2021; 21:1484-1491. [PMID: 33656500 PMCID: PMC8189694 DOI: 10.1039/d0lc01327g] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
Dispensing micron-scale droplets from a suspended nozzle is important for applications in bioprinting, analytical chemistry, and pharmaceutical formulation. Here, we describe a general approach to eject droplets from microfluidic devices using superhydrophobic patterning; this facilitates release of wetted fluids, allowing droplets to break contact with channel surfaces and travel along regular paths to achieve a printing accuracy of ∼3 μm. We demonstrate the utility of the approach by using it to print droplets of varied composition from a microfluidic mixing device. Our approach is compatible with common fabrication techniques making it applicable to devices configured for diverse applications.
Collapse
Affiliation(s)
- Pengfei Zhang
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, CA, USA.
| | - Kai-Chun Chang
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, CA, USA.
| | - Adam R Abate
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, CA, USA. and California Institute for Quantitative Biosciences, University of California, San Francisco, San Francisco, CA, USA and Chan Zuckerberg Biohub, San Francisco, CA, USA
| |
Collapse
|
19
|
Single cell ICP-MS using on line sample introduction systems: Current developments and remaining challenges. Trends Analyt Chem 2020. [DOI: 10.1016/j.trac.2020.116042] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
20
|
Yu X, He M, Chen B, Hu B. Recent advances in single-cell analysis by inductively coupled plasma-mass spectrometry: A review. Anal Chim Acta 2020; 1137:191-207. [DOI: 10.1016/j.aca.2020.07.041] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 07/14/2020] [Accepted: 07/15/2020] [Indexed: 12/13/2022]
|
21
|
Leppin C, Hampel S, Meyer FS, Langhoff A, Fittschen UEA, Johannsmann D. A Quartz Crystal Microbalance, Which Tracks Four Overtones in Parallel with a Time Resolution of 10 Milliseconds: Application to Inkjet Printing. SENSORS (BASEL, SWITZERLAND) 2020; 20:E5915. [PMID: 33092072 PMCID: PMC7589769 DOI: 10.3390/s20205915] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 10/12/2020] [Accepted: 10/15/2020] [Indexed: 01/26/2023]
Abstract
A quartz crystal microbalance (QCM) is described, which simultaneously determines resonance frequency and bandwidth on four different overtones. The time resolution is 10 milliseconds. This fast, multi-overtone QCM is based on multi-frequency lockin amplification. Synchronous interrogation of overtones is needed, when the sample changes quickly and when information on the sample is to be extracted from the comparison between overtones. The application example is thermal inkjet-printing. At impact, the resonance frequencies change over a time shorter than 10 milliseconds. There is a further increase in the contact area, evidenced by an increasing common prefactor to the shifts in frequency, Δf, and half-bandwidth, ΔΓ. The ratio ΔΓ/(-Δf), which quantifies the energy dissipated per time and unit area, decreases with time. Often, there is a fast initial decrease, lasting for about 100 milliseconds, followed by a slower decrease, persisting over the entire drying time (a few seconds). Fitting the overtone dependence of Δf(n) and ΔΓ(n) with power laws, one finds power-law exponents of about 1/2, characteristic of semi-infinite Newtonian liquids. The power-law exponents corresponding to Δf(n) slightly increase with time. The decrease of ΔΓ/(-Δf) and the increase of the exponents are explained by evaporation and formation of a solid film at the resonator surface.
Collapse
Affiliation(s)
- Christian Leppin
- Institute of Physical Chemistry, Clausthal University of Technology, Arnold-Sommerfeld-Str. 4, D-38678 Clausthal-Zellerfeld, Germany; (C.L.); (F.S.M.); (A.L.)
| | - Sven Hampel
- Institute of Inorganic and Analytical Chemistry, Clausthal University of Technology, Arnold-Sommerfeld-Str. 4, D-38678 Clausthal-Zellerfeld, Germany; (S.H.); (U.E.A.F.)
| | - Frederick Sebastian Meyer
- Institute of Physical Chemistry, Clausthal University of Technology, Arnold-Sommerfeld-Str. 4, D-38678 Clausthal-Zellerfeld, Germany; (C.L.); (F.S.M.); (A.L.)
| | - Arne Langhoff
- Institute of Physical Chemistry, Clausthal University of Technology, Arnold-Sommerfeld-Str. 4, D-38678 Clausthal-Zellerfeld, Germany; (C.L.); (F.S.M.); (A.L.)
| | - Ursula Elisabeth Adriane Fittschen
- Institute of Inorganic and Analytical Chemistry, Clausthal University of Technology, Arnold-Sommerfeld-Str. 4, D-38678 Clausthal-Zellerfeld, Germany; (S.H.); (U.E.A.F.)
| | - Diethelm Johannsmann
- Institute of Physical Chemistry, Clausthal University of Technology, Arnold-Sommerfeld-Str. 4, D-38678 Clausthal-Zellerfeld, Germany; (C.L.); (F.S.M.); (A.L.)
| |
Collapse
|
22
|
Yu X, Chen B, He M, Hu B. Argon Enclosed Droplet Based 3D Microfluidic Device Online Coupled with Time-Resolved ICPMS for Determination of Cadmium and Zinc in Single Cells Exposed to Cadmium Ion. Anal Chem 2020; 92:13550-13557. [PMID: 32883069 DOI: 10.1021/acs.analchem.0c03194] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Time-resolved (TRA)-ICPMS has become a booming subfield of single-cell analysis tools in recent years, while generation of single cells remains the major challenge. Microfluidic devices reveal their great capability and potential in encapsulation of single cells into water droplets. However, current strategies to pinch off droplets require a specific oil phase, which is not compatible to conventional ICPMS and makes the signal of cells in the water phase susceptible. Herein, we built a 3D water-in-gas microfluidic device (3D W/G MFD) with commercially available components, producing single cell droplet enclosed by argon gas. By simply tuning the flow rate of gas and water, the droplets were generated to encapsulate single cells, which significantly reduced the probability of the single signal coming from multiple cells by 1 or 2 orders of magnitude compared to direct injection. The developed oil-free 3D W/G MFD was more friendly to online coupling with TRA-ICPMS than water-in-oil devices. The effect of Cd2+ on HepG2 cells was studied by single cell detecting total Zn with 3D W/G MFD-TRA-ICPMS, and the variation of labile Zn was explored by flow cytometry with an N-(6-methoxy-8-quinolyl)-p-toluenesulfonamide probe. To the best of our knowledge, this work pioneered the exploration of variation in cellular metal content and speciation at the single-cell level, compensating for the deficiency of speciation analysis based on TRA-ICPMS and providing new insights into exploring the complexity of biology.
