1
|
Liu S, Ryumin P, Albanese J, Zhang Z, Baba T. Analysis of Sialic Acid Linkage in N-Linked Glycopeptides Using Liquid Chromatography-Electron-Activated Dissociation Time-of-Flight Mass Spectrometry. Anal Chem 2023; 95:7458-7467. [PMID: 37146167 DOI: 10.1021/acs.analchem.2c04581] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Herein, we report a novel liquid chromatography coupled with tandem mass spectrometry method to characterize N-acetylneuraminic acid (Neu5Ac, Sa) linkage in N-linked glycans in glycopeptides with no sialic acid derivatization. First, we established a separation in reversed-phase high-performance liquid chromatography (HPLC) using a higher formic acid concentration in the mobile phases, which separated the N-glycopeptides depending on the Sa linkage. We also demonstrated a novel characterization method of Sa linkages in N-glycopeptides using electron-activated dissociation. We found that hot electron capture dissociation using an electron beam energy higher than 5 eV cleaved glycosidic bonds in glycopeptides, resulting in each glycosidic bond in the antennas being broken on both sides of the oxygen atom. Such glycosidic bond cleavage at the reducing end (C-type ion) showed the difference in Sa linkages between Sa-Gal, Gal-GlcNAc, and GlcNAc-Man. We proposed a rule to characterize the Sa linkages using the Sa-Gal products. This method was applied to N-glycopeptides in tryptic fetuin digest separated by an optimized reversed-phase HPLC. We successfully identified a number of isomeric glycoforms in the glycopeptides with different Sa links, whose peptide backbones were also simultaneously sequenced by hot ECD.
Collapse
Affiliation(s)
- Suya Liu
- Sciex, 71 Four Valley Dr. Concord, Ontario L4K 4V8, Canada
| | - Pavel Ryumin
- Sciex, 71 Four Valley Dr. Concord, Ontario L4K 4V8, Canada
| | - Jenny Albanese
- Sciex, 1201 Radio Rd, Redwood City, California 94065, United States
| | - Zoe Zhang
- Sciex, 1201 Radio Rd, Redwood City, California 94065, United States
| | - Takashi Baba
- Sciex, 71 Four Valley Dr. Concord, Ontario L4K 4V8, Canada
| |
Collapse
|
2
|
Gong S, Hu X, Chen S, Sun B, Wu JL, Li N. Dual roles of drug or its metabolite-protein conjugate: Cutting-edge strategy of drug discovery using shotgun proteomics. Med Res Rev 2022; 42:1704-1734. [PMID: 35638460 DOI: 10.1002/med.21889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 03/24/2022] [Accepted: 05/04/2022] [Indexed: 11/11/2022]
Abstract
Many drugs can bind directly to proteins or be bioactivated by metabolizing enzymes to form reactive metabolites (RMs) that rapidly bind to proteins to form drug-protein conjugates or metabolite-protein conjugates (DMPCs). The close relationship between DMPCs and idiosyncratic adverse drug reactions (IADRs) has been recognized; drug discovery teams tend to avoid covalent interactions in drug discovery projects. Covalent interactions in DMPCs can provide high potency and long action duration and conquer the intractable targets, inspiring drug design, and development. This forms the dual role feature of DMPCs. Understanding the functional implications of DMPCs in IADR control and therapeutic applications requires precise identification of these conjugates from complex biological samples. While classical biochemical methods have contributed significantly to DMPC detection in the past decades, the low abundance and low coverage of DMPCs have become a bottleneck in this field. An emerging transformation toward shotgun proteomics is on the rise. The evolving shotgun proteomics techniques offer improved reproducibility, throughput, specificity, operability, and standardization. Here, we review recent progress in the systematic discovery of DMPCs using shotgun proteomics. Furthermore, the applications of shotgun proteomics supporting drug development, toxicity mechanism investigation, and drug repurposing processes are also reviewed and prospected.
Collapse
Affiliation(s)
- Shilin Gong
- State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Taipa, Macau
| | - Xiaolan Hu
- State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Taipa, Macau
| | - Shengshuang Chen
- State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Taipa, Macau
| | - Baoqing Sun
- State Key Laboratory of Respiratory Disease, National Respiratory Medical Center, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Jian-Lin Wu
- State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Taipa, Macau
| | - Na Li
- State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Taipa, Macau
| |
Collapse
|
3
|
Utility of Atmospheric-Pressure Chemical Ionization and Photoionization Mass Spectrometry in Bottom-Up Proteomics. SEPARATIONS 2022. [DOI: 10.3390/separations9020042] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
In a typical bottom-up proteomics workflow, proteins are enzymatically cleaved, and the resulting peptides are analyzed by HPLC with electrospray ionization (ESI) tandem mass spectrometry. This approach is practical and widely applied. It has, however, limitations mostly related to less efficient or even inefficient ionization of some peptides in ESI sources. Gas-phase ionization methods like atmospheric-pressure chemical ionization (APCI) or atmospheric-pressure photoionization (APPI) offer alternative ways of detecting various analytes. This work is a systematic study of the ionization efficiencies of peptides in ESI, APCI, and APPI and the applicability of the mentioned ionizations in proteomics. A set of peptide standards and bovine serum albumin digests were examined using a high-resolution mass spectrometer coupled to an ultra HPLC system. Since the ionization efficiency in APCI and APPI depends strongly on experimental conditions, the ion source settings and mobile phase compositions were optimized for each ionization technique. As expected, tryptic peptides were best detected using ESI. The numbers of chymotrypsin peptides successfully detected by ESI, APPI, and APCI were comparable. In the case of Glu-C digest, APPI detected the highest number of peptides. The results suggest that gas-phase ionization techniques, particularly APPI, are an interesting alternative for detecting peptides and delivering complementary data in proteomics.
Collapse
|
4
|
Kelly MI, Dodds ED. Parallel Determination of Polypeptide and Oligosaccharide Connectivities by Energy-Resolved Collison-Induced Dissociation of Protonated O-Glycopeptides Derived from Nonspecific Proteolysis. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2020; 31:624-632. [PMID: 32126781 PMCID: PMC7164384 DOI: 10.1021/jasms.9b00065] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Collision-induced dissociation (CID) is by far the most broadly applied dissociation method used for tandem mass spectrometry (MS/MS). This includes MS/MS-based structural interrogation of glycopeptides for applications in glycoproteomics. The end goal of such measurements is to determine the monosaccharide connectivity of the glycan, the amino acid sequence of the peptide, and the site of glycosylation for each glycopeptide of interest. In turn, this allows inferences with respect to the glycoprofile of the intact glycoprotein. For glycopeptide analysis, CID is best known for the ability to determine glycosidic topology of the oligosaccharide group; however, CID has also been shown to produce amide bond cleavage of the polypeptide group. Whether structural information is obtained for the glycan or the peptide has been found to depend on the applied collision energy. While these energy-resolved fragmentation pathways have been the subject of several studies on N-linked glycopeptides, there remains a dearth of similar work on O-linked glycopeptides. In this study, MS/MS via CID was shown to provide substantial peptide backbone fragmentation, in addition to glycosidic fragmentation, in an energy-dependent manner. While qualitatively similar to previous findings for N-glycopeptides, the energy-resolved CID (ER-CID) of O-glycopeptides was found to be substantially more sensitive to the collision energy setting. Thus, deliberately obtaining either glycan or peptide dissociation is a more delicate undertaking for O-glycopeptides. Establishing a more complete understanding of O-glycopeptide ER-CID is likely to have a substantive impact on how O-glycoproteomic analysis is approached in the future.
