1
|
Yang Y, Jiang Q, Zhang F. Nanocrystals for Deep-Tissue In Vivo Luminescence Imaging in the Near-Infrared Region. Chem Rev 2024; 124:554-628. [PMID: 37991799 DOI: 10.1021/acs.chemrev.3c00506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2023]
Abstract
In vivo imaging technologies have emerged as a powerful tool for both fundamental research and clinical practice. In particular, luminescence imaging in the tissue-transparent near-infrared (NIR, 700-1700 nm) region offers tremendous potential for visualizing biological architectures and pathophysiological events in living subjects with deep tissue penetration and high imaging contrast owing to the reduced light-tissue interactions of absorption, scattering, and autofluorescence. The distinctive quantum effects of nanocrystals have been harnessed to achieve exceptional photophysical properties, establishing them as a promising category of luminescent probes. In this comprehensive review, the interactions between light and biological tissues, as well as the advantages of NIR light for in vivo luminescence imaging, are initially elaborated. Subsequently, we focus on achieving deep tissue penetration and improved imaging contrast by optimizing the performance of nanocrystal fluorophores. The ingenious design strategies of NIR nanocrystal probes are discussed, along with their respective biomedical applications in versatile in vivo luminescence imaging modalities. Finally, thought-provoking reflections on the challenges and prospects for future clinical translation of nanocrystal-based in vivo luminescence imaging in the NIR region are wisely provided.
Collapse
Affiliation(s)
- Yang Yang
- College of Energy Materials and Chemistry, State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, Inner Mongolia University, Hohhot 010021, China
| | - Qunying Jiang
- College of Energy Materials and Chemistry, State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, Inner Mongolia University, Hohhot 010021, China
| | - Fan Zhang
- College of Energy Materials and Chemistry, State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, Inner Mongolia University, Hohhot 010021, China
- Department of Chemistry, State Key Laboratory of Molecular Engineering of Polymers, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai 200433, China
| |
Collapse
|
2
|
Che D, Cao X, Chen C, Yan H. A point-of-care aptasensor based on the upconversion nanoparticles/MoS 2 FRET system for the detection of Pseudomonas aeruginosa infection. Mikrochim Acta 2023; 191:61. [PMID: 38157041 DOI: 10.1007/s00604-023-06155-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 12/14/2023] [Indexed: 01/03/2024]
Abstract
The rapid detection of Pseudomonas aeruginosa (P. aeruginosa) is of great significance for the diagnosis of medical infection. In view of the above, a novel aptasensor based on fluorescence resonance energy transfer (FRET) was developed. It contained aptamer-coupled upconversion nanoparticles (UCNPs-apt) as a donor (excitation 980 nm) and molybdenum disulfide (MoS2) nanosheets as an acceptor. The upconversion fluorescence aptamer system was investigated to obtain the optimal parameters of MoS2 concentration, the incubation time of UCNPs-apt/MoS2 and P. aeruginosa, and pH. Based on the optimal parameters, a linear calibration equation (emission 654 nm) with a wide detection range 8.7 × 10 ~ 8.7 × 107 cfu/mL, a high coefficient of determination R2 0.9941, and a low limit of determination (LOD) 15.5 cfu/mL were established. The method was validated with P. aeruginosa infected foci of mouse wound. The advantage of this aptasensor is that analysis results can be obtained within 1.5 h, which was much faster than that of the standard method (18-24 h). Furthermore, combined with a portable instrument, it can be used as a point-of-care testing for the early detection of P. aeruginosa infection, which is useful for selecting the correct antibiotics to achieve good therapeutic effects. Additionally, it also has a broad application prospect in food and environmental areas.
Collapse
Affiliation(s)
- Dou Che
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, 212100, China
| | - Xitao Cao
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, 212100, China
| | - Chong Chen
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, 212100, China
| | - Hui Yan
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, 212100, China.
| |
Collapse
|
3
|
Chen C, Lei H, Liu N, Yan H. An aptasensor for ampicillin detection in milk by fluorescence resonance energy transfer between upconversion nanoparticles and Au nanoparticles. Food Chem X 2022; 15:100439. [PMID: 36211752 PMCID: PMC9532798 DOI: 10.1016/j.fochx.2022.100439] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 09/01/2022] [Accepted: 09/01/2022] [Indexed: 11/29/2022] Open
Abstract
This paper reports a portable fluorescence resonance energy transfer (FRET) aptasensor for ampicillin (Amp) detection using upconversion particles (UCNPs) as energy donors and Au nanoparticles (AuNPs) as energy acceptors. The optimal parameters of the detection system were investigated. Under the optimal conditions, it had a good linear relationship between the fluorescence intensities and Amp concentrations, a high coefficient of determination (R2) of 0.9939, a wide detection range of 10-100 ng/mL, and a low limit of detection (LOD) of 3.9 ng/mL; meanwhile, the aptasensor had high selectivity for Amp against the interference of other antibiotics, and had good recovery and repeatability. Also, its detection performance had been successfully validated by milk samples. Therefore, the developed aptasensor based on FRET between UCNPs and AuNPs has a good prospect for Amp on-site detection in milk with a portable upconversion detection instrument.
Collapse
Affiliation(s)
- Chong Chen
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, China
| | - Hong Lei
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, China
| | - Nan Liu
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, China
| | - Hui Yan
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, China
| |
Collapse
|
4
|
Du K, Feng J, Gao X, Zhang H. Nanocomposites based on lanthanide-doped upconversion nanoparticles: diverse designs and applications. LIGHT, SCIENCE & APPLICATIONS 2022; 11:222. [PMID: 35831282 PMCID: PMC9279428 DOI: 10.1038/s41377-022-00871-z] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Revised: 05/11/2022] [Accepted: 06/01/2022] [Indexed: 06/10/2023]
Abstract
Lanthanide-doped upconversion nanoparticles (UCNPs) have aroused extraordinary interest due to the unique physical and chemical properties. Combining UCNPs with other functional materials to construct nanocomposites and achieve synergistic effect abound recently, and the resulting nanocomposites have shown great potentials in various fields based on the specific design and components. This review presents a summary of diverse designs and synthesis strategies of UCNPs-based nanocomposites, including self-assembly, in-situ growth and epitaxial growth, as well as the emerging applications in bioimaging, cancer treatments, anti-counterfeiting, and photocatalytic fields. We then discuss the challenges, opportunities, and development tendency for developing UCNPs-based nanocomposites.
Collapse
Affiliation(s)
- Kaimin Du
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, Jilin, China
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Science, 116023, Dalian, China
| | - Jing Feng
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, Jilin, China.
- University of Science and Technology of China, Hefei, Anhui, 230026, China.
| | - Xuan Gao
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, Jilin, China
- University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Hongjie Zhang
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, Jilin, China.
- University of Science and Technology of China, Hefei, Anhui, 230026, China.
- Department of Chemistry, Tsinghua University, 100084, Beijing, China.
| |
Collapse
|
5
|
Exploring Sensitive Label-Free Multiplex Analysis with Raman-Coded Microbeads and SERS-Coded Reporters. BIOSENSORS 2022; 12:bios12020121. [PMID: 35200381 PMCID: PMC8870176 DOI: 10.3390/bios12020121] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 02/07/2022] [Accepted: 02/11/2022] [Indexed: 11/17/2022]
Abstract
Suspension microsphere immunoassays are rapidly gaining attention in multiplex bioassays. Accurate detection of multiple analytes from a single measurement is critical in modern bioanalysis, which always requires complex encoding systems. In this study, a novel bioassay with Raman-coded antibody supports (polymer microbeads with different Raman signatures) and surface-enhanced Raman scattering (SERS)-coded nanotags (organic thiols on a gold nanoparticle surface with different SERS signatures) was developed as a model fluorescent, label-free, bead-based multiplex immunoassay system. The developed homogeneous immunoassays included two surface-functionalized monodisperse Raman-coded microbeads of polystyrene and poly(4-tert-butylstyrene) as the immune solid supports, and two epitope modified nanotags (self-assembled 4-mercaptobenzoic acid or 3-mercaptopropionic acid on gold nanoparticles) as the SERS-coded reporters. Such multiplex Raman/SERS-based microsphere immunoassays could selectively identify specific paratope–epitope interactions from one mixture sample solution under a single laser illumination, and thus hold great promise in future suspension multiplex analysis for diverse biomedical applications.
Collapse
|
6
|
Sun C, Gradzielski M. Advances in fluorescence sensing enabled by lanthanide-doped upconversion nanophosphors. Adv Colloid Interface Sci 2022; 300:102579. [PMID: 34924169 DOI: 10.1016/j.cis.2021.102579] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Revised: 11/24/2021] [Accepted: 11/26/2021] [Indexed: 01/02/2023]
Abstract
Lanthanide-doped upconversion nanoparticles (UCNPs), characterized by converting low-energy excitation to high-energy emission, have attracted considerable interest due to their inherent advantages of large anti-Stokes shifts, sharp and narrow multicolor emissions, negligible autofluorescence background interference, and excellent chemical- and photo-stability. These features make them promising luminophores for sensing applications. In this review, we give a comprehensive overview of lanthanide-doped upconversion nanophosphors including the fundamental principle for the construction of UCNPs with efficient upconversion luminescence (UCL), followed by state-of-the-art strategies for the synthesis and surface modification of UCNPs, and finally describing current advances in the sensing application of upconversion-based probes for the quantitative analysis of various analytes including pH, ions, molecules, bacteria, reactive species, temperature, and pressure. In addition, emerging sensing applications like photodetection, velocimetry, electromagnetic field, and voltage sensing are highlighted.
