1
|
Xu R, Zhang Y, Gao Y, Jia S, Choi S, Xu Y, Gong J. Development of a targeted method for DNA adductome and its application as sensitive biomarkers of ambient air pollution exposure. JOURNAL OF HAZARDOUS MATERIALS 2024; 476:135018. [PMID: 38959829 DOI: 10.1016/j.jhazmat.2024.135018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 06/11/2024] [Accepted: 06/22/2024] [Indexed: 07/05/2024]
Abstract
DNA adducts are widely recognized as biomarkers of exposure to environmental carcinogens and associated health effects in toxicological and epidemiological studies. This study presents a targeted and sensitive method for comprehensive DNA adductome analysis using ultra-high-performance liquid chromatography coupled with triple-quadrupole tandem mass spectrometry (UHPLC-QqQ-MS/MS). The method was developed using calf thymus DNA, with careful optimization of mass spectrometric parameters, chromatographic separation conditions, and pretreatment methods. Ultimately, a targeted method was established for 41 DNA adducts, which showed good linearity (R2 ≥0.992), recovery (80.1-119.4 %), accuracy (81.3-117.8 %), and precision (relative standard deviation <14.2 %). The established method was employed to analyze DNA adducts in peripheral blood cells from pregnant women in Shanxi and Beijing. Up to 23 DNA adducts were successfully detected in samples of varying sizes. From 2 μg of maternal DNA samples, seven specific adducts were identified: 5-methyl-2'-deoxycytidine (5-MedC), 5-hydroxymethyl-2'-deoxycytidine (5-HmdC), N6-methyl-2'-deoxyadenosine (N6-MedA), 8-hydroxy-2'-deoxyguanosine (8-OHdG), 5-hydroxy-2'-deoxycytidine (5-OHdC), 1,N6-etheno-2'-deoxyadenosine (1,N6-εdA), and N2-methyl-2'-deoxyguanosine (N2-MedG). This study reveals that exposure to higher concentrations of ambient air pollutants may elevate the levels of DNA methylation and oxidative damage at different base sites, highlighting the application potential of DNA adducts as sensitive biomarkers of air pollution exposure.
Collapse
Affiliation(s)
- Ruiwei Xu
- SKL-ESPC & SEPKL-AERM, College of Environmental Sciences and Engineering, and Center for Environment and Health, Peking University, Beijing 100871, China
| | - Yi Zhang
- SKL-ESPC & SEPKL-AERM, College of Environmental Sciences and Engineering, and Center for Environment and Health, Peking University, Beijing 100871, China
| | - Yingfeng Gao
- SKL-ESPC & SEPKL-AERM, College of Environmental Sciences and Engineering, and Center for Environment and Health, Peking University, Beijing 100871, China
| | - Shuyu Jia
- SKL-ESPC & SEPKL-AERM, College of Environmental Sciences and Engineering, and Center for Environment and Health, Peking University, Beijing 100871, China
| | - Seokho Choi
- SKL-ESPC & SEPKL-AERM, College of Environmental Sciences and Engineering, and Center for Environment and Health, Peking University, Beijing 100871, China
| | - Yifan Xu
- SKL-ESPC & SEPKL-AERM, College of Environmental Sciences and Engineering, and Center for Environment and Health, Peking University, Beijing 100871, China
| | - Jicheng Gong
- SKL-ESPC & SEPKL-AERM, College of Environmental Sciences and Engineering, and Center for Environment and Health, Peking University, Beijing 100871, China.
| |
Collapse
|
2
|
Glatt H, Weißenberg SY, Ehlers A, Lampen A, Seidel A, Schumacher F, Engst W, Meinl W. Formation of DNA Adducts by 1-Methoxy-3-indolylmethylalcohol, a Breakdown Product of a Glucosinolate, in the Mouse: Impact of the SULT1A1 Status-Wild-Type, Knockout or Humanised. Int J Mol Sci 2024; 25:3824. [PMID: 38612635 PMCID: PMC11012018 DOI: 10.3390/ijms25073824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 03/20/2024] [Accepted: 03/22/2024] [Indexed: 04/14/2024] Open
Abstract
We previously found that feeding rats with broccoli or cauliflower leads to the formation of characteristic DNA adducts in the liver, intestine and various other tissues. We identified the critical substances in the plants as 1-methoxy-3-indolylmethyl (1-MIM) glucosinolate and its degradation product 1-MIM-OH. DNA adduct formation and the mutagenicity of 1-MIM-OH in cell models were drastically enhanced when human sulfotransferase (SULT) 1A1 was expressed. The aim of this study was to clarify the role of SULT1A1 in DNA adduct formation by 1-MIM-OH in mouse tissues in vivo. Furthermore, we compared the endogenous mouse Sult1a1 and transgenic human SULT1A1 in the activation of 1-MIM-OH using genetically modified mouse strains. We orally treated male wild-type (wt) and Sult1a1-knockout (ko) mice, as well as corresponding lines carrying the human SULT1A1-SULT1A2 gene cluster (tg and ko-tg), with 1-MIM-OH. N2-(1-MIM)-dG and N6-(1-MIM)-dA adducts in DNA were analysed using isotope-dilution UPLC-MS/MS. In the liver, caecum and colon adducts were abundant in mice expressing mouse and/or human SULT1A1, but were drastically reduced in ko mice (1.2-10.6% of wt). In the kidney and small intestine, adduct levels were high in mice carrying human SULT1A1-SULT1A2 genes, but low in wt and ko mice (1.8-6.3% of tg-ko). In bone marrow, adduct levels were very low, independently of the SULT1A1 status. In the stomach, they were high in all four lines. Thus, adduct formation was primarily controlled by SULT1A1 in five out of seven tissues studied, with a strong impact of differences in the tissue distribution of mouse and human SULT1A1. The behaviour of 1-MIM-OH in these models (levels and tissue distribution of DNA adducts; impact of SULTs) was similar to that of methyleugenol, classified as "probably carcinogenic to humans". Thus, there is a need to test 1-MIM-OH for carcinogenicity in animal models and to study its adduct formation in humans consuming brassicaceous foodstuff.
Collapse
Affiliation(s)
- Hansruedi Glatt
- Department Food Safety, Federal Institute of Risk Assessment (BfR), Max-Dohrn-Strasse 8–10, 10589 Berlin, Germany; (S.Y.W.); (A.E.); (A.L.)
- Department of Nutritional Toxicology, German Institute of Human Nutrition (DIfE), Potsdam-Rehbrücke, Arthur-Scheunert-Allee 114–116, 14558 Nuthetal, Germany; (F.S.); (W.E.); (W.M.)
| | - Sarah Yasmin Weißenberg
- Department Food Safety, Federal Institute of Risk Assessment (BfR), Max-Dohrn-Strasse 8–10, 10589 Berlin, Germany; (S.Y.W.); (A.E.); (A.L.)
| | - Anke Ehlers
- Department Food Safety, Federal Institute of Risk Assessment (BfR), Max-Dohrn-Strasse 8–10, 10589 Berlin, Germany; (S.Y.W.); (A.E.); (A.L.)
| | - Alfonso Lampen
- Department Food Safety, Federal Institute of Risk Assessment (BfR), Max-Dohrn-Strasse 8–10, 10589 Berlin, Germany; (S.Y.W.); (A.E.); (A.L.)
| | - Albrecht Seidel
- Biochemical Institute for Environmental Carcinogens (BIU), Prof. Dr. Gernot Grimmer-Foundation, Lurup 4, 22927 Grosshansdorf, Germany;
| | - Fabian Schumacher
- Department of Nutritional Toxicology, German Institute of Human Nutrition (DIfE), Potsdam-Rehbrücke, Arthur-Scheunert-Allee 114–116, 14558 Nuthetal, Germany; (F.S.); (W.E.); (W.M.)
- Institute of Pharmacy, Freie Universität Berlin, Königin-Luise-Strasse 2–4, 14195 Berlin, Germany
| | - Wolfram Engst
- Department of Nutritional Toxicology, German Institute of Human Nutrition (DIfE), Potsdam-Rehbrücke, Arthur-Scheunert-Allee 114–116, 14558 Nuthetal, Germany; (F.S.); (W.E.); (W.M.)
| | - Walter Meinl
- Department of Nutritional Toxicology, German Institute of Human Nutrition (DIfE), Potsdam-Rehbrücke, Arthur-Scheunert-Allee 114–116, 14558 Nuthetal, Germany; (F.S.); (W.E.); (W.M.)
| |
Collapse
|
3
|
Nieschalke K, Bergau N, Jessel S, Seidel A, Baldermann S, Schreiner M, Abraham K, Lampen A, Monien BH, Kleuser B, Glatt H, Schumacher F. Urinary Excretion of Mercapturic Acids of the Rodent Carcinogen Methyleugenol after a Single Meal of Basil Pesto: A Controlled Exposure Study in Humans. Chem Res Toxicol 2023; 36:1753-1767. [PMID: 37875262 PMCID: PMC10664145 DOI: 10.1021/acs.chemrestox.3c00212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Indexed: 10/26/2023]
Abstract
Methyleugenol (ME), found in numerous plants and spices, is a rodent carcinogen and is classified as "possibly carcinogenic to humans". The hypothesis of a carcinogenic risk for humans is supported by the observation of ME-derived DNA adducts in almost all human liver and lung samples examined. Therefore, a risk assessment of ME is needed. Unfortunately, biomarkers of exposure for epidemiological studies are not yet available. We hereby present the first detection of N-acetyl-l-cysteine conjugates (mercapturic acids) of ME in human urine samples after consumption of a popular ME-containing meal, pasta with basil pesto. We synthesized mercapturic acid conjugates of ME, identified the major product as N-acetyl-S-[3'-(3,4-dimethoxyphenyl)allyl]-l-cysteine (E-3'-MEMA), and developed methods for its extraction and LC-MS/MS quantification in human urine. For conducting an exposure study in humans, a basil cultivar with a suitable ME content was grown for the preparation of basil pesto. A defined meal containing 100 g of basil pesto, corresponding to 1.7 mg ME, was served to 12 participants, who collected the complete urine at defined time intervals for 48 h. Using d6-E-3'-MEMA as an internal standard for LC-MS/MS quantification, we were able to detect E-3'-MEMA in urine samples of all participants collected after the ME-containing meal. Excretion was maximal between 2 and 6 h after the meal and was completed within about 12 h (concentrations below the limit of detection). Excreted amounts were only between 1 and 85 ppm of the ME intake, indicating that the ultimate genotoxicant, 1'-sulfooxy-ME, is formed to a subordinate extent or is not efficiently detoxified by glutathione conjugation and subsequent conversion to mercapturic acids. Both explanations may apply cumulatively, with the ubiquitous detection of ME DNA adducts in human lung and liver specimens arguing against an extremely low formation of 1'-sulfooxy-ME. Taken together, we hereby present the first noninvasive human biomarker reflecting an internal exposure toward reactive ME species.
Collapse
Affiliation(s)
- Kai Nieschalke
- Department
of Nutritional Toxicology, Institute of Nutritional Science, University of Potsdam, 14558 Nuthetal, Germany
- Department
of Food Safety, German Federal Institute
for Risk Assessment (BfR), 10589 Berlin, Germany
| | - Nick Bergau
- Department
of Food Safety, German Federal Institute
for Risk Assessment (BfR), 10589 Berlin, Germany
| | - Sönke Jessel
- Biochemical
Institute for Environmental Carcinogens, Prof. Dr. Gernot Grimmer-Foundation, 22927 Grosshansdorf, Germany
| | - Albrecht Seidel
- Biochemical
Institute for Environmental Carcinogens, Prof. Dr. Gernot Grimmer-Foundation, 22927 Grosshansdorf, Germany
| | - Susanne Baldermann
- Department
Plant Quality and Food Security, Leibniz
Institute of Vegetable and Ornamental Crops (IGZ), 14979 Grossbeeren, Germany
- Faculty of
Life Sciences: Food, Nutrition & Health, University of Bayreuth, 95326 Kulmbach, Germany
| | - Monika Schreiner
- Department
Plant Quality and Food Security, Leibniz
Institute of Vegetable and Ornamental Crops (IGZ), 14979 Grossbeeren, Germany
| | - Klaus Abraham
- Department
of Food Safety, German Federal Institute
for Risk Assessment (BfR), 10589 Berlin, Germany
| | - Alfonso Lampen
- Department
of Food Safety, German Federal Institute
for Risk Assessment (BfR), 10589 Berlin, Germany
| | - Bernhard H. Monien
- Department
of Food Safety, German Federal Institute
for Risk Assessment (BfR), 10589 Berlin, Germany
| | - Burkhard Kleuser
- Department
of Nutritional Toxicology, Institute of Nutritional Science, University of Potsdam, 14558 Nuthetal, Germany
- Department
of Pharmacology and Toxicology, Institute of Pharmacy, Freie Universität Berlin, 14195 Berlin, Germany
| | - Hansruedi Glatt
- Department
of Food Safety, German Federal Institute
for Risk Assessment (BfR), 10589 Berlin, Germany
| | - Fabian Schumacher
- Department
of Nutritional Toxicology, Institute of Nutritional Science, University of Potsdam, 14558 Nuthetal, Germany
- Department
of Pharmacology and Toxicology, Institute of Pharmacy, Freie Universität Berlin, 14195 Berlin, Germany
| |
Collapse
|
4
|
Li X, Zang N, Zhang N, Pang L, Lv L, Meng X, Lv X, Leng J. DNA damage resulting from human endocrine disrupting chemical exposure: Genotoxicity, detection and dietary phytochemical intervention. CHEMOSPHERE 2023; 338:139522. [PMID: 37478996 DOI: 10.1016/j.chemosphere.2023.139522] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 06/21/2023] [Accepted: 07/14/2023] [Indexed: 07/23/2023]
Abstract
In recent years, exposure to endocrine disrupting chemicals (EDCs) has posed an increasing threat to human health. EDCs are major risk factors in the occurrence and development of many diseases. Continuous DNA damage triggers severe pathogenic consequences, such as cancer. Beyond their effects on the endocrine system, EDCs genotoxicity is also worthy of attention, owing to the high accessibility and bioavailability of EDCs. This review investigates and summarizes nearly a decade of DNA damage studies on EDC exposure, including DNA damage mechanisms, detection methods, population marker analysis, and the application of dietary phytochemicals. The aims of this review are (1) to systematically summarize the genotoxic effects of environmental EDCs (2) to comprehensively summarize cutting-edge measurement methods, thus providing analytical solutions for studies on EDC exposure; and (3) to highlight critical data on the detoxification and repair effects of dietary phytochemicals. Dietary phytochemicals decrease genotoxicity by playing a major role in the detoxification system, and show potential therapeutic effects on human diseases caused by EDC exposure. This review may support research on environmental toxicology and alternative chemo-prevention for human EDC exposure.
Collapse
Affiliation(s)
- Xiaoqing Li
- Comprehensive Exposure Research Center, School of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian, 116600, China
| | - Ningzi Zang
- Affiliated Hospital of Liaoning University of Traditional Chinese Medicine, Shenyang, 110847, China
| | - Nan Zhang
- Comprehensive Exposure Research Center, School of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian, 116600, China
| | - Lijian Pang
- Affiliated Hospital of Liaoning University of Traditional Chinese Medicine, Shenyang, 110847, China
| | - Ling Lv
- Comprehensive Exposure Research Center, School of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian, 116600, China
| | - Xiansheng Meng
- Comprehensive Exposure Research Center, School of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian, 116600, China
| | - Xiaodong Lv
- Comprehensive Exposure Research Center, School of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian, 116600, China
| | - Jiapeng Leng
- Comprehensive Exposure Research Center, School of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian, 116600, China.
| |
Collapse
|
5
|
De Graeve M, Van de Walle E, Van Hecke T, De Smet S, Vanhaecke L, Hemeryck LY. Exploration and optimization of extraction, analysis and data normalization strategies for mass spectrometry-based DNA adductome mapping and modeling. Anal Chim Acta 2023; 1274:341578. [PMID: 37455087 DOI: 10.1016/j.aca.2023.341578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 06/23/2023] [Accepted: 06/29/2023] [Indexed: 07/18/2023]
Abstract
Although interest in characterizing DNA damage by means of DNA adductomics has substantially grown, the field of DNA adductomics is still in its infancy, with room for optimization of methods for sample analysis, data processing and DNA adduct identification. In this context, the first objective of this study was to evaluate the use of hydrophilic interaction (HILIC) vs. reversed phase liquid chromatography (RPLC) coupled to high resolution mass spectrometry (HRMS) and thermal acidic vs. enzymatic hydrolysis of DNA followed by DNA adduct purification and enrichment using solid-phase extraction (SPE) or fraction collection for DNA adductome mapping. The second objective was to assess the use of total ion count (TIC) and median intensity (MedI) normalization compared to QC (quality control), iQC (internal QC) and quality control-based robust locally estimated scatterplot smoothing (LOESS) signal correction (QC-RLSC) normalization for processing of the acquired data. The results demonstrate that HILIC compared to RPLC allowed better modeling of the tentative DNA adductome, particularly in combination with thermal acidic hydrolysis and SPE (more valid models, with an average Q2(Y) and R2(Y) of 0.930 and 0.998, respectively). Regarding the need for data normalization and the management of (limited) system instability and signal drift, QC normalization outperformed TIC, MedI, iQC and LOESS normalization. As such, QC normalization can be put forward as the default data normalization strategy. In case of momentous signal drift and/or batch effects however, comparison to other normalization strategies (like e.g. LOESS) is recommended. In future work, further optimization of DNA adductomics may be achieved by merging of HILIC and RPLC datasets and/or application of 2D-LC, as well as the inclusion of Schiff base stabilization and/or fraction collection in the thermal acidic hydrolysis-SPE sample preparation workflow.