Collapse
Affiliation(s)
- Maia I. Kelly
- Department of Chemistry, University of Nebraska – Lincoln, Lincoln, NE, 68588-0304, USA
| | - Eric D. Dodds
- Department of Chemistry, University of Nebraska – Lincoln, Lincoln, NE, 68588-0304, USA
- Nebraska Center for Integrated Biomolecular Communication, University of Nebraska – Lincoln, Lincoln, NE, 68588-0304, USA
| |
Collapse
|
5
|
Wang Y, Tian Z. New Energy Setup Strategy for Intact N-Glycopeptides Characterization Using Higher-Energy Collisional Dissociation. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2020; 31:651-657. [PMID: 31967800 DOI: 10.1021/jasms.9b00089] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
With the optional setting of multiple stepped collisional energies (NCEs), higher-energy collisional dissociation (HCD) as available on Orbitrap instruments is a widely adopted dissociation method for intact N-glycopeptides characterization, where peptide backbones and N-glycan moieties are selectively fragmented at high and low NCEs, respectively. Initially, a dependent setting of a central value plus minus a variation is available to the users to set up NCEs, and the combination of 30 ± 10% to give the energies 20%/30%/40% has been mostly adopted in the literature. With the recent availability of an independent NCEs setup, we found that the combination of 20%/30%/30% is better than 20%/30%/40%; in the analysis of complex intact N-glycopeptides enriched from gastric cancer tissues, total IDs with spectrum-level FDR ≤ 1%, site-specific IDs with site-determining fragment ions, and structure-specific IDs with structure-diagnostic fragment ions were increased by 42% (4,767 → 6,746), 57% (599 → 942), and 97% (1771 → 3495), respectively. This finding will benefit all the coming N-glycoproteomics studies using HCD as the dissociation method.
Collapse
Affiliation(s)
- Yue Wang
- School of Chemical Science & Engineering, Shanghai Key Laboratory of Chemical Assessment and Sustainability, Tongji University, Shanghai 200092, China
| | - Zhixin Tian
- School of Chemical Science & Engineering, Shanghai Key Laboratory of Chemical Assessment and Sustainability, Tongji University, Shanghai 200092, China
| |
Collapse
|
6
|
Kolli V, Schumacher KN, Dodds ED. Ion mobility-resolved collision-induced dissociation and electron transfer dissociation of N-glycopeptides: gathering orthogonal connectivity information from a single mass-selected precursor ion population. Analyst 2018; 142:4691-4702. [PMID: 29119999 DOI: 10.1039/c7an01196b] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Glycopeptide-level mass spectrometry (MS) and tandem mass spectrometry (MS/MS) analyses are commonly performed to establish site-specific protein glycosylation profiles that are of central importance to gaining structure-function insights on glycoproteins. Confoundingly, the complete characterization of glycopeptide connectivity usually requires the acquisition of multiple MS/MS fragmentation spectra. Complementary ion fragmentation techniques such as collision-induced dissociation (CID) and electron transfer dissociation (ETD) are often applied in concert to address this need. While structurally informative, the requirement for acquisition of two MS/MS spectra per analyte places considerable limitations upon the breadth and depth of large-scale glycoproteomic inquiry. Here, a previously developed method of multiplexing CID and ETD is applied to the study of glycopeptides for the first time. Integration of the two dissociation methods was accomplished through addition of an ion mobility (IM) dimension that disperses the two stages of MS/MS in time. This allows the two MS/MS spectra to be acquired within a few milliseconds of one another, and to be deconvoluted in post-processing. Furthermore, the method allows both fragmentation readouts to be obtained from the same precursor ion packet, thus reducing the inefficiencies imposed by separate CID and ETD acquisitions and the relatively poor precursor ion to fragment ion conversion typical of ETD. N-Linked glycopeptide ions ranging in molecular weight from 1.8 to 6.5 kDa were generated from four model glycoproteins that collectively encompassed paucimannosidic, high mannose, and complex types of N-glycosylation. In each case, IM-resolved CID and ETD events provided complete coverage of the glycan topology and peptide sequence coverages ranging from 48.4% (over 32 amino acid residues) to 85.7% (over eight amino acid residues). The potential of this method for large-scale glycoproteomic analysis is discussed.
Collapse
Affiliation(s)
- Venkata Kolli
- Department of Chemistry, University of Nebraska - Lincoln, Lincoln, NE 68588-0304, USA.
| | | | | |
Collapse
|
7
|
Aboufazeli F, Dodds ED. Precursor ion survival energies of protonated N-glycopeptides and their weak dependencies on high mannose N-glycan composition in collision-induced dissociation. Analyst 2018; 143:4459-4468. [PMID: 30151520 PMCID: PMC6131044 DOI: 10.1039/c8an00830b] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Fully realizing the capabilities of tandem mass spectrometry (MS/MS) for analysis of glycosylated peptides will require further understanding of the unimolecular dissociation chemistry that dictates their fragmentation pathways. In this context, the overall composition of a given glycopeptide ion is a key characteristic; however, the extent to which the carbohydrate moiety influences the preferred dissociation channels has received relatively little study. Here, the effect of glycan composition on energy-resolved collision-induced dissociation (CID) behavior was studied for a select menu of 30 protonated high mannose type N-linked glycopeptide ions. Groups of analytes which shared a common charge state, polypeptide sequence, and glycosylation site exhibited 50% precursor ion survival energies that varied only slightly as the size and composition of the oligosaccharide was varied. This was found to be true regardless of whether the precursor ion survival energies were normalized for the number of available vibrational degrees of freedom. The practical consequence of this was that a given collision energy brought about highly similar levels of precursor ion depletion and structural information despite systematic variation of the glycan identity. This lack of sensitivity to oligosaccharide composition stands in contrast to other physicochemical properties of glycopeptide ions (e.g., polypeptide composition, charge state, charge carrier) which sharply influence their energy-resolved CID characteristics. On the whole, these findings imply that the deliberate selection of CID energies to bring about a desired range of fragmentation pathways does not necessarily hinge on the nature of the glycan.
Collapse
Affiliation(s)
- Forouzan Aboufazeli
- Department of Chemistry, University of Nebraska - Lincoln, Lincoln, NE 68588-0304, USA.
| | | |
Collapse
|
8
|
Campbell JL, Baba T, Liu C, Lane CS, Le Blanc JCY, Hager JW. Analyzing Glycopeptide Isomers by Combining Differential Mobility Spectrometry with Electron- and Collision-Based Tandem Mass Spectrometry. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2017; 28:1374-1381. [PMID: 28432653 DOI: 10.1007/s13361-017-1663-6] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2016] [Revised: 03/06/2017] [Accepted: 03/07/2017] [Indexed: 05/16/2023]
Abstract
Differential mobility spectrometry (DMS) has been employed to separate isomeric species in several studies. Under the right conditions, factors such as separation voltage, temperature, the presence of chemical modifiers, and residence time can combine to provide unique signal channels for isomeric species. In this study, we examined a set of glycopeptide isomers, MUC5AC-3 and MUC5AC-13, which bear an N-acetyl-galactosamine (GalNAc) group on either threonine-3 or threonine-13. When analyzed as a mixture, the resulting MS and MS/MS spectra yield fragmentation patterns that cannot discern these convolved species. However, when DMS is implemented during the analysis of this mixture, two features emerge in the DMS ionogram representing the two glycopeptide isomers. In addition, by locking in DMS parameters at each feature, we could observe several low intensity CID fragments that contain the GalNAc functionality-specific amino acid residues - identifying the DMS separation of each isomer without standards. Besides conventional CID MS/MS, we also implemented electron-capture dissociation (ECD) after DMS separation, and clearly resolved both isomers with this fragmentation method, as well. The electron energy used in these ECD experiments could be tuned to obtain maximum sequence coverage for these glycopeptides; this was critical as these ions were present as doubly protonated species, which are much more difficult to fragment efficiently via electron-transfer dissociation (ETD). Overall, the combination of DMS with electron- or collision-based MS/MS methods provided enhanced separation and sequence coverage for these glycopeptide isomers. Graphical Abstract ᅟ.