Collapse
Affiliation(s)
- Xiaoxiao Yu
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), Department of Chemistry, Wuhan University, Wuhan 430072, China
| | - Beibei Chen
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), Department of Chemistry, Wuhan University, Wuhan 430072, China
| | - Man He
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), Department of Chemistry, Wuhan University, Wuhan 430072, China
| | - Bin Hu
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), Department of Chemistry, Wuhan University, Wuhan 430072, China
| |
Collapse
|
23
|
Chen Z, Chen B, He M, Hu B. Droplet-Splitting Microchip Online Coupled with Time-Resolved ICPMS for Analysis of Released Fe and Pt in Single Cells Treated with FePt Nanoparticles. Anal Chem 2020; 92:12208-12215. [PMID: 32786455 DOI: 10.1021/acs.analchem.0c01217] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The intracellular release of Fe/Pt ions from FePt nanoparticles (NPs) in single cells is highly critical to elucidate the potential cytotoxicity or potential cell protection mechanism of FePt NPs. For the first time, the quantitative analysis of Fe/Pt released from FePt-Cys NPs in single cells was achieved by a droplet-splitting microchip coupled online to inductively coupled plasma mass spectrometry detection. The droplet-splitting chip integrates droplet generation, cell lysis, and droplet-splitting units. The quantification of released Fe/Pt was achieved via measuring standard Fe/Pt ionic solutions. For the determination of total Fe/Pt in single cells, the same microchip with different operation modes (total-mode) was used, and the quantification of total Fe/Pt was achieved with FePt NPs as the standard. The developed method with two analysis modes was applied to study the decomposition behavior of FePt-Cys NPs in single cells, and the results indicated that the percentages of the cells absorbing/decomposing FePt-Cys NPs increased with the incubation time. Almost all cells absorbed FePt-Cys NPs after 6 h, while only about 60% cells decomposed FePt-Cys NPs after 6 h and almost all cells decomposed FePt-Cys NPs after 18 h. Besides, the released Fe content was lower than its endogenous content in cells and the release rate of Pt was higher than that of Fe, providing a possibility that the released Pt may contribute more to cytotoxicity. The developed system enabled fractionation of Fe/Pt in single cells treated with FePt NPs with high accuracy, easy operation, and high throughput and showed a great potential for elemental speciation at the single-cell level.
Collapse
Affiliation(s)
- Zhenna Chen
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), Department of Chemistry, Wuhan University, Wuhan 430072, China
| | - Beibei Chen
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), Department of Chemistry, Wuhan University, Wuhan 430072, China
| | - Man He
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), Department of Chemistry, Wuhan University, Wuhan 430072, China
| | - Bin Hu
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), Department of Chemistry, Wuhan University, Wuhan 430072, China
| |
Collapse
|
24
|
Galazzi RM, Chacón-Madrid K, Freitas DC, da Costa LF, Arruda MAZ. Inductively coupled plasma mass spectrometry based platforms for studies involving nanoparticle effects in biological samples. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2020; 34 Suppl 3:e8726. [PMID: 32020701 DOI: 10.1002/rcm.8726] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 12/18/2019] [Accepted: 01/13/2020] [Indexed: 06/10/2023]
Abstract
The widespread application of nanoparticles (NPs) in recent times has caused concern because of their effects in biological systems. Although NPs can be produced naturally, industrially synthesized NPs affect the metabolism of a given organism because of their high reactivity. The biotransformation of NPs involves different processes, including aggregation/agglomeration, and reactions with biomolecules that will be reflected in their toxicity. Several analytical techniques, including inductively coupled plasma mass spectrometry (ICP-MS), have been used for characterizing and quantifying NPs in biological samples. In fact, in addition to providing information regarding the morphology and concentration of NPs, ICP-MS-based platforms, such as liquid chromatography/ICP-MS, single-particle ICP-MS, field-flow fractionation (asymmetrical flow field-flow fractionation)-ICP-MS, and laser ablation-ICP-MS, yield elemental information about molecules. Furthermore, such information together with speciation analysis enlarges our understanding of the interaction between NPs and biological organisms. This study reports the contribution of ICP-MS-based platforms as a tool for evaluating NPs in distinct biological samples by providing an additional understanding of the behavior of NPs and their toxicity in these organisms.
Collapse
Affiliation(s)
- Rodrigo M Galazzi
- Department of Analytical Chemistry, Spectrometry, Sample Preparation and Mechanization Group, Institute of Chemistry, University of Campinas-Unicamp, Campinas, SP, Brazil
- National Institute of Science and Technology for Bioanalytics, Institute of Chemistry, University of Campinas-Unicamp, Campinas, SP, Brazil
| | - Katherine Chacón-Madrid
- Department of Analytical Chemistry, Spectrometry, Sample Preparation and Mechanization Group, Institute of Chemistry, University of Campinas-Unicamp, Campinas, SP, Brazil
- National Institute of Science and Technology for Bioanalytics, Institute of Chemistry, University of Campinas-Unicamp, Campinas, SP, Brazil
| | - Daniel C Freitas
- Department of Analytical Chemistry, Spectrometry, Sample Preparation and Mechanization Group, Institute of Chemistry, University of Campinas-Unicamp, Campinas, SP, Brazil
- National Institute of Science and Technology for Bioanalytics, Institute of Chemistry, University of Campinas-Unicamp, Campinas, SP, Brazil
| | - Luana F da Costa
- Department of Analytical Chemistry, Spectrometry, Sample Preparation and Mechanization Group, Institute of Chemistry, University of Campinas-Unicamp, Campinas, SP, Brazil
- National Institute of Science and Technology for Bioanalytics, Institute of Chemistry, University of Campinas-Unicamp, Campinas, SP, Brazil
| | - Marco A Z Arruda
- Department of Analytical Chemistry, Spectrometry, Sample Preparation and Mechanization Group, Institute of Chemistry, University of Campinas-Unicamp, Campinas, SP, Brazil
- National Institute of Science and Technology for Bioanalytics, Institute of Chemistry, University of Campinas-Unicamp, Campinas, SP, Brazil
| |
Collapse
|
25
|
Alavi S, Guo X, Javid SM, Ebrahimi A, Mostaghimi J. High-Sensitivity and High-Speed Single-Particle Inductively Coupled Plasma Spectrometry with the Conical Torch. Anal Chem 2020; 92:11786-11794. [PMID: 32791823 DOI: 10.1021/acs.analchem.0c01903] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Significant advancement has been achieved in single-particle analysis with the new conical ICP torch in terms of sensitivity, precision, and throughput. Monodisperse desolvated particles of eight elements (Na, Al, Ag, Sr, Ca, Mg, Fe, and Be) were injected into the conical torch, and signal peak characteristics, precision, and kinetics of atomization and ionization were investigated with optical spectrometry. A particle introduction system was designed to ensure a smooth and uninterrupted delivery of desolvated particles to the plasma. The important finding is that, compared with the conventional Fassel torch, the conical torch offers a 1.5-8 times higher peak intensity, a 2-4 times higher peak area, a 2 times shorter peak width, and higher precision (i.e., a 1.5 times lower RSD for peak intensity and a 1.8 times lower RSD for peak width on average). Also, mass detection limits were found to be similar or up to 8 times lower (i.e., 2 times lower diameter detection limit) for the conical torch. The results indicate that these features are due to a much higher electron density, excitation temperature, and robustness which, together with an improved particle trajectory, lead to rapid vaporization/atomization/ionization of particles with minimized atom/ion cloud diffusion. Finally, the torch was demonstrated to be capable of analyzing single particles at a rate of at least 2000 particles per second with high sensitivity and precision. On the basis of these results, the conical torch is expected to bring about new possibilities in ICP-based single-particle analysis.
