1
|
Morales Navarrete P, Tjon KCE, Hosseini Z, Yuan J. High-gradient magnetophoretic bead trapping for enhanced electrochemical sensing and particle manipulation. LAB ON A CHIP 2023; 23:2016-2028. [PMID: 36891683 DOI: 10.1039/d2lc01037b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Magnetic particles are routinely used in many biochemical techniques. As such, the manipulation of these particles is of paramount importance for proper detection and assay preparation. This paper describes a magnetic manipulation and detection paradigm that allows sensing and handling highly sensitive magnetic bead-based assays. The simple manufacturing process presented in this manuscript employs a CNC machining technique and an iron microparticle-doped PDMS (Fe-PDMS) compound to create magnetic microstructures that enhance magnetic forces for magnetic bead confinement. Said confinement, generates increases in local concentrations at the detection site. Higher local concentrations increase the magnitude of the detection signal, leading to higher assay sensitivity and lower limit of detection (LOD). Furthermore, we demonstrate this characteristic signal enhancement in both fluorescence and electrochemical detection techniques. We expect this new technique to allow users to design fully integrated magnetic bead-based microfluidic devices with the goal of preventing sample losses and enhancing signal magnitudes in biological experiments and assays.
Collapse
Affiliation(s)
- Pablo Morales Navarrete
- Department of Electronic and Computer Engineering, Hong Kong University of Science and Technology, Clear Water Bay, N.T., Hong Kong.
| | - Kai Chun Eddie Tjon
- Department of Electronic and Computer Engineering, Hong Kong University of Science and Technology, Clear Water Bay, N.T., Hong Kong.
| | - Zahrasadat Hosseini
- Department of Electronic and Computer Engineering, Hong Kong University of Science and Technology, Clear Water Bay, N.T., Hong Kong.
| | - Jie Yuan
- Department of Electronic and Computer Engineering, Hong Kong University of Science and Technology, Clear Water Bay, N.T., Hong Kong.
| |
Collapse
|
2
|
Kosker FB, Aydin O, Icoz K. Simple Staining of Cells on a Chip. BIOSENSORS 2022; 12:1013. [PMID: 36421132 PMCID: PMC9688635 DOI: 10.3390/bios12111013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 11/10/2022] [Accepted: 11/11/2022] [Indexed: 06/16/2023]
Abstract
Simple staining of cells is a widely used method in basic medical diagnostics, education, and research laboratories. The stains are low-cost, but the extensive consumption results in excessive toxic waste generation. Thus, to decrease the amount of toxic waste resulting from the cell staining procedure is a need. In this study, we developed a magnetically driven and compartmentalized passive microfluidic chip to perform simple staining of human eukaryotic cells, K562 cells, and lymphocyte cells derived from patients. We demonstrated simple staining on cells with trypan blue, methylene blue, crystal violet, and safranin for high, medium, and low cell densities. The stained cells were imaged using a bright field optical microscope and a cell phone to count cells on the focal plane. The staining improved the color signal of the cell by 25-135-pixel intensity changes for the microscopic images. The validity of the protocol was determined using Jurkat and MDA-MB-231 cell lines as negative controls. In order to demonstrate the practicality of the system, lymphocyte cells derived from human blood samples were stained with trypan blue. The color intensity changes in the first and last compartments were analyzed to evaluate the performance of the chip. The developed method is ultra-low cost, significantly reduces the waste generated, and can be integrated with mobile imaging devices in terms of portability. By combining microfabrication technology with cell staining, this study reported a novel contribution to the field of microfluidic biosensors. In the future, we expect to demonstrate the detection of pathogens using this method.
Collapse
Affiliation(s)
- Fatma Betul Kosker
- Department of Biomedical Engineering, Erciyes University, 38039 Kayseri, Türkiye
- Nanothera Lab, Drug Application and Research Center (ERFARMA), Erciyes University, 38039 Kayseri, Türkiye
- Department of Biomedical Engineering, Pamukkale University, 20160 Denizli, Türkiye
| | - Omer Aydin
- Department of Biomedical Engineering, Erciyes University, 38039 Kayseri, Türkiye
- Nanothera Lab, Drug Application and Research Center (ERFARMA), Erciyes University, 38039 Kayseri, Türkiye
- Clinical Engineering Research and Implementation Center (ERKAM), Erciyes University, 38030 Kayseri, Türkiye
- Nanotechnology Research and Application Center (ERNAM), Erciyes University, 38039 Kayseri, Türkiye
| | - Kutay Icoz
- Department of Electrical and Electronics Engineering, Abdullah Gül University, 38080 Kayseri, Türkiye
| |
Collapse
|
3
|
Call ZD, Jang I, Geiss BJ, Dandy DS, Henry CS. Progress toward a Simplified UTI Diagnostic: Pump-Free Magnetophoresis for E. coli Detection. Anal Chem 2022; 94:7545-7550. [PMID: 35588209 DOI: 10.1021/acs.analchem.2c00316] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Urinary tract infections (UTIs) are one of the most common infections across the world and can lead to serious complications such as sepsis if not treated in a timely manner. Uropathogenic Escherichia coli account for 75% of all UTIs. Early diagnosis is crucial to help control UTIs, but current culturing methods are expensive and time-consuming and lack sensitivity. The existing point-of-care methods fall short because they rely on indirect detection from elevated nitrates in urine rather than detecting the actual bacteria causing the infection. Magnetophoresis is a powerful method used to separate and/or isolate cells of interest from complex matrices for analysis. However, magnetophoresis typically requires complex and expensive instrumentation to control flow in microfluidic devices. Coupling magnetophoresis with microfluidic paper-based analytical devices (μPADs) enables pump-free flow control and simple and low-cost operation. Early magnetophoresis μPADs showed detection limits competitive with traditional methods but higher than targets for clinical use. Here, we demonstrate magnetophoresis using hybrid μPADs that rely on capillary action in hydrophilic polyethylene terephthalate channels combined with paper pumps. We were able to detect E. coli with a calculated limit of detection of 2.40 × 102 colony-forming units per mL.