Collapse
Affiliation(s)
| | - Takashi Baba
- SCIEX, 71 Four Valley Drive, Concord, ON, L4K 4V8, Canada
| | - Chang Liu
- SCIEX, 71 Four Valley Drive, Concord, ON, L4K 4V8, Canada
| | | | | | - James W Hager
- SCIEX, 71 Four Valley Drive, Concord, ON, L4K 4V8, Canada
| |
Collapse
|
9
|
Yamamoto S, Kinoshita M, Suzuki S. Current landscape of protein glycosylation analysis and recent progress toward a novel paradigm of glycoscience research. J Pharm Biomed Anal 2016; 130:273-300. [PMID: 27461579 DOI: 10.1016/j.jpba.2016.07.015] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2016] [Revised: 07/09/2016] [Accepted: 07/09/2016] [Indexed: 12/25/2022]
Abstract
This review covers the basics and some applications of methodologies for the analysis of glycoprotein glycans. Analytical techniques used for glycoprotein glycans, including liquid chromatography (LC), capillary electrophoresis (CE), mass spectrometry (MS), and high-throughput analytical methods based on microfluidics, were described to supply the essentials about biopharmaceutical and biomarker glycoproteins. We will also describe the MS analysis of glycoproteins and glycopeptides as well as the chemical and enzymatic releasing methods of glycans from glycoproteins and the chemical reactions used for the derivatization of glycans. We hope the techniques have accommodated most of the requests from glycoproteomics researchers.
Collapse
Affiliation(s)
- Sachio Yamamoto
- Faculty of Pharmaceutical Sciences, Kinki University, 3-4-1, Kowakae, Higashi-osaka, Osaka, 577-8502, Japan.
| | - Mitsuhiro Kinoshita
- Faculty of Pharmaceutical Sciences, Kinki University, 3-4-1, Kowakae, Higashi-osaka, Osaka, 577-8502, Japan
| | - Shigeo Suzuki
- Faculty of Pharmaceutical Sciences, Kinki University, 3-4-1, Kowakae, Higashi-osaka, Osaka, 577-8502, Japan
| |
Collapse
|
10
|
Engaging challenges in glycoproteomics: recent advances in MS-based glycopeptide analysis. Bioanalysis 2015; 7:113-31. [PMID: 25558940 DOI: 10.4155/bio.14.272] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The proteomic analysis of glycosylation is uniquely challenging. The numerous and varied biological roles of protein-linked glycans have fueled a tremendous demand for technologies that enable rapid, in-depth structural examination of glycosylated proteins in complex biological systems. In turn, this demand has driven many innovations in wide ranging fields of bioanalytical science. This review will summarize key developments in glycoprotein separation and enrichment, glycoprotein proteolysis strategies, glycopeptide separation and enrichment, the role of mass measurement accuracy in glycopeptide detection, glycopeptide ion dissociation methods for MS/MS, and informatic tools for glycoproteomic analysis. In aggregate, this selection of topics serves to encapsulate the present status of MS-based analytical technologies for engaging the challenges of glycoproteomic analysis.
Collapse
|
11
|
Baba T, Campbell JL, Le Blanc JCY, Hager JW, Thomson BA. Electron Capture Dissociation in a Branched Radio-Frequency Ion Trap. Anal Chem 2014; 87:785-92. [DOI: 10.1021/ac503773y] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
- Takashi Baba
- AB Sciex, 71 Four Valley Drive, Concord, Ontario, L4K 4V8, Canada
| | | | | | - James W. Hager
- AB Sciex, 71 Four Valley Drive, Concord, Ontario, L4K 4V8, Canada
| | - Bruce A. Thomson
- AB Sciex, 71 Four Valley Drive, Concord, Ontario, L4K 4V8, Canada
| |
Collapse
|
12
|
Bourgoin-Voillard S, Leymarie N, Costello CE. Top-down tandem mass spectrometry on RNase A and B using a Qh/FT-ICR hybrid mass spectrometer. Proteomics 2014; 14:1174-84. [PMID: 24687996 DOI: 10.1002/pmic.201300433] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2013] [Revised: 02/08/2014] [Accepted: 03/21/2014] [Indexed: 11/10/2022]
Abstract
Protein characterization using top-down approaches emerged with advances in high-resolution mass spectrometers and increased diversity of available activation modes: collision-induced dissociation (CID), infrared multiphoton dissociation (IRMPD) electron capture dissociation (ECD), and electron transfer dissociation (ETD). Nevertheless, top-down approaches are still rarely used for glycoproteins. Hence, this work summarized the capacity of top-down approaches to improve sequence coverage and glycosylation site assignment on the glycoprotein Ribonuclease B (RNase B). The glycan effect on the protein fragmentation pattern was also investigated by comparing the fragmentation patterns of RNase B and its nonglycosylated analog RNase A. The experiments were performed on a Bruker 12-T Qh/FT-ICR SolariX mass spectrometer using vibrational (CID/IRMPD) and radical activation (ECD/ETD) with/without pre- or post-activation (IRMPD or CID, respectively). The several activation modes yielded complementary sequence information. The radical activation modes yielded the most extensive sequence coverage that was slightly improved after a CID predissociation activation event. The combination of the data made it possible to obtain 90% final sequence coverage for RNase A and 86% for RNase B. Vibrational and radical activation modes showed high retention of the complete glycan moiety (>98% for ETD and ECD) facilitating unambiguous assignment of the high-mannose glycosylation site. Moreover, the presence of the high-mannose glycan enhanced fragmentation around the glycosylation site.
Collapse
|
13
|
Robb DB, Brown JM, Morris M, Blades MW. Tandem mass spectrometry using the atmospheric pressure electron capture dissociation ion source. Anal Chem 2014; 86:4439-46. [PMID: 24694021 DOI: 10.1021/ac5002959] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Atmospheric pressure electron capture dissociation (AP-ECD) is an emerging technique capable of being adopted to virtually any electrospray mass spectrometer, without modification of the main instrument. To date, however, because the electron capture reactions occur in the ion source, AP-ECD has been limited by its apparent inability to select precursors prior to fragmentation, i.e., to perform tandem mass spectrometry (MS/MS) experiments. In this paper we demonstrate a novel AP-ECD-MS/MS method using an AP-ECD source on a Xevo G2-S quadrupole time-of-flight (Q-TOF) mass spectrometer from Waters Micromass. The method takes advantage of the tendency for electron capture reactions to generate charge-reduced "ECnoD" products, species that have captured an electron and have had a covalent bond cleaved yet do not immediately dissociate into separate products and so retain the mass of the precursor ion. In the method, ECnoD products from the AP-ECD source are isolated in the quadrupole mass filter and induced to dissociate through supplemental activation in the collision cell, and then the liberated ECD fragment ions are mass analyzed using the high-resolution TOF. In this manner, true MS/MS spectra may be obtained with AP-ECD even though all of the precursors in the source are subjected to electron capture reactions in parallel. Here, using a late-model Q-TOF instrument otherwise incapable of performing electron-based fragmentation, we present AP-ECD-MS/MS results for a group of model peptides and show that informative, high-sequence-coverage spectra are readily attainable with the method.