Collapse
Affiliation(s)
- Chunning Sun
- Stranski-Laboratorium für Physikalische und Theoretische Chemie, Institut für Chemie, Technische Universität Berlin, Strasse des 17. Juni 124, 10623 Berlin, Germany.
| | - Michael Gradzielski
- Stranski-Laboratorium für Physikalische und Theoretische Chemie, Institut für Chemie, Technische Universität Berlin, Strasse des 17. Juni 124, 10623 Berlin, Germany.
| |
Collapse
|
7
|
Drees C, Rühl P, Czerny J, Chandra G, Bajorath J, Haase M, Heinemann SH, Piehler J. Diffraction-Unlimited Photomanipulation at the Plasma Membrane via Specifically Targeted Upconversion Nanoparticles. NANO LETTERS 2021; 21:8025-8034. [PMID: 34519216 DOI: 10.1021/acs.nanolett.1c02267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Engineered UCNP are used to trigger rapid photoconversion of the fluorescent protein Dendra2 with nanoscopic precision and over longer distances in mammalian cells. By exploiting the synergy of high-level thulium doping with core-shell design and elevated excitation intensities, intense UCNP emission is achieved, allowing fast photoconversion of Dendra2 with <10 nm resolution. A tailored biocompatible surface coating and functionalization with a derivate of green fluorescent protein (GFP) for recognition of antiGFP nanobodies are developed. Highly specific targeting of UCNP to fusion proteins of antiGFP on the surface of mammalian cells is demonstrated. UCNP bound to extracellular Dendra2 enable rapid photoconversion selectively in molecular proximity and thus unambiguous detection of cytokine receptor dimerization in the plasma membrane and in endosomes. Remarkably, UCNPs are also suited for manipulating intracellular Dendra2 across the plasma membrane. This study thus establishes UCNP-controlled photomanipulation with nanoscale precision, opening exciting opportunities for bioanalytical applications in cell biology.
Collapse
Affiliation(s)
- Christoph Drees
- Department of Biology/Chemistry and Center of Cellular Nanoanalytics (CellNanOs), Osnabrück University, 49076 Osnabrück, Germany
| | - Philipp Rühl
- Center for Molecular Biomedicine, Department of Biophysics, Friedrich Schiller University Jena and Jena University Hospital, 07745 Jena, Germany
| | - Jacqueline Czerny
- Department of Biology/Chemistry and Center of Cellular Nanoanalytics (CellNanOs), Osnabrück University, 49076 Osnabrück, Germany
| | - Gemini Chandra
- Center for Molecular Biomedicine, Department of Biophysics, Friedrich Schiller University Jena and Jena University Hospital, 07745 Jena, Germany
| | - Janosch Bajorath
- Department of Biology/Chemistry and Center of Cellular Nanoanalytics (CellNanOs), Osnabrück University, 49076 Osnabrück, Germany
| | - Markus Haase
- Department of Biology/Chemistry and Center of Cellular Nanoanalytics (CellNanOs), Osnabrück University, 49076 Osnabrück, Germany
| | - Stefan H Heinemann
- Center for Molecular Biomedicine, Department of Biophysics, Friedrich Schiller University Jena and Jena University Hospital, 07745 Jena, Germany
| | - Jacob Piehler
- Department of Biology/Chemistry and Center of Cellular Nanoanalytics (CellNanOs), Osnabrück University, 49076 Osnabrück, Germany
| |
Collapse
|
8
|
Algar WR, Massey M, Rees K, Higgins R, Krause KD, Darwish GH, Peveler WJ, Xiao Z, Tsai HY, Gupta R, Lix K, Tran MV, Kim H. Photoluminescent Nanoparticles for Chemical and Biological Analysis and Imaging. Chem Rev 2021; 121:9243-9358. [PMID: 34282906 DOI: 10.1021/acs.chemrev.0c01176] [Citation(s) in RCA: 123] [Impact Index Per Article: 41.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Research related to the development and application of luminescent nanoparticles (LNPs) for chemical and biological analysis and imaging is flourishing. Novel materials and new applications continue to be reported after two decades of research. This review provides a comprehensive and heuristic overview of this field. It is targeted to both newcomers and experts who are interested in a critical assessment of LNP materials, their properties, strengths and weaknesses, and prospective applications. Numerous LNP materials are cataloged by fundamental descriptions of their chemical identities and physical morphology, quantitative photoluminescence (PL) properties, PL mechanisms, and surface chemistry. These materials include various semiconductor quantum dots, carbon nanotubes, graphene derivatives, carbon dots, nanodiamonds, luminescent metal nanoclusters, lanthanide-doped upconversion nanoparticles and downshifting nanoparticles, triplet-triplet annihilation nanoparticles, persistent-luminescence nanoparticles, conjugated polymer nanoparticles and semiconducting polymer dots, multi-nanoparticle assemblies, and doped and labeled nanoparticles, including but not limited to those based on polymers and silica. As an exercise in the critical assessment of LNP properties, these materials are ranked by several application-related functional criteria. Additional sections highlight recent examples of advances in chemical and biological analysis, point-of-care diagnostics, and cellular, tissue, and in vivo imaging and theranostics. These examples are drawn from the recent literature and organized by both LNP material and the particular properties that are leveraged to an advantage. Finally, a perspective on what comes next for the field is offered.
Collapse
Affiliation(s)
- W Russ Algar
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, BC V6T 1Z1, Canada
| | - Melissa Massey
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, BC V6T 1Z1, Canada
| | - Kelly Rees
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, BC V6T 1Z1, Canada
| | - Rehan Higgins
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, BC V6T 1Z1, Canada
| | - Katherine D Krause
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, BC V6T 1Z1, Canada
| | - Ghinwa H Darwish
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, BC V6T 1Z1, Canada
| | - William J Peveler
- School of Chemistry, Joseph Black Building, University of Glasgow, Glasgow G12 8QQ, U.K
| | - Zhujun Xiao
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, BC V6T 1Z1, Canada
| | - Hsin-Yun Tsai
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, BC V6T 1Z1, Canada
| | - Rupsa Gupta
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, BC V6T 1Z1, Canada
| | - Kelsi Lix
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, BC V6T 1Z1, Canada
| | - Michael V Tran
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, BC V6T 1Z1, Canada
| | - Hyungki Kim
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, BC V6T 1Z1, Canada
| |
Collapse
|
9
|
Ansari AA, Thakur VK, Chen G. Functionalized upconversion nanoparticles: New strategy towards FRET-based luminescence bio-sensing. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2021.213821] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
10
|
Sun C, Gradzielski M. Fluorescence sensing of cyanide anions based on Au-modified upconversion nanoassemblies. Analyst 2021; 146:2152-2159. [PMID: 33543177 DOI: 10.1039/d0an01954b] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Cyanides have been recognized as one of the most toxic chemicals and are harmful to the environment and human beings. Herein, fluorescence resonance energy transfer (FRET)-based upconversion nanoprobes for cyanide anions have been designed and prepared by assembling Au nanoparticles (NPs) on core-shell-structured NaYF4:Yb,Er@NaYF4:Yb upconversion NPs (csUCNPs), where csUCNPs act as the energy donor and Au NPs act as the energy acceptor. The Au content was optimized in order to have a large quenching efficiency in upconversion luminescence (UCL). The cyanide-mediated redox reaction leads to the consumption of Au NPs, resulting in UCL recovery by the inhibition of the FRET process. On the basis of these features, csUCNP/Au nanoassemblies can serve as sensitive nanoprobes for cyanide ions with a detection limit of 1.53 μM. Moreover, no significant UCL variation was observed upon the addition of other interfering ions, showing the excellent selectivity of nanoprobes toward cyanide ion sensing. The easy preparation of such upconversion-based nanoprobes provides a promising platform for sensitive and selective sensing of other hazardous species.
Collapse
Affiliation(s)
- Chunning Sun
- Stranski-Laboratorium für Physikalische und Theoretische Chemie, Institut für Chemie, Technische Universität Berlin, Strasse des 17. Juni 124, 10623 Berlin, Germany.
| | | |
Collapse
|
11
|
Zhang Y, Zhu X, Zhang Y. Exploring Heterostructured Upconversion Nanoparticles: From Rational Engineering to Diverse Applications. ACS NANO 2021; 15:3709-3735. [PMID: 33689307 DOI: 10.1021/acsnano.0c09231] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Upconversion nanoparticles (UCNPs) represent a class of optical nanomaterials that can convert low-energy excitation photons to high-energy fluorescence emissions. On the basis of UCNPs, heterostructured UCNPs, consisting of UCNPs and other functional counterparts (metals, semiconductors, polymers, etc.), present an intriguing system in which the physicochemical properties are largely influenced by the entire assembled particle and also by the morphology, dimension, and composition of each individual component. As multicomponent nanomaterials, heterostructured UCNPs can overcome challenges associated with a single component and exhibit bifunctional or multifunctional properties, which can further expand their applications in bioimaging, biodetection, and phototherapy. In this review, we provide a summary of recent achievements in the field of heterostructured UCNPs in the aspects of construction strategies, synthetic approaches, and types of heterostructured UCNPs. This review also summarizes the trends in biomedical applications of heterostructured UCNPs and discusses the challenges and potential solutions in this field.
Collapse
Affiliation(s)
- Yi Zhang
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
- Department of Biomedical Engineering, Faculty of Engineering, National University of Singapore, Singapore 117583
| | - Xiaohui Zhu
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| | - Yong Zhang
- Department of Biomedical Engineering, Faculty of Engineering, National University of Singapore, Singapore 117583
| |
Collapse
|
12
|
Shaban SM, Kim DH. Recent Advances in Aptamer Sensors. SENSORS (BASEL, SWITZERLAND) 2021; 21:979. [PMID: 33540523 PMCID: PMC7867169 DOI: 10.3390/s21030979] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 01/24/2021] [Accepted: 01/26/2021] [Indexed: 02/07/2023]
Abstract
Recently, aptamers have attracted attention in the biosensing field as signal recognition elements because of their high binding affinity toward specific targets such as proteins, cells, small molecules, and even metal ions, antibodies for which are difficult to obtain. Aptamers are single oligonucleotides generated by in vitro selection mechanisms via the systematic evolution of ligand exponential enrichment (SELEX) process. In addition to their high binding affinity, aptamers can be easily functionalized and engineered, providing several signaling modes such as colorimetric, fluorometric, and electrochemical, in what are known as aptasensors. In this review, recent advances in aptasensors as powerful biosensor probes that could be used in different fields, including environmental monitoring, clinical diagnosis, and drug monitoring, are described. Advances in aptamer-based colorimetric, fluorometric, and electrochemical aptasensing with their advantages and disadvantages are summarized and critically discussed. Additionally, future prospects are pointed out to facilitate the development of aptasensor technology for different targets.