Collapse
Affiliation(s)
- Marilyn De Graeve
- Laboratory of Integrative Metabolomics, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, B-9820, Merelbeke, Belgium.
| | - Emma Van de Walle
- Laboratory of Integrative Metabolomics, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, B-9820, Merelbeke, Belgium.
| | - Thomas Van Hecke
- Laboratory for Animal Nutrition and Animal Product Quality, Faculty of Bioscience Engineering, Ghent University, Coupure Links, 653, B-9000, Ghent, Belgium.
| | - Stefaan De Smet
- Laboratory for Animal Nutrition and Animal Product Quality, Faculty of Bioscience Engineering, Ghent University, Coupure Links, 653, B-9000, Ghent, Belgium.
| | - Lynn Vanhaecke
- Laboratory of Integrative Metabolomics, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, B-9820, Merelbeke, Belgium; Institute for Global Food Security, School of Biological Sciences, Queen's University, University Road, Belfast, United Kingdom.
| | - Lieselot Y Hemeryck
- Laboratory of Integrative Metabolomics, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, B-9820, Merelbeke, Belgium.
| |
Collapse
|
6
|
Deshmukh PU, Lad SB, Sudarsan A, Sudhakar S, Aggarwal T, Mandal S, Bagale SS, Kondabagil K, Pradeepkumar PI. Human Translesion Synthesis Polymerases polκ and polη Perform Error-Free Replication across N2-dG Methyleugenol and Estragole DNA Adducts. Biochemistry 2023; 62:2391-2406. [PMID: 37486230 DOI: 10.1021/acs.biochem.2c00663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/25/2023]
Abstract
The secondary metabolites of polypropanoids, methyleugenol (MEG), and estragole (EG), found in many herbs and spices, are commonly used as food flavoring agents and as ingredients in cosmetics. MEG and EG have been reported to cause hepatocarcinogenicity in rodents, human livers, and lung cells. The formation of N2-dG and N6-dA DNA adducts is primarily attributed to the carcinogenicity of these compounds. Therefore, these compounds have been classified as "possible human carcinogens" by the International Agency for Research on Cancer and "reasonably anticipated to be a human carcinogen" by the National Toxicology Program. Herein, we report the synthesis of the N2-MEG-dG and N2-EG-dG modified oligonucleotides to study the mutagenicity of these DNA adducts. Our studies show that N2-MEG-dG and N2-EG-dG could be bypassed by human translesion synthesis (TLS) polymerases hpolκ and hpolη in an error-free manner. The steady-state kinetics of dCTP incorporation by hpolκ across N2-MEG-dG and N2-EG-dG adducts show that the catalytic efficiencies (kcat/Km) were ∼2.5- and ∼4.4-fold higher, respectively, compared to the unmodified dG template. A full-length primer extension assay demonstrates that hpolκ exhibits better catalytic efficiency than hpolη. Molecular modeling and dynamics studies capturing pre-insertion, insertion, and post-insertion steps reveal the structural features associated with the efficient bypass of the N2-MEG-dG adduct by hpolκ and indicate the reorientation of the adduct in the active site allowing the successful insertion of the incoming nucleotide. Together, these results suggest that though hpolκ and hpolη perform error-free TLS across MEG and EG during DNA replication, the observed carcinogenicity of these adducts could be attributed to the involvement of other low fidelity polymerases.
Collapse
Affiliation(s)
- Priyanka U Deshmukh
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Shailesh B Lad
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Akhil Sudarsan
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Sruthi Sudhakar
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Tanvi Aggarwal
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Soumyadeep Mandal
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | | | - Kiran Kondabagil
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - P I Pradeepkumar
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| |
Collapse
|
7
|
Davidsen JM, Cohen SM, Eisenbrand G, Fukushima S, Gooderham NJ, Guengerich FP, Hecht SS, Rietjens IMCM, Rosol TJ, Harman CL, Taylor SV. FEMA GRAS assessment of derivatives of basil, nutmeg, parsley, tarragon and related allylalkoxybenzene-containing natural flavor complexes. Food Chem Toxicol 2023; 175:113646. [PMID: 36804339 DOI: 10.1016/j.fct.2023.113646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 01/26/2023] [Accepted: 01/30/2023] [Indexed: 02/18/2023]
Abstract
In 2015, the Expert Panel of the Flavor and Extract Manufacturers Association (FEMA) initiated a program for the re-evaluation of the safety of over 250 natural flavor complexes (NFCs) used as flavoring ingredients in food. In this publication, tenth in the series, NFCs containing a high percentage of at least one naturally occurring allylalkoxybenzene constituent with a suspected concern for genotoxicity and/or carcinogenicity are evaluated. In a related paper, ninth in the series, NFCs containing anethole and/or eugenol and relatively low percentages of these allylalkoxybenzenes are evaluated. The Panel applies the threshold of toxicological concern (TTC) concept and evaluates relevant toxicology data on the NFCs and their respective constituent congeneric groups. For NFCs containing allylalkoxybenzene constituent(s), the estimated intake of the constituent is compared to the TTC for compounds with structural alerts for genotoxicity and when exceeded, a margin of exposure (MOE) is calculated. BMDL10 values are derived from benchmark dose analyses using Bayesian model averaging for safrole, estragole and methyl eugenol using EPA's BMDS software version 3.2. BMDL10 values for myristicin, elemicin and parsley apiole were estimated by read-across using relative potency factors. Margins of safety for each constituent congeneric group and MOEs for each allylalkoxybenzene constituent for each NFC were determined that indicate no safety concern. The scope of the safety evaluation contained herein does not include added use in dietary supplements or any products other than food. Ten NFCs, derived from basil, estragon (tarragon), mace, nutmeg, parsley and Canadian snakeroot were determined or affirmed as generally recognized as safe (GRAS) under their conditions of intended use as flavor ingredients based on an evaluation of each NFC and the constituents and congeneric groups therein.
Collapse
Affiliation(s)
- Jeanne M Davidsen
- Flavor and Extract Manufacturers Association, 1101 17th Street, N.W., Suite 700, Washington, D.C, 20036, USA
| | - Samuel M Cohen
- Havlik-Wall Professor of Oncology, Dept. of Pathology and Microbiology, University of Nebraska Medical Center, 983135 Nebraska Medical Center, Omaha, NE, 68198-3135, USA
| | - Gerhard Eisenbrand
- University of Kaiserslautern, Germany (Retired), Kühler Grund 48/1, 69126, Heidelberg, Germany
| | - Shoji Fukushima
- Japan Bioassay Research Center, 2445 Hirasawa, Hadano, Kanagawa, 257-0015, Japan
| | - Nigel J Gooderham
- Dept. of Metabolism, Digestion, Reproduction, Imperial College London, Sir Alexander Fleming Building, London, SW7 2AZ, United Kingdom
| | - F Peter Guengerich
- Dept. of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN, 37232-0146, USA
| | - Stephen S Hecht
- Masonic Cancer Center and Dept. of Laboratory Medicine and Pathology, Cancer and Cardiovascular Research Building, 2231 6th St, S.E, Minneapolis, MN, 55455, USA
| | - Ivonne M C M Rietjens
- Division of Toxicology, Wageningen University, Stippeneng 6708 WE, Wageningen, the Netherlands
| | - Thomas J Rosol
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, 1 Ohio University, Athens, OH, 45701, USA
| | - Christie L Harman
- Flavor and Extract Manufacturers Association, 1101 17th Street, N.W., Suite 700, Washington, D.C, 20036, USA
| | - Sean V Taylor
- Scientific Secretary to the FEMA Expert Panel, 1101 17th Street, N.W., Suite 700, Washington, D.C, 20036, USA.
| |
Collapse
|
8
|
Caipa Garcia AL, Kucab JE, Al-Serori H, Beck RSS, Fischer F, Hufnagel M, Hartwig A, Floeder A, Balbo S, Francies H, Garnett M, Huch M, Drost J, Zilbauer M, Arlt VM, Phillips DH. Metabolic Activation of Benzo[ a]pyrene by Human Tissue Organoid Cultures. Int J Mol Sci 2022; 24:ijms24010606. [PMID: 36614051 PMCID: PMC9820386 DOI: 10.3390/ijms24010606] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 12/15/2022] [Accepted: 12/23/2022] [Indexed: 12/31/2022] Open
Abstract
Organoids are 3D cultures that to some extent reproduce the structure, composition and function of the mammalian tissues from which they derive, thereby creating in vitro systems with more in vivo-like characteristics than 2D monocultures. Here, the ability of human organoids derived from normal gastric, pancreas, liver, colon and kidney tissues to metabolise the environmental carcinogen benzo[a]pyrene (BaP) was investigated. While organoids from the different tissues showed varied cytotoxic responses to BaP, with gastric and colon organoids being the most susceptible, the xenobiotic-metabolising enzyme (XME) genes, CYP1A1 and NQO1, were highly upregulated in all organoid types, with kidney organoids having the highest levels. Furthermore, the presence of two key metabolites, BaP-t-7,8-dihydrodiol and BaP-tetrol-l-1, was detected in all organoid types, confirming their ability to metabolise BaP. BaP bioactivation was confirmed both by the activation of the DNA damage response pathway (induction of p-p53, pCHK2, p21 and γ-H2AX) and by DNA adduct formation. Overall, pancreatic and undifferentiated liver organoids formed the highest levels of DNA adducts. Colon organoids had the lowest responses in DNA adduct and metabolite formation, as well as XME expression. Additionally, high-throughput RT-qPCR explored differences in gene expression between organoid types after BaP treatment. The results demonstrate the potential usefulness of organoids for studying environmental carcinogenesis and genetic toxicology.
Collapse
Affiliation(s)
- Angela L. Caipa Garcia
- Department of Analytical, Environmental and Forensic Sciences, School of Cancer & Pharmaceutical Sciences, King’s College London, London SE1 9NH, UK
| | - Jill E. Kucab
- Department of Analytical, Environmental and Forensic Sciences, School of Cancer & Pharmaceutical Sciences, King’s College London, London SE1 9NH, UK
| | - Halh Al-Serori
- Department of Analytical, Environmental and Forensic Sciences, School of Cancer & Pharmaceutical Sciences, King’s College London, London SE1 9NH, UK
| | - Rebekah S. S. Beck
- Department of Analytical, Environmental and Forensic Sciences, School of Cancer & Pharmaceutical Sciences, King’s College London, London SE1 9NH, UK
| | - Franziska Fischer
- Department of Food Chemistry and Toxicology, Karlsruhe Institute of Technology, Institute of Applied Biosciences, 76131 Karlsruhe, Germany
| | - Matthias Hufnagel
- Department of Food Chemistry and Toxicology, Karlsruhe Institute of Technology, Institute of Applied Biosciences, 76131 Karlsruhe, Germany
| | - Andrea Hartwig
- Department of Food Chemistry and Toxicology, Karlsruhe Institute of Technology, Institute of Applied Biosciences, 76131 Karlsruhe, Germany
| | - Andrew Floeder
- Division of Environmental Health Sciences, School of Public Health and Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA
| | - Silvia Balbo
- Division of Environmental Health Sciences, School of Public Health and Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA
| | | | | | - Meritxell Huch
- Max Planck Institute of Molecular Cell Biology and Genetics, 01307 Dresden, Germany
| | - Jarno Drost
- Princess Máxima Center for Pediatric Oncology, Oncode Institute, 3584 CS Utrecht, The Netherlands
| | - Matthias Zilbauer
- Department of Paediatrics, University of Cambridge, Cambridge CB2 0QQ, UK
| | - Volker M. Arlt
- Department of Analytical, Environmental and Forensic Sciences, School of Cancer & Pharmaceutical Sciences, King’s College London, London SE1 9NH, UK
| | - David H. Phillips
- Department of Analytical, Environmental and Forensic Sciences, School of Cancer & Pharmaceutical Sciences, King’s College London, London SE1 9NH, UK
- Correspondence:
| |
Collapse
|
9
|
Carlsson MJ, Vollmer AS, Demuth P, Heylmann D, Reich D, Quarz C, Rasenberger B, Nikolova T, Hofmann TG, Christmann M, Fuhlbrueck JA, Stegmüller S, Richling E, Cartus AT, Fahrer J. p53 triggers mitochondrial apoptosis following DNA damage-dependent replication stress by the hepatotoxin methyleugenol. Cell Death Dis 2022; 13:1009. [PMID: 36446765 PMCID: PMC9708695 DOI: 10.1038/s41419-022-05446-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 11/15/2022] [Accepted: 11/16/2022] [Indexed: 12/03/2022]
Abstract
Liver cancer is one of the most frequent tumor entities worldwide, which is causally linked to viral infection, fatty liver disease, life-style factors and food-borne carcinogens, particularly aflatoxins. Moreover, genotoxic plant toxins including phenylpropenes are suspected human liver carcinogens. The phenylpropene methyleugenol (ME) is a constituent of essential oils in many plants and occurs in herbal medicines, food, and cosmetics. Following its uptake, ME undergoes Cytochrome P450 (CYP) and sulfotransferase 1A1 (SULT1A1)-dependent metabolic activation, giving rise to DNA damage. However, little is known about the cellular response to the induced DNA adducts. Here, we made use of different SULT1A1-proficient cell models including primary hepatocytes that were treated with 1'-hydroxymethyleugenol (OH-ME) as main phase I metabolite. Firstly, mass spectrometry showed a concentration-dependent formation of N2-MIE-dG as major DNA adduct, strongly correlating with SULT1A1 expression as attested in cells with and without human SULT1A1. ME-derived DNA damage activated mainly the ATR-mediated DNA damage response as shown by phosphorylation of CHK1 and histone 2AX, followed by p53 accumulation and CHK2 phosphorylation. Consistent with these findings, the DNA adducts decreased replication speed and caused replication fork stalling. OH-ME treatment reduced viability particularly in cell lines with wild-type p53 and triggered apoptotic cell death, which was rescued by pan-caspase-inhibition. Further experiments demonstrated mitochondrial apoptosis as major cell death pathway. ME-derived DNA damage caused upregulation of the p53-responsive genes NOXA and PUMA, Bax activation, and cytochrome c release followed by caspase-9 and caspase-3 cleavage. We finally demonstrated the crucial role of p53 for OH-ME triggered cell death as evidenced by reduced pro-apoptotic gene expression, strongly attenuated Bax activation and cell death inhibition upon genetic knockdown or pharmacological inhibition of p53. Taken together, our study demonstrates for the first time that ME-derived DNA damage causes replication stress and triggers mitochondrial apoptosis via the p53-Bax pathway.