Collapse
Affiliation(s)
- Zachary D Call
- Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523, United States
| | - Ilhoon Jang
- Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523, United States.,Institute of Nano Science and Technology, Hanyang University, Seoul 04763, Korea
| | - Brian J Geiss
- School of Biomedical Engineering, Colorado State University, Fort Collins, Colorado 80523, United States.,Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, Colorado 80523, United States
| | - David S Dandy
- Department of Chemical and Biological Engineering, Colorado State University, Fort Collins, Colorado 80523 United States.,School of Biomedical Engineering, Colorado State University, Fort Collins, Colorado 80523, United States
| | - Charles S Henry
- Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523, United States.,Department of Chemical and Biological Engineering, Colorado State University, Fort Collins, Colorado 80523 United States.,School of Biomedical Engineering, Colorado State University, Fort Collins, Colorado 80523, United States
| |
Collapse
|
4
|
Chen Z, Chen B, He M, Hu B. Negative Magnetophoresis Focusing Microchips Online-Coupled with ICP-MS for High-Throughput Single-Cell Analysis. Anal Chem 2022; 94:6649-6656. [PMID: 35481740 DOI: 10.1021/acs.analchem.1c04216] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
High-throughput single-cell analysis is critical to elucidate the cell heterogeneity. Recently, droplet microchips using oil/gas phases to generate single-cell encapsulated droplets have been combined with inductively coupled plasma-mass spectrometry (ICP-MS) for determination of trace elements in single cells with a throughput of dozens of cells per min. To improve the sample throughput and avoid the oil phase introduced into ICP-MS, herein, a negative magnetophoresis focusing microchip was established and online-coupled to ICP-MS for single-cell analysis. MCF-7 cells in the paramagnetic salt solution were introduced into the designed focusing microchannel, in which they were focused into a single stream under both the magnetic repulsion force and inertial lift force, and then were introduced into ICP-MS for online single-cell analysis. The important parameters including the chip design, the concentration of the paramagnetic salt solution, flow rate, cell density, and dwell time were optimized. Under the optimal conditions, a high sample throughput of 1390 cells min-1 was obtained. The established online analytical system was applied to study the uptake behaviors of MCF-7 cells for Zn2+ and ZnO nanoparticles (NPs) at a single-cell level. The single-cell analysis results indicate that MCF-7 cells displayed more remarkable heterogeneity when they were treated with ZnO NPs, and the uptake content of ZnO NPs by MCF-7 cells was less than that of Zn2+. Compared with other droplet microdevice-ICP-MS analysis systems, the developed system has the advantages of simple design and fabrication, no organic phase, a high throughput, and a low sample consumption (only 5 μL).
Collapse
Affiliation(s)
- Zhenna Chen
- Department of Chemistry, Wuhan University, Wuhan 430072, China
| | - Beibei Chen
- Department of Chemistry, Wuhan University, Wuhan 430072, China
| | - Man He
- Department of Chemistry, Wuhan University, Wuhan 430072, China
| | - Bin Hu
- Department of Chemistry, Wuhan University, Wuhan 430072, China
| |
Collapse
|
5
|
Versatile and Easily Designable Polyester-Laser Toner Interfaces for Site-Oriented Adsorption of Antibodies. Int J Mol Sci 2022; 23:ijms23073771. [PMID: 35409130 PMCID: PMC8998940 DOI: 10.3390/ijms23073771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 03/27/2022] [Accepted: 03/28/2022] [Indexed: 02/01/2023] Open
Abstract
Laser toners appear as attractive materials for barriers and easily laminated interphases for Lab-on-a-Foil microfluidics, due to the excellent adhesion to paper and various membranes or foils. This work shows for the first time a comprehensive study on the adsorption of antibodies on toner-covered poly(ethylene terephthalate) (PET@toner) substrates, together with assessment of such platforms in rapid prototyping of disposable microdevices and microarrays for immunodiagnostics. In the framework of presented research, the surface properties and antibody binding capacity of PET substrates with varying levels of toner coverage (0–100%) were characterized in detail. It was proven that polystyrene-acrylate copolymer-based toner offers higher antibody adsorption efficiency compared with unmodified polystyrene and PET as well as faster adsorption kinetics. Comparative studies of the influence of pH on the effectiveness of antibodies immobilization as well as measurements of surface ζ-potential of PET, toner, and polystyrene confirmed the dominant role of hydrophobic interactions in adsorption mechanism. The applicability of PET@toner substrates as removable masks for protection of foil against permanent hydrophilization was also shown. It opens up the possibility of precise tuning of wettability and antibody binding capacity. Therefore, PET@toner foils are presented as useful platforms in the construction of immunoarrays or components of microfluidic systems.
