1
|
Li Y, Li W, Zheng Y, Wang T, Pu R, Zhang Z. Desalting strategies for native mass spectrometry. Talanta 2025; 281:126824. [PMID: 39250868 DOI: 10.1016/j.talanta.2024.126824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 09/02/2024] [Accepted: 09/05/2024] [Indexed: 09/11/2024]
Abstract
In native mass spectrometry (MS) salts are indispensable for preserving the native structures of biomolecules, but detrimental to mass sensitivity, resolution, and accuracy. Such a conflict makes desalting in native MS more challenging, distinctive, and sample-dependent than in peptide-centric MS. This review first briefly introduces the charged residue mechanism whereby native-like gaseous protein ions are released from electrospray droplets, revealing a higher degree of salt adduction than denatured proteins. Subsequently, this review summarizes and explores the existing strategies, underlying mechanisms and future perspectives of desalting in native MS. These strategies mainly focus on buffer exchange into volatile salts (offline and online approaches), addition of solution additives (e.g., anion, supercharging reagent, solution phase chelator and amino acid), use of submicron electrospray emitters (down to 60 nm), and other potential approaches (e.g., induced and electrophoretic nanoelectrospray ionization). The strategies of online buffer exchange and using nanoscale electrospray emitters are highlighted. This review would not only be a valuable addition to the field of sample preparation in MS, but would also serve as a beginner's guide to desalting in native MS.
Collapse
Affiliation(s)
- Yun Li
- School of Chemistry and Chemical Engineering, Xi'an Shiyou University, Xi'an, 710065, China
| | - Weijie Li
- School of Chemistry and Chemical Engineering, Xi'an Shiyou University, Xi'an, 710065, China
| | - Yajun Zheng
- School of Chemistry and Chemical Engineering, Xi'an Shiyou University, Xi'an, 710065, China.
| | - Tong Wang
- School of Chemistry and Chemical Engineering, Xi'an Shiyou University, Xi'an, 710065, China
| | - Ruijin Pu
- School of Chemistry and Chemical Engineering, Xi'an Shiyou University, Xi'an, 710065, China
| | - Zhiping Zhang
- School of Chemistry and Chemical Engineering, Xi'an Shiyou University, Xi'an, 710065, China.
| |
Collapse
|
2
|
Bennett AA, Steininger-Mairinger T, Eroğlu ÇG, Gfeller A, Wirth J, Puschenreiter M, Hann S. Dual column chromatography combined with high-resolution mass spectrometry improves coverage of non-targeted analysis of plant root exudates. Anal Chim Acta 2024; 1327:343126. [PMID: 39266059 DOI: 10.1016/j.aca.2024.343126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 08/12/2024] [Accepted: 08/18/2024] [Indexed: 09/14/2024]
Abstract
BACKGROUND Within the plant kingdom, there is an exceptional amount of chemical diversity that has yet to be annotated. It is for this reason that non-targeted analysis is of interest for those working in novel natural products. To increase the number and diversity of compounds observable in root exudate extracts, several workflows which differ at three key stages were compared: 1) sample extraction, 2) chromatography, and 3) data preprocessing. RESULTS Plants were grown in Hoagland's solution for two weeks, and exudates were initially extracted with water, followed by a 24-h regeneration period with subsequent extraction using methanol. Utilizing the second extraction showed improved results with less ion suppression and reduced retention time shifting compared to the first extraction. A single column method, utilizing a pentafluorophenyl column, paired with high-resolution mass spectrometry ionized and correctly identified 34 mock root exudate compounds, while the dual column method, incorporating a pentafluorophenyl column and a porous graphitic carbon column, retained and identified 43 compounds. In a pooled quality control sample of exudate extracts, the single column method detected 1,444 compounds. While the dual method detected fewer compounds overall (1,050), it revealed a larger number of small polar compounds. Three preprocessing methods (targeted, proprietary, and open source) successfully identified 43, 31, and 38 mock root exudate compounds to confidence level 1, respectively. SIGNIFICANCE Enhancing signal strength and analytical method stability involves removing the high ionic strength nutrient solution before sampling root exudate extracts. Despite signal intensity loss, a dual column method enhances compound coverage, particularly for small polar metabolites. Open-source software proves a viable alternative for non-targeted analysis, even surpassing proprietary software in peak picking.
Collapse
Affiliation(s)
- Alexandra A Bennett
- BOKU University, Department of Chemistry, Institute of Analytical Chemistry, 1190, Vienna, Austria
| | | | - Çağla Görkem Eroğlu
- Agroscope, Herbology in Field Crops, Plant Production Systems, Nyon, Switzerland
| | - Aurélie Gfeller
- Agroscope, Herbology in Field Crops, Plant Production Systems, Nyon, Switzerland
| | - Judith Wirth
- Agroscope, Herbology in Field Crops, Plant Production Systems, Nyon, Switzerland
| | - Markus Puschenreiter
- BOKU University, Department of Forest and Soil Sciences, Institute of Soil Research, 3430, Tulln, Austria
| | - Stephan Hann
- BOKU University, Department of Chemistry, Institute of Analytical Chemistry, 1190, Vienna, Austria
| |
Collapse
|
3
|
Zuber J, Lopes Cascabulho P, Gemini Piperni S, Farias Corrêa do
Amaral RJ, Vogt C, Carre V, Hertzog J, Kontturi E, Trubetskaya A. Fast, Easy, and Reproducible Fingerprint Methods for Endotoxin Characterization in Nanocellulose and Alginate-Based Hydrogel Scaffolds. Biomacromolecules 2024; 25:6762-6772. [PMID: 39262301 PMCID: PMC11480981 DOI: 10.1021/acs.biomac.4c00989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 08/30/2024] [Accepted: 09/03/2024] [Indexed: 09/13/2024]
Abstract
Nanocellulose- and alginate-based hydrogels have been suggested as potential wound-healing materials, but their utilization is limited by the Food and Drug Administration (FDA) requirements regarding endotoxin levels. Cytotoxicity and the presence of endotoxin were assessed after gel sterilization using an autoclave and UV treatment. A new fingerprinting method was developed to characterize the compounds detected in cellulose nanocrystal (CNC)- and cellulose-nanofiber (CNF)-based hydrogels using both positive- and negative-ion mode electrospray ionization Fourier transform ion cyclotron resonance mass spectroscopy (ESI FT-ICR MS). These biobased hydrogels were used as scaffolds for the cultivation and growth of human dermal fibroblasts to test their biocompatibility. A resazurin-based assay was preferred over all other biocompatibility methodologies since it allowed for the evaluation of viability over time in the same sample without causing cell lysis. The CNF dispersion of 6 EU mL-1 was slightly above the limits, and it did not affect the cell viability, whereas CNC hydrogels induced a reduction of metabolic activity by the fibroblasts. The chemical structure of the detected endotoxins did not contain phosphates, but it encompassed hydrophobic sulfonate groups, requiring the development of new high-pressure sterilization methods for the use of cellulose hydrogels in medicine.
Collapse
Affiliation(s)
- Jan Zuber
- Department
of Analytical Chemistry, TU Freiberg, Leipziger Street 29, 09599 Freiberg, Germany
| | - Paula Lopes Cascabulho
- Faculty
of Medicine, Federal University of Rio de
Janeiro, Avenida Carlos Chagas Filho 373, 21941-853 Rio de Janeiro, Brazil
- Laboratory
of Cellular Proliferation and Differentiation, Institute of Biomedical
Sciences, Federal University of Rio de Janeiro, Avenida Carlos Chagas Filho 373, 21941 Rio de Janeiro, Brazil
- Laboratory
of Biomineralization, Institute of Biomedical Sciences, Federal University of Rio de Janeiro, Avenida Carlos Chagas Filho 373, 21941 Rio de Janeiro, Brazil
| | - Sara Gemini Piperni
- Laboratory
of Biotechnology, Bioengineering and Nanostructured Biomaterials,
Institute of Biomedical Sciences, Federal
University of Rio de Janeiro, Avenida Carlos Chagas Filho 373, 21941 Rio de Janeiro, Brazil
| | - Ronaldo José Farias Corrêa do
Amaral
- Faculty
of Medicine, Federal University of Rio de
Janeiro, Avenida Carlos Chagas Filho 373, 21941-853 Rio de Janeiro, Brazil
- Laboratory
of Cellular Proliferation and Differentiation, Institute of Biomedical
Sciences, Federal University of Rio de Janeiro, Avenida Carlos Chagas Filho 373, 21941 Rio de Janeiro, Brazil
- Laboratory
of Biomineralization, Institute of Biomedical Sciences, Federal University of Rio de Janeiro, Avenida Carlos Chagas Filho 373, 21941 Rio de Janeiro, Brazil
| | - Carla Vogt
- Department
of Analytical Chemistry, TU Freiberg, Leipziger Street 29, 09599 Freiberg, Germany
| | - Vincent Carre
- Université
de Lorraine, LCP-A2MC, 1 Boulevard Arago, 57000 Metz, France
| | - Jasmine Hertzog
- Université
de Lorraine, LCP-A2MC, 1 Boulevard Arago, 57000 Metz, France
| | - Eero Kontturi
- Department
of Bioproducts and Biosystems, Aalto University, Vuorimiehentie 1, 02150 Espoo, Finland
| | - Anna Trubetskaya
- Department
of Biosciences, Nord University, Kongensgate 42, 7713 Steinkjer, Norway
- Department
of Engineering, University of Limerick, Castletroy, Co. Limerick V94T9PX, Ireland
| |
Collapse
|
4
|
Wang CR, Zenaidee MA, Snel MF, Pukala TL. Exploring Top-Down Mass Spectrometric Approaches To Probe Forest Cobra ( Naja melanoleuca) Venom Proteoforms. J Proteome Res 2024; 23:4601-4613. [PMID: 39231368 DOI: 10.1021/acs.jproteome.4c00486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/06/2024]
Abstract
Snake venoms are comprised of bioactive proteins and peptides that facilitate severe snakebite envenomation symptoms. A comprehensive understanding of venom compositions and the subtle heterogeneity therein is important. While bottom-up proteomics has been the well-established approach to catalogue venom compositions, top-down proteomics has emerged as a complementary strategy to characterize venom heterogeneity at the intact protein level. However, top-down proteomics has not been as widely implemented in the snake venom field as bottom-up proteomics, with various emerging top-down methods yet to be developed for venom systems. Here, we have explored three main top-down mass spectrometry methodologies in a proof-of-concept study to characterize selected three-finger toxin and phospholipase A2 proteoforms from the forest cobra (Naja melanoleuca) venom. We demonstrated the utility of a data-independent acquisition mode "MSE" for untargeted fragmentation on a chromatographic time scale and its improvement in protein sequence coverage compared to conventional targeted tandem mass spectrometry analysis. We also showed that protein identification can be further improved using a hybrid fragmentation approach, combining electron-capture dissociation and collision-induced dissociation. Lastly, we reported the promising application of multifunctional cyclic ion mobility separation and post-ion mobility fragmentation on snake venom proteins for the first time.
Collapse
Affiliation(s)
- C Ruth Wang
- Discipline of Chemistry, School of Physics, Chemistry and Earth Sciences, The University of Adelaide, Adelaide, SA 5005, Australia
| | - Muhammad A Zenaidee
- Australian Proteome Analysis Facility, Macquarie University, Macquarie Park, NSW 2109, Australia
| | - Marten F Snel
- Discipline of Chemistry, School of Physics, Chemistry and Earth Sciences, The University of Adelaide, Adelaide, SA 5005, Australia
- Proteomics, Metabolomics and MS-Imaging Core Facility, South Australian Health and Medical Research Institute, Adelaide, SA 5005, Australia
| | - Tara L Pukala
- Discipline of Chemistry, School of Physics, Chemistry and Earth Sciences, The University of Adelaide, Adelaide, SA 5005, Australia
| |
Collapse
|
5
|
Lui TY, Chen X, Hu D, Chan TWD. Probing High-order Protein Complexes Using Native Mass Spectrometry and Hydrogen/Deuterium Exchange Mass Spectrometry: A Case Study Using Fresh and Commercial Hemoglobin Samples. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2024; 35:1921-1929. [PMID: 38957002 DOI: 10.1021/jasms.4c00201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2024]
Abstract
Native mass spectrometry (MS) analysis of protein complexes is highly susceptible to matrix effect, and addressing this predicament using buffer exchange is a common approach. Nevertheless, optimization of the buffer exchange protocol is not trivial. With the use of hemoglobin (Hb) as the model entity, it was discovered that the native mass spectrum of protein assembly is highly dependent on the buffer-exchange protocol. Given the dependence of native MS on the purification protocol, this work attempts to use hydrogen/deuterium exchange mass spectrometry (HDX-MS) for comparative studies of hemoglobin complexes in untreated fresh and commercial samples. The information obtained from the HDX study was found to correlate well with the native mass spectrometry analysis of the properly buffer-exchanged Hb samples. Both native MS and HDX-MS showed that the fresh Hb sample has retained the expected tetrameric structure, whereas the commercial Hb has largely been denatured to the dimeric form. These findings prove the complementarity of native MS and HDX-MS in the analysis of high-order protein complexes and stress the necessity to validate the integrity of the high-order structures of the proteins prior to the use of the protein samples for other biomedical studies.
