1
|
Nagy Á, Ulmert D, Zedan W, Storey CM, Park J, Geres S, Lückerath K, Sjöström K, Westin H, Peekhaus N, Thorek DL, Karlström AE, Altai M. Impact of site-specific conjugation strategies on the pharmacokinetics of antibody conjugated radiotherapeutics. Eur J Med Chem 2024; 280:116927. [PMID: 39378827 DOI: 10.1016/j.ejmech.2024.116927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 09/21/2024] [Accepted: 09/29/2024] [Indexed: 10/10/2024]
Abstract
Antibody radionuclide conjugates are an emerging modality for targeted imaging and potent therapy of disseminated disease. Coupling of radionuclides to monoclonal antibodies (mAbs) is typically achieved by applying non-site-specific labelling techniques. With the ambition of reducing variability, increasing labelling efficacy and stability, several site-specific conjugation strategies have been developed in recent years for toxin- and fluorophore-mAb conjugates. In this study, we studied two site-specific labelling strategies for the conjugation of the macrocyclic chelating agent, DOTA, to the anti-Leucine Rich Repeat Containing 15 (LRRC15) mAb DUNP19. Specifically, one approach utilized a DOTA-bearing peptide (FcIII) with a strong affinity for the fragment crystallizable (Fc) domain of the human IgG1 of DUNP19 (DUNP19LF-FcIII-DOTASS), while the other leveraged a chemo-enzymatic technique to substitute the N-linked bi-antennary oligosaccharides in the human IgG1 Fc domain with DOTA (DUNP19LF-gly-DOTASS). To assess if these methods impact the antibody's binding properties and targeting efficacy, comparative in vitro and in vivo studies of the generated DUNP19-conjugates were performed. While the LRRC15 binding of both radioimmunoconjugates remained intact, the conjugation methods had different impacts on their abilities to interact with FcRn and FcγRs. In vitro assessments of DUNP19LF-FcIII-DOTASS and DUNP19LF-gly-DOTASS demonstrated markedly decreased affinity for FcRn and FcγRIIIa (CD16), respectively. DUNP19LF-FcIII-DOTASS demonstrated increased blood and tissue kinetics in vivo, confirming loss of FcRn binding. While the ablated FcγR interaction of DUNP19LF-gly-DOTASS had no immediate impact on in vivo biodistribution, reduced immunotherapeutic effect can be expected in future studies as a result of reduced NK-cells interaction. In conclusion, our findings underscore the necessity for meticulous consideration and evaluation of mAb labelling strategies, extending beyond mere conjugation efficiency and radiolabeling yields. Notably, site-specific labelling methods were found to significantly influence the immunological impact of Fc interactions. Therefore, it is of paramount importance to consider the intended diagnostic or therapeutic application of the construct and to adopt conjugation strategies that ensure the preservation of critical pharmacological properties and functionality of the antibody in use.
Collapse
Affiliation(s)
- Ábel Nagy
- Department of Protein Science, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, AlbaNova University Center, Stockholm, Sweden
| | - David Ulmert
- Division of Oncology and Pathology, Department of Clinical Sciences, Lund University, Lund, Sweden; Department of Molecular & Medical Pharmacology, University of California Los Angeles (UCLA), Los Angeles, CA, USA; Lund University Cancer Centre (LUCC), Lund University, Lund, Sweden
| | - Wahed Zedan
- Division of Oncology and Pathology, Department of Clinical Sciences, Lund University, Lund, Sweden
| | - Claire M Storey
- Department of Molecular & Medical Pharmacology, University of California Los Angeles (UCLA), Los Angeles, CA, USA
| | - Julie Park
- Department of Molecular & Medical Pharmacology, University of California Los Angeles (UCLA), Los Angeles, CA, USA
| | - Susanne Geres
- Division of Oncology and Pathology, Department of Clinical Sciences, Lund University, Lund, Sweden
| | - Katharina Lückerath
- Department of Nuclear Medicine, University Hospital Essen, University of Duisburg-Essen, DKTK, Essen, Germany
| | | | | | - Norbert Peekhaus
- Department of Molecular & Medical Pharmacology, University of California Los Angeles (UCLA), Los Angeles, CA, USA
| | - Daniel Lj Thorek
- Department of Radiology, Washington University School of Medicine, St. Louis, Missouri, USA; Department of Biomedical Engineering, Washington University, St. Louis, Missouri, USA; Oncologic Imaging Program, Siteman Cancer Center, St. Louis, Missouri, USA
| | - Amelie Eriksson Karlström
- Department of Protein Science, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, AlbaNova University Center, Stockholm, Sweden
| | - Mohamed Altai
- Division of Oncology and Pathology, Department of Clinical Sciences, Lund University, Lund, Sweden; Lund University Cancer Centre (LUCC), Lund University, Lund, Sweden.
| |
Collapse
|
2
|
Du Y, Xu CM, Zhang YM, Pan ZX, Wang FS, Yang HM, Tang JB. Fabrication of cysteine-modified antibodies with Fc-specific conjugation for covalent and oriented immobilization of native antibodies. Int J Biol Macromol 2024; 276:133962. [PMID: 39029833 DOI: 10.1016/j.ijbiomac.2024.133962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 07/02/2024] [Accepted: 07/16/2024] [Indexed: 07/21/2024]
Abstract
Covalent and oriented immobilization of antibodies (Abs) can substantially improve the sensitivity and stability of solid-phase immunoassays. By modifying the natural Abs with functional groups that provide unique handles for further conjugation, Abs could be immobilized onto the solid matrices with uniform orientation. Herein, an effective approach for Fc-specific modification of Abs was developed for the oriented and covalent immobilization of Abs. Twelve photoreactive Z-domain variants, incorporated with a photoactivable probe (p-benzoyl-L-phenylalanine, Bpa) at different positions and carrying a C-terminal Cys-tag (i.e. ZBpa-Cys variants), were individually constructed and produced in Escherichia coli and tested for photo-cross-linking to various IgGs. The different ZBpa-Cys variants demonstrated large differences in photo-conjugation efficiency for the tested IgGs. The conjugation efficiencies of 17thZBpa-Cys ranged from 90 % to nearly 100 % for rabbit IgG and mouse IgG2a, IgG2b and IgG3. Other variants, including 5thZBpa-Cys, 18thZBpa-Cys, 32thZBpa-Cys, and 35thZBpa-Cys, also displayed conjugation efficiencies of 61 %-83 % for mouse IgG1, IgG2a and IgG3. Subsequently, the photo-modified Abs, namely IgG-Cys conjugates, were covalently immobilized onto a maleimide group-functionalized solid-phase carrier on the basis of the reaction of sulfhydryl and maleimide. Thus, a generic platform for the controlled and oriented immobilization of Abs was developed, and the efficacy and potential of the proposed approach for sensitive immunoassays was demonstrated by detecting human α-fetoprotein.
Collapse
Affiliation(s)
- Yue Du
- Department of Biochemical Drugs, School of Pharmacy, Shandong Second Medical University, Weifang, 261053, Shandong, China
| | - Chong-Mei Xu
- Department of Biochemical Drugs, School of Pharmacy, Shandong Second Medical University, Weifang, 261053, Shandong, China
| | - Yu-Min Zhang
- Department of Biochemical Drugs, School of Pharmacy, Shandong Second Medical University, Weifang, 261053, Shandong, China
| | - Zheng-Xuan Pan
- Department of Biochemical Drugs, School of Pharmacy, Shandong Second Medical University, Weifang, 261053, Shandong, China
| | - Feng-Shan Wang
- Key Laboratory of Chemical Biology (Ministry of Education), Institute of Biochemical and Biotechnological Drugs, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, China
| | - Hong-Ming Yang
- Department of Biochemical Drugs, School of Pharmacy, Shandong Second Medical University, Weifang, 261053, Shandong, China.
| | - Jin-Bao Tang
- Department of Biochemical Drugs, School of Pharmacy, Shandong Second Medical University, Weifang, 261053, Shandong, China.
| |
Collapse
|
3
|
Nishioka R, Iida R, Minamihata K, Sato R, Kimura M, Kamiya N. Transglutaminase-mediated proximity labeling of a specific Lys residue in a native IgG antibody. Chem Commun (Camb) 2024; 60:8545-8548. [PMID: 39041238 DOI: 10.1039/d4cc01728e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/24/2024]
Abstract
The fusion protein of an engineered zymogen of microbial transglutaminase (EzMTG) with a protein G variant, EzMTG-pG, enabled the proximity-based, tag-free labeling of Lys65 in the heavy chain of a native IgG antibody (trastuzumab) with a Gln-donor peptidyl substrate functionalized with a fluorescent molecule.
Collapse
Affiliation(s)
- Riko Nishioka
- Department of Applied Chemistry, Graduate School of Engineering, Kyushu University, 744 Motooka, Fukuoka 819-0395, Japan.
| | - Ryuya Iida
- Department of Applied Chemistry, Graduate School of Engineering, Kyushu University, 744 Motooka, Fukuoka 819-0395, Japan.
| | - Kosuke Minamihata
- Department of Applied Chemistry, Graduate School of Engineering, Kyushu University, 744 Motooka, Fukuoka 819-0395, Japan.
| | - Ryo Sato
- Department of Applied Chemistry, Graduate School of Engineering, Kyushu University, 744 Motooka, Fukuoka 819-0395, Japan.
| | - Michio Kimura
- Department of Applied Chemistry, Graduate School of Engineering, Kyushu University, 744 Motooka, Fukuoka 819-0395, Japan.
| | - Noriho Kamiya
- Department of Applied Chemistry, Graduate School of Engineering, Kyushu University, 744 Motooka, Fukuoka 819-0395, Japan.
- Division of Biotechnology, Center for Future Chemistry, Kyushu University, 744 Motooka, Fukuoka 819-0395, Japan
| |
Collapse
|
4
|
Chis AA, Dobrea CM, Arseniu AM, Frum A, Rus LL, Cormos G, Georgescu C, Morgovan C, Butuca A, Gligor FG, Vonica-Tincu AL. Antibody-Drug Conjugates-Evolution and Perspectives. Int J Mol Sci 2024; 25:6969. [PMID: 39000079 PMCID: PMC11241239 DOI: 10.3390/ijms25136969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 06/21/2024] [Accepted: 06/22/2024] [Indexed: 07/16/2024] Open
Abstract
Antineoplastic therapy is one of the main research themes of this century. Modern approaches have been implemented to target and heighten the effect of cytostatic drugs on tumors and diminish their general/unspecific toxicity. In this context, antibody-drug conjugates (ADCs) represent a promising and successful strategy. The aim of this review was to assess different aspects regarding ADCs. They were presented from a chemical and a pharmacological perspective and aspects like structure, conjugation and development particularities alongside effects, clinical trials, safety issues and perspectives and challenges for future use of these drugs were discussed. Representative examples include but are not limited to the following main structural components of ADCs: monoclonal antibodies (trastuzumab, brentuximab), linkers (pH-sensitive, reduction-sensitive, peptide-based, phosphate-based, and others), and payloads (doxorubicin, emtansine, ravtansine, calicheamicin). Regarding pharmacotherapy success, the high effectiveness expectation associated with ADC treatment is supported by the large number of ongoing clinical trials. Major aspects such as development strategies are first discussed, advantages and disadvantages, safety and efficacy, offering a retrospective insight on the subject. The second part of the review is prospective, focusing on various plans to overcome the previously identified difficulties.