Collapse
Affiliation(s)
- Samy M. Shaban
- School of Chemical Engineering, Sungkyunkwan University (SKKU), Suwon 16419, Korea;
- Biomedical Institute for Convergence at SKKU (BICS), Sungkyunkwan University (SKKU), Suwon 16419, Korea
- Petrochemicals Department, Egyptian Petroleum Research Institute, Cairo 11727, Egypt
| | - Dong-Hwan Kim
- School of Chemical Engineering, Sungkyunkwan University (SKKU), Suwon 16419, Korea;
- Biomedical Institute for Convergence at SKKU (BICS), Sungkyunkwan University (SKKU), Suwon 16419, Korea
| |
Collapse
|
13
|
Chang H, Kim J, Lee SH, Rho WY, Lee JH, Jeong DH, Jun BH. Luminescent Nanomaterials (II). ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1309:97-132. [PMID: 33782870 DOI: 10.1007/978-981-33-6158-4_5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
In this review, we focus on sensing techniques and biological applications of various luminescent nanoparticles including quantum dot (QD), up-conversion nanoparticles (UCNPs) following the previous chapter. Fluorescent phenomena can be regulated or shifted by interaction between biological targets and luminescence probes depending on their distance, which is so-called Fӧrster resonance energy transfer (FRET). QD-based FRET technique, which has been widely applied as a bioanalytical tool, is described. We discuss time-resolved fluorescence (TRF) imaging and flow cytometry technique, using photoluminescent nanoparticles with unique properties for effectively improving selectivity and sensitivity. Based on these techniques, bioanalytical and biomedical application, bioimaging with QD, UCNPs, and Euripium-activated luminescent nanoprobes are covered. Combination of optical property of these luminescent nanoparticles with special functions such as drug delivery, photothermal therapy (PTT), and photodynamic therapy (PDT) is also described.
Collapse
Affiliation(s)
- Hyejin Chang
- Division of Science Education, Kangwon National University, Chuncheon, Republic of Korea
| | - Jaehi Kim
- Department of Bioscience and Biotechnology, Konkuk University, Seoul, South Korea
| | - Sang Hun Lee
- Department of Chemical and Biological Engineering, Hanbat National University, Daejeon, Republic of Korea
| | - Won-Yeop Rho
- School of International Engineering and Science, Jeonbuk National University, Jeonju, Republic of Korea
| | - Jong Hun Lee
- Department of Food Science and Biotechnology, Gachon University, Seongnam, Republic of Korea
| | - Dae Hong Jeong
- Department of Chemistry Education, Seoul National University, Seoul, Republic of Korea
| | - Bong-Hyun Jun
- Department of Bioscience and Biotechnology, Konkuk University, Seoul, South Korea.
| |
Collapse
|
14
|
Burgess L, Wilson H, Jones AR, Hay S, Natrajan LS. Assessing the Covalent Attachment and Energy Transfer Capabilities of Upconverting Phosphors With Cofactor Containing Bioactive Enzymes. Front Chem 2020; 8:613334. [PMID: 33409268 PMCID: PMC7779683 DOI: 10.3389/fchem.2020.613334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Accepted: 11/30/2020] [Indexed: 11/21/2022] Open
Abstract
Upconverting phosphors (UCPs) convert multiple low energy photons into higher energy emission via the process of photon upconversion and offer an attractive alternative to organic fluorophores for use as luminescent probes. Examples of biosensors utilizing the apparent energy transfer of UCPs and nanophosphors (UCNPs) with biomolecules have started to appear in the literature but very few exploit the covalent anchoring of the biomolecule to the surface of the UCP to improve the sensitivity of the systems. Here, we demonstrate a robust and versatile method for the covalent attachment of biomolecules to the surface of a variety of UCPs and UCNPs in which the UCPs were capped with functionalized silica in order to provide a surface to covalently conjugate biomolecules with surface-accessible cysteines. Variants of BM3Heme, cytochrome C, glucose oxidase, and glutathione reductase were then attached via maleimide-thiol coupling. BM3Heme, glucose oxidase, and glutathione reductase were shown to retain their activity when coupled to the UCPs potentially opening up opportunities for biosensing applications.
Collapse
Affiliation(s)
- Letitia Burgess
- Department of Chemistry, School of Natural Sciences, The University of Manchester, Manchester, United Kingdom
- Manchester Institute of Biotechnology, The University of Manchester, Manchester, United Kingdom
| | - Hannah Wilson
- Department of Chemistry, School of Natural Sciences, The University of Manchester, Manchester, United Kingdom
- Manchester Institute of Biotechnology, The University of Manchester, Manchester, United Kingdom
- Photon Science Institute, The University of Manchester, Manchester, United Kingdom
| | - Alex R Jones
- Department of Chemistry, School of Natural Sciences, The University of Manchester, Manchester, United Kingdom
- Manchester Institute of Biotechnology, The University of Manchester, Manchester, United Kingdom
- Photon Science Institute, The University of Manchester, Manchester, United Kingdom
| | - Sam Hay
- Department of Chemistry, School of Natural Sciences, The University of Manchester, Manchester, United Kingdom
- Manchester Institute of Biotechnology, The University of Manchester, Manchester, United Kingdom
| | - Louise S Natrajan
- Department of Chemistry, School of Natural Sciences, The University of Manchester, Manchester, United Kingdom
- Photon Science Institute, The University of Manchester, Manchester, United Kingdom
| |
Collapse
|
15
|
Synthesis, optical properties and toxic potentiality of photoluminescent lanthanum oxide nanospheres. Colloids Surf A Physicochem Eng Asp 2020. [DOI: 10.1016/j.colsurfa.2020.125511] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
16
|
Chen Q, Sheng R, Wang P, Ouyang Q, Wang A, Ali S, Zareef M, Hassan MM. Ultra-sensitive detection of malathion residues using FRET-based upconversion fluorescence sensor in food. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2020; 241:118654. [PMID: 32659702 DOI: 10.1016/j.saa.2020.118654] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Revised: 06/20/2020] [Accepted: 06/23/2020] [Indexed: 06/11/2023]
Abstract
Malathion is an organophosphorus pesticide which could remain in agricultural products and exert irreversible harmful effects on human health. Hence, strict monitoring of malathion contents is very significant. Here, a highly sensitive fluorescent aptasensor was developed for the determination of malathion, the system was based on a cationic polymer-mediated fluorescence 'turn-off'. In this system, malathion-specific aptamers were bound to cationic polymer through electrostatic interactions. To produce fluorescence resonance energy transfer (FRET), negatively charged upconversion fluorescent nanoparticles (UCNPs) and cationic-polymer encapsulated gold nanoparticles (GNPs) were combined. This combination resulted in fluorescence quenching, and the degree of quenching was correlated with the concentration of malathion. Under optimum conditions, the fluorescence intensities were observed to decrease linearly with the rising concentration of the malathion from 0.01 to 1 μM with a detection limit of 1.42 nM. Furthermore, the developed sensor possessed good selective recognition ability for malathion and was successfully used to detect malathion in adulterated tap water and matcha samples with high accuracy.
Collapse
Affiliation(s)
- Quansheng Chen
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, PR China.
| | - Ren Sheng
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Pingyue Wang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Qin Ouyang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, PR China.
| | - Ancheng Wang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Shujat Ali
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Muhammad Zareef
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Md Mehedi Hassan
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, PR China
| |
Collapse
|
17
|
Liang G, Wang H, Shi H, Wang H, Zhu M, Jing A, Li J, Li G. Recent progress in the development of upconversion nanomaterials in bioimaging and disease treatment. J Nanobiotechnology 2020; 18:154. [PMID: 33121496 PMCID: PMC7596946 DOI: 10.1186/s12951-020-00713-3] [Citation(s) in RCA: 74] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Accepted: 10/20/2020] [Indexed: 01/02/2023] Open
Abstract
Multifunctional lanthanide-based upconversion nanoparticles (UCNPs), which feature efficiently convert low-energy photons into high-energy photons, have attracted considerable attention in the domain of materials science and biomedical applications. Due to their unique photophysical properties, including light-emitting stability, excellent upconversion luminescence efficiency, low autofluorescence, and high detection sensitivity, and high penetration depth in samples, UCNPs have been widely applied in biomedical applications, such as biosensing, imaging and theranostics. In this review, we briefly introduced the major components of UCNPs and the luminescence mechanism. Then, we compared several common design synthesis strategies and presented their advantages and disadvantages. Several examples of the functionalization of UCNPs were given. Next, we detailed their biological applications in bioimaging and disease treatment, particularly drug delivery and photodynamic therapy, including antibacterial photodynamic therapy. Finally, the future practical applications in materials science and biomedical fields, as well as the remaining challenges to UCNPs application, were described. This review provides useful practical information and insights for the research on and application of UCNPs in the field of cancer.
Collapse
Affiliation(s)
- Gaofeng Liang
- Medical College, Henan University of Science and Technology, Luoyang, 471023, Henan, China.
| | - Haojie Wang
- Medical College, Henan University of Science and Technology, Luoyang, 471023, Henan, China
| | - Hao Shi
- School of Medical Technology and Engineering, Henan University of Science and Technology, Luoyang, 471023, China
| | - Haitao Wang
- School of Environmental Science and Engineering, Nankai University, Tianjin,, 300350, China
| | - Mengxi Zhu
- Medical College, Henan University of Science and Technology, Luoyang, 471023, Henan, China
| | - Aihua Jing
- School of Medical Technology and Engineering, Henan University of Science and Technology, Luoyang, 471023, China
| | - Jinghua Li
- School of Medical Technology and Engineering, Henan University of Science and Technology, Luoyang, 471023, China
| | - Guangda Li
- School of Medical Technology and Engineering, Henan University of Science and Technology, Luoyang, 471023, China
| |
Collapse
|
18
|
Husain FM, Ansari AA, Khan A, Ahmad N, Albadri A, Albalawi TH. Mitigation of acyl-homoserine lactone (AHL) based bacterial quorum sensing, virulence functions, and biofilm formation by yttrium oxide core/shell nanospheres: Novel approach to combat drug resistance. Sci Rep 2019; 9:18476. [PMID: 31811221 PMCID: PMC6898131 DOI: 10.1038/s41598-019-53920-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Accepted: 10/28/2019] [Indexed: 11/21/2022] Open
Abstract
The present study evaluated the efficacy of Y2O3:Tb (core) and Y2O3:Tb@SiO2 nanospheres (core/shell NSs) against virulence functions regulated by quorum sensing (QS) and biofilm formation in pathogenic bacteria. Scanning electron microscope (SEM) images were used to study the size, shape, and morphology. The images clearly displayed spherical shaped, mono-dispersed particles with narrow size distribution and an average grain size of 110-130 nm. The chemical composition of the samples was determined by using energy dispersive X-ray (EDX) and X-ray photoelectron spectroscopy (XPS). We determined the impact of core and core/shell NSs on QS using sensor strains of Chromobacterium violaceum CVO26 and Pseudomonas aeruginosa PAO1 in a comparative study. Sub-MICs of core and core/shell NSs substantially suppressed QS-controlled violacein production in C. violaceum. Similar concentration-dependent effect of sub-MICs of synthesized core and core/shell NSs was observed in the QS-regulated virulence functions (elastase, total protease, pyocyanin production, swarming motility, and exopolysaccharide production) in PAO1. A concentration-dependent decrease (14-60%) was recorded in the biofilm forming capability of PAO1, upon treatment with core and core/shell NSs. Moreover, core/shell NSs were more effective in inhibiting biofilm at higher tested concentrations as compared to core-NSs. The synthesized NSs demonstrated significantly impaired attachment of cells to the microtiter plate indicating that NSs target biofilm inhibition at the attachment stage. Based on these results, we predict that core and core/shell NSs may be an alternative to combat the threat of drug-resistant pathogenic bacteria.