Collapse
Affiliation(s)
- T-Y Lui
- Department of Chemistry, The Chinese University of Hong Kong, Hong Kong SAR 999077, P. R. China
| | - Xiangfeng Chen
- Department of Chemistry, The Chinese University of Hong Kong, Hong Kong SAR 999077, P. R. China
- School of Pharmaceutical Sciences, Qilu University of Technology (Shandong Academy of Sciences), Jinan, Shandong 250000, P. R. China
| | - Danna Hu
- Department of Chemistry, The Chinese University of Hong Kong, Hong Kong SAR 999077, P. R. China
| | - T-W Dominic Chan
- Department of Chemistry, The Chinese University of Hong Kong, Hong Kong SAR 999077, P. R. China
| |
Collapse
|
6
|
Dyrda-Terniuk T, Pomastowski P. Impact of Ultrafiltration on the Physicochemical Properties of Bovine Lactoferrin: Insights into Molecular Mass, Surface Morphology, and Elemental Composition. J Dairy Sci 2024:S0022-0302(24)01048-8. [PMID: 39098494 DOI: 10.3168/jds.2024-24933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 07/10/2024] [Indexed: 08/06/2024]
Abstract
The large-scale isolation of bovine lactoferrin (bLF) typically involves using large amounts of concentrated eluents, which might introduce impurities to the final product. Sometimes, protein pre-concentration is required for the greater accuracy of experimental results. In this research, the supplied bLF sample was subjected to additional ultrafiltration (UF) to eliminate possible small impurities, such as salts and peptides of bLF. Beforehand, the basic characterization of native bLF, including surface-charge properties and the structural sensitivity to the various pH conditions, was performed. The study aimed to evaluate the difference in molecular mass, primary structure, surface morphology, and elemental composition of the protein before and after UF. The research was provided by application of spectroscopic, spectrometric, electrophoretic, and microscopic techniques. The evident changes in the surface morphology of bLF were observed after UF, while the molecular masses of both proteins were comparable. According to MALDI-TOF/MS results, UF had a positive impact on the bLF sample representation, improving the identification parameters, such as sequence coverage and intensity coverage.
Collapse
Affiliation(s)
- Tetiana Dyrda-Terniuk
- Centre for Modern Interdisciplinary Technologies, Nicolaus Copernicus University in Toruń, Wileńska 4, 87-100 Toruń, Poland.
| | - Paweł Pomastowski
- Centre for Modern Interdisciplinary Technologies, Nicolaus Copernicus University in Toruń, Wileńska 4, 87-100 Toruń, Poland
| |
Collapse
|
7
|
Brundridge NM, Koers AM, McLuckey SA. Probing Metal Ion Adduction in the ESI Charged Residue Mechanism via Gas-Phase Ion/Ion Chemistry. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2024; 35:1342-1351. [PMID: 38775832 DOI: 10.1021/jasms.4c00099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2024]
Abstract
The final stages of the charged residue mechanism/model (CRM) for ion generation via electrospray ionization (ESI) involves the binding of excess charge onto analyte species. Ions of both polarities can bind to the analyte with an excess of ions of the same polarity as the droplet. For large biomolecule/biocomplex ions, which are commonly the species of interest in native mass spectrometry (MS), the binding of acids and salts onto the analyte can lead to extensive broadening of ion signals due to adduction. Therefore, heating step(s) to facilitate desolvation and salt adduct removal are commonplace. In this work, we describe an approach to study the final stages of CRM using gas-phase ion/ion reactions to generate analyte ion/salt clusters of well-defined composition, followed by gas-phase collision-induced dissociation (CID). While there are many variables that can be studied systematically via this approach, the work described herein is focused on salt clusters of the form [Na10X11]-, where X = acetate (Ac-), chloride (Cl-), or nitrate (NO3-), in reaction with a common charge state of ubiquitin as well as several model peptides. Experiments in which equimolar quantities of each salt (i.e., NaAc, NaCl, and NaNO3) are subjected to ESI with ubiquitin (Ubi) and gas-phase ion/ion reaction studies involving [Na10X11]- and [Ubi + 6H]6+ show similar trends, in terms of the extent of sodium ion incorporation into the protein ions. Ion/ion reaction studies using model peptides show that the acetate-containing salt transfers significantly more Na+ ions into the peptide ions. Exchange of Na+ for H+ is shown to occur at the C-terminus and at up to all of the amide linkages using [Na10X11]-, whereas only the C-terminus engages in Na+/H+ exchange with [Na10Cl11]- and [Na10(NO3)11]-. In the latter cases, an additional Na+ is taken up as the excess positive charge, presumably due to solvation of the charge by multiple sites (e.g., carbonyl oxygens and basic sites).
Collapse
Affiliation(s)
- Nicole M Brundridge
- Department of Chemistry, Purdue University 560 Oval Drive, West Lafayette, Indiana 47907, United States
| | - Alexander M Koers
- Department of Chemistry, Purdue University 560 Oval Drive, West Lafayette, Indiana 47907, United States
| | - Scott A McLuckey
- Department of Chemistry, Purdue University 560 Oval Drive, West Lafayette, Indiana 47907, United States
| |
Collapse
|
8
|
Cordes MS, Gallagher ES. Molecular Dynamics Simulations of Native Protein Charging via Proton Transfer during Electrospray Ionization with Grotthuss Diffuse H 3O . Anal Chem 2024; 96:4146-4153. [PMID: 38427846 PMCID: PMC11337394 DOI: 10.1021/acs.analchem.3c05089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/03/2024]
Abstract
Unraveling the mechanism by which native proteins are charged through electrospray ionization (ESI) has been the focus of considerable research because observable charge states can be correlated to biophysical characteristics, such as protein folding and, thus, solution conformation. Difficulties in characterizing electrosprayed droplets have catalyzed the use of molecular dynamics (MD) to provide insights into the mechanisms by which proteins are charged and transferred to the gas phase. However, prior MD studies have utilized metal ions, primarily Na+, as charge carriers, even though proteins are primarily detected as protonated ions in the mass spectra. Here, we propose a modified MD protocol for simulating discrete Grotthuss diffuse H3O+ that is capable of dynamically altering amino-acid protonation states to model electrospray charging and gaseous ion formation of model proteins, ubiquitin, and myoglobin. Application of the protocol to the evaporation of acidic droplets enables a molecular perspective of H3O+ coordination and proton transfer to/from proteins, which is unfeasible with the metal charge carriers used in previous MD studies of ESI. Our protocol recreates experimentally observed charge-state distributions and supports the charge residue model (CRM) as the dominant mechanism of native protein ionization during ESI. Additionally, our results suggest that protonation is highly specific to individual residues and is correlated to the formation of localized hydrated regions on the protein surface as droplets desolvate. Considering the use of discrete H3O+ instead of Na+, the developed protocol is a necessary step toward developing a more comprehensive model of protein ionization during ESI.
Collapse
Affiliation(s)
- Michael S Cordes
- Department of Chemistry and Biochemistry, Baylor University, Waco, Texas 76798, United States
| | - Elyssia S Gallagher
- Department of Chemistry and Biochemistry, Baylor University, Waco, Texas 76798, United States
| |
Collapse
|
9
|
Schwenzer AK, Kruse L, Jooß K, Neusüß C. Capillary electrophoresis-mass spectrometry for protein analyses under native conditions: Current progress and perspectives. Proteomics 2024; 24:e2300135. [PMID: 37312401 DOI: 10.1002/pmic.202300135] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 05/16/2023] [Accepted: 05/23/2023] [Indexed: 06/15/2023]
Abstract
Native mass spectrometry is a rapidly emerging technique for fast and sensitive structural analysis of protein constructs, maintaining the protein higher order structure. The coupling with electromigration separation techniques under native conditions enables the characterization of proteoforms and highly complex protein mixtures. In this review, we present an overview of current native CE-MS technology. First, the status of native separation conditions is described for capillary zone electrophoresis (CZE), affinity capillary electrophoresis (ACE), and capillary isoelectric focusing (CIEF), as well as their chip-based formats, including essential parameters such as electrolyte composition and capillary coatings. Further, conditions required for native ESI-MS of (large) protein constructs, including instrumental parameters of QTOF and Orbitrap systems, as well as requirements for native CE-MS interfacing are presented. On this basis, methods and applications of the different modes of native CE-MS are summarized and discussed in the context of biological, medical, and biopharmaceutical questions. Finally, key achievements are highlighted and concluded, while remaining challenges are pointed out.
Collapse
Affiliation(s)
| | - Lena Kruse
- Department of Chemistry, Aalen University, Aalen, Germany
| | - Kevin Jooß
- Department of Chemistry and Molecular Biosciences, the Chemistry of Life Processes Institute, and the Proteomics Center of Excellence, Northwestern University, Evanston, Illinois, USA
- Division of Bioanalytical Chemistry, Amsterdam Institute of Molecular and Life Sciences, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- Centre for Analytical Sciences Amsterdam (CASA), Amsterdam, The Netherlands
| | | |
Collapse
|
10
|
Davis BTV, Velyvis A, Vahidi S. Fluorinated Ethylamines as Electrospray-Compatible Neutral pH Buffers for Native Mass Spectrometry. Anal Chem 2023; 95:17525-17532. [PMID: 37997939 DOI: 10.1021/acs.analchem.3c02640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2023]
Abstract
Native electrospray ionization mass spectrometry (ESI-MS) has emerged as a potent tool for examining the native-like structures of macromolecular complexes. Despite its utility, the predominant "buffer" used, ammonium acetate (AmAc) with pKa values of 4.75 for acetic acid and 9.25 for ammonium, provides very little buffering capacity within the physiological pH range of 7.0-7.4. ESI-induced redox reactions alter the pH of the liquid within the ESI capillary. This can result in protein unfolding or weakening of pH-sensitive interactions. Consequently, the discovery of volatile, ESI-compatible buffers, capable of effectively maintaining pH within a physiological range, is of high importance. Here, we demonstrate that 2,2-difluoroethylamine (DFEA) and 2,2,2-trifluoroethylamine (TFEA) offer buffering capacity at physiological pH where AmAc falls short, with pKa values of 7.2 and 5.5 for the conjugate acids of DFEA and TFEA, respectively. Native ESI-MS experiments on model proteins cytochrome c and myoglobin electrosprayed with DFEA and TFEA demonstrated the preservation of noncovalent protein-ligand complexes in the gas phase. Protein stability assays and collision-induced unfolding experiments further showed that neither DFEA nor TFEA destabilized model proteins in solution or in the gas phase. Finally, we demonstrate that multisubunit protein complexes such as alcohol dehydrogenase and concanavalin A can be studied in the presence of DFEA or TFEA using native ESI-MS. Our findings establish DFEA and TFEA as new ESI-compatible neutral pH buffers that promise to bolster the use of native ESI-MS for the analysis of macromolecular complexes, particularly those sensitive to pH fluctuations.
Collapse
Affiliation(s)
- Bradley T V Davis
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario N1G 2W1, Canada
| | - Algirdas Velyvis
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario N1G 2W1, Canada
| | - Siavash Vahidi
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario N1G 2W1, Canada
| |
Collapse
|
11
|
Lippens JL, Timmons HC, Welch C, Kulkarni A, Flick TG. Rapid Intact Mass Analysis and Evaluation of the Separation Potential of Microfluidic Capillary Electrophoresis Mass Spectrometry for Oligonucleotides. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2023; 34:2491-2497. [PMID: 37823612 DOI: 10.1021/jasms.3c00217] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/13/2023]
Abstract
Oligonucleotide characterization is a rapidly advancing field in the biopharmaceutical industry. Understanding critical quality attributes, such as intact mass and impurities, requires a toolbox of analytical techniques, which commonly includes liquid chromatography-mass spectrometry (LC-MS). Oligonucleotide LC-MS analysis frequently requires sample run times upward of 15 min to achieve separation of multiple oligonucleotide species. Additionally, LC methods frequently employ mobile phase additives such as triethylamine and 1,1,1,3,3,3-hexafluoro-2-propanol that are not always desired for use in MS instrumentation. Here, microfluidic capillary electrophoresis mass spectrometry (CE-MS) via ZipChip technology was employed to enable rapid intact mass analysis of oligonucleotide single strands. Baseline separation of equal length oligonucleotides was achieved in less than 4 min. Additionally, the potential of the ZipChip platform for separation of oligonucleotide full-length products (FLPs) and their impurities was evaluated.
Collapse
Affiliation(s)
- Jennifer L Lippens
- Pivotal Attribute Sciences, Amgen, Thousand Oaks, California 91320, United States
| | - Heath C Timmons
- Pivotal Attribute Sciences, Amgen, Thousand Oaks, California 91320, United States
| | - Crystal Welch
- 908 Devices, Boston, Massachusetts 94720-1460, United States
| | - Aditya Kulkarni
- 908 Devices, Boston, Massachusetts 94720-1460, United States
| | - Tawnya G Flick
- Pivotal Attribute Sciences, Amgen, Thousand Oaks, California 91320, United States
| |
Collapse
|
12
|
Redick MA, Cummings ME, Neuhaus GF, Ardor Bellucci LM, Thurber AR, McPhail KL. Integration of Untargeted Metabolomics and Microbial Community Analyses to Characterize Distinct Deep-Sea Methane Seeps. FRONTIERS IN MARINE SCIENCE 2023; 10:1197338. [PMID: 39268414 PMCID: PMC11392061 DOI: 10.3389/fmars.2023.1197338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/15/2024]
Abstract
Deep-sea methane seeps host highly diverse microbial communities whose biological diversity is distinct from other marine habitats. Coupled with microbial community analysis, untargeted metabolomics of environmental samples using high resolution tandem mass spectrometry provides unprecedented access to the unique specialized metabolisms of these chemosynthetic microorganisms. In addition, the diverse microbial natural products are of broad interest due to their potential applications for human and environmental health and well-being. In this exploratory study, sediment cores were collected from two methane seeps (-1000 m water depth) with very different gross geomorphologies, as well as a non-seep control site. Cores were subjected to parallel metabolomic and microbial community analyses to assess the feasibility of representative metabolite detection and identify congruent patterns between metabolites and microbes. Metabolomes generated using high resolution liquid chromatography tandem mass spectrometry were annotated with predicted structure classifications of the majority of mass features using SIRIUS and CANOPUS. The microbiome was characterized by analysis of 16S rRNA genes and analyzed both at the whole community level, as well as the small subgroup of Actinobacteria, which are known to produce societally useful compounds. Overall, the younger Dagorlad seep possessed a greater abundance of metabolites while there was more variation in abundance, number, and distribution of metabolites between samples at the older Emyn Muil seep. Lipid and lipid-like molecules displayed the greatest variation between sites and accounted for a larger proportion of metabolites found at the older seep. Overall, significant differences in composition of the microbial community mirrored the patterns of metabolite diversity within the samples; both varied greatly as a function of distance from methane seep, indicating a deterministic role of seepage. Interdisciplinary research to understand microbial and metabolic diversity is essential for understanding the processes and role of ubiquitous methane seeps in global systems and here we increase understanding of these systems by visualizing some of the chemical diversity that seeps add to marine systems.