Collapse
Affiliation(s)
| | | | - Anca Maria Arseniu
- Faculty of Medicine, "Lucian Blaga" University of Sibiu, 550169 Sibiu, Romania
| | - Adina Frum
- Faculty of Medicine, "Lucian Blaga" University of Sibiu, 550169 Sibiu, Romania
| | - Luca-Liviu Rus
- Faculty of Medicine, "Lucian Blaga" University of Sibiu, 550169 Sibiu, Romania
| | - Gabriela Cormos
- Faculty of Medicine, "Lucian Blaga" University of Sibiu, 550169 Sibiu, Romania
| | - Cecilia Georgescu
- Faculty of Agriculture Science, Food Industry and Environmental Protection, "Lucian Blaga" University of Sibiu, 550012 Sibiu, Romania
| | - Claudiu Morgovan
- Faculty of Medicine, "Lucian Blaga" University of Sibiu, 550169 Sibiu, Romania
| | - Anca Butuca
- Faculty of Medicine, "Lucian Blaga" University of Sibiu, 550169 Sibiu, Romania
| | | | | |
Collapse
|
5
|
Fang J, Liu Q, Liu Y, Li K, Qiu L, Xi H, Cai S, Zou P, Lin J. β-Galactosidase-Activated and Red Light-Induced RNA Modification Strategy for Prolonged NIR Fluorescence/PET Bimodality Imaging. Anal Chem 2024; 96:1707-1716. [PMID: 38241523 DOI: 10.1021/acs.analchem.3c04845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2024]
Abstract
Improving the retention of small-molecule-based therapeutic agents in tumors is crucial to achieve precise diagnosis and effective therapy of cancer. Herein, we propose a β-galactosidase (β-Gal)-activated and red light-induced RNA modification (GALIRM) strategy for prolonged tumor imaging. A β-Gal-activatable near-infrared (NIR) fluorescence (FL) and positron emission tomography (PET) bimodal probe 68Ga-NOTA-FCG consists of a triaaza triacetic acid chelator NOTA for 68Ga-labeling, a β-Gal-activated photosensitizer CyGal, and a singlet oxygen (1O2)-susceptible furan group for RNA modification. Studies have demonstrated that the probe emits an activated NIR FL signal upon cleavage by endogenous β-Gal overexpressed in the lysosomes, which is combined with the PET imaging signal of 68Ga allowing for highly sensitive imaging of ovarian cancer. Moreover, the capability of 68Ga-NOTA-FCG generating 1O2 under 690 nm illumination could be simultaneously unlocked, which can trigger the covalent cross-linking between furan and nucleotides of cytoplasmic RNAs. The formation of the probe-RNA conjugate can effectively prevent exocytosis and prolong retention of the probe in tumors. We thus believe that this GALIRM strategy may provide entirely new insights into long-term tumor imaging and efficient tumor treatment.
Collapse
Affiliation(s)
- Jing Fang
- NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi, Jiangsu 214063, China
| | - Qingzhu Liu
- NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi, Jiangsu 214063, China
| | - Yaling Liu
- NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi, Jiangsu 214063, China
| | - Ke Li
- NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi, Jiangsu 214063, China
| | - Ling Qiu
- NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi, Jiangsu 214063, China
- Department of Radiopharmaceuticals, School of Pharmacy, Nanjing Medical University, Nanjing 211166, China
| | - Hongjie Xi
- NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi, Jiangsu 214063, China
- Department of Radiopharmaceuticals, School of Pharmacy, Nanjing Medical University, Nanjing 211166, China
| | - Shuyue Cai
- NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi, Jiangsu 214063, China
- Department of Radiopharmaceuticals, School of Pharmacy, Nanjing Medical University, Nanjing 211166, China
| | - Pei Zou
- NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi, Jiangsu 214063, China
| | - Jianguo Lin
- NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi, Jiangsu 214063, China
- Department of Radiopharmaceuticals, School of Pharmacy, Nanjing Medical University, Nanjing 211166, China
| |
Collapse
|
6
|
Kim S, Kim S, Kim S, Kim N, Lee SW, Yi H, Lee S, Sim T, Kwon Y, Lee HS. Affinity-Directed Site-Specific Protein Labeling and Its Application to Antibody-Drug Conjugates. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2306401. [PMID: 38032124 PMCID: PMC10811483 DOI: 10.1002/advs.202306401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 11/05/2023] [Indexed: 12/01/2023]
Abstract
Chemically modified proteins have diverse applications; however, conventional chemo-selective methods often yield heterogeneously labeled products. To address this limitation, site-specific protein labeling holds significant potential, driving extensive research in this area. Nevertheless, site-specific modification of native proteins remains challenging owing to the complexity of their functional groups. Therefore, a method for site-selective labeling of intact proteins is aimed to design. In this study, a novel approach to traceless affinity-directed intact protein labeling is established, which leverages small binding proteins and genetic code expansion technology. By applying this method, a site-specific antibody labeling with a drug, which leads to the production of highly effective antibody-drug conjugates specifically targeting breast cancer cell lines is achieved. This approach enables traceless conjugation of intact target proteins, which is a critical advantage in pharmaceutical applications. Furthermore, small helical binding proteins can be easily engineered for various target proteins, thereby expanding their potential applications in diverse fields. This innovative approach represents a significant advancement in site-specific modification of native proteins, including antibodies. It also bears immense potential for facilitating the development of therapeutic agents for various diseases.
Collapse
Affiliation(s)
- Sooin Kim
- Department of ChemistrySogang University35 Baekbeom‐ro, Mapo‐guSeoul04107Republic of Korea
| | - Sanggil Kim
- New Drug Development CenterOsong Medical Innovation Foundation123 Osongsaengmyeong‐ro, Heungdeok‐guCheongjuChungbuk28160Republic of Korea
| | - Sangji Kim
- School of PharmacySungkyunkwan University2066 Seobu‐ro, Jangan‐guSuwon16419Republic of Korea
| | - Namkyoung Kim
- Department of Biomedical SciencesGraduate School of Medical ScienceBrain Korea 21 ProjectYonsei University College of Medicine50 Yonsei‐ro, Seodaemun‐guSeoul03722Republic of Korea
| | - Sang Won Lee
- Department of ChemistrySogang University35 Baekbeom‐ro, Mapo‐guSeoul04107Republic of Korea
| | - Hanbin Yi
- Department of ChemistrySogang University35 Baekbeom‐ro, Mapo‐guSeoul04107Republic of Korea
| | - Seungeun Lee
- Department of ChemistrySogang University35 Baekbeom‐ro, Mapo‐guSeoul04107Republic of Korea
| | - Taebo Sim
- Department of Biomedical SciencesGraduate School of Medical ScienceBrain Korea 21 ProjectYonsei University College of Medicine50 Yonsei‐ro, Seodaemun‐guSeoul03722Republic of Korea
| | - Yongseok Kwon
- School of PharmacySungkyunkwan University2066 Seobu‐ro, Jangan‐guSuwon16419Republic of Korea
| | - Hyun Soo Lee
- Department of ChemistrySogang University35 Baekbeom‐ro, Mapo‐guSeoul04107Republic of Korea
| |
Collapse
|
7
|
Qian L, Lin X, Gao X, Khan RU, Liao JY, Du S, Ge J, Zeng S, Yao SQ. The Dawn of a New Era: Targeting the "Undruggables" with Antibody-Based Therapeutics. Chem Rev 2023. [PMID: 37186942 DOI: 10.1021/acs.chemrev.2c00915] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
The high selectivity and affinity of antibodies toward their antigens have made them a highly valuable tool in disease therapy, diagnosis, and basic research. A plethora of chemical and genetic approaches have been devised to make antibodies accessible to more "undruggable" targets and equipped with new functions of illustrating or regulating biological processes more precisely. In this Review, in addition to introducing how naked antibodies and various antibody conjugates (such as antibody-drug conjugates, antibody-oligonucleotide conjugates, antibody-enzyme conjugates, etc.) work in therapeutic applications, special attention has been paid to how chemistry tools have helped to optimize the therapeutic outcome (i.e., with enhanced efficacy and reduced side effects) or facilitate the multifunctionalization of antibodies, with a focus on emerging fields such as targeted protein degradation, real-time live-cell imaging, catalytic labeling or decaging with spatiotemporal control as well as the engagement of antibodies inside cells. With advances in modern chemistry and biotechnology, well-designed antibodies and their derivatives via size miniaturization or multifunctionalization together with efficient delivery systems have emerged, which have gradually improved our understanding of important biological processes and paved the way to pursue novel targets for potential treatments of various diseases.
Collapse
Affiliation(s)
- Linghui Qian
- Institute of Drug Metabolism and Pharmaceutical Analysis, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Cancer Center, & Hangzhou Institute of Innovative Medicine, Zhejiang University, Hangzhou 310058, China
| | - Xuefen Lin
- Institute of Drug Metabolism and Pharmaceutical Analysis, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Cancer Center, & Hangzhou Institute of Innovative Medicine, Zhejiang University, Hangzhou 310058, China
| | - Xue Gao
- Institute of Drug Metabolism and Pharmaceutical Analysis, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Cancer Center, & Hangzhou Institute of Innovative Medicine, Zhejiang University, Hangzhou 310058, China
| | - Rizwan Ullah Khan
- Institute of Drug Metabolism and Pharmaceutical Analysis, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Cancer Center, & Hangzhou Institute of Innovative Medicine, Zhejiang University, Hangzhou 310058, China
| | - Jia-Yu Liao
- Institute of Drug Metabolism and Pharmaceutical Analysis, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Cancer Center, & Hangzhou Institute of Innovative Medicine, Zhejiang University, Hangzhou 310058, China
| | - Shubo Du
- School of Bioengineering, Dalian University of Technology, Dalian 116024, China
| | - Jingyan Ge
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Su Zeng
- Institute of Drug Metabolism and Pharmaceutical Analysis, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Cancer Center, & Hangzhou Institute of Innovative Medicine, Zhejiang University, Hangzhou 310058, China
| | - Shao Q Yao
- Department of Chemistry, National University of Singapore, 4 Science Drive 2, Singapore, 117544
| |
Collapse
|
8
|
Kim HJ, Park D, Park Y, Kim DH, Kim J. Electric-Field-Mediated In-Sensor Alignment of Antibody's Orientation to Enhance the Antibody-Antigen Binding for Ultrahigh Sensitivity Sensors. NANO LETTERS 2022; 22:6537-6544. [PMID: 35900218 DOI: 10.1021/acs.nanolett.2c01584] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Applying an electric-field (E-field) during antibody immobilization aligns the orientation of the antibody on the biosensor surface, thereby enhancing the binding probability between the antibody and antigen and maximizing the sensitivity of the biosensor. In this study, a biosensor with enhanced antibody-antigen binding probability was developed using the alignment of polar antibodies (immunoglobulin G [IgG]) under an E-field applied inside the interdigitated electrodes. The optimal alignment condition was first theoretically calculated and then experimentally confirmed by comparing the impedance change before and after the alignment of IgG (a purified anti-β-amyloid antibody). With the optimized condition, the impedance change of the biosensor was maximized because of the alignment of IgG orientation on the sensor surface; the detection sensitivity of the antigen amyloid-beta 1-42 was also maximized. The E-field-based in-sensor alignment of antibodies is an easy and effective method for enhancing biosensor sensitivity.
