1
|
Thornham J, Bertram R, Roper MG. Unveiling islet heterogeneity using an automated microfluidic imaging system. Sci Rep 2024; 14:24707. [PMID: 39433829 PMCID: PMC11493968 DOI: 10.1038/s41598-024-75340-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Accepted: 10/04/2024] [Indexed: 10/23/2024] Open
Abstract
Islets of Langerhans are a therapeutic target for diabetes and prediabetes. Measurements of therapeutic inhibitory or excitatory concentrations are often performed using large groups of islets, however, the population heterogeneity cannot be observed when examining the ensemble response. Normal islet function and islet response to therapeutic treatment can be affected by islet heterogeneity, influencing the progression of diabetes mellitus. To identify heterogeneity in an islet population, we developed a simple microfluidic device capable of delivering a stimulant to four independent chambers, allowing measurements of individual responses from a population of 20-25 islets. The device enabled accurate delivery of the same stimulant concentration to all four chambers, with an error <1% between chambers. To demonstrate the capability of this system, ensemble and individual EC/IC[Formula: see text] measurements of glucose and diazoxide were performed on murine islets. Results showed little heterogeneity of glucose EC[Formula: see text] values with all 21 islets within ± 0.6 mM of the ensemble value of 7.4 mM. In contrast, application of diazoxide to 24 islets in the presence of 20 mM glucose resulted in 37% of islets having an IC[Formula: see text] greater than 10% from the ensemble value of 10.2 μM. The simple system developed here is amenable to further studies on islet heterogeneity, and is applicable to investigate heterogeneity in other cell types.
Collapse
Affiliation(s)
- James Thornham
- Program in Molecular Biophysics, Institute of Molecular Biophysics, Florida State University, Tallahassee, FL, 32304, USA
| | - Richard Bertram
- Program in Molecular Biophysics, Institute of Molecular Biophysics, Florida State University, Tallahassee, FL, 32304, USA
- Department of Mathematics, Florida State University, Tallahassee, FL, 32306, USA
- Program of Neuroscience, Florida State University, Tallahassee, FL, 32306, USA
| | - Michael G Roper
- Program in Molecular Biophysics, Institute of Molecular Biophysics, Florida State University, Tallahassee, FL, 32304, USA.
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, FL, 32306, USA.
| |
Collapse
|
2
|
Adeoye DI, Masitas RA, Thornham J, Meng X, Steyer DJ, Roper MG. Droplet-based fluorescence anisotropy insulin immunoassay. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2024. [PMID: 39431529 PMCID: PMC11492383 DOI: 10.1039/d4ay01511h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Accepted: 10/07/2024] [Indexed: 10/22/2024]
Abstract
Over the last several decades, multiple microfluidic platforms have been used for measurement of hormone secretion from islets of Langerhans. Most have used continuous flow systems where mixing of hormones with assay reagents is governed by diffusion, leading to long mixing times, especially for biomolecules like peptides and proteins which have large diffusion coefficients. Consequently, dispersion of rapidly changing signals can occur, reducing temporal resolution. Droplet microfluidic systems can be used to capture reagents into individual reactors, limiting dispersion and improving temporal resolution. In this study, we integrated a fluorescence anisotropy (FA) immunoassay (IA) for insulin into a droplet microfluidic system. Insulin IA reagents were mixed online with insulin and captured quickly into droplets prior to passing through a 200 mm incubation channel. Double etching of the glass device was used to increase the depth of the incubation channel compared to the IA channels to maintain proper flow of reagents. The droplet system produced highly precise FA results with relative standard deviations < 2% at all insulin concentrations tested, whereas the absolute fluorescence intensity precisions ranged between 5 and 6%. A limit of detection of 3 nM for insulin was obtained, similar to those found in conventional flow systems. The advantage of the system was in the increased temporal resolution using the droplet system where a 9.8 ± 2.6 s response time was obtained, faster than previously reported continuous flow systems. The improved temporal resolution aligns with continued efforts to resolve rapid signaling events in pancreatic islet biology.
Collapse
Affiliation(s)
- Damilola I Adeoye
- Department of Chemistry & Biochemistry, Florida State University, 95 Chieftain Way, Tallahassee, FL 32306, USA.
| | - Rafael A Masitas
- Department of Chemistry & Biochemistry, Florida State University, 95 Chieftain Way, Tallahassee, FL 32306, USA.
| | - James Thornham
- Program in Molecular Biophysics, Florida State University, USA
| | - Xiangyue Meng
- Department of Chemistry & Biochemistry, Florida State University, 95 Chieftain Way, Tallahassee, FL 32306, USA.
| | - Daniel J Steyer
- Department of Chemistry & Biochemistry, Florida State University, 95 Chieftain Way, Tallahassee, FL 32306, USA.
| | - Michael G Roper
- Department of Chemistry & Biochemistry, Florida State University, 95 Chieftain Way, Tallahassee, FL 32306, USA.
- Program in Molecular Biophysics, Florida State University, USA
| |
Collapse
|
3
|
Wang Y, Skinner EL, Roper MG. Comparison between capillary electrophoresis and fluorescence anisotropy competitive immunoassay for glucagon. Electrophoresis 2024; 45:1692-1700. [PMID: 38984929 PMCID: PMC11502243 DOI: 10.1002/elps.202400080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 06/10/2024] [Accepted: 06/25/2024] [Indexed: 07/11/2024]
Abstract
Glucagon plays a crucial role in regulating glucose homeostasis; unfortunately, the mechanisms controlling its release are still unclear. Capillary electrophoresis (CE)- and fluorescence anisotropy (FA)-immunoassays (IA) have been used for online measurements of hormone secretion on microfluidic platforms, although their use in glucagon assays is less common. We set out to compare a glucagon-competitive IA using these two techniques. Theoretical calibration curves were generated for both CE- and FA-IA and results indicated that CE-IA provided higher sensitivity than FA-IA. These results were confirmed in an experiment where both assays showed limits of detection (LOD) of 30 nM, but the CE-IA had ∼300-fold larger sensitivity from 0 to 200 nM glucagon. However, in online experiments where reagents were mixed within the device, the sensitivity of the CE-IA was reduced ∼3-fold resulting in a higher LOD of 70 nM, whereas the FA-IA remained essentially unchanged. This lowered sensitivity in the online CE-IA was likely due to poor sampling by electroosmotic flow from the high salt solution necessary in online experiments, whereas pressure-based sampling used in FA-IA was not affected. We conclude that FA-IA, despite lowered sensitivity, is more suitable for online mixing scenarios due to the ability to use pressure-driven flow and other practical advantages such as the use of larger channels.
Collapse
Affiliation(s)
- Yao Wang
- Department of Chemistry and Biochemistry, Florida State University, 95 Chieftain Way, Tallahassee, FL 32306
| | - Emily L. Skinner
- Department of Chemistry and Biochemistry, Florida State University, 95 Chieftain Way, Tallahassee, FL 32306
| | - Michael G. Roper
- Department of Chemistry and Biochemistry, Florida State University, 95 Chieftain Way, Tallahassee, FL 32306
| |
Collapse
|
4
|
Xu S, Inoue M, Yoshimura Y, Kondoh K, Naruse K, Hiyama TY. Celiac and superior mesenteric ganglia removal improves glucose tolerance and reduces pancreas islet size. Neurosci Lett 2024; 837:137919. [PMID: 39089611 DOI: 10.1016/j.neulet.2024.137919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 07/16/2024] [Accepted: 07/28/2024] [Indexed: 08/04/2024]
Abstract
The sympathetic nervous system is crucial for the regulation of visceral organ function. For instance, the activation of the sympathetic nervous system promotes glycogenolysis in the liver and modulates glucagon and insulin release from the pancreas, thereby raising blood glucose levels. A decrease in sympathetic nerve activity has the opposite effect. Although such acute effects of sympathetic activity changes have been studied, their long-term outcomes have not been previously examined. In this study, we removed the celiac/superior mesenteric ganglia, where sympathetic postganglionic neurons innervating pancreas and liver locate, and examined its effects on glucose homeostasis and islet size several weeks after surgery. Consistent with the reduction in gluconeogenesis, glucose tolerance improved in gangliectomized mice. However, contrary to our expectation that the inhibition of pancreatic function by sympathetic nerves would be relieved with gangliectomy, insulin or C-peptide release did not increase. Examining the size distribution of pancreatic islets, we identified that the gangliectomy led to a size reduction in large islets and a decrease in the proportion of α and β cells within each islet, as analyzed by immunostaining for insulin and glucagon, respectively. These results indicate that the absence of sympathetic nerve activity reduces the size of the pancreatic islets within a few weeks to reinstate the homeostatic mechanism of blood glucose levels.
Collapse
Affiliation(s)
- Shanshan Xu
- Department of Integrative Physiology, Tottori University Graduate School and Faculty of Medicine, Yonago, Japan; Department of Cellular Physiology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Misaki Inoue
- Department of Integrative Physiology, Tottori University Graduate School and Faculty of Medicine, Yonago, Japan
| | - Yuki Yoshimura
- Department of Integrative Physiology, Tottori University Graduate School and Faculty of Medicine, Yonago, Japan
| | - Kunio Kondoh
- Department of Integrative Physiology, Tottori University Graduate School and Faculty of Medicine, Yonago, Japan
| | - Keiji Naruse
- Department of Cardiovascular Physiology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan; Department of Cellular Physiology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Takeshi Y Hiyama
- Department of Integrative Physiology, Tottori University Graduate School and Faculty of Medicine, Yonago, Japan; International Platform for Dryland Research and Education, Tottori University, Tottori, Japan.
| |
Collapse
|
5
|
de Hoyos-Vega JM, Gonzalez-Suarez AM, Cedillo-Alcantar DF, Stybayeva G, Matveyenko A, Malhi H, Garcia-Cordero JL, Revzin A. Microfluidic 3D hepatic cultures integrated with a droplet-based bioanalysis unit. Biosens Bioelectron 2024; 248:115896. [PMID: 38176252 PMCID: PMC10916504 DOI: 10.1016/j.bios.2023.115896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Revised: 11/03/2023] [Accepted: 11/27/2023] [Indexed: 01/06/2024]
Abstract
A common challenge in microfluidic cell cultures has to do with analysis of cell function without replacing a significant fraction of the culture volume and disturbing local concentration gradients of signals. To address this challenge, we developed a microfluidic cell culture device with an integrated bioanalysis unit to enable on-chip analysis of picoliter volumes of cell-conditioned media. The culture module consisted of an array of 140 microwells with a diameter of 300 m which were made low-binding to promote organization of cells into 3D spheroids. The bioanalysis module contained a droplet generator unit, 15 micromechanical valves and reservoirs loaded with reagents. Each 0.8 nL droplet contained an aliquot of conditioned media mixed with assay reagents. The use of microvalves allowed us to load enzymatic assay and immunoassay into sequentially generated droplets for detection of glucose and albumin, respectively. As a biological application of the microfluidic device, we evaluated hormonal stimulation and glucose consumption of hepatic spheroids. To mimic physiological processes occurring during feeding and fasting, hepatic spheroids were exposed to pancreatic hormones, insulin or glucagon. The droplet-based bioanalysis module was used to measure uptake or release of glucose upon hormonal stimulation. In the future, we intend to use this microfluidic device to mimic and measure pathophysiological processes associated with hepatic insulin resistance and diabetes in the context of metabolic syndrome.
Collapse
Affiliation(s)
- Jose M de Hoyos-Vega
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, USA
| | | | - Diana F Cedillo-Alcantar
- Laboratory of Microtechnologies Applied to Biomedicine, Centro de Investigación y de Estudios Avanzados (Cinvestav), Monterrey, NL, Mexico
| | - Gulnaz Stybayeva
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, USA
| | - Aleksey Matveyenko
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, USA
| | - Harmeet Malhi
- Division of Gastroenterology and Hepatology, Mayo Clinic, MN, USA
| | - Jose L Garcia-Cordero
- Laboratory of Microtechnologies Applied to Biomedicine, Centro de Investigación y de Estudios Avanzados (Cinvestav), Monterrey, NL, Mexico
| | - Alexander Revzin
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, USA.
| |
Collapse
|
6
|
Regeenes R, Rocheleau JV. Twenty years of islet-on-a-chip: microfluidic tools for dissecting islet metabolism and function. LAB ON A CHIP 2024; 24:1327-1350. [PMID: 38277011 DOI: 10.1039/d3lc00696d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2024]
Abstract
Pancreatic islets are metabolically active micron-sized tissues responsible for controlling blood glucose through the secretion of insulin and glucagon. A loss of functional islet mass results in type 1 and 2 diabetes. Islet-on-a-chip devices are powerful microfluidic tools used to trap and study living ex vivo human and murine pancreatic islets and potentially stem cell-derived islet organoids. Devices developed over the past twenty years offer the ability to treat islets with controlled and dynamic microenvironments to mimic in vivo conditions and facilitate diabetes research. In this review, we explore the various islet-on-a-chip devices used to immobilize islets, regulate the microenvironment, and dynamically detect islet metabolism and insulin secretion. We first describe and assess the various methods used to immobilize islets including chambers, dam-walls, and hydrodynamic traps. We subsequently describe the surrounding methods used to create glucose gradients, enhance the reaggregation of dispersed islets, and control the microenvironment of stem cell-derived islet organoids. We focus on the various methods used to measure insulin secretion including capillary electrophoresis, droplet microfluidics, off-chip ELISAs, and on-chip fluorescence anisotropy immunoassays. Additionally, we delve into the various multiparametric readouts (NAD(P)H, Ca2+-activity, and O2-consumption rate) achieved primarily by adopting a microscopy-compatible optical window into the devices. By critical assessment of these advancements, we aim to inspire the development of new devices by the microfluidics community and accelerate the adoption of islet-on-a-chip devices by the wider diabetes research and clinical communities.