Collapse
Affiliation(s)
- Sina Alavi
- Department of Mechanical and Industrial Engineering, University of Toronto, Toronto M5S 3G8, Canada
| | - Xiaoman Guo
- Department of Mechanical and Industrial Engineering, University of Toronto, Toronto M5S 3G8, Canada
| | - Seyyed Morteza Javid
- Department of Mechanical and Industrial Engineering, University of Toronto, Toronto M5S 3G8, Canada
| | - Ali Ebrahimi
- Department of Mechanical and Industrial Engineering, University of Toronto, Toronto M5S 3G8, Canada
| | - Javad Mostaghimi
- Department of Mechanical and Industrial Engineering, University of Toronto, Toronto M5S 3G8, Canada
| |
Collapse
|
26
|
Tanaka Y, Iida R, Takada S, Kubota T, Yamanaka M, Sugiyama N, Abdelnour Y, Ogra Y. Quantitative Elemental Analysis of a Single Cell by Using Inductively Coupled Plasma‐Mass Spectrometry in Fast Time‐Resolved Analysis Mode. Chembiochem 2020; 21:3266-3272. [DOI: 10.1002/cbic.202000358] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 07/13/2020] [Indexed: 01/07/2023]
Affiliation(s)
- Yu‐ki Tanaka
- Graduate School of Pharmaceutical Sciences Chiba University 1-8-1 Inohana Chuo Chiba 260-8675 Japan
| | - Risako Iida
- Graduate School of Pharmaceutical Sciences Chiba University 1-8-1 Inohana Chuo Chiba 260-8675 Japan
| | - Shohei Takada
- Graduate School of Pharmaceutical Sciences Chiba University 1-8-1 Inohana Chuo Chiba 260-8675 Japan
| | - Tetsuo Kubota
- Agilent Technologies International Japan, Ltd. 9-1 Takakura-machi Hachioji Tokyo 192-0033 Japan
| | - Michiko Yamanaka
- Agilent Technologies International Japan, Ltd. 9-1 Takakura-machi Hachioji Tokyo 192-0033 Japan
| | - Naoki Sugiyama
- Agilent Technologies International Japan, Ltd. 9-1 Takakura-machi Hachioji Tokyo 192-0033 Japan
| | - Yolande Abdelnour
- Agilent Technologies, France Parc Technopolis, Bâtiment Olympe 3 avenue du Canada 91940 Les Ulis France
| | - Yasumitsu Ogra
- Graduate School of Pharmaceutical Sciences Chiba University 1-8-1 Inohana Chuo Chiba 260-8675 Japan
| |
Collapse
|
27
|
“Development and application of analytical detection techniques for droplet-based microfluidics”-A review. Anal Chim Acta 2020; 1113:66-84. [DOI: 10.1016/j.aca.2020.03.011] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2019] [Revised: 03/02/2020] [Accepted: 03/05/2020] [Indexed: 01/03/2023]
|
28
|
Zhou Y, Chen Z, Zeng J, Zhang J, Yu D, Zhang B, Yan X, Yang L, Wang Q. Direct Infusion ICP- qMS of Lined-up Single-Cell Using an Oil-Free Passive Microfluidic System. Anal Chem 2020; 92:5286-5293. [PMID: 32181662 DOI: 10.1021/acs.analchem.9b05838] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
When coupled online with mass spectrometry (MS), widely applied water-in-oil droplet-based microfluidics for single cell analysis met problems. For example, the oil phase rumpled the stability, efficiency, and accuracy of MS, the conventional interface between MS and the microfluidic chip suffered the low sample introduction efficiency, and the transportation rates sometimes unmatched the readout dwell times for transient signal acquisition. Considering cells are already "droplets" with hydrophilic surface and elastic hydrophobic membrane, we developed an oil-free passive microfluidic system (OFPMS) that consists of alternating straight-curved-straight microchannels and a direct infusion (dI) micronebulizer for inductively coupled plasma quadrupole-based mass spectrometry (ICP-qMS) of lined-up single-cell. OFPMS guarantees exact single cell isolation one by one just using a thermo-decomposable NH4HCO3 buffer, eliminating the use of any oil and incompatible polymer carriers. It is more flexible and facile to adapt to the dwell time of ICP-qMS owing to the adjustable throughput of 400 to 25000 cells/min and the controllable interval time of at least 20 ms between the lined-up adjacent single cells. Quantitative single-cell transportation and high detection efficiency of more than 70% was realized using OFPMS-dI-ICP-qMS exemplified here. Thus, cell-to-cell heterogeneity can be simply uncovered via the determination of metals in the individual cells.
Collapse
|
29
|
Salehi SS, Shamloo A, Hannani SK. Microfluidic technologies to engineer mesenchymal stem cell aggregates-applications and benefits. Biophys Rev 2020; 12:123-133. [PMID: 31953794 PMCID: PMC7040154 DOI: 10.1007/s12551-020-00613-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Accepted: 01/07/2020] [Indexed: 02/07/2023] Open
Abstract
Three-dimensional cell culture and the forming multicellular aggregates are superior over traditional monolayer approaches due to better mimicking of in vivo conditions and hence functions of a tissue. A considerable amount of attention has been devoted to devising efficient methods for the rapid formation of uniform-sized multicellular aggregates. Microfluidic technology describes a platform of techniques comprising microchannels to manipulate the small number of reagents with unique properties and capabilities suitable for biological studies. The focus of this review is to highlight recent studies of using microfluidics, especially droplet-based types for the formation, culture, and harvesting of mesenchymal stem cell aggregates and their subsequent application in stem cell biology, tissue engineering, and drug screening. Droplet-based microfluidics can be used to form microgels as carriers for delivering cells and to provide biological cues to the target tissue so as to be minimally invasive. Stem cell-laden microgels with a shape-forming property can be used as smart building blocks by injecting them into the injured tissue thereby constituting the cornerstone of tissue regeneration.