Collapse
Affiliation(s)
- Hye Jin Kim
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea
- Institute of Chemical Processes (ICP), Seoul National University, Seoul 08826, Republic of Korea
| | - Dongsung Park
- Department of Clinical Pharmacology and Therapeutics, College of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Yejin Park
- Department of Medical Biotechnology, College of Life Science and Biotechnology, Dongguk University, Seoul 04620, Republic of Korea
| | - Dae-Hyeong Kim
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea
- Department of Materials Science and Engineering, Seoul National University, Seoul 08826, Republic of Korea
| | - Jinsik Kim
- Department of Medical Biotechnology, College of Life Science and Biotechnology, Dongguk University, Seoul 04620, Republic of Korea
| |
Collapse
|
9
|
Jeon CH, Ha TH. Covalent and Oriented Immobilization of Antibodies through Systematic Modification of Photoactivatable RNA Hybrid Aptamers. Bioconjug Chem 2022; 33:1527-1535. [DOI: 10.1021/acs.bioconjchem.2c00274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Chang Hoon Jeon
- Core Research Facility & Analysis Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, South Korea
| | - Tai Hwan Ha
- Core Research Facility & Analysis Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, South Korea
- Department of Nanobiotechnology, KRIBB School of Biotechnology, Korea University of Science and Technology (UST), Daejeon 34113, South Korea
| |
Collapse
|
10
|
Postupalenko V, Marx L, Viertl D, Gsponer N, Gasilova N, Denoel T, Schaefer N, Prior JO, Hagens G, Lévy F, Garrouste P, Segura JM, Nyanguile O. Template directed synthesis of antibody Fc conjugates with concomitant ligand release. Chem Sci 2022; 13:3965-3976. [PMID: 35440989 PMCID: PMC8985508 DOI: 10.1039/d1sc06182h] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Accepted: 02/16/2022] [Indexed: 11/29/2022] Open
Abstract
Antibodies are an attractive therapeutic modality for cancer treatment as they allow the increase of the treatment response rate and avoid the severe side effects of chemotherapy. Notwithstanding the strong benefit of antibodies, the efficacy of anti-cancer antibodies can dramatically vary among patients and ultimately result in no response to the treatment. Here, we have developed a novel means to regioselectively label the Fc domain of any therapeutic antibody with a radionuclide chelator in a single step chemistry, with the aim to study by SPECT/CT imaging if the radiolabeled antibody is capable of targeting cancer cells in vivo. A Fc-III peptide was used as bait to bring a carbonate electrophilic site linked to a metal chelator and to a carboxyphenyl leaving group in close proximity with an antibody Fc nucleophile amino acid (K317), thereby triggering the covalent linkage of the chelator to the antibody lysine, with the concomitant release of the carboxyphenyl Fc-III ligand. Using CHX-A''-DTPA, we radiolabeled trastuzumab with indium-111 and showed in biodistribution and imaging experiments that the antibody accumulated successfully in the SK-OV-3 xenograft tumour implanted in mice. We found that our methodology leads to homogeneous conjugation of CHX-A''-DTPA to the antibody, and confirmed that the Fc domain can be selectively labeled at K317, with a minor level of unspecific labeling on the Fab domain. The present method can be developed as a clinical diagnostic tool to predict the success of the therapy. Furthermore, our Fc-III one step chemistry concept paves the way to a broad array of other applications in antibody bioengineering.
Collapse
Affiliation(s)
- Viktoriia Postupalenko
- Institute of Life Technologies, HES-SO Valais-Wallis Rue de l'Industrie 23 CH-1950 Sion Switzerland
| | - Léo Marx
- Debiopharm Research & Manufacturing SA, Campus "après-demain" Rue du Levant 146 1920 Martigny Switzerland
| | - David Viertl
- Department of Nuclear Medicine and Molecular Imaging, Lausanne University Hospital CH-1011 Lausanne Switzerland
- In Vivo Imaging Facility, Department of Research and Training, University of Lausanne CH-1011 Lausanne Switzerland
| | - Nadège Gsponer
- Institute of Life Technologies, HES-SO Valais-Wallis Rue de l'Industrie 23 CH-1950 Sion Switzerland
| | - Natalia Gasilova
- EPFL Valais Wallis, MSEAP, ISIC-GE-VS rue de l'Industrie 17 1951 Sion Switzerland
| | - Thibaut Denoel
- Department of Nuclear Medicine and Molecular Imaging, Lausanne University Hospital CH-1011 Lausanne Switzerland
| | - Niklaus Schaefer
- Department of Nuclear Medicine and Molecular Imaging, Lausanne University Hospital CH-1011 Lausanne Switzerland
| | - John O Prior
- Department of Nuclear Medicine and Molecular Imaging, Lausanne University Hospital CH-1011 Lausanne Switzerland
| | - Gerrit Hagens
- Institute of Life Technologies, HES-SO Valais-Wallis Rue de l'Industrie 23 CH-1950 Sion Switzerland
| | - Frédéric Lévy
- Debiopharm International SA, Forum "après-demain" Chemin Messidor 5-7 Case postale 5911 1002 Lausanne Switzerland
| | - Patrick Garrouste
- Debiopharm Research & Manufacturing SA, Campus "après-demain" Rue du Levant 146 1920 Martigny Switzerland
| | - Jean-Manuel Segura
- Institute of Life Technologies, HES-SO Valais-Wallis Rue de l'Industrie 23 CH-1950 Sion Switzerland
| | - Origène Nyanguile
- Institute of Life Technologies, HES-SO Valais-Wallis Rue de l'Industrie 23 CH-1950 Sion Switzerland
| |
Collapse
|
11
|
Earley D, Guillou A, Klingler S, Fay R, Gut M, d’Orchymont F, Behmaneshfar S, Reichert L, Holland JP. Charting the Chemical and Mechanistic Scope of Light-Triggered Protein Ligation. JACS AU 2022; 2:646-664. [PMID: 35373206 PMCID: PMC8970001 DOI: 10.1021/jacsau.1c00530] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Indexed: 05/04/2023]
Abstract
The creation of discrete, covalent bonds between a protein and a functional molecule like a drug, fluorophore, or radiolabeled complex is essential for making state-of-the-art tools that find applications in basic science and clinical medicine. Photochemistry offers a unique set of reactive groups that hold potential for the synthesis of protein conjugates. Previous studies have demonstrated that photoactivatable desferrioxamine B (DFO) derivatives featuring a para-substituted aryl azide (ArN3) can be used to produce viable zirconium-89-radiolabeled monoclonal antibodies (89Zr-mAbs) for applications in noninvasive diagnostic positron emission tomography (PET) imaging of cancers. Here, we report on the synthesis, 89Zr-radiochemistry, and light-triggered photoradiosynthesis of 89Zr-labeled human serum albumin (HSA) using a series of 14 different photoactivatable DFO derivatives. The photoactive groups explore a range of substituted, and isomeric ArN3 reagents, as well as derivatives of benzophenone, a para-substituted trifluoromethyl phenyl diazirine, and a tetrazole species. For the compounds studied, efficient photochemical activation occurs inside the UVA-to-visible region of the electromagnetic spectrum (∼365-450 nm) and the photochemical reactions with HSA in water were complete within 15 min under ambient conditions. Under standardized experimental conditions, photoradiosynthesis with compounds 1-14 produced the corresponding 89ZrDFO-PEG3-HSA conjugates with decay-corrected isolated radiochemical yields between 18.1 ± 1.8% and 62.3 ± 3.6%. Extensive density functional theory (DFT) calculations were used to explore the reaction mechanisms and chemoselectivity of the light-induced bimolecular conjugation of compounds 1-14 to protein. The photoactivatable DFO-derivatives operate by at least five distinct mechanisms, each producing a different type of bioconjugate bond. Overall, the experimental and computational work presented here confirms that photochemistry is a viable option for making diverse, functionalized protein conjugates.
Collapse
|
12
|
Gao XY, Xu CM, Zhang XK, Li MR, Gong XM, Yang HM, Tang JB. Development of Fc-specific multi-biotinylated antibodies via photoreactive tandem AviTag repeats for the ultrasensitive determination of ochratoxin A. Food Control 2022. [DOI: 10.1016/j.foodcont.2021.108525] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
13
|
Gao S, Guisán JM, Rocha-Martin J. Oriented immobilization of antibodies onto sensing platforms - A critical review. Anal Chim Acta 2022; 1189:338907. [PMID: 34815045 DOI: 10.1016/j.aca.2021.338907] [Citation(s) in RCA: 79] [Impact Index Per Article: 39.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 07/08/2021] [Accepted: 07/31/2021] [Indexed: 12/26/2022]
Abstract
The immunosensor has been proven a versatile tool to detect various analytes, such as food contaminants, pathogenic bacteria, antibiotics and biomarkers related to cancer. To fabricate robust and reproducible immunosensors with high sensitivity, the covalent immobilization of immunoglobulins (IgGs) in a site-specific manner contributes to better performance. Instead of the random IgG orientations result from the direct yet non-selective immobilization techniques, this review for the first time introduces the advances of stepwise yet site-selective conjugation strategies to give better biosensing efficiency. Noncovalently adsorbing IgGs is the first but decisive step to interact specifically with the Fc fragment, then following covalent conjugate can fix this uniform and antigens-favorable orientation irreversibly. In this review, we first categorized this stepwise strategy into two parts based on the different noncovalent interactions, namely adhesive layer-mediated interaction onto homofunctional support and layer-free interaction onto heterofunctional support (which displays several different functionalities on its surface that are capable to interact with IgGs). Further, the influence of ligands characteristics (synthesis strategies, spacer requirements and matrices selection) on the heterofunctional support has also been discussed. Finally, conclusions and future perspectives for the real-world application of stepwise covalent conjugation are discussed. This review provides more insights into the fabrication of high-efficiency immunosensor, and special attention has been devoted to the well-orientation of full-length IgGs onto the sensing platform.