Collapse
Affiliation(s)
- Romario Regeenes
- Advanced Diagnostics, Toronto General Hospital Research Institute, Toronto, ON, Canada
- Institute of Biomedical Engineering, University of Toronto, Toronto, ON, Canada
| | - Jonathan V Rocheleau
- Advanced Diagnostics, Toronto General Hospital Research Institute, Toronto, ON, Canada
- Institute of Biomedical Engineering, University of Toronto, Toronto, ON, Canada
- Departments of Medicine and Physiology, University of Toronto, ON, Canada
| |
Collapse
|
7
|
Wang Y, Regeenes R, Memon M, Rocheleau JV. Insulin C-peptide secretion on-a-chip to measure the dynamics of secretion and metabolism from individual islets. CELL REPORTS METHODS 2023; 3:100602. [PMID: 37820726 PMCID: PMC10626205 DOI: 10.1016/j.crmeth.2023.100602] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 08/16/2023] [Accepted: 09/15/2023] [Indexed: 10/13/2023]
Abstract
First-phase glucose-stimulated insulin secretion is mechanistically linked to type 2 diabetes, yet the underlying metabolism is difficult to discern due to significant islet-to-islet variability. Here, we miniaturize a fluorescence anisotropy immunoassay onto a microfluidic device to measure C-peptide secretion from individual islets as a surrogate for insulin (InsC-chip). This method measures secretion from up to four islets at a time with ∼7 s resolution while providing an optical window for real-time live-cell imaging. Using the InsC-chip, we reveal two glucose-dependent peaks of insulin secretion (i.e., a double peak) within the classically defined 1st phase (<10 min). By combining real-time secretion and live-cell imaging, we show islets transition from glycolytic to oxidative phosphorylation (OxPhos)-driven metabolism at the nadir of the peaks. Overall, these data validate the InsC-chip to measure glucose-stimulated insulin secretion while revealing new dynamics in secretion defined by a shift in glucose metabolism.
Collapse
Affiliation(s)
- Yufeng Wang
- Advanced Diagnostics, Toronto General Hospital Research Institute, Toronto, ON M5G 1L7, Canada; Institute of Biomedical Engineering, University of Toronto, Toronto, ON M5S 3G9, Canada
| | - Romario Regeenes
- Advanced Diagnostics, Toronto General Hospital Research Institute, Toronto, ON M5G 1L7, Canada; Institute of Biomedical Engineering, University of Toronto, Toronto, ON M5S 3G9, Canada
| | - Mahnoor Memon
- Advanced Diagnostics, Toronto General Hospital Research Institute, Toronto, ON M5G 1L7, Canada; Institute of Biomedical Engineering, University of Toronto, Toronto, ON M5S 3G9, Canada
| | - Jonathan V Rocheleau
- Advanced Diagnostics, Toronto General Hospital Research Institute, Toronto, ON M5G 1L7, Canada; Institute of Biomedical Engineering, University of Toronto, Toronto, ON M5S 3G9, Canada; Departments of Medicine and Physiology, University of Toronto, Toronto, ON M5S 1A8, Canada.
| |
Collapse
|
8
|
Vanderlaan EL, Sexton J, Evans-Molina C, Buganza Tepole A, Voytik-Harbin SL. Islet-on-chip: promotion of islet health and function via encapsulation within a polymerizable fibrillar collagen scaffold. LAB ON A CHIP 2023; 23:4466-4482. [PMID: 37740372 DOI: 10.1039/d3lc00371j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/24/2023]
Abstract
The protection and interrogation of pancreatic β-cell health and function ex vivo is a fundamental aspect of diabetes research, including mechanistic studies, evaluation of β-cell health modulators, and development and quality control of replacement β-cell populations. However, present-day islet culture formats, including traditional suspension culture as well as many recently developed microfluidic devices, suspend islets in a liquid microenvironment, disrupting mechanochemical signaling normally found in vivo and limiting β-cell viability and function in vitro. Herein, we present a novel three-dimensional (3D) microphysiological system (MPS) to extend islet health and function ex vivo by incorporating a polymerizable collagen scaffold to restore biophysical support and islet-collagen mechanobiological cues. Informed by computational models of gas and molecular transport relevant to β-cell physiology, a MPS configuration was down-selected based on simulated oxygen and nutrient delivery to collagen-encapsulated islets, and 3D-printing was applied as a readily accessible, low-cost rapid prototyping method. Recreating critical aspects of the in vivo microenvironment within the MPS via perfusion and islet-collagen interactions mitigated post-isolation ischemia and apoptosis in mouse islets over a 5-day period. In contrast, islets maintained in traditional suspension formats exhibited progressive hypoxic and apoptotic cores. Finally, dynamic glucose-stimulated insulin secretion measurements were performed on collagen-encapsulated mouse islets in the absence and presence of well-known chemical stressor thapsigargin using the MPS platform and compared to conventional protocols involving commercial perifusion machines. Overall, the MPS described here provides a user-friendly islet culture platform that not only supports long-term β-cell health and function but also enables multiparametric evaluations.
Collapse
Affiliation(s)
- Emma L Vanderlaan
- Weldon School of Biomedical Engineering, College of Engineering, Purdue University, West Lafayette, IN 47907, USA.
- Medical Scientist/Engineer Training Program, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Joshua Sexton
- Weldon School of Biomedical Engineering, College of Engineering, Purdue University, West Lafayette, IN 47907, USA.
| | - Carmella Evans-Molina
- Center for Diabetes and Metabolic Diseases, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Roudebush VA Medical Center, Indianapolis, IN 46202, USA
| | - Adrian Buganza Tepole
- Weldon School of Biomedical Engineering, College of Engineering, Purdue University, West Lafayette, IN 47907, USA.
- School of Mechanical Engineering, College of Engineering, Purdue University, West Lafayette, IN 47907, USA
| | - Sherry L Voytik-Harbin
- Weldon School of Biomedical Engineering, College of Engineering, Purdue University, West Lafayette, IN 47907, USA.
- Department of Basic Medical Sciences, College of Veterinary Medicine, Purdue University, West Lafayette, IN 47906, USA
| |
Collapse
|
9
|
Vanderlaan EL, Nolan JK, Sexton J, Evans-Molina C, Lee H, Voytik-Harbin SL. Development of electrochemical Zn 2+ sensors for rapid voltammetric detection of glucose-stimulated insulin release from pancreatic β-cells. Biosens Bioelectron 2023; 235:115409. [PMID: 37244091 DOI: 10.1016/j.bios.2023.115409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 05/12/2023] [Accepted: 05/17/2023] [Indexed: 05/29/2023]
Abstract
Diabetes is a chronic disease characterized by elevated blood glucose levels resulting from absent or ineffective insulin release from pancreatic β-cells. β-cell function is routinely assessed in vitro using static or dynamic glucose-stimulated insulin secretion (GSIS) assays followed by insulin quantification via time-consuming, costly enzyme-linked immunosorbent assays (ELISA). In this study, we developed a highly sensitive electrochemical sensor for zinc (Zn2+), an ion co-released with insulin, as a rapid and low-cost method for measuring dynamic insulin release. Different modifications to glassy carbon electrodes (GCE) were evaluated to develop a sensor that detects physiological Zn2+ concentrations while operating within a biological Krebs Ringer Buffer (KRB) medium (pH 7.2). Electrodeposition of bismuth and indium improved Zn2+ sensitivity and limit of detection (LOD), and a Nafion coating improved selectivity. Using anodic stripping voltammetry (ASV) with a pre-concentration time of 6 min, we achieved a LOD of 2.3 μg/L over the wide linear range of 2.5-500 μg/L Zn2+. Sensor performance improved with 10-min pre-concentration, resulting in increased sensitivity, lower LOD (0.18 μg/L), and a bilinear response over the range of 0.25-10 μg/L Zn2+. We further characterized the physicochemical properties of the Zn2+ sensor using scanning electron microscopy (SEM), cyclic voltammetry (CV), and electrochemical impedance spectroscopy (EIS). Finally, we demonstrated the sensor's capability to measure Zn2+ release from glucose-stimulated INS-1 β-cells and primary mouse islets. Our results exhibited a high correlation with secreted insulin and validated the sensor's potential as a rapid alternative to conventional two-step GSIS plus ELISA methods.
Collapse
Affiliation(s)
- Emma L Vanderlaan
- Weldon School of Biomedical Engineering, College of Engineering, Purdue University, West Lafayette, IN, USA; Indiana Medical Scientist/Engineer Training Program, Indiana University School of Medicine, Indianapolis, IN, USA
| | - James K Nolan
- Weldon School of Biomedical Engineering, College of Engineering, Purdue University, West Lafayette, IN, USA; Center for Implantable Devices, Birck Nanotechnology Center, Purdue University, West Lafayette, IN, USA
| | - Joshua Sexton
- Weldon School of Biomedical Engineering, College of Engineering, Purdue University, West Lafayette, IN, USA
| | - Carmella Evans-Molina
- Indiana Center for Diabetes and Metabolic Diseases, Indiana University School of Medicine, Indianapolis, IN, USA; Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN, USA; Roudebush VA Medical Center, Indianapolis, IN, USA
| | - Hyowon Lee
- Weldon School of Biomedical Engineering, College of Engineering, Purdue University, West Lafayette, IN, USA; Center for Implantable Devices, Birck Nanotechnology Center, Purdue University, West Lafayette, IN, USA
| | - Sherry L Voytik-Harbin
- Weldon School of Biomedical Engineering, College of Engineering, Purdue University, West Lafayette, IN, USA; Department of Basic Medical Sciences, College of Veterinary Medicine, Purdue University, West Lafayette, IN, USA.
| |
Collapse
|
10
|
Adeoye DI, Wang Y, Davis JJ, Roper MG. Automated cellular stimulation with integrated pneumatic valves and fluidic capacitors. Analyst 2023; 148:1227-1234. [PMID: 36786685 PMCID: PMC10023383 DOI: 10.1039/d2an01985j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/15/2023]
Abstract
Microfluidic technologies have proven to be a reliable tool in profiling dynamic insulin secretion from islets of Langerhans. Most of these systems rely on external pressure sources to induce flow, leading to difficulties moving to more elaborate systems. To reduce complexity, a microfluidic system was developed that used a single vacuum source at the outlet to drive fluidic transport of immunoassay reagents and stimulation solutions throughout the device. A downside to this approach is the lack of flow control over the reagents delivered to the islet chamber. To address this challenge, 4-layer pneumatic valves were integrated into the perfusion lines to automate and control the delivery of stimulants; however, it was found that as the valves closed, spikes in the flow would lead to abnormal insulin secretion profiles. Fluidic capacitors were then incorporated after the valves and found to remove the spikes. The combination of the valves and capacitors resulted in automated collection of insulin secretion profiles from single murine islets that were similar to those previously reported in the literature. In the future, these integrated fluidic components may enable more complex channel designs to be used with a relatively simple flow control solution.
Collapse
Affiliation(s)
- Damilola I Adeoye
- Department of Chemistry & Biochemistry, Florida State University, 95 Chieftain Way, Tallahassee, FL 32306, USA.
| | - Yao Wang
- Department of Chemistry & Biochemistry, Florida State University, 95 Chieftain Way, Tallahassee, FL 32306, USA.
| | - Joshua J Davis
- Department of Chemistry & Biochemistry, Florida State University, 95 Chieftain Way, Tallahassee, FL 32306, USA.
| | - Michael G Roper
- Department of Chemistry & Biochemistry, Florida State University, 95 Chieftain Way, Tallahassee, FL 32306, USA. .,Program in Molecular Biophysics, Florida State University, 95 Chieftain Way, Tallahassee, FL 32306, USA
| |
Collapse
|
11
|
Shinde A, Illath K, Kasiviswanathan U, Nagabooshanam S, Gupta P, Dey K, Chakrabarty P, Nagai M, Rao S, Kar S, Santra TS. Recent Advances of Biosensor-Integrated Organ-on-a-Chip Technologies for Diagnostics and Therapeutics. Anal Chem 2023; 95:3121-3146. [PMID: 36716428 DOI: 10.1021/acs.analchem.2c05036] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Affiliation(s)
- Ashwini Shinde
- Department of Engineering Design, Indian Institute of Technology Madras, Chennai 600036, India
| | - Kavitha Illath
- Department of Engineering Design, Indian Institute of Technology Madras, Chennai 600036, India
| | - Uvanesh Kasiviswanathan
- Department of Engineering Design, Indian Institute of Technology Madras, Chennai 600036, India
| | - Shalini Nagabooshanam
- Department of Engineering Design, Indian Institute of Technology Madras, Chennai 600036, India
| | - Pallavi Gupta
- Department of Engineering Design, Indian Institute of Technology Madras, Chennai 600036, India
| | - Koyel Dey
- Department of Engineering Design, Indian Institute of Technology Madras, Chennai 600036, India
| | - Pulasta Chakrabarty
- Department of Engineering Design, Indian Institute of Technology Madras, Chennai 600036, India
| | - Moeto Nagai
- Department of Mechanical Engineering, Toyohashi University of Technology, Toyohashi 441-8580, Japan
| | - Suresh Rao
- Department of Engineering Design, Indian Institute of Technology Madras, Chennai 600036, India
| | - Srabani Kar
- Department of Physics, Indian Institute of Science Education and Research (IISER), Tirupati, Andhra Pradesh 517507, India
| | - Tuhin Subhra Santra
- Department of Engineering Design, Indian Institute of Technology Madras, Chennai 600036, India
| |
Collapse
|
12
|
Monitoring hormone and small molecule secretion dynamics from islets-on-chip. Anal Bioanal Chem 2023; 415:533-544. [PMID: 36459167 DOI: 10.1007/s00216-022-04460-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 11/17/2022] [Accepted: 11/22/2022] [Indexed: 12/03/2022]
Abstract
Tissue functions such as hormone secretion involve the interplay of multiple chemical signals and metabolic processes over time. Measuring the different components involved is useful in unraveling the interactions, but often requires use of multiple analytical techniques. The challenge of measuring the necessary components with temporal resolution is greater when tissue samples are limited. Here, an accessible microfluidic platform compatible with multiple measurement techniques to monitor cell secretions has been developed. The platform is applied to islets of Langerhans, micro-organs involved in glucose homeostasis and diabetes. The device houses 1 to 8 islets and the perfusion fluid can be controlled to change conditions, e.g., glucose concentration, in seconds. Samples are collected in fractions and split for offline analysis. The device is paired with a scaled-down immunoassay, AlphaLISA, for hormone quantification and liquid chromatography-mass spectrometry for small molecule quantification to study secretion dynamics. The combined system allows the first simultaneous measurement of insulin, glucagon, biogenic amines, and amino acids from islet secretions. The combined measurements revealed correlation in secretion events and differences in timing of release between hormones and biogenic amines and amino acids. These efforts decreased the number of islets required compared to standard approaches, thus decreasing necessary animal use, reagent use, and cost, while increasing information content achievable from one sample. The microfluidic device is a suitable platform for in-depth characterization of secretion from small tissue samples.