Collapse
Affiliation(s)
| | - Amir Shamloo
- School of Mechanical Engineering, Sharif University of Technology, Tehran, Iran.
| | | |
Collapse
|
30
|
Haidas D, Napiorkowska M, Schmitt S, Dittrich PS. Parallel Sampling of Nanoliter Droplet Arrays for Noninvasive Protein Analysis in Discrete Yeast Cultivations by MALDI-MS. Anal Chem 2020; 92:3810-3818. [DOI: 10.1021/acs.analchem.9b05235] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
31
|
A highly efficient introduction system for single cell- ICP-MS and its application to detection of copper in single human red blood cells. Talanta 2020; 206:120174. [DOI: 10.1016/j.talanta.2019.120174] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Revised: 07/11/2019] [Accepted: 07/24/2019] [Indexed: 11/17/2022]
|
32
|
Rosenkranz D, Kriegel FL, Mavrakis E, Pergantis SA, Reichardt P, Tentschert J, Jakubowski N, Laux P, Panne U, Luch A. Improved validation for single particle ICP-MS analysis using a pneumatic nebulizer / microdroplet generator sample introduction system for multi-mode nanoparticle determination. Anal Chim Acta 2019; 1099:16-25. [PMID: 31986273 DOI: 10.1016/j.aca.2019.11.043] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 11/15/2019] [Accepted: 11/18/2019] [Indexed: 12/01/2022]
Abstract
This study reports on the development of a single-particle (sp) inductively coupled plasma mass spectrometry (ICP-MS) technique suitable for the multi-mode determination of nanoparticle (NP) metal mass fraction and number concentration. The described technique, which is based on a dual inlet system consisting of a pneumatic nebulizer (PN) and a microdroplet generator (MDG), allows for the sequential introduction of ionic metal calibrant solutions and nanoparticle suspensions via all combinations of the two inlets; thus allowing for a combination of three independent modes of analysis. A novel interface, assembled using standard analytical components (a demountable quartz ICP-MS torch, flexible non-conducting silicon tubing and various connectors), was used to interface the dual inlet system to an ICP-MS. The interface provided improved functionality, compared to a previous design. It is now possible to conveniently exchange and introduce standard solutions and samples via all inlet combinations, analyze them, and also wash the sample inlet systems while the whole setup is still connected to an operating ICP-MS. This setup provided seamless and robust operation in a total of three analysis modes, i.e. three ways to independently determine the metal mass fraction and NP number concentration. All three analyses modes could be carried out within a single analytical run lasting approximately 20 min. The unique feature of the described approach is that each analysis mode is based on a different calibration principle, thus constituting an independent way to determine metal mass fractions and nanoparticle number concentrations. Conducting the three independent state-of-the-art analysis, within a single analytical run, improves substantially the validation capabilities of sp-ICP-MS for NP analysis. To assess the technique's analytical performance, Au, Ag and CeO2 nanoparticles were analyzed. The determined average diameters for Au (56.7 ± 1.5 nm), Ag (72.8 ± 3.4 nm) and CeO2 (69.0 ± 6.4 nm) NPs were in close agreement for all three modes of analysis, as well as with the values provided by suppliers' for Au and Ag NPs (56.0 ± 0.5 for Au, 74.6 ± 3.8 nm for Ag). However, the determined average value for CeO2 was much higher than the expected 28.4 ± 10.4 nm, possibly due to NP agglomeration and the inability to detect NPs existing within the lower size range. The determined NP number concentrations, using analysis modes -I and -II, gave recoveries between 91 and 100% for the Au and Ag NP number concentrations. Whereas analysis mode -III showed a recovery of 70-88% for the same materials. Because of the polydispersity, the small size and polyhedral shape of the CeO2 NPs it was not possible to make NP number concentration comparisons for this material.
Collapse
Affiliation(s)
- Daniel Rosenkranz
- German Federal Institute for Risk Assessment (BfR), Department of Chemical and Product Safety, Max-Dohrn-Strasse 8-10, 10589, Berlin, Germany; Federal Institute for Materials Research and Testing (BAM), Richard-Willstätter-Strasse 11, 12489, Berlin, Germany.