Collapse
Affiliation(s)
- Margaret A Redick
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Corvallis, Oregon, USA
| | - Milo E Cummings
- Department of Microbiology, College of Science, Oregon State University, Corvallis, Oregon, USA
| | - George F Neuhaus
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Corvallis, Oregon, USA
| | - Lila M Ardor Bellucci
- College of Earth, Ocean, and Atmospheric Sciences, Oregon State University, Corvallis, Oregon, USA
| | - Andrew R Thurber
- Department of Microbiology, College of Science, Oregon State University, Corvallis, Oregon, USA
- College of Earth, Ocean, and Atmospheric Sciences, Oregon State University, Corvallis, Oregon, USA
| | - Kerry L McPhail
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Corvallis, Oregon, USA
| |
Collapse
|
13
|
Brundridge NM, Dickerhoff J, Yang D, McLuckey SA. Gas-Phase Fragmentation as a Probe of G-Quadruplex Formation. Anal Chem 2023; 95:15057-15067. [PMID: 37774231 PMCID: PMC11022955 DOI: 10.1021/acs.analchem.3c03143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/01/2023]
Abstract
G-quadruplex (G4) DNA is found in oncogene promoters and human telomeres and is an attractive anticancer target. Stable G4 structures form in guanine-rich sequences in the presence of metal cations and can stabilize further with specific ligand adduction. To explore the preservation and stability of this secondary structure with mass spectrometry, gas-phase collision-induced dissociation kinetics of G4-like and non-G4-like ion structures were determined in a linear quadrupole ion trap. This study focused on a sequence from the promoter of the MYC oncogene, MycG4, and a mutant non-G4-forming sequence, MycNonG4. At relatively high ion activation energies, the backbone fragmentation patterns of the MycG4 and MycNonG4 are similar, while potassium ion-stabilized G4-folded [MycG4 + 2K-7H]5- and counterpart [MycG4-5H]5- ions are essentially indistinguishable, indicating that high-energy fragmentation is not sensitive to the G4 structure. At low energies, the backbone fragmentation patterns of MycG4 and MycNonG4 are significantly different. For MycG4, fragmentation over time differed significantly between the potassium-bound and free structures, reflecting the preservation of the G4 structure in the gas phase. Kinetic measurements revealed the [MycG4 + 2K-7H]5- ions to fragment two to three times more slowly than the [MycG4-5H]5-. Results for the control MycNonG4 indicated that the phenomena noted for [MycG4 + 2K-7H]5- ions are specific to G4-folding. Therefore, our data show that gentle activation conditions can lead to fragmentation behavior that is sensitive to G-quadruplex structure, revealing differences in kinetic stabilities of isomeric structures as well as the regions of the sequence that are directly involved in forming these structures.
Collapse
Affiliation(s)
- Nicole M Brundridge
- Department of Chemistry, Purdue University, 560 Oval Drive, West Lafayette, Indiana 47907, United States
| | - Jonathan Dickerhoff
- Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue Center for Cancer Research, Purdue University, 575 W Stadium Avenue, West Lafayette, Indiana 47904, United States
| | - Danzhou Yang
- Department of Chemistry, Purdue University, 560 Oval Drive, West Lafayette, Indiana 47907, United States
- Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue Center for Cancer Research, Purdue University, 575 W Stadium Avenue, West Lafayette, Indiana 47904, United States
| | - Scott A McLuckey
- Department of Chemistry, Purdue University, 560 Oval Drive, West Lafayette, Indiana 47907, United States
| |
Collapse
|
14
|
Heres A, Li Q, Toldrá F, Lametsch R, Mora L. Comparative Quantitation of Kokumi γ-Glutamyl Peptides in Spanish Dry-Cured Ham under Salt-Reduced Production. Foods 2023; 12:2814. [PMID: 37509906 PMCID: PMC10378828 DOI: 10.3390/foods12142814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 07/17/2023] [Accepted: 07/20/2023] [Indexed: 07/30/2023] Open
Abstract
Salting is a crucial step during the production of dry-cured ham and it is not well known whether it has an impact on the generation of taste-active peptides. The present study focused on the quantitation of kokumi γ-glutamyl peptides in low-salted Spanish dry-cured hams with 12 months of processing. By using mass spectrometry, peptides were quantitated from samples obtained after ethanolic deproteinization-based and non-ethanolic deproteinization-based extraction methods. Peptides γ-EA, γ-EE, and γ-EL registered mean values of 0.31, 2.75, and 11.35 µg/g of dry-cured ham, respectively, with no differences observed between both extraction protocols. However, γ-EF, γ-EM, γ-EV, γ-EW, γ-EY, and γ-EVG presented significantly (p < 0.05) higher concentrations in the ethanolic deproteinized samples showing values of 5.58, 4.13, 13.90, 0.77, 3.71, and 0.11 µg/g of dry-cured ham, respectively. These outcomes reflect the importance of protocols for the extraction of peptides to achieve the most feasible results. In addition, potential precursors for the formation of γ-glutamyl peptides are generated during dry-curing under salt restriction. The kokumi activity of these γ-glutamyl peptides could enhance the sensory attributes countering the taste deficiencies caused by the salt restriction.
Collapse
Affiliation(s)
- Alejandro Heres
- Instituto de Agroquímica y Tecnología de Alimentos (CSIC), Avenue Agustín Escardino 7, 46980 Paterna, Spain
| | - Qian Li
- Department of Food Science, Faculty of Science, University of Copenhagen, Rolighedsvej 30, 1958 Copenhagen, Denmark
| | - Fidel Toldrá
- Instituto de Agroquímica y Tecnología de Alimentos (CSIC), Avenue Agustín Escardino 7, 46980 Paterna, Spain
| | - René Lametsch
- Department of Food Science, Faculty of Science, University of Copenhagen, Rolighedsvej 30, 1958 Copenhagen, Denmark
| | - Leticia Mora
- Instituto de Agroquímica y Tecnología de Alimentos (CSIC), Avenue Agustín Escardino 7, 46980 Paterna, Spain
| |
Collapse
|
15
|
Pauter-Iwicka K, Railean V, Złoch M, Pomastowski P, Szultka-Młyńska M, Błońska D, Kupczyk W, Buszewski B. Characterization of the salivary microbiome before and after antibiotic therapy via separation technique. Appl Microbiol Biotechnol 2023; 107:2515-2531. [PMID: 36843196 PMCID: PMC10033590 DOI: 10.1007/s00253-023-12371-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 01/06/2023] [Accepted: 01/09/2023] [Indexed: 02/28/2023]
Abstract
In the present research, the MALDI-TOF MS technique was applied as a tool to rapidly identify the salivary microbiome. In this fact, it has been monitored the changes occurred in molecular profiles under different antibiotic therapy. Significant changes in the composition of the salivary microbiota were noticed not only in relation to the non antibiotic (non-AT) and antibiotic treatment (AT) groups, but also to the used media, the antibiotic therapy and co-existed microbiota. Each antibiotic generates specific changes in molecular profiles. The highest number of bacterial species was isolated in the universal culture medium (72%) followed by the selective medium (48% and 38%). In the case of non-AT patients, the prevalence of Streptococcus salivarius (25%), Streptococcus vestibularis (19%), Streptococcus oralis (13%), and Staphylococcus aureus (6%) was identified while in the case of AT, Streptococcus salivarius (11%), Streptococcus parasanguinis (11%), Staphylococcus epidermidis (12%), Enterococcus faecalis (9%), Staphylococcus hominis (8%), and Candida albicans (6%) were identified. Notable to specified that the Candida albicans was noticed only in AT samples, indicating a negative impact on the antibiotic therapy. The accuracy of the MALDI-TOF MS technique was performed by the 16S rRNA gene sequencing analysis-as a reference method. Conclusively, such an approach highlighted in the present study can help in developing the methods enabling a faster diagnosis of disease changes at the cellular level before clinical changes occur. Once the MALDI tool allows for the distinguishing of the microbiota of non-AT and AT, it may enable to monitor the diseases treatment and develop a treatment regimen for individual patients in relation to each antibiotic. KEY POINTS: The salivary microbiota of antibiotic-treated patients was more bacteria variety MALDI-TOF MS is a promising tool for recording of reproducible molecular profiles Our data can allow to monitor the treatment of bacterial diseases for patients.
Collapse
Affiliation(s)
- Katarzyna Pauter-Iwicka
- Department of Environmental Chemistry and Bioanalytics, Faculty of Chemistry, Nicolaus Copernicus University, Gagarina 7, 87-100, Torun, Poland
- Centre for Modern Interdisciplinary Technologies, Nicolaus Copernicus University, Wilenska 4, 87-100, Torun, Poland
| | - Viorica Railean
- Centre for Modern Interdisciplinary Technologies, Nicolaus Copernicus University, Wilenska 4, 87-100, Torun, Poland
- Department of Infectious, Invasive Diseases and Veterinary Administration, Institute of Veterinary Medicine, Nicolaus Copernicus University in Torun, Gagarina 7, 87-100, Toruń, Poland
| | - Michał Złoch
- Department of Environmental Chemistry and Bioanalytics, Faculty of Chemistry, Nicolaus Copernicus University, Gagarina 7, 87-100, Torun, Poland
- Centre for Modern Interdisciplinary Technologies, Nicolaus Copernicus University, Wilenska 4, 87-100, Torun, Poland
| | - Paweł Pomastowski
- Centre for Modern Interdisciplinary Technologies, Nicolaus Copernicus University, Wilenska 4, 87-100, Torun, Poland
| | - Małgorzata Szultka-Młyńska
- Department of Environmental Chemistry and Bioanalytics, Faculty of Chemistry, Nicolaus Copernicus University, Gagarina 7, 87-100, Torun, Poland
| | - Dominika Błońska
- Department of Environmental Chemistry and Bioanalytics, Faculty of Chemistry, Nicolaus Copernicus University, Gagarina 7, 87-100, Torun, Poland
- Centre for Modern Interdisciplinary Technologies, Nicolaus Copernicus University, Wilenska 4, 87-100, Torun, Poland
| | - Wojciech Kupczyk
- Department of General, Gastroenterological&Oncological Surgery Collegium Medicum, Nicolaus Copernicus University, Torun, Poland
| | - Bogusław Buszewski
- Department of Environmental Chemistry and Bioanalytics, Faculty of Chemistry, Nicolaus Copernicus University, Gagarina 7, 87-100, Torun, Poland.
- Centre for Modern Interdisciplinary Technologies, Nicolaus Copernicus University, Wilenska 4, 87-100, Torun, Poland.
| |
Collapse
|
16
|
Paulikat M, Aranda J, Ippoliti E, Orozco M, Carloni P. Proton Transfers to DNA in Native Electrospray Ionization Mass Spectrometry: A Quantum Mechanics/Molecular Mechanics Study. J Phys Chem Lett 2022; 13:12004-12010. [PMID: 36540944 PMCID: PMC9806827 DOI: 10.1021/acs.jpclett.2c03100] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 11/16/2022] [Indexed: 06/17/2023]
Abstract
Native electrospray ionization-ion mobility mass spectrometry (N-ESI/IM-MS) is a powerful approach for low-resolution structural studies of DNAs in the free state and in complex with ligands. Solvent vaporization is coupled with proton transfers from ammonium ions to the DNA, resulting in a reduction of the DNA charge. Here we provide insight into these processes by classical molecular dynamics and quantum mechanics/molecular mechanics free energy calculations on the d(GpCpGpApApGpC) heptamer, for which a wealth of experiments is available. Our multiscale simulations, consistent with experimental data, reveal a highly complex scenario. The proton either sits on one of the molecules or is fully delocalized on both, depending on the level of hydration of the analytes and the size of the droplets formed during the electrospray experiments. This work complements our previous study of the intramolecular proton transfer on the same heptamer occurring after the processes studied here, and together, they provide a first molecular view of proton transfer in N-ESI/IM-MS.