Collapse
|
13
|
Li W, Peng YF. Advances in microfluidic chips based on islet hormone-sensing techniques. World J Diabetes 2023; 14:17-25. [PMID: 36684385 PMCID: PMC9850799 DOI: 10.4239/wjd.v14.i1.17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 11/11/2022] [Accepted: 12/07/2022] [Indexed: 01/10/2023] Open
Abstract
Diabetes mellitus is a global health problem resulting from islet dysfunction or insulin resistance. The mechanisms of islet dysfunction are still under investigation. Islet hormone secretion is the main function of islets, and serves an important role in the homeostasis of blood glucose. Elucidating the detailed mechanism of islet hormone secretome distortion can provide clues for the treatment of diabetes. Therefore, it is crucial to develop accurate, real-time, labor-saving, high-throughput, automated, and cost-effective techniques for the sensing of islet secretome. Microfluidic chips, an elegant platform that combines biology, engineering, computer science, and biomaterials, have attracted tremendous interest from scientists in the field of diabetes worldwide. These tiny devices are miniatures of traditional experimental systems with more advantages of time-saving, reagent-minimization, automation, high-throughput, and online detection. These features of microfluidic chips meet the demands of islet secretome analysis and a variety of chips have been designed in the past 20 years. In this review, we present a brief introduction of microfluidic chips, and three microfluidic chips-based islet hormone sensing techniques. We focus mainly on the theory of these techniques, and provide detailed examples based on these theories with the hope of providing some insights into the design of future chips or whole detection systems.
Collapse
Affiliation(s)
- Wei Li
- Department of Endocrinology, Suzhou Hospital of Anhui Medical University, Suzhou 234000, Anhui Province, China
| | - You-Fan Peng
- Department of Respiratory and Critical Care Medicine, The Affiliated Hospital of Youjiang Medical University for Nationalities, Baise 533000, Guangxi Zhuang Autonomous Region, China
| |
Collapse
|
14
|
Rodrigues Oliveira SM, Rebocho A, Ahmadpour E, Nissapatorn V, de Lourdes Pereira M. Type 1 Diabetes Mellitus: A Review on Advances and Challenges in Creating Insulin Producing Devices. MICROMACHINES 2023; 14:151. [PMID: 36677212 PMCID: PMC9867263 DOI: 10.3390/mi14010151] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 12/25/2022] [Accepted: 12/30/2022] [Indexed: 06/17/2023]
Abstract
Type 1 diabetes mellitus (T1DM) is the most common autoimmune chronic disease in young patients. It is caused by the destruction of pancreatic endocrine β-cells that produce insulin in specific areas of the pancreas, known as islets of Langerhans. As a result, the body becomes insulin deficient and hyperglycemic. Complications associated with diabetes are life-threatening and the current standard of care for T1DM consists still of insulin injections. Lifesaving, exogenous insulin replacement is a chronic and costly burden of care for diabetic patients. Alternative therapeutic options have been the focus in these fields. Advances in molecular biology technologies and in microfabrication have enabled promising new therapeutic options. For example, islet transplantation has emerged as an effective treatment to restore the normal regulation of blood glucose in patients with T1DM. However, this technique has been hampered by obstacles, such as limited islet availability, extensive islet apoptosis, and poor islet vascular engraftment. Many of these unsolved issues need to be addressed before a potential cure for T1DM can be a possibility. New technologies like organ-on-a-chip platforms (OoC), multiplexed assessment tools and emergent stem cell approaches promise to enhance therapeutic outcomes. This review will introduce the disorder of type 1 diabetes mellitus, an overview of advances and challenges in the areas of microfluidic devices, monitoring tools, and prominent use of stem cells, and how they can be linked together to create a viable model for the T1DM treatment. Microfluidic devices like OoC platforms can establish a crucial platform for pathophysiological and pharmacological studies as they recreate the pancreatic environment. Stem cell use opens the possibility to hypothetically generate a limitless number of functional pancreatic cells. Additionally, the integration of stem cells into OoC models may allow personalized or patient-specific therapies.
Collapse
Affiliation(s)
- Sonia M. Rodrigues Oliveira
- HMRI-Hunter Medical Research Institute, New Lambton, NSW 2305, Australia
- CICECO-Aveiro Institute of Materials, University of Aveiro, 3810-193 Aveiro, Portugal
| | - António Rebocho
- Department of Biology, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Ehsan Ahmadpour
- Drug Applied Research Center, Department of Parasitology and Mycology, Tabriz University of Medical Sciences, Tabriz 5166/15731, Iran
- Department of Parasitology and Mycology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz 5166/15731, Iran
| | - Veeranoot Nissapatorn
- Department of Medical Technology, School of Allied Health Sciences, Walailak University, Nakhon Si Thammarat 80160, Thailand
- School of Allied Health Sciences, Southeast Asia Water Team (SEAWater Team), World Union for Herbal Drug Discovery (WUHeDD), Research Excellence Center for Innovation and Health Products, Walailak University, Nakhon Si Thammarat 80160, Thailand
| | - Maria de Lourdes Pereira
- CICECO-Aveiro Institute of Materials, University of Aveiro, 3810-193 Aveiro, Portugal
- Department of Medical Sciences, University of Aveiro, 3810-193 Aveiro, Portugal
| |
Collapse
|
15
|
Ota N, Tanaka N, Sato A, Shen Y, Yalikun Y, Tanaka Y. Microenvironmental Analysis and Control for Local Cells under Confluent Conditions via a Capillary-Based Microfluidic Device. Anal Chem 2022; 94:16299-16307. [DOI: 10.1021/acs.analchem.2c02815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Affiliation(s)
- Nobutoshi Ota
- Center for Biosystems Dynamics Research (BDR), RIKEN, 1-3 Yamadaoka, Suita, Osaka565-0871, Japan
| | - Nobuyuki Tanaka
- Center for Biosystems Dynamics Research (BDR), RIKEN, 1-3 Yamadaoka, Suita, Osaka565-0871, Japan
| | - Asako Sato
- Center for Biosystems Dynamics Research (BDR), RIKEN, 1-3 Yamadaoka, Suita, Osaka565-0871, Japan
| | - Yigang Shen
- Center for Biosystems Dynamics Research (BDR), RIKEN, 1-3 Yamadaoka, Suita, Osaka565-0871, Japan
| | - Yaxiaer Yalikun
- Center for Biosystems Dynamics Research (BDR), RIKEN, 1-3 Yamadaoka, Suita, Osaka565-0871, Japan
- Graduate School of Science and Technology, Nara Institute of Science and Technology, 8916-5 Takayama-cho, Ikoma, Nara630-0192, Japan
| | - Yo Tanaka
- Center for Biosystems Dynamics Research (BDR), RIKEN, 1-3 Yamadaoka, Suita, Osaka565-0871, Japan
| |
Collapse
|
16
|
Goswami I, de Klerk E, Carnese P, Hebrok M, Healy KE. Multiplexed microfluidic platform for stem-cell derived pancreatic islet β cells. LAB ON A CHIP 2022; 22:4430-4442. [PMID: 36305868 PMCID: PMC9642094 DOI: 10.1039/d2lc00468b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 10/06/2022] [Indexed: 06/16/2023]
Abstract
Stem cell-derived β cells offer an alternative to primary islets for biomedical discoveries as well as a potential surrogate for islet transplantation. The expense and challenge of obtaining and maintaining functional stem cell-derived β cells calls for a need to develop better high-content and high-throughput culture systems. Microphysiological systems (MPS) are promising high-content in vitro platforms, but scaling for high-throughput screening and discoveries remain a challenge. Traditionally, simultaneous multiplexing of liquid handling and cell loading poses a challenge in the design of high-throughput MPS. Furthermore, although MPS for islet β culture/testing have been developed, studies on multi-day culture of stem-cell derived β cells in MPS have been limited. We present a scalable, multiplexed islet β MPS device that incorporates microfluidic gradient generators to parallelize fluid handling for culture and test conditions. We demonstrated the viability and functionality of the stem cell-derived enriched β clusters (eBCs) for a week, as assessed by the ∼2 fold insulin release by the clusters to glucose challenge. To show the scalable multiplexing for drug testing, we demonstrated the loss of stimulation index after long-term exposure to logarithmic concentration range of glybenclamide. The MPS cultured eBCs also confirmed a glycolytic bottleneck as inferred by insulin secretion responses to metabolites methyl succinate and glyceric acid. Thus, we present an innovative culture platform for eBCs with a balance of high-content and high-throughput characteristics.
Collapse
Affiliation(s)
- Ishan Goswami
- Department of Bioengineering and California Institute for Quantitative Biosciences (QB3), University of California Berkeley, Berkeley, CA 94720, USA.
- Department of Materials Science and Engineering, University of California Berkeley, Berkeley, CA 94720, USA
| | - Eleonora de Klerk
- Diabetes Center, University of California San Francisco, San Francisco, CA 94143, USA
| | - Phichitpol Carnese
- Diabetes Center, University of California San Francisco, San Francisco, CA 94143, USA
| | - Matthias Hebrok
- Diabetes Center, University of California San Francisco, San Francisco, CA 94143, USA
| | - Kevin E Healy
- Department of Bioengineering and California Institute for Quantitative Biosciences (QB3), University of California Berkeley, Berkeley, CA 94720, USA.
- Department of Materials Science and Engineering, University of California Berkeley, Berkeley, CA 94720, USA
| |
Collapse
|
17
|
Microfluidic Technology for Evaluating and Preserving Islet Function for Islet Transplant in Type 1 Diabetes. CURRENT TRANSPLANTATION REPORTS 2022. [DOI: 10.1007/s40472-022-00377-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
18
|
Hospodiuk-Karwowski M, Chi K, Pritchard J, Catchmark JM. Vascularized pancreas-on-a-chip device produced using a printable simulated extracellular matrix. Biomed Mater 2022; 17. [PMID: 36001993 DOI: 10.1088/1748-605x/ac8c74] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 08/24/2022] [Indexed: 11/12/2022]
Abstract
The extracellular matrix (ECM) influences cellular behavior, function, and fate. The ECM surrounding Langerhans islets has not been investigated in detail to explain its role in the development and maturation of pancreatic β-cells. Herein, a complex combination of the simulated ECM (sECM) has been examined with a comprehensive analysis of cell response and a variety of controls. The most promising results were obtained from group containing fibrin, collagen type I, Matrigel®, hyaluronic acid, methylcellulose, and two compounds of functionalized, ionically crosslinking bacterial cellulose (sECMbc). Even though the cell viability was not significantly impacted, the performance of group of sECMbc showed 2 to 4x higher sprouting number and length, 2 to 4x higher insulin secretion in static conditions, and 2 to 10x higher gene expression of VEGF-A, Endothelin-1, and NOS3 than the control group of fibrin matrix (sECMf). Each material was tested in a hydrogel-based, perfusable, pancreas-on-a-chip device and the best group - sECMbc has been tested with the drug Sunitinib to show the extended possibilities of the device for both diabetes-like screening as well as PDAC chemotherapeutics screening for potential personal medicine approach. It proved its functionality in 7 days dynamic culture and is suitable as a physiological tissue model. Moreover, the device with the pancreatic-like spheroids was 3D bioprintable and perfusable.
Collapse
Affiliation(s)
- Monika Hospodiuk-Karwowski
- Department of Agricultural and Biological Engineering, The Pennsylvania State University, 201 Old Main, University Park, Pennsylvania, 16802-1503, UNITED STATES
| | - Kai Chi
- Department of Agricultural and Biological Engineering, The Pennsylvania State University, 201 Old Main, University Park, Pennsylvania, 16802-1503, UNITED STATES
| | - Justin Pritchard
- Biomedical Engineering Department, The Pennsylvania State University, 201 Old Main, University Park, Pennsylvania, 16802-1503, UNITED STATES
| | - Jeffrey M Catchmark
- Department of Agricultural and Biological Engineering, The Pennsylvania State University, 201 Old Main, University Park, Pennsylvania, 16802-1503, UNITED STATES
| |
Collapse
|
19
|
Yin J, Meng H, Lin J, Ji W, Xu T, Liu H. Pancreatic islet organoids-on-a-chip: how far have we gone? J Nanobiotechnology 2022; 20:308. [PMID: 35764957 PMCID: PMC9238112 DOI: 10.1186/s12951-022-01518-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 06/20/2022] [Indexed: 01/10/2023] Open
Abstract
Diabetes mellitus (DM) is a disease caused by dysfunction or disruption of pancreatic islets. The advent and development of microfluidic organoids-on-a-chip platforms have facilitated reproduce of complex and dynamic environment for tissue or organ development and complex disease processes. For the research and treatment of DM, the platforms have been widely used to investigate the physiology and pathophysiology of islets. In this review, we first highlight how pancreatic islet organoids-on-a-chip have improved the reproducibility of stem cell differentiation and organoid culture. We further discuss the efficiency of microfluidics in the functional evaluation of pancreatic islet organoids, such as single-islet-sensitivity detection, long-term real-time monitoring, and automatic glucose adjustment to provide relevant stimulation. Then, we present the applications of islet-on-a-chip technology in disease modeling, drug screening and cell replacement therapy. Finally, we summarize the development and challenges of islet-on-a-chip and discuss the prospects of future research.