Collapse
|
6
|
Wang Y, Gao Y, Yin Y, Pan Y, Wang Y, Song Y. Nanomaterial-assisted microfluidics for multiplex assays. Mikrochim Acta 2022; 189:139. [PMID: 35275267 DOI: 10.1007/s00604-022-05226-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 02/10/2022] [Indexed: 02/07/2023]
Abstract
Simultaneous detection of different biomarkers from a single specimen in a single test, allowing more rapid, efficient, and low-cost analysis, is of great significance for accurate diagnosis of disease and efficient monitoring of therapy. Recently, developments in microfabrication and nanotechnology have advanced the integration of nanomaterials in microfluidic devices toward multiplex assays of biomarkers, combining both the advantages of microfluidics and the unique properties of nanomaterials. In this review, we focus on the state of the art in multiplexed detection of biomarkers based on nanomaterial-assisted microfluidics. Following an overview of the typical microfluidic analytical techniques and the most commonly used nanomaterials for biochemistry analysis, we highlight in detail the nanomaterial-assisted microfluidic strategies for different biomarkers. These highly integrated platforms with minimum sample consumption, high sensitivity and specificity, low detection limit, enhanced signals, and reduced detection time have been extensively applied in various domains and show great potential in future point-of-care testing and clinical diagnostics.
Collapse
Affiliation(s)
- Yanping Wang
- Sino-French Engineer School, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Yanfeng Gao
- College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, State Key Laboratory of Analytical Chemistry for Life Science, Nanjing University, Nanjing, 210023, China
| | - Yi Yin
- Department of General Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, 210008, China
| | - Yongchun Pan
- College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, State Key Laboratory of Analytical Chemistry for Life Science, Nanjing University, Nanjing, 210023, China
| | - Yuzhen Wang
- Key Laboratory of Flexible Electronics & Institute of Advanced Materials, Jiangsu National Synergistic Innovation Center for Advanced Materials, Nanjing Tech University, Nanjing, 211816, China
| | - Yujun Song
- College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, State Key Laboratory of Analytical Chemistry for Life Science, Nanjing University, Nanjing, 210023, China.
| |
Collapse
|
7
|
Alidoust M, Baharfar M, Manouchehri M, Yamini Y, Tajik M, Seidi S. Emergence of microfluidic devices in sample extraction; an overview of diverse methodologies, principals, and recent advancements. Trends Analyt Chem 2021. [DOI: 10.1016/j.trac.2021.116352] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
8
|
Almeida AF, Vinhas A, Gonçalves AI, Miranda MS, Rodrigues MT, Gomes ME. Magnetic triggers in biomedical applications - prospects for contact free cell sensing and guidance. J Mater Chem B 2021; 9:1259-1271. [PMID: 33410453 DOI: 10.1039/d0tb02474k] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
In recent years, the inputs from magnetically assisted strategies have been contributing to the development of more sensitive screening methods and precise means of diagnosis to overcome existing and emerging treatment challenges. The features of magnetic materials enabling in vivo traceability, specific targeting and space- and time-controlled delivery of nanomedicines have highlighted the resourcefulness of the magnetic toolbox for biomedical applications and theranostic strategies. The breakthroughs in magnetically assisted technologies for contact-free control of cell and tissue fate opens new perspectives to improve healing and instruct regeneration reaching a wide range of diseases and disorders. In this review, the contribution of magnetic nanoparticles (MNPs) will be explored as sophisticated and versatile nanotriggers, evidencing their unique cues to probe and control cell function. As cells detect and engage external magnetic features, these approaches will be overviewed considering molecular engineering and cell programming perspectives as well as cell and tissue targeting modalities. The therapeutic relevance of MNPs will be also emphasized as key components of nanostructured systems to control the release of nanomedicines and in the context of new therapy technologies.