Collapse
Affiliation(s)
- Damon B Robb
- University of British Columbia , Department of Chemistry, Vancouver, BC V6T 1Z1, Canada
| | | | | | | |
Collapse
|
14
|
Recent developments and applications of electron transfer dissociation mass spectrometry in proteomics. Amino Acids 2014; 46:1625-34. [PMID: 24687149 DOI: 10.1007/s00726-014-1726-y] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2013] [Accepted: 03/07/2014] [Indexed: 12/30/2022]
Abstract
Electron transfer dissociation (ETD) has been developed recently as an efficient ion fragmentation technique in mass spectrometry (MS), being presently considered a step forward in proteomics with real perspectives for improvement, upgrade and application. Available also on affordable ion trap mass spectrometers, ETD induces specific N-Cα bond cleavages of the peptide backbone with the preservation of the post-translational modifications and generation of product ions that are diagnostic for the modification site(s). In addition, in the last few years ETD contributed significantly to the development of top-down approaches which enable tandem MS of intact protein ions. The present review, covering the last 5 years highlights concisely the major achievements and the current applications of ETD fragmentation technique in proteomics. An ample part of the review is dedicated to ETD contribution in the elucidation of the most common posttranslational modifications, such as phosphorylation and glycosylation. Further, a brief section is devoted to top-down by ETD method applied to intact proteins. As the last few years have witnessed a major expansion of the microfluidics systems, a few considerations on ETD in combination with chip-based nanoelectrospray (nanoESI) as a platform for high throughput top-down proteomics are also presented.
Collapse
|
15
|
Wong SCC, Chan CML, Ma BBY, Lam MYY, Choi GCG, Au TCC, Chan ASK, Chan ATC. Advanced proteomic technologies for cancer biomarker discovery. Expert Rev Proteomics 2014; 6:123-34. [DOI: 10.1586/epr.09.1] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
16
|
Kolli V, Dodds ED. Energy-resolved collision-induced dissociation pathways of model N-linked glycopeptides: implications for capturing glycan connectivity and peptide sequence in a single experiment. Analyst 2014; 139:2144-53. [DOI: 10.1039/c3an02342g] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
17
|
Zhu Z, Su X, Clark DF, Go EP, Desaire H. Characterizing O-linked glycopeptides by electron transfer dissociation: fragmentation rules and applications in data analysis. Anal Chem 2013; 85:8403-11. [PMID: 23909558 DOI: 10.1021/ac401814h] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Studying protein O-glycosylation remains an analytical challenge. Different from N-linked glycans, the O-glycosylation site is not within a known consensus sequence. Additionally, O-glycans are heterogeneous with numerous potential modification sites. Electron transfer dissociation (ETD) is the method of choice in analyzing these glycopeptides since the glycan side chain remains intact in ETD, and the glycosylation site can be localized on the basis of the c and z fragment ions. Nonetheless, new software is necessary for interpreting O-glycopeptide ETD spectra in order to expedite the analysis workflow. To address the urgent need, we studied the fragmentation of O-glycopeptides in ETD and found useful rules that facilitate their identification. By implementing the rules into an algorithm to score potential assignments against ETD-MS/MS data, we applied the method to glycopeptides generated from various O-glycosylated proteins including mucin, erythropoietin, fetuin, and an HIV envelope protein, 1086.C gp120. The site-specific O-glycopeptide composition was correctly assigned in every case, proving the merits of our method in analyzing glycopeptide ETD data. The algorithm described herein can be easily incorporated into other automated glycomics tools.
Collapse
Affiliation(s)
- Zhikai Zhu
- The Ralph N. Adams Institute for Bioanalytical Chemistry and Department of Chemistry, University of Kansas, Lawrence, Kansas 66047, USA
| | | | | | | | | |
Collapse
|
18
|
Earley L, Anderson LC, Bai DL, Mullen C, Syka JEP, English AM, Dunyach JJ, Stafford GC, Shabanowitz J, Hunt DF, Compton PD. Front-end electron transfer dissociation: a new ionization source. Anal Chem 2013; 85:8385-90. [PMID: 23909443 DOI: 10.1021/ac401783f] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Electron transfer dissociation (ETD), a technique that provides efficient fragmentation while depositing little energy into vibrational modes, has been widely integrated into proteomics workflows. Current implementations of this technique, as well as other ion-ion reactions like proton transfer, involve sophisticated hardware, lack robustness, and place severe design limitations on the instruments to which they are attached. Described herein is a novel, electrical discharge-based reagent ion source that is located in the first differentially pumped region of the mass spectrometer. The reagent source was found to produce intense reagent ion signals over extended periods of time while having no measurable impact on precursor ion signal. Further, the source is simple to construct and enables implementation of ETD on any instrument without modification to footprint. Finally, in the context of hybrid mass spectrometers, relocation of the reagent ion source to the front of the mass spectrometer enables new approaches to gas phase interrogation of intact proteins.
Collapse
Affiliation(s)
- Lee Earley
- Thermo Fisher Scientific, San Jose, California 95134, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Prentice BM, McLuckey SA. Gas-phase ion/ion reactions of peptides and proteins: acid/base, redox, and covalent chemistries. Chem Commun (Camb) 2013; 49:947-65. [PMID: 23257901 PMCID: PMC3557538 DOI: 10.1039/c2cc36577d] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Gas-phase ion/ion reactions are emerging as useful and flexible means for the manipulation and characterization of peptide and protein biopolymers. Acid/base-like chemical reactions (i.e., proton transfer reactions) and reduction/oxidation (redox) reactions (i.e., electron transfer reactions) represent relatively mature classes of gas-phase chemical reactions. Even so, especially in regards to redox chemistry, the widespread utility of these two types of chemistries is undergoing rapid growth and development. Additionally, a relatively new class of gas-phase ion/ion transformations is emerging which involves the selective formation of functional-group-specific covalent bonds. This feature details our current work and perspective on the developments and current capabilities of these three areas of ion/ion chemistry with an eye towards possible future directions of the field.