Collapse
Affiliation(s)
- Jiaxiang Yin
- Bioland Laboratory, Guangzhou, Guangdong, China.,Guangzhou Laboratory, Guangzhou, Guangdong, China.,National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Hao Meng
- Guangzhou Laboratory, Guangzhou, Guangdong, China
| | | | - Wei Ji
- Bioland Laboratory, Guangzhou, Guangdong, China.,National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Tao Xu
- Guangzhou Laboratory, Guangzhou, Guangdong, China. .,School of Biomedical Engineering, Guangzhou Medical University, Guangzhou, China.
| | - Huisheng Liu
- Bioland Laboratory, Guangzhou, Guangdong, China. .,Guangzhou Laboratory, Guangzhou, Guangdong, China. .,School of Biomedical Engineering, Guangzhou Medical University, Guangzhou, China.
| |
Collapse
|
20
|
Increasing insulin measurement throughput by fluorescence anisotropy imaging immunoassays. Anal Chim Acta 2022; 1212:339942. [DOI: 10.1016/j.aca.2022.339942] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 05/10/2022] [Accepted: 05/11/2022] [Indexed: 01/25/2023]
|
21
|
Quintard C, Tubbs E, Achard JL, Navarro F, Gidrol X, Fouillet Y. Microfluidic device integrating a network of hyper-elastic valves for automated glucose stimulation and insulin secretion collection from a single pancreatic islet. Biosens Bioelectron 2022; 202:113967. [DOI: 10.1016/j.bios.2022.113967] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 12/22/2021] [Accepted: 01/03/2022] [Indexed: 01/15/2023]
|
22
|
Essaouiba A, Jellali R, Poulain S, Tokito F, Gilard F, Gakière B, Kim SH, Legallais C, Sakai Y, Leclerc E. Analysis of the transcriptome and metabolome of pancreatic spheroids derived from human induced pluripotent stem cells and matured in an organ-on-a-chip. Mol Omics 2022; 18:791-804. [DOI: 10.1039/d2mo00132b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The differentiation of pancreatic cells from hiPSC is one of the emerging strategies to achieve an in vitro pancreas model. Here, hiPSC-derived β-like-cells spheroids were cultured in microfluidic environment and characterized using omics analysis.
Collapse
Affiliation(s)
- Amal Essaouiba
- Université de technologie de Compiègne, CNRS, Biomechanics and Bioengineering, Centre de recherche Royallieu CS 60319, 60203 Compiegne, France
- CNRS IRL 2820, Laboratory for Integrated Micro Mechatronic Systems, Institute of Industrial Science, University of Tokyo, 4-6-1 Komaba; Meguro-ku, Tokyo, 153-8505, Japan
- Department of Chemical System Engineering, Graduate School of Engineering, the University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan
| | - Rachid Jellali
- Université de technologie de Compiègne, CNRS, Biomechanics and Bioengineering, Centre de recherche Royallieu CS 60319, 60203 Compiegne, France
| | - Stéphane Poulain
- Institute of Industrial Science, The University of Tokyo, 4-6-1 Komaba; Meguro-ku, Tokyo, 153-8505, Japan
| | - Fumiya Tokito
- Department of Chemical System Engineering, Graduate School of Engineering, the University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan
| | - Françoise Gilard
- Plateforme Métabolisme-Métabolome, Institute of Plant Sciences Paris-Saclay (IPS2), Université Paris-Saclay, CNRS, INRAE, Université d’Evry, Université de Paris, 91190 Gif-sur-Yvette, France
| | - Bertrand Gakière
- Plateforme Métabolisme-Métabolome, Institute of Plant Sciences Paris-Saclay (IPS2), Université Paris-Saclay, CNRS, INRAE, Université d’Evry, Université de Paris, 91190 Gif-sur-Yvette, France
| | - Soo Hyeon Kim
- Institute of Industrial Science, The University of Tokyo, 4-6-1 Komaba; Meguro-ku, Tokyo, 153-8505, Japan
| | - Cécile Legallais
- Université de technologie de Compiègne, CNRS, Biomechanics and Bioengineering, Centre de recherche Royallieu CS 60319, 60203 Compiegne, France
| | - Yasuyuki Sakai
- CNRS IRL 2820, Laboratory for Integrated Micro Mechatronic Systems, Institute of Industrial Science, University of Tokyo, 4-6-1 Komaba; Meguro-ku, Tokyo, 153-8505, Japan
- Department of Chemical System Engineering, Graduate School of Engineering, the University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan
| | - Eric Leclerc
- Université de technologie de Compiègne, CNRS, Biomechanics and Bioengineering, Centre de recherche Royallieu CS 60319, 60203 Compiegne, France
- CNRS IRL 2820, Laboratory for Integrated Micro Mechatronic Systems, Institute of Industrial Science, University of Tokyo, 4-6-1 Komaba; Meguro-ku, Tokyo, 153-8505, Japan
| |
Collapse
|
23
|
Wu Jin P, Rousset N, Hierlemann A, Misun PM. A Microfluidic Hanging-Drop-Based Islet Perifusion System for Studying Glucose-Stimulated Insulin Secretion From Multiple Individual Pancreatic Islets. Front Bioeng Biotechnol 2021; 9:674431. [PMID: 34055765 PMCID: PMC8149801 DOI: 10.3389/fbioe.2021.674431] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Accepted: 04/12/2021] [Indexed: 01/09/2023] Open
Abstract
Islet perifusion systems can be used to monitor the highly dynamic insulin release of pancreatic islets in glucose-stimulated insulin secretion (GSIS) assays. Here, we present a new generation of the microfluidic hanging-drop-based islet perifusion platform that was developed to study the alterations in insulin secretion dynamics from single pancreatic islet microtissues at high temporal resolution. The platform was completely redesigned to increase experimental throughput and to reduce operational complexity. The experimental throughput was increased fourfold by implementing a network of interconnected hanging drops, which allows for performing GSIS assays with four individual islet microtissues in parallel with a sampling interval of 30 s. We introduced a self-regulating drop-height mechanism that enables continuous flow and maintains a constant liquid volume in the chip, which enables simple and robust operation. Upon glucose stimulation, reproducible biphasic insulin release was simultaneously observed from all islets in the system. The measured insulin concentrations showed low sample-to-sample variation as a consequence of precise liquid handling with stable drop volumes, equal flow rates in the channels, and accurately controlled sampling volumes in all four drops. The presented device will be a valuable tool in islet and diabetes research for studying dynamic insulin secretion from individual pancreatic islets.
Collapse
Affiliation(s)
| | | | - Andreas Hierlemann
- Bio Engineering Laboratory, Department of Biosystems Science and Engineering, ETH Zürich, Basel, Switzerland
| | - Patrick M. Misun
- Bio Engineering Laboratory, Department of Biosystems Science and Engineering, ETH Zürich, Basel, Switzerland
| |
Collapse
|
24
|
Ortega MA, Rodríguez-Comas J, Yavas O, Velasco-Mallorquí F, Balaguer-Trias J, Parra V, Novials A, Servitja JM, Quidant R, Ramón-Azcón J. In Situ LSPR Sensing of Secreted Insulin in Organ-on-Chip. BIOSENSORS-BASEL 2021; 11:bios11050138. [PMID: 33924867 PMCID: PMC8144989 DOI: 10.3390/bios11050138] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 04/17/2021] [Accepted: 04/25/2021] [Indexed: 01/10/2023]
Abstract
Organ-on-a-chip (OOC) devices offer new approaches for metabolic disease modeling and drug discovery by providing biologically relevant models of tissues and organs in vitro with a high degree of control over experimental variables for high-content screening applications. Yet, to fully exploit the potential of these platforms, there is a need to interface them with integrated non-labeled sensing modules, capable of monitoring, in situ, their biochemical response to external stimuli, such as stress or drugs. In order to meet this need, we aim here to develop an integrated technology based on coupling a localized surface plasmon resonance (LSPR) sensing module to an OOC device to monitor the insulin in situ secretion in pancreatic islets, a key physiological event that is usually perturbed in metabolic diseases such as type 2 diabetes (T2D). As a proof of concept, we developed a biomimetic islet-on-a-chip (IOC) device composed of mouse pancreatic islets hosted in a cellulose-based scaffold as a novel approach. The IOC was interfaced with a state-of-the-art on-chip LSPR sensing platform to monitor the in situ insulin secretion. The developed platform offers a powerful tool to enable the in situ response study of microtissues to external stimuli for applications such as a drug-screening platform for human models, bypassing animal testing.
Collapse
Affiliation(s)
- María A. Ortega
- Biosensors for Bioengineering Group, Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), Baldiri I Reixac, 10-12, 08028 Barcelona, Spain; (M.A.O.); (J.R.-C.); (F.V.-M.); (J.B.-T.); (V.P.)
| | - Júlia Rodríguez-Comas
- Biosensors for Bioengineering Group, Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), Baldiri I Reixac, 10-12, 08028 Barcelona, Spain; (M.A.O.); (J.R.-C.); (F.V.-M.); (J.B.-T.); (V.P.)
| | - Ozlem Yavas
- Plasmon Nano-Optics Group, ICFO-Institute for Photonics Sciences, The Barcelona Institute of Science and Technology, 08860 Barcelona, Spain; (O.Y.); (R.Q.)
| | - Ferran Velasco-Mallorquí
- Biosensors for Bioengineering Group, Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), Baldiri I Reixac, 10-12, 08028 Barcelona, Spain; (M.A.O.); (J.R.-C.); (F.V.-M.); (J.B.-T.); (V.P.)
| | - Jordina Balaguer-Trias
- Biosensors for Bioengineering Group, Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), Baldiri I Reixac, 10-12, 08028 Barcelona, Spain; (M.A.O.); (J.R.-C.); (F.V.-M.); (J.B.-T.); (V.P.)
| | - Victor Parra
- Biosensors for Bioengineering Group, Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), Baldiri I Reixac, 10-12, 08028 Barcelona, Spain; (M.A.O.); (J.R.-C.); (F.V.-M.); (J.B.-T.); (V.P.)
| | - Anna Novials
- Diabetes and Obesity Research Laboratory, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain; (A.N.); (J.M.S.)
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas (CIBERDEM), 28029 Madrid, Spain
| | - Joan M. Servitja
- Diabetes and Obesity Research Laboratory, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain; (A.N.); (J.M.S.)
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas (CIBERDEM), 28029 Madrid, Spain
| | - Romain Quidant
- Plasmon Nano-Optics Group, ICFO-Institute for Photonics Sciences, The Barcelona Institute of Science and Technology, 08860 Barcelona, Spain; (O.Y.); (R.Q.)
- Nanophotonic Systems Laboratory, Department of Mechanical and Process Engineering, ETH Zurich, 8092 Zurich, Switzerland
- ICREA-Institució Catalana de Recerca i Estudis Avançats, 08010 Barcelona, Spain
| | - Javier Ramón-Azcón
- Biosensors for Bioengineering Group, Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), Baldiri I Reixac, 10-12, 08028 Barcelona, Spain; (M.A.O.); (J.R.-C.); (F.V.-M.); (J.B.-T.); (V.P.)
- ICREA-Institució Catalana de Recerca i Estudis Avançats, 08010 Barcelona, Spain
- Correspondence:
| |
Collapse
|
25
|
Hatamie A, Ren L, Dou H, Gandasi NR, Rorsman P, Ewing A. Nanoscale Amperometry Reveals that Only a Fraction of Vesicular Serotonin Content is Released During Exocytosis from Beta Cells. Angew Chem Int Ed Engl 2021; 60:7593-7596. [PMID: 33340209 PMCID: PMC8049002 DOI: 10.1002/anie.202015902] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Indexed: 12/23/2022]
Abstract
Recent work has shown that chemical release during the fundamental cellular process of exocytosis in model cell lines is not all-or-none. We tested this theory for vesicular release from single pancreatic beta cells. The vesicles in these cells release insulin, but also serotonin, which is detectible with amperometric methods. Traditionally, it is assumed that exocytosis in beta cells is all-or-none. Here, we use a multidisciplinary approach involving nanoscale amperometric chemical methods to explore the chemical nature of insulin exocytosis. We amperometrically quantified the number of serotonin molecules stored inside of individual nanoscale vesicles (39 317±1611) in the cell cytoplasm before exocytosis and the number of serotonin molecules released from single cells (13 310±1127) for each stimulated exocytosis event. Thus, beta cells release only one-third of their granule content, clearly supporting partial release in this system. We discuss these observations in the context of type-2 diabetes.
Collapse
Affiliation(s)
- Amir Hatamie
- Department of Chemistry and Molecular BiologyUniversity of GothenburgKemivägen 1041296GothenburgSweden
| | - Lin Ren
- Department of Chemistry and Molecular BiologyUniversity of GothenburgKemivägen 1041296GothenburgSweden
| | - Haiqiang Dou
- Department of Physiology, Sahlgrenska AcademyUniversity of GothenburgMedicinaregatan 11–1341390GothenburgSweden
| | - Nikhil R. Gandasi
- Department of Physiology, Sahlgrenska AcademyUniversity of GothenburgMedicinaregatan 11–1341390GothenburgSweden
| | - Patrik Rorsman
- Department of Physiology, Sahlgrenska AcademyUniversity of GothenburgMedicinaregatan 11–1341390GothenburgSweden
- Oxford Centre for Diabetes, Endocrinology and MetabolismUniversity of OxfordChurchill HospitalOxfordOX3 7LJUK
| | - Andrew Ewing
- Department of Chemistry and Molecular BiologyUniversity of GothenburgKemivägen 1041296GothenburgSweden
| |
Collapse
|
26
|
Schulze T, Mattern K, Erfle P, Brüning D, Scherneck S, Dietzel A, Rustenbeck I. A Parallel Perifusion Slide From Glass for the Functional and Morphological Analysis of Pancreatic Islets. Front Bioeng Biotechnol 2021; 9:615639. [PMID: 33763408 PMCID: PMC7982818 DOI: 10.3389/fbioe.2021.615639] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Accepted: 02/12/2021] [Indexed: 12/15/2022] Open
Abstract
An islet-on-chip system in the form of a completely transparent microscope slide optically accessible from both sides was developed. It is made from laser-structured borosilicate glass and enables the parallel perifusion of five microchannels, each containing one islet precisely immobilized in a pyramidal well. The islets can be in inserted via separate loading windows above each pyramidal well. This design enables a gentle, fast and targeted insertion of the islets and a reliable retention in the well while at the same time permitting a sufficiently fast exchange of the media. In addition to the measurement of the hormone content in the fractionated efflux, parallel live cell imaging of the islet is possible. By programmable movement of the microscopic stage imaging of five wells can be performed. The current chip design ensures sufficient time resolution to characterize typical parameters of stimulus-secretion coupling. This was demonstrated by measuring the reaction of the islets to stimulation by glucose and potassium depolarization. After the perifusion experiment islets can be removed for further analysis. The live-dead assay of the removed islets confirmed that the process of insertion and removal was not detrimental to islet structure and viability. In conclusion, the present islet-on-chip design permits the practical implementation of parallel perifusion experiments on a single and easy to load glass slide. For each immobilized islet the correlation between secretion, signal transduction and morphology is possible. The slide concept allows the scale-up to even higher degrees of parallelization.