Collapse
Affiliation(s)
- Ana F Almeida
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco, Guimarães, Portugal. and ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Adriana Vinhas
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco, Guimarães, Portugal. and ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Ana I Gonçalves
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco, Guimarães, Portugal. and ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Margarida S Miranda
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco, Guimarães, Portugal. and ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Márcia T Rodrigues
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco, Guimarães, Portugal. and ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Manuela E Gomes
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco, Guimarães, Portugal. and ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal
| |
Collapse
|
9
|
González Fernández C, Gómez Pastora J, Basauri A, Fallanza M, Bringas E, Chalmers JJ, Ortiz I. Continuous-Flow Separation of Magnetic Particles from Biofluids: How Does the Microdevice Geometry Determine the Separation Performance? SENSORS (BASEL, SWITZERLAND) 2020; 20:E3030. [PMID: 32471054 PMCID: PMC7308945 DOI: 10.3390/s20113030] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 05/21/2020] [Accepted: 05/25/2020] [Indexed: 01/02/2023]
Abstract
The use of functionalized magnetic particles for the detection or separation of multiple chemicals and biomolecules from biofluids continues to attract significant attention. After their incubation with the targeted substances, the beads can be magnetically recovered to perform analysis or diagnostic tests. Particle recovery with permanent magnets in continuous-flow microdevices has gathered great attention in the last decade due to the multiple advantages of microfluidics. As such, great efforts have been made to determine the magnetic and fluidic conditions for achieving complete particle capture; however, less attention has been paid to the effect of the channel geometry on the system performance, although it is key for designing systems that simultaneously provide high particle recovery and flow rates. Herein, we address the optimization of Y-Y-shaped microchannels, where magnetic beads are separated from blood and collected into a buffer stream by applying an external magnetic field. The influence of several geometrical features (namely cross section shape, thickness, length, and volume) on both bead recovery and system throughput is studied. For that purpose, we employ an experimentally validated Computational Fluid Dynamics (CFD) numerical model that considers the dominant forces acting on the beads during separation. Our results indicate that rectangular, long devices display the best performance as they deliver high particle recovery and high throughput. Thus, this methodology could be applied to the rational design of lab-on-a-chip devices for any magnetically driven purification, enrichment or isolation.
Collapse
Affiliation(s)
- Cristina González Fernández
- Department of Chemical and Biomolecular Engineering, ETSIIT, University of Cantabria, Avda. Los Castros s/n, 39005 Santander, Spain; (C.G.F.); (A.B.); (M.F.); (E.B.)
| | - Jenifer Gómez Pastora
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, 151 W. Woodruff Ave., Columbus, OH 43210, USA; (J.G.P.); (J.J.C.)
| | - Arantza Basauri
- Department of Chemical and Biomolecular Engineering, ETSIIT, University of Cantabria, Avda. Los Castros s/n, 39005 Santander, Spain; (C.G.F.); (A.B.); (M.F.); (E.B.)
| | - Marcos Fallanza
- Department of Chemical and Biomolecular Engineering, ETSIIT, University of Cantabria, Avda. Los Castros s/n, 39005 Santander, Spain; (C.G.F.); (A.B.); (M.F.); (E.B.)
| | - Eugenio Bringas
- Department of Chemical and Biomolecular Engineering, ETSIIT, University of Cantabria, Avda. Los Castros s/n, 39005 Santander, Spain; (C.G.F.); (A.B.); (M.F.); (E.B.)
| | - Jeffrey J. Chalmers
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, 151 W. Woodruff Ave., Columbus, OH 43210, USA; (J.G.P.); (J.J.C.)
| | - Inmaculada Ortiz
- Department of Chemical and Biomolecular Engineering, ETSIIT, University of Cantabria, Avda. Los Castros s/n, 39005 Santander, Spain; (C.G.F.); (A.B.); (M.F.); (E.B.)
| |
Collapse
|
10
|
Protein binding kinetics quantification via coupled plasmonic-photonic resonance nanosensors in generic microplate reader. Biosens Bioelectron 2019; 142:111494. [DOI: 10.1016/j.bios.2019.111494] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Revised: 06/21/2019] [Accepted: 07/04/2019] [Indexed: 02/06/2023]
|
11
|
Fast fluorometric enumeration of E. coli using passive chip. J Microbiol Methods 2019; 164:105680. [DOI: 10.1016/j.mimet.2019.105680] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Revised: 07/31/2019] [Accepted: 08/01/2019] [Indexed: 01/06/2023]
|
12
|
|
13
|
A folding affinity paper-based electrochemical impedance device for cardiovascular risk assessment. Biosens Bioelectron 2019; 130:389-396. [DOI: 10.1016/j.bios.2018.09.031] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2018] [Revised: 09/01/2018] [Accepted: 09/08/2018] [Indexed: 12/11/2022]
|
14
|
Kong FZ, Jahan S, Zhong R, Cao XY, Li WL, Wang YX, Xiao H, Liu WW, Cao CX. Electrophoresis Titration Model of a Moving Redox Boundary Chip for a Point-of-Care Test of an Enzyme-Linked Immunosorbent Assay. ACS Sens 2019; 4:126-133. [PMID: 30604605 DOI: 10.1021/acssensors.8b01017] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Enzyme-linked immunosorbent assays (ELISAs) have been widely used in clinical examination, food safety, and environmental analyses. However, they still face a great challenge in designing a device for a point-of-care test (POCT) due to its bulk optical detector and complexity. Herein an electrophoresis titration (ET) model of a moving redox boundary (MRB) was proposed for constructing an ET-ELISA chip of a POCT just with sextuplet electrode pairs and laminated cells. The chip had an anodic well, middle well, and cathode well which were connected by microchannels. The ELISA process was conducted in the bottom of the middle well, where horseradish peroxidase (HRP) catalyzed 3,3',5,5'-tetra-methyl benzidine (TMB) as a blue TMB dimer with two positive charges. Under an electrical field of 29 V, the TMB dimer migrated into the titration channel and reacted with the ascorbic acid, creating an MRB. The MRB motion was a function of antigen content, indicating a visual distance-based assay. As a proof of concept, a C-reactive protein was chosen as a model antigen. The experiments systemically validated the ET-ELISA model and method. Particularly, the chip was smartphone-detected, traditional power supply free, and did not use sulfuric acid used in typical ELISA, making the ET-ELISA method extremely simple, portable, and safe. The ET-ELISA has great potential to visual and portable ELISA in clinical medicine, the environment, and food safety immunoassay.
