1
|
Paine ZH, Sharma M, Friedman SH. Selective Dissolution of Calcium Pyrophosphate Dihydrate Crystals Using a Pyrophosphate Specific Receptor. Chembiochem 2024; 25:e202400319. [PMID: 39248271 DOI: 10.1002/cbic.202400319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 06/26/2024] [Indexed: 09/10/2024]
Abstract
Pseudo-gout is caused by the deposition of highly insoluble calcium pyrophosphate dihydrate (CPPD) crystals in the joints of sufferers. This leads to inflammation and ultimately joint damage. The insolubility of CPPD is driven by the strong attraction of di-cationic calcium ions with tetra-anionic pyrophosphate ions. One of the challenges of dissolving CPPD is that a related mineral, hydroxy apatite (HA) is present in larger amounts in the form of bone and also contains strongly interacting calcium and phosphate ions. Our aim in this work was to selectively dissolve CPPD in preference to HA. To accomplish this, we used a known receptor for pyrophosphate that contains two complexed zinc ions that are ideally spaced to interact with the tetra-anion of pyrophosphate. We hypothesized that such a molecule could act as a preorganized tetra-cation that would be able to outcompete the two calcium ions present in the crystal lattice of CPPD. We demonstrate both visually and through analysis of released phosphorous that this molecule is able to preferentially dissolve CPPD over the closely related HA and thus can form the basis for a possible approach for the treatment of pseudo-gout.
Collapse
Affiliation(s)
- Zachary H Paine
- Pharmacology and Pharmaceutical Sciences, University of Missouri-Kansas City School of Pharmacy, 2464 Charlotte St., Kansas City, MO, 64108
| | - Mayank Sharma
- Pharmacology and Pharmaceutical Sciences, University of Missouri-Kansas City School of Pharmacy, 2464 Charlotte St., Kansas City, MO, 64108
| | - Simon H Friedman
- Pharmacology and Pharmaceutical Sciences, University of Missouri-Kansas City School of Pharmacy, 2464 Charlotte St., Kansas City, MO, 64108
| |
Collapse
|
2
|
Bagha H, Hein R, Lim JYC, Myers WK, Sambrook MR, Beer PD. Phosphate selective binding and sensing by halogen bonding tripodal copper(II) metallo-receptors in aqueous media. Dalton Trans 2024; 53:12338-12348. [PMID: 38985452 DOI: 10.1039/d4dt01585a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/11/2024]
Abstract
Combining the potency of non-covalent halogen bonding (XB) with metal ion coordination, the synthesis and characterisation of a series of hydrophilic XB tripodal Cu(II) metallo-receptors, strategically designed for tetrahedral anion guest binding and sensing in aqueous media is described. The reported metallo-hosts contain a tripodal C3-symmetric tris-iodotriazole XB donor anion recognition motif terminally functionalised with tri(ethylene glycol) and permethylated β-cyclodextrin functionalities to impart aqueous solubility. Optical UV-vis anion binding studies in combination with unprecedented quantitative EPR anion titration investigations reveal the XB Cu(II) metallo-receptors exhibit strong and selective phosphate recognition over a range of other monocharged anionic species in competitive aqueous solution containing 40% water, notably outperforming a hydrogen bonding (HB) Cu(II) metallo-receptor counterpart. Electrochemical studies demonstrate further the capability of the metallo-receptors to sense anions via significant cathodic perturbations of the respective Cu(II)/Cu(I) redox couple.
Collapse
Affiliation(s)
- Hena Bagha
- Department of Chemistry, University of Oxford, Chemistry Research Laboratory, Mansfield Road, Oxford, OX1 3TA, UK.
| | - Robert Hein
- Department of Chemistry, University of Oxford, Chemistry Research Laboratory, Mansfield Road, Oxford, OX1 3TA, UK.
| | - Jason Y C Lim
- Department of Chemistry, University of Oxford, Chemistry Research Laboratory, Mansfield Road, Oxford, OX1 3TA, UK.
| | - William K Myers
- Department of Chemistry, University of Oxford, Chemistry Research Laboratory, Mansfield Road, Oxford, OX1 3TA, UK.
| | | | - Paul D Beer
- Department of Chemistry, University of Oxford, Chemistry Research Laboratory, Mansfield Road, Oxford, OX1 3TA, UK.
| |
Collapse
|
3
|
Vogel J, Chen Y, Fadler RE, Flood AH, von Delius M. Steric Control over the Threading of Pyrophosphonates with One or Two Cyanostar Macrocycles during Pseudorotaxane Formation. Chemistry 2023; 29:e202300899. [PMID: 37156722 PMCID: PMC10655069 DOI: 10.1002/chem.202300899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 05/01/2023] [Accepted: 05/08/2023] [Indexed: 05/10/2023]
Abstract
The supramolecular recognition of anions is increasingly harnessed to achieve the self-assembly of supramolecular architectures, ranging from cages and polymers to (pseudo)rotaxanes. The cyanostar (CS) macrocycle has previously been shown to form 2 : 1 complexes with organophosphate anions that can be turned into [3]rotaxanes by stoppering. Here we achieved steric control over the assembly of pseudorotaxanes comprising the cyanostar macrocycle and a thread that is based, for the first time, on organo-pyrophosphonates. Subtle differences in steric bulk on the threads allowed formation of either [3]pseudorotaxanes or [2]pseudorotaxanes. We demonstrate that the threading kinetics are governed by the steric demand of the organo-pyrophosphonates and in one case, slows down to the timescale of minutes. Calculations show that the dianions are sterically offset inside the macrocycles. Our findings broaden the scope of cyanostar-anion assemblies and may have relevance for the design of molecular machines whose directionality is a result of relatively slow slipping.
Collapse
Affiliation(s)
- Julian Vogel
- Institute of Organic Chemistry, Ulm University, Albert-Einstein-Allee 11, 89081, Ulm, Germany
| | - Yusheng Chen
- Department of Chemistry, Indiana University, 800 E. Kirkwood Avenue, Bloomington, IN, 47405, USA
| | - Rachel E Fadler
- Department of Chemistry, Indiana University, 800 E. Kirkwood Avenue, Bloomington, IN, 47405, USA
| | - Amar H Flood
- Department of Chemistry, Indiana University, 800 E. Kirkwood Avenue, Bloomington, IN, 47405, USA
| | - Max von Delius
- Institute of Organic Chemistry, Ulm University, Albert-Einstein-Allee 11, 89081, Ulm, Germany
| |
Collapse
|
4
|
A copper ion-mediated on-off-on gold nanocluster for pyrophosphate sensing and bioimaging in cells. Anal Chim Acta 2023; 1249:340923. [PMID: 36868766 DOI: 10.1016/j.aca.2023.340923] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 01/30/2023] [Indexed: 02/09/2023]
Abstract
Herein, gold nanoclusters (AuNCs@EW@Lzm, AuEL) with the bright red fluorescence at 650 nm were prepared by egg white and lysozyme as double protein ligands, which exhibited good stability and high biocompatibility. The probe displayed highly selective detected pyrophosphate (PPi) based on Cu2+-mediated AuEL fluorescence quenching. Specifically, the fluorescence of AuEL was quenched once the Cu2+/Fe3+/Hg2+ is added to chelate with amino acids on the AuEL surface, respectively. Interestingly, the fluorescence of quenched AuEL-Cu2+ was significantly recovered by PPi, but not the other two. This phenomenon was attributed to the stronger bond between PPi and Cu2+ than that of Cu2+ with AuEL nanoclusters. The results demonstrated a good linear relationship between PPi concentration and the relative fluorescence intensity of AuEL-Cu2+ in the range of 131.00-685.40 μM with a detection limit of 2.56 μM. In addition, the quench AuEL-Cu2+ system can also be recovered in acidic environments (pH ≤ 5). And the as-synthesized AuEL showed excellent cell imaging and target the nucleus. Thus the fabrication of AuEL offers a facile strategy for efficient PPi assay and offers the potential for drug/gene delivery to the nucleus.