Collapse
Affiliation(s)
- Torben Schulze
- Institute of Pharmacology and Toxicology, Technische Universität Braunschweig, Braunschweig, Germany.,Center of Pharmaceutical Engineering (PVZ), Technische Universität Braunschweig, Braunschweig, Germany
| | - Kai Mattern
- Center of Pharmaceutical Engineering (PVZ), Technische Universität Braunschweig, Braunschweig, Germany.,Institute of Microtechnology, Technische Universität Braunschweig, Braunschweig, Germany
| | - Per Erfle
- Center of Pharmaceutical Engineering (PVZ), Technische Universität Braunschweig, Braunschweig, Germany.,Institute of Microtechnology, Technische Universität Braunschweig, Braunschweig, Germany
| | - Dennis Brüning
- Institute of Pharmacology and Toxicology, Technische Universität Braunschweig, Braunschweig, Germany.,Center of Pharmaceutical Engineering (PVZ), Technische Universität Braunschweig, Braunschweig, Germany
| | - Stephan Scherneck
- Institute of Pharmacology and Toxicology, Technische Universität Braunschweig, Braunschweig, Germany.,Center of Pharmaceutical Engineering (PVZ), Technische Universität Braunschweig, Braunschweig, Germany
| | - Andreas Dietzel
- Center of Pharmaceutical Engineering (PVZ), Technische Universität Braunschweig, Braunschweig, Germany.,Institute of Microtechnology, Technische Universität Braunschweig, Braunschweig, Germany
| | - Ingo Rustenbeck
- Institute of Pharmacology and Toxicology, Technische Universität Braunschweig, Braunschweig, Germany.,Center of Pharmaceutical Engineering (PVZ), Technische Universität Braunschweig, Braunschweig, Germany
| |
Collapse
|
27
|
Hatamie A, Ren L, Dou H, Gandasi NR, Rorsman P, Ewing A. Nanoscale Amperometry Reveals that Only a Fraction of Vesicular Serotonin Content is Released During Exocytosis from Beta Cells. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202015902] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Amir Hatamie
- Department of Chemistry and Molecular Biology University of Gothenburg Kemivägen 10 41296 Gothenburg Sweden
| | - Lin Ren
- Department of Chemistry and Molecular Biology University of Gothenburg Kemivägen 10 41296 Gothenburg Sweden
| | - Haiqiang Dou
- Department of Physiology, Sahlgrenska Academy University of Gothenburg Medicinaregatan 11–13 41390 Gothenburg Sweden
| | - Nikhil R. Gandasi
- Department of Physiology, Sahlgrenska Academy University of Gothenburg Medicinaregatan 11–13 41390 Gothenburg Sweden
| | - Patrik Rorsman
- Department of Physiology, Sahlgrenska Academy University of Gothenburg Medicinaregatan 11–13 41390 Gothenburg Sweden
- Oxford Centre for Diabetes, Endocrinology and Metabolism University of Oxford Churchill Hospital Oxford OX3 7LJ UK
| | - Andrew Ewing
- Department of Chemistry and Molecular Biology University of Gothenburg Kemivägen 10 41296 Gothenburg Sweden
| |
Collapse
|
28
|
Alcazar O, Alvarez A, Ricordi C, Linetsky E, Buchwald P. The Effect of Recovery Warm-up Time Following Cold Storage on the Dynamic Glucose-stimulated Insulin Secretion of Isolated Human Islets. Cell Transplant 2021; 29:963689720908278. [PMID: 32223315 PMCID: PMC7444215 DOI: 10.1177/0963689720908278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Standardized islet characterization assays that can provide results in a timely manner are essential for successful islet cell transplantation. A critical component of islet cell quality is β-cell function, and perifusion-based assessments of dynamic glucose-stimulated insulin secretion (GSIS) are the most informative method to assess this, as they provide the most complex in vitro evaluation of GSIS. However, protocols used vary considerably among centers and investigators as they often use different low- and high-glucose concentrations, exposure-times, flow-rates, oxygen concentrations, islet numbers, analytical methods, measurement units, and instruments, which result in different readouts and make comparisons across platforms difficult. Additionally, the conditions of islet storage and shipment prior to assessment may also affect islet function. Establishing improved standardized protocols for perifusion GSIS assays should be an integral part of the ongoing effort to increase the rigor of human islet studies. Here, we performed detailed evaluation of GSIS of human islets using a fully automated multichannel perifusion instrument following various warm-up recovery times after cold storage that corresponds to current shipping conditions (8°C). We found that recovery times shorter than 18 h (overnight) resulted in impaired insulin secretion. While the effects were relatively moderate on second-phase insulin secretion, first-phase peaks were restored only following 18-h incubation. Hence, the biphasic profile of dynamic GSIS was considerably affected when islets were not allowed to recover for a sufficient time after being maintained in cold. Accordingly, while cold storage might improve islet cell survival during shipment and prolong the length of culture, functional assessments should be performed only after allowing for at least overnight recovery at physiological temperatures.
Collapse
Affiliation(s)
- Oscar Alcazar
- Diabetes Research Institute, Miller School of Medicine, University of Miami, FL, USA
| | - Alejandro Alvarez
- Diabetes Research Institute, Miller School of Medicine, University of Miami, FL, USA
| | - Camillo Ricordi
- Diabetes Research Institute, Miller School of Medicine, University of Miami, FL, USA.,Department of Surgery, Division of Cellular Transplantation, cGMP Advanced Cell and Biologic Manufacturing Facility, Miller School of Medicine, University of Miami, FL, USA
| | - Elina Linetsky
- Diabetes Research Institute, Miller School of Medicine, University of Miami, FL, USA.,Department of Surgery, Division of Cellular Transplantation, cGMP Advanced Cell and Biologic Manufacturing Facility, Miller School of Medicine, University of Miami, FL, USA
| | - Peter Buchwald
- Diabetes Research Institute, Miller School of Medicine, University of Miami, FL, USA.,Department of Molecular and Cellular Pharmacology, Miller School of Medicine, University of Miami, FL, USA
| |
Collapse
|
29
|
Glieberman AL, Pope BD, Melton DA, Parker KK. Building Biomimetic Potency Tests for Islet Transplantation. Diabetes 2021; 70:347-363. [PMID: 33472944 PMCID: PMC7881865 DOI: 10.2337/db20-0297] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Accepted: 11/12/2020] [Indexed: 12/12/2022]
Abstract
Diabetes is a disease of insulin insufficiency, requiring many to rely on exogenous insulin with constant monitoring to avoid a fatal outcome. Islet transplantation is a recent therapy that can provide insulin independence, but the procedure is still limited by both the availability of human islets and reliable tests to assess their function. While stem cell technologies are poised to fill the shortage of transplantable cells, better methods are still needed for predicting transplantation outcome. To ensure islet quality, we propose that the next generation of islet potency tests should be biomimetic systems that match glucose stimulation dynamics and cell microenvironmental preferences and rapidly assess conditional and continuous insulin secretion with minimal manual handing. Here, we review the current approaches for islet potency testing and outline technologies and methods that can be used to arrive at a more predictive potency test that tracks islet secretory capacity in a relevant context. With the development of potency tests that can report on islet secretion dynamics in a context relevant to their intended function, islet transplantation can expand into a more widely accessible and reliable treatment option for individuals with diabetes.
Collapse
Affiliation(s)
- Aaron L Glieberman
- Disease Biophysics Group, Wyss Institute for Biologically Inspired Engineering, Harvard John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA
| | - Benjamin D Pope
- Disease Biophysics Group, Wyss Institute for Biologically Inspired Engineering, Harvard John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA
| | - Douglas A Melton
- Harvard Department of Stem Cell and Regenerative Biology, Cambridge, MA
- Harvard Stem Cell Institute, Cambridge, MA
| | - Kevin Kit Parker
- Disease Biophysics Group, Wyss Institute for Biologically Inspired Engineering, Harvard John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA
- Harvard Stem Cell Institute, Cambridge, MA
| |
Collapse
|
30
|
Abadpour S, Aizenshtadt A, Olsen PA, Shoji K, Wilson SR, Krauss S, Scholz H. Pancreas-on-a-Chip Technology for Transplantation Applications. Curr Diab Rep 2020; 20:72. [PMID: 33206261 PMCID: PMC7674381 DOI: 10.1007/s11892-020-01357-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/26/2020] [Indexed: 02/07/2023]
Abstract
PURPOSE OF REVIEW Human pancreas-on-a-chip (PoC) technology is quickly advancing as a platform for complex in vitro modeling of islet physiology. This review summarizes the current progress and evaluates the possibility of using this technology for clinical islet transplantation. RECENT FINDINGS PoC microfluidic platforms have mainly shown proof of principle for long-term culturing of islets to study islet function in a standardized format. Advancement in microfluidic design by using imaging-compatible biomaterials and biosensor technology might provide a novel future tool for predicting islet transplantation outcome. Progress in combining islets with other tissue types gives a possibility to study diabetic interventions in a minimal equivalent in vitro environment. Although the field of PoC is still in its infancy, considerable progress in the development of functional systems has brought the technology on the verge of a general applicable tool that may be used to study islet quality and to replace animal testing in the development of diabetes interventions.
Collapse
Affiliation(s)
- Shadab Abadpour
- Department of Transplant Medicine and Institute for Surgical Research, Oslo University Hospital, Post Box 4950, Nydalen, N-0424 Oslo, Norway
- Hybrid Technology Hub-Centre of Excellence, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Aleksandra Aizenshtadt
- Hybrid Technology Hub-Centre of Excellence, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Petter Angell Olsen
- Hybrid Technology Hub-Centre of Excellence, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Kayoko Shoji
- Hybrid Technology Hub-Centre of Excellence, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Steven Ray Wilson
- Hybrid Technology Hub-Centre of Excellence, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
- Department of Chemistry, University of Oslo, Oslo, Norway
| | - Stefan Krauss
- Hybrid Technology Hub-Centre of Excellence, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
- Institute of Immunology, Oslo University Hospital, Oslo, Norway
| | - Hanne Scholz
- Department of Transplant Medicine and Institute for Surgical Research, Oslo University Hospital, Post Box 4950, Nydalen, N-0424 Oslo, Norway
- Hybrid Technology Hub-Centre of Excellence, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| |
Collapse
|
31
|
Wang Y, Adeoye DI, Ogunkunle EO, Wei IA, Filla RT, Roper MG. Affinity Capillary Electrophoresis: A Critical Review of the Literature from 2018 to 2020. Anal Chem 2020; 93:295-310. [DOI: 10.1021/acs.analchem.0c04526] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Yao Wang
- Department of Chemistry and Biochemistry, Florida State University, 95 Chieftain Way, Tallahassee, Florida 32306, United States
| | - Damilola I. Adeoye
- Department of Chemistry and Biochemistry, Florida State University, 95 Chieftain Way, Tallahassee, Florida 32306, United States
| | - Emmanuel O. Ogunkunle
- Department of Chemistry and Biochemistry, Florida State University, 95 Chieftain Way, Tallahassee, Florida 32306, United States
| | - I-An Wei
- Department of Chemistry and Biochemistry, Florida State University, 95 Chieftain Way, Tallahassee, Florida 32306, United States
| | - Robert T. Filla
- Department of Chemistry and Biochemistry, Florida State University, 95 Chieftain Way, Tallahassee, Florida 32306, United States
| | - Michael G. Roper
- Department of Chemistry and Biochemistry, Florida State University, 95 Chieftain Way, Tallahassee, Florida 32306, United States
| |
Collapse
|
32
|
Chen X, Zhang YS, Zhang X, Liu C. Organ-on-a-chip platforms for accelerating the evaluation of nanomedicine. Bioact Mater 2020; 6:1012-1027. [PMID: 33102943 PMCID: PMC7566214 DOI: 10.1016/j.bioactmat.2020.09.022] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 09/01/2020] [Accepted: 09/22/2020] [Indexed: 02/07/2023] Open
Abstract
Nanomedicine involves the use of engineered nanoscale materials in an extensive range of diagnostic and therapeutic applications and can be applied to the treatment of many diseases. Despite the rapid progress and tremendous potential of nanomedicine in the past decades, the clinical translational process is still quite slow, owing to the difficulty in understanding, evaluating, and predicting nanomaterial behaviors within the complex environment of human beings. Microfluidics-based organ-on-a-chip (Organ Chip) techniques offer a promising way to resolve these challenges. Sophisticatedly designed Organ Chip enable in vitro simulation of the in vivo microenvironments, thus providing robust platforms for evaluating nanomedicine. Herein, we review recent developments and achievements in Organ Chip models for nanomedicine evaluations, categorized into seven broad sections based on the target organ systems: respiratory, digestive, lymphatic, excretory, nervous, and vascular, as well as coverage on applications relating to cancer. We conclude by providing our perspectives on the challenges and potential future directions for applications of Organ Chip in nanomedicine. Microfluidics-based organ-on-a-chip (Organ Chip) techniques offer a promising way to understand, evaluate, and predict nanomedicine behaviors within the complex environment. Organ Chip models for nanomedicine evaluations are categorized into seven broad sections based on the targeted body systems. Limitations, challenges, and perspectives of Organ Chip for accelerating the assessment of nanomedicine are discussed, respectively.