Collapse
|
15
|
Wang Q, Jin H, Xia D, Shao H, Peng K, Liu X, Huang H, Zhang Q, Guo J, Wang Y, Crommen J, Gan N, Jiang Z. Biomimetic Polymer-Based Method for Selective Capture of C-Reactive Protein in Biological Fluids. ACS APPLIED MATERIALS & INTERFACES 2018; 10:41999-42008. [PMID: 30412376 DOI: 10.1021/acsami.8b15581] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Selective capturing and purification of C-reactive protein (CRP) from complex biological fluids plays a pivotal role in studying biological activities of CRP in various diseases. However, obvious nonspecific adsorption of proteins was observed on current affinity sorbents, and thus additional purification steps are often required, which could compromise the recovery of the target protein and/or introduce new impurities. In this study, inspired by the highly specific interaction between CRP and the cell membrane, an excellent anti-biofouling compound 2-(methacryloyloxy)ethyl phosphorylcholine and a highly hydrophilic crosslinker N, N'-methylenebisacrylamide were employed to fabricate a novel cell membrane biomimetic polymer for selective capture of CRP in the presence of calcium ions. Based on the polymer described above, a facile enrichment approach was established after systematic optimization of the washing and elution conditions. With its favorable properties, such as good porosity, weak electrostatic interaction, high hydrophilicity, and biocompatibility, the novel biomimetic polymer exhibits good specificity, selectivity, recovery (near 100%), purity (95%), and a lower nonspecific protein adsorption for CRP in comparison with commercial immobilized p-aminophenyl phosphoryl choline gel and other purification materials. Furthermore, the structural integrity and functionality of CRP in the elution fraction were well preserved and confirmed by circular dichroism spectroscopy, fluorescence spectroscopy, and immunoturbidimetric assay. Finally, the biomimetic polymer was successfully applied to the selective enrichment of CRP from sera of patients with inflammation and rats. The proposed novel enrichment approach based on the versatile biomimetic polymer can be used for effective CRP purification, which will benefit the in-depth study of its biological roles.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Qiaoxuan Zhang
- Department of Laboratory Medicine , The Second Affiliated Hospital of Guangzhou University of Chinese Medicine , Guangzhou 510120 , China
| | | | | | - Jacques Crommen
- Laboratory of Analytical Pharmaceutical Chemistry, Department of Pharmaceutical Sciences , CIRM, University of Liege, CHU B36 , B-4000 Liege , Belgium
| | - Ning Gan
- Faculty of Materials Science and Chemical Engineering , Ningbo University , Ningbo 315211 , China
| | | |
Collapse
|
16
|
Alorabi AQ, Tarn MD, Gómez-Pastora J, Bringas E, Ortiz I, Paunov VN, Pamme N. On-chip polyelectrolyte coating onto magnetic droplets - towards continuous flow assembly of drug delivery capsules. LAB ON A CHIP 2017; 17:3785-3795. [PMID: 28991297 DOI: 10.1039/c7lc00918f] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Polyelectrolyte (PE) microcapsules for drug delivery are typically fabricated via layer-by-layer (LbL) deposition of PE layers of alternating charge on sacrificial template microparticles, which usually requires multiple incubation and washing steps that render the process repetitive and time-consuming. Here, ferrofluid droplets were explored for this purpose as an elegant alternative of templates that can be easily manipulated via an external magnetic field, and require only a simple microfluidic chip design and setup. Glass microfluidic devices featuring T-junctions or flow focusing junctions for the generation of oil-based ferrofluid droplets in an aqueous continuous phase were investigated. Droplet size was controlled by the microfluidic channel dimensions as well as the flow rates of the ferrofluid and aqueous phases. The generated droplets were stabilised by a surface active polymer, polyvinylpyrrolidone (PVP), and then guided into a chamber featuring alternating, co-laminar PE solutions and wash streams, and deflected across them by means of an external permanent magnet. The extent of droplet deflection was tailored by the flow rates, the concentration of magnetic nanoparticles in the droplets, and the magnetic field strength. PVP-coated ferrofluid droplets were deflected through solutions of polyelectrolyte and washing streams using several iterations of multilaminar flow designs. This culminated in an innovative "Snakes-and-Ladders" inspired microfluidic chip design that overcame various issues of the previous iterations for the deposition of layers of anionic poly(sodium-4-styrene sulfonate) (PSS) and cationic poly(fluorescein isothiocyanate allylamine hydrochloride) (PAH-FITC) onto the droplets. The presented method demonstrates a simple and rapid process for PE layer deposition in <30 seconds, and opens the way towards rapid layer-by-layer assembly of PE microcapsules for drug delivery applications.