Collapse
Affiliation(s)
- Boone M. Prentice
- Purdue University – Department of Chemistry, 560 Oval Drive, West Lafayette, IN, 47907-2084, USA
| | - Scott A. McLuckey
- Purdue University – Department of Chemistry, 560 Oval Drive, West Lafayette, IN, 47907-2084, USA
| |
Collapse
|
20
|
Dodds ED. Gas-phase dissociation of glycosylated peptide ions. MASS SPECTROMETRY REVIEWS 2012; 31:666-82. [PMID: 22407588 DOI: 10.1002/mas.21344] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2011] [Revised: 12/22/2011] [Accepted: 12/27/2011] [Indexed: 05/15/2023]
Abstract
Among the myriad of protein post-translational modifications (PTMs), glycosylation presents a singular analytical challenge. On account of the extraordinary diversity of protein-linked carbohydrates and the great complexity with which they decorate glycoproteins, the rigorous establishment of glycan-protein connectivity is often an arduous experimental venture. Consequently, elaborating the interplay between structures of oligosaccharides and functions of proteins they modify is usually not a straightforward task. A more mature biochemical appreciation of carbohydrates as PTMs will significantly hinge upon analytical advances in the field of glycoproteomics. Undoubtedly, the analysis of glycosylated peptides by tandem mass spectrometry (MS/MS) will play a pivotal role in this regard. The goal of this review is to summarize, from an analytical and tutorial perspective, the present state of knowledge regarding the dissociation of glycopeptide ions as accomplished by various MS/MS methods. In addition, this review will endeavor to harmonize some seemingly disparate findings to provide a more complete and broadly applicable description of glycopeptide ion fragmentation. A fuller understanding of the rich variety of glycopeptide dissociation behaviors will allow glycoproteomic researchers to maximize the information yielded by MS/MS experiments, while also paving the way to new innovations in MS-based glycoproteomics.
Collapse
Affiliation(s)
- Eric D Dodds
- Department of Chemistry, University of Nebraska-Lincoln, 711 Hamilton Hall, Lincoln, Nebraska 68588-0304, USA.
| |
Collapse
|
21
|
Abstract
Recent advances in quadrupole TOF (Q-TOF) MS have some bioanalytical scientists referring to a ‘paradigm shift’ in their field. They are speaking of a potential move away from workflows based upon triple-quadrupole MS. Gone would be the optimizing of numerous parameters in selected-reaction monitoring (SRM) experiments, replaced with more generic workflows provided by Q-TOF instruments with high data acquisition rates, excellent mass accuracy (≤5 ppm) and high resolving power (≥30,000). Such a move could pay real dividends for high-throughput workflows, especially in drug metabolism and pharmacokinetics analyses where quantitation and qualification studies could actually be merged. But, are modern Q-TOF-MS instruments, touted as high-resolution MS, ready for this? If not, how close is it? This article will examine these questions by reviewing recent advances in Q-TOF technology and some fascinating orthogonal technology (such as ion mobility) that modern Q-TOFs employ for even greater analytical power.
Collapse
|
22
|
Abstract
The comprehensive analysis of intact proteins down to the level of their individual amino acid sequence and the entirety of post-translational modifications is an area that can hardly be covered by the typical workflow in MS based protein analysis, which comprises enzymatic digestion, mass spectrometric analysis and subsequent database search. This approach typically provides 20-80% sequence coverage, which is not sufficient for the characterization of biopharmaceuticals, for example. This generates the requirement for a comprehensive analysis of the protein, without the risk of losing sequence information due to undetected peptides. Top-down sequencing of proteins starts from the intact protein, typically by determining the intact protein mass in the first step, a fragmentation of the intact protein is then performed within the mass spectrometer, resulting in fragment ions that allow us to pinpoint the protein sequence, as well as potential modifications or mutations in their localization and structure. A number of technologies have been developed for this task in the last few years, based on various different mass spectrometric instrument configurations, but typically based on the same technology platforms as used for bottom-up strategies. Thus, the use of one specific instrument often allows the application of top-down and bottom-up technologies in a complementary way, providing much more detailed information about the proteins of interest than either of the approaches alone.
Collapse
|
23
|
Scott NE, Parker BL, Connolly AM, Paulech J, Edwards AVG, Crossett B, Falconer L, Kolarich D, Djordjevic SP, Højrup P, Packer NH, Larsen MR, Cordwell SJ. Simultaneous glycan-peptide characterization using hydrophilic interaction chromatography and parallel fragmentation by CID, higher energy collisional dissociation, and electron transfer dissociation MS applied to the N-linked glycoproteome of Campylobacter jejuni. Mol Cell Proteomics 2011; 10:M000031-MCP201. [PMID: 20360033 PMCID: PMC3033663 DOI: 10.1074/mcp.m000031-mcp201] [Citation(s) in RCA: 237] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2010] [Revised: 03/29/2010] [Indexed: 11/06/2022] Open
Abstract
Campylobacter jejuni is a gastrointestinal pathogen that is able to modify membrane and periplasmic proteins by the N-linked addition of a 7-residue glycan at the strict attachment motif (D/E)XNX(S/T). Strategies for a comprehensive analysis of the targets of glycosylation, however, are hampered by the resistance of the glycan-peptide bond to enzymatic digestion or β-elimination and have previously concentrated on soluble glycoproteins compatible with lectin affinity and gel-based approaches. We developed strategies for enriching C. jejuni HB93-13 glycopeptides using zwitterionic hydrophilic interaction chromatography and examined novel fragmentation, including collision-induced dissociation (CID) and higher energy collisional (C-trap) dissociation (HCD) as well as CID/electron transfer dissociation (ETD) mass spectrometry. CID/HCD enabled the identification of glycan structure and peptide backbone, allowing glycopeptide identification, whereas CID/ETD enabled the elucidation of glycosylation sites by maintaining the glycan-peptide linkage. A total of 130 glycopeptides, representing 75 glycosylation sites, were identified from LC-MS/MS using zwitterionic hydrophilic interaction chromatography coupled to CID/HCD and CID/ETD. CID/HCD provided the majority of the identifications (73 sites) compared with ETD (26 sites). We also examined soluble glycoproteins by soybean agglutinin affinity and two-dimensional electrophoresis and identified a further six glycosylation sites. This study more than doubles the number of confirmed N-linked glycosylation sites in C. jejuni and is the first to utilize HCD fragmentation for glycopeptide identification with intact glycan. We also show that hydrophobic integral membrane proteins are significant targets of glycosylation in this organism. Our data demonstrate that peptide-centric approaches coupled to novel mass spectrometric fragmentation techniques may be suitable for application to eukaryotic glycoproteins for simultaneous elucidation of glycan structures and peptide sequence.