Collapse
|
5
|
Das D, Sutradhar S, Gomila RM, Rissanen K, Frontera A, Ghosh BN. Synthesis, structure and application of a simple cadmium(II)-terpyridine complex as sensor material for selective detection of pyrophosphate anion. J Mol Struct 2023. [DOI: 10.1016/j.molstruc.2022.134269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
6
|
Rabha M, Sen B, Sheet SK, Aguan K, Khatua S. Cyclometalated iridium(III) complex of a 1,2,3-triazole-based ligand for highly selective sensing of pyrophosphate ion. Dalton Trans 2022; 51:11372-11380. [PMID: 35818901 DOI: 10.1039/d2dt01634f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A new cyclometalated Ir(III) complex of a methylene-bridged benzimidazole-substituted 1,2,3-triazole methanol ligand has been synthesized for the photoluminescent detection of pyrophosphate (H2P2O72-) anions. The solution structure of 1[PF6] was fully characterized by 1D (1H, 13C) and 2D (1H-1H COSY, 1H-13C HSQC, and 1H-13C HMBC) NMR spectroscopy, and ESI-HRMS. The 1[PF6] acted as a highly selective luminescent sensor for H2P2O72- in CH3CN over other competitive ions, including H2PO4-, ATP, ADP and AMP. The PL titration of 1[PF6] with H2P2O72- in CH3CN furnished the association constant Ka = 8.6 × 107 M-1 and a low detection limit of ∼127 nM. The structure of the analyte interacting ligand renders the Ir(III) complex-based probe highly selective for H2P2O72- ions. The PL enhancement with H2P2O72- is due to the hydrogen bonding interaction of H2P2O72- with the triazole C-H, imidazole N-H, methylene hydrogen and hydroxyl groups of the ligand that has been supported by 1H NMR titration. Further, the PL enhancement of 1·H2P2O72- adducts was supported by triplet-state TDDFT calculations. In 1·H2P2O72-, the 3MLCT-3MC energy gap is increased, and the 1·H2P2O72- emits efficiently from the 3MLCT and 3ILCT excited states. Finally, a cytotoxicity study and live-cell imaging were performed. The probe showed low cytotoxicity against HeLa cells and was suitable for intracellular pyrophosphate imaging.
Collapse
Affiliation(s)
- Monosh Rabha
- Centre for Advanced Studies, Department of Chemistry, North-Eastern Hill University, Shillong, Meghalaya 793022, India.
| | - Bhaskar Sen
- Centre for Advanced Studies, Department of Chemistry, North-Eastern Hill University, Shillong, Meghalaya 793022, India.
| | - Sanjoy Kumar Sheet
- Centre for Advanced Studies, Department of Chemistry, North-Eastern Hill University, Shillong, Meghalaya 793022, India.
| | - Kripamoy Aguan
- Department of Biotechnology and Bioinformatics, North-Eastern Hill University, Shillong, Meghalaya 793022, India
| | - Snehadrinarayan Khatua
- Centre for Advanced Studies, Department of Chemistry, North-Eastern Hill University, Shillong, Meghalaya 793022, India.
| |
Collapse
|
7
|
Kavitha V, Chitra K, Gomathi A, Dhivya R, Viswanathamurthi P. Sensing of Pyrophosphate Anion by a Fluorescent Zn(II) Complex Bearing Acenaphthene Imidazole Moiety. JOURNAL OF ANALYTICAL CHEMISTRY 2022. [DOI: 10.1134/s1061934822070115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
8
|
Giri D, Raut SK, Behera CK, Patra SK. Diketopyrrollopyrrole anchored carbazole-alt-thiophene based Fe3+-coordinated metallopolymer for the selective recognition of ATP. POLYMER 2022. [DOI: 10.1016/j.polymer.2022.124951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
9
|
Kubik S. Synthetic Receptors Based on Abiotic Cyclo(pseudo)peptides. Molecules 2022; 27:2821. [PMID: 35566168 PMCID: PMC9103335 DOI: 10.3390/molecules27092821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 04/26/2022] [Accepted: 04/27/2022] [Indexed: 11/17/2022] Open
Abstract
Work on the use of cyclic peptides or pseudopeptides as synthetic receptors started even before the field of supramolecular chemistry was firmly established. Research initially focused on the development of synthetic ionophores and involved the use of macrocycles with a repeating sequence of subunits along the ring to facilitate the correlation between structure, conformation, and binding properties. Later, nonnatural amino acids as building blocks were also considered. With growing research in this area, cyclopeptides and related macrocycles developed into an important and structurally diverse receptor family. This review provides an overview of these developments, starting from the early years. The presented systems are classified according to characteristic structural elements present along the ring. Wherever possible, structural aspects are correlated with binding properties to illustrate how natural or nonnatural amino acids affect binding properties.
Collapse
Affiliation(s)
- Stefan Kubik
- Fachbereich Chemie-Organische Chemie, Technische Universität Kaiserslautern, Erwin-Schrödinger-Str. 54, 67663 Kaiserslautern, Germany
| |
Collapse
|
10
|
Li C, Manick AD, Yang J, Givaudan D, Biletskyi B, Michaud-Chevalier S, Dutasta JP, Hérault D, Bugaut X, Chatelet B, Martinez A. The Chloroazaphosphatrane Motif for Halogen Bonding in Solution. Inorg Chem 2021; 60:11964-11973. [PMID: 34319095 DOI: 10.1021/acs.inorgchem.1c01005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Chloroazaphosphatranes, the corresponding halogenophosphonium cations of the Verkade superbases, were evaluated as a new motif for halogen bonding (XB). Their modulable synthesis allowed for synthetizing chloroazaphosphatranes with various substituents on the nitrogen atoms. The binding constants determined from NMR titration experiments for Cl-, Br-, I-, AcO-, and CN- anions are comparable to those obtained with conventional iodine-based monodentate XB receptors. Remarkably, the protonated azaphosphatrane counterparts display no affinity for anions under the same conditions. The strength of the XB interaction is, to some extent, related to the basicity of the corresponding Verkade superbase. The halogen bonding abilities of this new class of halogen donor motif were also revealed by the Δδ(31P) NMR shift observed in CD2Cl2 solution in the presence of triethylphosphine oxide (TEPO). Thus, chloroazaphosphatranes constitute a new class of halogen bond donors, expanding the repertory of XB motifs mainly based on CAr-I bonds.