Collapse
Affiliation(s)
- Ali Q Alorabi
- School of Mathematics and Physical Sciences, University of Hull, Cottingham Road, Hull, HU6 7RX, UK.
| | | | | | | | | | | | | |
Collapse
|
17
|
Wu J, Chen Y, Wang Y, Yin H, Zhao Z, Liu N, Xie M, Chen Y. Poly-L-lysine brushes on magnetic nanoparticles for ultrasensitive detection of Escherichia coli O157: H7. Talanta 2017; 172:53-60. [DOI: 10.1016/j.talanta.2017.05.035] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Revised: 05/05/2017] [Accepted: 05/10/2017] [Indexed: 12/11/2022]
|
18
|
Chen Q, Li D, Lin J, Wang M, Xuan X. Simultaneous Separation and Washing of Nonmagnetic Particles in an Inertial Ferrofluid/Water Coflow. Anal Chem 2017; 89:6915-6920. [PMID: 28548482 DOI: 10.1021/acs.analchem.7b01608] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Magnetic fluids (e.g., paramagnetic solutions and ferrofluids) have been increasingly used for label-free separation of nonmagnetic particles in microfluidic devices. Their biocompatibility, however, becomes a concern in high-throughput or large-volume applications. One way to potentially resolve this issue is resuspending the particles that are separated in a magnetic fluid immediately into a biocompatible buffer. We demonstrate herein the proof-of-principle of the first integration of negative magnetophoresis and inertial focusing for a simultaneous separation and washing of nonmagnetic particles in coflowing ferrofluid and water streams. The two operations take place in parallel in a simple T-shaped rectangular microchannel with a nearby permanent magnet. We find that the larger and smaller particles' exiting positions (and hence their separation distance) in the sheath water and ferrofluid suspension, respectively, vary with the total flow rate or the flow rate ratio between the two streams.
Collapse
Affiliation(s)
- Qi Chen
- Department of Mechanical Engineering, Clemson University , Clemson, South Carolina 29634-0921, United States.,MOA Key Laboratory of Agricultural Information Acquisition Technology (Beijing), China Agricultural University , Beijing 10083, China
| | - Di Li
- Department of Mechanical Engineering, Clemson University , Clemson, South Carolina 29634-0921, United States
| | - Jianhan Lin
- MOA Key Laboratory of Agricultural Information Acquisition Technology (Beijing), China Agricultural University , Beijing 10083, China
| | - Maohua Wang
- MOA Key Laboratory of Agricultural Information Acquisition Technology (Beijing), China Agricultural University , Beijing 10083, China
| | - Xiangchun Xuan
- Department of Mechanical Engineering, Clemson University , Clemson, South Carolina 29634-0921, United States
| |
Collapse
|
19
|
Tarn MD, Pamme N. On-Chip Magnetic Particle-Based Immunoassays Using Multilaminar Flow for Clinical Diagnostics. Methods Mol Biol 2017; 1547:69-83. [PMID: 28044288 DOI: 10.1007/978-1-4939-6734-6_6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Magnetic particles have become popular in recent years for immunoassays due to their high surface-to-volume ratio and the ease of their manipulation. However, such assays also require multiple reaction and washing steps that are both time-consuming and manually laborious. Here, we describe a setup and methodology for performing rapid immunoassays on magnetic particles in continuous flow via their deflection through multiple laminar flow streams of reagents and washing solutions. In particular, we focus on the use of the microfluidic platform for a C-reactive protein (CRP) sandwich immunoassay in less than 60 s.