Collapse
Affiliation(s)
- Shipeng Gao
- Department of Biocatalysis, Institute of Catalysis and Petrochemistry (ICP) CSIC, Campus UAM, Cantoblanco, 28049, Madrid, Spain
| | - José M Guisán
- Department of Biocatalysis, Institute of Catalysis and Petrochemistry (ICP) CSIC, Campus UAM, Cantoblanco, 28049, Madrid, Spain.
| | - Javier Rocha-Martin
- Department of Biocatalysis, Institute of Catalysis and Petrochemistry (ICP) CSIC, Campus UAM, Cantoblanco, 28049, Madrid, Spain.
| |
Collapse
|
14
|
Tang JB, Yang HM, Gao XY, Zeng XZ, Wang FS. Directional immobilization of antibody onto magnetic nanoparticles by Fc-binding protein-assisted photo-conjugation for high sensitivity detection of antigen. Anal Chim Acta 2021; 1184:339054. [PMID: 34625272 DOI: 10.1016/j.aca.2021.339054] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 09/02/2021] [Accepted: 09/09/2021] [Indexed: 11/24/2022]
Abstract
Immobilized antibodies with site-specific, oriented, and covalent pattern are of great significance to improve the sensitivity of solid-phase immunoassay. Here, we developed a novel antibody conjugation strategy that can immobilize antibodies in a directional and covalent manner. In this study, an IgG-Fc binding protein (Z domain) carrying a site-specific photo-crosslinker, p-benzoyl-L-phenylalanine, and a single C-terminal cysteine (Cys) handle was genetically engineered. Upon UV irradiation, the chimeric protein enables the Cys handle to couple with the native antibody in Fc-specific and covalent conjugation pattern, resulting in a novel thiolated antibody. Thus, an approach for the covalent, directional immobilization of antibodies to maleimide-modified magnetic nanoparticles (MNPs) was developed on the basis of the crosslinking between sulfhydryl and maleimide groups. The antibody-conjugated MNPs were applied in MNP-based enzyme-linked immunosorbent assay (ELISA) for the detection of carcinoembryonic antigen. The MNP-based ELISA presented a quantification linear range of 0.1-100 ng mL-1 and detection limit of 0.02 ng mL-1, which was approximately 100 times more sensitive than the traditional microplate ELISA (2.0 ng mL-1). Thus, the proposed antibody immobilization approach can be used in surface functionalization for the sensitive detection of various biomarkers.
Collapse
Affiliation(s)
- Jin-Bao Tang
- Key Laboratory of Chemical Biology (Ministry of Education), Institute of Biochemical and Biotechnological Drugs, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, China; Department of Biochemical Drugs, School of Pharmacy, Weifang Medical University, Weifang, 261053, Shandong, China; NMPA Key Laboratory for Quality Research and Evaluation of Carbohydrate-based Medicine, Shandong University, Jinan, 250012, Shandong, China
| | - Hong-Ming Yang
- Department of Biochemical Drugs, School of Pharmacy, Weifang Medical University, Weifang, 261053, Shandong, China
| | - Xiao-Yi Gao
- Department of Biochemical Drugs, School of Pharmacy, Weifang Medical University, Weifang, 261053, Shandong, China
| | - Xian-Zhong Zeng
- Department of Biochemical Drugs, School of Pharmacy, Weifang Medical University, Weifang, 261053, Shandong, China
| | - Feng-Shan Wang
- Key Laboratory of Chemical Biology (Ministry of Education), Institute of Biochemical and Biotechnological Drugs, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, China; NMPA Key Laboratory for Quality Research and Evaluation of Carbohydrate-based Medicine, Shandong University, Jinan, 250012, Shandong, China.
| |
Collapse
|
15
|
Abstract
Antibodies, particularly of the immunoglobulin G (IgG) isotype, are a group of biomolecules that are extensively used as affinity reagents for many applications in research, disease diagnostics, and therapy. Most of these applications require antibodies to be modified with specific functional moieties, including fluorophores, drugs, and proteins. Thus, a variety of methodologies have been developed for the covalent labeling of antibodies. The most common methods stably attach functional molecules to lysine or cysteine residues, which unavoidably results in heterogeneous products that cannot be further purified. In an effort to prepare homogeneous antibody conjugates, bioorthogonal handles have been site-specifically introduced via enzymatic treatment, genetic code expansion, or genetically encoded tagging, followed by functionalization using bioorthogonal conjugation reactions. The resulting homogeneous products have proven superior to their heterogeneous counterparts for both in vitro and in vivo usage. Nevertheless, additional chemical treatment or protein engineering of antibodies is required for incorporation of the bioorthogonal handles, processes that often affect antibody folding, stability, and/or production yield and cost. Accordingly, concurrent with advances in the fields of bioorthogonal chemistry and protein engineering, there is growing interest in site-specifically labeling native (nonengineered) antibodies without chemical or enzymatic treatments. In this review, we highlight recent strategies for producing site-specific native antibody conjugates and provide a comprehensive summary of the merits and disadvantages of these strategies.
Collapse
Affiliation(s)
- Kuan-Lin Wu
- Department of Chemistry, Rice University, 6100 Main Street, Houston, Texas 77005, United States
| | - Chenfei Yu
- Department of Chemistry, Rice University, 6100 Main Street, Houston, Texas 77005, United States
| | - Catherine Lee
- Department of Chemistry, Rice University, 6100 Main Street, Houston, Texas 77005, United States
| | - Chao Zuo
- Department of Chemistry, Rice University, 6100 Main Street, Houston, Texas 77005, United States
| | - Zachary T Ball
- Department of Chemistry, Rice University, 6100 Main Street, Houston, Texas 77005, United States
| | - Han Xiao
- Department of Chemistry, Rice University, 6100 Main Street, Houston, Texas 77005, United States
- Department of Biosciences, Rice University, 6100 Main Street, Houston, Texas 77005, United States
- Department of Bioengineering, Rice University, 6100 Main Street, Houston, Texas 77005, United States
| |
Collapse
|
16
|
Lee NK, Wang CPJ, Lim J, Park W, Kwon HK, Kim SN, Kim TH, Park CG. Impact of the conjugation of antibodies to the surfaces of polymer nanoparticles on the immune cell targeting abilities. NANO CONVERGENCE 2021; 8:24. [PMID: 34398322 PMCID: PMC8368787 DOI: 10.1186/s40580-021-00274-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 07/31/2021] [Indexed: 06/01/2023]
Abstract
Antibodies have been widely used to provide targeting ability and to enhance bioactivity owing to their high specificity, availability, and diversity. Recent advances in biotechnology and nanotechnology permit site-specific engineering of antibodies and their conjugation to the surfaces of nanoparticles (NPs) in various orientations through chemical conjugations and physical adhesions. This study proposes the conjugation of poly(lactic-co-glycolic acid) (PLGA) NPs with antibodies by using two distinct methods, followed by a comparison between the cell-targeting efficiencies of both techniques. Full-length antibodies were conjugated to the PLGA-poly(ethylene glycol)-carboxylic acid (PLGA-PEG-COOH) NPs through the conventional carbodiimide coupling reaction, and f(ab')2 antibody fragments were conjugated to the PLGA-poly(ethylene glycol)-maleimide(PLGA-PEG-Mal) NPs through interactions between the f(ab')2 fragment thiol groups and the maleimide located on the nanoparticle surface. The results demonstrate that the PLGA nanoparticles conjugated with the f(ab')2 antibody fragments had a higher targeting efficiency in vitro and in vivo than that of the PLGA nanoparticles conjugated with the full-length antibodies. The results of this study can be built upon to design a delivery technique for drugs through biocompatible nanoparticles.
Collapse
Affiliation(s)
- Na Kyeong Lee
- Department of Intelligent Precision Healthcare Convergence, Sungkyunkwan University, Suwon, Gyeonggi, 16419, Republic of Korea
| | - Chi-Pin James Wang
- Department of Biomedical Engineering, SKKU Institute for Convergence, Sungkyunkwan University (SKKU), Suwon, Gyeonggi, 16419, Republic of Korea
| | - Jaesung Lim
- Department of Intelligent Precision Healthcare Convergence, Sungkyunkwan University, Suwon, Gyeonggi, 16419, Republic of Korea
| | - Wooram Park
- Department of Biomedical-Chemical Engineering, The Catholic University of Korea, Bucheon, Gyeonggi, 14662, Republic of Korea
| | - Ho-Keun Kwon
- Department of Microbiology and Immunology, Institute for Immunology and Immunological Diseases and Brain Korea 21 PLUS Project for Medical Sciences, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea
| | - Se-Na Kim
- Institute of Medical and Biological Engineering, Medical Research Center, Seoul National University, Seoul, 03080, Republic of Korea
| | - Tae-Hyung Kim
- School of Integrative Engineering, Chung-Ang University, 84, Heukseok-ro, Dongjak-gu, Seoul, 06974, Republic of Korea.
| | - Chun Gwon Park
- Department of Intelligent Precision Healthcare Convergence, Sungkyunkwan University, Suwon, Gyeonggi, 16419, Republic of Korea.
- Department of Biomedical Engineering, SKKU Institute for Convergence, Sungkyunkwan University (SKKU), Suwon, Gyeonggi, 16419, Republic of Korea.
- Biomedical Institute for Convergence at SKKU (BICS), Sungkyunkwan University, Suwon, Gyeonggi, 16419, Republic of Korea.
- Center for Neuroscience Imaging Research, Institute for Basic Science (IBS), Suwon, Gyeonggi, 16419, Republic of Korea.
| |
Collapse
|
17
|
von Witting E, Hober S, Kanje S. Affinity-Based Methods for Site-Specific Conjugation of Antibodies. Bioconjug Chem 2021; 32:1515-1524. [PMID: 34369763 PMCID: PMC8377709 DOI: 10.1021/acs.bioconjchem.1c00313] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Conjugation of various reagents to antibodies has long been an elegant way to combine the superior binding features of the antibody with other desired but non-natural functions. Applications range from labels for detection in different analytical assays to the creation of new drugs by conjugation to molecules which improves the pharmaceutical effect. In many of these applications, it has been proven advantageous to control both the site and the stoichiometry of the conjugation to achieve a homogeneous product with predictable, and often also improved, characteristics. For this purpose, many research groups have, during the latest decade, reported novel methods and techniques, based on small molecules, peptides, and proteins with inherent affinity for the antibody, for site-specific conjugation of antibodies. This review provides a comprehensive overview of these methods and their applications and also describes a historical perspective of the field.
Collapse
Affiliation(s)
- Emma von Witting
- Department of Protein Science, School of Engineering Sciences in Chemistry, Biotechnology and Health, AlbaNova University Centre, SE-114 19, Stockholm, Sweden
| | - Sophia Hober
- Department of Protein Science, School of Engineering Sciences in Chemistry, Biotechnology and Health, AlbaNova University Centre, SE-114 19, Stockholm, Sweden
| | - Sara Kanje
- Department of Protein Science, School of Engineering Sciences in Chemistry, Biotechnology and Health, AlbaNova University Centre, SE-114 19, Stockholm, Sweden
| |
Collapse
|
18
|
Adak AK, Huang KT, Li PJ, Fan CY, Lin PC, Hwang KC, Lin CC. Regioselective S N2-Type Reaction for the Oriented and Irreversible Immobilization of Antibodies to a Glass Surface Assisted by Boronate Formation. ACS APPLIED BIO MATERIALS 2020; 3:6756-6767. [PMID: 35019340 DOI: 10.1021/acsabm.0c00700] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Antibodies have exquisite specificities for molecular recognition, which have led to their incorporation into array sensors that are crucial for research, diagnostic, and therapeutic applications. Many of these platforms rely heavily on surface-bound reactive groups to covalently tether antibodies to solid substrates; however, this strategy is hindered by a lack of orientation control over antibody immobilization. Here, we report a mild electrophilic phenylsulfonate (tosylate) ester-containing boronic acid affinity ligand for attaching antibodies to glass slides. A high level of antibody coupling located near the Fc region of the boronated antibody complex could be achieved by the proximal nucleophilic amino acid driven substitution reaction at the phenylsulfonate center. This enabled the full-length antibodies to be permanently tethered onto surfaces in an oriented manner. The advantages of this strategy were demonstrated through the individual and multiplex detection of protein and serum biomarkers. This strategy not only confers stability to the immobilized antibodies but also presents a different direction for the irreversible attachment of antibodies to solid supports in an orientation-controlled way.