Collapse
Affiliation(s)
| | - Benjamin L. Parker
- ¶Discipline of Pathology, School of Medical Sciences, The University of Sydney, Sydney 2006, Australia
| | | | - Jana Paulech
- From the ‡School of Molecular and Microbial Biosciences and
| | - Alistair V. G. Edwards
- ¶Discipline of Pathology, School of Medical Sciences, The University of Sydney, Sydney 2006, Australia
| | - Ben Crossett
- From the ‡School of Molecular and Microbial Biosciences and
| | - Linda Falconer
- **New South Wales Department of Primary Industries, Elizabeth Macarthur Agricultural Institute, Camden 2570, Australia
| | - Daniel Kolarich
- ‡‡Department of Chemistry and Biomolecular Sciences, Macquarie University, 2109, Australia
| | - Steven P. Djordjevic
- **New South Wales Department of Primary Industries, Elizabeth Macarthur Agricultural Institute, Camden 2570, Australia
- §§Institute for the Biotechnology of Infectious Diseases, University of Technology, Sydney 2007, Australia, and
| | - Peter Højrup
- ¶¶Protein Research Group, Department of Biochemistry and Molecular Biology, University of Southern Denmark, 5000 Odense, Denmark
| | - Nicolle H. Packer
- ‡‡Department of Chemistry and Biomolecular Sciences, Macquarie University, 2109, Australia
| | - Martin R. Larsen
- ¶¶Protein Research Group, Department of Biochemistry and Molecular Biology, University of Southern Denmark, 5000 Odense, Denmark
| | - Stuart J. Cordwell
- From the ‡School of Molecular and Microbial Biosciences and
- ¶Discipline of Pathology, School of Medical Sciences, The University of Sydney, Sydney 2006, Australia
- ¶¶Protein Research Group, Department of Biochemistry and Molecular Biology, University of Southern Denmark, 5000 Odense, Denmark
| |
Collapse
|
24
|
Huang TY, McLuckey SA. Top-down protein characterization facilitated by ion/ion reactions on a quadrupole/time of flight platform. Proteomics 2011; 10:3577-88. [PMID: 20848674 DOI: 10.1002/pmic.201000187] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
In comparison to bottom-up proteomics approaches, whereby peptides derived from proteolytic digestion are analyzed, top-down approaches, involving direct analysis of intact proteins, provide higher specificity for protein identification and are better-suited for the characterization of sequence variants. However, top-down protein characterization usually requires more sophisticated instrumentation and methodologies to deal with the more complex tandem mass spectra derived from dissociation of high mass multiply charged intact proteins. Gas-phase ion/ion reactions are universally applicable and have proved to be useful in mixture analysis and top-down biomolecule characterization. The coupling of the ion/ion proton transfer reaction in the context of MS/MS has been demonstrated to expand informing power in top-down protein characterization, particularly with platforms that employ electrodynamic ion trap and TOF mass analysis. In addition, probing protein primary structure using ion/ion electron transfer dissociation usually provides extensive structurally informative fragmentation and also allows for the localization of labile PTMs. Here, the performance of the widely used quadrupole/TOF platform, equipped with ion/ion reaction functionality, for top-down protein characterization is summarized, and various methodologies employing ion/ion reactions are reviewed.
Collapse
Affiliation(s)
- Teng-Yi Huang
- Department of Chemistry, Purdue University, West Lafayette, IN 47907-2084, USA
| | | |
Collapse
|
25
|
Inutan ED, Richards AL, Wager-Miller J, Mackie K, McEwen CN, Trimpin S. Laserspray ionization, a new method for protein analysis directly from tissue at atmospheric pressure with ultrahigh mass resolution and electron transfer dissociation. Mol Cell Proteomics 2010; 10:M110.000760. [PMID: 20855542 PMCID: PMC3033668 DOI: 10.1074/mcp.m110.000760] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Laserspray ionization (LSI) mass spectrometry (MS) allows, for the first time, the analysis of proteins directly from tissue using high performance atmospheric pressure ionization mass spectrometers. Several abundant and numerous lower abundant protein ions with molecular masses up to ∼20,000 Da were detected as highly charged ions from delipified mouse brain tissue mounted on a common microscope slide and coated with 2,5-dihydroxyacetophenone as matrix. The ability of LSI to produce multiply charged ions by laser ablation at atmospheric pressure allowed protein analysis at 100,000 mass resolution on an Orbitrap Exactive Fourier transform mass spectrometer. A single acquisition was sufficient to identify the myelin basic protein N-terminal fragment directly from tissue using electron transfer dissociation on a linear trap quadrupole (LTQ) Velos. The high mass resolution and mass accuracy, also obtained with a single acquisition, are useful in determining protein molecular weights and from the electron transfer dissociation data in confirming database-generated sequences. Furthermore, microscopy images of the ablated areas show matrix ablation of ∼15 μm-diameter spots in this study. The results suggest that LSI-MS at atmospheric pressure potentially combines speed of analysis and imaging capability common to matrix-assisted laser desorption/ionization and soft ionization, multiple charging, improved fragmentation, and cross-section analysis common to electrospray ionization.
Collapse
Affiliation(s)
- Ellen D Inutan
- Department of Chemistry, Wayne State University, Detroit, Michigan 48202, USA
| | | | | | | | | | | |
Collapse
|
26
|
Taouatas N, Heck AJR, Mohammed S. Evaluation of Metalloendopeptidase Lys-N Protease Performance under Different Sample Handling Conditions. J Proteome Res 2010; 9:4282-8. [DOI: 10.1021/pr100341e] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Affiliation(s)
- Nadia Taouatas
- Biomolecular Mass Spectrometry and Proteomics Group, Utrecht Institute for Pharmaceutical Sciences and Bijvoet Center for Biomolecular Research, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands, and The Netherlands Proteomics Center
| | - Albert J. R. Heck
- Biomolecular Mass Spectrometry and Proteomics Group, Utrecht Institute for Pharmaceutical Sciences and Bijvoet Center for Biomolecular Research, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands, and The Netherlands Proteomics Center
| | - Shabaz Mohammed
- Biomolecular Mass Spectrometry and Proteomics Group, Utrecht Institute for Pharmaceutical Sciences and Bijvoet Center for Biomolecular Research, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands, and The Netherlands Proteomics Center
| |
Collapse
|
27
|
Rauniyar N, Prokai-Tatrai K, Prokai L. Identification of carbonylation sites in apomyoglobin after exposure to 4-hydroxy-2-nonenal by solid-phase enrichment and liquid chromatography-electrospray ionization tandem mass spectrometry. JOURNAL OF MASS SPECTROMETRY : JMS 2010; 45:398-410. [PMID: 20222068 DOI: 10.1002/jms.1725] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Identification of protein carbonylation because of covalent attachment of a lipid peroxidation end-product was performed by combining proteolytic digestion followed by solid-phase hydrazide enrichment and liquid chromatography (LC)-electrospray ionization (ESI) tandem mass spectrometry (MS/MS) using both collision-induced dissociation (CID) and electron capture dissociation (ECD). To evaluate this approach, we selected apomyoglobin and 4-hydroxy-2-nonenal (4-HNE) as a model protein and a representative end-product of lipid peroxidation, respectively. Although the characteristic elimination of 4-HNE (156 Da) in CID was found to serve as a signature tag for the modified peptides, generation of nearly complete fragment ion series because of efficient peptide backbone cleavage (in most cases over 75%) and the capability to retain the labile 4-HNE moiety of the tryptic peptides significantly aided the elucidation of primary structural information and assignment of exact carbonylation sites in the protein, when ECD was employed. We have concluded that solid-phase enrichment with both CID- and ECD-MS/MS are advantageous during an in-depth interrogation and unequivocal localization of 4-HNE-induced carbonylation of apomyoglobin that occurs via Michael addition to its histidine residues.
Collapse
Affiliation(s)
- Navin Rauniyar
- Department of Molecular Biology & Immunology, University of North Texas Health Science Center, Fort Worth, TX 76107-2699, USA
| | | | | |
Collapse
|
28
|
Huang TY, McLuckey SA. Gas-phase chemistry of multiply charged bioions in analytical mass spectrometry. ANNUAL REVIEW OF ANALYTICAL CHEMISTRY (PALO ALTO, CALIF.) 2010; 3:365-85. [PMID: 20636047 PMCID: PMC3017717 DOI: 10.1146/annurev.anchem.111808.073725] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Ion chemistry has long played an important role in molecular mass spectrometry (MS), as it is central to the use of MS as a structural characterization tool. With the advent of ionization methods capable of producing gaseous ions from large biomolecules, the chemistry of gaseous bioions has become a highly active area of research. Gas-phase biomolecule-ion reactions are usually driven by interactions with neutral molecules, photons, electrons, ions, or surfaces. Ion dissociation or transformation into different ion types can be achieved. The types of reaction products observed depend on the characteristics of the ions, the transformation methods, and the time frame of observation. This review focuses on the gas-phase chemistries of ions derived from the electrospray ionization of peptides, proteins, and oligonucleotides, with particular emphasis on their utility in bioanalysis. Various ion-transformation strategies, which further facilitate structural interrogation by converting ions from one type to another, are also summarized.