Collapse
Affiliation(s)
- Chunyang Li
- Aix Marseille Univ, CNRS, Centrale Marseille, iSm2, Marseille, France
| | | | - Jian Yang
- Aix Marseille Univ, CNRS, Centrale Marseille, iSm2, Marseille, France
| | - David Givaudan
- Aix Marseille Univ, CNRS, Centrale Marseille, iSm2, Marseille, France
| | - Bohdan Biletskyi
- Aix Marseille Univ, CNRS, Centrale Marseille, iSm2, Marseille, France
| | | | - Jean-Pierre Dutasta
- Laboratoire de Chimie, École Normale Supérieure de Lyon, CNRS, 46 allée d'Italie, F-69364 Lyon, France
| | - Damien Hérault
- Aix Marseille Univ, CNRS, Centrale Marseille, iSm2, Marseille, France
| | - Xavier Bugaut
- Aix Marseille Univ, CNRS, Centrale Marseille, iSm2, Marseille, France
| | - Bastien Chatelet
- Aix Marseille Univ, CNRS, Centrale Marseille, iSm2, Marseille, France
| | | |
Collapse
|
11
|
Chen LJ, Humphrey SJ, Zhu JL, Zhu FF, Wang XQ, Wang X, Wen J, Yang HB, Gale PA. A Two-Dimensional Metallacycle Cross-Linked Switchable Polymer for Fast and Highly Efficient Phosphorylated Peptide Enrichment. J Am Chem Soc 2021; 143:8295-8304. [PMID: 34042430 PMCID: PMC8193630 DOI: 10.1021/jacs.0c12904] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
![]()
The selective and
efficient capture of phosphopeptides is critical
for comprehensive and in-depth phosphoproteome analysis. Here we report
a new switchable two-dimensional (2D) supramolecular polymer that
serves as an ideal platform for the enrichment of phosphopeptides.
A well-defined, positively charged metallacycle incorporated into
the polymer endows the resultant polymer with a high affinity for
phosphopeptides. Importantly, the stimuli-responsive nature of the
polymer facilitates switchable binding affinity of phosphopeptides,
thus resulting in an excellent performance in phosphopeptide enrichment
and separation from model proteins. The polymer has a high enrichment
capacity (165 mg/g) and detection sensitivity (2 fmol), high enrichment
recovery (88%), excellent specificity, and rapid enrichment and separation
properties. Additionally, we have demonstrated the capture of phosphopeptides
from the tryptic digest of real biosamples, thus illustrating the
potential of this polymeric material in phosphoproteomic studies.
Collapse
Affiliation(s)
- Li-Jun Chen
- School of Chemistry, The University of Sydney, Sydney, NSW 2006, Australia
| | - Sean J Humphrey
- School of Life and Environmental Sciences, The University of Sydney, Sydney, NSW 2006, Australia
| | - Jun-Long Zhu
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, Chang-Kung Chuang Institute, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China
| | - Fan-Fan Zhu
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, Chang-Kung Chuang Institute, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China
| | - Xu-Qing Wang
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, Chang-Kung Chuang Institute, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China
| | - Xiang Wang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials & College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
| | - Jin Wen
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials & College of Materials Science and Engineering, Donghua University, Shanghai 201620, China.,Institute of Theoretical Chemistry, Faculty of Vienna, University of Vienna, Währinger Straße 17, A-1090 Vienna, Austria
| | - Hai-Bo Yang
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, Chang-Kung Chuang Institute, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China
| | - Philip A Gale
- School of Chemistry, The University of Sydney, Sydney, NSW 2006, Australia.,The University of Sydney Nano Institute (Sydney Nano), The University of Sydney, Sydney, NSW 2006, Australia
| |
Collapse
|
12
|
Reinke L, Koch M, Müller-Renno C, Kubik S. Selective sensing of adenosine monophosphate (AMP) over adenosine diphosphate (ADP), adenosine triphosphate (ATP), and inorganic phosphates with zinc(II)-dipicolylamine-containing gold nanoparticles. Org Biomol Chem 2021; 19:3893-3900. [PMID: 33949587 DOI: 10.1039/d1ob00341k] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Mixed monolayer-protected gold nanoparticles containing surface-bound triethylene glycol and dipicolylamine groups aggregated in water/methanol, 1 : 2 (v/v) in the presence of nucleotides, if the solution also contained zinc(ii) nitrate to convert the dipicolylamine units into the corresponding zinc complexes. Nanoparticle aggregation could be followed with the naked eye by the colour change of the solution from red to purple followed by nanoparticle precipitation. The sensitivity was highest for adenosine triphosphate (ATP), which could be detected at concentrations >10 μM, and decreased over adenosine diphosphate (ADP) to adenosine monophosphate (AMP), consistent with the typically higher affinity of zinc(ii)-dipicolylamine-derived receptors for higher charged nucleotides. Inorganic sodium diphosphate and triphosphate interfered in the assay by also inducing nanoparticle aggregation. However, while the nucleotide-induced aggregates persisted even at higher analyte concentrations, the nanoparticles that were precipitated with inorganic salts redissolved again when the salt concentration was increased. The thus resulting solutions retained their ability to respond to nucleotides, but they now preferentially responded to AMP. Accordingly, AMP could be sensed selectively at concentrations ≥50 μM in an aqueous environment, even in the presence of other nucleotides and inorganic anions. This work thus introduces a novel approach for the sensing of a nucleotide that is often the most difficult analyte to detect with other assays.
Collapse
Affiliation(s)
- Lena Reinke
- Technische Universität Kaiserslautern, Fachbereich Chemie - Organische Chemie, Erwin-Schrödinger-Straße 54, 67663 Kaiserslautern, Germany.
| | - Marcus Koch
- INM - Leibniz Institute for New Materials, Campus D2 2, 66123 Saarbrücken, Germany
| | - Christine Müller-Renno
- Technische Universität Kaiserslautern, Fachbereich Physik und Forschungszentrum OPTIMAS, AG Grenzflächen, Nanomaterialien und Biophysik, Erwin-Schrödinger-Straße 56, 67663 Kaiserslautern, Germany
| | - Stefan Kubik
- Technische Universität Kaiserslautern, Fachbereich Chemie - Organische Chemie, Erwin-Schrödinger-Straße 54, 67663 Kaiserslautern, Germany.
| |
Collapse
|
13
|
Das D, Sutradhar S, Singh A, Ghosh BN. Zinc‐Terpyridine Based Chemosensor for Detection of Pyrophosphate Anion in Aqueous Medium. Z Anorg Allg Chem 2021. [DOI: 10.1002/zaac.202100054] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
- Dipankar Das
- Department of Chemistry National Institute of Technology Silchar, Silchar Cachar 788010 Assam
| | - Sourav Sutradhar
- Department of Chemistry National Institute of Technology Silchar, Silchar Cachar 788010 Assam
| | - Akta Singh
- Department of Chemistry National Institute of Technology Silchar, Silchar Cachar 788010 Assam
| | - Biswa Nath Ghosh
- Department of Chemistry National Institute of Technology Silchar, Silchar Cachar 788010 Assam
| |
Collapse
|
14
|
Recent developments in molecular sensor designs for inorganic pyrophosphate detection and biological imaging. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2020.213744] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
15
|
Zwicker VE, Sergeant GE, New EJ, Jolliffe KA. A colorimetric sensor array for the classification of biologically relevant tri-, di- and mono-phosphates. Org Biomol Chem 2021; 19:1017-1021. [DOI: 10.1039/d0ob02397c] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
A cyclic tetrapeptide paired with six commercially available indicators provides a chemosensing array able to classify biological phosphate derivatives.