Collapse
Affiliation(s)
- Avijit K Adak
- Department of Chemistry, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Kuan-Ting Huang
- Department of Chemistry, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Pei-Jhen Li
- Department of Chemistry, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Chen-Yo Fan
- Department of Chemistry, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Po-Chiao Lin
- Department of Chemistry, National Sun Yat-sen University, Kaohsiung 80424, Taiwan
| | - Kuo-Chu Hwang
- Department of Chemistry, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Chun-Cheng Lin
- Department of Chemistry, National Tsing Hua University, Hsinchu 30013, Taiwan.,Department of Medicinal and Applied Chemistry, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| |
Collapse
|
19
|
Berckman EA, Hartzell EJ, Mitkas AA, Sun Q, Chen W. Biological Assembly of Modular Protein Building Blocks as Sensing, Delivery, and Therapeutic Agents. Annu Rev Chem Biomol Eng 2020; 11:35-62. [PMID: 32155350 DOI: 10.1146/annurev-chembioeng-101519-121526] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Nature has evolved a wide range of strategies to create self-assembled protein nanostructures with structurally defined architectures that serve a myriad of highly specialized biological functions. With the advent of biological tools for site-specific protein modifications and de novo protein design, a wide range of customized protein nanocarriers have been created using both natural and synthetic biological building blocks to mimic these native designs for targeted biomedical applications. In this review, different design frameworks and synthetic decoration strategies for achieving these functional protein nanostructures are summarized. Key attributes of these designer protein nanostructures, their unique functions, and their impact on biosensing and therapeutic applications are discussed.
Collapse
Affiliation(s)
- Emily A Berckman
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, Delaware 19716, USA; .,Department of Chemistry and Biochemistry, University of Delaware, Newark, Delaware 19716, USA
| | - Emily J Hartzell
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, Delaware 19716, USA;
| | - Alexander A Mitkas
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, Delaware 19716, USA;
| | - Qing Sun
- Department of Chemical Engineering, Texas A&M University, College Station, Texas 77843, USA
| | - Wilfred Chen
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, Delaware 19716, USA;
| |
Collapse
|
20
|
Holland JP, Gut M, Klingler S, Fay R, Guillou A. Photochemical Reactions in the Synthesis of Protein-Drug Conjugates. Chemistry 2019; 26:33-48. [PMID: 31599057 DOI: 10.1002/chem.201904059] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Indexed: 12/15/2022]
Abstract
The ability to modify biologically active molecules such as antibodies with drug molecules, fluorophores or radionuclides is crucial in drug discovery and target identification. Classic chemistry used for protein functionalisation relies almost exclusively on thermochemically mediated reactions. Our recent experiments have begun to explore the use of photochemistry to effect rapid and efficient protein functionalisation. This article introduces some of the principles and objectives of using photochemically activated reagents for protein ligation. The concept of simultaneous photoradiosynthesis of radiolabelled antibodies for use in molecular imaging is introduced as a working example. Notably, the goal of producing functionalised proteins in the absence of pre-association (non-covalent ligand-protein binding) introduces requirements that are distinct from the more regular use of photoactive groups in photoaffinity labelling. With this in mind, the chemistry of thirteen different classes of photoactivatable reagents that react through the formation of intermediate carbenes, electrophiles, dienes, or radicals, is assessed.
Collapse
Affiliation(s)
- Jason P Holland
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland
| | - Melanie Gut
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland
| | - Simon Klingler
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland
| | - Rachael Fay
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland
| | - Amaury Guillou
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland
| |
Collapse
|
21
|
Stiller C, Aghelpasand H, Frick T, Westerlund K, Ahmadian A, Karlström AE. Fast and Efficient Fc-Specific Photoaffinity Labeling To Produce Antibody-DNA Conjugates. Bioconjug Chem 2019; 30:2790-2798. [PMID: 31609586 DOI: 10.1021/acs.bioconjchem.9b00548] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Antibody-DNA conjugates are powerful tools for DNA-assisted protein analysis. Growing usage of these methods demands efficient production of high-quality conjugates. We developed an easy and fast synthesis route yielding covalent antibody-DNA conjugates with a defined conjugation site and low batch-to-batch variability. We utilize the Z domain from protein A, containing the unnatural amino acid 4-benzoylphenylalanine (BPA) for photoaffinity labeling of the antibodies' Fc region. Z(xBPA) domains are C-terminally modified with triple-glycine (G3)-modified DNA-oligonucleotides via enzymatic Sortase A coupling. We show reliable modification of the most commonly used IgG's. To prove our conjugates' functionality, we detected antibody-antigen binding events in an assay called Droplet Barcode Sequencing for Protein analysis (DBS-Pro). It confirms not only retained functionality for both conjugate parts but also the potential of using DBS-Pro for quantifying protein abundances. As intermediates are easily storable and our approach is modular, it offers a convenient strategy for screening various antibody-DNA conjugates using the same starting material.
Collapse
Affiliation(s)
- Christiane Stiller
- Department of Protein Science, School of Engineering Sciences in Chemistry, Biotechnology and Health , KTH Royal Institute of Technology, AlbaNova University Center , 106 91 Stockholm , Sweden
| | - Hooman Aghelpasand
- Department of Gene Technology, School of Engineering Sciences in Chemistry, Biotechnology and Health , KTH Royal Institute of Technology, Science for Life Laboratory , 171 65 Solna , Sweden
| | - Tobias Frick
- Department of Gene Technology, School of Engineering Sciences in Chemistry, Biotechnology and Health , KTH Royal Institute of Technology, Science for Life Laboratory , 171 65 Solna , Sweden
| | - Kristina Westerlund
- Department of Protein Science, School of Engineering Sciences in Chemistry, Biotechnology and Health , KTH Royal Institute of Technology, AlbaNova University Center , 106 91 Stockholm , Sweden
| | - Afshin Ahmadian
- Department of Gene Technology, School of Engineering Sciences in Chemistry, Biotechnology and Health , KTH Royal Institute of Technology, Science for Life Laboratory , 171 65 Solna , Sweden
| | - Amelie Eriksson Karlström
- Department of Protein Science, School of Engineering Sciences in Chemistry, Biotechnology and Health , KTH Royal Institute of Technology, AlbaNova University Center , 106 91 Stockholm , Sweden
| |
Collapse
|
22
|
Impact of conjugation strategies for targeting of antibodies in gold nanoparticles for ultrasensitive detection of 17β-estradiol. Sci Rep 2019; 9:13859. [PMID: 31554912 PMCID: PMC6761283 DOI: 10.1038/s41598-019-50424-5] [Citation(s) in RCA: 79] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Accepted: 09/12/2019] [Indexed: 01/16/2023] Open
Abstract
Antibody-coated nanoparticles have recently attracted considerable attention, with the focus falling on diagnostics. Nevertheless, controlled antibody bioconjugation remains a challenge. Here, we present two strategies of bioconjugation with the aim of evaluating the best approach for the coupling of antibodies on the surface of nanomaterials in an oriented way. We employed electrostatic interaction (physical adsorption) and covalent conjugation in the orientation of antibodies on the metallic surface as coupling methods, and their influence on the detection of 17β-estradiol was addressed with localized surface plasmon resonance. The understanding of these mechanisms is fundamental for the development of reproducible inorganic bioconjugates with oriented surface as well sensibility of immunoassays.
Collapse
|
23
|
Yamada K, Ito Y. Recent Chemical Approaches for Site‐Specific Conjugation of Native Antibodies: Technologies toward Next‐Generation Antibody–Drug Conjugates. Chembiochem 2019; 20:2729-2737. [DOI: 10.1002/cbic.201900178] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Indexed: 11/09/2022]
Affiliation(s)
- Kei Yamada
- Ajinomoto Co., Inc. 1-1 Suzuki-Cho Kawasaki-Ku Kawasaki-Shi Kanagawa 210-8681 Japan
- Department of Chemistry and BioscienceGraduate School of Science and EngineeringKagoshima University 1-21-35 Korimoto Kagoshima 890-0065 Japan
| | - Yuji Ito
- Department of Chemistry and BioscienceGraduate School of Science and EngineeringKagoshima University 1-21-35 Korimoto Kagoshima 890-0065 Japan
| |
Collapse
|
24
|
Abstract
Crosslinking of proteins for their irreversible immobilization on surfaces is a proven and popular method. However, many protocols lead to random orientation and the formation of undefined or even inactive by-products. Most concepts to obtain a more targeted conjugation or immobilization requires the recombinant modification of at least one binding partner, which is often impractical or prohibitively expensive. Here a novel method is presented, which is based on the chemical preactivation of Protein A or G with selected conventional crosslinkers. In a second step, the antibody is added, which is subsequently crosslinked in the Fc part. This leads to an oriented and covalent immobilization of the immunoglobulin with a very high yield. Protocols for Protein A and Protein G with murine and human IgG are presented. This method may be useful for the preparation of columns for affinity chromatography, immunoprecipitation, antibodies conjugated to magnetic particles, permanent and oriented immobilization of antibodies in biosensor systems, microarrays, microtitration plates or any other system, where the loss of antibodies needs to be avoided, and maximum binding capacity is desired. This method is directly applicable even to antibodies in crude cell culture supernatants, raw sera or protein-stabilized antibody preparations without any purification nor enrichment of the IgG. This new method delivered much higher signals as a traditional method and, hence, seems to be preferable in many applications.