Collapse
Affiliation(s)
- Fohad Mabood Husain
- Department of Food Science and Nutrition, College of Food and Agriculture Sciences, King Saud University, Riyadh, 11451, Saudi Arabia.
| | - Anees A Ansari
- King Abdullah Institute for Nanotechnology, King Saud University, Riyadh, 11451, Saudi Arabia.
| | - Aslam Khan
- King Abdullah Institute for Nanotechnology, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Naushad Ahmad
- Department of Chemistry, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Abdulrahman Albadri
- National Center for Nanotechnology and Advanced Materials, King Abdulaziz City for Science & Technology, Riyadh, 11442, Saudi Arabia
| | - Thamer H Albalawi
- Department of Biology, College of Science and Humanities, Prince Sattam bin Abdulaziz University, Alkharj, 11942, Kingdom of Saudi Arabia
| |
Collapse
|
19
|
Lu Y, Wang L, Chen H. Turn-on detection of MicroRNA155 based on simple UCNPs-DNA-AuNPs luminescence energy transfer probe and duplex-specific nuclease signal amplification. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2019; 223:117345. [PMID: 31310956 DOI: 10.1016/j.saa.2019.117345] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Revised: 06/14/2019] [Accepted: 07/07/2019] [Indexed: 06/10/2023]
Abstract
A novel luminescence energy transfer (LET) probe for detection of tumor related microRNAs using NaGdF4:Yb,Er@NaYF4 upconversion nanoparticles (UCNPs) as energy donors and gold nanoparticles (AuNPs) as energy acceptors was developed. Using the double modified complementary DNA sequences of microRNA155 (miRNA155) as a bridge, NaGdF4:Yb,Er@NaYF4 UCNPs and AuNPs were conjugated to form NaGdF4:Yb,Er@NaYF4 UCNPs-DNA-AuNPs nanocomplexes (UCNPs-DNA-AuNPs) probe. The energy transfer would occur when the distance between donor and acceptor gets closer. In the presence of target miRNA155, DNA-RNA heteroduplexes appeared as product, but the luminescence intensity was not changed obviously. In the existence of duplex-specific nuclease (DSN), DSN could hydrolyze the DNA strand of DNA-RNA heteroduplexes, the bridge linked NaGdF4:Yb,Er@NaYF4 UCNPs and AuNPs was destroyed, which induced that the quenched luminescence intensity was recovered and RNA was released. The released miRNA155 could react with another UCNPs-DNA-AuNPs probe to form DNA-RNA heteroduplexes again. This cyclic reaction generates an amplification of luminescence signal for quantitative detection of miRNA155. Under the illumination of 980 nm laser, the concentration ranges from 0.1 nM to 15 nM and the detection of limits was 0.045 nM for detection of miRNA155. Moreover, the UCNPs-DNA-AuNPs probe was used in quantify miRNA155 in cell lysates with satisfactory results.
Collapse
Affiliation(s)
- Yunyun Lu
- Anhui Key Laboratory of Chemo-Biosensing, Key Laboratory of Functional Molecular Solids, Ministry of Education, College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241000, PR China
| | - Lun Wang
- Anhui Key Laboratory of Chemo-Biosensing, Key Laboratory of Functional Molecular Solids, Ministry of Education, College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241000, PR China.
| | - Hongqi Chen
- Anhui Key Laboratory of Chemo-Biosensing, Key Laboratory of Functional Molecular Solids, Ministry of Education, College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241000, PR China.
| |
Collapse
|
20
|
Wang F, Han Y, Wang S, Ye Z, Wei L, Xiao L. Single-Particle LRET Aptasensor for the Sensitive Detection of Aflatoxin B 1 with Upconversion Nanoparticles. Anal Chem 2019; 91:11856-11863. [PMID: 31436408 DOI: 10.1021/acs.analchem.9b02599] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Contamination of foods and feeds by aflatoxins is a universal yet serious problem all over the world. Particularly, aflatoxin B1 (AFB1) is the most primary form and readily leads to terrible damages to human health. In this work, we construct a sensitive aptasensor based on single-particle detection (SPD) to analyze AFB1 in peanut samples with luminescence resonance energy transfer (LRET) between the aptamer-modified upconversion nanoparticles (UCNPs-aptamer) and gold nanoparticles (GNPs). The UCNP-aptamer plays as the luminescence donor, while GNP acts as the energy acceptor. In the absence of AFB1, GNPs would adsorb onto the surface of UCNPs-aptamer because of the association between aptamers and GNPs, leading to luminescence quenching. However, the luminescence of UCNPs-aptamer is recovered gradually in the presence of AFB1, because the aptamers possess stronger affinity toward AFB1 than GNPs. Through statistically counting the number of luminescent particles on the glass slide surface, the concentration of AFB1 in solution is accurately determined. The linear dynamic range for AFB1 detection is from 3.13 to 125.00 ng/mL. The limit-of-detection (LOD) is 0.17 ng/mL, which is much lower than the allowable concentration in foods. As a result, this method would provide promising application for the sensitive detection of AFB1 in foods and feeds, which might make a meaningful contribution to food safety and public health in the future.
Collapse
Affiliation(s)
- Fuyan Wang
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research, Ministry of Education, Key Laboratory of Phytochemical R&D of Hunan Province, College of Chemistry and Chemical Engineering , Hunan Normal University , Changsha 410081 , China
| | - Yameng Han
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Biosensing and Molecular Recognition, College of Chemistry , Nankai University , Tianjin 300071 , China
| | - Shumin Wang
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Biosensing and Molecular Recognition, College of Chemistry , Nankai University , Tianjin 300071 , China
| | - Zhongju Ye
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Biosensing and Molecular Recognition, College of Chemistry , Nankai University , Tianjin 300071 , China
| | - Lin Wei
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research, Ministry of Education, Key Laboratory of Phytochemical R&D of Hunan Province, College of Chemistry and Chemical Engineering , Hunan Normal University , Changsha 410081 , China
| | - Lehui Xiao
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Biosensing and Molecular Recognition, College of Chemistry , Nankai University , Tianjin 300071 , China
| |
Collapse
|
21
|
Liu L, Yang D, Liu G. Signal amplification strategies for paper-based analytical devices. Biosens Bioelectron 2019; 136:60-75. [DOI: 10.1016/j.bios.2019.04.043] [Citation(s) in RCA: 96] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Revised: 04/15/2019] [Accepted: 04/21/2019] [Indexed: 12/26/2022]
|
22
|
Ding C, Cheng S, Zhang C, Xiong Y, Ye M, Xian Y. Ratiometric Upconversion Luminescence Nanoprobe with Near-Infrared Ag2S Nanodots as the Energy Acceptor for Sensing and Imaging of pH in Vivo. Anal Chem 2019; 91:7181-7188. [DOI: 10.1021/acs.analchem.9b00404] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Caiping Ding
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, Department of Chemistry, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200241, China
| | - Shasha Cheng
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, Department of Chemistry, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200241, China
| | - Cuiling Zhang
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, Department of Chemistry, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200241, China
| | - Youran Xiong
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, Department of Chemistry, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200241, China
| | - Mingqiang Ye
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, Department of Chemistry, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200241, China
| | - Yuezhong Xian
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, Department of Chemistry, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200241, China
| |
Collapse
|
23
|
Highly chemiluminescent TiO 2/tetra(4-carboxyphenyl)porphyrin/N-(4-aminobutyl)-N-ethylisoluminol nanoluminophores for detection of heart disease biomarker copeptin based on chemiluminescence resonance energy transfer. Anal Bioanal Chem 2019; 411:4175-4183. [PMID: 31020367 DOI: 10.1007/s00216-019-01821-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Revised: 03/19/2019] [Accepted: 03/29/2019] [Indexed: 10/26/2022]
Abstract
In this work, the chemiluminescence (CL) property of 5,10,15,20-tetrakis(4-carboxyphenyl)-porphyrin- and N-(4-aminobutyl)-N-ethylisoluminol-functionalized TiO2 nanoparticles (TiO2-TCPP-ABEI nanoluminophores) was studied for the first time. It was found that TiO2-TCPP-ABEI nanoluminophores exhibited excellent CL activity in the presence of H2O2. The CL mechanism has been proposed due to the reaction of ABEI with H2O2 and catalytic effect of TiO2 and TCPP. Furthermore, trisodium citrate-stabilized gold nanoparticles were observed to effectively quench the CL of TiO2-TCPP-ABEI due to CL resonance energy transfer (CRET). On this basis, a sensitive and selective CRET-based immunoassay was developed for the determination of copeptin by using TiO2-TCPP-ABEI nanoluminophores as both CL nanointerface and energy donor, and using cit-AuNPs as an effective energy receptor. The immunoassay exhibited a wide dynamic range from 5 × 10-12 to 1 × 10-9 g mL-1 with a low detection limit of 1.54 × 10-12 g mL-1, which was superior to previously reported CL-based immunoassays. It was successfully applied for the determination of copeptin in serum samples, which would provide a good practical perspective on the clinical diagnosis. This strategy may also be used for the detection of other antigens if corresponding antibodies are available. Graphical abstract.