Collapse
Affiliation(s)
| | | | - Elizabeth J. New
- The University of Sydney
- School of Chemistry
- Australia
- The University of Sydney Nano Institute (Sydney Nano)
- The University of Sydney
| | - Katrina A. Jolliffe
- The University of Sydney
- School of Chemistry
- Australia
- The University of Sydney Nano Institute (Sydney Nano)
- The University of Sydney
| |
Collapse
|
16
|
Sedgwick AC, Brewster JT, Wu T, Feng X, Bull SD, Qian X, Sessler JL, James TD, Anslyn EV, Sun X. Indicator displacement assays (IDAs): the past, present and future. Chem Soc Rev 2021; 50:9-38. [DOI: 10.1039/c9cs00538b] [Citation(s) in RCA: 69] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Indicator displacement assays (IDAs) offer a unique and innovative approach to molecular sensing. This Tutorial review discusses the basic concepts of each IDA strategy and illustrates their use in sensing applications.
Collapse
Affiliation(s)
- Adam C. Sedgwick
- Department of Chemistry
- The University of Texas at Austin
- Austin
- USA
| | | | - Tianhong Wu
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education
- School of Life Science and Technology
- Xi’an Jiaotong University
- Xi’an
- P. R. China
| | - Xing Feng
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education
- School of Life Science and Technology
- Xi’an Jiaotong University
- Xi’an
- P. R. China
| | | | - Xuhong Qian
- State Key Laboratory of Bioreactor Engineering
- Shanghai Key Laboratory of Chemical Biology
- School of Pharmacy
- East China University of Science and Technology
- Shanghai 200237
| | | | | | - Eric V. Anslyn
- Department of Chemistry
- The University of Texas at Austin
- Austin
- USA
| | - Xiaolong Sun
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education
- School of Life Science and Technology
- Xi’an Jiaotong University
- Xi’an
- P. R. China
| |
Collapse
|
17
|
RAO HH, LIU HX, LUO MY, XUE X, Ming-Ming W, XUE ZH. Progress of Simple Signal Readout-based Point-of-Care Testing. CHINESE JOURNAL OF ANALYTICAL CHEMISTRY 2021. [DOI: 10.1016/s1872-2040(20)60069-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
18
|
Choi YS, Kim N, Jang K, Choi H, Shin S, Bae SW. Naked‐Eye Detection of Fluoride Ions Using a Reaction‐based Colorimetric Probe. B KOREAN CHEM SOC 2020. [DOI: 10.1002/bkcs.12174] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Yun Seon Choi
- Green Chemistry and Materials Group Korea Institute of Industrial Technology Cheonan 31056 South Korea
- Department of Materials Science and Engineering Yonsei University Seoul 03722 South Korea
| | - Namdoo Kim
- Department of Chemistry Kongju National University Kongju 32588 South Korea
| | - Kyoung‐Jin Jang
- Department of Pathology, School of Medicine, Institute of Biomedical Science and Technology Konkuk University Chungju 27478 South Korea
| | - Heon‐Jin Choi
- Department of Materials Science and Engineering Yonsei University Seoul 03722 South Korea
| | - Seunghan Shin
- Green Chemistry and Materials Group Korea Institute of Industrial Technology Cheonan 31056 South Korea
| | - Se Won Bae
- Green Chemistry and Materials Group Korea Institute of Industrial Technology Cheonan 31056 South Korea
- Department of Chemistry and Cosmetics Jeju National University Jeju 63243 South Korea
| |
Collapse
|
19
|
Roy SG, Mondal S, Ghosh K. Anthracene labeled poly(pyridine methacrylamide) as a polymer-based chemosensor for detection of pyrophosphate (P 2O 74-) in semi-aqueous media. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2020; 12:5699-5708. [PMID: 33210678 DOI: 10.1039/d0ay01540g] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
To develop fluorophore-labelled pyridinium-based macromolecular architectures for fluorometric and colorimetric detection of anions, two polymers P1 and P2 are synthesized. Linear polymer P1 and cross-linked polymer P2, prepared from N-methacryloyl-3-aminopyridine monomers via free radical polymerization followed by quaternization of the pyridine ring nitrogen with anthracene as a fluorescent marker, have been successfully employed in anion sensing. P1 exhibits excellent sensing of HPPi in aqueous DMSO. In addition to the enhancement of fluorescence emission of the anthracene moiety, P1 exclusively shows excimer/exciplex emission in the presence of HPPi over other anions and exhibits selectivity to HPPi with a detection limit of about 1.63 ppm. Cross-linked P2 exhibits naked-eye detection of PPi/HPPi over other anions studied via indicator displacement assay (IDA).
Collapse
Affiliation(s)
- Saswati Ghosh Roy
- Department of Chemistry, University of Kalyani, Kalyani-741235, India.
| | | | | |
Collapse
|
20
|
Ahmed N, Zareen W, Zhang D, Yang X, Ye Y. A DCM-based NIR sensor for selective and sensitive detection of Zn 2+ in living cells. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2020; 243:118758. [PMID: 32810778 DOI: 10.1016/j.saa.2020.118758] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 07/19/2020] [Accepted: 07/23/2020] [Indexed: 06/11/2023]
Abstract
Zinc ion is the 2nd abundant transition metal element in human's body. It is responsible for many physiological and biological functioning in the body, such as growth of people, immunity, endocrine, etc. The deficiency of zinc could result in an increasing risk for growth retardation, neurological disorder and infectious disease. Thus, developing a nondestructive method for detecting Zn2+ in living systems is important. Here we reported a 2-(2-methyl-4H-ylidene)- malononitrile (DCM)-based NIR probe DF-Zn for selective and sensitive detection of Zn2+. The probe DF-Zn is cell-permeable and stable at broad pH range. DF-Zn showed a fast response to Zn2+, big stock's shift, and "nude-eye" recognition for Zn2+. Moreover, the selective binding of probe DF-Zn to Zn2+ was reversible. With the addition of EDTA in buffer solution, reversible response of probe to Zn2+ could be observed in MCF-7 cells imaging.
Collapse
Affiliation(s)
- Nadeem Ahmed
- Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| | - Wajeeha Zareen
- Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| | - Di Zhang
- Institute of Agricultural Quality Standards and Testing Technology, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China.
| | - Xiaopeng Yang
- Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| | - Yong Ye
- Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou 450001, China.
| |
Collapse
|
21
|
Rajasekaran D, Venkatachalam K, Periasamy V. A bisphenol based fluorescence chemosensor for the selective detection of Zn 2+ and PPi ions and its bioluminescence imaging. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2020; 242:118730. [PMID: 32738760 DOI: 10.1016/j.saa.2020.118730] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 07/04/2020] [Accepted: 07/04/2020] [Indexed: 06/11/2023]
Abstract
A bisphenol based fluorescence "turn-on" chemosensor 4,4'-(propane-2,2-diyl)bis(2-((E)-(2-(benzo[d]thiazol-2-yl)hydrazineyldene)methyl)phenol) (BHMP) has been synthesized and its sensing behavior was tested towards various ionic species. The chemo-sensing behavior of BHMP has been established through absorption, fluorescence, NMR, and mass spectroscopic techniques. The probe BHMP selectively detects zinc ions over other metal ions and the resulting BHMP + Zn2+ ensemble serves as a secondary probe for the detection of pyrophosphate (PPi) anion specifically over other anions. The spectroscopic studies reveal the fluorescence enhancement of BHMP in association with Zn2+ ions was quenched in the presence of pyrophosphate (PPi) anions. A probable mechanism of this selective sensing behavior was described on the basis of "OFF-ON-OFF" strategy for detection of both cations and anions. Moreover, the biological applicability of the chemosensor BHMP was examined via cell imaging studies.