Collapse
Affiliation(s)
- Mark D Tarn
- Department of Chemistry, The University of Hull, Cottingham Road, Hull, HU6 7RX, UK
| | - Nicole Pamme
- Department of Chemistry, The University of Hull, Cottingham Road, Hull, HU6 7RX, UK.
| |
Collapse
|
20
|
Liu TZ, Hu R, Zhang X, Zhang KL, Liu Y, Zhang XB, Bai RY, Li D, Yang YH. Metal–Organic Framework Nanomaterials as Novel Signal Probes for Electron Transfer Mediated Ultrasensitive Electrochemical Immunoassay. Anal Chem 2016; 88:12516-12523. [DOI: 10.1021/acs.analchem.6b04191] [Citation(s) in RCA: 126] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Ting-Zhi Liu
- College
of Chemistry and Chemical Engineering, Yunnan Normal University, Yunnan, Kunming, 650092, People’s Republic of China
| | - Rong Hu
- College
of Chemistry and Chemical Engineering, Yunnan Normal University, Yunnan, Kunming, 650092, People’s Republic of China
| | - Xi Zhang
- College
of Chemistry and Chemical Engineering, Yunnan Normal University, Yunnan, Kunming, 650092, People’s Republic of China
| | - Kun-Lei Zhang
- College
of Chemistry and Chemical Engineering, Yunnan Normal University, Yunnan, Kunming, 650092, People’s Republic of China
| | - Yi Liu
- College
of Chemistry and Chemical Engineering, Yunnan Normal University, Yunnan, Kunming, 650092, People’s Republic of China
| | - Xiao-Bing Zhang
- Molecular
Science and Biomedicine Laboratory, State Key Laboratory of Chemo/Biosensing
and Chemometrics, College of Chemistry and Chemical Engineering, Collaborative
Innovation Center for Molecular Engineering for Theronastics, Hunan University, Changsha, 410082, People’s Republic of China
| | - Ru-Yan Bai
- College
of Chemistry and Chemical Engineering, Yunnan Normal University, Yunnan, Kunming, 650092, People’s Republic of China
| | - Delei Li
- College
of Chemistry and Chemical Engineering, Yunnan Normal University, Yunnan, Kunming, 650092, People’s Republic of China
| | - Yun-Hui Yang
- College
of Chemistry and Chemical Engineering, Yunnan Normal University, Yunnan, Kunming, 650092, People’s Republic of China
| |
Collapse
|
21
|
Qin YL, He W, Su M, Fang Z, Ouyang PK, Guo K. An efficient etherification of Ginkgol biloba extracts with fewer side effects in a micro-flow system. CHINESE CHEM LETT 2016. [DOI: 10.1016/j.cclet.2016.03.040] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
22
|
Zirath H, Peham JR, Schnetz G, Coll A, Brandhoff L, Spittler A, Vellekoop MJ, Redl H. A compact and integrated immunoassay with on-chip dispensing and magnetic particle handling. Biomed Microdevices 2016; 18:16. [PMID: 26842948 DOI: 10.1007/s10544-016-0045-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
We present a compact diagnostic platform for a rapid and sensitive detection of plasma biomarkers. The platform consists of a disposable microfluidic polymer chip, a processing device including a lens-free and cost efficient sensor system and a setup for dispersion of magnetic particles. The biomarkers of interest are quantified by magnetic bead based immunoassays with chemiluminescent readout technology. With a novel system for dispersion and manipulation of the magnetic particles in combination with chemiluminescence detection, the sensitivity of the immunoassay is improved and enables a rapid assay in a microfluidic format. In the disposable chip, extra chambers for storage and dispensing of biomarker specific reagents are integrated, which reduce the need of external dosing devices and thereby the cost of the platform is decreased. Plasma biomarkers for monitoring of sepsis could be quantified at 10 pg/mL concentrations within a total time of 30 min by the present system. This contribution is a fundamental step towards the development of an automatic and compact Point-of-Care testing device for monitoring of patients at the intensive care unit.
Collapse
Affiliation(s)
- Helene Zirath
- Molecular Diagnostics, Health and Environment Department, Austrian Institute of Technology, Muthgasse 11/2, Vienna, Austria. .,Ludwig Boltzmann Institute for Experimental and Clinical Traumatology at AUVA Research Center, Vienna, Austria.
| | - Johannes R Peham
- Molecular Diagnostics, Health and Environment Department, Austrian Institute of Technology, Muthgasse 11/2, Vienna, Austria
| | | | - Albert Coll
- Ludwig Boltzmann Institute for Experimental and Clinical Traumatology at AUVA Research Center, Vienna, Austria
| | - Lukas Brandhoff
- Inst. for Microsensors, -Actuators, & -Syst. (IMSAS/MCB), University of Bremen, Bremen, Germany
| | - Andreas Spittler
- Surgical Research Laboratories and Core Facility Flow Cytometry, Medical University of Vienna, Vienna, Austria
| | - Michael J Vellekoop
- Inst. for Microsensors, -Actuators, & -Syst. (IMSAS/MCB), University of Bremen, Bremen, Germany
| | - Heinz Redl
- Ludwig Boltzmann Institute for Experimental and Clinical Traumatology at AUVA Research Center, Vienna, Austria
| |
Collapse
|
23
|
Bioanalytical advances in assays for C-reactive protein. Biotechnol Adv 2016; 34:272-90. [DOI: 10.1016/j.biotechadv.2015.12.010] [Citation(s) in RCA: 94] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2015] [Revised: 12/17/2015] [Accepted: 12/18/2015] [Indexed: 01/08/2023]
|
24
|
Phurimsak C, Tarn MD, Pamme N. Magnetic Particle Plug-Based Assays for Biomarker Analysis. MICROMACHINES 2016; 7:E77. [PMID: 30404252 PMCID: PMC6190463 DOI: 10.3390/mi7050077] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/13/2016] [Revised: 04/01/2016] [Accepted: 04/13/2016] [Indexed: 01/08/2023]
Abstract
Conventional immunoassays offer selective and quantitative detection of a number of biomarkers, but are laborious and time-consuming. Magnetic particle-based assays allow easy and rapid selection of analytes, but still suffer from the requirement of tedious multiple reaction and washing steps. Here, we demonstrate the trapping of functionalised magnetic particles within a microchannel for performing rapid immunoassays by flushing consecutive reagent and washing solutions over the trapped particle plug. Three main studies were performed to investigate the potential of the platform for quantitative analysis of biomarkers: (i) a streptavidin-biotin binding assay; (ii) a sandwich assay of the inflammation biomarker, C-reactive protein (CRP); and (iii) detection of the steroid hormone, progesterone (P4), towards a competitive assay. Quantitative analysis with low limits of detection was demonstrated with streptavidin-biotin, while the CRP and P4 assays exhibited the ability to detect clinically relevant analytes, and all assays were completed in only 15 min. These preliminary results show the great potential of the platform for performing rapid, low volume magnetic particle plug-based assays of a range of clinical biomarkers via an exceedingly simple technique.