Collapse
Affiliation(s)
- Mirko Paulikat
- Computational
Biomedicine (IAS-5/INM-9), Forschungszentrum
Jülich GmbH, Wilhelm-Johnen-Straße, 52428 Jülich, Germany
| | - Juan Aranda
- Institute
for Research in Biomedicine (IRB) Barcelona, The Barcelona Institute of Science and Technology, Baldiri Reixac 10, 08028 Barcelona, Spain
| | - Emiliano Ippoliti
- Computational
Biomedicine (IAS-5/INM-9), Forschungszentrum
Jülich GmbH, Wilhelm-Johnen-Straße, 52428 Jülich, Germany
| | - Modesto Orozco
- Institute
for Research in Biomedicine (IRB) Barcelona, The Barcelona Institute of Science and Technology, Baldiri Reixac 10, 08028 Barcelona, Spain
- Department
of Biochemistry and Biomedicine, University
of Barcelona, Avinguda
Diagonal 645, 08028 Barcelona, Spain
| | - Paolo Carloni
- Computational
Biomedicine (IAS-5/INM-9), Forschungszentrum
Jülich GmbH, Wilhelm-Johnen-Straße, 52428 Jülich, Germany
- Department
of Physics, RWTH Aachen University, Otto-Blumenthal-Straße, 52062 Aachen, Germany
| |
Collapse
|
17
|
Lei W, Hu J, Chen HY, Xu JJ. Nanopore Liberates G-Quadruplexes from Biochemical Buffers for Accurate Mass Spectrometric Examination. Anal Chem 2022; 94:17972-17979. [PMID: 36515943 DOI: 10.1021/acs.analchem.2c04099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Achieving accurate measurements of G-quadruplexes (G4s), especially the characterization of their complicated non-covalent interactions with various components (such as metal ions and ligands) under physiological conditions, is of fundamental significance in unveiling their biological roles and developing antitumor drugs. By employing a nanopore ion emitter (∼30 nm), we demonstrated for the first time that G4 ions, which are free of non-specific adduction and meanwhile maintaining their pre-existing specific bindings with metal ions or ligands, can be directly liberated from common biochemical buffers (consisting of concentrated non-volatile salts of >150 mM) for mass spectrometric examination. Notably, the intermediate complexes of G4s with mixed di-cation coordination formed during the Na+/K+ exchange were successfully observed by mass spectrometry, whose structures were also revealed by the reconstructed circular dichroism spectra. We believe the nanopore-based ion emitters have built a solid bridge between native G4s in aqueous buffers and their accurate stoichiometries obtained by mass spectrometric examination.
Collapse
Affiliation(s)
- Wen Lei
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China
| | - Jun Hu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China
| | - Hong-Yuan Chen
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China
| | - Jing-Juan Xu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China
| |
Collapse
|
18
|
Liu D, Cao Q, Piao Z, Li L. Confinement Dynamics of Nanodroplets between Two Surfaces: Effects of Wettability and Electric Field. Chemphyschem 2022; 23:e202200184. [PMID: 35986551 DOI: 10.1002/cphc.202200184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 08/15/2022] [Indexed: 01/04/2023]
Abstract
The electrowetting effect and related applications of tiny droplets have aroused widespread research interest. In this work, we report molecular dynamics simulations of confinement dynamics of nanodroplets under different droplet-surface interactions and surface distances under an external electric field. So far, the effect of the surface-droplet interactions on electric field-induced dynamics behaviors of droplets in confined spaces has not been extensively studied. Our results show that in the absence of electric field there is a critical value of surface wettability for the shape transition of droplets. Above this value, the droplet is divided into small droplets adhered on the bottom and top surfaces; below this value, the droplets are detached from the surfaces. When an external electric field is applied parallel to the surfaces, the droplet spreads on the surface along the direction of the electric field. It was found that the surface separation significantly influences the transition of the droplet shape. The steady morphology of the droplets under the electric field depends on the surface-droplet interaction and surface separation. We explore the underlying mechanism causing the morphological transition through analyzing the molecular interactions, the number of interracial molecules and the interaction force between the droplets and surfaces. These results provide basic insights into the molecular interactions of nanodroplets under different confined environments, and clues for applications of confined nanodroplets under the control of electric field.
Collapse
Affiliation(s)
- Dandan Liu
- College of Mechanical Engineering, Zhejiang University of Technology, Hangzhou, 310014, P.R. China.,College of Information Science and Engineering, Jiaxing University, Jiaxing, 314001, P.R. China
| | - Qianqian Cao
- College of Information Science and Engineering, Jiaxing University, Jiaxing, 314001, P.R. China
| | - Zhongyu Piao
- College of Mechanical Engineering, Zhejiang University of Technology, Hangzhou, 310014, P.R. China
| | - Lujuan Li
- College of Information Science and Engineering, Jiaxing University, Jiaxing, 314001, P.R. China
| |
Collapse
|
19
|
Shelor CP, Donegan M. Molecular Size-Selective Electrodialytic Desalters for Electrospray Ionization-Mass Spectrometry. Anal Chem 2022; 94:11873-11880. [PMID: 35969668 DOI: 10.1021/acs.analchem.2c02380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A membrane-based electrodialytic desalter has been developed for the selective removal of buffer/salt constituents from a fluid stream while retaining larger charged molecules such as proteins prior to mass spectrometric (MS) detection. The salts are deleterious to MS causing signal suppression, formation of adducts, and eventual contamination of the inlet. The new device uses dialysis membranes (DMs) paired with ion exchange membranes (IEMs) flanking the carrier flow channel in a planar configuration. The DMs contact the carrier channel preventing adsorptive losses of large, charged molecules to the IEMs. Ions are removed under an applied electric field using four pairs of electrodes along the flow channel. Removal of both anions and cations is more energy intensive than conversion of a suitable MS friendly salt into its respective acid or base, for example, ammonium acetate into acetic acid. The energetics and optimal voltage profiles for both scenarios have been thoroughly investigated. The DMs resulted in nonlinear increases in energy required for desalting over standard IEM devices due to electroosmotic flow of water into the interstitial space between the membranes. For a device channel with nominal volume of 15.2 μL, a maximum concentration of 200 mM ammonium acetate flowing at 0.25 mL/min was converted into acetic acid. Recovery of bovine serum albumin measured at 280 nm was 67%-96% at tested salt concentrations, and dispersion volumes were less than 200 μL2 and may be suitable for coupling to liquid chromatography.
Collapse
Affiliation(s)
- Charles Phillip Shelor
- Department of Chemistry and Biochemistry, University of Texas at Arlington, Arlington, Texas 76019-0065, United States
| | - Michael Donegan
- Waters Corporation, 34 Maple St., Milford, Massachusetts 01757, United States
| |
Collapse
|
20
|
A convenient online desalination tube coupled with mass spectrometry for the direct detection of iodinated contrast media in untreated human spent hemodialysates. PLoS One 2022; 17:e0268751. [PMID: 35666735 PMCID: PMC9170114 DOI: 10.1371/journal.pone.0268751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 05/06/2022] [Indexed: 11/19/2022] Open
Abstract
Background Mass spectrometry (MS) analysis using direct infusion of biological fluids is often problematic due to high salts/buffers. Iodinated contrast media (ICM) are frequently used for diagnostic imaging purposes, sometimes inducing acute kidney injury (AKI) in patients with reduced kidney function. Therefore, detection of ICM in spent hemodialysates is important for AKI patients who require urgent continuous hemodiafiltration (CHDF) because it allows noninvasive assessment of the patient’s treatment. In this study, we used a novel desalination tube before MS to inject the sample directly and detect ICM. Methods Firstly, spent hemodialysates of one patient were injected directly into the electrospray ionization (ESI) source equipped with a quadrupole time-of-flight mass spectrometer (Q-TOF MS) coupled to an online desalination tube for the detection of ICM and other metabolites. Thereafter, spent hemodialysates of two patients were injected directly into the ESI source equipped with a triple quadrupole mass spectrometer (TQ-MS) connected to that online desalination tube to confirm the detection of ICM. Results We detected iohexol (an ICM) from untreated spent hemodialysates of the patient-administered iohexol for computed tomography using Q-TOF MS. Using MRM profile analysis, we have confirmed the detection of ICM in the untreated spent hemodialysates of the patients administered for coronary angiography before starting CHDF. Using the desalination tube, we observed approximately 178 times higher signal intensity and 8 times improved signal-to-noise ratio for ioversol (an ICM) compared to data obtained without the desalination tube. This system was capable of tracking the changes of ioversol in spent hemodialysates of AKI patients by measuring spent hemodialysates. Conclusion The online desalination tube coupled with MS showed the capability of detecting iohexol and ioversol in spent hemodialysates without additional sample preparation or chromatographic separation. This approach also demonstrated the capacity to monitor the ioversol changes in patients’ spent hemodialysates.
Collapse
|
21
|
Abstract
Native mass spectrometry (MS) is aimed at preserving and determining the native structure, composition, and stoichiometry of biomolecules and their complexes from solution after they are transferred into the gas phase. Major improvements in native MS instrumentation and experimental methods over the past few decades have led to a concomitant increase in the complexity and heterogeneity of samples that can be analyzed, including protein-ligand complexes, protein complexes with multiple coexisting stoichiometries, and membrane protein-lipid assemblies. Heterogeneous features of these biomolecular samples can be important for understanding structure and function. However, sample heterogeneity can make assignment of ion mass, charge, composition, and structure very challenging due to the overlap of tens or even hundreds of peaks in the mass spectrum. In this review, we cover data analysis, experimental, and instrumental advances and strategies aimed at solving this problem, with an in-depth discussion of theoretical and practical aspects of the use of available deconvolution algorithms and tools. We also reflect upon current challenges and provide a view of the future of this exciting field.
Collapse
Affiliation(s)
- Amber D. Rolland
- Department of Chemistry and Biochemistry, 1253 University of Oregon, Eugene, OR, USA 97403-1253
| | - James S. Prell
- Department of Chemistry and Biochemistry, 1253 University of Oregon, Eugene, OR, USA 97403-1253
- Materials Science Institute, 1252 University of Oregon, Eugene, OR, USA 97403-1252
| |
Collapse
|
22
|
Moran MA, Kujawinski EB, Schroer WF, Amin SA, Bates NR, Bertrand EM, Braakman R, Brown CT, Covert MW, Doney SC, Dyhrman ST, Edison AS, Eren AM, Levine NM, Li L, Ross AC, Saito MA, Santoro AE, Segrè D, Shade A, Sullivan MB, Vardi A. Microbial metabolites in the marine carbon cycle. Nat Microbiol 2022; 7:508-523. [PMID: 35365785 DOI: 10.1038/s41564-022-01090-3] [Citation(s) in RCA: 46] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Accepted: 02/23/2022] [Indexed: 01/08/2023]
Abstract
One-quarter of photosynthesis-derived carbon on Earth rapidly cycles through a set of short-lived seawater metabolites that are generated from the activities of marine phytoplankton, bacteria, grazers and viruses. Here we discuss the sources of microbial metabolites in the surface ocean, their roles in ecology and biogeochemistry, and approaches that can be used to analyse them from chemistry, biology, modelling and data science. Although microbial-derived metabolites account for only a minor fraction of the total reservoir of marine dissolved organic carbon, their flux and fate underpins the central role of the ocean in sustaining life on Earth.
Collapse
Affiliation(s)
- Mary Ann Moran
- Department of Marine Sciences, University of Georgia, Athens, GA, USA.
| | - Elizabeth B Kujawinski
- Department of Marine Chemistry and Geochemistry, Woods Hole Oceanographic Institution, Woods Hole, MA, USA.
| | - William F Schroer
- Department of Marine Sciences, University of Georgia, Athens, GA, USA
| | - Shady A Amin
- Division of Science, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates
| | - Nicholas R Bates
- Bermuda Institute of Ocean Sciences, St George's, Bermuda.,School of Ocean and Earth Sciences, University of Southampton, Southampton, UK
| | - Erin M Bertrand
- Department of Biology, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Rogier Braakman
- Departments of Earth, Atmospheric and Planetary Sciences, and Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - C Titus Brown
- Population Health and Reproduction, School of Veterinary Medicine, University of California, Davis, Davis, CA, USA
| | - Markus W Covert
- Department of Bioengineering, Stanford University, Stanford, CA, USA
| | - Scott C Doney
- Department of Environmental Sciences, University of Virginia, Charlottesville, VA, USA
| | - Sonya T Dyhrman
- Lamont-Doherty Earth Observatory, Columbia University, Palisades, NY, USA.,Department of Earth and Environmental Science, Columbia University, Palisades, NY, USA
| | - Arthur S Edison
- Departments of Biochemistry and Genetics, Complex Carbohydrate Research Center, University of Georgia, Athens, GA, USA
| | - A Murat Eren
- Josephine Bay Paul Center, Marine Biological Laboratory, Woods Hole, MA, USA.,Helmholtz-Institute for Functional Marine Biodiversity (HIFMB), University of Oldenburg, Oldenburg, Germany
| | - Naomi M Levine
- Marine and Environmental Biology, Department of Biological Sciences, University of Southern California, Los Angeles, CA, USA
| | - Liang Li
- Department of Chemistry, University of Alberta, Edmonton, Alberta, Canada
| | - Avena C Ross
- Department of Chemistry, Queen's University, Kingston, Ontario, Canada
| | - Mak A Saito
- Department of Marine Sciences, University of Georgia, Athens, GA, USA
| | - Alyson E Santoro
- Department of Ecology, Evolution and Marine Biology, University of California, Santa Barbara, CA, USA
| | - Daniel Segrè
- Department of Biology and Bioinformatics Program, Boston University, Boston, MA, USA
| | - Ashley Shade
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI, USA
| | - Matthew B Sullivan
- Departments of Microbiology and Civil, Environmental, and Geodetic Engineering, and Center of Microbiome Science, The Ohio State University, Columbus, OH, USA
| | - Assaf Vardi
- Department of Plant and Environmental Sciences, The Weizmann Institute of Science, Rehovot, Israel
| |
Collapse
|
23
|
Studying protein structure and function by native separation–mass spectrometry. Nat Rev Chem 2022; 6:215-231. [PMID: 37117432 DOI: 10.1038/s41570-021-00353-7] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/13/2021] [Indexed: 12/13/2022]
Abstract
Alterations in protein structure may have profound effects on biological function. Analytical techniques that permit characterization of proteins while maintaining their conformational and functional state are crucial for studying changes in the higher order structure of proteins and for establishing structure-function relationships. Coupling of native protein separations with mass spectrometry is emerging rapidly as a powerful approach to study these aspects in a reliable, fast and straightforward way. This Review presents the available native separation modes for proteins, covers practical considerations on the hyphenation of these separations with mass spectrometry and highlights the involvement of affinity-based separations to simultaneously obtain structural and functional information of proteins. The impact of these approaches is emphasized by selected applications addressing biomedical and biopharmaceutical research questions.