Collapse
|
25
|
Vance N, Zacharias N, Ultsch M, Li G, Fourie A, Liu P, LaFrance-Vanasse J, Ernst JA, Sandoval W, Kozak KR, Phillips G, Wang W, Sadowsky J. Development, Optimization, and Structural Characterization of an Efficient Peptide-Based Photoaffinity Cross-Linking Reaction for Generation of Homogeneous Conjugates from Wild-Type Antibodies. Bioconjug Chem 2018; 30:148-160. [DOI: 10.1021/acs.bioconjchem.8b00809] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Nicholas Vance
- Research & Early Development, Genentech, Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Neelie Zacharias
- Research & Early Development, Genentech, Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Mark Ultsch
- Research & Early Development, Genentech, Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Guangmin Li
- Research & Early Development, Genentech, Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Aimee Fourie
- Research & Early Development, Genentech, Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Peter Liu
- Research & Early Development, Genentech, Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Julien LaFrance-Vanasse
- Research & Early Development, Genentech, Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - James A. Ernst
- Research & Early Development, Genentech, Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Wendy Sandoval
- Research & Early Development, Genentech, Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Katherine R. Kozak
- Research & Early Development, Genentech, Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Gail Phillips
- Research & Early Development, Genentech, Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Weiru Wang
- Research & Early Development, Genentech, Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Jack Sadowsky
- Research & Early Development, Genentech, Inc., 1 DNA Way, South San Francisco, California 94080, United States
| |
Collapse
|
26
|
Yu C, Tang J, Loredo A, Chen Y, Jung SY, Jain A, Gordon A, Xiao H. Proximity-Induced Site-Specific Antibody Conjugation. Bioconjug Chem 2018; 29:3522-3526. [DOI: 10.1021/acs.bioconjchem.8b00680] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
| | | | | | | | - Sung Yun Jung
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, Texas 77030, United States
| | - Antrix Jain
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, Texas 77030, United States
| | | | | |
Collapse
|
27
|
Yu F, Alesand V, Nygren PÅ. Site-Specific Photoconjugation of Beta-Lactamase Fragments to Monoclonal Antibodies Enables Sensitive Analyte Detection via Split-Enzyme Complementation. Biotechnol J 2018; 13:e1700688. [DOI: 10.1002/biot.201700688] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Revised: 02/18/2018] [Indexed: 11/08/2022]
Affiliation(s)
- Feifan Yu
- Department of Protein Science, School of Engineering Sciences in Chemistry, Biotechnology and Health; KTH - Royal Institute of Technology, AlbaNova University Center; Roslagstullsbacken 21 SE-106 91 Stockholm Sweden
| | - Veronica Alesand
- Department of Protein Science, School of Engineering Sciences in Chemistry, Biotechnology and Health; KTH - Royal Institute of Technology, AlbaNova University Center; Roslagstullsbacken 21 SE-106 91 Stockholm Sweden
| | - Per-Åke Nygren
- Department of Protein Science, School of Engineering Sciences in Chemistry, Biotechnology and Health; KTH - Royal Institute of Technology, AlbaNova University Center; Roslagstullsbacken 21 SE-106 91 Stockholm Sweden
| |
Collapse
|
28
|
Ng WK, Lim TS, Lai NS. Human neonatal Fc receptor as a new potential antibody binding protein for antibody immobilization. Biotechnol Appl Biochem 2017; 65:547-553. [PMID: 29280199 DOI: 10.1002/bab.1636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2017] [Accepted: 12/15/2017] [Indexed: 11/11/2022]
Abstract
A critical challenge in producing an antibody-based assay with the highest reproducibility and sensitivity is the strategy to immobilize antibodies to solid phase. To date, numerous methods of antibody immobilization were reported but each was subjected to its advantages and limitations. The current study proposes a new potential antibody binding protein, the human neonatal fragment crystallizable (Fc) receptor. This protein has shown its high affinity to the Fc of antibody either in vivo or in vitro. Human neonatal Fc receptor is a heterodimer constructed by p51 α-heavy chain and β2-microglobulin light chain; however, the binding sites toward the antibody are located in the p51 α-heavy chain. Hence, vector cloning and recombinant protein expression were carried out to express the p51 α-heavy chain of the human neonatal Fc receptor (hFcRn-α). The recombinant protein expressed, hFcRn-α, was adopted to pin rabbit IgG against hepatitis B virus surface antigen to a solid phase. A sandwich enzyme-linked immunosorbent assay was further developed to evaluate the efficiency of hFcRn-α-directed immobilization in antigen detection. The result was compared with the conventional physical adsorption method. The findings demonstrated that human neonatal Fc receptor was efficient in pinning antibodies and generating higher signals compared with the physical adsorption of antibody.
Collapse
Affiliation(s)
- Woei Kean Ng
- Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, Pulau Pinang, Malaysia
| | - Theam Soon Lim
- Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, Pulau Pinang, Malaysia
| | - Ngit Shin Lai
- Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, Pulau Pinang, Malaysia
| |
Collapse
|
29
|
Ohata J, Ball ZT. A Hexa-rhodium Metallopeptide Catalyst for Site-Specific Functionalization of Natural Antibodies. J Am Chem Soc 2017; 139:12617-12622. [DOI: 10.1021/jacs.7b06428] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Jun Ohata
- Department of Chemistry, Rice University, Houston, Texas 77005, United States
| | - Zachary T. Ball
- Department of Chemistry, Rice University, Houston, Texas 77005, United States
| |
Collapse
|
30
|
Shen M, Rusling J, Dixit CK. Site-selective orientated immobilization of antibodies and conjugates for immunodiagnostics development. Methods 2017; 116:95-111. [PMID: 27876681 PMCID: PMC5374010 DOI: 10.1016/j.ymeth.2016.11.010] [Citation(s) in RCA: 119] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2016] [Revised: 11/16/2016] [Accepted: 11/17/2016] [Indexed: 01/11/2023] Open
Abstract
Immobilized antibody systems are the key to develop efficient diagnostics and separations tools. In the last decade, developments in the field of biomolecular engineering and crosslinker chemistry have greatly influenced the development of this field. With all these new approaches at our disposal, several new immobilization methods have been created to address the main challenges associated with immobilized antibodies. Few of these challenges that we have discussed in this review are mainly associated to the site-specific immobilization, appropriate orientation, and activity retention. We have discussed the effect of antibody immobilization approaches on the parameters on the performance of an immunoassay.
Collapse
Affiliation(s)
- Min Shen
- Department of Chemistry, University of Connecticut, Storrs, Connecticut 06269-3060
| | - James Rusling
- Department of Chemistry, University of Connecticut, Storrs, Connecticut 06269-3060
- Institute of Materials Science, University of Connecticut, Storrs, Connecticut 06269-3136
- Department of Cell Biology, University of Connecticut Health Center, Farmington, Connecticut 060
- School of Chemistry, National University of Ireland at Galway, Galway, Ireland
| | - Chandra K Dixit
- Department of Chemistry, University of Connecticut, Storrs, Connecticut 06269-3060
| |
Collapse
|
31
|
Fc-specific biotinylation of antibody using an engineered photoactivatable Z–Biotin and its biosensing application. Anal Chim Acta 2017; 949:76-82. [DOI: 10.1016/j.aca.2016.10.039] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2016] [Revised: 10/19/2016] [Accepted: 10/26/2016] [Indexed: 01/01/2023]
|
32
|
Dormán G, Nakamura H, Pulsipher A, Prestwich GD. The Life of Pi Star: Exploring the Exciting and Forbidden Worlds of the Benzophenone Photophore. Chem Rev 2016; 116:15284-15398. [PMID: 27983805 DOI: 10.1021/acs.chemrev.6b00342] [Citation(s) in RCA: 133] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The widespread applications of benzophenone (BP) photochemistry in biological chemistry, bioorganic chemistry, and material science have been prominent in both academic and industrial research. BP photophores have unique photochemical properties: upon n-π* excitation at 365 nm, a biradicaloid triplet state is formed reversibly, which can abstract a hydrogen atom from accessible C-H bonds; the radicals subsequently recombine, creating a stable covalent C-C bond. This light-directed covalent attachment process is exploited in many different ways: (i) binding/contact site mapping of ligand (or protein)-protein interactions; (ii) identification of molecular targets and interactome mapping; (iii) proteome profiling; (iv) bioconjugation and site-directed modification of biopolymers; (v) surface grafting and immobilization. BP photochemistry also has many practical advantages, including low reactivity toward water, stability in ambient light, and the convenient excitation at 365 nm. In addition, several BP-containing building blocks and reagents are commercially available. In this review, we explore the "forbidden" (transitions) and excitation-activated world of photoinduced covalent attachment of BP photophores by touring a colorful palette of recent examples. In this exploration, we will see the pros and cons of using BP photophores, and we hope that both novice and expert photolabelers will enjoy and be inspired by the breadth and depth of possibilities.
Collapse
Affiliation(s)
- György Dormán
- Targetex llc , Dunakeszi H-2120, Hungary.,Faculty of Pharmacy, University of Szeged , Szeged H-6720, Hungary
| | - Hiroyuki Nakamura
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology , Yokohama 226-8503, Japan
| | - Abigail Pulsipher
- GlycoMira Therapeutics, Inc. , Salt Lake City, Utah 84108, United States.,Division of Head and Neck Surgery, Rhinology - Sinus and Skull Base Surgery, Department of Surgery, University of Utah School of Medicine , Salt Lake City, Utah 84108, United States
| | - Glenn D Prestwich
- Division of Head and Neck Surgery, Rhinology - Sinus and Skull Base Surgery, Department of Surgery, University of Utah School of Medicine , Salt Lake City, Utah 84108, United States
| |
Collapse
|
33
|
Fc-Binding Ligands of Immunoglobulin G: An Overview of High Affinity Proteins and Peptides. MATERIALS 2016; 9:ma9120994. [PMID: 28774114 PMCID: PMC5456964 DOI: 10.3390/ma9120994] [Citation(s) in RCA: 124] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/15/2016] [Revised: 11/26/2016] [Accepted: 11/29/2016] [Indexed: 01/20/2023]
Abstract
The rapidly increasing application of antibodies has inspired the development of several novel methods to isolate and target antibodies using smart biomaterials that mimic the binding of Fc-receptors to antibodies. The Fc-binding domain of antibodies is the primary binding site for e.g., effector proteins and secondary antibodies, whereas antigens bind to the Fab region. Protein A, G, and L, surface proteins expressed by pathogenic bacteria, are well known to bind immunoglobulin and have been widely exploited in antibody purification strategies. Several difficulties are encountered when bacterial proteins are used in antibody research and application. One of the major obstacles hampering the use of bacterial proteins is sample contamination with trace amounts of these proteins, which can invoke an immune response in the host. Many research groups actively develop synthetic ligands that are able to selectively and strongly bind to antibodies. Among the reported ligands, peptides that bind to the Fc-domain of antibodies are attractive tools in antibody research. Besides their use as high affinity ligands in antibody purification chromatography, Fc-binding peptides are applied e.g., to localize antibodies on nanomaterials and to increase the half-life of proteins in serum. In this review, recent developments of Fc-binding peptides are presented and their binding characteristics and diverse applications are discussed.