Collapse
|
24
|
Li K, Hong E, Wang B, Wang Z, Zhang L, Hu R, Wang B. Advances in the application of upconversion nanoparticles for detecting and treating cancers. Photodiagnosis Photodyn Ther 2018; 25:177-192. [PMID: 30579991 DOI: 10.1016/j.pdpdt.2018.12.007] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Revised: 12/12/2018] [Accepted: 12/19/2018] [Indexed: 12/13/2022]
Abstract
The detection and treatment of cancer cells at an early stage are crucial for prolonging the survival time and improving the quality of life of patients. Upconversion nanoparticles (UCNPs) have unique physical and chemical advantages and likely provide a platform for detecting and treating cancer cells at an early stage. In this paper, the principle of UCNPs as chemical sensors based on fluorescence resonance energy transfer (FRET) has been briefly introduced. Research progress in such chemical sensors for detecting and analyzing bioactive substances and heavy metal ions at the subcellular level has been summarized. The principle of UCNP-based nanoprobe-targeting of cancer cells has been described. The research progress in using nanocomposites for cancer cell detection, namely cancer cell targeted imaging and tissue staining, has been discussed. In the field of cancer treatment, the principles and research progress of UCNPs in photodynamic therapy and photothermal therapy of cancer cells are systematically discussed. Finally, the prospects for UCNPs and remaining challenges to UCNP application in the field of cancer diagnosis and treatment are briefly described. This review provides powerful theoretical guidance and useful practical information for the research and application of UCNPs in the field of cancer.
Collapse
Affiliation(s)
- Kunmeng Li
- Department of Occupational and Environmental Health, School of Public Health, Tianjin Medical University, Tianjin, 300070, China
| | - Enlv Hong
- Department of Occupational and Environmental Health, School of Public Health, Tianjin Medical University, Tianjin, 300070, China
| | - Bing Wang
- Department of Ophthalmology, Fujian Medical University Union Hospital, Fuzhou, 350001, Fujian, China
| | - Zhiyu Wang
- Department of Occupational and Environmental Health, School of Public Health, Tianjin Medical University, Tianjin, 300070, China
| | - Liwen Zhang
- Department of Occupational and Environmental Health, School of Public Health, Tianjin Medical University, Tianjin, 300070, China
| | - Ruixia Hu
- Department of Occupational and Environmental Health, School of Public Health, Tianjin Medical University, Tianjin, 300070, China
| | - Baiqi Wang
- The Key Laboratory of Modern Toxicology of Ministry of Education, Nanjing Medical University, Nanjing, 211166, Jiangsu, China; Department of Occupational and Environmental Health, School of Public Health, Tianjin Medical University, Tianjin, 300070, China; The Key Laboratory of Environment, Nutrion and Public Health of Tianjin, Tianjin Medical University, Tianjin, 300070, China.
| |
Collapse
|
25
|
Hlaváček A, Mickert MJ, Soukka T, Lahtinen S, Tallgren T, Pizúrová N, Król A, Gorris HH. Large-Scale Purification of Photon-Upconversion Nanoparticles by Gel Electrophoresis for Analogue and Digital Bioassays. Anal Chem 2018; 91:1241-1246. [DOI: 10.1021/acs.analchem.8b04488] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Antonín Hlaváček
- Institute of Analytical Chemistry of the Czech Academy of Sciences, 602 00 Brno, Czech Republic
| | - Matthias J. Mickert
- Institute of Analytical Chemistry, Chemo- and Biosensors, University of Regensburg, 93053 Regensburg, Germany
| | - Tero Soukka
- Department of Biochemistry/Biotechnology, University of Turku, 20014 Turku, Finland
| | - Satu Lahtinen
- Department of Biochemistry/Biotechnology, University of Turku, 20014 Turku, Finland
| | - Terhi Tallgren
- Department of Biochemistry/Biotechnology, University of Turku, 20014 Turku, Finland
| | - Naděžda Pizúrová
- Institute of Physics of Materials of the Czech Academy of Sciences, 616 62 Brno, Czech Republic
| | - Anna Król
- Centre for Modern Interdisciplinary Technologies/Chair of Environmental Chemistry and Bioanalytics, Faculty of Chemistry, Nicolaus Copernicus University in Toruń, 87-100 Toruń, Poland
| | - Hans H. Gorris
- Institute of Analytical Chemistry, Chemo- and Biosensors, University of Regensburg, 93053 Regensburg, Germany
| |
Collapse
|
26
|
Lingeshwar Reddy K, Balaji R, Kumar A, Krishnan V. Lanthanide Doped Near Infrared Active Upconversion Nanophosphors: Fundamental Concepts, Synthesis Strategies, and Technological Applications. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2018; 14:e1801304. [PMID: 30066489 DOI: 10.1002/smll.201801304] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Revised: 05/31/2018] [Indexed: 06/08/2023]
Abstract
Near infrared (NIR) light utilization in a range of current technologies has gained huge significance due to its abundance in nature and nondestructive properties. NIR active lanthanide (Ln) doped upconversion nanomaterials synthesized in controlled shape, size, and surface functionality can be combined with various pertinent materials for extensive applications in diverse fields. Upconversion nanophosphors (UCNP) possess unique abilities, such as deep tissue penetration, enhanced photostability, low toxicity, sharp emission peaks, long anti-Stokes shift, etc., which have bestowed them with prodigious advantages over other conventional luminescent materials. As new generation fluorophores, UCNP have found a wide range of applications in various fields. In this Review, a comprehensive overview of lanthanide doped NIR active UCNP is provided by discussing the fundamental concepts including the different mechanisms proposed for explaining the upconversion processes, followed by the different strategies employed for the synthesis of these materials, and finally the technological applications of UCNP, mainly in the fields of bioimaging, drug delivery, sensing, and photocatalysis by highlighting the recent works in these areas. In addition, a brief note on the applications of UCNP in other fields is also provided along with the summary and future perspectives of these materials.
Collapse
Affiliation(s)
- Kumbam Lingeshwar Reddy
- School of Basic Sciences and Advanced Materials Research Center, Indian Institute of Technology Mandi, Kamand, Mandi, Himachal Pradesh, 175005, India
| | - Ramachandran Balaji
- School of Basic Sciences and Advanced Materials Research Center, Indian Institute of Technology Mandi, Kamand, Mandi, Himachal Pradesh, 175005, India
| | - Ashish Kumar
- School of Basic Sciences and Advanced Materials Research Center, Indian Institute of Technology Mandi, Kamand, Mandi, Himachal Pradesh, 175005, India
| | - Venkata Krishnan
- School of Basic Sciences and Advanced Materials Research Center, Indian Institute of Technology Mandi, Kamand, Mandi, Himachal Pradesh, 175005, India
| |
Collapse
|
27
|
Li X, Wei L, Pan L, Yi Z, Wang X, Ye Z, Xiao L, Li HW, Wang J. Homogeneous Immunosorbent Assay Based on Single-Particle Enumeration Using Upconversion Nanoparticles for the Sensitive Detection of Cancer Biomarkers. Anal Chem 2018; 90:4807-4814. [DOI: 10.1021/acs.analchem.8b00251] [Citation(s) in RCA: 76] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Xue Li
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Biosensing and Molecular Recognition, College of Chemistry, Nankai University, Tianjin 300071, China
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research, Ministry of Education, Key Laboratory of Phytochemical R&D of Hunan Province, College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, China
| | - Lin Wei
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research, Ministry of Education, Key Laboratory of Phytochemical R&D of Hunan Province, College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, China
| | - Lanlan Pan
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research, Ministry of Education, Key Laboratory of Phytochemical R&D of Hunan Province, College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, China
| | - Zunyan Yi
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research, Ministry of Education, Key Laboratory of Phytochemical R&D of Hunan Province, College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, China
| | - Xiao Wang
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Biosensing and Molecular Recognition, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Zhongju Ye
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Biosensing and Molecular Recognition, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Lehui Xiao
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Biosensing and Molecular Recognition, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Hung-Wing Li
- Department of Chemistry, Hong Kong Baptist University, Kowloon Tong, Hong Kong, SAR China
| | - Jianfang Wang
- Department of Physics, The Chinese University of Hong Kong, Shatin, Hong Kong, SAR China
| |
Collapse
|
28
|
Duan C, Liang L, Li L, Zhang R, Xu ZP. Recent progress in upconversion luminescence nanomaterials for biomedical applications. J Mater Chem B 2018; 6:192-209. [DOI: 10.1039/c7tb02527k] [Citation(s) in RCA: 144] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
This review focuses on the biomedical applications of upconversion luminescence nanomaterials, including lanthanide-doped inorganic nanocrystals and TTA-based UCNPs.
Collapse
Affiliation(s)
- Chengchen Duan
- Australian Institute for Bioengineering and Nanotechnology
- The University of Queensland
- St. Lucia
- Australia
| | - Liuen Liang
- ARC Centre of Excellence for Nanoscale BioPhotonics
- Department of Physics and Astronomy
- Macquarie University
- Sydney
- Australia
| | - Li Li
- Australian Institute for Bioengineering and Nanotechnology
- The University of Queensland
- St. Lucia
- Australia
| | - Run Zhang
- Australian Institute for Bioengineering and Nanotechnology
- The University of Queensland
- St. Lucia
- Australia
| | - Zhi Ping Xu
- Australian Institute for Bioengineering and Nanotechnology
- The University of Queensland
- St. Lucia
- Australia
| |
Collapse
|
29
|
Xu J, Shi M, Chen W, Huang Y, Fang L, Yao L, Zhao S, Chen ZF, Liang H. A gold nanoparticle-based four-color proximity immunoassay for one-step, multiplexed detection of protein biomarkers using ribonuclease H signal amplification. Chem Commun (Camb) 2018; 54:2719-2722. [DOI: 10.1039/c7cc09404c] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
A gold nanoparticle-based four-color fluorescence proximity immunoassay was developed for multiplexed analysis of protein biomarkers using ribonuclease H signal amplification.