Collapse
Affiliation(s)
- Max J. Carlsson
- grid.7645.00000 0001 2155 0333Division of Food Chemistry and Toxicology, Department of Chemistry, Technical University of Kaiserslautern, 67663 Kaiserslautern, Germany
| | - Anastasia S. Vollmer
- grid.8664.c0000 0001 2165 8627Rudolf Buchheim Institute of Pharmacology, Justus Liebig University Giessen, 35392 Giessen, Germany ,grid.411544.10000 0001 0196 8249Present Address: Department of Dermatology, University Medical Center, 69120 Heidelberg, Germany
| | - Philipp Demuth
- grid.7645.00000 0001 2155 0333Division of Food Chemistry and Toxicology, Department of Chemistry, Technical University of Kaiserslautern, 67663 Kaiserslautern, Germany
| | - Daniel Heylmann
- grid.8664.c0000 0001 2165 8627Rudolf Buchheim Institute of Pharmacology, Justus Liebig University Giessen, 35392 Giessen, Germany
| | - Diana Reich
- grid.410607.4Institute of Toxicology, University Medical Center, Johannes Gutenberg University Mainz, 55131 Mainz, Germany
| | - Caroline Quarz
- grid.7645.00000 0001 2155 0333Division of Food Chemistry and Toxicology, Department of Chemistry, Technical University of Kaiserslautern, 67663 Kaiserslautern, Germany
| | - Birgit Rasenberger
- grid.410607.4Institute of Toxicology, University Medical Center, Johannes Gutenberg University Mainz, 55131 Mainz, Germany
| | - Teodora Nikolova
- grid.410607.4Institute of Toxicology, University Medical Center, Johannes Gutenberg University Mainz, 55131 Mainz, Germany
| | - Thomas G. Hofmann
- grid.410607.4Institute of Toxicology, University Medical Center, Johannes Gutenberg University Mainz, 55131 Mainz, Germany
| | - Markus Christmann
- grid.410607.4Institute of Toxicology, University Medical Center, Johannes Gutenberg University Mainz, 55131 Mainz, Germany
| | - Julia A. Fuhlbrueck
- grid.7645.00000 0001 2155 0333Division of Food Chemistry and Toxicology, Department of Chemistry, Technical University of Kaiserslautern, 67663 Kaiserslautern, Germany
| | - Simone Stegmüller
- grid.7645.00000 0001 2155 0333Division of Food Chemistry and Toxicology, Department of Chemistry, Technical University of Kaiserslautern, 67663 Kaiserslautern, Germany
| | - Elke Richling
- grid.7645.00000 0001 2155 0333Division of Food Chemistry and Toxicology, Department of Chemistry, Technical University of Kaiserslautern, 67663 Kaiserslautern, Germany
| | - Alexander T. Cartus
- grid.7645.00000 0001 2155 0333Division of Food Chemistry and Toxicology, Department of Chemistry, Technical University of Kaiserslautern, 67663 Kaiserslautern, Germany
| | - Jörg Fahrer
- grid.7645.00000 0001 2155 0333Division of Food Chemistry and Toxicology, Department of Chemistry, Technical University of Kaiserslautern, 67663 Kaiserslautern, Germany ,grid.8664.c0000 0001 2165 8627Rudolf Buchheim Institute of Pharmacology, Justus Liebig University Giessen, 35392 Giessen, Germany ,grid.410607.4Institute of Toxicology, University Medical Center, Johannes Gutenberg University Mainz, 55131 Mainz, Germany
| |
Collapse
|
10
|
Jing JJ, Zhang LE, Lu WM, Peng Y, Wang L, Liu SH, Wang MJ, Ou SF, Yang J, Zou YF. Household cooking oil type and risk of oral micronucleus frequency in Chinese nonsmokers. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 307:119520. [PMID: 35623571 DOI: 10.1016/j.envpol.2022.119520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2021] [Revised: 05/18/2022] [Accepted: 05/20/2022] [Indexed: 06/15/2023]
Abstract
Household animal fat has been linked to increased incidence of cancers compared with vegetable fat. However, few epidemiological studies have associated these two cooking oil types with precancerous genotoxic effects, such as occurrence of micronuclei (MN). This study aimed to explore the association between oral MN frequency and household cooking oil type and whether the association can be attributed to polycyclic aromatic hydrocarbons (PAHs). We collected information about individual cooking oil use, measured genotoxic effects by MN tests and urinary PAHs metabolites (OHPAHs) in 245 nonsmokers. The associations between household cooking oil type and MN frequency and OHPAHs were analyzed using generalized linear models (GLMs) and logistic regression models, evaluating odds ratios and coefficient (95% confidence intervals) (ORs, 95% Cls; β, 95% Cls). The odds of animal fat consumers, rather than vegetable fat consumers, was positively associated with higher MN frequency (OR = 1.94, P < 0.05). The associations were discovered in participants only using kitchen ventilation (OR = 2.04, P < 0.05). Animal fat consumers had higher total OHPAHs than vegetable fat consumers (1.58 ± 0.22 mg/mol, Cr vs 1.20 ± 0.12 mg/mol, Cr; P = 0.028). Significant correlations were observed between total OHPAHs quartiles and increased MN frequency (β = 0.38, P-trend = 0.026). After stratifying by household cooking oil type, sensitivity analyses showed that the positive association between total OHPAHs quartiles and increased MN frequency was only observed in animal fat consumers (β = 0.61, P-trend = 0.030). In conclusion, usage of household animal fat was associated with an increased odds of oral MN frequency in Chinese nonsmokers and the odds correlated with increased PAHs exposure. This finding supplemented evidence associating cooking oil type with genotoxic effects and explained its association with PAHs exposure.
Collapse
Affiliation(s)
- Jia-Jun Jing
- Department of Toxicology, School of Public Health, Guangxi Medical University, Nanning, 530021, China; Guangxi Colleges and Universities Key Laboratory of Prevention and Control of Highly Prevalent Diseases, Guangxi Medical University, Nanning, 530021, China; Guangxi Key Laboratory of Environment and Health Research, Guangxi Medical University, Nanning, 530021, China
| | - Li-E Zhang
- Guangxi Colleges and Universities Key Laboratory of Prevention and Control of Highly Prevalent Diseases, Guangxi Medical University, Nanning, 530021, China; Guangxi Key Laboratory of Environment and Health Research, Guangxi Medical University, Nanning, 530021, China; Department of Occupational and Environmental Health, School of Public Health, Guangxi Medical University, Nanning, 530021, China
| | - Wen-Min Lu
- Department of Toxicology, School of Public Health, Guangxi Medical University, Nanning, 530021, China; Guangxi Colleges and Universities Key Laboratory of Prevention and Control of Highly Prevalent Diseases, Guangxi Medical University, Nanning, 530021, China; Guangxi Key Laboratory of Environment and Health Research, Guangxi Medical University, Nanning, 530021, China
| | - Yang Peng
- Guangxi Colleges and Universities Key Laboratory of Prevention and Control of Highly Prevalent Diseases, Guangxi Medical University, Nanning, 530021, China; Guangxi Key Laboratory of Environment and Health Research, Guangxi Medical University, Nanning, 530021, China; Department of Occupational and Environmental Health, School of Public Health, Guangxi Medical University, Nanning, 530021, China
| | - Liang Wang
- Department of Public Health, Robbins College of Health and Human Sciences, Baylor University, Waco, TX, 76798, USA
| | - Shao-Hui Liu
- Department of Toxicology, School of Public Health, Guangxi Medical University, Nanning, 530021, China; Guangxi Colleges and Universities Key Laboratory of Prevention and Control of Highly Prevalent Diseases, Guangxi Medical University, Nanning, 530021, China; Guangxi Key Laboratory of Environment and Health Research, Guangxi Medical University, Nanning, 530021, China
| | - Ming-Jun Wang
- Department of Nephrology, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, China
| | - Song-Feng Ou
- Department of Toxicology, School of Public Health, Guangxi Medical University, Nanning, 530021, China; Guangxi Colleges and Universities Key Laboratory of Prevention and Control of Highly Prevalent Diseases, Guangxi Medical University, Nanning, 530021, China; Guangxi Key Laboratory of Environment and Health Research, Guangxi Medical University, Nanning, 530021, China
| | - Jie Yang
- Department of Toxicology, School of Public Health, Guangxi Medical University, Nanning, 530021, China; Guangxi Colleges and Universities Key Laboratory of Prevention and Control of Highly Prevalent Diseases, Guangxi Medical University, Nanning, 530021, China; Guangxi Key Laboratory of Environment and Health Research, Guangxi Medical University, Nanning, 530021, China
| | - Yun-Feng Zou
- Department of Toxicology, School of Public Health, Guangxi Medical University, Nanning, 530021, China; Guangxi Colleges and Universities Key Laboratory of Prevention and Control of Highly Prevalent Diseases, Guangxi Medical University, Nanning, 530021, China; Guangxi Key Laboratory of Environment and Health Research, Guangxi Medical University, Nanning, 530021, China.
| |
Collapse
|
11
|
Rietjens IMCM, Michael A, Bolt HM, Siméon B, Andrea H, Nils H, Christine K, Angela M, Gloria P, Daniel R, Natalie T, Gerhard E. The role of endogenous versus exogenous sources in the exposome of putative genotoxins and consequences for risk assessment. Arch Toxicol 2022; 96:1297-1352. [PMID: 35249149 PMCID: PMC9013691 DOI: 10.1007/s00204-022-03242-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Accepted: 02/01/2022] [Indexed: 12/21/2022]
Abstract
The "totality" of the human exposure is conceived to encompass life-associated endogenous and exogenous aggregate exposures. Process-related contaminants (PRCs) are not only formed in foods by heat processing, but also occur endogenously in the organism as physiological components of energy metabolism, potentially also generated by the human microbiome. To arrive at a comprehensive risk assessment, it is necessary to understand the contribution of in vivo background occurrence as compared to the ingestion from exogenous sources. Hence, this review provides an overview of the knowledge on the contribution of endogenous exposure to the overall exposure to putative genotoxic food contaminants, namely ethanol, acetaldehyde, formaldehyde, acrylamide, acrolein, α,β-unsaturated alkenals, glycation compounds, N-nitroso compounds, ethylene oxide, furans, 2- and 3-MCPD, and glycidyl esters. The evidence discussed herein allows to conclude that endogenous formation of some contaminants appears to contribute substantially to the exposome. This is of critical importance for risk assessment in the cases where endogenous exposure is suspected to outweigh the exogenous one (e.g. formaldehyde and acrolein).
Collapse
Affiliation(s)
- Ivonne M C M Rietjens
- Division of Toxicology, Wageningen University, Stippeneng 4, 6708 WE, Wageningen, The Netherlands.
| | - Arand Michael
- Institute of Pharmacology and Toxicology, University of Zurich, Winterthurerstr. 190, 8057, Zurich, Switzerland
| | - Hermann M Bolt
- Department of Toxicology, Leibniz Research Centre for Working Environment and Human Factors at TU Dortmund (IfADo), Ardeystr. 67, 44139, Dortmund, Germany
| | | | - Hartwig Andrea
- Department of Food Chemistry and Toxicology, Institute of Applied Biosciences (IAB), Karlsruhe Institute of Technology (KIT), Adenauerring 20a, 76131, Karlsruhe, Germany
| | - Hinrichsen Nils
- Food Oils and Fats Research, ADM Hamburg AG, Research, Seehafenstraße 24, 21079, Hamburg, Germany
| | - Kalisch Christine
- Department of Toxicology, University of Würzburg, Versbacher Straße 9, 97078, Wurzburg, Germany
| | - Mally Angela
- Department of Toxicology, University of Würzburg, Versbacher Straße 9, 97078, Wurzburg, Germany
| | - Pellegrino Gloria
- Scientific Affairs and Research, Luigi Lavazza SpA, Strada Settimo, 410, 10156, Turin, Italy
| | - Ribera Daniel
- Regulatory and Scientific Affairs EMEA, Cargill R&D, Havenstraat 84, 1800, Vivoorde, Belgium
| | - Thatcher Natalie
- Food Safety, Mondelez International, Bournville Lane, Birmingham, B30 2LU, UK
| | - Eisenbrand Gerhard
- Department of Toxicology and Food Chemistry, University of Kaiserslautern, Kühler Grund 48/1, 69126, Heidelberg, Germany
| |
Collapse
|
12
|
Xu R, Meng X, Pang Y, An H, Wang B, Zhang L, Ye R, Ren A, Li Z, Gong J. Associations of maternal exposure to 41 metals/metalloids during early pregnancy with the risk of spontaneous preterm birth: Does oxidative stress or DNA methylation play a crucial role? ENVIRONMENT INTERNATIONAL 2022; 158:106966. [PMID: 34735952 DOI: 10.1016/j.envint.2021.106966] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 10/27/2021] [Accepted: 10/27/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND Few studies have explored the effects of multiple types of metals/metalloids on spontaneous preterm birth (SPB). A nested case-control study was conducted in Shanxi Province to investigate the associations between maternal exposure to 41 metals/metalloids during early pregnancy and the risk of SPB, and to clarify the underlying mechanisms of oxidative stress and DNA methylation. METHODS A total of 74 controls with full-term delivery and 74 cases with SPB were included in the nested case-control study. The metals/metalloids in serum and the DNA adducts in peripheral blood cell DNA were determined using ICP-MS and UPLC-QqQ-MS/MS, respectively. Unconditional logistic regression models were employed to estimate the associations of the risk of SPB with the metal concentrations, as well as with the levels of oxidative stress/DNA methylation. In addition, linear regression models were used to investigate the associations between the metal/metalloid concentrations and the levels of oxidative stress/DNA methylation. RESULTS After adjusting for potential confounders, the concentrations of Mn, Fe, Cu, Nd, Hg, and Pb in maternal serum during early pregnancy were positively associated with the risk of SPB. Compared with the lowest levels (Quartile 1) of Mn, Fe, Cu, Nd, Hg, and Pb, the odds ratios of SPB increased to 5.21 (95% CI: 1.63, 16.68), 3.47 (95% CI: 1.07, 11.21), 16.23 (95% CI: 3.86, 68.18), 10.54 (95% CI: 2.79, 39.86), 5.88 (95% CI: 1.72, 20.11), and 4.09 (95% CI: 1.31, 12.77) in the highest levels (Quartile 4), respectively. A significant increase in 8-OHdG was associated with the increased exposure to Fe, Pr, Eu, Er, and Lu. The levels of 5-MdC, 5-HmdC, and N6-MdA-the indicators of DNA methylation-were associated with exposure to multiple metals/metalloids. However, no significant associations were observed between the levels of oxidative stress or DNA methylation and the risk of SPB. CONCLUSIONS Exposure to multiple types of metals/metalloids during early pregnancy is positively associated with the risk of SPB. Oxidative stress and DNA methylation are significantly associated with exposure to multiple metals/metalloids. Systemic oxidative stress and DNA methylation have not been proven to be the mediating mechanisms of metals increasing the risk of SPB.
Collapse
Affiliation(s)
- Ruiwei Xu
- SKL-ESPC, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China; Center for Environment and Health, Peking University, Beijing 100871, China
| | - Xin Meng
- SKL-ESPC, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China; Center for Environment and Health, Peking University, Beijing 100871, China
| | - Yiming Pang
- Institute of Reproductive and Child Health, Peking University/Key Laboratory of Reproductive Health, National Health Commission of the People's Republic of China, Beijing 100191, China; Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing 100191, China
| | - Hang An
- Institute of Reproductive and Child Health, Peking University/Key Laboratory of Reproductive Health, National Health Commission of the People's Republic of China, Beijing 100191, China; Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing 100191, China
| | - Bin Wang
- Institute of Reproductive and Child Health, Peking University/Key Laboratory of Reproductive Health, National Health Commission of the People's Republic of China, Beijing 100191, China; Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing 100191, China
| | - Le Zhang
- Institute of Reproductive and Child Health, Peking University/Key Laboratory of Reproductive Health, National Health Commission of the People's Republic of China, Beijing 100191, China; Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing 100191, China
| | - Rongwei Ye
- Institute of Reproductive and Child Health, Peking University/Key Laboratory of Reproductive Health, National Health Commission of the People's Republic of China, Beijing 100191, China; Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing 100191, China
| | - Aiguo Ren
- Institute of Reproductive and Child Health, Peking University/Key Laboratory of Reproductive Health, National Health Commission of the People's Republic of China, Beijing 100191, China; Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing 100191, China
| | - Zhiwen Li
- Institute of Reproductive and Child Health, Peking University/Key Laboratory of Reproductive Health, National Health Commission of the People's Republic of China, Beijing 100191, China; Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing 100191, China.
| | - Jicheng Gong
- SKL-ESPC, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China; Center for Environment and Health, Peking University, Beijing 100871, China.
| |
Collapse
|
13
|
Lu K, Hsiao YC, Liu CW, Schoeny R, Gentry R, Starr TB. A Review of Stable Isotope Labeling and Mass Spectrometry Methods to Distinguish Exogenous from Endogenous DNA Adducts and Improve Dose-Response Assessments. Chem Res Toxicol 2021; 35:7-29. [PMID: 34910474 DOI: 10.1021/acs.chemrestox.1c00212] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Cancer remains the second most frequent cause of death in human populations worldwide, which has been reflected in the emphasis placed on management of risk from environmental chemicals considered to be potential human carcinogens. The formation of DNA adducts has been considered as one of the key events of cancer, and persistence and/or failure of repair of these adducts may lead to mutation, thus initiating cancer. Some chemical carcinogens can produce DNA adducts, and DNA adducts have been used as biomarkers of exposure. However, DNA adducts of various types are also produced endogenously in the course of normal metabolism. Since both endogenous physiological processes and exogenous exposure to xenobiotics can cause DNA adducts, the differentiation of the sources of DNA adducts can be highly informative for cancer risk assessment. This review summarizes a highly applicable methodology, termed stable isotope labeling and mass spectrometry (SILMS), that is superior to previous methods, as it not only provides absolute quantitation of DNA adducts but also differentiates the exogenous and endogenous origins of DNA adducts. SILMS uses stable isotope-labeled substances for exposure, followed by DNA adduct measurement with highly sensitive mass spectrometry. Herein, the utilities and advantage of SILMS have been demonstrated by the rich data sets generated over the last two decades in improving the risk assessment of chemicals with DNA adducts being induced by both endogenous and exogenous sources, such as formaldehyde, vinyl acetate, vinyl chloride, and ethylene oxide.