Collapse
|
24
|
|
25
|
Huber S, Harder M, Weidacher N, Erharter K, Kreutz C, Schottenberger H, Bonn GK, Rainer M. Analyte recovery from recyclable ionic liquid pre-extractants by means of solid-phase extraction: A versatile tool for efficient and sustainable analytical sample preparation. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.117669] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
26
|
Chao HC, McLuckey SA. Manipulation of Ion Types via Gas-Phase Ion/Ion Chemistry for the Structural Characterization of the Glycan Moiety on Gangliosides. Anal Chem 2021; 93:15752-15760. [PMID: 34788022 DOI: 10.1021/acs.analchem.1c03876] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Gangliosides are the most abundant glycolipid among eukaryotic cell membranes and consist of a glycan head moiety containing one or more sialic acids and a ceramide chain. The analysis of the glycan moieties among different subclass gangliosides, including GM, GD, and GT gangliosides, remains a challenge for shotgun lipidomics. Here, we present a novel shotgun lipidomics approach employing gas-phase ion/ion chemistry. The gas-phase derivatization strategy provides a rapid way to manipulate the ion-types of the precursor ions, and, in conjunction with collision induced dissociation (CID), allows for the elucidation of the structures of the glycan moieties from gangliosides. In addition to the enhancement of structural characterization, gas-phase ion chemistry leads to a form of purification of the precursor ions prior to CID by neutralizing isobaric or isomeric ions with different charge states but with similar or identical m/z values. To demonstrate the proposed strategy, both deprotonated GM3 and GM1 gangliosides ([GM-H]-) were isolated and subjected to reaction with magnesium-Terpy complex cations ([Mg(Terpy)2]2+). The post-reaction product spectra show the elimination of possible contamination, illustrating the ability of charge-switching derivatization to purify the precursor ions. Isomeric differentiation between GD1a and GD1b was achieved by the sequential ion/ion reactions, with the CID of [GD1-H+Mg]+ showing diagnostic fragment ions from the isomers. Moreover, isomeric identification among GT1a, GT1b, and GT1c was accomplished while performing a gas-phase magnesium transfer reaction and CID. Lastly, the presented workflow was applied to ganglioside profiling in a porcine brain extract. In total, 34 gangliosides were profiled among only 20 precursor ion m/z values by resolving isomers. Furthermore, the fucosylation site on GM1 and GD1, and N-glycolylneuraminic acid conjugated GT1 isomers was identified. Relative quantification of isomeric two isomeric pairs, GD1a/b C36:1 and GD1a/b C38:1 was also achieved using pure component product ion spectra coupled with a total least-squares method. The results demonstrate the applicability and strength of using shotgun MS coupled with gas-phase ion/ion chemistry to characterize the glycan moiety structures on different subclasses of gangliosides.
Collapse
Affiliation(s)
- Hsi-Chun Chao
- Department of Chemistry Purdue University 560 Oval Drive West Lafayette, Indiana 47907, United States
| | - Scott A McLuckey
- Department of Chemistry Purdue University 560 Oval Drive West Lafayette, Indiana 47907, United States
| |
Collapse
|
27
|
Heravi T, Shen J, Johnson S, Asplund MC, Dearden DV. Halide Size-Selective Binding by Cucurbit[5]uril-Alkali Cation Complexes in the Gas Phase. J Phys Chem A 2021; 125:7803-7812. [PMID: 34492182 DOI: 10.1021/acs.jpca.1c05060] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
We report data that suggest complexes with alkali cations capping the portals of cucurbit[5]uril (CB[5]) bind halide anions size-selectively as observed in the gas phase: Cl- binds inside the CB[5] cavity, Br- is observed both inside and outside, and I- binds weakly outside. This is reflected in sustained off-resonance irradiation collision-induced dissociation (SORI-CID) experiments: all detected Cl- complexes dissociate at higher energies, and Br- complexes exhibit unusual bimodal dissociation behavior, with part of the ion population dissociating at very low energies and the remainder dissociating at significantly higher energies comparable to those observed for Cl-. Decoherence cross sections measured in SF6 using cross-sectional areas by Fourier transform ion cyclotron resonance techniques for [CB[5] + M2X]+ (M = Na, X = Cl or Br) are comparable to or less than that of [CB[5] + Na]+ over a wide energy range, suggesting that Cl- or Br- in these complexes are bound inside the CB[5] cavity. In contrast, [CB[5] + K2Br]+ has a cross section measured about 20% larger than that of [CB[5] + Na]+, suggesting external binding that may correspond with the weakly bound component seen in SORI. While I- complexes with alkali cation caps were not observed, alkaline earth iodides with CB[5] yielded complexes with cross sections 5-10% larger than that of [CB[5] + Na]+, suggesting externally bound iodide. Geometry optimization at the M06-2X/6-31+G* level of ab initio theory suggests that internal anion binding is energetically favored by approximately 50-200 kJ mol-1 over external binding; thus, the externally bound complexes observed experimentally must be due to large energetic barriers hindering the passing of large anions through the CB[5] portal, preventing access to the interior. Calculation of the barriers to anion egress using MMFF//M06-2X/6-31+G* theory supports this idea and suggests that the size-selective binding we observe is due to anion size-dependent differences in the barriers.
Collapse
Affiliation(s)
- Tina Heravi
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, Utah 84602, United States
| | - Jiewen Shen
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, Utah 84602, United States
| | - Spencer Johnson
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, Utah 84602, United States
| | - Matthew C Asplund
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, Utah 84602, United States
| | - David V Dearden
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, Utah 84602, United States
| |
Collapse
|
28
|
Yang CN, Peng WY, Lin LC, Tsai TH. Protein unbound pharmacokinetics of ambroxol in the blood and brains of rats and the interaction of ambroxol with Polygala tenuifolia by multiple microdialysis. JOURNAL OF ETHNOPHARMACOLOGY 2021; 269:113764. [PMID: 33383115 DOI: 10.1016/j.jep.2020.113764] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 11/29/2020] [Accepted: 12/24/2020] [Indexed: 06/12/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Ambroxol elevates glucocerebrosidase (GCase) activity and reduces nigrostriatal alpha-synuclein burden to better ameliorate motor function in Parkinson's disease (PD). Polygala tenuifolia is a potential alternative botanical medicine for the treatment of many nonmotor symptoms of PD commonly used in Taiwanese patients. Co-administration of these two medicines pose potential herb-drug interaction. AIM OF THE STUDY Our hypothesis is that ambroxol and P. tenuifolia may potentially possess herbal drug synergetic effects in the blood and brain. MATERIALS AND METHODS To investigate this hypothesis, a multiple microdialysis system coupled with validated ultra-high performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) method was developed for rat blood and brain samples. Experimental rats were divided into three groups: low-dose and high-dose ambroxol alone (10 mg/kg, i.v. and 30 mg/kg, i.v., respectively) and ambroxol (10 mg/kg, i.v.) pretreated with P. tenuifolia extract (1 g/kg, p.o. for 5 consecutive days). RESULTS Ambroxol easily penetrated into the brain and reached a maximum concentration in the striatum at approximately 60 min after low- and high-dose treatment. The area under the concentration curve (AUC) ratio increased proportionally at the doses of 10 and 30 mg/kg, which suggested a linear pharmacokinetic manner of ambroxol. The brain penetration of ambroxol was approximately 30-34%, which was defined as the ambroxol AUC blood-to-brain distribution ratio (AUCbrain/AUCblood). The P. tenuifolia extract did not significantly alter the pharmacokinetics of ambroxol in the blood and brain of rats. CONCLUSION The present study suggests that it is safety without pharmacokinetic interactions for this dosing regimen to use P. tenuifolia extract and ambroxol together.
Collapse
Affiliation(s)
- Chao-Nan Yang
- Institute of Traditional Medicine, School of Medicine, National Yang-Ming University, Taipei, 112, Taiwan; Department of Neurology, China Medical University Hospital-Taipei Branch, China Medical University, Taichung, 40402, Taiwan
| | - Wen-Ya Peng
- Institute of Traditional Medicine, School of Medicine, National Yang-Ming University, Taipei, 112, Taiwan
| | - Lie-Chwen Lin
- National Research Institute of Chinese Medicine, Ministry of Health and Welfare, Taipei, 112, Taiwan
| | - Tung-Hu Tsai
- Institute of Traditional Medicine, School of Medicine, National Yang-Ming University, Taipei, 112, Taiwan; Graduate Institute of Acupuncture Science, China Medical University, Taichung, 40402, Taiwan; School of Pharmacy, Kaohsiung Medical University, Kaohsiung, 807, Taiwan.
| |
Collapse
|
29
|
Analysis of Monoclonal Antibodies by Capillary Electrophoresis: Sample Preparation, Separation, and Detection. SEPARATIONS 2021. [DOI: 10.3390/separations8010004] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Therapeutic monoclonal antibodies (mAbs) are dominating the biopharmaceutical field due to the fact of their high specificity in the treatment of diverse diseases. Nevertheless, mAbs are very complex glycoproteins exhibiting several macro- and microheterogeneities that may affect their safety, quality, and efficacy. This complexity is very challenging for mAbs development, formulation, and quality control. To tackle the quality issue, a combination of multiple analytical approaches is necessary. In this perspective, capillary electrophoresis has gained considerable interest over the last decade due to the fact of its complementary features to chromatographic approaches. This review provides an overview of the strategies of mAbs and derivatives analysis by capillary electrophoresis hyphenated to ultraviolet, fluorescence, and mass spectrometry detection. The main sample preparation approaches used for mAb analytical characterization (i.e., intact, middle-up/down, and bottom-up) are detailed. The different electrophoretic modes used as well as integrated analysis approaches (sample preparation and separation) are critically discussed.
Collapse
|
30
|
Chen Y, Yuan S, Liu Y, Huang G. Rapid desalting during electrospray ionization mass spectrometry for investigating protein-ligand interactions in the presence of concentrated salts. Anal Chim Acta 2021; 1141:120-126. [PMID: 33248644 DOI: 10.1016/j.aca.2020.10.036] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 10/10/2020] [Accepted: 10/19/2020] [Indexed: 11/18/2022]
Abstract
Investigation of protein-ligand interactions in physiological conditions is crucial for better understanding of biochemistry because the binding stoichiometry and conformations of complexes in biological processes, such as various types of regulation and transportation, could reveal key pathways in organisms. Nanoelectrospray ionization mass spectrometry is widely used in studies of biological processes and systems biology. However, non-volatile salts in biological fluid may adversely interfere with nanoelectrospray ionization mass spectrometry. In this study, the previously developed method of induced nanoelectrospray ionization was used to facilitate in situ desalting of protein in solutions with high concentrations of non-volatile salts, and direct investigation of protein-ligand interactions for the first time. In situ desalting occurred at the tip of emitters within a short period lasting for a few to tens of milliseconds, enabling the maintenance of nativelike conditions compatible with mass spectrometry measurements. Induced nanoelectrospray ionization was driven by pulsed potential and exhibited microelectrophoresis effect in each spray cycle, which is not observed in conventional nanoelectrospray ionization because the continuous spray procedure is driven by direct current. Microelectrophoresis caused desalting through micron-sized spray emitters (1-20 μm), as confirmed experimentally with proteins in 100 mM NaCl solution. The method developed in this study has been further illustrated as a potential option for fast and direct identification of protein-ligand (small molecules or metal ions) interactions in complex samples. The results of this study demonstrate that the newly developed method may represent a reliable approach for investigations of proteins and protein complexes in biological samples.