| | - Fabian L Kriegel
- German Federal Institute for Risk Assessment (BfR), Department of Chemical and Product Safety, Max-Dohrn-Strasse 8-10, 10589, Berlin, Germany
| | - Emmanouil Mavrakis
- Environmental Chemical Processes Laboratory, Department of Chemistry, University of Crete, Voutes Campus, 70013, Heraklion, Greece
| | - Spiros A Pergantis
- Environmental Chemical Processes Laboratory, Department of Chemistry, University of Crete, Voutes Campus, 70013, Heraklion, Greece
| | - Philipp Reichardt
- German Federal Institute for Risk Assessment (BfR), Department of Chemical and Product Safety, Max-Dohrn-Strasse 8-10, 10589, Berlin, Germany
| | - Jutta Tentschert
- German Federal Institute for Risk Assessment (BfR), Department of Chemical and Product Safety, Max-Dohrn-Strasse 8-10, 10589, Berlin, Germany
| | | | - Peter Laux
- German Federal Institute for Risk Assessment (BfR), Department of Chemical and Product Safety, Max-Dohrn-Strasse 8-10, 10589, Berlin, Germany
| | - Ulrich Panne
- Federal Institute for Materials Research and Testing (BAM), Richard-Willstätter-Strasse 11, 12489, Berlin, Germany
| | - Andreas Luch
- German Federal Institute for Risk Assessment (BfR), Department of Chemical and Product Safety, Max-Dohrn-Strasse 8-10, 10589, Berlin, Germany
| |
Collapse
|
33
|
Wei X, Zhang X, Guo R, Chen ML, Yang T, Xu ZR, Wang JH. A Spiral-Helix (3D) Tubing Array That Ensures Ultrahigh-Throughput Single-Cell Sampling. Anal Chem 2019; 91:15826-15832. [DOI: 10.1021/acs.analchem.9b04122] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Xing Wei
- Research Center for Analytical Sciences, Department of Chemistry, College of Sciences, Northeastern University, Shenyang, Liaoning 110819, P.R. China
| | - Xuan Zhang
- Research Center for Analytical Sciences, Department of Chemistry, College of Sciences, Northeastern University, Shenyang, Liaoning 110819, P.R. China
| | - Rui Guo
- Research Center for Analytical Sciences, Department of Chemistry, College of Sciences, Northeastern University, Shenyang, Liaoning 110819, P.R. China
| | - Ming-Li Chen
- Research Center for Analytical Sciences, Department of Chemistry, College of Sciences, Northeastern University, Shenyang, Liaoning 110819, P.R. China
| | - Ting Yang
- Research Center for Analytical Sciences, Department of Chemistry, College of Sciences, Northeastern University, Shenyang, Liaoning 110819, P.R. China
| | - Zhang-Run Xu
- Research Center for Analytical Sciences, Department of Chemistry, College of Sciences, Northeastern University, Shenyang, Liaoning 110819, P.R. China
| | - Jian-Hua Wang
- Research Center for Analytical Sciences, Department of Chemistry, College of Sciences, Northeastern University, Shenyang, Liaoning 110819, P.R. China
| |
Collapse
|
34
|
Wang H, Chen B, He M, Li X, Chen P, Hu B. Study on uptake of gold nanoparticles by single cells using droplet microfluidic chip-inductively coupled plasma mass spectrometry. Talanta 2019; 200:398-407. [DOI: 10.1016/j.talanta.2019.03.075] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Revised: 03/19/2019] [Accepted: 03/19/2019] [Indexed: 11/29/2022]
|
35
|
Mavrakis E, Mavroudakis L, Lydakis-Simantiris N, Pergantis SA. Investigating the Uptake of Arsenate by Chlamydomonas reinhardtii Cells and its Effect on their Lipid Profile using Single Cell ICP–MS and Easy Ambient Sonic-Spray Ionization–MS. Anal Chem 2019; 91:9590-9598. [DOI: 10.1021/acs.analchem.9b00917] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Emmanouil Mavrakis
- Environmental Chemical Processes Laboratory, Department of Chemistry, University of Crete, Voutes Campus, Heraklion 70013, Greece
| | - Leonidas Mavroudakis
- Environmental Chemical Processes Laboratory, Department of Chemistry, University of Crete, Voutes Campus, Heraklion 70013, Greece
| | - Nikos Lydakis-Simantiris
- Laboratory of Environmental Chemistry and of Biochemical Processes, Department of Agriculture, Hellenic Mediterranean University, Chania 73133, Greece
| | - Spiros A. Pergantis
- Environmental Chemical Processes Laboratory, Department of Chemistry, University of Crete, Voutes Campus, Heraklion 70013, Greece
| |
Collapse
|
36
|
Yu X, Chen B, He M, Wang H, Hu B. 3D Droplet-Based Microfluidic Device Easily Assembled from Commercially Available Modules Online Coupled with ICPMS for Determination of Silver in Single Cell. Anal Chem 2019; 91:2869-2875. [DOI: 10.1021/acs.analchem.8b04844] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Xiaoxiao Yu
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), Department of Chemistry, Wuhan University, Wuhan 430072, China
| | - Beibei Chen
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), Department of Chemistry, Wuhan University, Wuhan 430072, China
| | - Man He
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), Department of Chemistry, Wuhan University, Wuhan 430072, China
| | - Han Wang
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), Department of Chemistry, Wuhan University, Wuhan 430072, China
| | - Bin Hu
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), Department of Chemistry, Wuhan University, Wuhan 430072, China
| |
Collapse
|
37
|
Haidas D, Bachler S, Köhler M, Blank LM, Zenobi R, Dittrich PS. Microfluidic Platform for Multimodal Analysis of Enzyme Secretion in Nanoliter Droplet Arrays. Anal Chem 2019; 91:2066-2073. [PMID: 30571917 DOI: 10.1021/acs.analchem.8b04506] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
High-throughput screening of cell-secreted proteins is essential for various biotechnological applications. In this article, we show a microfluidic approach to perform the analysis of cell-secreted proteins in nanoliter droplet arrays by two complementary methods, fluorescence microscopy and mass spectrometry. We analyzed the secretion of the enzyme phytase, a phosphatase used as an animal feed additive, from a low number of yeast cells. Yeast cells were encapsulated in nanoliter volumes by droplet microfluidics and deposited on spatially defined spots on the surface of a glass slide mounted on the motorized stage of an inverted fluorescence microscope. During the following incubation for several hours to produce phytase, the droplets can be monitored by optical microscopy. After addition of a fluorogenic substrate at a defined time, the relative concentration of phytase was determined in every droplet. Moreover, we demonstrate the use of matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS) to monitor the multistep conversion of the native substrate phytic acid by phytase secreted in 7 nL droplets containing 50-100 cells. Our method can be adapted to various other protocols. As the droplets are easily accessible, compounds such as assay reagents or matrix molecules can be added to all or to selected droplets only, or part of the droplet volume could be removed. Hence, this platform is a versatile tool for questions related to cell secretome analysis.