Collapse
|
29
|
Chen Y, Liu M, Yan G, Lu H, Yang P. One-pipeline approach achieving glycoprotein identification and obtaining intact glycopeptide information by tandem mass spectrometry. MOLECULAR BIOSYSTEMS 2010; 6:2417-22. [DOI: 10.1039/c0mb00024h] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
30
|
Campbell JL, Hager JW, Le Blanc JCY. On performing simultaneous electron transfer dissociation and collision-induced dissociation on multiply protonated peptides in a linear ion trap. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2009; 20:1672-1683. [PMID: 19539496 DOI: 10.1016/j.jasms.2009.05.009] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2009] [Revised: 04/09/2009] [Accepted: 05/08/2009] [Indexed: 05/27/2023]
Abstract
We propose a tandem mass spectrometry method that combines electron-transfer dissociation (ETD) with simultaneous collision-induced dissociation (CID), termed ETD/CID. This technique can provide more complete sequence coverage of peptide ions, especially those at lower charge states. A selected precursor ion is isolated and subjected to ETD. At the same time, a residual precursor ion is subjected to activation via CID. The specific residual precursor ion selected for activation will depend upon the charge state and m/z of the ETD precursor ion. Residual precursor ions, which include unreacted precursor ions and charge-reduced precursor ions (either by electron-transfer or proton transfer), are often abundant remainders in ETD-only reactions. Preliminary results demonstrate that during an ETD/CID experiment, b, y, c, and z-type ions can be produced in a single experiment and displayed in a single mass spectrum. While some peptides, especially doubly protonated ones, do not fragment well by ETD, ETD/CID alleviates this problem by acting in at least one of three ways: (1) the number of ETD fragment ions are enhanced by CID of residual precursor ions, (2) both ETD and CID-derived fragments are produced, or (3) predominantly CID-derived fragments are produced with little or no improvement in ETD-derived fragment ions. Two interesting scenarios are presented that display the flexibility of the ETD/CID method. For example, smaller peptides that show little response to ETD are fragmented preferentially by CID during the ETD/CID experiment. Conversely, larger peptides with higher charge states are fragmented primarily via ETD. Hence, ETD/CID appears to rely upon the fundamental reactivity of the analyte cations to provide the best fragmentation without implementing any additional logic or MS/MS experiments. In addition to the ETD/CID experiments, we describe a novel dual source interface for providing front-end ETD capabilities on a linear ion trap mass spectrometer.
Collapse
|
31
|
Voinov VG, Beckman JS, Deinzer ML, Barofsky DF. Electron-capture dissociation (ECD), collision-induced dissociation (CID) and ECD/CID in a linear radio-frequency-free magnetic cell. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2009; 23:3028-30. [PMID: 19685479 PMCID: PMC3057201 DOI: 10.1002/rcm.4209] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Affiliation(s)
- Valery G. Voinov
- Department of Chemistry, Oregon State University, Corvallis, OR 97331, USA
- Pacific Institute of Bioorganic Chemistry, Vladivostok 690022, Russia
- Correspondence to: V. G. Voinov, Department of Chemistry, Oregon State University, Corvallis, OR 97331, USA.
| | - Joseph S. Beckman
- Department of Chemistry, Oregon State University, Corvallis, OR 97331, USA
| | - Max L. Deinzer
- Department of Chemistry, Oregon State University, Corvallis, OR 97331, USA
| | | |
Collapse
|
32
|
Zhao Q, Soyk MW, Schieffer GM, Fuhrer K, Gonin MM, Houk RS, Badman ER. An ion trap-ion mobility-time of flight mass spectrometer with three ion sources for ion/ion reactions. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2009; 20:1549-1561. [PMID: 19493684 DOI: 10.1016/j.jasms.2009.04.014] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2009] [Revised: 04/17/2009] [Accepted: 04/17/2009] [Indexed: 05/27/2023]
Abstract
This instrument combines the capabilities of ion/ion reactions with ion mobility (IM) and time-of-flight (TOF) measurements for conformation studies and top-down analysis of large biomolecules. Ubiquitin ions from either of two electrospray ionization (ESI) sources are stored in a three dimensional (3D) ion trap (IT) and reacted with negative ions from atmospheric sampling glow discharge ionization (ASGDI). The proton transfer reaction products are then separated by IM and analyzed via a TOF mass analyzer. In this way, ubiquitin +7 ions are converted to lower charge states down to +1; the ions in lower charge states tend to be in compact conformations with cross sections down to approximately 880 A(2). The duration and magnitude of the ion ejection pulse on the IT exit and the entrance voltage on the IM drift tube can affect the measured distribution of conformers for ubiquitin +7 and +6. Alternatively, protein ions are fragmented by collision-induced dissociation (CID) in the IT, followed by ion/ion reactions to reduce the charge states of the CID product ions, thus simplifying assignment of charge states and fragments using the mobility-resolved tandem mass spectrum. Instrument characteristics and the use of a new ion trap controller and software modifications to control the entire instrument are described.
Collapse
Affiliation(s)
- Qin Zhao
- Department of Chemistry, Iowa State University, Ames, Iowa, USA
| | | | | | | | | | | | | |
Collapse
|
33
|
Abstract
How dissociation is effected determines the upstream sample handling whereas the spectral features it produces regulate the downstream informatics approach. (To listen to a podcast about this feature, please go to the Analytical Chemistry website at pubs.acs.org/journal/ancham.
Collapse
Affiliation(s)
- Joshua J Coon
- University of Wisconsin Madison, 1101 University Ave., Madison, WI 53706, USA.
| |
Collapse
|
34
|
Liu J, Huang TY, McLuckey SA. Top-down protein identification/characterization of a priori unknown proteins via ion trap collision-induced dissociation and ion/ion reactions in a quadrupole/time-of-flight tandem mass spectrometer. Anal Chem 2009; 81:1433-41. [PMID: 19199571 DOI: 10.1021/ac802204j] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The identification and characterization of a priori unknown proteins from an Escherichia coli (E. coli) soluble protein lysate using ion trap collision-induced dissociation of intact protein ions followed by ion/ion reactions in a quadrupole/time-of-flight tandem mass spectrometer is illustrated. The procedure involved the submission of uninterpreted product ion spectra to a peak-picking program and then to ProSightPTM for searching against an E. coli database. Examples are provided for the identification and characterization of both modified and unmodified unknown proteins with masses up to approximately 28 kDa. The availability of protein intact mass along with sequence information makes possible the characterization of proteins with post-translational modifications, such as disulfide linkages, as well as protein isoforms whose sequences are absent from a database, provided that a related form of the gene product is present in the database. This work demonstrates that the quadrupole/time-of-flight platform, in conjunction with ion-ion proton transfer reactions, can be adapted to obtain primary structure information from entire protein ions, rather than simply N- or C-terminal information from low mass-to-charge products, for proteins as large as several tens of kilodaltons.