Collapse
Affiliation(s)
- Yuting Chen
- Hefei National Laboratory for Physical Sciences at the Microscale, School of Chemistry and Materials Science, University of Science and Technology of China, 230026, Hefei, China
| | - Siming Yuan
- Hefei National Laboratory for Physical Sciences at the Microscale, School of Chemistry and Materials Science, University of Science and Technology of China, 230026, Hefei, China
| | - Yangzhong Liu
- Hefei National Laboratory for Physical Sciences at the Microscale, School of Chemistry and Materials Science, University of Science and Technology of China, 230026, Hefei, China
| | - Guangming Huang
- Hefei National Laboratory for Physical Sciences at the Microscale, School of Chemistry and Materials Science, University of Science and Technology of China, 230026, Hefei, China; National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, Anhui, 230029, PR China.
| |
Collapse
|
31
|
Karki S, Meher AK, Inutan ED, Pophristic M, Marshall DD, Rackers K, Trimpin S, McEwen CN. Development of a robotics platform for automated multi-ionization mass spectrometry. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2021; 35 Suppl 1:e8449. [PMID: 30950108 DOI: 10.1002/rcm.8449] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Revised: 02/02/2019] [Accepted: 03/26/2019] [Indexed: 06/09/2023]
Abstract
RATIONALE Successful coupling of a multi-ionization automated platform with commercially available mass spectrometers provides improved coverage of compounds in complex mixtures through implementation of new and traditional ionization methods. The versatility of the automated platform is demonstrated through coupling with mass spectrometers from two different vendors. Standards and complex biological samples were acquired using electrospray ionization (ESI), solvent-assisted ionization (SAI) and matrix-assisted ionization (MAI). METHODS The MS™ prototype automated platform samples from 96- or 384-well plates as well as surfaces. The platform interfaces with Thermo Fisher Scientific mass spectrometers by replacement of the IonMax source, and on Waters mass spectrometers with additional minor source inlet modifications. The sample is transferred to the ionization region using a fused-silica or metal capillary which is cleaned between acquisitions using solvents. For ESI and SAI, typically 1 μL of sample solution is drawn into the capillary tube and for ESI slowly dispensed near the inlet of the mass spectrometer with voltage placed on the delivering syringe barrel to which the tubing is attached, while for SAI the sample delivery tubing inserts into the inlet without the need for high voltage. For MAI, typically, 0.2 μL of matrix solution is drawn into the syringe before drawing 0.1 μL of the sample solution and dispensing to dry before insertion into the inlet. RESULTS A comparison study of a mixture of angiotensin I, verapamil, crystal violet, and atrazine representative of peptides, drugs, dyes, and herbicides using SAI, MAI, and ESI shows large differences in ionization efficiency of the various components. Solutions of a mixture of erythromycin and azithromycin in wells of a 384-microtiter well plate were mass analyzed at the rate of ca 1 min per sample using MAI and ESI. In addition, we report the analysis of bacterial extracts using automated MAI and ESI methods. Finally, the ability to perform surface analysis with the automated platform is also demonstrated by directly analyzing dyes separated on a thin-layer chromatography (TLC) plate and compounds extracted from the surface of a beef liver tissue section. CONCLUSIONS The prototype multi-ionization automated platform offers solid matrix introduction used with MAI, as well as solution introduction using either ESI or SAI. The combination of ionization methods extends the types of compounds which are efficiently ionized and is especially valuable with complex mixtures as demonstrated for bacterial extracts. While coupling of the automated multi-ionization platform to Thermo and Waters mass spectrometers is demonstrated, it should be possible to interface it with most commercial mass spectrometers.
Collapse
Affiliation(s)
- Santosh Karki
- Department of Chemistry, Wayne State University, Detroit, MI, USA
- MSTM, LLC, Newark, DE, USA
| | - Anil K Meher
- Department of Chemistry, Wayne State University, Detroit, MI, USA
- MSTM, LLC, Newark, DE, USA
| | - Ellen D Inutan
- Department of Chemistry, Wayne State University, Detroit, MI, USA
- MSTM, LLC, Newark, DE, USA
| | - Milan Pophristic
- MSTM, LLC, Newark, DE, USA
- Department of Chemistry & Biochemistry, University of the Sciences, Philadelphia, PA, USA
| | | | | | - Sarah Trimpin
- Department of Chemistry, Wayne State University, Detroit, MI, USA
- MSTM, LLC, Newark, DE, USA
- Cardiovascular Research Institute, Wayne State University, Detroit, MI, USA
| | - Charles N McEwen
- MSTM, LLC, Newark, DE, USA
- Department of Chemistry & Biochemistry, University of the Sciences, Philadelphia, PA, USA
| |
Collapse
|
32
|
Tao Y, Yan J, Cai B. LABEL-FREE BIO-AFFINITY MASS SPECTROMETRY FOR SCREENING AND LOCATING BIOACTIVE MOLECULES. MASS SPECTROMETRY REVIEWS 2021; 40:53-71. [PMID: 31755145 DOI: 10.1002/mas.21613] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Accepted: 11/04/2019] [Indexed: 06/10/2023]
Abstract
Despite the recent increase in the development of bioactive molecules in the drug industry, the enormous chemical space and lack of productivity are still important issues. Additional alternative approaches to screen and locate bioactive molecules are urgently needed. Label-free bio-affinity mass spectrometry (BA-MS) provides opportunities for the discovery and development of innovative drugs. This review provides a comprehensive portrayal of BA-MS techniques and of their applications in screening and locating bioactive molecules. After introducing the basic principles, alongside some application notes, the current state-of-the-art of BA-MS-assisted drug discovery is discussed, including native MS, size-exclusion chromatography-MS, ultrafiltration-MS, solid-phase micro-extraction-MS, and cell membrane chromatography-MS. Finally, several challenges and limitations of the current methods are summarized, with a view to potential future directions for BA-MS-assisted drug discovery. © 2019 John Wiley & Sons Ltd. Mass Spec Rev.
Collapse
Affiliation(s)
- Yi Tao
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, 310032, PR China
| | - Jizhong Yan
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, 310032, PR China
| | - Baochang Cai
- Jiangsu Key Laboratory of Chinese Medicine Processing, Nanjing University of Chinese Medicine, Nanjing, 210023, PR China
| |
Collapse
|
33
|
Källsten M, Hartmann R, Kovac L, Lehmann F, Lind SB, Bergquist J. Investigating the Impact of Sample Preparation on Mass Spectrometry-Based Drug-To-Antibody Ratio Determination for Cysteine- and Lysine-Linked Antibody-Drug Conjugates. Antibodies (Basel) 2020; 9:antib9030046. [PMID: 32911603 PMCID: PMC7551423 DOI: 10.3390/antib9030046] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 06/26/2020] [Accepted: 08/03/2020] [Indexed: 11/16/2022] Open
Abstract
Antibody-drug conjugates (ADCs) are heterogeneous biotherapeutics and differ vastly in their physicochemical properties depending on their design. The number of small drug molecules covalently attached to each antibody molecule is commonly referred to as the drug-to-antibody ratio (DAR). Established analytical protocols for mass spectrometry (MS)-investigation of antibodies and ADCs often require sample treatment such as desalting or interchain disulfide bond reduction prior to analysis. Herein, the impact of the desalting and reduction steps-as well as the sample concentration and elapsed time between synthesis and analysis of DAR-values (as acquired by reversed phase liquid chromatography MS (RPLC-MS))-was investigated. It was found that the apparent DAR-values could fluctuate by up to 0.6 DAR units due to changes in the sample preparation workflow. For methods involving disulfide reduction by means of dithiothreitol (DTT), an acidic quench is recommended in order to increase DAR reliability. Furthermore, the addition of a desalting step was shown to benefit the ionization efficiencies in RPLC-MS. Finally, in the case of delayed analyses, samples can be stored at four degrees Celsius for up to one week but are better stored at -20 °C for longer periods of time. In conclusion, the results demonstrate that commonly used sample preparation procedures and storage conditions themselves may impact MS-derived DAR-values, which should be taken into account when evaluating analytical procedures.
Collapse
Affiliation(s)
- Malin Källsten
- Department of Chemistry-BMC, Uppsala University, S-75124 Uppsala, Sweden;
- Recipharm OT Chemistry AB, S-75450 Uppsala, Sweden;
- Correspondence: (M.K.); (J.B.); Tel.: +46-(0)18-4713696 (M.K.); +46-(0)18-4713675 (J.B.)
| | - Rafael Hartmann
- Department of Medicinal Chemistry, Uppsala University, S-75123 Uppsala, Sweden;
| | - Lucia Kovac
- Recipharm OT Chemistry AB, S-75450 Uppsala, Sweden;
| | | | | | - Jonas Bergquist
- Department of Chemistry-BMC, Uppsala University, S-75124 Uppsala, Sweden;
- Correspondence: (M.K.); (J.B.); Tel.: +46-(0)18-4713696 (M.K.); +46-(0)18-4713675 (J.B.)
| |
Collapse
|
34
|
Proteomic Profiling of Emiliania huxleyi Using a Three-Dimensional Separation Method Combined with Tandem Mass Spectrometry. Molecules 2020; 25:molecules25133028. [PMID: 32630776 PMCID: PMC7411631 DOI: 10.3390/molecules25133028] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 06/30/2020] [Accepted: 06/30/2020] [Indexed: 12/31/2022] Open
Abstract
Emiliania huxleyi is one of the most abundant marine planktons, and it has a crucial feature in the carbon cycle. However, proteomic analyses of Emiliania huxleyi have not been done extensively. In this study, a three-dimensional liquid chromatography (3D-LC) system consisting of strong cation exchange, high- and low-pH reversed-phase liquid chromatography was established for in-depth proteomic profiling of Emiliania huxleyi. From tryptic proteome digest, 70 fractions were generated and analyzed using liquid chromatography-tandem mass spectrometry. In total, more than 84,000 unique peptides and 10,000 proteins groups were identified with a false discovery rate of ≤0.01. The physicochemical properties of the identified peptides were evaluated. Using ClueGO, approximately 700 gene ontology terms and 15 pathways were defined from the identified protein groups with p-value ≤0.05, covering a wide range of biological processes, cellular components, and molecular functions. Many biological processes associated with CO2 fixation, photosynthesis, biosynthesis, and metabolic process were identified. Various molecular functions relating to protein binding and enzyme activities were also found. The 3D-LC strategy is a powerful approach for comparative proteomic studies on Emiliania huxleyi to reveal changes in its protein level and related mechanism.
Collapse
|
35
|
Rimsza JM, Kuhlman KL. Surface Energies and Structure of Salt-Brine Interfaces. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:2482-2491. [PMID: 32097016 DOI: 10.1021/acs.langmuir.9b03172] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Permeability of salt formations is controlled by the equilibrium between the salt-brine and salt-salt interfaces described by the dihedral angle, which can change with the composition of the intergranular brine. Here, classical molecular dynamics (MD) simulations were used to investigate the structure and properties of the salt-brine interface to provide insight into the stability of salt systems. Mixed NaCl-KCl brines were investigated to explore differences in ion size on the surface energy and interface structure. Nonlinearity was noted in the salt-brine surface energy with increasing KCl concentration, and the addition of 10% KCl increased surface energies by 2-3 times (5.0 M systems). Size differences in Na+ and K+ ions altered the packing of dissolved ions and water molecules at the interface, impacting the surface energy. Additionally, ions at the interface had lower numbers of coordinating water molecules than those in the bulk and increased hydration for ions in systems with 100% NaCl or 100% KCl brines. Ultimately, small changes in brine composition away from pure NaCl altered the structure of the salt-brine interface, impacting the dihedral angle and the predicted equilibrium permeability of salt formations.
Collapse
Affiliation(s)
- Jessica M Rimsza
- Geochemistry Department, Sandia National Laboratories, Albuquerque, New Mexico 87123, United States
| | - Kristopher L Kuhlman
- Applied Systems Analysis & Research, Sandia National Laboratories, Albuquerque, New Mexico 87123, United States
| |
Collapse
|
36
|
Singh A, Bhardwaj N, Prasad R. Nanomaterial-Assisted Mass Spectrometry: An Evolving Cutting-Edge Technique. Nanobiomedicine (Rij) 2020. [DOI: 10.1007/978-981-32-9898-9_19] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
|
37
|
Wu Z, Bagarolo GI, Thoröe-Boveleth S, Jankowski J. "Lipidomics": Mass spectrometric and chemometric analyses of lipids. Adv Drug Deliv Rev 2020; 159:294-307. [PMID: 32553782 DOI: 10.1016/j.addr.2020.06.009] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 06/03/2020] [Accepted: 06/06/2020] [Indexed: 01/01/2023]
Abstract
Lipids are ubiquitous in the human organism and play essential roles as components of cell membranes and hormones, for energy storage or as mediators of cell signaling pathways. As crucial mediators of the human metabolism, lipids are also involved in metabolic diseases, cardiovascular and renal diseases, cancer and/or hepatological and neurological disorders. With rapidly growing evidence supporting the impact of lipids on both the genesis and progression of these diseases as well as patient wellbeing, the characterization of the human lipidome has gained high interest and importance in life sciences and clinical diagnostics within the last 15 years. This is mostly due to technically advanced molecular identification and quantification methods, mainly based on mass spectrometry. Mass spectrometry has become one of the most powerful tools for the identification of lipids. New lipidic mediators or biomarkers of diseases can be analysed by state-of-the art mass spectrometry techniques supported by sophisticated bioinformatics and biostatistics. The lipidomic approach has developed dramatically in the realm of life sciences and clinical diagnostics due to the available mass spectrometric methods and in particular due to the adaptation of biostatistical methods in recent years. Therefore, the current knowledge of lipid extraction methods, mass-spectrometric approaches, biostatistical data analysis, including workflows for the interpretation of lipidomic high-throughput data, are reviewed in this manuscript.