Collapse
Affiliation(s)
- Dominik Haidas
- Department of Biosystems Science and Engineering , ETH Zürich , Mattenstrasse 26 , 4058 Basel , Switzerland
| | - Simon Bachler
- Department of Biosystems Science and Engineering , ETH Zürich , Mattenstrasse 26 , 4058 Basel , Switzerland
| | - Martin Köhler
- Department of Chemistry and Applied Biosciences , ETH Zürich , Vladimir-Prelog-Weg 3 , 8093 Zürich , Switzerland
| | - Lars M Blank
- Institute of Applied Microbiology, Aachen Biology and Biotechnology , RWTH Aachen University , Worringer Weg 1 , 52074 Aachen , Germany
| | - Renato Zenobi
- Department of Chemistry and Applied Biosciences , ETH Zürich , Vladimir-Prelog-Weg 3 , 8093 Zürich , Switzerland
| | - Petra S Dittrich
- Department of Biosystems Science and Engineering , ETH Zürich , Mattenstrasse 26 , 4058 Basel , Switzerland
| |
Collapse
|
38
|
Wei X, Zheng DH, Cai Y, Jiang R, Chen ML, Yang T, Xu ZR, Yu YL, Wang JH. High-Throughput/High-Precision Sampling of Single Cells into ICP-MS for Elucidating Cellular Nanoparticles. Anal Chem 2018; 90:14543-14550. [DOI: 10.1021/acs.analchem.8b04471] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Xing Wei
- Research Center for Analytical Sciences, Department of Chemistry, College of Sciences, Northeastern University, Shenyang 110819, China
| | - Dong-Hua Zheng
- Research Center for Analytical Sciences, Department of Chemistry, College of Sciences, Northeastern University, Shenyang 110819, China
| | - Yi Cai
- Research Center for Analytical Sciences, Department of Chemistry, College of Sciences, Northeastern University, Shenyang 110819, China
| | - Rui Jiang
- Research Center for Analytical Sciences, Department of Chemistry, College of Sciences, Northeastern University, Shenyang 110819, China
| | - Ming-Li Chen
- Research Center for Analytical Sciences, Department of Chemistry, College of Sciences, Northeastern University, Shenyang 110819, China
| | - Ting Yang
- Research Center for Analytical Sciences, Department of Chemistry, College of Sciences, Northeastern University, Shenyang 110819, China
| | - Zhang-Run Xu
- Research Center for Analytical Sciences, Department of Chemistry, College of Sciences, Northeastern University, Shenyang 110819, China
| | - Yong-Liang Yu
- Research Center for Analytical Sciences, Department of Chemistry, College of Sciences, Northeastern University, Shenyang 110819, China
| | - Jian-Hua Wang
- Research Center for Analytical Sciences, Department of Chemistry, College of Sciences, Northeastern University, Shenyang 110819, China
| |
Collapse
|
39
|
Jiménez-Lamana J, Szpunar J, Łobinski R. New Frontiers of Metallomics: Elemental and Species-Specific Analysis and Imaging of Single Cells. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1055:245-270. [PMID: 29884968 DOI: 10.1007/978-3-319-90143-5_10] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Single cells represent the basic building units of life, and thus their study is one the most important areas of research. However, classical analysis of biological cells eludes the investigation of cell-to-cell differences to obtain information about the intracellular distribution since it only provides information by averaging over a huge number of cells. For this reason, chemical analysis of single cells is an expanding area of research nowadays. In this context, metallomics research is going down to the single-cell level, where high-resolution high-sensitive analytical techniques are required. In this chapter, we present the latest developments and applications in the fields of single-cell inductively coupled plasma mass spectrometry (SC-ICP-MS), mass cytometry, laser ablation (LA)-ICP-MS, nanoscale secondary ion mass spectrometry (nanoSIMS), and synchrotron X-ray fluorescence microscopy (SXRF) for single-cell analysis. Moreover, the capabilities and limitations of the current analytical techniques to unravel single-cell metabolomics as well as future perspectives in this field will be discussed.
Collapse
Affiliation(s)
- Javier Jiménez-Lamana
- Institute of Analytical Sciences and Physico-Chemistry for Environment and Materials (IPREM), UMR 5254, CNRS-UPPA, Pau, France.
| | - Joanna Szpunar
- Institute of Analytical Sciences and Physico-Chemistry for Environment and Materials (IPREM), UMR 5254, CNRS-UPPA, Pau, France
| | - Ryszard Łobinski
- Institute of Analytical Sciences and Physico-Chemistry for Environment and Materials (IPREM), UMR 5254, CNRS-UPPA, Pau, France
| |
Collapse
|
40
|
Choi JW, Lee JM, Kim TH, Ha JH, Ahrberg CD, Chung BG. Dual-nozzle microfluidic droplet generator. NANO CONVERGENCE 2018; 5:12. [PMID: 29755924 PMCID: PMC5938299 DOI: 10.1186/s40580-018-0145-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Accepted: 04/21/2018] [Indexed: 05/10/2023]
Abstract
The droplet-generating microfluidics has become an important technique for a variety of applications ranging from single cell analysis to nanoparticle synthesis. Although there are a large number of methods for generating and experimenting with droplets on microfluidic devices, the dispensing of droplets from these microfluidic devices is a challenge due to aggregation and merging of droplets at the interface of microfluidic devices. Here, we present a microfluidic dual-nozzle device for the generation and dispensing of uniform-sized droplets. The first nozzle of the microfluidic device is used for the generation of the droplets, while the second nozzle can accelerate the droplets and increase the spacing between them, allowing for facile dispensing of droplets. Computational fluid dynamic simulations were conducted to optimize the design parameters of the microfluidic device.
Collapse
Affiliation(s)
- Ji Wook Choi
- Department of Mechanical Engineering, Sogang University, Seoul, 04107 Republic of Korea
| | - Jong Min Lee
- Department of Mechanical Engineering, Sogang University, Seoul, 04107 Republic of Korea
| | - Tae Hyun Kim
- Department of Mechanical Engineering, Sogang University, Seoul, 04107 Republic of Korea
| | - Jang Ho Ha
- Department of Mechanical Engineering, Sogang University, Seoul, 04107 Republic of Korea
| | | | - Bong Geun Chung
- Department of Mechanical Engineering, Sogang University, Seoul, 04107 Republic of Korea
| |
Collapse
|
41
|
Corte Rodríguez M, Álvarez-Fernández García R, Blanco E, Bettmer J, Montes-Bayón M. Quantitative Evaluation of Cisplatin Uptake in Sensitive and Resistant Individual Cells by Single-Cell ICP-MS (SC-ICP-MS). Anal Chem 2017; 89:11491-11497. [PMID: 29023104 DOI: 10.1021/acs.analchem.7b02746] [Citation(s) in RCA: 74] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
One of the main limitations to the Pt-therapy in cancer is the development of associated drug resistance that can be associated with a significant reduction of the intracellular platinum concentration. Thus, intracellular Pt concentration could be considered as a biomarker of cisplatin resistance. In this work, an alternative method to address intracellular Pt concentration in individual cells is explored to permit the evaluation of different cell models and alternative therapies in a relatively fast way. For this aim, total Pt analysis in single cells has been implemented using a total consumption nebulizer coupled to inductively coupled plasma mass spectrometric detection (ICP-MS). The efficiency of the proposed device has been evaluated in combination with flow cytometry and turned out to be around 25% (cells entering the ICP-MS from the cells in suspension). Quantitative uptake studies of a nontoxic Tb-containing compound by individual cells were conducted and the results compared to those obtained by bulk analysis of the same cells. Both sets of data were statistically comparable. Thus, final application of the developed methodology to the comparative uptake of Pt-species in cisplatin resistant and sensitive cell lines (A2780cis and A2780) was conducted. The results obtained revealed the potential of this analytical strategy to differentiate between different cell lines of different sensitivity to the drug which might be of high medical interest.