Collapse
|
22
|
Tharmalingam B, Mathivanan M, Murugesapandian B. C 3-symmetric triaminoguanidine based colorimetric and fluorometric chemosensor: Sequential detection of Zn 2+/PPi, its RGB performance for detection of Zn 2+ ion and construction of IMPLICATION logic gate. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2020; 242:118749. [PMID: 32731150 DOI: 10.1016/j.saa.2020.118749] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 07/03/2020] [Accepted: 07/06/2020] [Indexed: 06/11/2023]
Abstract
In this work, new ethyl(E)-2-cyano-3-(1H-pyrrol-2-yl)acrylate appended C3-symmetric star-shape triaminoguanidine based Schiff base (LH3) was designed and synthesized from simple synthons. New probe, LH3 was completely analyzed by 1H NMR, 13C NMR and mass spectrum. In the present probe LH3, effective π-conjugated ethyl(E)-2-cyano-acrylate unit was introduced on the periphery of the pyrrole-triaminoquanidine conjugates by using carefully chosen building units. The probe LH3 shows high selectivity and sensitivity towards Zn2+ ion via colorimetric and fluorometric changes. The yellowish orange color of LH3 solution turned to wine red color upon addition of Zn2+ solution, along with red shifted absorption maxima from 450 nm to 550 nm, this indicates the formation of LH3-Zn2+ species. Job's plot and mass spectrum analysis confirms the formation of 1:3 stoichiometric complex between the LH3 and Zn2+ ions. Further this ensemble shows selective detection towards PPi anion over the other anions based on displacement metal ion approach. Hence, reversible colorimetric/emission response of LH3 towards Zn2+ and PPi ions via "on-off-on" manner could allow the construction of IMPLICATION logic gate functions. The practical efficacy of the probe LH3 was established by utilization of the probe for the detection of Zn2+ ions in real water sample analysis. Further, the significant noticeable colorimetric changes of the probe LH3 upon addition of Zn2+ ion have been successfully integrated with a smartphone app RGB color value to construct a real-time analysis of Zn2+ ions.
Collapse
Affiliation(s)
| | - Moorthy Mathivanan
- Department of Chemistry, Bharathiar University, Coimbatore 641 046, Tamil Nadu, India
| | | |
Collapse
|
23
|
Reinke L, Bartl J, Koch M, Kubik S. Optical detection of di- and triphosphate anions with mixed monolayer-protected gold nanoparticles containing zinc(II)-dipicolylamine complexes. Beilstein J Org Chem 2020; 16:2687-2700. [PMID: 33178359 PMCID: PMC7607427 DOI: 10.3762/bjoc.16.219] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Accepted: 10/22/2020] [Indexed: 01/02/2023] Open
Abstract
Gold nanoparticles covered with a mixture of ligands of which one type contains solubilizing triethylene glycol residues and the other peripheral zinc(II)–dipicolylamine (DPA) complexes allowed the optical detection of hydrogenphosphate, diphosphate, and triphosphate anions in water/methanol 1:2 (v/v). These anions caused the bright red solutions of the nanoparticles to change their color because of nanoparticle aggregation followed by precipitation, whereas halides or oxoanions such as sulfate, nitrate, or carbonate produced no effect. The sensitivity of phosphate sensing depended on the nature of the anion, with diphosphate and triphosphate inducing visual changes at significantly lower concentrations than hydrogenphosphate. In addition, the sensing sensitivity was also affected by the ratio of the ligands on the nanoparticle surface, decreasing as the number of immobilized zinc(II)–dipicolylamine groups increased. A nanoparticle containing a 9:1 ratio of the solubilizing and the anion-binding ligand showed a color change at diphosphate and triphosphate concentrations as low as 10 μmol/L, for example, and precipitated at slightly higher concentrations. Hydrogenphosphate induced a nanoparticle precipitation only at a concentration of ca. 400 μmol/L, at which the precipitates formed in the presence of diphosphates and triphosphates redissolved. A nanoparticle containing fewer binding sites was more sensitive, while increasing the relative number of zinc(II)–dipicolylamine complexes beyond 25% had a negative impact on the limit of detection and the optical response. Transmission electron microscopy provided evidence that the changes of the nanoparticle properties observed in the presence of the phosphates were due to a nanoparticle crosslinking, consistent with the preferred binding mode of zinc(II)–dipicolylamine complexes with phosphate anions which involves binding of the anion between two metal centers. This work thus provided information on how the behavior of mixed monolayer-protected gold nanoparticles is affected by multivalent interactions, at the same time introducing a method to assess whether certain biologically relevant anions are present in an aqueous solution within a specific concentration range.
Collapse
Affiliation(s)
- Lena Reinke
- Fachbereich Chemie - Organische Chemie, Technische Universität Kaiserslautern, Erwin-Schrödinger-Straße, 67663 Kaiserslautern, Germany
| | - Julia Bartl
- Fachbereich Chemie - Organische Chemie, Technische Universität Kaiserslautern, Erwin-Schrödinger-Straße, 67663 Kaiserslautern, Germany
| | - Marcus Koch
- INM - Leibniz Institute for New Materials, Campus D2 2, 66123 Saarbrücken, Germany
| | - Stefan Kubik
- Fachbereich Chemie - Organische Chemie, Technische Universität Kaiserslautern, Erwin-Schrödinger-Straße, 67663 Kaiserslautern, Germany
| |
Collapse
|
24
|
Butler SJ, Jolliffe KA. Anion Receptors for the Discrimination of ATP and ADP in Biological Media. Chempluschem 2020; 86:59-70. [DOI: 10.1002/cplu.202000567] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 09/29/2020] [Indexed: 12/28/2022]
Affiliation(s)
- Stephen J. Butler
- Department of Chemistry Loughborough University Loughborough LE11 3TU United Kingdom
| | | |
Collapse
|
25
|
Mendive‐Tapia L, Wang J, Vendrell M. Fluorescent cyclic peptides for cell imaging. Pept Sci (Hoboken) 2020. [DOI: 10.1002/pep2.24181] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
| | - Jinling Wang
- Centre for Inflammation Research The University of Edinburgh Edinburgh UK
| | - Marc Vendrell
- Centre for Inflammation Research The University of Edinburgh Edinburgh UK
| |
Collapse
|
26
|
Chakraborty S, Lohar S, Dhara K, Ghosh R, Dam S, Zangrando E, Chattopadhyay P. A new half-condensed Schiff base platform: structures and sensing of Zn 2+ and H 2PO 4- ions in an aqueous medium. Dalton Trans 2020; 49:8991-9001. [PMID: 32558845 DOI: 10.1039/d0dt01594f] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
A newly designed and synthesized half-condensed organic moiety 2-hydroxy-5-methyl-3-[(2-phenylamino-phenylimino)-methyl]-benzaldehyde (HL') and a Zn2L4 complex sequentially detect Zn2+ and H2PO4- ions as low as 1.13 nM and1.23 μM, respectively. HL' and a dinuclear Zn(ii) complex of in situ generated L- in a solution formulated as Zn2L4 under investigation were characterized by physicochemical and spectroscopic studies along with detailed structural analyses by single-crystal X-ray crystallography. The selectivity and sensitivity of HL' towards Zn2+ ions and of the Zn2L4 complex towards H2PO4- ions are based on CHEF and via displacement pathways, respectively. Dual sensing of Zn2+ ions and H2PO4-ions in an aqueous medium via "Green-Blue-Green" emission with the reversible transformation of in situ formed HL' to HL was established by detailed electronic absorption and emission spectroscopic studies. This non-cytotoxic probe (HL', i.e. produced HL in solution) and Zn2L4 complexes are able to monitor the subcellular distribution changes of Zn2+ and H2PO4- ions, respectively, by fluorescence microscopy using the human semen sample.