Collapse
Affiliation(s)
- Xi Chen
- Key Laboratory for Ultrafine Materials of Ministry of Education, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Engineering Research Center for Biomaterials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, 200237, PR China
| | - Yu Shrike Zhang
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA, 02139, United States
| | - Xinping Zhang
- Key Laboratory for Ultrafine Materials of Ministry of Education, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Engineering Research Center for Biomaterials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, 200237, PR China
| | - Changsheng Liu
- Key Laboratory for Ultrafine Materials of Ministry of Education, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Engineering Research Center for Biomaterials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, 200237, PR China
| |
Collapse
|
33
|
Adablah JE, Wang Y, Donohue M, Roper MG. Profiling Glucose-Stimulated and M3 Receptor-Activated Insulin Secretion Dynamics from Islets of Langerhans Using an Extended-Lifetime Fluorescence Dye. Anal Chem 2020; 92:8464-8471. [PMID: 32429660 PMCID: PMC7304439 DOI: 10.1021/acs.analchem.0c01226] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
![]()
Pulsatile insulin
from pancreatic islets is crucial for glucose
homeostasis, but the mechanism behind coordinated pulsatility is still
under investigation. One hypothesis suggests that cholinergic stimulation
of islets by pancreatic ganglia resets these endocrine units, producing
synchronization. Previously, it was shown that intracellular Ca2+ oscillations within islets can be entrained by pulses of
a cholinergic agonist, carbachol (CCh). Although these proxy measurements
of Ca2+ provided insight into the synchronization mechanism,
measurement of insulin output would be more direct evidence. To this
end, a fluorescence anisotropy competitive immunoassay for online
insulin detection from single and grouped islets in a microfluidic
system was developed using a piezoelectric pressure-driven fluid delivery
system and a squaraine rotaxane fluorophore, SeTau-647, as the fluorescent
label for insulin. Due to SeTau-647 having a longer lifetime and higher
brightness compared to the previously used Cy5 fluorophore, a 45%
increase in the anisotropy range was observed with enhanced signal-to-noise
ratio (S/N) of the measurements. This new system was tested by measuring
glucose-stimulated insulin secretion from single and groups of murine
and human islets. Distinct islet entrainment of groups of murine islets
by pulses of CCh was also observed, providing further evidence for
the hypothesis that pulsatile output from the ganglia can synchronize
islet behavior. We expect that this relatively straightforward, homogeneous
assay can be widely used for examining not only insulin secretion
but other secreted factors from different tissues.
Collapse
Affiliation(s)
- Joel E Adablah
- Department of Chemistry and Biochemistry, Florida State University, 95 Chieftain Way, Tallahassee, Florida 32306, United States
| | - Yao Wang
- Department of Chemistry and Biochemistry, Florida State University, 95 Chieftain Way, Tallahassee, Florida 32306, United States
| | - Matthew Donohue
- Department of Chemistry and Biochemistry, Florida State University, 95 Chieftain Way, Tallahassee, Florida 32306, United States
| | - Michael G Roper
- Department of Chemistry and Biochemistry, Florida State University, 95 Chieftain Way, Tallahassee, Florida 32306, United States
| |
Collapse
|
34
|
Guenat OT, Geiser T, Berthiaume F. Clinically Relevant Tissue Scale Responses as New Readouts from Organs-on-a-Chip for Precision Medicine. ANNUAL REVIEW OF ANALYTICAL CHEMISTRY (PALO ALTO, CALIF.) 2020; 13:111-133. [PMID: 31961712 DOI: 10.1146/annurev-anchem-061318-114919] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Organs-on-chips (OOC) are widely seen as being the next generation in vitro models able to accurately recreate the biochemical-physical cues of the cellular microenvironment found in vivo. In addition, they make it possible to examine tissue-scale functional properties of multicellular systems dynamically and in a highly controlled manner. Here we summarize some of the most remarkable examples of OOC technology's ability to extract clinically relevant tissue-level information. The review is organized around the types of OOC outputs that can be measured from the cultured tissues and transferred to clinically meaningful information. First, the creation of functional tissues-on-chip is discussed, followed by the presentation of tissue-level readouts specific to OOC, such as morphological changes, vessel formation and function, tissue properties, and metabolic functions. In each case, the clinical relevance of the extracted information is highlighted.
Collapse
Affiliation(s)
- Olivier T Guenat
- ARTORG Center for Biomedical Engineering Research, Medical Faculty, University of Bern, CH-3008 Bern, Switzerland;
- Department of Pulmonary Medicine, University Hospital and University of Bern, CH-3008 Bern, Switzerland
- Thoracic Surgery Department, University Hospital of Bern, Switzerland
| | - Thomas Geiser
- Department of Pulmonary Medicine, University Hospital and University of Bern, CH-3008 Bern, Switzerland
| | - François Berthiaume
- Department of Biomedical Engineering, Rutgers University, Piscataway, New Jersey 08854, USA
| |
Collapse
|
35
|
Misun PM, Yesildag B, Forschler F, Neelakandhan A, Rousset N, Biernath A, Hierlemann A, Frey O. In Vitro Platform for Studying Human Insulin Release Dynamics of Single Pancreatic Islet Microtissues at High Resolution. ADVANCED BIOSYSTEMS 2020; 4:e1900291. [PMID: 32293140 PMCID: PMC7610574 DOI: 10.1002/adbi.201900291] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Indexed: 01/18/2023]
Abstract
Insulin is released from pancreatic islets in a biphasic and pulsatile manner in response to elevated glucose levels. This highly dynamic insulin release can be studied in vitro with islet perifusion assays. Herein, a novel platform to perform glucose-stimulated insulin secretion (GSIS) assays with single islets is presented for studying the dynamics of insulin release at high temporal resolution. A standardized human islet model is developed and a microfluidic hanging-drop-based perifusion system is engineered, which facilitates rapid glucose switching, minimal sample dilution, low analyte dispersion, and short sampling intervals. Human islet microtissues feature robust and long-term glucose responsiveness and demonstrate reproducible dynamic GSIS with a prominent first phase and a sustained, pulsatile second phase. Perifusion of single islet microtissues produces a higher peak secretion rate, higher secretion during the first and second phases of insulin release, as well as more defined pulsations during the second phase in comparison to perifusion of pooled islets. The developed platform enables to study compound effects on both phases of insulin secretion as shown with two classes of insulin secretagogs. It provides a new tool for studying physiologically relevant dynamic insulin secretion at comparably low sample-to-sample variation and high temporal resolution.
Collapse
Affiliation(s)
- Patrick M. Misun
- Bio Engineering Laboratory Department of Biosystems Science and Engineering ETH Zürich Mattenstrasse 26, 4058 Basel, Switzerland
| | | | - Felix Forschler
- Bio Engineering Laboratory, Department of Biosystems Science and Engineering, ETH Zürich, Mattenstrasse 26, 4058 Basel, Switzerland
| | | | - Nassim Rousset
- Bio Engineering Laboratory, Department of Biosystems Science and Engineering, ETH Zürich, Mattenstrasse 26, 4058 Basel, Switzerland
| | | | - Andreas Hierlemann
- Bio Engineering Laboratory, Department of Biosystems Science and Engineering, ETH Zürich, Mattenstrasse 26, 4058 Basel, Switzerland
| | - Olivier Frey
- InSphero AG Wagistrasse 27, 8952 Schlieren, Switzerland
| |
Collapse
|
36
|
Li WH. Functional analysis of islet cells in vitro, in situ, and in vivo. Semin Cell Dev Biol 2020; 103:14-19. [PMID: 32081627 DOI: 10.1016/j.semcdb.2020.02.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Accepted: 02/05/2020] [Indexed: 12/20/2022]
Abstract
The islet of Langerhans contains at least five types of endocrine cells producing distinct hormones. In response to nutrient or neuronal stimulation, islet endocrine cells release biochemicals including peptide hormones to regulate metabolism and to control glucose homeostasis. It is now recognized that malfunction of islet cells, notably insufficient insulin release of β-cells and hypersecretion of glucagon from α-cells, represents a causal event leading to hyperglycemia and frank diabetes, a disease that is increasing at an alarming rate to reach an epidemic level worldwide. Understanding the mechanisms regulating stimulus-secretion coupling and investigating how islet β-cells maintain a robust secretory activity are important topics in islet biology and diabetes research. To facilitate such studies, a number of biological systems and assay platforms have been developed for the functional analysis of islet cells. These technologies have enabled detailed analyses of individual islets at the cellular level, either in vitro, in situ, or in vivo.
Collapse
Affiliation(s)
- Wen-Hong Li
- Departments of Cell Biology and of Biochemistry, University of Texas Southwestern Medical Center, 6000 Harry Hines Blvd., Dallas, TX, 75390-9039, United States.
| |
Collapse
|
37
|
Horowitz LF, Rodriguez AD, Ray T, Folch A. Microfluidics for interrogating live intact tissues. MICROSYSTEMS & NANOENGINEERING 2020; 6:69. [PMID: 32879734 PMCID: PMC7443437 DOI: 10.1038/s41378-020-0164-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Revised: 03/10/2020] [Accepted: 03/12/2020] [Indexed: 05/08/2023]
Abstract
The intricate microarchitecture of tissues - the "tissue microenvironment" - is a strong determinant of tissue function. Microfluidics offers an invaluable tool to precisely stimulate, manipulate, and analyze the tissue microenvironment in live tissues and engineer mass transport around and into small tissue volumes. Such control is critical in clinical studies, especially where tissue samples are scarce, in analytical sensors, where testing smaller amounts of analytes results in faster, more portable sensors, and in biological experiments, where accurate control of the cellular microenvironment is needed. Microfluidics also provides inexpensive multiplexing strategies to address the pressing need to test large quantities of drugs and reagents on a single biopsy specimen, increasing testing accuracy, relevance, and speed while reducing overall diagnostic cost. Here, we review the use of microfluidics to study the physiology and pathophysiology of intact live tissues at sub-millimeter scales. We categorize uses as either in vitro studies - where a piece of an organism must be excised and introduced into the microfluidic device - or in vivo studies - where whole organisms are small enough to be introduced into microchannels or where a microfluidic device is interfaced with a live tissue surface (e.g. the skin or inside an internal organ or tumor) that forms part of an animal larger than the device. These microfluidic systems promise to deliver functional measurements obtained directly on intact tissue - such as the response of tissue to drugs or the analysis of tissue secretions - that cannot be obtained otherwise.
Collapse
Affiliation(s)
- Lisa F. Horowitz
- Department of Bioengineering, University of Washington, Seattle, WA 98195 USA
| | - Adán D. Rodriguez
- Department of Bioengineering, University of Washington, Seattle, WA 98195 USA
| | - Tyler Ray
- Department of Mechanical Engineering, University of Hawaiʻi at Mānoa, Honolulu, HI 96822 USA
| | - Albert Folch
- Department of Bioengineering, University of Washington, Seattle, WA 98195 USA
| |
Collapse
|
38
|
Leng W, Evans K, Roper MG. A microfluidic platform integrating pressure-driven and electroosmotic-driven flow with inline filters for affinity separations. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2019; 11:5768-5775. [PMID: 31983930 PMCID: PMC6980329 DOI: 10.1039/c9ay01758e] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Pancreatic islets of Langerhans release glucagon to maintain blood glucose levels, and release of this peptide is dysregulated in diabetes mellitus. Although the importance of proper secretion of this peptide has been shown, no measurement of its release at the single islet level has been reported. In previous work, a non-competitive assay for glucagon was developed with a 6 pM limit of detection, low enough to measure from a single islet. To incorporate this method in an online assay, a microfluidic system with several distinct features was developed. To maintain appropriate flow rates in the presence of the high concentration of salt that was required for the assay, a piezo-actuated pressure transducer with in-line flow sensors was used to drive sample flow through 80 × 50 μm (width × depth) channels, while electroosmotic flow was used to gate the sample away from 15 × 5 μm separation channel. Flow rates tested with this system were 50 - 200 nL min-1 with relative standard deviations (RSDs) ranging from 1 - 4 %. Use of the pressure-driven flow was found to increase the amount of clogs in the system, so a method to incorporate in-line filters into the channels was developed. A total of 4 low resistance, in-line microfabricated filters were evaluated, with all designs prolonging the operation time of the microfluidic device to more than 4 hours without clogs observed. Use of this system enabled highly reproducible injections (3-6% RSD). During initial incorporation of the noncompetitive assay for glucagon, it was determined that Joule heating was problematic and temperature measurements revealed the separation channel increased to more than 50°C during operation. A 3D-printed manifold was used to hold a Peltier cooler in place on the microfluidic device which produced a 2.6-fold improvement in the amount of the noncovalent glucagon complex that was detected compared to without cooling. These features are expected to be useful for not only long-term monitoring of the glucagon release from islets of Langerhans, but has the potential to be applied to a number of other microfluidic separation-based assays as well.
Collapse
Affiliation(s)
- Weijia Leng
- Department of Chemistry and Biochemistry, Florida State University, 95 Chieftan Way, Dittmer Building, Tallahassee, FL 32306, USA
| | - Kimberly Evans
- Department of Chemistry and Biochemistry, Florida State University, 95 Chieftan Way, Dittmer Building, Tallahassee, FL 32306, USA
| | - Michael G Roper
- Department of Chemistry and Biochemistry, Florida State University, 95 Chieftan Way, Dittmer Building, Tallahassee, FL 32306, USA
| |
Collapse
|
39
|
Menegaz D, Hagan DW, Almaça J, Cianciaruso C, Rodriguez-Diaz R, Molina J, Dolan RM, Becker MW, Schwalie PC, Nano R, Lebreton F, Kang C, Sah R, Gaisano HY, Berggren PO, Baekkeskov S, Caicedo A, Phelps EA. Mechanism and effects of pulsatile GABA secretion from cytosolic pools in the human beta cell. Nat Metab 2019; 1:1110-1126. [PMID: 32432213 PMCID: PMC7236889 DOI: 10.1038/s42255-019-0135-7] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Accepted: 10/04/2019] [Indexed: 12/13/2022]
Abstract
Pancreatic beta cells synthesize and secrete the neurotransmitter γ-aminobutyric acid (GABA) as a paracrine and autocrine signal to help regulate hormone secretion and islet homeostasis. Islet GABA release has classically been described as a secretory vesicle-mediated event. Yet, a limitation of the hypothesized vesicular GABA release from islets is the lack of expression of a vesicular GABA transporter in beta cells. Consequentially, GABA accumulates in the cytosol. Here we provide evidence that the human beta cell effluxes GABA from a cytosolic pool in a pulsatile manner, imposing a synchronizing rhythm on pulsatile insulin secretion. The volume regulatory anion channel (VRAC), functionally encoded by LRRC8A or Swell1, is critical for pulsatile GABA secretion. GABA content in beta cells is depleted and secretion is disrupted in islets from type 1 and type 2 diabetic patients, suggesting that loss of GABA as a synchronizing signal for hormone output may correlate with diabetes pathogenesis.