Collapse
Affiliation(s)
- Jiayao Xu
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources
- College of Chemistry and Pharmacy
- Guangxi Normal University
- Guilin
- China
| | - Ming Shi
- Department of Chemistry and Pharmacy
- Guilin Normal College
- Guilin
- China
| | - Wenting Chen
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources
- College of Chemistry and Pharmacy
- Guangxi Normal University
- Guilin
- China
| | - Yong Huang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources
- College of Chemistry and Pharmacy
- Guangxi Normal University
- Guilin
- China
| | - Lina Fang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources
- College of Chemistry and Pharmacy
- Guangxi Normal University
- Guilin
- China
| | - Lifang Yao
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources
- College of Chemistry and Pharmacy
- Guangxi Normal University
- Guilin
- China
| | - Shulin Zhao
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources
- College of Chemistry and Pharmacy
- Guangxi Normal University
- Guilin
- China
| | - Zhen-Feng Chen
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources
- College of Chemistry and Pharmacy
- Guangxi Normal University
- Guilin
- China
| | - Hong Liang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources
- College of Chemistry and Pharmacy
- Guangxi Normal University
- Guilin
- China
| |
Collapse
|
30
|
Chen X, Lan J, Liu Y, Li L, Yan L, Xia Y, Wu F, Li C, Li S, Chen J. A paper-supported aptasensor based on upconversion luminescence resonance energy transfer for the accessible determination of exosomes. Biosens Bioelectron 2017; 102:582-588. [PMID: 29241062 DOI: 10.1016/j.bios.2017.12.012] [Citation(s) in RCA: 95] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2017] [Revised: 11/15/2017] [Accepted: 12/06/2017] [Indexed: 01/13/2023]
Abstract
Exosomes, as potential cancer diagnostic markers have received close attention in recent years. However, there is still a lack of simple and convenient methods to detect and quantitate exosomes. Herein, we used a simple paper-supported aptasensor based on luminescence resonance energy transfer (LRET) from upconversion nanoparticles (UCNPs) to gold nanorods (Au NRs) for the accessible determination of exosomes. When exosomes are present, the two sections of the aptamer can combine with the CD63 protein on the surface of exosomes and form a conjugation to close the distance between UCNPs and Au NRs, which initiates the LRET and promotes luminescence quenching. These variations can be monitored by the homemade image system, and the green channel intensities of obtained colored images were extracted with photoshop software to quantify the luminescence. As a result, the quenching of the luminescence of the UCNPs is linearly correlated to the concentration of the exosomes (in the range of 1.0 × 104 ~ 1.0 × 108 particles/μL), enabling the detection and quantification of the exosomes. Such approach can reach a low detection limit of exosomes (1.1 × 103 particles/μL) and effectively reduce the background signal by using UCNPs as a luminescent material. This study provides an efficient and practical approach to the detection of exosomes, which should lead to point-of-care testing in clinical applications.
Collapse
Affiliation(s)
- Xiaosong Chen
- Department of Plastic Surgery, The Union Hospital of Fujian Medical University, Fuzhou, Fujian 350001, PR China.
| | - Jianming Lan
- The School of Pharmacy, Fujian Medical University, Fuzhou, Fujian 350108, PR China
| | - Yingxin Liu
- The School of Pharmacy, Fujian Medical University, Fuzhou, Fujian 350108, PR China
| | - Li Li
- The School of Pharmacy, Fujian Medical University, Fuzhou, Fujian 350108, PR China
| | - Liu Yan
- Department of Plastic Surgery, The Union Hospital of Fujian Medical University, Fuzhou, Fujian 350001, PR China
| | - Yaokun Xia
- The School of Pharmacy, Fujian Medical University, Fuzhou, Fujian 350108, PR China
| | - Fang Wu
- The School of Pharmacy, Fujian Medical University, Fuzhou, Fujian 350108, PR China
| | - Chunyan Li
- The School of Pharmacy, Fujian Medical University, Fuzhou, Fujian 350108, PR China
| | - Shirong Li
- Department of Plastic Surgery, The Union Hospital of Fujian Medical University, Fuzhou, Fujian 350001, PR China; Department of Plastic and Reconstructive Surgery, Southwestern Hospital, Third Military Medical University, PR China
| | - Jinghua Chen
- The School of Pharmacy, Fujian Medical University, Fuzhou, Fujian 350108, PR China.
| |
Collapse
|
31
|
Bhuckory S, Hemmer E, Wu YT, Yahia-Ammar A, Vetrone F, Hildebrandt N. Core or Shell? Er3+
FRET Donors in Upconversion Nanoparticles. Eur J Inorg Chem 2017. [DOI: 10.1002/ejic.201700904] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Shashi Bhuckory
- NanoBioPhotonics; Institute for Integrative Biology of the Cell (I2BC); Université Paris-Saclay, Université Paris-Sud, CNRS, CEA; 91405 Orsay Cedex France
| | - Eva Hemmer
- Institut National de la Recherche Scientifique (INRS); Centre Énergie Matériaux Télécommunications; Université du Québec1650; Boulevard Lionel-Boulet J3X 1S2 Varennes Quebec Canada
| | - Yu-Tang Wu
- NanoBioPhotonics; Institute for Integrative Biology of the Cell (I2BC); Université Paris-Saclay, Université Paris-Sud, CNRS, CEA; 91405 Orsay Cedex France
| | - Akram Yahia-Ammar
- NanoBioPhotonics; Institute for Integrative Biology of the Cell (I2BC); Université Paris-Saclay, Université Paris-Sud, CNRS, CEA; 91405 Orsay Cedex France
| | - Fiorenzo Vetrone
- Institut National de la Recherche Scientifique (INRS); Centre Énergie Matériaux Télécommunications; Université du Québec1650; Boulevard Lionel-Boulet J3X 1S2 Varennes Quebec Canada
| | - Niko Hildebrandt
- NanoBioPhotonics; Institute for Integrative Biology of the Cell (I2BC); Université Paris-Saclay, Université Paris-Sud, CNRS, CEA; 91405 Orsay Cedex France
| |
Collapse
|
32
|
Fu Y, Chen T, Wang G, Gu T, Xie C, Huang J, Li X, Best S, Han G. Production of a fluorescence resonance energy transfer (FRET) biosensor membrane for microRNA detection. J Mater Chem B 2017; 5:7133-7139. [PMID: 32263904 DOI: 10.1039/c7tb01399j] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
MicroRNAs (miRNAs) play a key role in regulating gene expression but can be associated with abnormalities linked to carcinogenesis and tumor progression. Hence there is increasing interest in developing methods to detect these non-coding RNA molecules in the human circulation system. Here, a novel FRET miRNA-195 targeting biosensor, based on silica nanofibers incorporated with rare earth-doped calcium fluoride particles (CaF2:Yb,Ho@SiO2) and gold nanoparticles (AuNPs), is reported. The formation of a sandwich structure, as a result of co-hybridization of the target miRNA which is captured by oligonucleotides conjugated at the surface of CaF2:Yb,Ho@SiO2 fibers and AuNPs, brings the nanofibers and AuNPs in close proximity and triggers the FRET effect. The intensity ratio of green to red emission, I541/I650, was found to decrease linearly upon increasing the concentration of the target miRNA and this can be utilized as a standard curve for quantitative determination of miRNA concentration. This assay offers a simple and convenient method for miRNA quantification, with the potential for rapid and early clinical diagnosis of diseases such as breast cancer.
Collapse
Affiliation(s)
- Yike Fu
- State Key Laboratory of Silicon Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou, Zhejiang 310027, P. R. China.
| | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Yadav K, Chou AC, Ulaganathan RK, Gao HD, Lee HM, Pan CY, Chen YT. Targeted and efficient activation of channelrhodopsins expressed in living cells via specifically-bound upconversion nanoparticles. NANOSCALE 2017; 9:9457-9466. [PMID: 28660935 DOI: 10.1039/c7nr03246c] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Optogenetics is an innovative technology now widely adopted by researchers in different fields of biological sciences. However, most light-sensitive proteins adopted in optogenetics are excited by ultraviolet or visible light which has a weak tissue penetration capability. Upconversion nanoparticles (UCNPs), which absorb near-infrared (NIR) light to emit shorter wavelength light, can help address this issue. In this report, we demonstrated the target selectivity by specifically conjugating the UCNPs with channelrhodopsin-2 (ChR2). We tagged the V5 epitope to the extracellular N-terminal of ChR2 (V5-ChR2m) and functionalized the surface of UCNPs with NeutrAvidin (NAv-UCNPs). After the binding of the biotinylated antibody against V5 onto the V5-ChR2m expressed in the plasma membrane of live HEK293T cells, our results showed that the NAv-UCNPs were specifically bound to the membrane of cells expressing V5-ChR2m. Without the V5 epitope or NAv modification, no binding of UCNPs onto the cell membrane was observed. For the cells expressing V5-ChR2m and bound with NAv-UCNPs, both 488 nm illumination and the upconverted blue emission from UCNPs by 980 nm excitation induced an inward current and elevated the intracellular Ca2+ concentration. Our design reduces the distance between UCNPs and light-sensitive proteins to the molecular level, which not only minimizes the NIR energy required but also provides a way to guide the specific binding for optogenetics applications.
Collapse
Affiliation(s)
- Kanchan Yadav
- Department of Chemistry, National Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei 106, Taiwan.