Collapse
Affiliation(s)
- Sujaya Chakraborty
- Department of Chemistry, The University of Burdwan, Golapbag, Burdwan 713104, India.
| | | | | | | | | | | | | |
Collapse
|
27
|
Hu Y, Subramanian P, Albrecht M. Europium (III) complexes of amino acid-derived bis-imine-substituted phenanthroline ligands for phosphate recognition. Inorganica Chim Acta 2020. [DOI: 10.1016/j.ica.2020.119428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
28
|
Delecluse M, Colomban C, Chatelet B, Chevallier-Michaud S, Moraleda D, Dutasta JP, Martinez A. Highly Selective Fluoride Recognition by a Small Tris-Urea Covalent Cage. J Org Chem 2020; 85:4706-4711. [PMID: 32153196 DOI: 10.1021/acs.joc.9b03429] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
A highly selective recognition of fluoride was achieved through the design of a small hemicryptophane cage (3) presenting a southern tris-urea hosting moiety. The resulting host-guest complex has been characterized by electrospray ionization-high-resolution mass spectrometry, 1H and 19F NMR, and X-ray diffraction techniques. In particular, X-ray diffraction analysis of [3·F-] reveals that the encapsulation of one fluoride, within 3, occurs through NH···F- H-bonding with the six NH residues of the tris-urea ligand. An association constant of 1200 M-1 was extracted from 1H NMR titration experiments, indicating that efficient fluoride binding also occurs in solution. Finally, in sharp contrast with previously reported urea-based hemicryptophane hosts, the small preorganized cavity found in 3 allows for an exclusive selectivity for fluoride over other competing halides.
Collapse
Affiliation(s)
- Magalie Delecluse
- Aix-Marseille Univ., CNRS, Centrale Marseille, iSm2, UMR 7113, 13397 Marseille, France
| | - Cédric Colomban
- Aix-Marseille Univ., CNRS, Centrale Marseille, iSm2, UMR 7113, 13397 Marseille, France
| | - Bastien Chatelet
- Aix-Marseille Univ., CNRS, Centrale Marseille, iSm2, UMR 7113, 13397 Marseille, France
| | | | - Delphine Moraleda
- Aix-Marseille Univ., CNRS, Centrale Marseille, iSm2, UMR 7113, 13397 Marseille, France
| | - Jean-Pierre Dutasta
- Laboratoire de Chimie, Ecole Normale Supérieure de Lyon, CNRS, UCBL, 46 allée d'Italie, F-69364 Lyon, France
| | - Alexandre Martinez
- Aix-Marseille Univ., CNRS, Centrale Marseille, iSm2, UMR 7113, 13397 Marseille, France
| |
Collapse
|
29
|
Hewitt SH, Macey G, Mailhot R, Elsegood MRJ, Duarte F, Kenwright AM, Butler SJ. Tuning the anion binding properties of lanthanide receptors to discriminate nucleoside phosphates in a sensing array. Chem Sci 2020; 11:3619-3628. [PMID: 34094050 PMCID: PMC8152522 DOI: 10.1039/d0sc00343c] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2020] [Accepted: 03/10/2020] [Indexed: 12/30/2022] Open
Abstract
The development of synthetic receptors for the selective binding and discrimination of anions in water requires an understanding of how anions interact with these synthetic receptors. Molecules designed to differentiate nucleoside phosphate anions (e.g. ATP, ADP, GTP, GDP, UDP) under physiological conditions could underpin exciting new sensing tools for biomedical research and drug discovery, but it is very challenging due to the similarities in anion structure, size and charge. We present a series of lanthanide-based anion receptors and establish key structural elements that impact on nucleoside phosphate anion binding and sensing. Structural evidence of anion binding using X-ray crystallographic and NMR data, supported by DFT calculations indicate the binding modes between the lanthanide complexes and certain phosphoanions, revealing a bidentate (α-, γ-) binding mode to ATP. We further use four of the receptors to allow discrimination of eight nucleoside phosphate anions in the first array-based assay using lanthanide complexes, taking advantage of the multiple emission bands and long emission lifetimes associated with luminescent lanthanide complexes.
Collapse
Affiliation(s)
- Sarah H Hewitt
- Department of Chemistry, Loughborough University Epinal Way Loughborough LE11 3TU UK
| | - Georgina Macey
- Department of Chemistry, Loughborough University Epinal Way Loughborough LE11 3TU UK
| | - Romain Mailhot
- Department of Chemistry, Loughborough University Epinal Way Loughborough LE11 3TU UK
| | - Mark R J Elsegood
- Department of Chemistry, Loughborough University Epinal Way Loughborough LE11 3TU UK
| | - Fernanda Duarte
- Chemistry Research Laboratory, University of Oxford 12 Mansfield Road Oxford OX1 3TA UK
| | - Alan M Kenwright
- Department of Chemistry, Durham University South Road Durham DH1 3LE UK
| | - Stephen J Butler
- Department of Chemistry, Loughborough University Epinal Way Loughborough LE11 3TU UK
| |
Collapse
|
30
|
Tharmalingam B, Mathivanan M, Mani KS, Kaminsky W, Raghunath A, Jothi M, Perumal E, Murugesapandian B. Selective detection of pyrophosphate anion by zinc ensemble of C3-symmetric triaminoguanidine-pyrrole conjugate and its biosensing applications. Anal Chim Acta 2020; 1103:192-201. [DOI: 10.1016/j.aca.2019.12.061] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2019] [Revised: 12/19/2019] [Accepted: 12/23/2019] [Indexed: 01/03/2023]
|
31
|
Ramakrishnam Raju MV, Harris SM, Pierre VC. Design and applications of metal-based molecular receptors and probes for inorganic phosphate. Chem Soc Rev 2020; 49:1090-1108. [PMID: 32016270 DOI: 10.1039/c9cs00543a] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Inorganic phosphate has numerous biomedical functions. Regulated primarily by the kidneys, phosphate reaches abnormally high blood levels in patients with advanced renal diseases. Since phosphate cannot be efficiently removed by dialysis, the resulting hyperphosphatemia leads to increased mortality. Phosphate is also an important component of the environmental chemistry of surface water. Although required to secure our food supply, inorganic phosphate is also linked to eutrophication and the spread of algal blooms with an increasing economic and environmental burden. Key to resolving both of these issues is the development of accurate probes and molecular receptors for inorganic phosphate. Yet, quantifying phosphate in complex aqueous media remains challenging, as is the development of supramolecular receptors that have adequate sensitivity and selectivity for use in either blood or surface waters. Metal-based receptors are particularly well-suited for these applications as they can overcome the high hydration enthalpy of phosphate that limits the effectiveness of many organic receptors in water. Three different strategies are most commonly employed with inorganic receptors for anions: metal extrusion assays, responsive molecular receptors, and indicator displacement assays. In this review, the requirements for molecular receptors and probes for environmental applications are outlined. The different strategies deployed to recognize and sense phosphate with metal ions will be detailed, and their advantages and shortfalls will be delineated with key examples from the literature.