Collapse
Affiliation(s)
- Zhuojun Wu
- Institute for Molecular Cardiovascular Research, University Hospital RWTH Aachen, Aachen, Pauwelsstraße 30, 52074 Aachen, Germany
| | - Giulia Ilaria Bagarolo
- Institute for Molecular Cardiovascular Research, University Hospital RWTH Aachen, Aachen, Pauwelsstraße 30, 52074 Aachen, Germany
| | - Sven Thoröe-Boveleth
- Institute for Molecular Cardiovascular Research, University Hospital RWTH Aachen, Aachen, Pauwelsstraße 30, 52074 Aachen, Germany
| | - Joachim Jankowski
- Institute for Molecular Cardiovascular Research, University Hospital RWTH Aachen, Aachen, Pauwelsstraße 30, 52074 Aachen, Germany; School for Cardiovascular Diseases, Maastricht University, Universiteitssingel 50, Maastricht, The Netherlands.
| |
Collapse
|
38
|
Donnelly DP, Rawlins CM, DeHart CJ, Fornelli L, Schachner LF, Lin Z, Lippens JL, Aluri KC, Sarin R, Chen B, Lantz C, Jung W, Johnson KR, Koller A, Wolff JJ, Campuzano IDG, Auclair JR, Ivanov AR, Whitelegge JP, Paša-Tolić L, Chamot-Rooke J, Danis PO, Smith LM, Tsybin YO, Loo JA, Ge Y, Kelleher NL, Agar JN. Best practices and benchmarks for intact protein analysis for top-down mass spectrometry. Nat Methods 2019; 16:587-594. [PMID: 31249407 PMCID: PMC6719561 DOI: 10.1038/s41592-019-0457-0] [Citation(s) in RCA: 213] [Impact Index Per Article: 42.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2017] [Accepted: 05/21/2019] [Indexed: 12/31/2022]
Abstract
One gene can give rise to many functionally distinct proteoforms, each of which has a characteristic molecular mass. Top-down mass spectrometry enables the analysis of intact proteins and proteoforms. Here members of the Consortium for Top-Down Proteomics provide a decision tree that guides researchers to robust protocols for mass analysis of intact proteins (antibodies, membrane proteins and others) from mixtures of varying complexity. We also present cross-platform analytical benchmarks using a protein standard sample, to allow users to gauge their proficiency.
Collapse
Affiliation(s)
- Daniel P Donnelly
- Barnett Institute of Chemical and Biological Analysis and Departments of Chemistry & Chemical Biology and Pharmaceutical Sciences, Northeastern University, Boston, MA, USA
| | - Catherine M Rawlins
- Barnett Institute of Chemical and Biological Analysis and Departments of Chemistry & Chemical Biology and Pharmaceutical Sciences, Northeastern University, Boston, MA, USA
| | - Caroline J DeHart
- Departments of Chemistry and Molecular Biosciences and the Proteomics Center of Excellence, Northwestern University, Evanston, IL, USA
| | - Luca Fornelli
- Departments of Chemistry and Molecular Biosciences and the Proteomics Center of Excellence, Northwestern University, Evanston, IL, USA
| | - Luis F Schachner
- Departments of Chemistry and Molecular Biosciences and the Proteomics Center of Excellence, Northwestern University, Evanston, IL, USA
| | - Ziqing Lin
- Department of Cell and Regenerative Biology, Department of Chemistry, Human Proteomics Program, University of Wisconsin-Madison, Madison, WI, USA
| | - Jennifer L Lippens
- Amgen Research, Discovery Attribute Sciences, Amgen, Thousand Oaks, CA, USA
| | - Krishna C Aluri
- Barnett Institute of Chemical and Biological Analysis and Departments of Chemistry & Chemical Biology and Pharmaceutical Sciences, Northeastern University, Boston, MA, USA
- Alnylam Pharmaceuticals, Cambridge, MA, USA
| | - Richa Sarin
- Barnett Institute of Chemical and Biological Analysis and Departments of Chemistry & Chemical Biology and Pharmaceutical Sciences, Northeastern University, Boston, MA, USA
- Biogen, Cambridge, MA, USA
| | - Bifan Chen
- Department of Cell and Regenerative Biology, Department of Chemistry, Human Proteomics Program, University of Wisconsin-Madison, Madison, WI, USA
| | - Carter Lantz
- Department of Chemistry and Biochemistry, Department of Biological Chemistry, and UCLA/DOE Institute of Genomics and Proteomics, University of California, Los Angeles, Los Angeles, CA, USA
| | - Wonhyeuk Jung
- Department of Chemistry and Biochemistry, Department of Biological Chemistry, and UCLA/DOE Institute of Genomics and Proteomics, University of California, Los Angeles, Los Angeles, CA, USA
| | - Kendall R Johnson
- Barnett Institute of Chemical and Biological Analysis and Departments of Chemistry & Chemical Biology and Pharmaceutical Sciences, Northeastern University, Boston, MA, USA
| | - Antonius Koller
- Barnett Institute of Chemical and Biological Analysis and Departments of Chemistry & Chemical Biology and Pharmaceutical Sciences, Northeastern University, Boston, MA, USA
| | | | - Iain D G Campuzano
- Amgen Research, Discovery Attribute Sciences, Amgen, Thousand Oaks, CA, USA
| | - Jared R Auclair
- Biopharmaceutical Analysis Training Laboratory, Northeastern University, Burlington, MA, USA
| | - Alexander R Ivanov
- Barnett Institute of Chemical and Biological Analysis and Departments of Chemistry & Chemical Biology and Pharmaceutical Sciences, Northeastern University, Boston, MA, USA
| | - Julian P Whitelegge
- The Pasarow Mass Spectrometry Laboratory, The Jane and Terry Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Ljiljana Paša-Tolić
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Julia Chamot-Rooke
- Mass Spectrometry for Biology Unit, Institut Pasteur, USR 2000, CNRS, Paris, France
| | | | - Lloyd M Smith
- Department of Chemistry, Genome Center of Wisconsin, University of Wisconsin-Madison, Madison, WI, USA
| | | | - Joseph A Loo
- Department of Chemistry and Biochemistry, Department of Biological Chemistry, and UCLA/DOE Institute of Genomics and Proteomics, University of California, Los Angeles, Los Angeles, CA, USA
| | - Ying Ge
- Department of Cell and Regenerative Biology, Department of Chemistry, Human Proteomics Program, University of Wisconsin-Madison, Madison, WI, USA
| | - Neil L Kelleher
- Departments of Chemistry and Molecular Biosciences and the Proteomics Center of Excellence, Northwestern University, Evanston, IL, USA
| | - Jeffrey N Agar
- Barnett Institute of Chemical and Biological Analysis and Departments of Chemistry & Chemical Biology and Pharmaceutical Sciences, Northeastern University, Boston, MA, USA.
| |
Collapse
|
39
|
Javanshad R, Honarvar E, Venter AR. Addition of Serine Enhances Protein Analysis by DESI-MS. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2019; 30:694-703. [PMID: 30771107 DOI: 10.1007/s13361-018-02129-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Revised: 12/21/2018] [Accepted: 12/27/2018] [Indexed: 05/18/2023]
Abstract
Previous studies have suggested that the loss in sensitivity of DESI-MS for large molecules such as proteins is due to the poor dissolution during the short time scale of desorption and ionization. An investigation into the effect of serine as a solvent additive leads to the interesting observation that there is a concentration-dependent improvement in protein signal intensity when micromolar to low millimolar concentrations of serine is combined with a suitable co-additive in DESI spray. This effect, however, was not observed during similar ESI-MS experiments, where the same solvents and proteins were sprayed directly into the MS inlet. This suggests that the mechanism of signal improvement in DESI is associated with the desorption step of proteins, possibly by facilitating dissolution or improving solubility of proteins on the surface in the solvent micro-layer formed during DESI. Other than poor dissolution, cation adduction such as by sodium ions is also a major contributing factor to the mass-dependent loss in sensitivity in both ESI and DESI, leading to an increase in limits of detection for larger proteins. The adduction becomes a more pressing issue in native-state studies of proteins, as lower charge states are more susceptible to adduction. Previous studies have shown that addition of amino acids to the working spray solution during ESI-MS reduces sodium adduction and can help in stabilization of native-state proteins. Similar to the observed reduction in sodium adducts during native-state ESI-MS, when serine is added to the desorbing spray in DESI-MS, the removal of up to 10 mM NaCl is shown. A selection of proteins with high and low pI and molecular weights was analyzed to investigate the effects of serine on signal intensity by improvements in protein solubility and adduct removal. Graphical Abstract.
Collapse
Affiliation(s)
- Roshan Javanshad
- Department of Chemistry, Western Michigan University, Kalamazoo, MI, 49008-5413, USA
| | - Elahe Honarvar
- Department of Chemistry, Western Michigan University, Kalamazoo, MI, 49008-5413, USA
| | - Andre R Venter
- Department of Chemistry, Western Michigan University, Kalamazoo, MI, 49008-5413, USA.
| |
Collapse
|
40
|
Chavira A, Belda-Ferre P, Kosciolek T, Ali F, Dorrestein PC, Knight R. The Microbiome and Its Potential for Pharmacology. Handb Exp Pharmacol 2019; 260:301-326. [PMID: 31820171 DOI: 10.1007/164_2019_317] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
The human microbiota (the microscopic organisms that inhabit us) and microbiome (their genes) hold considerable potential for improving pharmacological practice. Recent advances in multi-"omics" techniques have dramatically improved our understanding of the constituents of the microbiome and their functions. The implications of this research for human health, including microbiome links to obesity, drug metabolism, neurological diseases, cancer, and many other health conditions, have sparked considerable interest in exploiting the microbiome for targeted therapeutics. Links between microbial pathways and disease states further highlight a rich potential for companion diagnostics and precision medicine approaches. For example, the success of fecal microbiota transplantation to treat Clostridium difficile infection has already started to redefine standard of care with a microbiome-directed therapy. In this review we briefly discuss the nature of human microbial ecosystems and with pathologies and biological processes linked to the microbiome. We then review emerging computational metagenomic, metabolomic, and wet lab techniques researchers are using today to learn about the roles host-microbial interactions have with respect to pharmacological purposes and vice versa. Finally, we describe how drugs affect the microbiome, how the microbiome can impact drug response in different people, and the potential of the microbiome itself as a source of new therapeutics.
Collapse
Affiliation(s)
- Aries Chavira
- Division of Biological Sciences, University of California San Diego, La Jolla, CA, USA
| | - Pedro Belda-Ferre
- Department of Pediatrics, University of California San Diego, La Jolla, CA, USA
| | - Tomasz Kosciolek
- Department of Pediatrics, University of California San Diego, La Jolla, CA, USA
- Małopolska Centre of Biotechnology, Jagiellonian University, Krakow, Poland
| | - Farhana Ali
- Division of Gastroenterology, Department of Pediatrics, University of California San Diego, La Jolla, CA, USA
| | - Pieter C Dorrestein
- Department of Pediatrics, University of California San Diego, La Jolla, CA, USA
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA, USA
- Collaborative Mass Spectrometry Innovation Center, University of California San Diego, La Jolla, CA, USA
- Center for Microbiome Innovation, University of California San Diego, La Jolla, CA, USA
| | - Rob Knight
- Department of Pediatrics, University of California San Diego, La Jolla, CA, USA.
- Center for Microbiome Innovation, University of California San Diego, La Jolla, CA, USA.
- Department of Computer Science and Engineering, University of California San Diego, La Jolla, CA, USA.
- Department of Bioengineering, University of California San Diego, La Jolla, CA, USA.
| |
Collapse
|
41
|
Honarvar E, Venter AR. Comparing the Effects of Additives on Protein Analysis Between Desorption Electrospray (DESI) and Electrospray Ionization (ESI). JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2018; 29:2443-2455. [PMID: 30232734 DOI: 10.1007/s13361-018-2058-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2017] [Revised: 08/17/2018] [Accepted: 08/17/2018] [Indexed: 06/08/2023]
Abstract
It is frequently said that DESI-MS follows a similar ionization mechanism as ESI because of similarities usually observed in their respective mass spectra. However, practical use of DESI-MS for protein analysis is limited to proteins with lower molecular weights (< 25 kDa) due to a mass-dependent loss in signal intensity. Here we investigated commonly used volatile acids and their ammonium salt buffers for DESI-MS analysis of protein. We noticed that, surprisingly, some additives influence the analysis differently in DESI compared to ESI. Improved signal intensities with both DESI and ESI were obtained when acetic and formic acid were added into aqueous methanol spray solvents with both DESI and ESI. On the other hand, while with ESI the addition of ammonium salts into spray solutions strongly reduced both signal and S/N, with DESI signal intensities and S/N were improved dramatically. Ammonium bicarbonate when used with DESI reduced the total amount of adduction and delivered excellent signal-to-noise ratios with high intensity; however, it also denatures protein. When native state protein mass spectra are preferred, ammonium acetate would also deliver reasonable adduct removal and improved S/N. The amount of total adduction of individual adducting species and of all species could not be correlated with differences in either solutions pH values or with proton affinities of the anions. An obvious difference between DESI and ESI mass spectrometry is the effects of protein solubility during droplet pickup (desorption), but differences in the sizes, velocities, and composition of ionizing droplets were also discussed as important factors. Graphical Abstract ᅟ.