Collapse
Affiliation(s)
- Kun Lu
- Department of Environmental Sciences and Engineering, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Yun-Chung Hsiao
- Department of Environmental Sciences and Engineering, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Chih-Wei Liu
- Department of Environmental Sciences and Engineering, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Rita Schoeny
- Rita Schoeny LLC, 726 Fifth Street NE, Washington, D.C. 20002, United States
| | - Robinan Gentry
- Ramboll US Consulting, Inc., Monroe, Louisiana 71201, United States
| | - Thomas B Starr
- Department of Environmental Sciences and Engineering, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States.,TBS Associates, 7500 Rainwater Road, Raleigh, North Carolina 27615, United States
| |
Collapse
|
14
|
Monien BH, Bergau N, Hogervorst JGF, Nawrot TS, Trefflich I, Weikert C, Abraham K. Detection of a Hemoglobin Adduct of the Food Contaminant Furfuryl Alcohol in Humans: Levels of N-((Furan-2-yl)methyl)-valine in Two Epidemiological Studies. Mol Nutr Food Res 2021; 65:e2100584. [PMID: 34652883 DOI: 10.1002/mnfr.202100584] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 10/06/2021] [Indexed: 11/05/2022]
Abstract
SCOPE Furfuryl alcohol is a heat-induced food contaminant, classified as possibly carcinogenic to humans. The proximal carcinogen 2-sulfoxymethylfuran leads to adduct formation in DNA and proteins (e.g., N-((furan-2-yl)methyl)-Val (FFA-Val) in hemoglobin). METHODS AND RESULTS This study analyzed human erythrocyte samples from two studies for the presence of FFA-Val: the Risks and Benefits of a Vegan Diet study (RBVD; 72 adults) and the ENVIRonmental influence ON early AGEing birth cohort study (ENVIRONAGE; 100 mother-newborn pairs). In the RBVD study, FFA-Val levels are lower in vegans compared to omnivores (median 13.0 vs 15.8 pmol g-1 hemoglobin, p = 0.008), and lower in non-smokers compared to smokers (median 14.1 vs 17.0 pmol g-1 hemoglobin, p = 0.003). In the birth cohort, FFA-Val levels are distinctly higher in maternal compared to newborn samples (median 15.2 vs 2.2 pmol g-1 hemoglobin, p < 0.001). CONCLUSIONS FFA-Val, hitherto detected only in blood samples of mice, is quantifiable in all human samples, indicating a general exposure to furfuryl alcohol. The low adduct levels in blood samples from newborn children suggested that the placenta is a barrier to furfuryl alcohol. Dietary habits and tobacco smoking are two main influencing factors on the formation of FFA-Val, which may be of use as a biomarker of exposure to furfuryl alcohol.
Collapse
Affiliation(s)
- Bernhard H Monien
- Department of Food Safety, German Federal Institute for Risk Assessment (BfR), Max-Dohrn-Strasse 8-10, Berlin, 10589, Germany
| | - Nick Bergau
- Department of Food Safety, German Federal Institute for Risk Assessment (BfR), Max-Dohrn-Strasse 8-10, Berlin, 10589, Germany
| | - Janneke G F Hogervorst
- Centre for Environmental Sciences, Hasselt University, Agoralaan gebouw D, Diepenbeek, 3590, Belgium
| | - Tim S Nawrot
- Centre for Environmental Sciences, Hasselt University, Agoralaan gebouw D, Diepenbeek, 3590, Belgium
| | - Iris Trefflich
- Department of Food Safety, German Federal Institute for Risk Assessment (BfR), Max-Dohrn-Strasse 8-10, Berlin, 10589, Germany
| | - Cornelia Weikert
- Department of Food Safety, German Federal Institute for Risk Assessment (BfR), Max-Dohrn-Strasse 8-10, Berlin, 10589, Germany
| | - Klaus Abraham
- Department of Food Safety, German Federal Institute for Risk Assessment (BfR), Max-Dohrn-Strasse 8-10, Berlin, 10589, Germany
| |
Collapse
|
15
|
Alkenylbenzenes in Foods: Aspects Impeding the Evaluation of Adverse Health Effects. Foods 2021; 10:foods10092139. [PMID: 34574258 PMCID: PMC8469824 DOI: 10.3390/foods10092139] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 09/03/2021] [Accepted: 09/07/2021] [Indexed: 12/15/2022] Open
Abstract
Alkenylbenzenes are naturally occurring secondary plant metabolites, primarily present in different herbs and spices, such as basil or fennel seeds. Thus, alkenylbenzenes, such as safrole, methyleugenol, and estragole, can be found in different foods, whenever these herbs and spices (or extracts thereof) are used for food production. In particular, essential oils or other food products derived from the aforementioned herbs and spices, such as basil-containing pesto or plant food supplements, are often characterized by a high content of alkenylbenzenes. While safrole or methyleugenol are known to be genotoxic and carcinogenic, the toxicological relevance of other alkenylbenzenes (e.g., apiol) regarding human health remains widely unclear. In this review, we will briefly summarize and discuss the current knowledge and the uncertainties impeding a conclusive evaluation of adverse effects to human health possibly resulting from consumption of foods containing alkenylbenzenes, especially focusing on the genotoxic compounds, safrole, methyleugenol, and estragole.
Collapse
|
16
|
Wang P, Roider E, Coulter ME, Walsh CA, Kramer CS, Beuning PJ, Giese RW. DNA Adductomics by mass tag prelabeling. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2021; 35:e9095. [PMID: 33821547 PMCID: PMC10668917 DOI: 10.1002/rcm.9095] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 04/01/2021] [Accepted: 04/01/2021] [Indexed: 06/12/2023]
Abstract
RATIONALE As a new approach to DNA adductomics, we directly reacted intact, double-stranded (ds)-DNA under warm conditions with an alkylating mass tag followed by analysis by liquid chromatography/mass spectrometry. This method is based on the tendency of adducted nucleobases to locally disrupt the DNA structure (forming a "DNA bubble") potentially increasing exposure of their nucleophilic (including active hydrogen) sites for preferential alkylation. Also encouraging this strategy is that the scope of nucleotide excision repair is very broad, and this system primarily recognizes DNA bubbles. METHODS A cationic xylyl (CAX) mass tag with limited nonpolarity was selected to increase the retention of polar adducts in reversed-phase high-performance liquid chromatography (HPLC) for more detectability while maintaining resolution. We thereby detected a diversity of DNA adducts (mostly polar) by the following sequence of steps: (1) react DNA at 45°C for 2 h under aqueous conditions with CAX-B (has a benzyl bromide functional group to label active hydrogen sites) in the presence of triethylamine; (2) remove residual reagents by precipitating and washing the DNA (a convenient step); (3) digest the DNA enzymatically to nucleotides and remove unlabeled nucleotides by nonpolar solid-phase extraction (also a convenient step); and (4) detect CAX-labeled, adducted nucleotides by LC/MS2 or a matrix-assisted laser desorption/ionization (MALDI)-MS technique. RESULTS Examples of the 42 DNA or RNA adducts detected, or tentatively so based on accurate mass and fragmentation data, are as follows: 8-oxo-dGMP, ethyl-dGMP, hydroxyethyl-dGMP (four isomers, all HPLC-resolved), uracil-glycol, apurinic/apyrimidinic sites, benzo[a]pyrene-dGMP, and, for the first time, benzoquinone-hydroxymethyl-dCMP. Importantly, these adducts are detected in a single procedure under a single set of conditions. Sensitivity, however, is only defined in a preliminary way, namely the latter adduct seems to be detected at a level of about 4 adducts in 109 nucleotides (S/N ~30). CONCLUSIONS CAX-Prelabeling is an emerging new technique for DNA adductomics, providing polar DNA adductomics in a practical way for the first time. Further study of the method is encouraged to better characterize and extend its performance, especially in scope and sensitivity.
Collapse
Affiliation(s)
- Poguang Wang
- Department of Pharmaceutical Sciences, Northeastern University, Boston, MA, USA
| | - Elisabeth Roider
- Cutaneous Biology Research Center, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | | | - Christopher A Walsh
- Division of Genetics and Genomics, Boston Children's Hospital, Center for Life Sciences, Harvard Medical School, Boston, MA, USA
| | - Caitlin S Kramer
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, MA, USA
| | - Penny J Beuning
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, MA, USA
| | - Roger W Giese
- Department of Pharmaceutical Sciences, Northeastern University, Boston, MA, USA
| |
Collapse
|
17
|
Nilsson R, Liu NA. Nuclear DNA damages generated by reactive oxygen molecules (ROS) under oxidative stress and their relevance to human cancers, including ionizing radiation-induced neoplasia part II: Relation between ROS-induced DNA damages and human cancer. RADIATION MEDICINE AND PROTECTION 2020. [DOI: 10.1016/j.radmp.2020.11.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
|
18
|
Meier S, Karlsen Ø, Le Goff J, Sørensen L, Sørhus E, Pampanin DM, Donald CE, Fjelldal PG, Dunaevskaya E, Romano M, Caliani I, Casini S, Bogevik AS, Olsvik PA, Myers M, Grøsvik BE. DNA damage and health effects in juvenile haddock (Melanogrammus aeglefinus) exposed to PAHs associated with oil-polluted sediment or produced water. PLoS One 2020; 15:e0240307. [PMID: 33091018 PMCID: PMC7580938 DOI: 10.1371/journal.pone.0240307] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Accepted: 09/23/2020] [Indexed: 01/08/2023] Open
Abstract
The research objective was to study the presence of DNA damages in haddock exposed to petrogenic or pyrogenic polyaromatic hydrocarbons (PAHs) from different sources: 1) extracts of oil produced water (PW), dominated by 2-ring PAHs; 2) distillation fractions of crude oil (representing oil-based drilling mud), dominated by 3-ring PAHs; 3) heavy pyrogenic PAHs, mixture of 4/5/6-ring PAHs. The biological effect of the different PAH sources was studied by feeding juvenile haddock with low doses of PAHs (0.3-0.7 mg PAH/kg fish/day) for two months, followed by a two-months recovery. In addition to the oral exposure, a group of fish was exposed to 12 single compounds of PAHs (4/5/6-ring) via intraperitoneal injection. The main endpoint was the analysis of hepatic and intestinal DNA adducts. In addition, PAH burden in liver, bile metabolites, gene and protein expression of CYP1A, GST activity, lipid peroxidation, skeletal deformities and histopathology of livers were evaluated. Juvenile haddock responded quickly to both intraperitoneal injection and oral exposure of 4/5/6-ring PAHs. High levels of DNA adducts were detected in livers three days after the dose of the single compound exposure. Fish had also high levels of DNA adducts in liver after being fed with extracts dominated by 2-ring PAHs (a PW exposure scenario) and 3-ring PAHs (simulating an oil exposure scenario). Elevated levels of DNA adducts were observed in the liver of all exposed groups after the 2 months of recovery. High levels of DNA adduct were found also in the intestines of individuals exposed to oil or heavy PAHs, but not in the PW or control groups. This suggests that the intestinal barrier is very important for detoxification of orally exposures of PAHs.
Collapse
Affiliation(s)
| | | | - Jeremie Le Goff
- ADn’tox, Bâtiment Recherche, Centre François Baclesse, Caen, France
| | - Lisbet Sørensen
- Institute of Marine Research, Bergen, Norway
- SINTEF Ocean AS, Environment and New Resources, Trondheim, Norway
| | - Elin Sørhus
- Institute of Marine Research, Bergen, Norway
| | - Daniela M. Pampanin
- Department of Chemistry Bioscience and Environmental Engineering, Faculty of Science and Technology, University of Stavanger, Stavanger, Norway
- NORCE, Randaberg, Norway
| | | | | | - Evgenia Dunaevskaya
- Department of Chemistry Bioscience and Environmental Engineering, Faculty of Science and Technology, University of Stavanger, Stavanger, Norway
| | - Marta Romano
- Department of Physical, Earth and Environmental Sciences, University of Siena, Siena, Italy
| | - Ilaria Caliani
- Department of Physical, Earth and Environmental Sciences, University of Siena, Siena, Italy
| | - Silvia Casini
- Department of Physical, Earth and Environmental Sciences, University of Siena, Siena, Italy
| | - André S. Bogevik
- Nofima AS – Norwegian Institute of Food, Fisheries Aquaculture Research, Fyllingsdalen, Norway
| | - Pål A. Olsvik
- Institute of Marine Research, Bergen, Norway
- Nord Univ, Fac Biosci & Aquaculture, Bodo, Norway
| | - Mark Myers
- Myers Ecotoxicology Services, LLC, Shoreline, Washington, United States of America
| | | |
Collapse
|
19
|
Nilsson R, Liu NA. Nuclear DNA damages generated by reactive oxygen molecules (ROS) under oxidative stress and their relevance to human cancers, including ionizing radiation-induced neoplasia part I: Physical, chemical and molecular biology aspects. RADIATION MEDICINE AND PROTECTION 2020. [DOI: 10.1016/j.radmp.2020.09.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
|
20
|
Paiano V, Maertens L, Guidolin V, Yang J, Balbo S, Hecht SS. Quantitative Liquid Chromatography-Nanoelectrospray Ionization-High-Resolution Tandem Mass Spectrometry Analysis of Acrolein-DNA Adducts and Etheno-DNA Adducts in Oral Cells from Cigarette Smokers and Nonsmokers. Chem Res Toxicol 2020; 33:2197-2207. [PMID: 32635726 PMCID: PMC8185904 DOI: 10.1021/acs.chemrestox.0c00223] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Cigarette smoking is an important source of human exposure to toxicants and carcinogens and contributes significantly to cancer morbidity and mortality worldwide. Acrolein, a widespread environmental pollutant, is present in relatively high amounts in cigarette smoke and can react directly with DNA to form DNA adducts, which serve as important biomarkers for the assessment of exposure to acrolein and its potential role in smoking related cancer. Etheno-DNA adducts are promutagenic DNA lesions that can derive from exogenous chemicals as well as endogenous sources, including lipid peroxidation. In this study, we developed a combined method for the quantitation of (6R/S)-3-(2'-deoxyribos-1'-yl)-5,6,7,8,-tetrahydro-6-hydroxypyrimido[1,2-a]purine-10(3H)-one (α-OH-Acr-dGuo), (8R/S)-3-(2'-deoxyribos-1'-yl)-5,6,7,8,-tetrahydro-8-hydroxypyrimido[1,2-a]purine-10(3H)-one (γ-OH-Acr-dGuo), 1,N6-etheno-dAdo (εdAdo), and 3,N4-etheno-dCyd (εdCyd) adducts in oral rinse and cytobrush DNA from smokers and nonsmokers by liquid chromatography-nanoelelctrospray ionization-high-resolution tandem mass spectrometry (LC-NSI-HRMS/MS). For oral rinse samples, there was a statistically significant difference between the levels of α-OH-Acr-dGuo, γ-OH-Acr-dGuo, εdAdo, and εdCyd in smokers (12.1 ± 17.9, 163 ± 227, 182 ± 568, and 194 ± 400 adducts/109 nucleotides, respectively) and nonsmokers (1.85 ± 2.08, 5.95 ± 4.23, 7.69 ± 11.7, and 6.07 ± 10.9 adducts/109 nucleotides, respectively). For cytobrush samples, there was a statistically significant difference between the levels of γ-OH-Acr-dGuo and εdAdo in smokers (259 ± 540 and 82.9 ± 271 adducts/109 nucleotides, respectively) and nonsmokers (7.37 ± 5.09 and 16.2 ± 30.2 adducts/109 nucleotides, respectively) but not for α-OH-Acr-dGuo and εdCyd. Our results demonstrate that oral mucosa cells are an excellent source of material for evaluating DNA adducts to be used as biomarkers of tobacco smoke exposure and molecular changes potentially related to cancer.