Collapse
Affiliation(s)
| | - Sarah M Harris
- Department of Chemistry, Benedictine College, Atchison, KS 66002, USA
| | - Valérie C Pierre
- Department of Chemistry, University of Minnesota, Minneapolis, MN 55455, USA.
| |
Collapse
|
32
|
Pal S, Ghosh TK, Ghosh R, Mondal S, Ghosh P. Recent advances in recognition, sensing and extraction of phosphates: 2015 onwards. Coord Chem Rev 2020. [DOI: 10.1016/j.ccr.2019.213128] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
33
|
Ditopic binuclear copper(II) complexes for DNA cleavage. J Inorg Biochem 2020; 205:110995. [PMID: 31955057 DOI: 10.1016/j.jinorgbio.2020.110995] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2019] [Revised: 01/07/2020] [Accepted: 01/10/2020] [Indexed: 12/31/2022]
Abstract
Herein we present the synthesis of two ligands containing two di(2-picolyl)amine (DPA) units linked by either a 1,1'-(pyridine-2,6-diyl)bis(3-ethylurea) (L1) or a 1,1'-(1,3-phenylene)bis(3-ethylurea) (L2) spacer. The corresponding binuclear CuII and ZnII complexes were prepared and isolated. The X-ray structures of the L1 ligand and the [Cu2L1Cl2]2+ complex evidence an unusual cis/trans conformation of one of the urea groups stabilized by an intramolecular hydrogen bond with the nitrogen atom of the pyridyl spacer. The CuII complexes form rather strong ternary complexes with phosphorylated anions. The [Cu2L1]4+ complex presents a rather high affinity for pyrophosphate (logK11 = 8.19 at pH 7, 25 °C), while [Cu2L2]4+ stands out because of its strong binding to AMP2- (logK11 = 9.3 at pH 7, 25 °C). The interaction of the CuII complexes with deoxyribonucleic acid from calf thymus (ct-DNA) was monitored using circular dichroism (CD) and luminescence spectroscopies. These studies revealed a quite strong interaction of the complexes with ct-DNA (Kb = (6.4 ± 0.7) × 103 for [Cu2L1]4+ and Kb = (6.3 ± 1.0) × 103 for [Cu2L2]4+). Competition experiments carried out in the presence of methyl green and BAPPA (N1,N3-Bis(4-amidinophenyl)propane-1,3-diamine) as major and minor groove competitors, respectively, confirm that the interaction of both complexes with DNA takes place through the minor groove, in agreement with docking studies. The [Cu2L2]4+ complex is quite efficient in promoting the cleavage of the double-stranded pUC19 plasmid DNA, by favoring the conversion of the supercoiled form to the nicked form following a hydrolytic mechanism.
Collapse
|
34
|
Hamedpour V, Sasaki Y, Zhang Z, Kubota R, Minami T. Simple Colorimetric Chemosensor Array for Oxyanions: Quantitative Assay for Herbicide Glyphosate. Anal Chem 2019; 91:13627-13632. [PMID: 31556601 DOI: 10.1021/acs.analchem.9b02822] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Although the determination of oxyanions due to correlation with metabolic processes and diseases is in high demand, most of the developed methods are suffering from a shortage of a capability of on-site analysis, sensitivity, and user-friendliness. This paper introduces the first colorimetric chemosensor array targeting various anions including glyphosate. The proposed sensor benefits from some notable features such as utilizing only commercially available reagents, recognizing similarly structured compounds by biomaterial-free sensors, and providing a fingerprint-like response originating from pattern recognition. The detection mechanism is based on an anion sensing strategy named coordination binding-based sensor array (CBSA). In CBSA, competitive coordinative bonding of a metal ion (Zn2+) between a catechol dye (i.e., indicator) and target anions occurs, and changes in the optical properties of the dye represent the target's concentration. For data processing, two chemometrical techniques including linear discrimination analysis (LDA) and an artificial neural network (ANN) for pattern classification and regression/prediction purposes were successfully employed, respectively. Finally, the proposed chemosensor was subjected to glyphosate samples (commercial herbicide and tap water samples) and produced satisfactory results.
Collapse
Affiliation(s)
- Vahid Hamedpour
- Institute of Industrial Science , The University of Tokyo , 4-6-1 Komaba , Meguro-ku, Tokyo 153-8505 , Japan
| | - Yui Sasaki
- Institute of Industrial Science , The University of Tokyo , 4-6-1 Komaba , Meguro-ku, Tokyo 153-8505 , Japan
| | - Zhoujie Zhang
- Institute of Industrial Science , The University of Tokyo , 4-6-1 Komaba , Meguro-ku, Tokyo 153-8505 , Japan
| | - Riku Kubota
- Institute of Industrial Science , The University of Tokyo , 4-6-1 Komaba , Meguro-ku, Tokyo 153-8505 , Japan
| | - Tsuyoshi Minami
- Institute of Industrial Science , The University of Tokyo , 4-6-1 Komaba , Meguro-ku, Tokyo 153-8505 , Japan
| |
Collapse
|
35
|
UV–vis and theoretical studies on an ensemble of dinuclear Cu(II) complex of anthracene–based tripodal tetramine with pyrogallol red for cyanide detection and species distribution in aqueous solution. INORG CHEM COMMUN 2019. [DOI: 10.1016/j.inoche.2019.107502] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
36
|
Dey S, Sukul PK. Selective Detection of Pyrophosphate Anions in Aqueous Medium Using Aggregation of Perylene Diimide as a Fluorescent Probe. ACS OMEGA 2019; 4:16191-16200. [PMID: 31592486 PMCID: PMC6777299 DOI: 10.1021/acsomega.9b02405] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Accepted: 09/06/2019] [Indexed: 05/05/2023]
Abstract
A water-soluble perylene diimide, aspartic acid-functionalized perylene diimide (APDI), has shown significant sequential "turn-off" and "turn-on" responses toward Cu2+ and inorganic pyrophosphate (PPi), respectively. APDI was found to show selectivity toward Cu2+ and inorganic PPi over adenosine monophosphate, adenosine diphosphate, and adenosine triphosphate. The detection has been studied by absorption and emission spectroscopy techniques. Incorporation of Cu2+ into the solution of APDI results in a distinct quenching of the fluorescence intensity, while there was no spectral change in the presence of other metal ions. The formed APDI-Cu2+ ensemble can turn on its fluorescence signal when PPi is present. The detection of PPi could be traced by looking at the change in color of the solution under the naked eye. No interference was observed from other anions, making the APDI-Cu2+aggregate a highly selective biosensor for PPi.