Collapse
Affiliation(s)
- Elahe Honarvar
- Department of Chemistry, Western Michigan University, Kalamazoo, MI, 49008-5413, USA
| | - Andre R Venter
- Department of Chemistry, Western Michigan University, Kalamazoo, MI, 49008-5413, USA.
| |
Collapse
|
42
|
Kim D, Lee J, Kim B, Kim S. Optimization and Application of Paper-Based Spray Ionization Mass Spectrometry for Analysis of Natural Organic Matter. Anal Chem 2018; 90:12027-12034. [DOI: 10.1021/acs.analchem.8b02668] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Donghwi Kim
- Department of Chemistry, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Joonhee Lee
- Center for Analytical Chemistry, Division of Chemical & Medical Metrology, Korea Research Institute of Standards and Science, Daejeon 34113, Republic of Korea
| | - Byungjoo Kim
- Center for Analytical Chemistry, Division of Chemical & Medical Metrology, Korea Research Institute of Standards and Science, Daejeon 34113, Republic of Korea
| | - Sunghwan Kim
- Department of Chemistry, Kyungpook National University, Daegu 41566, Republic of Korea
- Green-Nano Materials Research Center, Daegu 41566, Republic of Korea
| |
Collapse
|
43
|
Brophy P, Broeckling CD, Murphy J, Prenni JE. Ion-neutral Clustering of Bile Acids in Electrospray Ionization Across UPLC Flow Regimes. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2018; 29:651-662. [PMID: 29427066 DOI: 10.1007/s13361-017-1878-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Revised: 12/18/2017] [Accepted: 12/19/2017] [Indexed: 06/08/2023]
Abstract
Bile acid authentic standards were used as model compounds to quantitatively evaluate complex in-source phenomenon on a UPLC-ESI-TOF-MS operated in the negative mode. Three different diameter columns and a ceramic-based microfluidic separation device were utilized, allowing for detailed descriptions of bile acid behavior across a wide range of flow regimes and instantaneous concentrations. A custom processing algorithm based on correlation analysis was developed to group together all ion signals arising from a single compound; these grouped signals produce verified compound spectra for each bile acid at each on-column mass loading. Significant adduction was observed for all bile acids investigated under all flow regimes and across a wide range of bile acid concentrations. The distribution of bile acid containing clusters was found to depend on the specific bile acid species, solvent flow rate, and bile acid concentration. Relative abundancies of each cluster changed non-linearly with concentration. It was found that summing all MS level (low collisional energy) ions and ion-neutral adducts arising from a single compound improves linearity across the concentration range (0.125-5 ng on column) and increases the sensitivity of MS level quantification. The behavior of each cluster roughly follows simple equilibrium processes consistent with our understanding of electrospray ionization mechanisms and ion transport processes occurring in atmospheric pressure interfaces. Graphical Abstract ᅟ.
Collapse
Affiliation(s)
- Patrick Brophy
- Proteomics and Metabolomics Facility, Colorado State University, Fort Collins, CO, 80523, USA
| | - Corey D Broeckling
- Proteomics and Metabolomics Facility, Colorado State University, Fort Collins, CO, 80523, USA.
| | | | - Jessica E Prenni
- Proteomics and Metabolomics Facility, Colorado State University, Fort Collins, CO, 80523, USA
| |
Collapse
|
44
|
Affiliation(s)
- Bifan Chen
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Kyle A. Brown
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Ziqing Lin
- Department of Cell and Regenerative Biology, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
- Human Proteomics Program, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Ying Ge
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
- Department of Cell and Regenerative Biology, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
- Human Proteomics Program, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| |
Collapse
|
45
|
Konermann L. Addressing a Common Misconception: Ammonium Acetate as Neutral pH "Buffer" for Native Electrospray Mass Spectrometry. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2017; 28:1827-1835. [PMID: 28710594 DOI: 10.1007/s13361-017-1739-3] [Citation(s) in RCA: 146] [Impact Index Per Article: 20.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Revised: 06/14/2017] [Accepted: 06/15/2017] [Indexed: 05/12/2023]
Abstract
Native ESI-MS involves the transfer of intact proteins and biomolecular complexes from solution into the gas phase. One potential pitfall is the occurrence of pH-induced changes that can affect the analyte while it is still surrounded by solvent. Most native ESI-MS studies employ neutral aqueous ammonium acetate solutions. It is a widely perpetuated misconception that ammonium acetate buffers the analyte solution at neutral pH. By definition, a buffer consists of a weak acid and its conjugate weak base. The buffering range covers the weak acid pKa ± 1 pH unit. NH4+ and CH3-COO- are not a conjugate acid/base pair, which means that they do not constitute a buffer at pH 7. Dissolution of ammonium acetate salt in water results in pH 7, but this pH is highly labile. Ammonium acetate does provide buffering around pH 4.75 (the pKa of acetic acid) and around pH 9.25 (the pKa of ammonium). This implies that neutral ammonium acetate solutions electrosprayed in positive ion mode will likely undergo acidification down to pH 4.75 ± 1 in the ESI plume. Ammonium acetate nonetheless remains a useful additive for native ESI-MS. It is a volatile electrolyte that can mimic the solvation properties experienced by proteins under physiological conditions. Also, a drop from pH 7 to around pH 4.75 is less dramatic than the acidification that would take place in pure water. It is hoped that the habit of referring to pH 7 solutions as ammonium acetate "buffer" will disappear from the literature. Ammonium acetate "solution" should be used instead. Graphical Abstract ᅟ.
Collapse
Affiliation(s)
- Lars Konermann
- Department of Chemistry, The University of Western Ontario, London, ON, N6A 5B7, Canada.
| |
Collapse
|
46
|
Porrini M, Rosu F, Rabin C, Darré L, Gómez H, Orozco M, Gabelica V. Compaction of Duplex Nucleic Acids upon Native Electrospray Mass Spectrometry. ACS CENTRAL SCIENCE 2017; 3:454-461. [PMID: 28573208 PMCID: PMC5445532 DOI: 10.1021/acscentsci.7b00084] [Citation(s) in RCA: 76] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2017] [Indexed: 05/25/2023]
Abstract
We report on the fate of nucleic acids conformation in the gas phase as sampled using native mass spectrometry coupled to ion mobility spectrometry. On the basis of several successful reports for proteins and their complexes, the technique has become popular in structural biology, and the conformation survival becomes more and more taken for granted. Surprisingly, we found that DNA and RNA duplexes, at the electrospray charge states naturally obtained from native solution conditions (≥100 mM aqueous NH4OAc), are significantly more compact in the gas phase compared to the canonical solution structures. The compaction is observed for all duplex sizes (gas-phase structures are more compact than canonical B-helices by ∼20% for 12-bp, and by up to ∼30% for 36-bp duplexes), and for DNA and RNA alike. Molecular modeling (density functional calculations on small helices, semiempirical calculations on up to 12-bp, and molecular dynamics on up to 36-bp duplexes) demonstrates that the compaction is due to phosphate group self-solvation prevailing over Coulomb repulsion. Molecular dynamics simulations starting from solution structures do not reproduce the experimental compaction. To be experimentally relevant, molecular dynamics sampling should reflect the progressive structural rearrangements occurring during desolvation. For nucleic acid duplexes, the compaction observed for low charge states results from novel phosphate-phosphate hydrogen bonds formed across both grooves at the very late stages of electrospray.
Collapse
Affiliation(s)
- Massimiliano Porrini
- INSERM,
CNRS, Université de Bordeaux, Acides
Nucléiques Régulations Naturelle et Artificielle (ARNA,
U1212, UMR5320), IECB, 2 rue Robert Escarpit, 33607 Pessac, France
| | - Frédéric Rosu
- CNRS,
INSERM, Université de Bordeaux, Institut
Européen de Chimie et Biologie (IECB, UMS3033, US001), 2 rue Robert Escarpit, 33607 Pessac, France
| | - Clémence Rabin
- INSERM,
CNRS, Université de Bordeaux, Acides
Nucléiques Régulations Naturelle et Artificielle (ARNA,
U1212, UMR5320), IECB, 2 rue Robert Escarpit, 33607 Pessac, France
| | - Leonardo Darré
- The
Barcelona Institute of Science and Technology, Institute for Research in Biomedicine (IRB) Barcelona, Baldiri Reixac 10, 08028 Barcelona, Spain
- Joint
BSC-CRG-IRB Research Program in Computational Biology, IRB Barcelona, Barcelona, Spain
| | - Hansel Gómez
- The
Barcelona Institute of Science and Technology, Institute for Research in Biomedicine (IRB) Barcelona, Baldiri Reixac 10, 08028 Barcelona, Spain
- Joint
BSC-CRG-IRB Research Program in Computational Biology, IRB Barcelona, Barcelona, Spain
| | - Modesto Orozco
- The
Barcelona Institute of Science and Technology, Institute for Research in Biomedicine (IRB) Barcelona, Baldiri Reixac 10, 08028 Barcelona, Spain
- Joint
BSC-CRG-IRB Research Program in Computational Biology, IRB Barcelona, Barcelona, Spain
- Department
of Biochemistry and Biomedicine, University
of Barcelona, Avda Diagonal
647, 08028 Barcelona, Spain
| | - Valérie Gabelica
- INSERM,
CNRS, Université de Bordeaux, Acides
Nucléiques Régulations Naturelle et Artificielle (ARNA,
U1212, UMR5320), IECB, 2 rue Robert Escarpit, 33607 Pessac, France
| |
Collapse
|
47
|
Tubaon RM, Haddad PR, Quirino JP. One-step selective electrokinetic removal of inorganic anions from small volumes and its application as sample clean-up for mass spectrometric techniques. J Chromatogr A 2017; 1488:134-139. [DOI: 10.1016/j.chroma.2017.01.073] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2016] [Revised: 01/24/2017] [Accepted: 01/26/2017] [Indexed: 12/26/2022]
|
48
|
Susa AC, Xia Z, Tang HYH, Tainer JA, Williams ER. Charging of Proteins in Native Mass Spectrometry. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2017; 28:332-340. [PMID: 27734326 PMCID: PMC5283922 DOI: 10.1007/s13361-016-1517-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2016] [Revised: 09/22/2016] [Accepted: 09/27/2016] [Indexed: 05/19/2023]
Abstract
Factors that influence the charging of protein ions formed by electrospray ionization from aqueous solutions in which proteins have native structures and function were investigated. Protein ions ranging in molecular weight from 12.3 to 79.7 kDa and pI values from 5.4 to 9.6 were formed from different solutions and reacted with volatile bases of gas-phase basicities higher than that of ammonia in the cell of a Fourier-transform ion cyclotron resonance mass spectrometer. The charge-state distribution of cytochrome c ions formed from aqueous ammonium or potassium acetate is the same. Moreover, ions formed from these two solutions do not undergo proton transfer to 2-fluoropyridine, which is 8 kcal/mol more basic than ammonia. These results provide compelling evidence that proton transfer between ammonia and protein ions does not limit protein ion charge in native electrospray ionization. Both circular dichroism and ion mobility measurements indicate that there are differences in conformations of proteins in pure water and aqueous ammonium acetate, and these differences can account for the difference in the extent of charging and proton-transfer reactivities of protein ions formed from these solutions. The extent of proton transfer of the protein ions with higher gas-phase basicity bases trends with how closely the protein ions are charged to the value predicted by the Rayleigh limit for spherical water droplets approximately the same size as the proteins. These results indicate that droplet charge limits protein ion charge in native mass spectrometry and are consistent with these ions being formed by the charged residue mechanism. Graphical Abstract ᅟ.
Collapse
Affiliation(s)
- Anna C Susa
- Department of Chemistry, University of California, Berkeley, CA, 94720-1460, USA
| | - Zijie Xia
- Department of Chemistry, University of California, Berkeley, CA, 94720-1460, USA
| | - Henry Y H Tang
- Department of Chemistry, University of California, Berkeley, CA, 94720-1460, USA
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - John A Tainer
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
- Department of Molecular and Cellular Oncology, The University of Texas M. D. Anderson Cancer Center, Houston, TX, 77030, USA
| | - Evan R Williams
- Department of Chemistry, University of California, Berkeley, CA, 94720-1460, USA.
| |
Collapse
|
49
|
Hu J, Guan QY, Wang J, Jiang XX, Wu ZQ, Xia XH, Xu JJ, Chen HY. Effect of Nanoemitters on Suppressing the Formation of Metal Adduct Ions in Electrospray Ionization Mass Spectrometry. Anal Chem 2017; 89:1838-1845. [DOI: 10.1021/acs.analchem.6b04218] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Jun Hu
- State Key Laboratory
of Analytical Chemistry
for Life Science and Collaborative Innovation Center of Chemistry
for Life Sciences, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Qi-Yuan Guan
- State Key Laboratory
of Analytical Chemistry
for Life Science and Collaborative Innovation Center of Chemistry
for Life Sciences, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Jiang Wang
- State Key Laboratory
of Analytical Chemistry
for Life Science and Collaborative Innovation Center of Chemistry
for Life Sciences, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Xiao-Xiao Jiang
- State Key Laboratory
of Analytical Chemistry
for Life Science and Collaborative Innovation Center of Chemistry
for Life Sciences, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Zeng-Qiang Wu
- State Key Laboratory
of Analytical Chemistry
for Life Science and Collaborative Innovation Center of Chemistry
for Life Sciences, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Xing-Hua Xia
- State Key Laboratory
of Analytical Chemistry
for Life Science and Collaborative Innovation Center of Chemistry
for Life Sciences, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Jing-Juan Xu
- State Key Laboratory
of Analytical Chemistry
for Life Science and Collaborative Innovation Center of Chemistry
for Life Sciences, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Hong-Yuan Chen
- State Key Laboratory
of Analytical Chemistry
for Life Science and Collaborative Innovation Center of Chemistry
for Life Sciences, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| |
Collapse
|
50
|
Affiliation(s)
- Patricia M Peacock
- First State IR, LLC , 118 Susan Drive, Hockessin, Delaware 19707, United States
| | - Wen-Jing Zhang
- Department of Chemistry, Wayne State University , 5101 Cass Avenue, Detroit, Michigan 48202, United States
| | - Sarah Trimpin
- Department of Chemistry, Wayne State University , 5101 Cass Avenue, Detroit, Michigan 48202, United States
| |
Collapse
|