Collapse
Affiliation(s)
- Viviana Paiano
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455
| | - Laura Maertens
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455
| | - Valeria Guidolin
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455
- School of Public Health, University of Minnesota, Minneapolis, MN 55455
| | | | - Silvia Balbo
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455
- School of Public Health, University of Minnesota, Minneapolis, MN 55455
- Silvia Balbo and Stephen S. Hecht contributed equally to this study
| | - Stephen S. Hecht
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455
- Silvia Balbo and Stephen S. Hecht contributed equally to this study
| |
Collapse
|
21
|
Kang JC, Valerio LG. Investigating DNA adduct formation by flavor chemicals and tobacco byproducts in electronic nicotine delivery system (ENDS) using in silico approaches. Toxicol Appl Pharmacol 2020; 398:115026. [PMID: 32353386 DOI: 10.1016/j.taap.2020.115026] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 04/24/2020] [Accepted: 04/26/2020] [Indexed: 01/04/2023]
Abstract
The presence of flavors is one of the commonly cited reasons for use of e-cigarettes by youth; however, the potential harms from inhaling these chemicals and byproducts have not been extensively studied. One mechanism of interest is DNA adduct formation, which may lead to carcinogenesis. We identified two chemical classes of flavors found in tobacco products and byproducts, alkenylbenzenes and aldehydes, documented to form DNA adducts. Using in silico toxicology approaches, we identified structural analogs to these chemicals without DNA adduct information. We conducted a structural similarity analysis and also generated in silico model predictions of these chemicals for genotoxicity, mutagenicity, carcinogenicity, and skin sensitization. The empirical and in silico data were compared, and we identified strengths and limitations of these models. Good concordance (80-100%) was observed between DNA adduct formation and models predicting mammalian mutagenicity (mouse lymphoma sassy L5178Y) and skin sensitization for both chemical classes. On the other hand, different prediction profiles were observed for the two chemical classes for the modeled endpoints, unscheduled DNA synthesis and bacterial mutagenicity. These results are likely due to the different mode of action between the two chemical classes, as aldehydes are direct acting agents, while alkenylbenzenes require bioactivation to form electrophilic intermediates, which form DNA adducts. The results of this study suggest that an in silico prediction for the mouse lymphoma assay L5178Y, may serve as a surrogate endpoint to help predict DNA adduct formation for chemicals found in tobacco products such as flavors and byproducts.
Collapse
Affiliation(s)
- Jueichuan Connie Kang
- United States Food and Drug Administration, Center for Tobacco Products, Office of Science, Division of Nonclinical Science, 11785 Beltsville Drive, Calverton, MD 20705, USA; US Public Health Service Commissioned Corps, Rockville, MD, USA.
| | - Luis G Valerio
- United States Food and Drug Administration, Center for Tobacco Products, Office of Science, Division of Nonclinical Science, 11785 Beltsville Drive, Calverton, MD 20705, USA
| |
Collapse
|
22
|
Hartwig A, Arand M, Epe B, Guth S, Jahnke G, Lampen A, Martus HJ, Monien B, Rietjens IMCM, Schmitz-Spanke S, Schriever-Schwemmer G, Steinberg P, Eisenbrand G. Mode of action-based risk assessment of genotoxic carcinogens. Arch Toxicol 2020; 94:1787-1877. [PMID: 32542409 PMCID: PMC7303094 DOI: 10.1007/s00204-020-02733-2] [Citation(s) in RCA: 79] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Accepted: 03/31/2020] [Indexed: 12/16/2022]
Abstract
The risk assessment of chemical carcinogens is one major task in toxicology. Even though exposure has been mitigated effectively during the last decades, low levels of carcinogenic substances in food and at the workplace are still present and often not completely avoidable. The distinction between genotoxic and non-genotoxic carcinogens has traditionally been regarded as particularly relevant for risk assessment, with the assumption of the existence of no-effect concentrations (threshold levels) in case of the latter group. In contrast, genotoxic carcinogens, their metabolic precursors and DNA reactive metabolites are considered to represent risk factors at all concentrations since even one or a few DNA lesions may in principle result in mutations and, thus, increase tumour risk. Within the current document, an updated risk evaluation for genotoxic carcinogens is proposed, based on mechanistic knowledge regarding the substance (group) under investigation, and taking into account recent improvements in analytical techniques used to quantify DNA lesions and mutations as well as "omics" approaches. Furthermore, wherever possible and appropriate, special attention is given to the integration of background levels of the same or comparable DNA lesions. Within part A, fundamental considerations highlight the terms hazard and risk with respect to DNA reactivity of genotoxic agents, as compared to non-genotoxic agents. Also, current methodologies used in genetic toxicology as well as in dosimetry of exposure are described. Special focus is given on the elucidation of modes of action (MOA) and on the relation between DNA damage and cancer risk. Part B addresses specific examples of genotoxic carcinogens, including those humans are exposed to exogenously and endogenously, such as formaldehyde, acetaldehyde and the corresponding alcohols as well as some alkylating agents, ethylene oxide, and acrylamide, but also examples resulting from exogenous sources like aflatoxin B1, allylalkoxybenzenes, 2-amino-3,8-dimethylimidazo[4,5-f] quinoxaline (MeIQx), benzo[a]pyrene and pyrrolizidine alkaloids. Additionally, special attention is given to some carcinogenic metal compounds, which are considered indirect genotoxins, by accelerating mutagenicity via interactions with the cellular response to DNA damage even at low exposure conditions. Part C finally encompasses conclusions and perspectives, suggesting a refined strategy for the assessment of the carcinogenic risk associated with an exposure to genotoxic compounds and addressing research needs.
Collapse
Affiliation(s)
- Andrea Hartwig
- Department of Food Chemistry and Toxicology, Institute of Applied Biosciences (IAB), Karlsruhe Institute of Technology (KIT), Adenauerring 20a, 76131, Karlsruhe, Germany.
| | - Michael Arand
- Institute of Pharmacology and Toxicology, University of Zurich, 8057, Zurich, Switzerland
| | - Bernd Epe
- Institute of Pharmacy and Biochemistry, University of Mainz, 55099, Mainz, Germany
| | - Sabine Guth
- Department of Toxicology, IfADo-Leibniz Research Centre for Working Environment and Human Factors, TU Dortmund, Ardeystr. 67, 44139, Dortmund, Germany
| | - Gunnar Jahnke
- Department of Food Chemistry and Toxicology, Institute of Applied Biosciences (IAB), Karlsruhe Institute of Technology (KIT), Adenauerring 20a, 76131, Karlsruhe, Germany
| | - Alfonso Lampen
- Department of Food Safety, German Federal Institute for Risk Assessment (BfR), 10589, Berlin, Germany
| | - Hans-Jörg Martus
- Novartis Institutes for BioMedical Research, 4002, Basel, Switzerland
| | - Bernhard Monien
- Department of Food Safety, German Federal Institute for Risk Assessment (BfR), 10589, Berlin, Germany
| | - Ivonne M C M Rietjens
- Division of Toxicology, Wageningen University, Stippeneng 4, 6708 WE, Wageningen, The Netherlands
| | - Simone Schmitz-Spanke
- Institute and Outpatient Clinic of Occupational, Social and Environmental Medicine, University of Erlangen-Nuremberg, Henkestr. 9-11, 91054, Erlangen, Germany
| | - Gerlinde Schriever-Schwemmer
- Department of Food Chemistry and Toxicology, Institute of Applied Biosciences (IAB), Karlsruhe Institute of Technology (KIT), Adenauerring 20a, 76131, Karlsruhe, Germany
| | - Pablo Steinberg
- Max Rubner-Institut, Federal Research Institute of Nutrition and Food, Haid-und-Neu-Str. 9, 76131, Karlsruhe, Germany
| | - Gerhard Eisenbrand
- Retired Senior Professor for Food Chemistry and Toxicology, Kühler Grund 48/1, 69126, Heidelberg, Germany.
| |
Collapse
|
23
|
Gooderham NJ, Cohen SM, Eisenbrand G, Fukushima S, Guengerich FP, Hecht SS, Rietjens IMCM, Rosol TJ, Bastaki M, Linman MJ, Taylor SV. The safety evaluation of food flavoring substances: the role of genotoxicity studies. Crit Rev Toxicol 2020; 50:1-27. [PMID: 32162576 DOI: 10.1080/10408444.2020.1712589] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The Flavor and Extract Manufacturers Association (FEMA) Expert Panel relies on the weight of evidence from all available data in the safety evaluation of flavoring substances. This process includes data from genotoxicity studies designed to assess the potential of a chemical agent to react with DNA or otherwise cause changes to DNA, either in vitro or in vivo. The Panel has reviewed a large number of in vitro and in vivo genotoxicity studies during the course of its ongoing safety evaluations of flavorings. The adherence of genotoxicity studies to standardized protocols and guidelines, the biological relevance of the results from those studies, and the human relevance of these studies are all important considerations in assessing whether the results raise specific concerns for genotoxic potential. The Panel evaluates genotoxicity studies not only for evidence of genotoxicity hazard, but also for the probability of risk to the consumer in the context of exposure from their use as flavoring substances. The majority of flavoring substances have given no indication of genotoxic potential in studies evaluated by the FEMA Expert Panel. Examples illustrating the assessment of genotoxicity data for flavoring substances and the consideration of the factors noted above are provided. The weight of evidence approach adopted by the FEMA Expert Panel leads to a rational assessment of risk associated with consumer intake of flavoring substances under the conditions of use.
Collapse
Affiliation(s)
| | - Samuel M Cohen
- Havlik-Wall Professor of Oncology, Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Gerhard Eisenbrand
- Food Chemistry & Toxicology, University of Kaiserslautern (retired), Heidelberg, Germany
| | | | - F Peter Guengerich
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Stephen S Hecht
- Masonic Cancer Center and Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN, USA
| | | | - Thomas J Rosol
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH, USA
| | - Maria Bastaki
- Flavor and Extract Manufacturers Association, Washington, DC, USA
| | - Matthew J Linman
- Flavor and Extract Manufacturers Association, Washington, DC, USA
| | - Sean V Taylor
- Flavor and Extract Manufacturers Association, Washington, DC, USA
| |
Collapse
|
24
|
Qi L, Xu R, Gong J. Monitoring DNA adducts in human blood samples using magnetic Fe3O4@graphene oxide as a nano-adsorbent and mass spectrometry. Talanta 2020; 209:120523. [DOI: 10.1016/j.talanta.2019.120523] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Revised: 10/25/2019] [Accepted: 10/28/2019] [Indexed: 02/04/2023]
|
25
|
Hernandez-Castillo C, Termini J, Shuck S. DNA Adducts as Biomarkers To Predict, Prevent, and Diagnose Disease-Application of Analytical Chemistry to Clinical Investigations. Chem Res Toxicol 2020; 33:286-307. [PMID: 31638384 DOI: 10.1021/acs.chemrestox.9b00295] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Characterization of the chemistry, structure, formation, and metabolism of DNA adducts has been one of the most significant contributions to the field of chemical toxicology. This work provides the foundation to develop analytical methods to measure DNA adducts, define their relationship to disease, and establish clinical tests. Monitoring exposure to environmental and endogenous toxicants can predict, diagnose, and track disease as well as guide therapeutic treatment. DNA adducts are one of the most promising biomarkers of toxicant exposure owing to their stability, appearance in numerous biological matrices, and characteristic analytical properties. In addition, DNA adducts can induce mutations to drive disease onset and progression and can serve as surrogate markers of chemical exposure. In this perspective, we highlight significant advances made within the past decade regarding DNA adduct quantitation using mass spectrometry. We hope to expose a broader audience to this field and encourage analytical chemistry laboratories to explore how specific adducts may be related to various pathologies. One of the limiting factors in developing clinical tests to measure DNA adducts is cohort size; ideally, the cohort would allow for model development and then testing of the model to the remaining cohort. The goals of this perspective article are to (1) provide a summary of analyte levels measured using state-of-the-art analytical methods, (2) foster collaboration, and (3) highlight areas in need of further investigation.
Collapse
Affiliation(s)
- Carlos Hernandez-Castillo
- Department of Molecular Medicine , Beckman Research Institute at City of Hope Duarte , California 91010 , United States
| | - John Termini
- Department of Molecular Medicine , Beckman Research Institute at City of Hope Duarte , California 91010 , United States
| | - Sarah Shuck
- Department of Molecular Medicine , Beckman Research Institute at City of Hope Duarte , California 91010 , United States
| |
Collapse
|
26
|
The Multifarious Link between Cytochrome P450s and Cancer. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:3028387. [PMID: 31998435 PMCID: PMC6964729 DOI: 10.1155/2020/3028387] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/22/2019] [Revised: 12/08/2019] [Accepted: 12/18/2019] [Indexed: 02/07/2023]
Abstract
Cancer is a leading cause of death worldwide. Cytochrome P450s (P450s) play an important role in the metabolism of endogenous as well as exogenous substances, especially drugs. Moreover, many P450s can serve as targets for disease therapy. Increasing reports of epidemiological, diagnostic, and clinical research indicate that P450s are enzymes that play a major part in the formation of cancer, prevention, and metastasis. The purposes of this review are to shed light on the current state of knowledge about the cancer molecular mechanism involving P450s and to summarize the link between the cancer effects and the participation of P450s.
Collapse
|
27
|
Wang X, Zhang J, Wei Y, Xing T, Cao T, Wu S, Zhu F. A copper-based metal–organic framework/graphene nanocomposite for the sensitive and stable electrochemical detection of DNA bases. Analyst 2020; 145:1933-1942. [DOI: 10.1039/c9an02398d] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A simple and easy-operation electrode modification strategy was proposed using Cu-MOF/GO nanohybrids for physiologists and pathologists for the feasible and reliable simultaneous electrochemical detections of DNA bases, namely guanine and adenine.
Collapse
Affiliation(s)
- Xiuyun Wang
- School of Chemistry
- Dalian University of Technology
- Dalian 116024
- P. R. China
| | - Jie Zhang
- School of Chemistry
- Dalian University of Technology
- Dalian 116024
- P. R. China
| | - Yuanan Wei
- School of Chemistry
- Dalian University of Technology
- Dalian 116024
- P. R. China
| | - Tianyu Xing
- School of Chemistry
- Dalian University of Technology
- Dalian 116024
- P. R. China
| | - Tingting Cao
- Sanmenxia Center for Disease Control and Prevention
- Sanmenxia
- P. R. China
| | - Shuo Wu
- School of Chemistry
- Dalian University of Technology
- Dalian 116024
- P. R. China
| | - Fenghui Zhu
- School of Chemistry
- Dalian University of Technology
- Dalian 116024
- P. R. China
| |
Collapse
|
28
|
Alamil H, Lechevrel M, Lagadu S, Galanti L, Dagher Z, Delépée R. A validated UHPLC-MS/MS method for simultaneous quantification of 9 exocyclic DNA adducts induced by 8 aldehydes. J Pharm Biomed Anal 2019; 179:113007. [PMID: 31796220 DOI: 10.1016/j.jpba.2019.113007] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Revised: 11/20/2019] [Accepted: 11/21/2019] [Indexed: 11/18/2022]
Abstract
Human exposure to aldehydes is implicated in several diseases including cancer. These strong electrophilic compounds can react with nucleophilic sites in DNA to form reversible and irreversible modifications. These modifications, if not repaired, can contribute to pathogenesis. The aim of our study was to provide a mass spectrometry (MS)-based profiling method for identifying potential biomarkers of aldehydes exposure. We have developed and validated a highly sensitive method using ultra high performance liquid chromatography-electrospray ionization-tandem mass spectrometry (UHPLC-ESI-MS/MS) for the simultaneous quantitation of 9 exocyclic DNA adducts derived from 8 main exogenous and endogenous aldehydes, namely formaldehyde, acetaldehyde, acrolein, crotonaldehyde, malondialdehyde, 4-hydroxy-2-nonenal, glyoxal and methylglyoxal. Finally, we applied the established method to quantify adducts in genomic DNA isolated from the blood of a smoker and a non-smoker blood samples in order to demonstrate its applicability.