Collapse
Affiliation(s)
- Chayakom Phurimsak
- Department of Chemistry, University of Hull, Cottingham Road, Hull, HU6 7RX, UK.
| | - Mark D Tarn
- Department of Chemistry, University of Hull, Cottingham Road, Hull, HU6 7RX, UK.
| | - Nicole Pamme
- Department of Chemistry, University of Hull, Cottingham Road, Hull, HU6 7RX, UK.
| |
Collapse
|
25
|
Gorjikhah F, Davaran S, Salehi R, Bakhtiari M, Hasanzadeh A, Panahi Y, Emamverdy M, Akbarzadeh A. Improving "lab-on-a-chip" techniques using biomedical nanotechnology: a review. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2016; 44:1609-14. [PMID: 26758969 DOI: 10.3109/21691401.2015.1129619] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Nanotechnology and its applications in biomedical sciences principally in molecular nanodiagnostics are known as nanomolecular diagnostics, which provides new options for clinical nanodiagnostic techniques. Molecular nanodiagnostics are a critical role in the development of personalized medicine, which features point-of care performance of diagnostic procedure. This can to check patients at point-of-care facilities or in remote or resource-poor locations, therefore reducing checking time from days to minutes. In this review, applications of nanotechnology suited to biomedicine are discussed in two main class: biomedical applications for use inside (such as drugs, diagnostic techniques, prostheses, and implants) and outside the body (such as "lab-on-a-chip" techniques). A lab-on-a-chip (LOC) is a tool that incorporates numerous laboratory tasks onto a small device, usually only millimeters or centimeters in size. Finally, are discussed the applications of biomedical nanotechnology in improving "lab-on-a-chip" techniques.
Collapse
Affiliation(s)
- Fatemeh Gorjikhah
- a Department of Medical Nanotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences , Tabriz , Iran ;,b Student Research Committee, Tabriz University of Medical Sciences , Tabriz , Iran
| | - Soodabeh Davaran
- a Department of Medical Nanotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences , Tabriz , Iran ;,c Drug Applied Research Center, Tabriz University of Medical Sciences , Tabriz , Iranl
| | - Roya Salehi
- a Department of Medical Nanotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences , Tabriz , Iran
| | - Mohsen Bakhtiari
- a Department of Medical Nanotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences , Tabriz , Iran
| | - Arash Hasanzadeh
- d Laboratory of Biochemistry, Department of Biology, Faculty of Natural Sciences, University of Tabriz , Tabriz , Iran
| | - Yunes Panahi
- f Chemical Injuries Research Center, Baqiyatallah University of Medical Sciences , Tehran , Iran
| | - Masumeh Emamverdy
- d Laboratory of Biochemistry, Department of Biology, Faculty of Natural Sciences, University of Tabriz , Tabriz , Iran
| | - Abolfazl Akbarzadeh
- a Department of Medical Nanotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences , Tabriz , Iran ;,c Drug Applied Research Center, Tabriz University of Medical Sciences , Tabriz , Iranl ;,e Biotechnology Research Center, Tabriz University of Medical Sciences , Tabriz , Iran ;,f Chemical Injuries Research Center, Baqiyatallah University of Medical Sciences , Tehran , Iran
| |
Collapse
|
26
|
Target-regulated proximity hybridization with three-way DNA junction for in situ enhanced electronic detection of marine biotoxin based on isothermal cycling signal amplification strategy. Biosens Bioelectron 2015; 69:241-8. [DOI: 10.1016/j.bios.2015.02.040] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2015] [Revised: 02/25/2015] [Accepted: 02/26/2015] [Indexed: 12/23/2022]
|