| | | | | | | | | | | | | |
Collapse
|
34
|
Perspectives and challenges of photon-upconversion nanoparticles - Part II: bioanalytical applications. Anal Bioanal Chem 2017; 409:5875-5890. [DOI: 10.1007/s00216-017-0482-8] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Revised: 05/29/2017] [Accepted: 06/21/2017] [Indexed: 10/19/2022]
|
35
|
Su X, Zhao F, Wang Y, Yan X, Jia S, Du B. CuS as a gatekeeper of mesoporous upconversion nanoparticles-based drug controlled release system for tumor-targeted multimodal imaging and synergetic chemo-thermotherapy. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2017; 13:1761-1772. [DOI: 10.1016/j.nano.2017.03.008] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Revised: 03/13/2017] [Accepted: 03/18/2017] [Indexed: 12/15/2022]
|
36
|
A NIR-responsive up-conversion nanoparticle probe of the NaYF4:Er,Yb type and coated with a molecularly imprinted polymer for fluorometric determination of enrofloxacin. Mikrochim Acta 2017. [DOI: 10.1007/s00604-017-2387-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
37
|
Wang Z, Zong S, Wu L, Zhu D, Cui Y. SERS-Activated Platforms for Immunoassay: Probes, Encoding Methods, and Applications. Chem Rev 2017; 117:7910-7963. [DOI: 10.1021/acs.chemrev.7b00027] [Citation(s) in RCA: 368] [Impact Index Per Article: 52.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Zhuyuan Wang
- Advanced Photonics Center, Southeast University, Nanjing 210096, Jiangsu, China
| | - Shenfei Zong
- Advanced Photonics Center, Southeast University, Nanjing 210096, Jiangsu, China
| | - Lei Wu
- Advanced Photonics Center, Southeast University, Nanjing 210096, Jiangsu, China
| | - Dan Zhu
- Advanced Photonics Center, Southeast University, Nanjing 210096, Jiangsu, China
| | - Yiping Cui
- Advanced Photonics Center, Southeast University, Nanjing 210096, Jiangsu, China
| |
Collapse
|
38
|
Jiang LF, Chen BC, Chen B, Li XJ, Liao HL, Huang HM, Guo ZJ, Zhang WY, Wu L. Detection of Aβ oligomers based on magnetic-field-assisted separation of aptamer-functionalized Fe 3O 4 magnetic nanoparticles and BaYF 5:Yb,Er nanoparticles as upconversion fluorescence labels. Talanta 2017; 170:350-357. [PMID: 28501180 DOI: 10.1016/j.talanta.2017.04.021] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2017] [Revised: 03/29/2017] [Accepted: 04/09/2017] [Indexed: 12/13/2022]
Abstract
A sensitive and stable bioassay for the detection of Aβ oligomer (Aβo), a potentially promising candidate biomarker for Alzheimer's disease (AD) diagnosis, was developed using Fe3O4 magnetic nanoparticles (MNPs) as the recognition and concentration elements and BaYF5:Yb,Er upconversion nanoparticles (UCNPs) as highly sensitive labels, conjugated with the Aβo aptamer (DNA1) and the complementary oligonucleotide of the Aβo aptamer (DNA2), respectively. The DNA1 hybridized with DNA2 to form the duplex structure on the surface of the MNPs/UCNPs nanocomposites probe. When the target Aβo was introduced, the aptamer DNA1 preferentially bound with Aβo and caused the dissociation of some complementary DNA2, liberating some UCNP-labeled complementary DNA2 and leading to a decreased upconversion fluorescent intensity on the surface of MNPs. The decreased fluorescence intensity of UCNPs was related to the concentration of Aβo in the range of 0.2-15nM with a detection limit of 36 pM. The developed method then was successfully applied to measure Aβo in artificial cerebrospinal fluid. Benefiting from the magnetic separation and concentration effect of MNPs, the high sensitivity of UCNPs, as well as the selectivity and stability of the aptamer, the present strategy offered valuable information related to early diagnosis of AD process.
Collapse
Affiliation(s)
- Ling-Feng Jiang
- Guangxi Scientific Research Centre of Traditional Chinese Medicine, Guangxi University of Chinese Medicine, Nanning 530200, PR China; Guangxi Key Laboratory of Chinese Medicine Foundation Research, Guangxi University of Chinese Medicine, Nanning 530200, PR China.
| | - Bo-Cheng Chen
- Guangxi Scientific Research Centre of Traditional Chinese Medicine, Guangxi University of Chinese Medicine, Nanning 530200, PR China; Guangxi Key Laboratory of Chinese Medicine Foundation Research, Guangxi University of Chinese Medicine, Nanning 530200, PR China
| | - Ben Chen
- Guangxi Scientific Research Centre of Traditional Chinese Medicine, Guangxi University of Chinese Medicine, Nanning 530200, PR China; Guangxi Key Laboratory of Chinese Medicine Foundation Research, Guangxi University of Chinese Medicine, Nanning 530200, PR China
| | - Xue-Jian Li
- Guangxi Scientific Research Centre of Traditional Chinese Medicine, Guangxi University of Chinese Medicine, Nanning 530200, PR China; Guangxi Key Laboratory of Chinese Medicine Foundation Research, Guangxi University of Chinese Medicine, Nanning 530200, PR China
| | - Hai-Lin Liao
- Guangxi Scientific Research Centre of Traditional Chinese Medicine, Guangxi University of Chinese Medicine, Nanning 530200, PR China; Guangxi Key Laboratory of Chinese Medicine Foundation Research, Guangxi University of Chinese Medicine, Nanning 530200, PR China
| | - Hong-Miao Huang
- Guangxi Scientific Research Centre of Traditional Chinese Medicine, Guangxi University of Chinese Medicine, Nanning 530200, PR China; Guangxi Key Laboratory of Chinese Medicine Foundation Research, Guangxi University of Chinese Medicine, Nanning 530200, PR China
| | - Zhan-Jing Guo
- Guangxi Scientific Research Centre of Traditional Chinese Medicine, Guangxi University of Chinese Medicine, Nanning 530200, PR China; Guangxi Key Laboratory of Chinese Medicine Foundation Research, Guangxi University of Chinese Medicine, Nanning 530200, PR China
| | - Wen-Yan Zhang
- Guangxi Scientific Research Centre of Traditional Chinese Medicine, Guangxi University of Chinese Medicine, Nanning 530200, PR China; Guangxi Key Laboratory of Chinese Medicine Foundation Research, Guangxi University of Chinese Medicine, Nanning 530200, PR China
| | - Lin Wu
- Guangxi Scientific Research Centre of Traditional Chinese Medicine, Guangxi University of Chinese Medicine, Nanning 530200, PR China; Guangxi Key Laboratory of Chinese Medicine Foundation Research, Guangxi University of Chinese Medicine, Nanning 530200, PR China.
| |
Collapse
|
39
|
Fang A, Chen H, Li H, Liu M, Zhang Y, Yao S. Glutathione regulation-based dual-functional upconversion sensing-platform for acetylcholinesterase activity and cadmium ions. Biosens Bioelectron 2017; 87:545-551. [DOI: 10.1016/j.bios.2016.08.111] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Revised: 08/25/2016] [Accepted: 08/30/2016] [Indexed: 11/28/2022]
|
40
|
Liu Y, Zhao L, Zhang J, Zhang J, Zhao W, Mao C. NaEuF4/Au@Ag2S nanoparticles-based fluorescence resonant transfer DNA sensor for ultrasensitive detection of DNA energy. Talanta 2016; 161:87-93. [DOI: 10.1016/j.talanta.2016.07.051] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2016] [Revised: 07/15/2016] [Accepted: 07/23/2016] [Indexed: 11/25/2022]
|
41
|
Drees C, Raj AN, Kurre R, Busch KB, Haase M, Piehler J. Engineered Upconversion Nanoparticles for Resolving Protein Interactions inside Living Cells. Angew Chem Int Ed Engl 2016; 55:11668-72. [PMID: 27510808 DOI: 10.1002/anie.201603028] [Citation(s) in RCA: 95] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2016] [Revised: 06/29/2016] [Indexed: 01/05/2023]
Abstract
Upconversion nanoparticles (UCNPs) convert near-infrared into visible light at much lower excitation densities than those used in classic two-photon absorption microscopy. Here, we engineered <50 nm UCNPs for application as efficient lanthanide resonance energy transfer (LRET) donors inside living cells. By optimizing the dopant concentrations and the core-shell structure for higher excitation densities, we observed enhanced UCNP emission as well as strongly increased sensitized acceptor fluorescence. For the application of these UCNPs in complex biological environments, we developed a biocompatible surface coating functionalized with a nanobody recognizing green fluorescent protein (GFP). Thus, rapid and specific targeting to GFP-tagged fusion proteins in the mitochondrial outer membrane and detection of protein interactions by LRET in living cells was achieved.
Collapse
Affiliation(s)
- Christoph Drees
- Abteilung für Biophysik, Fachbereich Biologie/Chemie, Universität Osnabrück, Barbarastrasse 11, 49076, Osnabrück, Germany
| | - Athira Naduviledathu Raj
- Institut für Chemie Neuer Materialien, Fachbereich Biologie/Chemie, Universität Osnabrück, Barbarastrasse 7, 49069, Osnabrück, Germany
| | - Rainer Kurre
- Center for Advanced Light Microscopy, Fachbereich Biologie/Chemie, Universität Osnabrück, Barbarastrasse 11, 49076, Osnabrück, Germany
| | - Karin B Busch
- Fachbereich Biologie, Universität Münster, Schlossplatz 5, 48149, Münster, Germany
| | - Markus Haase
- Institut für Chemie Neuer Materialien, Fachbereich Biologie/Chemie, Universität Osnabrück, Barbarastrasse 7, 49069, Osnabrück, Germany.
| | - Jacob Piehler
- Abteilung für Biophysik, Fachbereich Biologie/Chemie, Universität Osnabrück, Barbarastrasse 11, 49076, Osnabrück, Germany.
| |
Collapse
|
42
|
Drees C, Raj AN, Kurre R, Busch KB, Haase M, Piehler J. Maßgeschneiderte Aufwärtskonvertierungsnanopartikel zur Detektion von Proteinwechselwirkungen in lebenden Zellen. Angew Chem Int Ed Engl 2016. [DOI: 10.1002/ange.201603028] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
- Christoph Drees
- Abteilung für Biophysik, Fachbereich Biologie/Chemie; Universität Osnabrück; Barbarastraße 11 49076 Osnabrück Deutschland
| | - Athira Naduviledathu Raj
- Institut für Chemie Neuer Materialien, Fachbereich Biologie/Chemie; Universität Osnabrück; Barbarastraße 7 49069 Osnabrück Deutschland
| | - Rainer Kurre
- Center for Advanced Light Microscopy, Fachbereich Biologie/Chemie; Universität Osnabrück; Barbarastraße 11 49076 Osnabrück Deutschland
| | - Karin B. Busch
- Fachbereich Biologie; Universität Münster; Schlossplatz 5 48149 Münster Deutschland
| | - Markus Haase
- Institut für Chemie Neuer Materialien, Fachbereich Biologie/Chemie; Universität Osnabrück; Barbarastraße 7 49069 Osnabrück Deutschland
| | - Jacob Piehler
- Abteilung für Biophysik, Fachbereich Biologie/Chemie; Universität Osnabrück; Barbarastraße 11 49076 Osnabrück Deutschland
| |
Collapse
|
43
|
Fluorescence resonance energy transfer biosensor between upconverting nanoparticles and palladium nanoparticles for ultrasensitive CEA detection. Biosens Bioelectron 2016; 86:791-798. [PMID: 27476061 DOI: 10.1016/j.bios.2016.07.070] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2016] [Revised: 07/19/2016] [Accepted: 07/21/2016] [Indexed: 12/15/2022]
Abstract
An ultrasensitive biosensor for carcinoembryonic antigen (CEA) was constructed based on fluorescence resonance energy transfer (FRET) between upconverting nanoparticles (UCPs) and palladium nanoparticles (PdNPs). PdNPs was synthesized by the addition of a solution of Na2PdCl4 into a mixture of N2H4·H2O as the reducing agent and 11-mercaptoundecanoic acid (MUDA) as the stabilizer. The CEA aptamer (5'-NH2-ATACCAGCTTATTCAATT-3') was conjugated to hexanedioic acid (HDA) modified UCPs (HDA-UCPs) through an EDC-NHS coupling protocol. The coordination interaction between nitrogen functional groups of the CEA aptamer and PdNPs brought UCPs and PdNPs in close proximity, which resulted in the fluorescence quenching of UCPs to an extent of 85%. And the non-specific fluorescence quenching caused by PdNPs towards HDA-UCPs was negligible. After the introduction of CEA into the UCPs-CEA aptamer-PdNPs fluorescence quenching system, the CEA aptamer preferentially combined with CEA accompanied by the conformational change which weakened the coordination interaction between the CEA aptamer and PdNPs. So fluorescence recovery of UCPs was observed and a linear relationship between the fluorescence recovery of UCPs and the concentration of CEA was obtained in the range from 2pg/mL to 100pg/mL in the aqueous buffer with the detection limit of 0.8pg/mL. The ultrasensitive detection of CEA was also realized in diluted human serum with a linear range from 4pg/mL to 100pg/mL and a detection limit of 1.7pg/mL. This biosensor makes the most of the high quenching ability of PdNPs towards UCPs with negligible non-specific fluorescence quenching and has broad application prospects in biochemistry.