Collapse
Affiliation(s)
- Héléna Alamil
- Normandy University, UNICAEN, UNIROUEN, ABTE, Caen, France; Comprehensive Cancer Center François Baclesse, UNICANCER, Caen, France; L2GE, Microbiology-Tox/Ecotox Team, Faculty of Sciences, Lebanese University, Fanar, Lebanon.
| | - Mathilde Lechevrel
- Normandy University, UNICAEN, UNIROUEN, ABTE, Caen, France; Comprehensive Cancer Center François Baclesse, UNICANCER, Caen, France
| | - Stéphanie Lagadu
- Normandy University, UNICAEN, UNIROUEN, ABTE, Caen, France; Comprehensive Cancer Center François Baclesse, UNICANCER, Caen, France; Normandy University, UNICAEN, PRISMM Platform ICORE, Caen, France
| | | | - Zeina Dagher
- L2GE, Microbiology-Tox/Ecotox Team, Faculty of Sciences, Lebanese University, Fanar, Lebanon
| | - Raphaël Delépée
- Normandy University, UNICAEN, UNIROUEN, ABTE, Caen, France; Comprehensive Cancer Center François Baclesse, UNICANCER, Caen, France; Normandy University, UNICAEN, PRISMM Platform ICORE, Caen, France.
| |
Collapse
|
29
|
Tang Y, Zhang JL. Recent developments in DNA adduct analysis using liquid chromatography coupled with mass spectrometry. J Sep Sci 2019; 43:31-55. [PMID: 31573133 DOI: 10.1002/jssc.201900737] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Revised: 09/04/2019] [Accepted: 09/27/2019] [Indexed: 12/15/2022]
Abstract
The formation of DNA adducts by genotoxic agents is an early event in cancer development, and it may lead to gene mutations, thereby initiating tumor development. The measurement of DNA adducts can provide critical information about the genotoxic potential of a chemical and its mechanism of carcinogenesis. In recent decades, liquid chromatography coupled with mass spectrometry has become the most important technique for analyzing DNA adducts. The improvements in resolution achievable with new chromatographic separation techniques coupled with the high specificity and sensitivity and wide dynamic range of new mass spectrometry systems have been used for both qualitative and quantitative analyses of DNA adducts. This review discusses the challenges in qualitative and quantitative analyses of DNA adducts by liquid chromatography coupled with mass spectrometry and highlights recent developments towards overcoming the limitations of liquid chromatography coupled with mass spectrometry methods. The key steps and new solutions, such as sample preparation, mass spectrometry fragmentation, and method validation, are summarized. In addition, the fundamental principles and latest advances in DNA adductomic approaches are reviewed.
Collapse
Affiliation(s)
- Yu Tang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Peking Union Medical College & Chinese Academy of Medical Sciences, Beijing, P. R. China
| | - Jin-Lan Zhang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Peking Union Medical College & Chinese Academy of Medical Sciences, Beijing, P. R. China
| |
Collapse
|
30
|
Kobets T, Cartus AT, Fuhlbrueck JA, Brengel A, Stegmüller S, Duan JD, Brunnemann KD, Williams GM. Assessment and characterization of DNA adducts produced by alkenylbenzenes in fetal turkey and chicken livers. Food Chem Toxicol 2019; 129:424-433. [PMID: 31077736 DOI: 10.1016/j.fct.2019.05.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Revised: 05/04/2019] [Accepted: 05/07/2019] [Indexed: 01/22/2023]
Abstract
Formation of DNA adducts by five alkenylbenzenes, safrole, methyl eugenol, eugenol, and asarone with either α- or β-conformation, was analyzed in fetal avian livers in two in ovo models. DNA reactivity of the carcinogens safrole and methyl eugenol was previously demonstrated in the turkey egg model, whereas non-genotoxic eugenol was negative. In the current study, alkenylbenzenes were also tested in the chicken egg model. Injections with alkenylbenzenes were administered to fertilized turkey or chicken eggs for three consecutive days. Three hours after the last injection, liver samples were evaluated for DNA adduct formation using the 32P-nucleotide postlabeling assay. DNA samples from turkey livers were also analyzed for adducts using mass spectrometry. In both species, genotoxic alkenylbenzenes safrole, methyl eugenol, α- and β-asarone produced DNA adducts, the presence and nature of which, with exception of safrole, were confirmed by mass spectrometry, validating the sensitivity of the 32P-postlabeling assay. Overall, the results of testing were congruent between fetal turkey and chicken livers, confirming that these organisms can be used interchangeably. Moreover, data obtained in both models is comparable to genotoxicity findings in other species, supporting the usefulness of avian models for the assessment of genotoxicity as a potential alternative to animal models.
Collapse
Affiliation(s)
- Tetyana Kobets
- New York Medical College, Department of Pathology, 40 Sunshine Cottage Road, Valhalla, NY, 10595, USA.
| | - Alexander T Cartus
- University of Kaiserslautern, Food Chemistry and Toxicology, Erwin-Schrödinger-Strasse 52, 67663, Kaiserslautern, Germany
| | - Julia A Fuhlbrueck
- University of Kaiserslautern, Food Chemistry and Toxicology, Erwin-Schrödinger-Strasse 52, 67663, Kaiserslautern, Germany
| | - Alexander Brengel
- University of Kaiserslautern, Food Chemistry and Toxicology, Erwin-Schrödinger-Strasse 52, 67663, Kaiserslautern, Germany
| | - Simone Stegmüller
- University of Kaiserslautern, Food Chemistry and Toxicology, Erwin-Schrödinger-Strasse 52, 67663, Kaiserslautern, Germany
| | - Jian-Dong Duan
- New York Medical College, Department of Pathology, 40 Sunshine Cottage Road, Valhalla, NY, 10595, USA
| | - Klaus D Brunnemann
- New York Medical College, Department of Pathology, 40 Sunshine Cottage Road, Valhalla, NY, 10595, USA
| | - Gary M Williams
- New York Medical College, Department of Pathology, 40 Sunshine Cottage Road, Valhalla, NY, 10595, USA
| |
Collapse
|
31
|
Ishii Y, Yokoo Y, Kijima A, Takasu S, Ogawa K, Umemura T. DNA modifications that do not cause gene mutations confer the potential for mutagenicity by combined treatment with food chemicals. Food Chem Toxicol 2019; 129:144-152. [PMID: 31029721 DOI: 10.1016/j.fct.2019.04.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Revised: 04/04/2019] [Accepted: 04/08/2019] [Indexed: 01/10/2023]
Abstract
Cell proliferation plays a key role in fixing mutations induced by DNA damage. We clarified whether this phenomenon occurred after combined treatment with chemicals in food. The effects of antibiotic flumequine (FL), a residue of veterinary medicinal products in foodstuffs, on mutagenicity in the liver were examined in mice treated with estragole (ES), a natural food flavouring compound. Gpt delta mice were orally administered 10 or 100 mg/kg/day ES and simultaneously fed a diet containing 0.4% FL for 4 weeks. Proliferating cell nuclear antigen-positive cells and cell cycle-related genes were additively increased in the livers of combined treatment groups as compared with high-dose ES or FL groups. Mutant frequencies (MFs) in gpt after cotreatment with low-dose ES and FL were significantly increased, although treatment with ES alone increased MFs only in the high-dose group. Sult1a1 mRNA levels were unchanged after FL treatment. Liquid chromatography with tandem-mass spectrometry analysis showed that FL did not affect the amount of ES-specific DNA adducts in the livers, indicating that FL treatment did not influence metabolic pathways of ES. Thus, enhancement of the mutagenic potential of a chemical by chemical-induced cell proliferation may occur as a result of the combined effects of chemicals in food.
Collapse
Affiliation(s)
- Yuji Ishii
- Division of Pathology, National Institute of Health Sciences, 3-25-26 Tonomachi, Kawasaki-shi, Kawasaki-ku, Kanagawa, 210-9501, Japan
| | - Yuh Yokoo
- Division of Pathology, National Institute of Health Sciences, 3-25-26 Tonomachi, Kawasaki-shi, Kawasaki-ku, Kanagawa, 210-9501, Japan
| | - Aki Kijima
- Division of Pathology, National Institute of Health Sciences, 3-25-26 Tonomachi, Kawasaki-shi, Kawasaki-ku, Kanagawa, 210-9501, Japan
| | - Shinji Takasu
- Division of Pathology, National Institute of Health Sciences, 3-25-26 Tonomachi, Kawasaki-shi, Kawasaki-ku, Kanagawa, 210-9501, Japan
| | - Kumiko Ogawa
- Division of Pathology, National Institute of Health Sciences, 3-25-26 Tonomachi, Kawasaki-shi, Kawasaki-ku, Kanagawa, 210-9501, Japan
| | - Takashi Umemura
- Division of Pathology, National Institute of Health Sciences, 3-25-26 Tonomachi, Kawasaki-shi, Kawasaki-ku, Kanagawa, 210-9501, Japan; Faculty of Animal Health Technology, Yamazaki University of Animal Health Technology, 4-7-2, Minami-osawa, Hachihoji, Tokyo, 192-0364, Japan.
| |
Collapse
|
32
|
Ma B, Stepanov I, Hecht SS. Recent Studies on DNA Adducts Resulting from Human Exposure to Tobacco Smoke. TOXICS 2019; 7:E16. [PMID: 30893918 PMCID: PMC6468371 DOI: 10.3390/toxics7010016] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/02/2019] [Revised: 03/09/2019] [Accepted: 03/13/2019] [Indexed: 12/22/2022]
Abstract
DNA adducts are believed to play a central role in the induction of cancer in cigarette smokers and are proposed as being potential biomarkers of cancer risk. We have summarized research conducted since 2012 on DNA adduct formation in smokers. A variety of DNA adducts derived from various classes of carcinogens, including aromatic amines, polycyclic aromatic hydrocarbons, tobacco-specific nitrosamines, alkylating agents, aldehydes, volatile carcinogens, as well as oxidative damage have been reported. The results are discussed with particular attention to the analytical methods used in those studies. Mass spectrometry-based methods that have higher selectivity and specificity compared to 32P-postlabeling or immunochemical approaches are preferred. Multiple DNA adducts specific to tobacco constituents have also been characterized for the first time in vitro or detected in vivo since 2012, and descriptions of those adducts are included. We also discuss common issues related to measuring DNA adducts in humans, including the development and validation of analytical methods and prevention of artifact formation.
Collapse
Affiliation(s)
- Bin Ma
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA.
| | - Irina Stepanov
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA.
| | - Stephen S Hecht
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA.
| |
Collapse
|
33
|
Guo S, Leng J, Tan Y, Price NE, Wang Y. Quantification of DNA Lesions Induced by 4-(Methylnitrosamino)-1-(3-pyridyl)-1-butanol in Mammalian Cells. Chem Res Toxicol 2019; 32:708-717. [PMID: 30714728 DOI: 10.1021/acs.chemrestox.8b00374] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Quantitative measurement of DNA adducts in carcinogen-exposed cells provides the information about the frequency of formation and the rate of removal of DNA lesions in vivo, which yields insights into the initial events of mutagenesis. Metabolic activation of tobacco-specific nitrosamines, 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK) and its reduction product 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanol (NNAL), leads to pyridyloxobutylation and pyridylhydroxybutylation of DNA. In this study, we employed a highly robust nanoflow liquid chromatography-nanoelectrospray ionization-tandem mass spectrometry (nLC-nESI-MS/MS) coupled with the isotope-dilution method for simultaneous quantification of O6-[4-(3-pyridyl)-4-hydroxylbut-1-yl]-2'-deoxyguanosine ( O6-PHBdG) and O2- and O4-[4-(3-pyridyl)-4-hydroxylbut-1-yl]-thymidine ( O2-PHBdT and O4-PHBdT). Cultured mammalian cells were exposed to a model pyridylhydroxybutylating agent, 4-(acetoxymethylnitrosamino)-1-(3-pyridyl)-1-butanol (NNALOAc), followed by DNA extraction, enzymatic digestion, and sample enrichment prior to nLC-nESI-MS/MS quantification. Our results demonstrate, for the first time, that O4-PHBdT is quantifiable in cellular DNA and naked DNA upon NNALOAc exposure. We also show that nucleotide excision repair (NER) machinery may counteract the formation of O2-PHBdT and O4-PHBdT, and O6-alkylguanine DNA alkyltransferase (AGT) may be responsible for the repair of O6-PHBdG and O4-PHBdT in mammalian cells. Together, our study provides new knowledge about the occurrence and repair of NNAL-induced DNA lesions in mammalian cells.
Collapse
|
34
|
Tang Y, Wang Z, Li M, Zhang R, Zhang J. Simultaneous quantitation of 14 DNA alkylation adducts in human liver and kidney cells by UHPLC-MS/MS: Application to profiling DNA adducts of genotoxic reagents. J Pharm Biomed Anal 2019; 166:387-397. [PMID: 30711808 DOI: 10.1016/j.jpba.2019.01.034] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Revised: 01/17/2019] [Accepted: 01/18/2019] [Indexed: 01/04/2023]
Abstract
A rapid, sensitive and wide coverage ultra-high-performance liquid chromatography with tandem mass spectrometry (UHPLC-MS/MS) method has been developed and validated for the simultaneous quantitation of 14 alkylation DNA adducts in cell genomic DNA, RNA and cell contents isolated from the in vitro cultured human kidney cell line 293 T and the human liver cell line L02 exposed to 3 genotoxic reagents: N-methyl-N-nitrosourea (MNU), methyl methanesulfonate (MMS) and 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK). After exposure, DNA was isolated and directly hydrolysed under acid conditions or digested by enzymes to obtain the hydrolysates containing DNA alkylation adducts followed by optimization of the pretreatment method and chromatographic separation conditions. Quantification was performed on a Waters ACQUITY UPLC BEH Amide column (1.7 μm, 2.1 × 150 mm) using an electrospray ionization (ESI) source in positive mode by selective reaction monitoring (SRM) at the precursor to product ion transitions of 14 analytes. The method showed selectivity, good linearity (r>0.9950), accuracy (82.1%-115%), and intra-day (RSD%<14%) and inter-day (RSD%<15%) precision for 14 analytes. The recoveries of two pretreatment methods were all more than 50.5%, and no relative matrix effects were observed. Additionally, the samples were stable after short-term storage at 20 ℃ for 2 h, at 4 ℃ for 48 h or one cycle of freeze-thaw at -80 ℃. The established UHPLC-MS/MS method was used to evaluate the changes in alkylation DNA adducts and epigenetic modification-related methylcytosine after exposure to genotoxic reagents. For the first time, the results demonstrated that 3 genotoxic reagents induced different total amounts of adducts in the following sequence: MMS > NNK > MNU, and showed significant differences in the ratios of 7MeG to 1MeA and 1MeG to 1MeA in the 293 T cell model. Meanwhile, 293 T and L02 cells revealed significantly different DNA adduct formation characteristics in the contents of 1MeG and 1MeA. The DNA adduct formation relationships between DNA, RNA, and cell contents were probed to predict cancer risk and potential genotoxic exposure. This approach could be used to investigate the DNA adducts, their formation and the relationship to the mutagenicity or carcinogenicity of genotoxic reagents in future studies.
Collapse
Affiliation(s)
- Yu Tang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Zhe Wang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Menglin Li
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Ruiping Zhang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Jinlan Zhang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China.
| |
Collapse
|
35
|
Li Y, He M, Chen B, Hu B. Inhibition of arsenite methylation induces synergistic genotoxicity of arsenite and benzo(a)pyrene diol epoxide in SCC-7 cells. Metallomics 2019; 11:176-182. [DOI: 10.1039/c8mt00217g] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A comprehensive analytical method was developed to investigate the synergistic genotoxicity of BPDE and As(iii) in SCC-7 cells.
Collapse
Affiliation(s)
- Youxian Li
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education)
- Department of Chemistry
- Wuhan University
- Wuhan 430072
- P. R. China
| | - Man He
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education)
- Department of Chemistry
- Wuhan University
- Wuhan 430072
- P. R. China
| | - Beibei Chen
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education)
- Department of Chemistry
- Wuhan University
- Wuhan 430072
- P. R. China
| | - Bin Hu
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education)
- Department of Chemistry
- Wuhan University
- Wuhan 430072
- P. R. China
| |
Collapse
|
36
|
Madeen E, Siddens LK, Uesugi S, McQuistan T, Corley RA, Smith J, Waters KM, Tilton SC, Anderson KA, Ognibene T, Turteltaub K, Williams DE. Toxicokinetics of benzo[a]pyrene in humans: Extensive metabolism as determined by UPLC-accelerator mass spectrometry following oral micro-dosing. Toxicol Appl Pharmacol 2018; 364:97-105. [PMID: 30582946 DOI: 10.1016/j.taap.2018.12.010] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Revised: 12/13/2018] [Accepted: 12/17/2018] [Indexed: 10/27/2022]
Abstract
Benzo[a]pyrene (BaP), is a known human carcinogen (International Agency for Research on Cancer (IARC) class 1). The remarkable sensitivity (zepto-attomole 14C in biological samples) of accelerator mass spectrometry (AMS) makes possible, with de minimus risk, pharmacokinetic (PK) analysis following [14C]-BaP micro-dosing of humans. A 46 ng (5 nCi) dose was given thrice to 5 volunteers with minimum 2 weeks between dosing and plasma collected over 72 h. [14C]-BaPeq PK analysis gave plasma Tmax and Cmax values of 1.25 h and 29-82 fg/mL, respectively. PK parameters were assessed by non- compartment and compartment models. Intervals between dosing ranged from 20 to 420 days and had little impact on intra-individual variation. DNA, extracted from peripheral blood mononuclear cells (PBMCs) of 4 volunteers, showed measurable levels (LOD ~ 0.5 adducts/1011 nucleotides) in two individuals 2-3 h post-dose, approximately three orders of magnitude lower than smokers or occupationally-exposed individuals. Little or no DNA binding was detectable at 48-72 h. In volunteers the allelic variants CYP1B1*1/*⁎1, *1/*3 or *3/*3 and GSTM1*0/0 or *1 had no impact on [14C]-BaPeq PK or DNA adduction with this very limited sample. Plasma metabolites over 72 h from two individuals (one CYP1B1*1/*1 and one CYP1B1*3/*3) were analyzed by UPLC-AMS. In both individuals, parent [14C]-BaP was a minor constituent even at the earliest time points and metabolite profiles markedly distinct. AMS, coupled with UPLC, could be used in humans to enhance the accuracy of pharmacokinetics, toxicokinetics and risk assessment of environmental carcinogens.