Collapse
Affiliation(s)
- M Corte Rodríguez
- Department of Physical and Analytical Chemistry, Faculty of Chemistry, University of Oviedo , C/Julián Clavería 8, 33006 Oviedo, Spain
| | - R Álvarez-Fernández García
- Department of Physical and Analytical Chemistry, Faculty of Chemistry, University of Oviedo , C/Julián Clavería 8, 33006 Oviedo, Spain
| | - E Blanco
- Department of Physical and Analytical Chemistry, Faculty of Chemistry, University of Oviedo , C/Julián Clavería 8, 33006 Oviedo, Spain
| | - J Bettmer
- Department of Physical and Analytical Chemistry, Faculty of Chemistry, University of Oviedo , C/Julián Clavería 8, 33006 Oviedo, Spain
| | - M Montes-Bayón
- Department of Physical and Analytical Chemistry, Faculty of Chemistry, University of Oviedo , C/Julián Clavería 8, 33006 Oviedo, Spain
| |
Collapse
|
42
|
Beulig RJ, Warias R, Heiland JJ, Ohla S, Zeitler K, Belder D. A droplet-chip/mass spectrometry approach to study organic synthesis at nanoliter scale. LAB ON A CHIP 2017; 17:1996-2002. [PMID: 28513728 DOI: 10.1039/c7lc00313g] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
A droplet-based microfluidic device with seamless hyphenation to electrospray mass spectrometry was developed to rapidly investigate organic reactions in segmented flow providing a versatile tool for drug development. A chip-MS interface with an integrated counterelectrode allowed for a flexible positioning of the chip-emitter in front of the MS orifice as well as an independent adjustment of the electrospray potentials. This was necessary to avoid contamination of the mass spectrometer as well as sample overloading due to the high analyte concentrations. The device was exemplarily applied to study the scope of an amino-catalyzed domino reaction with low picomole amount of catalyst in individual nanoliter sized droplets.
Collapse
Affiliation(s)
- R J Beulig
- Institute for Analytical Chemistry, University of Leipzig, Linnéstraße 3, 04103 Leipzig, Germany.
| | | | | | | | | | | |
Collapse
|
43
|
Schulze S, Pahl M, Stolz F, Appun J, Abel B, Schneider C, Belder D. Liquid Beam Desorption Mass Spectrometry for the Investigation of Continuous Flow Reactions in Microfluidic Chips. Anal Chem 2017; 89:6175-6181. [PMID: 28489359 DOI: 10.1021/acs.analchem.7b01026] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
In this work, we present the combination of microfluidic chips and mass spectrometry employing laser-induced liquid beam ionization/desorption. The developed system was evaluated with respect to stable beam generation and laser parameters as well as solvent compatibility. The device was exemplarily applied to study a vinylogous Mannich reaction performed in continuous flow on chip. Fast processes can be observed with this technique which in the future could be beneficial for studying intermediates or contribute to the elucidation of reaction mechanisms.
Collapse
Affiliation(s)
- Sandra Schulze
- Institute of Analytical Chemistry, University Leipzig , Linnéstraße 3, 04103 Leipzig, Germany
| | - Maik Pahl
- Institute of Analytical Chemistry, University Leipzig , Linnéstraße 3, 04103 Leipzig, Germany
| | - Ferdinand Stolz
- Wilhelm-Ostwald-Institute of Physical and Theoretical Chemistry, University Leipzig , Linnéstraße 3, 04103 Leipzig, Germany.,Leibniz Institute of Surface Modification (IOM) , Permoserstraße 15, 04318 Leipzig, Germany
| | - Johannes Appun
- Institute of Organic Chemistry, University Leipzig , Johannisallee 29, 04103 Leipzig, Germany
| | - Bernd Abel
- Wilhelm-Ostwald-Institute of Physical and Theoretical Chemistry, University Leipzig , Linnéstraße 3, 04103 Leipzig, Germany.,Leibniz Institute of Surface Modification (IOM) , Permoserstraße 15, 04318 Leipzig, Germany
| | - Christoph Schneider
- Institute of Organic Chemistry, University Leipzig , Johannisallee 29, 04103 Leipzig, Germany
| | - Detlev Belder
- Institute of Analytical Chemistry, University Leipzig , Linnéstraße 3, 04103 Leipzig, Germany
| |
Collapse
|
44
|
Wang H, Chen B, He M, Hu B. A Facile Droplet-Chip-Time-Resolved Inductively Coupled Plasma Mass Spectrometry Online System for Determination of Zinc in Single Cell. Anal Chem 2017; 89:4931-4938. [DOI: 10.1021/acs.analchem.7b00134] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Han Wang
- Key Laboratory of Analytical
Chemistry for Biology and Medicine (Ministry of Education), Department
of Chemistry, Wuhan University, Wuhan 430072, China
| | - Beibei Chen
- Key Laboratory of Analytical
Chemistry for Biology and Medicine (Ministry of Education), Department
of Chemistry, Wuhan University, Wuhan 430072, China
| | - Man He
- Key Laboratory of Analytical
Chemistry for Biology and Medicine (Ministry of Education), Department
of Chemistry, Wuhan University, Wuhan 430072, China
| | - Bin Hu
- Key Laboratory of Analytical
Chemistry for Biology and Medicine (Ministry of Education), Department
of Chemistry, Wuhan University, Wuhan 430072, China
| |
Collapse
|
45
|
Sánchez R, Horstkotte B, Fikarová K, Sklenářová H, Maestre S, Miró M, Todolí JL. Fully Automatic In-Syringe Magnetic Stirring-Assisted Dispersive Liquid-Liquid Microextraction Hyphenated to High-Temperature Torch Integrated Sample Introduction System-Inductively Coupled Plasma Spectrometer with Direct Injection of the Organic Phase. Anal Chem 2017; 89:3787-3794. [PMID: 28230344 DOI: 10.1021/acs.analchem.7b00400] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
A proof of concept study involving the online coupling of automatic dispersive liquid-liquid microextraction (DLLME) to inductively coupled plasma optical emission spectrometry (ICP OES) with direct introduction and analysis of the organic extract is herein reported for the first time. The flow-based analyzer features a lab-in-syringe (LIS) setup with an integrated stirring system, a Meinhard nebulizer in combination with a heated single-pass spray chamber, and a rotary injection valve, used as an online interface between the microextraction system and the detection instrument. Air-segmented flow was used for delivery of a fraction of the nonwater miscible extraction phase, 12 μL of xylene, to the nebulizer. All sample preparative steps including magnetic stirring assisted DLLME were carried out inside the syringe void volume as a size-adaptable yet sealed mixing and extraction chamber. Determination of trace level concentrations of cadmium, copper, lead, and silver as model analytes has been demonstrated by microextraction as diethyldithiophosphate (DDTP) complexes. The automatic LIS-DLLME method features quantitative metal extraction, even in troublesome sample matrixes, such as seawater, salt, and fruit juices, with relative recoveries within the range of 94-103%, 93-100%, and 92-99%, respectively. Furthermore, no statistically significant differences at the 0.05 significance level were found between concentration values experimentally obtained and the certified values of two serum standard reference materials.