Collapse
|
34
|
Lee Y, Jeong J, Lee G, Moon JH, Lee MK. Covalent and Oriented Surface Immobilization of Antibody Using Photoactivatable Antibody Fc-Binding Protein Expressed in Escherichia coli. Anal Chem 2016; 88:9503-9509. [DOI: 10.1021/acs.analchem.6b02071] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- Yeolin Lee
- Hazards Monitoring Bionano Research
Center, ‡Disease Target Structure Research
Center, Korea Research Institute of Bioscience and Biotechnology, and §Department of
Nanobiotechnology, University of Science and Technology, 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Jiyun Jeong
- Hazards Monitoring Bionano Research
Center, ‡Disease Target Structure Research
Center, Korea Research Institute of Bioscience and Biotechnology, and §Department of
Nanobiotechnology, University of Science and Technology, 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Gabi Lee
- Hazards Monitoring Bionano Research
Center, ‡Disease Target Structure Research
Center, Korea Research Institute of Bioscience and Biotechnology, and §Department of
Nanobiotechnology, University of Science and Technology, 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Jeong Hee Moon
- Hazards Monitoring Bionano Research
Center, ‡Disease Target Structure Research
Center, Korea Research Institute of Bioscience and Biotechnology, and §Department of
Nanobiotechnology, University of Science and Technology, 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Myung Kyu Lee
- Hazards Monitoring Bionano Research
Center, ‡Disease Target Structure Research
Center, Korea Research Institute of Bioscience and Biotechnology, and §Department of
Nanobiotechnology, University of Science and Technology, 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| |
Collapse
|
35
|
Kanje S, von Witting E, Chiang SCC, Bryceson YT, Hober S. Site-Specific Photolabeling of the IgG Fab Fragment Using a Small Protein G Derived Domain. Bioconjug Chem 2016; 27:2095-102. [PMID: 27491005 DOI: 10.1021/acs.bioconjchem.6b00346] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Antibodies are widely used reagents for recognition in both clinic and research laboratories all over the world. For many applications, antibodies are labeled through conjugation to different reporter molecules or therapeutic agents. Traditionally, antibodies are covalently conjugated to reporter molecules via primary amines on lysines or thiols on cysteines. While efficient, such labeling is variable and nonstoichiometric and may affect an antibody's binding to its target. Moreover, an emerging field for therapeutics is antibody-drug conjugates, where a toxin or drug is conjugated to an antibody in order to increase or incorporate a therapeutic effect. It has been shown that homogeneity and controlled conjugation are crucial in these therapeutic applications. Here we present two novel protein domains developed from an IgG-binding domain of Streptococcal Protein G. These domains show obligate Fab binding and can be used for site-specific and covalent attachment exclusively to the constant part of the Fab fragment of an antibody. The two different domains can covalently label IgG of mouse and human descent. The labeled antibodies were shown to be functional in both an ELISA and in an NK-cell antibody-dependent cellular cytotoxicity assay. These engineered protein domains provide novel tools for controlled labeling of Fab fragments and full-length IgG.
Collapse
Affiliation(s)
- Sara Kanje
- Department of Protein Technology, KTH - Royal Institute of Technology , SE-10691, Stockholm, Sweden
| | - Emma von Witting
- Department of Protein Technology, KTH - Royal Institute of Technology , SE-10691, Stockholm, Sweden
| | - Samuel C C Chiang
- HERM, Department of Medicine Huddinge, Karolinska Institute , SE-14157, Stockholm, Sweden
| | - Yenan T Bryceson
- HERM, Department of Medicine Huddinge, Karolinska Institute , SE-14157, Stockholm, Sweden
| | - Sophia Hober
- Department of Protein Technology, KTH - Royal Institute of Technology , SE-10691, Stockholm, Sweden
| |
Collapse
|
36
|
Oriented Covalent Immobilization of Engineered ZZ-Cys onto Maleimide-Sepharose: An Affinity Platform for IgG Purification. Chromatographia 2016. [DOI: 10.1007/s10337-016-3146-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
37
|
Akkapeddi P, Azizi SA, Freedy AM, Cal PMSD, Gois PMP, Bernardes GJL. Construction of homogeneous antibody-drug conjugates using site-selective protein chemistry. Chem Sci 2016; 7:2954-2963. [PMID: 29997785 PMCID: PMC6005007 DOI: 10.1039/c6sc00170j] [Citation(s) in RCA: 118] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2016] [Accepted: 02/10/2016] [Indexed: 12/13/2022] Open
Abstract
Systemic chemotherapy, the current standard of care for the treatment of cancer, is rarely curative and is often accompanied by debilitating side effects. Targeted drug delivery stands as an alternative to chemotherapy, with the potential to improve upon its low efficacy and systemic toxicity. Among targeted therapeutic options, antibody-drug conjugates (ADCs) have emerged as the most promising. These conjugates represent a new class of biopharmaceuticals that selectively deliver potent cytotoxic drugs to cancer cells, sparing healthy tissue throughout the body. Despite this promise, early heterogenous ADCs suffered from stability, pharmacokinetic, and efficacy issues that hindered clinical development. Recent advances in antibody engineering, linkers for drug-release, and chemical site-selective antibody conjugation have led to the creation of homogenous ADCs that have proven to be more efficacious than their heterogeneous predecessors both in vitro and in vivo. In this minireview, we focus on and discuss recent advances in chemical site-selective modification strategies for the conjugation of drugs to antibodies and the resulting potential for the development of a new generation of homogenous ADCs.
Collapse
Affiliation(s)
- Padma Akkapeddi
- Instituto de Medicina Molecular , Faculdade de Medicina , Universidade de Lisboa , Avenida Professor Egas Moniz , 1649-028 Lisboa , Portugal .
| | - Saara-Anne Azizi
- Department of Chemistry , University of Cambridge , Lensfield Road , CB2 1EW Cambridge , UK .
| | - Allyson M Freedy
- Department of Chemistry , University of Cambridge , Lensfield Road , CB2 1EW Cambridge , UK .
| | - Pedro M S D Cal
- Instituto de Medicina Molecular , Faculdade de Medicina , Universidade de Lisboa , Avenida Professor Egas Moniz , 1649-028 Lisboa , Portugal .
| | - Pedro M P Gois
- Research Institute for Medicines (iMed.ULisboa) , Faculty of Pharmacy , Universidade de Lisboa , Lisbon , Portugal
| | - Gonçalo J L Bernardes
- Instituto de Medicina Molecular , Faculdade de Medicina , Universidade de Lisboa , Avenida Professor Egas Moniz , 1649-028 Lisboa , Portugal .
- Department of Chemistry , University of Cambridge , Lensfield Road , CB2 1EW Cambridge , UK .
| |
Collapse
|
38
|
Kanje S, Hober S. In vivo biotinylation and incorporation of a photo-inducible unnatural amino acid to an antibody-binding domain improve site-specific labeling of antibodies. Biotechnol J 2016; 10:564-74. [PMID: 25655274 DOI: 10.1002/biot.201400808] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2014] [Revised: 02/23/2015] [Accepted: 03/03/2015] [Indexed: 02/04/2023]
Abstract
Antibodies are important molecules in many research fields, where they play a key role in various assays. Antibody labeling is therefore of great importance. Currently, most labeling techniques take advantage of certain amino acid side chains that commonly appear throughout proteins. This makes it hard to control the position and exact degree of labeling of each antibody. Hence, labeling of the antibody may affect the antibody-binding site. This paper presents a novel protein domain based on the IgG-binding domain C2 of streptococcal protein G, containing the unnatural amino acid BPA, that can cross-link other molecules. This novel domain can, with improved efficiency compared to previously reported similar domains, site-specifically cross-link to IgG at the Fc region. An efficient method for simultaneous in vivo incorporation of BPA and specific biotinylation in a flask cultivation of Escherichia coli is described. In comparison to a traditionally labeled antibody sample, the C2-labeled counterpart proved to have a higher proportion of functional antibodies when immobilized on a solid surface and the same limit of detection in an ELISA. This method of labeling is, due to its efficiency and simplicity, of high interest for all antibody-based assays where it is important that labeling does not interfere with the antibody-binding site.
Collapse
Affiliation(s)
- Sara Kanje
- AlbaNova University Centre, KTH - Royal Institute of Technology, Department of Protein Technology, Stockholm, Sweden
| | | |
Collapse
|
39
|
Abstract
A new methodology for the fabrication of an high-performance peptide microarray is reported, combining the higher sensitivity of a layered Si-SiO2 substrate with the oriented immobilization of peptides using a N,N-dimethylacrylamide-based polymeric coating that contains alkyne monomers as functional groups. This clickable polymer allows the oriented attachment of azido-modified peptides via a copper-mediated azide/alkyne cycloaddition. A similar coating that does not contain the alkyne functionality has been used as comparison, to demonstrate the importance of a proper orientation for facilitating the probe recognition and interaction with the target antibody.
Collapse
|
40
|
Kanje S, Herrmann AJ, Hober S, Mueller L. Next generation of labeling reagents for quantitative and multiplexing immunoassays by the use of LA-ICP-MS. Analyst 2016; 141:6374-6380. [DOI: 10.1039/c6an01878e] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A novel labeling strategy – which results in one label per antibody molecule – was used for multiplex and quantitative immuno imaging by use of LA-ICP-MS.
Collapse
Affiliation(s)
- S. Kanje
- Alba Nova University Center
- KTH-Royal Institute of Technology
- Division of Protein Technology
- Stockholm
- Sweden
| | - A. J. Herrmann
- Bundesanstalt für Materialforschung und-prüfung (BAM)
- 1.1 Division Inorganic Trace Analysis
- 12489 Berlin
- Germany
- Humboldt-Universität zu Berlin
| | - S. Hober
- Alba Nova University Center
- KTH-Royal Institute of Technology
- Division of Protein Technology
- Stockholm
- Sweden
| | - L. Mueller
- Bundesanstalt für Materialforschung und-prüfung (BAM)
- 1.1 Division Inorganic Trace Analysis
- 12489 Berlin
- Germany
| |
Collapse
|
41
|
Abstract
Numerous biological applications, from diagnostic assays to immunotherapies, rely on the use of antibody-conjugates. The efficacy of these conjugates can be significantly influenced by the site at which Immunoglobulin G (IgG) is modified. Current methods that provide control over the conjugation site, however, suffer from a number of shortfalls and often require large investments of time and cost. We have developed a novel adapter protein that, when activated by long wavelength UV light, can covalently and site-specifically label the Fc region of nearly any native, full-length IgG, including all human IgG subclasses. Labeling occurs with unprecedented efficiency and speed (>90% after 30 min), with no effect on IgG affinity. The adapter domain can be bacterially expressed and customized to contain a variety of moieties (e.g., biotin, azide, fluorophores), making reliable and efficient conjugation of antibodies widely accessible to researchers at large.