Collapse
Affiliation(s)
- Jian Liu
- Department of Chemistry, Purdue University, 560 Oval Drive, West Lafayette, Indiana 47907-2084, USA
| | | | | |
Collapse
|
35
|
Rauniyar N, Stevens SM, Prokai-Tatrai K, Prokai L. Characterization of 4-hydroxy-2-nonenal-modified peptides by liquid chromatography-tandem mass spectrometry using data-dependent acquisition: neutral loss-driven MS3 versus neutral loss-driven electron capture dissociation. Anal Chem 2009; 81:782-9. [PMID: 19072288 DOI: 10.1021/ac802015m] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Reactive oxygen species generated during oxidative stress can lead to unfavorable cellular consequences, predominantly due to formation of 4-hydroxy-2-nonenal (HNE) during lipid peroxidation. Data-dependent and neutral loss (NL)-driven MS(3) acquisition have been reported for the identification of HNE adducts by mass spectrometry-based proteomics. However, the limitation associated with this method is the ambiguity in correct assignment of the HNE modification site when more than one candidate site is present as MS(3) is triggered on the neutral loss ion. We introduce NL-triggered electron capture dissociation tandem mass spectrometry (NL-ECD-MS/MS) for the characterization of HNE-modification sites in peptides. With this method performed using a hybrid linear ion trap-Fourier transform ion cyclotron resonance (FTICR) mass spectrometer, ECD in the FTICR unit of the instrument is initiated on precursor ions of peptides showing the neutral loss of 156 Da corresponding to an HNE molecule in the prescan acquired via collision-induced dissociation tandem mass spectrometry in the linear ion trap. In addition to manifold advantages associated with the ECD method of backbone fragmentation, including extensive sequence fragments, ECD tends to retain the HNE group during MS/MS of the precursor ion, facilitating the correct localization of the modification site. The results also suggest that predisposition of a peptide molecular ion to lose HNE during collision-induced dissociation-based fragmentation is independent of its charge state (2+ or 3+). In addition, we have demonstrated that coupling of solid-phase enrichment of HNE-modified peptides facilitates the detection of this posttranslational modification by NL-driven strategies for low-abundance proteins that are susceptible to substoichiometric carbonylation during oxidative stress.
Collapse
Affiliation(s)
- Navin Rauniyar
- Department of Molecular Biology & Immunology, University of North Texas Health Science Center, 3500 Camp Bowie Boulevard, Fort Worth, Texas 76107, USA
| | | | | | | |
Collapse
|
36
|
Han H, Londry FA, Erickson DE, McLuckey SA. Tailored-waveform collisional activation of peptide ion electron transfer survivor ions in cation transmission mode ion/ion reaction experiments. Analyst 2009; 134:681-9. [PMID: 19305916 DOI: 10.1039/b821348h] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Broadband resonance excitation via a tailored waveform in a high pressure collision cell (Q2) on a hybrid quadrupole/time-of-flight (QqTOF) tandem mass spectrometer has been implemented for cation transmission mode electron transfer ion/ion reactions of tryptic polypeptides. The frequency components in the broadband waveform were defined to excite the first generation intact electron transfer products for relatively large tryptic peptides. The optimum amplitude of the arbitrary waveform applied has been determined empirically to be 3.0 V(p-p), which is effective for relatively high mass-to-charge (m/z) ratio precursor ions with little elimination of sequence information for low m/z ions. The application of broadband activation during the transmission mode ion/ion reaction obviates frequency and amplitude tuning normally associated with ion trap collision induced dissociation (CID). This approach has been demonstrated with triply and doubly charged tryptic peptides with and without post-translational modifications. Enhanced structural information was achieved by production of a larger number of informative c- and z-type fragments using the tailored waveform on unmodified and modified (phosphorylated and glycosylated) peptides when the first generation intact electron transfer products fell into the defined frequency range. This approach can be applied to a wide range of tryptic peptide ions, making it attractive as a rapid and general approach for ETD LC-MS/MS of tryptic peptides in a QqTOF instrument.
Collapse
Affiliation(s)
- Hongling Han
- Department of Chemistry, Purdue University, West Lafayette, IN 47907-2084, USA
| | | | | | | |
Collapse
|
37
|
Wu SL, Jiang H, Lu Q, Dai S, Hancock WS, Karger BL. Mass spectrometric determination of disulfide linkages in recombinant therapeutic proteins using online LC-MS with electron-transfer dissociation. Anal Chem 2009; 81:112-22. [PMID: 19117448 PMCID: PMC2645030 DOI: 10.1021/ac801560k] [Citation(s) in RCA: 97] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
In the biotechnology industry, the generation of incorrectly folded recombinant proteins, either from an E.coli expression system or from an overexpressed CHO cell line (disulfide scrambling), is often a great concern as such incorrectly folded forms may not be completely removed in the final product. Thus, significant efforts have been devoted to map disulfide bonds to ensure drug quality. Similar to ECD, disulfide bond cleavages are preferred over peptide backbone fragmentation in ETD. Thus, an online LC-MS strategy combining collision-induced dissociation (CID-MS(2)), electron-transfer dissociation (ETD-MS(2)), and CID of an isolated product ion derived from ETD (MS(3)) has been used to characterize disulfide-linked peptides. Disulfide-linked peptide ions were identified by CID and ETD fragmentation, and the disulfide-dissociated (or partially dissociated) peptide ions were characterized in the subsequent MS(3) step. The online LC-MS approach is successfully demonstrated in the characterization of disulfide linkages of recombinant human growth hormone (Nutropin), a therapeutic monoclonal antibody, and tissue plasminogen activator (Activase). The characterization of disulfide-dissociated or partially dissociated peptide ions in the MS(3) step is important to assign the disulfide linkages, particularly, for intertwined disulfide bridges and the unexpected disulfide scrambling of tissue plasminogen activator. The disulfide-dissociated peptide ions are shown to be obtained either directly from the ETD fragmentation of the precursors (disulfide-linked peptide ions) or indirectly from the charge-reduced species in the ETD fragmentation of the precursors. The simultaneous observation of disulfide-linked and disulfide-dissociated peptide ions with high abundance not only provided facile interpretation with high confidence but also simplified the conventional approach for determination of disulfide linkages, which often requires two separate experiments (with and without chemical reduction). The online LC-MS with ETD methodology represents a powerful approach to aid in the characterization of the correct folding of therapeutic proteins.
Collapse
Affiliation(s)
- Shiaw-Lin Wu
- Barnett Institute and Department of Chemistry and Chemical Biology, Northeastern University, Boston, MA 02115
| | - Haitao Jiang
- Barnett Institute and Department of Chemistry and Chemical Biology, Northeastern University, Boston, MA 02115
| | - Qiaozhen Lu
- Barnett Institute and Department of Chemistry and Chemical Biology, Northeastern University, Boston, MA 02115
| | - Shujia Dai
- Barnett Institute and Department of Chemistry and Chemical Biology, Northeastern University, Boston, MA 02115
| | - William S. Hancock
- Barnett Institute and Department of Chemistry and Chemical Biology, Northeastern University, Boston, MA 02115
| | - Barry L. Karger
- Barnett Institute and Department of Chemistry and Chemical Biology, Northeastern University, Boston, MA 02115
| |
Collapse
|