Collapse
Affiliation(s)
- Erin Madeen
- Department of Environmental and Molecular Toxicology, Oregon State University, Corvallis, OR, USA; NIEHS Superfund Research Program, Oregon State University, Corvallis, OR, USA
| | - Lisbeth K Siddens
- Department of Environmental and Molecular Toxicology, Oregon State University, Corvallis, OR, USA; NIEHS Superfund Research Program, Oregon State University, Corvallis, OR, USA; Linus Pauling Institute, Oregon State University, Corvallis, OR, USA
| | - Sandra Uesugi
- Linus Pauling Institute, Oregon State University, Corvallis, OR, USA
| | | | - Richard A Corley
- NIEHS Superfund Research Program, Oregon State University, Corvallis, OR, USA; Chemical Biology and Exposure Science, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Jordan Smith
- NIEHS Superfund Research Program, Oregon State University, Corvallis, OR, USA; Chemical Biology and Exposure Science, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Katrina M Waters
- NIEHS Superfund Research Program, Oregon State University, Corvallis, OR, USA; Chemical Biology and Exposure Science, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Susan C Tilton
- Department of Environmental and Molecular Toxicology, Oregon State University, Corvallis, OR, USA; NIEHS Superfund Research Program, Oregon State University, Corvallis, OR, USA
| | - Kim A Anderson
- Department of Environmental and Molecular Toxicology, Oregon State University, Corvallis, OR, USA; NIEHS Superfund Research Program, Oregon State University, Corvallis, OR, USA
| | - Ted Ognibene
- Center for Accelerator Mass Spectrometry, Lawrence Livermore National Laboratory, Livermore, CA, USA
| | - Kenneth Turteltaub
- Center for Accelerator Mass Spectrometry, Lawrence Livermore National Laboratory, Livermore, CA, USA; Biology and Biotechnology Research Division, Lawrence Livermore National Laboratory, Livermore, CA, USA
| | - David E Williams
- Department of Environmental and Molecular Toxicology, Oregon State University, Corvallis, OR, USA; NIEHS Superfund Research Program, Oregon State University, Corvallis, OR, USA; Linus Pauling Institute, Oregon State University, Corvallis, OR, USA.
| |
Collapse
|
37
|
de Oliveira AAF, de Oliveira TF, Dias MF, Medeiros MHG, Di Mascio P, Veras M, Lemos M, Marcourakis T, Saldiva PHN, Loureiro APM. Genotoxic and epigenotoxic effects in mice exposed to concentrated ambient fine particulate matter (PM 2.5) from São Paulo city, Brazil. Part Fibre Toxicol 2018; 15:40. [PMID: 30340610 PMCID: PMC6194750 DOI: 10.1186/s12989-018-0276-y] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Accepted: 10/03/2018] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND The Metropolitan Area of São Paulo has a unique composition of atmospheric pollutants, and positive correlations between exposure and the risk of diseases and mortality have been observed. Here we assessed the effects of ambient fine particulate matter (PM2.5) on genotoxic and global DNA methylation and hydroxymethylation changes, as well as the activities of antioxidant enzymes, in tissues of AJ mice exposed whole body to ambient air enriched in PM2.5, which was concentrated in a chamber near an avenue of intense traffic in São Paulo City, Brazil. RESULTS Mice exposed to concentrated ambient PM2.5 (1 h daily, 3 months) were compared to in situ ambient air exposed mice as the study control. The concentrated PM2.5 exposed group presented increased levels of the oxidized nucleoside 8-oxo-7,8-dihydro-2'-deoxyguanosine in lung and kidney DNA and increased levels of the etheno adducts 1,N6-etheno-2'-deoxyadenosine and 1,N2-etheno-2'-deoxyguanosine in kidney and liver DNA, respectively. Apart from the genotoxic effects, the exposure to PM2.5 led to decreased levels of the epigenetic mark 5-hydroxymethylcytosine (5-hmC) in lung and liver DNA. Changes in lung, liver, and erythrocyte antioxidant enzyme activities were also observed. Decreased glutathione reductase and increased superoxide dismutase (SOD) activities were observed in the lungs, while the liver presented increased glutathione S-transferase and decreased SOD activities. An increase in SOD activity was also observed in erythrocytes. These changes are consistent with the induction of local and systemic oxidative stress. CONCLUSIONS Mice exposed daily to PM2.5 at a concentration that mimics 24-h exposure to the mean concentration found in ambient air presented, after 3 months, increased levels of DNA lesions related to the occurrence of oxidative stress in the lungs, liver, and kidney, in parallel to decreased global levels of 5-hmC in lung and liver DNA. Genetic and epigenetic alterations induced by pollutants may affect the genes committed to cell cycle control, apoptosis, and cell differentiation, increasing the chance of cancer development, which merits further investigation.
Collapse
Affiliation(s)
- Antonio Anax Falcão de Oliveira
- Departamento de Análises Clínicas e Toxicológicas, Faculdade de Ciências Farmacêuticas, Universidade de São Paulo, Av. Prof. Lineu Prestes 580, Bloco 13 B, São Paulo, CEP 05508-000 Brazil
| | - Tiago Franco de Oliveira
- Departamento de Análises Clínicas e Toxicológicas, Faculdade de Ciências Farmacêuticas, Universidade de São Paulo, Av. Prof. Lineu Prestes 580, Bloco 13 B, São Paulo, CEP 05508-000 Brazil
- Present address: Departamento de Farmacociências, Universidade Federal de Ciências da Saúde de Porto Alegre, Rua Sarmento Leite 245, Porto Alegre, Rio Grande do Sul CEP 90050-170 Brazil
| | - Michelle Francini Dias
- Departamento de Análises Clínicas e Toxicológicas, Faculdade de Ciências Farmacêuticas, Universidade de São Paulo, Av. Prof. Lineu Prestes 580, Bloco 13 B, São Paulo, CEP 05508-000 Brazil
| | - Marisa Helena Gennari Medeiros
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, Av. Prof. Lineu Prestes 748, São Paulo, CEP 05508-000 Brazil
| | - Paolo Di Mascio
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, Av. Prof. Lineu Prestes 748, São Paulo, CEP 05508-000 Brazil
| | - Mariana Veras
- Laboratório de Poluição Atmosférica Experimental – LIM05, Hospital das Clínicas, Faculdade de Medicina, Universidade de São Paulo, Av. Dr. Arnaldo 455, São Paulo, CEP 01246903 Brazil
| | - Miriam Lemos
- Laboratório de Poluição Atmosférica Experimental – LIM05, Hospital das Clínicas, Faculdade de Medicina, Universidade de São Paulo, Av. Dr. Arnaldo 455, São Paulo, CEP 01246903 Brazil
| | - Tania Marcourakis
- Departamento de Análises Clínicas e Toxicológicas, Faculdade de Ciências Farmacêuticas, Universidade de São Paulo, Av. Prof. Lineu Prestes 580, Bloco 13 B, São Paulo, CEP 05508-000 Brazil
| | - Paulo Hilário Nascimento Saldiva
- Laboratório de Poluição Atmosférica Experimental – LIM05, Hospital das Clínicas, Faculdade de Medicina, Universidade de São Paulo, Av. Dr. Arnaldo 455, São Paulo, CEP 01246903 Brazil
- Instituto de Estudos Avançados, Universidade de São Paulo, R. do Anfiteatro, 513, São Paulo, CEP 05508060 Brazil
| | - Ana Paula Melo Loureiro
- Departamento de Análises Clínicas e Toxicológicas, Faculdade de Ciências Farmacêuticas, Universidade de São Paulo, Av. Prof. Lineu Prestes 580, Bloco 13 B, São Paulo, CEP 05508-000 Brazil
| |
Collapse
|
38
|
Monien BH, Sachse B, Meinl W, Abraham K, Lampen A, Glatt H. Hemoglobin adducts of furfuryl alcohol in genetically modified mouse models: Role of endogenous sulfotransferases 1a1 and 1d1 and transgenic human sulfotransferases 1A1/1A2. Toxicol Lett 2018; 295:173-178. [DOI: 10.1016/j.toxlet.2018.06.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Revised: 06/04/2018] [Accepted: 06/11/2018] [Indexed: 11/28/2022]
|
39
|
Antonowicz S, Hanna GB, Takats Z, Bodai Z. Pragmatic and rapid analysis of carbonyl, oxidation and chlorination nucleoside-adducts in murine tissue by UPLC-ESI-MS/MS. Talanta 2018; 190:436-442. [PMID: 30172530 DOI: 10.1016/j.talanta.2018.08.029] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Revised: 08/05/2018] [Accepted: 08/09/2018] [Indexed: 10/28/2022]
Abstract
Nucleoside-adduct analysis by liquid chromatography mass spectrometry is a powerful tool in genotoxicity studies. Efforts to date have quantified an impressive array of DNA damage products, although methodological diversity suggests quantification is still a challenging task. For example, inadequate co-examination of normal nucleosides, cumbersome sample preparation and large DNA requirements were identified to be recurring issues. A six-minute ultra-performance liquid chromatography method is presented which adequately separates seven candidate nucleoside-adducts from the four unmodified nucleosides. The method was sensitive to 1 adduct per 108 normal bases with 20 µg DNA input for most targets. The method was shown to be accurate (81-119% across quintuplets of six tissue types) and precise (relative standard deviation 4-13%). The fast method time facilitated a second quantitation for normal nucleosides at an appropriate dilution, allowing DNA damage concentrations to be contextualised accurately sample-to-sample. From DNA samples, the analytical processing time was < 8 h, and 96 samples can easily be prepared in a day. The method was used to quantify carbonyl, chloro- and oxo- adducts in murine tissue samples.
Collapse
Affiliation(s)
- Stefan Antonowicz
- Division of Surgery, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, London, United Kingdom.
| | - George B Hanna
- Division of Surgery, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, London, United Kingdom.
| | - Zoltan Takats
- Computational and Systems Medicine, Faculty of Medicine, Imperial College London, London, United Kingdom.
| | - Zsolt Bodai
- Computational and Systems Medicine, Faculty of Medicine, Imperial College London, London, United Kingdom.
| |
Collapse
|
40
|
Feng Y, Wang S, Wang H, Peng Y, Zheng J. Urinary Methyleugenol-deoxyadenosine Adduct as a Potential Biomarker of Methyleugenol Exposure in Rats. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:1258-1263. [PMID: 29328669 DOI: 10.1021/acs.jafc.7b05186] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Methyleugenol (ME), a natural ingredient of several herbs and spices used in the human diet, is hepatocarcinogenic in rodents. Following metabolic activation to the reactive carbocation intermediate, ME can bind covalently to DNA, which is directly associated with its carcinogenicity. In this work, a non-invasive approach to determine ME exposure was established by monitoring the urinary N6-(methylisoeugenol-3'-yl)-2'-deoxyadenosine (ME-dA) adduct. The developed method entails liquid-liquid extraction enrichment of urinary ME-dA, incorporation of deuterated ME-dA as an internal standard, and analysis by liquid chromatography coupled tandem mass spectrometry. Male rats (10-12 weeks, 180-200 g) were treated (p.o.) with ME, and ME-dA was excreted in urine in a dose- and time-dependent manner. The non-invasive approach enabled us to successfully determine exposure to ME-containing herbs and spices. These results suggest that ME-dA can potentially serve as an effective biomarker of ME exposure in rats. It is expected that the developed approach of detecting urinary ME-dA will facilitate the investigation of ME carcinogenesis.
Collapse
Affiliation(s)
- Yukun Feng
- Wuya College of Innovation, Shenyang Pharmaceutical University , Shenyang, Liaoning 110016, People's Republic of China
| | - Saide Wang
- Wuya College of Innovation, Shenyang Pharmaceutical University , Shenyang, Liaoning 110016, People's Republic of China
| | - Hui Wang
- Wuya College of Innovation, Shenyang Pharmaceutical University , Shenyang, Liaoning 110016, People's Republic of China
| | - Ying Peng
- Wuya College of Innovation, Shenyang Pharmaceutical University , Shenyang, Liaoning 110016, People's Republic of China
| | - Jiang Zheng
- Wuya College of Innovation, Shenyang Pharmaceutical University , Shenyang, Liaoning 110016, People's Republic of China
- State Key Laboratory of Functions and Applications of Medicinal Plants, Key Laboratory of Pharmaceutics of Guizhou Province and Guizhou Medical University , Guiyang, Guizhou 550004, People's Republic of China
| |
Collapse
|
41
|
Villalta PW, Hochalter JB, Hecht SS. Ultrasensitive High-Resolution Mass Spectrometric Analysis of a DNA Adduct of the Carcinogen Benzo[a]pyrene in Human Lung. Anal Chem 2017; 89:12735-12742. [PMID: 29111668 PMCID: PMC6027747 DOI: 10.1021/acs.analchem.7b02856] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Benzo[a]pyrene (BaP), an archetypical polycyclic aromatic hydrocarbon, is classified as "carcinogenic to humans" and is ubiquitous in the environment, as evident by the measurable levels of BaP metabolites in virtually all human urine samples examined. BaP carcinogenicity is believed to occur mainly through its covalent modification of DNA, resulting in the formation of BPDE-N2-dG, an adduct formed between deoxyguanosine and a diol epoxide metabolite of BaP, with subsequent mutation of critical growth control genes. In spite of the liquid chromatography-mass spectrometry (LC-MS)-based detection of BPDE-N2-dG in BaP-treated rodents, and indirectly through high-performance liquid chromatography (HPLC)-fluorescence detection of BaP-7,8,9,10-tetraols released from human DNA upon acid hydrolysis, BPDE-N2-dG adducts have rarely if ever been observed directly in human samples using LC-MS techniques, even though sophisticated methodologies have been employed which should have had sufficient sensitivity. With this in mind, we developed a liquid chromatography-electrospray ionization tandem mass spectrometry (LC-ESI-MS/MS) methodology employing high-resolution/accurate mass analysis for detecting ultratrace levels of these adducts. These efforts are directly translatable to the development of sensitive detection of other small molecules using trap-based LC-ESI-MS/MS detection. The developed methodology had a limit of detection (LOD) of 1 amol of BPDE-N2-dG on-column, corresponding to 1 BPDE-N2-dG adduct per 1011 nucleotides (1 adduct per 10 human lung cells) using 40 μg of human lung DNA. To our knowledge, this is the most sensitive DNA adduct quantitation method yet reported, exceeding the sensitivity of the 32P-postlabeling assay (∼1 adduct per 1010 nucleotides). Twenty-nine human lung DNA samples resulted in 20 positive measurements above the LOD, with smoker and nonsmoker DNA containing 3.1 and 1.3 BPDE-N2-dG adducts per 1011 nucleotides, respectively.