Collapse
Affiliation(s)
- Danusa Menegaz
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, University of Miami Miller School of Medicine, Miami, FL, USA
| | - D Walker Hagan
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL, USA
| | - Joana Almaça
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Chiara Cianciaruso
- Institute of Bioengineering, School of Life Sciences, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Rayner Rodriguez-Diaz
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Judith Molina
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Robert M Dolan
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL, USA
| | - Matthew W Becker
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL, USA
| | - Petra C Schwalie
- Institute of Bioengineering, School of Life Sciences, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
- Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Rita Nano
- Pancreatic Islet Processing Facility, Diabetes Research Institute, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Fanny Lebreton
- Cell Isolation and Transplantation Center, Faculty of Medicine, Department of Surgery, Geneva University Hospitals and University of Geneva, Geneva, Switzerland
| | - Chen Kang
- Center for Cardiovascular Research and Division of Cardiology, Department of Internal Medicine, Washington University School of Medicine, St Louis, MO, USA
- Department of Internal Medicine, Division of Cardiovascular Medicine, University of Iowa, Carver College of Medicine, Iowa City, IA, USA
| | - Rajan Sah
- Center for Cardiovascular Research and Division of Cardiology, Department of Internal Medicine, Washington University School of Medicine, St Louis, MO, USA
- Department of Internal Medicine, Division of Cardiovascular Medicine, University of Iowa, Carver College of Medicine, Iowa City, IA, USA
| | - Herbert Y Gaisano
- Department of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Per-Olof Berggren
- Diabetes Research Institute, University of Miami Miller School of Medicine, Miami, FL, USA
- The Rolf Luft Research Center for Diabetes & Endocrinology, Karolinska Institutet, Stockholm, Sweden
- Division of Integrative Biosciences and Biotechnology, WCU Program, University of Science and Technology, Pohang, Korea
| | - Steinunn Baekkeskov
- Institute of Bioengineering, School of Life Sciences, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland.
- Departments of Medicine and Microbiology/Immunology, Diabetes Center, University of California San Francisco, San Francisco, CA, USA.
| | - Alejandro Caicedo
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, University of Miami Miller School of Medicine, Miami, FL, USA.
- Diabetes Research Institute, University of Miami Miller School of Medicine, Miami, FL, USA.
- Department of Physiology and Biophysics, Miller School of Medicine, University of Miami, Miami, FL, USA.
- Program in Neuroscience, Miller School of Medicine, University of Miami, Miami, FL, USA.
| | - Edward A Phelps
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL, USA.
- Institute of Bioengineering, School of Life Sciences, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland.
| |
Collapse
|
40
|
Glieberman AL, Pope BD, Zimmerman JF, Liu Q, Ferrier JP, Kenty JHR, Schrell AM, Mukhitov N, Shores KL, Tepole AB, Melton DA, Roper MG, Parker KK. Synchronized stimulation and continuous insulin sensing in a microfluidic human Islet on a Chip designed for scalable manufacturing. LAB ON A CHIP 2019; 19:2993-3010. [PMID: 31464325 PMCID: PMC6814249 DOI: 10.1039/c9lc00253g] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Pancreatic β cell function is compromised in diabetes and is typically assessed by measuring insulin secretion during glucose stimulation. Traditionally, measurement of glucose-stimulated insulin secretion involves manual liquid handling, heterogeneous stimulus delivery, and enzyme-linked immunosorbent assays that require large numbers of islets and processing time. Though microfluidic devices have been developed to address some of these limitations, traditional methods for islet testing remain the most common due to the learning curve for adopting microfluidic devices and the incompatibility of most device materials with large-scale manufacturing. We designed and built a thermoplastic, microfluidic-based Islet on a Chip compatible with commercial fabrication methods, that automates islet loading, stimulation, and insulin sensing. Inspired by the perfusion of native islets by designated arterioles and capillaries, the chip delivers synchronized glucose pulses to islets positioned in parallel channels. By flowing suspensions of human cadaveric islets onto the chip, we confirmed automatic capture of islets. Fluorescent glucose tracking demonstrated that stimulus delivery was synchronized within a two-minute window independent of the presence or size of captured islets. Insulin secretion was continuously sensed by an automated, on-chip immunoassay and quantified by fluorescence anisotropy. By integrating scalable manufacturing materials, on-line, continuous insulin measurement, and precise spatiotemporal stimulation into an easy-to-use design, the Islet on a Chip should accelerate efforts to study and develop effective treatments for diabetes.
Collapse
Affiliation(s)
- Aaron L Glieberman
- Disease Biophysics Group, Wyss Institute for Biologically Inspired Engineering, Harvard John A. Paulson School of Engineering and Applied Sciences, Harvard University, Pierce Hall, 29 Oxford Street, Cambridge, MA 02138, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Stamper IJ, Wang X. Integrated multiscale mathematical modeling of insulin secretion reveals the role of islet network integrity for proper oscillatory glucose-dose response. J Theor Biol 2019; 475:1-24. [PMID: 31078658 DOI: 10.1016/j.jtbi.2019.05.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Revised: 05/03/2019] [Accepted: 05/08/2019] [Indexed: 02/02/2023]
Abstract
The integrated multiscale mathematical model we present in this paper is built on two of our previous ones: a model of electrical oscillation in β-cells connected to neighboring cells within a three-dimensional (3D) network, and a model of glucose-induced β-cell intracellular insulin granule trafficking and insulin secretion. In order to couple these two models, we assume that the rate at which primed and release-ready insulin granules fuse at the cell membrane increases with the intracellular calcium concentration. Moreover, by assuming that the fraction of free KATP-channels decreases with increasing glucose concentration, we take into account the effect of glucose dose on membrane potential and, indirectly via the effect on the potential, on intracellular calcium. Numerical analysis of our new model shows that a single step increase in glucose concentration yields the experimentally observed characteristic biphasic insulin release. We find that the biphasic response is typically oscillatory in nature for low and moderate glucose concentrations. The plateau fraction (the time that the β-cells spend in their active firing phase) increases with increasing glucose dose, as does the total insulin secretion. At high glucose concentrations, the oscillations tend to vanish due to a constantly elevated membrane potential of the β-cells. Our results also demonstrate how insulin secretion characteristics in various glucose protocols depend on the degree of β-cell loss, highlighting the potential impact from disease. In particular, both the secretory capacity (average insulin secretion rate per β-cell) and the oscillatory response diminish as the islet cell network becomes compromised.
Collapse
Affiliation(s)
- I Johanna Stamper
- The Comprehensive Diabetes Center, University of Alabama at Birmingham, Birmingham, AL 35294, United States.
| | - Xujing Wang
- The Division of Diabetes, Endocrinology, and Metabolic Diseases (DEM), the National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), of the National Institutes of Health(NIH), Bethesda, Maryland 20817, United States.
| |
Collapse
|
42
|
Pancreatic Progenitors and Organoids as a Prerequisite to Model Pancreatic Diseases and Cancer. Stem Cells Int 2019; 2019:9301382. [PMID: 30930950 PMCID: PMC6410438 DOI: 10.1155/2019/9301382] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Revised: 11/15/2018] [Accepted: 12/05/2018] [Indexed: 12/19/2022] Open
Abstract
Embryonic stem cells (ESCs) and induced pluripotent stem cells (iPSCs) are characterized by their unique capacity to stepwise differentiate towards any particular cell type in an adult organism. Pluripotent stem cells provide a beneficial platform to model hereditary diseases and even cancer development. While the incidence of pancreatic diseases such as diabetes and pancreatitis is increasing, the understanding of the underlying pathogenesis of particular diseases remains limited. Only a few recent publications have contributed to the characterization of human pancreatic development in the fetal stage. Hence, most knowledge of pancreatic specification is based on murine embryology. Optimizing and understanding current in vitro protocols for pancreatic differentiation of ESCs and iPSCs constitutes a prerequisite to generate functional pancreatic cells for better disease modeling and drug discovery. Moreover, human pancreatic organoids derived from pluripotent stem cells, organ-restricted stem cells, and tumor samples provide a powerful technology to model carcinogenesis and hereditary diseases independent of genetically engineered mouse models. Herein, we summarize recent advances in directed differentiation of pancreatic organoids comprising endocrine cell types. Beyond that, we illustrate up-and-coming applications for organoid-based platforms.
Collapse
|
43
|
Li X, Hu J, Easley CJ. Automated microfluidic droplet sampling with integrated, mix-and-read immunoassays to resolve endocrine tissue secretion dynamics. LAB ON A CHIP 2018; 18:2926-2935. [PMID: 30112543 PMCID: PMC6234046 DOI: 10.1039/c8lc00616d] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
A fully automated droplet generation and analysis device based on pressure driven push-up valves for precise pumping of fluid and volumetric metering has been developed for high resolution hormone secretion sampling and measurement. The device consists of a 3D-printer templated reservoir for single cells or single tissue culturing, a Y-shaped channel for reagents and sample mixing, a T-junction channel for droplet formation, a reference channel to overcome drifts in fluorescence signal, and a long droplet storage channel allowing incubation for homogeneous immunoassays. The droplets were made by alternating peristaltic pumping of aqueous and oil phases. Device operation was automated, giving precise control over several droplet parameters such as size, oil spacing, and ratio of sample and reference droplets. By integrating an antibody-oligonucleotide based homogeneous immunoassay on-chip, high resolution temporal sampling into droplets was combined with separation-free quantification of insulin secretion from single islets of Langerhans using direct optical readout from the droplets. Quantitative assays of glucose-stimulated insulin secretion were demonstrated at 15 second temporal resolution while detecting as low as 10 amol per droplet, revealing fast insulin oscillations that mirror well-known intracellular calcium signals. This droplet sampling and direct optical analysis approach effectively digitizes the secretory time record from cells into droplets, and the system should be generalizable to a variety of cells and tissue types.
Collapse
Affiliation(s)
- Xiangpeng Li
- Department of Chemistry and Biochemistry, Auburn University, Auburn, AL 36849, USA.
| | | | | |
Collapse
|
44
|
Bandak B, Yi L, Roper MG. Microfluidic-enabled quantitative measurements of insulin release dynamics from single islets of Langerhans in response to 5-palmitic acid hydroxy stearic acid. LAB ON A CHIP 2018; 18:2873-2882. [PMID: 30109329 PMCID: PMC6133761 DOI: 10.1039/c8lc00624e] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
Proper release of insulin from pancreatic islets of Langerhans is essential for maintaining glucose homeostasis. For full efficacy, both the pattern and the amount of hormone release are critical. It is therefore important to understand how insulin levels are secreted from single islets in both a quantitative fashion and in a manner that resolves temporal dynamics. In this study, we describe a microfluidic analytical system that can both quantitatively monitor insulin secretion from single islets while simultaneously maintaining high temporal sampling to resolve dynamics of release. We have applied this system to determine the acute and chronic effects of a recently-identified lipid, 5-palmitic acid hydroxy stearic acid (5-PAHSA), which is a member of the fatty acid hydroxy fatty acid class of lipids that are upregulated in healthy individuals. Chronic incubation (48 h) with 5-PAHSA significantly increased glucose-stimulated insulin secretion (GSIS) in murine islets compared to chronic incubation without the lipid or in the presence of palmitic acid (PA). The studies were continued in human islets from both healthy donors and donors diagnosed with type 2 diabetes mellitus (T2DM). Total amounts of GSIS were not only augmented in islets that were chronically incubated with 5-PAHSA, but the dynamic insulin release profiles also improved as noted by more pronounced insulin oscillations. With this quantitative microfluidic system, we have corroborated the anti-diabetic effects of 5-PAHSA by demonstrating improved islet function after chronic incubation with this lipid via improved oscillatory dynamics along with higher basal and peak release rates.
Collapse
Affiliation(s)
- Basel Bandak
- Department of Chemistry and Biochemistry, Florida State University, Dittmer Building, 95 Chieftain Way, Tallahassee, FL 32306, USA.
| | | | | |
Collapse
|
45
|
Vickerman BM, Anttila MM, Petersen BV, Allbritton NL, Lawrence DS. Design and Application of Sensors for Chemical Cytometry. ACS Chem Biol 2018; 13:1741-1751. [PMID: 29376326 DOI: 10.1021/acschembio.7b01009] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The bulk cell population response to a stimulus, be it a growth factor or a cytotoxic agent, neglects the cell-to-cell variability that can serve as a friend or as a foe in human biology. Biochemical variations among closely related cells furnish the basis for the adaptability of the immune system but also act as the root cause of resistance to chemotherapy by tumors. Consequently, the ability to probe for the presence of key biochemical variables at the single-cell level is now recognized to be of significant biological and biomedical impact. Chemical cytometry has emerged as an ultrasensitive single-cell platform with the flexibility to measure an array of cellular components, ranging from metabolite concentrations to enzyme activities. We briefly review the various chemical cytometry strategies, including recent advances in reporter design, probe and metabolite separation, and detection instrumentation. We also describe strategies for improving intracellular delivery, biochemical specificity, metabolic stability, and detection sensitivity of probes. Recent applications of these strategies to small molecules, lipids, proteins, and other analytes are discussed. Finally, we assess the current scope and limitations of chemical cytometry and discuss areas for future development to meet the needs of single-cell research.