Collapse
|
44
|
Hildebrandt N, Spillmann CM, Algar WR, Pons T, Stewart MH, Oh E, Susumu K, Díaz SA, Delehanty JB, Medintz IL. Energy Transfer with Semiconductor Quantum Dot Bioconjugates: A Versatile Platform for Biosensing, Energy Harvesting, and Other Developing Applications. Chem Rev 2016; 117:536-711. [DOI: 10.1021/acs.chemrev.6b00030] [Citation(s) in RCA: 457] [Impact Index Per Article: 57.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
- Niko Hildebrandt
- NanoBioPhotonics
Institut d’Electronique Fondamentale (I2BC), Université Paris-Saclay, Université Paris-Sud, CNRS, 91400 Orsay, France
| | | | - W. Russ Algar
- Department
of Chemistry, University of British Columbia, Vancouver, BC V6T 1Z1, Canada
| | - Thomas Pons
- LPEM;
ESPCI Paris, PSL Research University; CNRS; Sorbonne Universités, UPMC, F-75005 Paris, France
| | | | - Eunkeu Oh
- Sotera Defense Solutions, Inc., Columbia, Maryland 21046, United States
| | - Kimihiro Susumu
- Sotera Defense Solutions, Inc., Columbia, Maryland 21046, United States
| | - Sebastian A. Díaz
- American Society for Engineering Education, Washington, DC 20036, United States
| | | | | |
Collapse
|
45
|
Samanta A, Medintz IL. Nanoparticles and DNA - a powerful and growing functional combination in bionanotechnology. NANOSCALE 2016; 8:9037-95. [PMID: 27080924 DOI: 10.1039/c5nr08465b] [Citation(s) in RCA: 131] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Functionally integrating DNA and other nucleic acids with nanoparticles in all their different physicochemical forms has produced a rich variety of composite nanomaterials which, in many cases, display unique or augmented properties due to the synergistic activity of both components. These capabilities, in turn, are attracting greater attention from various research communities in search of new nanoscale tools for diverse applications that include (bio)sensing, labeling, targeted imaging, cellular delivery, diagnostics, therapeutics, theranostics, bioelectronics, and biocomputing to name just a few amongst many others. Here, we review this vibrant and growing research area from the perspective of the materials themselves and their unique capabilities. Inorganic nanocrystals such as quantum dots or those made from gold or other (noble) metals along with metal oxides and carbon allotropes are desired as participants in these hybrid materials since they can provide distinctive optical, physical, magnetic, and electrochemical properties. Beyond this, synthetic polymer-based and proteinaceous or viral nanoparticulate materials are also useful in the same role since they can provide a predefined and biocompatible cargo-carrying and targeting capability. The DNA component typically provides sequence-based addressability for probes along with, more recently, unique architectural properties that directly originate from the burgeoning structural DNA field. Additionally, DNA aptamers can also provide specific recognition capabilities against many diverse non-nucleic acid targets across a range of size scales from ions to full protein and cells. In addition to appending DNA to inorganic or polymeric nanoparticles, purely DNA-based nanoparticles have recently surfaced as an excellent assembly platform and have started finding application in areas like sensing, imaging and immunotherapy. We focus on selected and representative nanoparticle-DNA materials and highlight their myriad applications using examples from the literature. Overall, it is clear that this unique functional combination of nanomaterials has far more to offer than what we have seen to date and as new capabilities for each of these materials are developed, so, too, will new applications emerge.
Collapse
Affiliation(s)
- Anirban Samanta
- Center for Bio/Molecular Science and Engineering, Code 6900, U.S. Naval Research Laboratory, Washington, DC 20375, USA. and College of Science, George Mason University, Fairfax, Virginia 22030, USA
| | - Igor L Medintz
- Center for Bio/Molecular Science and Engineering, Code 6900, U.S. Naval Research Laboratory, Washington, DC 20375, USA.
| |
Collapse
|
46
|
Jo EJ, Mun H, Kim MG. Homogeneous Immunosensor Based on Luminescence Resonance Energy Transfer for Glycated Hemoglobin Detection Using Upconversion Nanoparticles. Anal Chem 2016; 88:2742-6. [DOI: 10.1021/acs.analchem.5b04255] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- Eun-Jung Jo
- Department of Chemistry,
School of Physics and Chemistry, Gwangju Institute of Science and Technology (GIST), Gwangju 500-712, Republic of Korea
| | - Hyoyoung Mun
- Department of Chemistry,
School of Physics and Chemistry, Gwangju Institute of Science and Technology (GIST), Gwangju 500-712, Republic of Korea
| | - Min-Gon Kim
- Department of Chemistry,
School of Physics and Chemistry, Gwangju Institute of Science and Technology (GIST), Gwangju 500-712, Republic of Korea
| |
Collapse
|
47
|
Liu H, Rong P, Jia H, Yang J, Dong B, Dong Q, Yang C, Hu P, Wang W, Liu H, Liu D. A Wash-Free Homogeneous Colorimetric Immunoassay Method. Am J Cancer Res 2016; 6:54-64. [PMID: 26722373 PMCID: PMC4679354 DOI: 10.7150/thno.13159] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2015] [Accepted: 08/30/2015] [Indexed: 11/29/2022] Open
Abstract
Rapid and convenient biosensing platforms could be beneficial to timely diagnosis and treatment of diseases in virtually any care settings. Sandwich immunoassays, the most commonly used methods for protein detection, often rely on expensive tags such as enzyme and tedious wash and incubation procedures operated by skilled labor. In this report, we revolutionized traditional sandwich immunoassays by providing a wash-free homogeneous colorimetric immunoassay method without requirement of any separation steps. The proposed strategy was realized by controlling the growth of gold nanoparticles (AuNPs) to mediate the interparticle spacing in the protein-AuNP oligomers. We have demonstrated the successful in vitro detection of cancer biomarker in serum samples from patients with high clinical sensitivity and specificity.
Collapse
|
48
|
Zhang Z, Zhang M, Wu XY, Chang Z, Lee YI, Huy BT, Sakthivel K, Liu JF, Jiang GB. Upconversion fluorescence resonance energy transfer—a novel approach for sensitive detection of fluoroquinolones in water samples. Microchem J 2016. [DOI: 10.1016/j.microc.2015.08.024] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
49
|
Wang C, Li X, Zhang F. Bioapplications and biotechnologies of upconversion nanoparticle-based nanosensors. Analyst 2016; 141:3601-20. [DOI: 10.1039/c6an00150e] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Upconversion nanoparticles (UCNPs), which can emit ultraviolet/visible (UV/Vis) light under near-infrared (NIR) excitation, are regarded as a new generation of nanoprobes because of their unique optical properties, including a virtually zero auto-fluorescence background for the improved signal-to-noise ratio, narrow emission bandwidths and high resistance to photo-bleaching.
Collapse
Affiliation(s)
- Chengli Wang
- Department of Chemistry
- Collaborative Innovation Center of Chemistry for Energy Materials
- State Key Laboratory of Molecular Engineering of Polymers
- Shanghai Key Lab of Molecular Catalysis and Innovative Materials
- Fudan University
| | - Xiaomin Li
- Department of Chemistry
- Collaborative Innovation Center of Chemistry for Energy Materials
- State Key Laboratory of Molecular Engineering of Polymers
- Shanghai Key Lab of Molecular Catalysis and Innovative Materials
- Fudan University
| | - Fan Zhang
- Department of Chemistry
- Collaborative Innovation Center of Chemistry for Energy Materials
- State Key Laboratory of Molecular Engineering of Polymers
- Shanghai Key Lab of Molecular Catalysis and Innovative Materials
- Fudan University
| |
Collapse
|
50
|
Sedlmeier A, Gorris HH. Surface modification and characterization of photon-upconverting nanoparticles for bioanalytical applications. Chem Soc Rev 2015; 44:1526-60. [PMID: 25176175 DOI: 10.1039/c4cs00186a] [Citation(s) in RCA: 264] [Impact Index Per Article: 29.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Photon-upconverting nanoparticles (UCNPs) can be excited by near-infrared light and emit visible light (anti-Stokes emission) which prevents autofluorescence and light scattering of biological samples. The potential for background-free imaging has attracted wide interest in UCNPs in recent years. Small and homogeneous lanthanide-doped UCNPs that display high upconversion efficiency have typically been synthesized in organic solvents. Bioanalytical applications, however, require a subsequent phase transfer to aqueous solutions. Hence, the surface properties of UCNPs must be well designed and characterized to grant both a stable aqueous colloidal dispersion and the ability to conjugate biomolecules and other ligands on the nanoparticle surface. In this review, we introduce various routes for the surface modification of UCNPs and critically discuss their advantages and disadvantages. The last part covers various analytical methods that enable a thorough examination of the progress and success of the surface functionalization.
Collapse
Affiliation(s)
- Andreas Sedlmeier
- Institute of Analytical Chemistry, Chemo- und Biosensors, University of Regensburg, Universitätsstr. 31, 93040 Regensburg, Germany.
| | | |
Collapse
|