Collapse
Affiliation(s)
- Raquel Sánchez
- University of Alicante , Department of Analytical Chemistry, Nutrition and Food Sciences, P.O. Box 99, 03080, Alicante, Spain
| | - Burkhard Horstkotte
- Charles University , Department of Analytical Chemistry, Faculty of Pharmacy, Heyrovského 1203, 500 05 Hradec Králové, Czech Republic.,FI-TRACE Group, University of the Balearic Islands , Department of Chemistry, Carreterra de Valldemossa km 7.5, 07122 Palma de Mallorca, Spain
| | - Kateřina Fikarová
- Charles University , Department of Analytical Chemistry, Faculty of Pharmacy, Heyrovského 1203, 500 05 Hradec Králové, Czech Republic
| | - Hana Sklenářová
- Charles University , Department of Analytical Chemistry, Faculty of Pharmacy, Heyrovského 1203, 500 05 Hradec Králové, Czech Republic
| | - Salvador Maestre
- University of Alicante , Department of Analytical Chemistry, Nutrition and Food Sciences, P.O. Box 99, 03080, Alicante, Spain
| | - Manuel Miró
- Charles University , Department of Analytical Chemistry, Faculty of Pharmacy, Heyrovského 1203, 500 05 Hradec Králové, Czech Republic.,FI-TRACE Group, University of the Balearic Islands , Department of Chemistry, Carreterra de Valldemossa km 7.5, 07122 Palma de Mallorca, Spain
| | - Jose-Luis Todolí
- University of Alicante , Department of Analytical Chemistry, Nutrition and Food Sciences, P.O. Box 99, 03080, Alicante, Spain
| |
Collapse
|
46
|
|
47
|
Umemura T, Matsui Y, Sakagawa S, Fukai T, Fujimori E, Kumata H, Aoki M. Comprehensive Element Analysis of Prokaryotic and Eukaryotic Cells as well as Organelles by ICP-MS. Metallomics 2017. [DOI: 10.1007/978-4-431-56463-8_11] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
48
|
Quan HH, Li M, Huang Y, Hahn JH. A hydrophobic ionic liquid compartmentalized sampling/labeling and its separation techniques in polydimethylsiloxane microchip capillary electrophoresis. Electrophoresis 2016; 38:372-379. [PMID: 27739089 DOI: 10.1002/elps.201600305] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Revised: 09/07/2016] [Accepted: 09/08/2016] [Indexed: 01/18/2023]
Abstract
This paper demonstrates a novel compartmentalized sampling/labeling method and its separation techniques using a hydrophobic ionic liquid (IL)-1-butyl-3-methylimidazolium bis(trifluoromethylsulfonyl)-imidate (BmimNTf2 )-as the immiscible phase, which is capable of minimizing signal losses during microchip capillary electrophoresis (MCE). The MCE device consists of a silica tube connected to a straight polydimethylsiloxane (PDMS) separation channel. Poly(diallyldimethylammonium chloride) (PDDAC) was coated on the inner surface of channel to ease the introduction of IL plugs and enhance the IL wetting on the PDMS surface for sample releasing. Electroosmotic flow (EOF)-based sample compartmentalization was carried out through a sequenced injection into sampling tubes with the following order: leading IL plug/sample segment/terminal IL plug. The movement of the sample segment was easily controlled by applying an electrical voltage across both ends of the chip without a sample volume change. This approach effectively prevented analyte diffusion before injection into MCE channels. When the sample segment was manipulated to the PDDAC-modified PDMS channel, the sample plug then was released from isolation under EOF while IL plugs adsorbed onto channel surfaces owing to strong adhesion. A mixture of flavin adenine nucleotides (FAD) and flavin mononucleotides (FMN) was successfully separated on a 2.5 cm long separation channel, for which the theoretical numbers of plates were 15 000 and 17 000, respectively. The obtained peak intensity was increased 6.3-fold over the corresponding value from conventional electrokinetic injection with the same sampling time. Furthermore, based on the compartmented sample segment serving as an interim reactor, an on-chip fluorescence labeling is demonstrated.
Collapse
Affiliation(s)
- Hong Hua Quan
- Jiangsu Key Laboratory of Environmental Material & Environmental Engineering, College of Environmental Science and Engineering, Yangzhou University, Yangzhou, P. R. China
| | - Ming Li
- Jiangsu Key Laboratory of Environmental Material & Environmental Engineering, College of Environmental Science and Engineering, Yangzhou University, Yangzhou, P. R. China
| | - Yan Huang
- Department of Chemistry, Pohang University of Science and Technology, Pohang, Korea
| | - Jong Hoon Hahn
- Department of Chemistry, Pohang University of Science and Technology, Pohang, Korea
| |
Collapse
|
49
|
Týčová A, Ledvina V, Klepárník K. Recent advances in CE-MS coupling: Instrumentation, methodology, and applications. Electrophoresis 2016; 38:115-134. [DOI: 10.1002/elps.201600366] [Citation(s) in RCA: 76] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Revised: 08/30/2016] [Accepted: 08/30/2016] [Indexed: 12/17/2022]
Affiliation(s)
- Anna Týčová
- Institute of Analytical Chemistry; Czech Academy of Sciences; Brno Czech Republic
| | - Vojtěch Ledvina
- Institute of Analytical Chemistry; Czech Academy of Sciences; Brno Czech Republic
| | - Karel Klepárník
- Institute of Analytical Chemistry; Czech Academy of Sciences; Brno Czech Republic
| |
Collapse
|
50
|
Montaño MD, Olesik JW, Barber AG, Challis K, Ranville JF. Single Particle ICP-MS: Advances toward routine analysis of nanomaterials. Anal Bioanal Chem 2016; 408:5053-74. [DOI: 10.1007/s00216-016-9676-8] [Citation(s) in RCA: 207] [Impact Index Per Article: 25.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2016] [Revised: 05/22/2016] [Accepted: 05/31/2016] [Indexed: 12/25/2022]
|