Collapse
Affiliation(s)
- Brianna M. Vickerman
- Department of Chemistry, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Matthew M. Anttila
- Department of Chemistry, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Brae V. Petersen
- Department of Chemistry, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Nancy L. Allbritton
- Department of Chemistry, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
- Joint Department of Biomedical Engineering, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, and North Carolina State University,
Raleigh, North Carolina 27695, United States
- Department of Pharmacology, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - David S. Lawrence
- Department of Chemistry, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
- Department of Pharmacology, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
- Division of Chemical Biology and Medicinal Chemistry, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| |
Collapse
|
46
|
Guruswamy Damodaran R, Poussard A, Côté B, Andersen PL, Vermette P. Insulin secretion kinetics from single islets reveals distinct subpopulations. Biotechnol Prog 2018; 34:1059-1068. [PMID: 29603910 DOI: 10.1002/btpr.2632] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Revised: 03/14/2018] [Indexed: 12/12/2022]
Abstract
Type II diabetes progresses with inadequate insulin secretion and prolonged elevated circulating glucose levels. Also, pancreatic islets isolated for transplantation or tissue engineering can be exposed to glucose over extended timeframe. We hypothesized that isolated pancreatic islets can secrete insulin over a prolonged period of time when incubated in glucose solution and that not all islets release insulin in unison. Insulin secretion kinetics was examined and modeled from single mouse islets in response to chronic glucose exposure (2.8-20 mM). Results with single islets were compared to those from pools of islets. Kinetic analysis of 58 single islets over 72 h in response to elevated glucose revealed distinct insulin secretion profiles: slow-, fast-, and constant-rate secretors, with slow-secretors being most prominent (ca., 50%). Variations in the temporal response to glucose therefore exist. During short-term (<4 h) exposure to elevated glucose few islets are responding with sustained insulin release. The model allowed studying the influence of islet size, revealing no clear effect. At high-glucose concentrations, when secretion is normalized to islet volume, the tendency is that smaller islets secrete more insulin. At high-glucose concentrations, insulin secretion from single islets is representative of islet populations, while under low-glucose conditions pooled islets did not behave as single ones. The characterization of insulin secretion over prolonged periods complements studies on insulin secretion performed over short timeframe. Further investigation of these differences in secretion profiles may resolve open-ended questions on pre-diabetic conditions and transplanted islets performance. This study deliberates the importance of size of islets in insulin secretion. © 2018 American Institute of Chemical Engineers Biotechnol. Prog., 34:1059-1068, 2018.
Collapse
Affiliation(s)
- Rajesh Guruswamy Damodaran
- Laboratoire de bio-ingénierie et de biophysique de l'Université de Sherbrooke, Dept. of Chemical and Biotechnological Engineering, Université de Sherbrooke, 2500 boul. de l'Université, Sherbrooke, QC, J1K 2R1, Canada
- Pharmacology Institute of Sherbrooke, Faculté de médecine et des sciences de la santé, 3001 12ième Avenue Nord, Sherbrooke, QC, J1H 5N4, Canada
- Research Centre on Aging, Institut universitaire de gériatrie de Sherbrooke, 1036 rue Belvédère Sud, Sherbrooke, QC, J1H 4C4, Canada
| | - Alexandre Poussard
- Laboratoire de bio-ingénierie et de biophysique de l'Université de Sherbrooke, Dept. of Chemical and Biotechnological Engineering, Université de Sherbrooke, 2500 boul. de l'Université, Sherbrooke, QC, J1K 2R1, Canada
- Pharmacology Institute of Sherbrooke, Faculté de médecine et des sciences de la santé, 3001 12ième Avenue Nord, Sherbrooke, QC, J1H 5N4, Canada
- Research Centre on Aging, Institut universitaire de gériatrie de Sherbrooke, 1036 rue Belvédère Sud, Sherbrooke, QC, J1H 4C4, Canada
| | - Benoît Côté
- Laboratoire de bio-ingénierie et de biophysique de l'Université de Sherbrooke, Dept. of Chemical and Biotechnological Engineering, Université de Sherbrooke, 2500 boul. de l'Université, Sherbrooke, QC, J1K 2R1, Canada
| | - Parker L Andersen
- Laboratoire de bio-ingénierie et de biophysique de l'Université de Sherbrooke, Dept. of Chemical and Biotechnological Engineering, Université de Sherbrooke, 2500 boul. de l'Université, Sherbrooke, QC, J1K 2R1, Canada
- Pharmacology Institute of Sherbrooke, Faculté de médecine et des sciences de la santé, 3001 12ième Avenue Nord, Sherbrooke, QC, J1H 5N4, Canada
- Research Centre on Aging, Institut universitaire de gériatrie de Sherbrooke, 1036 rue Belvédère Sud, Sherbrooke, QC, J1H 4C4, Canada
| | - Patrick Vermette
- Laboratoire de bio-ingénierie et de biophysique de l'Université de Sherbrooke, Dept. of Chemical and Biotechnological Engineering, Université de Sherbrooke, 2500 boul. de l'Université, Sherbrooke, QC, J1K 2R1, Canada
- Pharmacology Institute of Sherbrooke, Faculté de médecine et des sciences de la santé, 3001 12ième Avenue Nord, Sherbrooke, QC, J1H 5N4, Canada
- Research Centre on Aging, Institut universitaire de gériatrie de Sherbrooke, 1036 rue Belvédère Sud, Sherbrooke, QC, J1H 4C4, Canada
| |
Collapse
|
47
|
Lu S, Dugan CE, Kennedy RT. Microfluidic Chip with Integrated Electrophoretic Immunoassay for Investigating Cell-Cell Interactions. Anal Chem 2018; 90:5171-5178. [PMID: 29578696 PMCID: PMC6943824 DOI: 10.1021/acs.analchem.7b05304] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Microfluidics have been used to create "body-on-chip" systems to mimic in vivo cellular interactions with a high level of control. Most such systems rely on optical observation of cells as a readout. In this work we integrated a cell-cell interaction chip with online microchip electrophoresis immunoassay to monitor the effects of the interaction on protein secretion dynamics. The system was used to investigate the effects of adipocytes on insulin secretion. Chips were loaded with 190 000 3T3-L1 adipocytes and a single islet of Langerhans in separate chambers. The chambers were perfused at 300-600 nL/min so that adipocyte secretions flowed over the islets for 3 h. Adipocytes produced 80 μM of nonesterified fatty acids (NEFAs), a factor known to impact insulin secretion, at the islets. After perfusion, islets were challenged with a step change in glucose from 3 to 11 mM while monitoring insulin secretion at 8 s intervals by online immunoassay. Adipocyte treatment augmented insulin secretion by 6-fold compared to controls. The effect was far greater than comparable concentrations of NEFA applied to the islets demonstrating that adipocytes release multiple factors that can strongly potentiate insulin secretion. The experiments reveal that integration of chemical analysis with cell-cell interaction can provide valuable insights into cellular functions.
Collapse
Affiliation(s)
- Shusheng Lu
- Department of Chemistry , University of Michigan , 930 North University Avenue , Ann Arbor , Michigan 48109 , United States
| | - Colleen E Dugan
- Department of Chemistry , University of Michigan , 930 North University Avenue , Ann Arbor , Michigan 48109 , United States
| | - Robert T Kennedy
- Department of Chemistry , University of Michigan , 930 North University Avenue , Ann Arbor , Michigan 48109 , United States
| |
Collapse
|
48
|
Fan Y, Dong D, Li Q, Si H, Pei H, Li L, Tang B. Fluorescent analysis of bioactive molecules in single cells based on microfluidic chips. LAB ON A CHIP 2018; 18:1151-1173. [PMID: 29541737 DOI: 10.1039/c7lc01333g] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Single-cell analysis of bioactive molecules is an essential strategy for a better understanding of cell biology, exploring cell heterogeneity, and improvement of the ability to detect early diseases. In single-cell analysis, highly efficient single-cell manipulation techniques and high-sensitive detection schemes are in urgent need. The rapid development of fluorescent analysis techniques combined with microfluidic chips have offered a widely applicable solution. Thus, in this review, we mainly focus on the application of fluorescence methods in components analysis on microchips at a single-cell level. By targeting different types of biological molecules in cells such as nucleic acids, proteins, and active small molecules, we specially introduce and comment on their corresponding fluorescent probes, fluorescence labelling and sensing strategies, and different fluorescence detection instruments used in single-cell analysis on a microfluidic chip. We hope that through this review, readers will have a better understanding of single-cell fluorescence analysis, especially for single-cell component fluorescence analysis based on microfluidic chips.
Collapse
Affiliation(s)
- Yuanyuan Fan
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Institute of Molecular and Nano Science, Shandong Normal University, Jinan 250014, P. R. China.
| | | | | | | | | | | | | |
Collapse
|
49
|
Lee SH, Hong S, Song J, Cho B, Han EJ, Kondapavulur S, Kim D, Lee LP. Microphysiological Analysis Platform of Pancreatic Islet β-Cell Spheroids. Adv Healthc Mater 2018; 7. [PMID: 29283208 DOI: 10.1002/adhm.201701111] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Revised: 10/27/2017] [Indexed: 02/06/2023]
Abstract
The hallmarks of diabetics are insufficient secretion of insulin and dysregulation of glucagon. It is critical to understand release mechanisms of insulin, glucagon, and other hormones from the islets of Langerhans. In spite of remarkable advancements in diabetes research and practice, robust and reproducible models that can measure pancreatic β-cell function are lacking. Here, a microphysiological analysis platform (MAP) that allows the uniform 3D spheroid formation of pancreatic β-cell islets, large-scale morphological phenotyping, and gene expression mapping of chronic glycemia and lipidemia development is reported. The MAP enables the scaffold-free formation of densely packed β-cell spheroids (i.e., multiple array of 110 bioreactors) surrounded with a perfusion flow network inspired by physiologically relevant microenvironment. The MAP permits dynamic perturbations on the β-cell spheroids and the precise controls of glycemia and lipidemia, which allow us to confirm that cellular apoptosis in the β-cell spheroid under hyperglycemia and hyperlipidemia is mostly dependent to a reactive oxygen species-induced caspase-mediated pathway. The β-cells' MAP might provide a potential new map in the pathophysiological mechanisms of β cells.
Collapse
Affiliation(s)
- Sang Hun Lee
- Department of Bioengineering; University of California, Berkeley; Berkeley CA 94720 USA
- Berkeley Sensor and Actuator Center; University of California, Berkeley; Berkeley CA 94720 USA
| | - SoonGweon Hong
- Department of Bioengineering; University of California, Berkeley; Berkeley CA 94720 USA
- Berkeley Sensor and Actuator Center; University of California, Berkeley; Berkeley CA 94720 USA
| | - Jihwan Song
- Department of Mechanical Engineering; Hanbat National University; Daejeon 34158 South Korea
- Berkeley Sensor and Actuator Center; University of California, Berkeley; Berkeley CA 94720 USA
| | - Byungrae Cho
- Berkeley Sensor and Actuator Center; University of California, Berkeley; Berkeley CA 94720 USA
- UC Berkeley and UCSF Joint Graduate Program in Bioengineering; Berkeley/San Francisco CA 94720 USA
| | - Esther J. Han
- Department of Chemistry; University of California, Berkeley; Berkeley CA 94720 USA
| | - Sravani Kondapavulur
- Department of Bioengineering; University of California, Berkeley; Berkeley CA 94720 USA
| | - Dongchoul Kim
- Department of Mechanical Engineering; Sogang University; Seoul 04107 South Korea
| | - Luke P. Lee
- Department of Bioengineering; University of California, Berkeley; Berkeley CA 94720 USA
- Berkeley Sensor and Actuator Center; University of California, Berkeley; Berkeley CA 94720 USA
- Department of Electrical Engineering and Computer Science; University of California, Berkeley; Berkeley CA 94720 USA
- Biophysics Graduate Program; University of California, Berkeley; Berkeley CA 94720 USA
| |
Collapse
|
50
|
Xing Y, Nourmohammadzadeh M, Elias JEM, Chan M, Chen Z, McGarrigle JJ, Oberholzer J, Wang Y. A pumpless microfluidic device driven by surface tension for pancreatic islet analysis. Biomed Microdevices 2017; 18:80. [PMID: 27534648 DOI: 10.1007/s10544-016-0109-4] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
We present a novel pumpless microfluidic array driven by surface tension for studying the physiology of pancreatic islets of Langerhans. Efficient fluid flow in the array is achieved by surface tension-generated pressure as a result of inlet and outlet size differences. Flow properties are characterized in numerical simulation and further confirmed by experimental measurements. Using this device, we perform a set of biological assays, which include real-time fluorescent imaging and insulin secretion kinetics for both mouse and human islets. Our results demonstrate that this system not only drastically simplifies previously published experimental protocols for islet study by eliminating the need for external pumps/tubing and reducing the volume of solution consumption, but it also achieves a higher analytical spatiotemporal resolution due to efficient flow exchanges and the extremely small volume of solutions required. Overall, the microfluidic platform presented can be used as a potential powerful tool for understanding islet physiology, antidiabetic drug development, and islet transplantation.
Collapse
Affiliation(s)
- Yuan Xing
- Department of Surgery/Transplant, University of Illinois at Chicago, 840 S. Wood St, Rm 502, Chicago, IL, 60612, USA.,Department of Bioengineering, University of Illinois at Chicago, Chicago, IL, 60115, USA
| | - Mohammad Nourmohammadzadeh
- Department of Surgery/Transplant, University of Illinois at Chicago, 840 S. Wood St, Rm 502, Chicago, IL, 60612, USA.,Department of Bioengineering, University of Illinois at Chicago, Chicago, IL, 60115, USA
| | - Joshua E Mendoza Elias
- Department of Surgery/Transplant, University of Illinois at Chicago, 840 S. Wood St, Rm 502, Chicago, IL, 60612, USA.,Department of Bioengineering, University of Illinois at Chicago, Chicago, IL, 60115, USA
| | - Manwai Chan
- Department of Surgery/Transplant, University of Illinois at Chicago, 840 S. Wood St, Rm 502, Chicago, IL, 60612, USA.,Department of Bioengineering, University of Illinois at Chicago, Chicago, IL, 60115, USA
| | - Zequn Chen
- Department of Surgery/Transplant, University of Illinois at Chicago, 840 S. Wood St, Rm 502, Chicago, IL, 60612, USA
| | - James J McGarrigle
- Department of Surgery/Transplant, University of Illinois at Chicago, 840 S. Wood St, Rm 502, Chicago, IL, 60612, USA
| | - José Oberholzer
- Department of Surgery/Transplant, University of Illinois at Chicago, 840 S. Wood St, Rm 502, Chicago, IL, 60612, USA. .,Department of Bioengineering, University of Illinois at Chicago, Chicago, IL, 60115, USA.
| | - Yong Wang
- Department of Surgery/Transplant, University of Illinois at Chicago, 840 S. Wood St, Rm 502, Chicago, IL, 60612, USA. .,Department of Bioengineering, University of Illinois at Chicago, Chicago, IL, 60115, USA.
| |
Collapse
|