Collapse
Affiliation(s)
- Peter W. Villalta
- Masonic Cancer Center, University of Minnesota, 2231 6th Street SE, Minneapolis, MN 55455, USA
| | - J. Bradley Hochalter
- Masonic Cancer Center, University of Minnesota, 2231 6th Street SE, Minneapolis, MN 55455, USA
| | - Stephen S. Hecht
- Masonic Cancer Center, University of Minnesota, 2231 6th Street SE, Minneapolis, MN 55455, USA
| |
Collapse
|
42
|
Guo J, Villalta PW, Turesky RJ. Data-Independent Mass Spectrometry Approach for Screening and Identification of DNA Adducts. Anal Chem 2017; 89:11728-11736. [PMID: 28977750 PMCID: PMC5727898 DOI: 10.1021/acs.analchem.7b03208] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Long-term exposures to environmental toxicants and endogenous electrophiles are causative factors for human diseases including cancer. DNA adducts reflect the internal exposure to genotoxicants and can serve as biomarkers for risk assessment. Liquid chromatography-multistage mass spectrometry (LC-MSn) is the most common method for biomonitoring DNA adducts, generally targeting single exposures and measuring up to several adducts. However, the data often provide limited evidence for a role of a chemical in the etiology of cancer. An "untargeted" method is required that captures global exposures to chemicals, by simultaneously detecting their DNA adducts in the genome; some of which may induce cancer-causing mutations. We established a wide selected ion monitoring tandem mass spectrometry (wide-SIM/MS2) screening method utilizing ultraperformance-LC nanoelectrospray ionization Orbitrap MSn with online trapping to enrich bulky, nonpolar adducts. Wide-SIM scan events are followed by MS2 scans to screen for modified nucleosides by coeluting peaks containing precursor and fragment ions differing by -116.0473 Da, attributed to the neutral loss of deoxyribose. Wide-SIM/MS2 was shown to be superior in sensitivity, specificity, and breadth of adduct coverage to other tested adductomic methods with detection possible at adduct levels as low as 4 per 109 nucleotides. Wide-SIM/MS2 data can be analyzed in a "targeted" fashion by generation of extracted ion chromatograms or in an "untargeted" fashion where a chromatographic peak-picking algorithm can be used to detect putative DNA adducts. Wide-SIM/MS2 successfully detected DNA adducts, derived from chemicals in the diet and traditional medicines and from lipid peroxidation products, in human prostate and renal specimens.
Collapse
Affiliation(s)
- Jingshu Guo
- Masonic Cancer Center, College of Pharmacy, 2231 Sixth Street SE, Minneapolis, Minnesota 55455
- Department of Medicinal Chemistry, College of Pharmacy, 2231 Sixth Street SE, Minneapolis, Minnesota 55455
| | - Peter W. Villalta
- Masonic Cancer Center, College of Pharmacy, 2231 Sixth Street SE, Minneapolis, Minnesota 55455
| | - Robert J. Turesky
- Masonic Cancer Center, College of Pharmacy, 2231 Sixth Street SE, Minneapolis, Minnesota 55455
- Department of Medicinal Chemistry, College of Pharmacy, 2231 Sixth Street SE, Minneapolis, Minnesota 55455
| |
Collapse
|
43
|
King T, Cole M, Farber JM, Eisenbrand G, Zabaras D, Fox EM, Hill JP. Food safety for food security: Relationship between global megatrends and developments in food safety. Trends Food Sci Technol 2017. [DOI: 10.1016/j.tifs.2017.08.014] [Citation(s) in RCA: 89] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
44
|
Leng J, Wang Y. Liquid Chromatography-Tandem Mass Spectrometry for the Quantification of Tobacco-Specific Nitrosamine-Induced DNA Adducts in Mammalian Cells. Anal Chem 2017; 89:9124-9130. [PMID: 28749651 PMCID: PMC5620023 DOI: 10.1021/acs.analchem.7b01857] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Quantification of DNA lesions constitutes one of the main tasks in toxicology and in assessing health risks accompanied by exposure to carcinogens. Tobacco-specific nitrosamines 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK) and N'-nitrosonornicotine (NNN) can undergo metabolic transformation to give a reactive intermediate that pyridyloxobutylates nucleobases and phosphate backbone of DNA. Here, we reported a highly sensitive method, relying on the use of nanoflow liquid chromatography-nanoelectrospray ionization-tandem mass spectrometry (nLC-nESI-MS/MS), for the simultaneous quantifications of O6-[4-(3-pyridyl)-4-oxobut-1-yl]-2'-deoxyguanosine (O6-POBdG) as well as O2- and O4-[4-(3-pyridyl)-4-oxobut-1-yl]-thymidine (O2-POBdT and O4-POBdT). By using this method, we measured the levels of the three DNA adducts with the use of 10 μg of DNA isolated from cultured mammalian cells exposed to a model pyridyloxobutylating agent, 4-(acetoxymethylnitrosamino)-1-(3-pyridyl)-1-butanone (NNKOAc). Our results demonstrated, for the first time, the formation of O4-POBdT in naked DNA and in genomic DNA of cultured mammalian cells exposed with NNKOAc. We also revealed that the levels of the three lesions increased with the dose of NNKOAc and that O2-POBdT and O4-POBdT could be subjected to repair by the nucleotide excision repair (NER) pathway. The method reported here will be useful for investigations about the involvement of other DNA repair pathways in the removal of these lesions and for human toxicological studies in the future.
Collapse
Affiliation(s)
- Jiapeng Leng
- Department of Chemistry, University of California, Riverside, California 92521-0403, United States
| | - Yinsheng Wang
- Corresponding Author. Tel.: (951) 827-2700. Fax: (951) 827-4713.
| |
Collapse
|
45
|
Grosse Y, Loomis D, Guyton KZ, El Ghissassi F, Bouvard V, Benbrahim-Tallaa L, Mattock H, Straif K. Some chemicals that cause tumours of the urinary tract in rodents. Lancet Oncol 2017; 18:1003-1004. [PMID: 28666821 DOI: 10.1016/s1470-2045(17)30505-3] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Affiliation(s)
- Yann Grosse
- International Agency for Research on Cancer, Lyon, France
| | - Dana Loomis
- International Agency for Research on Cancer, Lyon, France
| | | | | | | | | | - Heidi Mattock
- International Agency for Research on Cancer, Lyon, France
| | - Kurt Straif
- International Agency for Research on Cancer, Lyon, France
| |
Collapse
|
46
|
Sachse B, Hielscher J, Lampen A, Abraham K, Monien BH. A hemoglobin adduct as a biomarker for the internal exposure to the rodent carcinogen furfuryl alcohol. Arch Toxicol 2017; 91:3843-3855. [PMID: 28597227 DOI: 10.1007/s00204-017-2005-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2016] [Accepted: 06/01/2017] [Indexed: 11/25/2022]
Abstract
Furfuryl alcohol is a common food contaminant, which is formed by acid- and heat-catalyzed degradation of fructose and glucose. Its carcinogenic effect in rodents originates most likely from sulfotransferase (SULT)-catalyzed conversion into the mutagenic sulfate ester 2-sulfoxymethylfuran. In this study, a protein adduct biomarker was sought for the medium-term internal exposure to furfuryl alcohol. A UPLC-MS/MS screening showed that the adduct N-((furan-2-yl)methyl)-Val (FFA-Val) at the N-terminus of hemoglobin is a valid target analyte. The Val cleavage by fluorescein isothiocyanate-mediated Edman degradation yielded 3-fluorescein-1-(furan-2-ylmethyl)-5-(propan-2-yl)-2-thioxoimidazolidin-4-one (FFA-Val-FTH), which was characterized by 1H and 13C NMR spectroscopy. An isotope-dilution method for the quantification of FFA-Val-FTH by UPLC-MS/MS was developed. It was used to study the adduct formation in furfuryl alcohol-treated FVB/N mice and the influence of ethanol and the alcohol dehydrogenase (ADH) inhibitor 4-methylpyrazole on the adduct levels. The administration of 400 mg/kg body weight furfuryl alcohol alone led to 12.5 and 36.7 pmol FFA-Val/g Hb in blood samples of male and female animals, respectively. The co-administration of 1.6 g ethanol/kg body weight increased FFA-Val levels by 1.4-fold in males and by 1.5-fold in females. The co-administration of 100 mg 4-methylpyrazole/kg body weight had a similar effect on the adduct levels. A high correlation was observed between adduct levels in hemoglobin and in hepatic DNA samples determined in the same animal experiment. This indicated that FFA-Val is a valid biomarker for the internal exposure to 2-sulfoxymethylfuran, which may be suitable to monitor furfuryl alcohol exposure also in humans.
Collapse
Affiliation(s)
- Benjamin Sachse
- Department of Food Safety, German Federal Institute for Risk Assessment (BfR), Max-Dohrn-Strasse 8-10, 10589, Berlin, Germany
- Research Group Genotoxic Food Contaminants, German Institute of Human Nutrition (DIfE) Potsdam-Rehbrücke, 14558, Nuthetal, Germany
| | - Jan Hielscher
- Department of Food Safety, German Federal Institute for Risk Assessment (BfR), Max-Dohrn-Strasse 8-10, 10589, Berlin, Germany
| | - Alfonso Lampen
- Department of Food Safety, German Federal Institute for Risk Assessment (BfR), Max-Dohrn-Strasse 8-10, 10589, Berlin, Germany
| | - Klaus Abraham
- Department of Food Safety, German Federal Institute for Risk Assessment (BfR), Max-Dohrn-Strasse 8-10, 10589, Berlin, Germany
| | - Bernhard H Monien
- Department of Food Safety, German Federal Institute for Risk Assessment (BfR), Max-Dohrn-Strasse 8-10, 10589, Berlin, Germany.
- Research Group Genotoxic Food Contaminants, German Institute of Human Nutrition (DIfE) Potsdam-Rehbrücke, 14558, Nuthetal, Germany.
| |
Collapse
|
47
|
The G-BHQ synergistic effect: Improved double quenching molecular beacons based on guanine and Black Hole Quencher for sensitive simultaneous detection of two DNAs. Talanta 2017; 174:289-294. [PMID: 28738581 DOI: 10.1016/j.talanta.2017.06.020] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Revised: 05/31/2017] [Accepted: 06/07/2017] [Indexed: 11/21/2022]
Abstract
We designed two double quenching molecular beacons (MBs) with simple structure based on guanine (G base) and Black Hole Quencher (BHQ), and developed a new analytical method for sensitive simultaneous detection of two DNAs by synchronous fluorescence analysis. In this analytical method, carboxyl fluorescein (FAM) and tetramethyl-6-carboxyrhodamine (TAMRA) were respectively selected as fluorophore of two MBs, Black Hole Quencher 1 (BHQ-1) and Black Hole Quencher 2 (BHQ-2) were respectively selected as organic quencher, and three continuous nucleotides with G base were connected to organic quencher (BHQ-1 and BHQ-2). In the presence of target DNAs, the two MBs hybridize with the corresponding target DNAs, the fluorophores are separated from organic quenchers and G bases, leading to recovery of fluorescence of FAM and TAMRA. Under a certain conditions, the fluorescence intensities of FAM and TAMRA all exhibited good linear dependence on their concentration of target DNAs (T1 and T2) in the range from 4 × 10-10 to 4 × 10-8molL-1 (M). The detection limit (3σ, n = 13) of T1 was 3 × 10-10M and that of T2 was 2×10-10M, respectively. Compared with the existing analysis methods for multiplex DNA with MBs, this proposed method based on double quenching MBs is not only low fluorescence background, short analytical time and low detection cost, but also easy synthesis and good stability of MB probes.
Collapse
|
48
|
Slawik C, Rickmeyer C, Brehm M, Böhme A, Schüürmann G. Glutathione Adduct Patterns of Michael-Acceptor Carbonyls. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2017; 51:4018-4026. [PMID: 28225253 DOI: 10.1021/acs.est.6b04981] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Glutathione (GSH) has so far been considered to facilitate detoxification of soft organic electrophiles through covalent binding at its cysteine (Cys) thiol group, followed by stepwise catalyzed degradation and eventual elimination along the mercapturic acid pathway. Here we show that in contrast to expectation from HSAB theory, Michael-acceptor ketones, aldehydes and esters may form also single, double and triple adducts with GSH involving β-carbon attack at the much harder N-terminus of the γ-glutamyl (Glu) unit of GSH. In particular, formation of the GSH-N single adduct contradicts the traditional view that S alkylation always forms the initial reaction of GSH with Michael-acceptor carbonyls. To this end, chemoassay analyses of the adduct formation of GSH with nine α,β-unsaturated carbonyls employing high performance liquid chromatography and tandem mass spectrometry have been performed. Besides enriching the GSH adductome and potential biomarker applications, electrophilic N-terminus functionalization is likely to impair GSH homeostasis substantially through blocking the γ-glutamyl transferase catalysis of the first breakdown step of modified GSH, and thus its timely reconstitution. The discussion includes a comparison with cyclic adducts of GSH and furan metabolites as reported in literature, and quantum chemically calculated thermodynamics of hard-hard, hard-soft, and soft-soft adducts.
Collapse
Affiliation(s)
- Christian Slawik
- UFZ Department of Ecological Chemistry, Helmholtz Centre for Environmental Research , Permoserstraße 15, 04318 Leipzig, Germany
- Institute for Organic Chemistry, Technical University Bergakademie Freiberg , Leipziger Straße 29, 09596 Freiberg, Germany
| | - Christiane Rickmeyer
- UFZ Department of Ecological Chemistry, Helmholtz Centre for Environmental Research , Permoserstraße 15, 04318 Leipzig, Germany
| | - Martin Brehm
- UFZ Department of Ecological Chemistry, Helmholtz Centre for Environmental Research , Permoserstraße 15, 04318 Leipzig, Germany
| | - Alexander Böhme
- UFZ Department of Ecological Chemistry, Helmholtz Centre for Environmental Research , Permoserstraße 15, 04318 Leipzig, Germany
| | - Gerrit Schüürmann
- UFZ Department of Ecological Chemistry, Helmholtz Centre for Environmental Research , Permoserstraße 15, 04318 Leipzig, Germany
- Institute for Organic Chemistry, Technical University Bergakademie Freiberg , Leipziger Straße 29, 09596 Freiberg, Germany
| |
Collapse
|
49
|
Methyleugenol DNA adducts in human liver are associated with SULT1A1 copy number variations and expression levels. Arch Toxicol 2017; 91:3329-3339. [PMID: 28326452 DOI: 10.1007/s00204-017-1955-4] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2017] [Accepted: 03/09/2017] [Indexed: 10/19/2022]
Abstract
Methyleugenol is a rodent hepatocarcinogen occurring in many herbs and spices as well as essential oils used for flavoring. Following metabolic activation by cytochromes P450 (CYPs) and sulfotransferases (SULTs), methyleugenol can form DNA adducts. Previously, we showed that DNA adduct formation by methyleugenol in mouse liver is dependent on SULT1A1 expression and that methyleugenol DNA adducts are abundant in human liver specimens. In humans, SULT1A1 activity is affected by genetic polymorphisms, including single-nucleotide polymorphisms (SNPs) and copy number variations (CNVs). Here we investigated the relationship between individual methyleugenol DNA adduct levels and SULT1A1 in human liver samples. Using isotope-dilution ultraperformance liquid chromatography coupled with tandem mass spectrometry, we quantified methyleugenol DNA adducts in 121 human surgical liver samples. Frequent CNVs, including deletions (f = 3.3%) and duplications (f = 36.4%) of SULT1A1, were identified using qPCR and TaqMan assays in the donors' genomic DNA. SULT1A1 mRNA and protein levels were quantified using microarray data and Western blot analysis, respectively. Methyleugenol DNA adducts were detected in all 121 liver samples studied. Their levels varied 122-fold between individuals and were significantly correlated to both mRNA and protein levels of SULT1A1 (r s = 0.43, and r s = 0.44, respectively). Univariate and multivariate statistical analysis identified significant associations of SULT1A1 CNVs with mRNA (p = 1.7 × 10-06) and protein (p = 4.4 × 10- 10) levels as well as methyleugenol DNA adduct levels (p = 0.003). These data establish the importance of SULT1A1 genotype for hepatic methyleugenol DNA adducts in humans, and they confirm a strong impact of SULT1A1 CNVs on SULT1A1 hepatic phenotype.
Collapse
|
50
|
Abstract
In this review, current issues and opportunities in food safety assessment are discussed. Food safety is considered an essential element inherent in global food security. Hazard characterization is pivotal within the continuum of risk assessment, but it may be conceived only within a very limited frame as a true alternative to risk assessment. Elucidation of the mode of action underlying a given hazard is vital to create a plausible basis for human toxicology evaluation. Risk assessment, to convey meaningful risk communication, must be based on appropriate and reliable consideration of both exposure and mode of action. New perspectives, provided by monitoring human exogenous and endogenous exposure biomarkers, are considered of great promise to support classical risk extrapolation from animal toxicology.
Collapse
Affiliation(s)
- G Eisenbrand
- Division of Food Chemistry and Toxicology, Department of Chemistry, University of Kaiserslautern, Kaiserslautern, Germany
| |
Collapse
|