Collapse
Affiliation(s)
| | | | - Yang Song
- Department of Bioengineering, University of Pennsylvania, 210 South 33rd Street, 240 Skirkanich Hall, Philadelphia, PA 19104, USA
| | - Andrew Tsourkas
- Department of Bioengineering, University of Pennsylvania, 210 South 33rd Street, 240 Skirkanich Hall, Philadelphia, PA 19104, USA
| |
Collapse
|
42
|
Wang Y, Han Y, Fan E, Zhang K. Analytical strategies used to identify the readers of histone modifications: A review. Anal Chim Acta 2015; 891:32-42. [PMID: 26388362 DOI: 10.1016/j.aca.2015.06.049] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2014] [Revised: 06/25/2015] [Accepted: 06/26/2015] [Indexed: 10/23/2022]
Abstract
The so-called "readers" of histone post-translational modifications (HPTMs) refer to proteins or complexes that are recruited to HPTMs thus eventually regulate gene transcription. To identify these "readers", mass spectrometry plays an essential role following various enriching strategies. These enriching methods include the use of modified histone peptides/proteins or chemically synthesized histones/nucleosomes containing desired HPTMs to enrich the readers of HPTMs. Despite the peptide- or protein-based assay is straightforward and easy to perform for most labs, this strategy has limited applications for those weak or combinational interactions among various HPTMs and false-positive results are a potential big problem. While the results derived from synthesized histone proteins/nucleosomes is more reliable as it mimics the real chromatic conditions thus is able to analyze the binders of those cross-talked HPTMs, usually the synthesis is so difficult that their applications are impeded for high throughput analysis. In this review, an overview of these analytical techniques is provided and their advantages and disadvantages are discussed.
Collapse
Affiliation(s)
- Ye Wang
- Department of Chemistry, Nankai University, 300071 Tianjin, China
| | - Yanpu Han
- Department of Chemistry, Nankai University, 300071 Tianjin, China
| | - Enguo Fan
- Institut für Biochemie und Molekularbiologie, Universität Freiburg, Stefan-Meier-Straße 17, 79104 Freiburg, Germany; School of Medical Instrument and Food Engineering, University of Shanghai for Science and Technology, Jungong Road No. 516, 200093 Shanghai, China.
| | - Kai Zhang
- Department of Biochemistry and Molecular Biology, Tianjin Key Laboratory of Medical Epigenetics, 2011 Collaborative Innovation Center of Tianjin for Medical Epigenetics, Tianjin Medical University, 300070 Tianjin, China; Department of Chemistry, Nankai University, 300071 Tianjin, China.
| |
Collapse
|
43
|
|
44
|
Banks JM, Harley BAC, Bailey RC. Tunable, Photoreactive Hydrogel System To Probe Synergies between Mechanical and Biomolecular Cues on Adipose-Derived Mesenchymal Stem Cell Differentiation. ACS Biomater Sci Eng 2015; 1:718-725. [DOI: 10.1021/acsbiomaterials.5b00196] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
| | - Brendan A. C. Harley
- Carl
R. Woese Institute for Genomic Biology, University of Illinois at Urbana—Champaign, 1206 West Gregory Drive, Urbana, Illinois 61801, United States
| | - Ryan C. Bailey
- Carl
R. Woese Institute for Genomic Biology, University of Illinois at Urbana—Champaign, 1206 West Gregory Drive, Urbana, Illinois 61801, United States
| |
Collapse
|
45
|
Kroetsch A, Park S. More than one way to skin a cat: in-situ engineering of an antibody through photo-conjugated C2 domain. Biotechnol J 2015; 10:508-9. [PMID: 25847436 DOI: 10.1002/biot.201500051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Andrew Kroetsch
- Department of Chemical and Biological Engineering, University at Buffalo, Buffalo, NY, USA
| | | |
Collapse
|
46
|
Marciello M, Filice M, Olea D, Velez M, Guisan JM, Mateo C. Useful oriented immobilization of antibodies on chimeric magnetic particles: direct correlation of biomacromolecule orientation with biological activity by AFM studies. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2014; 30:15022-15030. [PMID: 25420004 DOI: 10.1021/la502972v] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
The preparation and performance of a suitable chimeric biosensor based on antibodies (Abs) immobilized on lipase-coated magnetic particles by means of a standing orienting strategy are presented. This novel system is based on hydrophobic magnetic particles coated with modified lipase molecules able to orient and further immobilize different Abs in a covalent way without any previous site-selective chemical modification of biomacromolecules. Different key parameters attending the process were studied and optimized. The optimal preparation was performed using a controlled loading (1 nmol Ab g(-1) chimeric support) at pH 9 and a short reaction time to recover a biological activity of about 80%. AFM microscopy was used to study and confirm the Abs-oriented immobilization on lipase-coated magnetic particles and the final achievement of a highly active and recyclable chimeric immune sensor. This direct technique was demonstrated to be a powerful alternative to the indirect immunoactivity assay methods for the study of biomacromolecule-oriented immobilizations.
Collapse
Affiliation(s)
- Marzia Marciello
- Departamento de Biomateriales y Materiales Bioinspirados, Instituto de Ciencia de Materiales de Madrid (ICMM-CSIC), Campus UAM Cantoblanco , 28049 Madrid, Spain
| | | | | | | | | | | |
Collapse
|
47
|
Yu Q, Wang Q, Li B, Lin Q, Duan Y. Technological Development of Antibody Immobilization for Optical Immunoassays: Progress and Prospects. Crit Rev Anal Chem 2014. [DOI: 10.1080/10408347.2014.881249] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
48
|
Hui JZ, Al Zaki A, Cheng Z, Popik V, Zhang H, Luning Prak ET, Tsourkas A. Facile method for the site-specific, covalent attachment of full-length IgG onto nanoparticles. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2014; 10:3354-63. [PMID: 24729432 PMCID: PMC4142076 DOI: 10.1002/smll.201303629] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2013] [Revised: 03/20/2014] [Indexed: 05/18/2023]
Abstract
Antibodies, most commonly IgGs, have been widely used as targeting ligands in research and therapeutic applications due to their wide array of targets, high specificity and proven efficacy. Many of these applications require antibodies to be conjugated onto surfaces (e.g. nanoparticles and microplates); however, most conventional bioconjugation techniques exhibit low crosslinking efficiencies, reduced functionality due to non-site-specific labeling and random surface orientation, and/or require protein engineering (e.g. cysteine handles), which can be technically challenging. To overcome these limitations, we have recombinantly expressed Protein Z, which binds the Fc region of IgG, with an UV active non-natural amino acid benzoylphenyalanine (BPA) within its binding domain. Upon exposure to long wavelength UV light, the BPA is activated and forms a covalent link between the Protein Z and the bound Fc region of IgG. This technology was combined with expressed protein ligation (EPL), which allowed for the introduction of a fluorophore and click chemistry-compatible azide group onto the C-terminus of Protein Z during the recombinant protein purification step. This enabled the crosslinked-Protein Z-IgG complexes to be efficiently and site-specifically attached to aza-dibenzocyclooctyne-modified nanoparticles, via copper-free click chemistry.
Collapse
Affiliation(s)
- James Zhe Hui
- Department of Bioengineering, University of Pennsylvania, 210 S. 33 Street, 240 Skirkanich Hall, Philadelphia, PA 19104, USA
| | - Ajlan Al Zaki
- Department of Bioengineering, University of Pennsylvania, 210 S. 33 Street, 240 Skirkanich Hall, Philadelphia, PA 19104, USA
| | - Zhiliang Cheng
- Department of Bioengineering, University of Pennsylvania, 210 S. 33 Street, 240 Skirkanich Hall, Philadelphia, PA 19104, USA
| | - Vladimir Popik
- Department of Chemistry, University of Georgia, Athens, GA 30602, USA
| | - Hongtao Zhang
- Department of Pathology and Lab Medicine, University of Pennsylvania, PA 19104, USA
| | - Eline T. Luning Prak
- Department of Pathology and Lab Medicine, University of Pennsylvania, PA 19104, USA
| | - Andrew Tsourkas
- Department of Bioengineering, University of Pennsylvania, 210 S. 33 Street, 240 Skirkanich Hall, Philadelphia, PA 19104, USA
| |
Collapse
|
49
|
Hui JZ, Tsourkas A. Optimization of photoactive protein Z for fast and efficient site-specific conjugation of native IgG. Bioconjug Chem 2014; 25:1709-19. [PMID: 25121619 PMCID: PMC4166039 DOI: 10.1021/bc500305v] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Antibody conjugates have been used in a variety of applications from immunoassays to drug conjugates. However, it is becoming increasingly clear that in order to maximize an antibody's antigen binding ability and to produce homogeneous antibody-conjugates, the conjugated molecule should be attached onto IgG site-specifically. We previously developed a facile method for the site-specific modification of full length, native IgGs by engineering a recombinant Protein Z that forms a covalent link to the Fc domain of IgG upon exposure to long wavelength UV light. To further improve the efficiency of Protein Z production and IgG conjugation, we constructed a panel of 13 different Protein Z variants with the UV-active amino acid benzoylphenylalanine (BPA) in different locations. By using this panel of Protein Z to cross-link a range of IgGs from different hosts, including human, mouse, and rat, we discovered two previously unknown Protein Z variants, L17BPA and K35BPA, that are capable of cross-linking many commonly used IgG isotypes with efficiencies ranging from 60% to 95% after only 1 h of UV exposure. When compared to existing site-specific methods, which often require cloning or enzymatic reactions, the Protein Z-based method described here, utilizing the L17BPA, K35BPA, and the previously described Q32BPA variants, represents a vastly more accessible and efficient approach that is compatible with nearly all native IgGs, thus making site-specific conjugation more accessible to the general research community.
Collapse
Affiliation(s)
- James Z Hui
- Department of Bioengineering, University of Pennsylvania , 210 South 33rd Street, 240 Skirkanich Hall, Philadelphia, Pennsylvania 19104, United States
| | | |
Collapse
|
50
|
Kumada Y. Site-specific immobilization of recombinant antibody fragments through material-binding peptides for the sensitive detection of antigens in enzyme immunoassays. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2014; 1844:1960-1969. [PMID: 25119345 DOI: 10.1016/j.bbapap.2014.07.007] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2014] [Revised: 07/05/2014] [Accepted: 07/11/2014] [Indexed: 12/26/2022]
Abstract
The immobilization of an antibody is one of the key technologies that are used to enhance the sensitivity and efficiency of the detection of target molecules in immunodiagnosis and immunoseparation. Recombinant antibody fragments such as VHH, scFv and Fabs produced by microorganisms are the next generation of ligand antibodies as an alternative to conventional whole Abs due to a smaller size and the possibility of site-directed immobilization with uniform orientation and higher antigen-binding activity in the adsorptive state. For the achievement of site-directed immobilization, affinity peptides for a certain ligand molecule or solid support must be introduced to the recombinant antibody fragments. In this mini-review, immobilization technologies for the whole antibodies (whole Abs) and recombinant antibody fragments onto the surfaces of plastics are introduced. In particular, the focus here is on immobilization technologies of recombinant antibody fragments utilizing affinity peptide tags, which possesses strong binding affinity towards the ligand molecules. Furthermore, I introduced the material-binding peptides that are capable of direct recognition of the target materials. Preparation and immobilization strategies for recombinant antibody fragments linked to material-binding peptides (polystyrene-binding peptides (PS-tags) and poly (methyl methacrylate)-binding peptide (PMMA-tag)) are the focus here, and are based on the enhancement of sensitivity and a reduction in the production costs of ligand antibodies. This article is part of a Special Issue entitled: Recent advances in molecular engineering of antibody.
Collapse
Affiliation(s)
- Yoichi Kumada
- Department of Biomolecular Engineering, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto 606-8585, Japan.
| |
Collapse
|