Collapse
Affiliation(s)
- Sucharita Dey
- Department of Chemistry,
Amity Institute of Applied Sciences, Amity
University Kolkata, Action Area-II, Kadampukur, New Town, Rajarhat, West Bengal 700135, India
| | - Pradip Kr. Sukul
- Department of Chemistry,
Amity Institute of Applied Sciences, Amity
University Kolkata, Action Area-II, Kadampukur, New Town, Rajarhat, West Bengal 700135, India
| |
Collapse
|
37
|
Chatphueak N, Suksai C. Water soluble dinuclear zinc(II) complex based sensor for pyrophosphate anion under indicator displacement assays. Polyhedron 2019. [DOI: 10.1016/j.poly.2019.06.027] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
38
|
Du C, Fu S, Wang X, Sedgwick AC, Zhen W, Li M, Li X, Zhou J, Wang Z, Wang H, Sessler JL. Diketopyrrolopyrrole-based fluorescence probes for the imaging of lysosomal Zn 2+ and identification of prostate cancer in human tissue. Chem Sci 2019; 10:5699-5704. [PMID: 31293754 PMCID: PMC6568042 DOI: 10.1039/c9sc01153f] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Accepted: 05/01/2019] [Indexed: 12/27/2022] Open
Abstract
A series of diketopyrrolopyrrole-based fluorescent probes (DPP-C2, LysoDPP-C2, LysoDPP-C3, and LysoDPP-C4) have been developed for the detection of low pH and Zn2+ in an AND logic fashion. The chelation of Zn2+ or the protonation of a morpholine moiety within these probes results in a partial increase in the fluorescence intensity, an effect ascribed to suppression of one possible photo-induced electron transfer (PET) pathway. In contrast, a large increase in the observed fluorescence intensity is observed at low pH and in the presence of Zn2+; this is rationalized in terms of both possible PET pathways within the probes being blocked. Job plots, fluorescence titration curves, and isothermal titration calorimetry proved consistent with a 1 : 1 Zn2+ complexation stoichiometry. Each probe demonstrated an excellent selectivity towards Zn2+ and the resulting Zn2+ complexes demonstrated pH sensitivity over the 3.5-9 pH range. Fluorescence imaging experiments confirmed that LysoDPP-C4 was capable of imaging lysosomal Zn2+ in live cells. Little evidence of cytotoxicity was seen. LysoDPP-C4 was successfully applied to the bioimaging of nude mice, wherein it was shown capable of imaging the prostate. Histological studies using a human sample revealed that LysoDPP-C4 can discriminate cancerous prostate tissue from healthy prostate tissue.
Collapse
Affiliation(s)
- Chenchen Du
- Department of Chemistry , College of Science , Center for Supramolecular Chemistry & Catalysis , Shanghai University , 99 Shangda Road , Shanghai , 200444 , P. R. China .
| | - Shibo Fu
- Department of Urology , Shanghai Ninth People's Hospital , Shanghai Jiaotong University , School of Medicine , Shanghai , 200011 , P. R. China
| | - Xiaohua Wang
- Department of Chemistry , College of Science , Center for Supramolecular Chemistry & Catalysis , Shanghai University , 99 Shangda Road , Shanghai , 200444 , P. R. China .
| | - Adam C Sedgwick
- Department of Chemistry , The University of Texas at Austin , 105 E 24th Street A5300 , Austin , TX 78712-1224 , USA .
| | - Wei Zhen
- Department of Chemistry , College of Science , Center for Supramolecular Chemistry & Catalysis , Shanghai University , 99 Shangda Road , Shanghai , 200444 , P. R. China .
| | - Minjie Li
- Department of Chemistry , College of Science , Center for Supramolecular Chemistry & Catalysis , Shanghai University , 99 Shangda Road , Shanghai , 200444 , P. R. China .
| | - Xinqiang Li
- Pathology Department , First Affiliated Hospital of Zhengzhou University , 1 Jianshe East Road , Zhengzhou , Henan Province 450052 , P. R. China
| | - Juan Zhou
- Department of Urology , Shanghai Ninth People's Hospital , Shanghai Jiaotong University , School of Medicine , Shanghai , 200011 , P. R. China
| | - Zhong Wang
- Department of Urology , Shanghai Ninth People's Hospital , Shanghai Jiaotong University , School of Medicine , Shanghai , 200011 , P. R. China
| | - Hongyu Wang
- Department of Chemistry , College of Science , Center for Supramolecular Chemistry & Catalysis , Shanghai University , 99 Shangda Road , Shanghai , 200444 , P. R. China .
| | - Jonathan L Sessler
- Department of Chemistry , College of Science , Center for Supramolecular Chemistry & Catalysis , Shanghai University , 99 Shangda Road , Shanghai , 200444 , P. R. China .
- Department of Chemistry , The University of Texas at Austin , 105 E 24th Street A5300 , Austin , TX 78712-1224 , USA .
| |
Collapse
|
39
|
A water-soluble benzoxazole-based probe: Real-time monitoring PPi via situ reaction by two-photon cells imaging. Talanta 2019; 195:158-164. [DOI: 10.1016/j.talanta.2018.11.036] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Revised: 10/30/2018] [Accepted: 11/12/2018] [Indexed: 01/01/2023]
|
40
|
Meng HH, Wang CY, Xi W, Song XQ, Wang L. A cationic tetrahedral Zn(ii) cluster based on a new salicylamide imine multidentate ligand: synthesis, structure and fluorescence sensing study. Dalton Trans 2019; 48:12326-12335. [DOI: 10.1039/c9dt01376h] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
We present here a monocationic ZnII tetrahedral cluster which is extremely stable and exhibits highly sensitive and selective recognition of phosphates against other common anions in water containing media.
Collapse
Affiliation(s)
- Huan-Huan Meng
- School of Chemical and Biological Engineering
- Lanzhou Jiaotong University
- Lanzhou
- China
| | - Cai-Yun Wang
- School of Chemical and Biological Engineering
- Lanzhou Jiaotong University
- Lanzhou
- China
| | - Wei Xi
- School of Chemical and Biological Engineering
- Lanzhou Jiaotong University
- Lanzhou
- China
| | - Xue-Qin Song
- School of Chemical and Biological Engineering
- Lanzhou Jiaotong University
- Lanzhou
- China
| | - Li Wang
- College of Chemistry and Chemical Engineering
- Xi'an Shiyou University
- Xi'an 710065
- P.R. China
| |
Collapse
|
41
|
Li H, Ren J, Xu X, Ning L, Tong R, Song Y, Liao S, Gu W, Liu X. A dual-responsive luminescent metal–organic framework as a recyclable luminescent probe for the highly effective detection of pyrophosphate and nitrofurantoin. Analyst 2019; 144:4513-4519. [DOI: 10.1039/c9an00718k] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Luminescent ZTMOF-1 can discriminately detect PPi and NFT with high selectivity, sensitivity and stability.
Collapse
Affiliation(s)
- Hui Li
- Collaborative Innovation Center of Chemical Science and Engineering
- Key Laboratory of Advanced Energy Materials Chemistry (MOE)
- College of Chemistry
- Nankai University
- Tianjin 300071
| | - Jie Ren
- Collaborative Innovation Center of Chemical Science and Engineering
- Key Laboratory of Advanced Energy Materials Chemistry (MOE)
- College of Chemistry
- Nankai University
- Tianjin 300071
| | - Xiufang Xu
- Collaborative Innovation Center of Chemical Science and Engineering
- Key Laboratory of Advanced Energy Materials Chemistry (MOE)
- College of Chemistry
- Nankai University
- Tianjin 300071
| | - Liangmin Ning
- Collaborative Innovation Center of Chemical Science and Engineering
- Key Laboratory of Advanced Energy Materials Chemistry (MOE)
- College of Chemistry
- Nankai University
- Tianjin 300071
| | - Ruoyan Tong
- Collaborative Innovation Center of Chemical Science and Engineering
- Key Laboratory of Advanced Energy Materials Chemistry (MOE)
- College of Chemistry
- Nankai University
- Tianjin 300071
| | - Yao Song
- Collaborative Innovation Center of Chemical Science and Engineering
- Key Laboratory of Advanced Energy Materials Chemistry (MOE)
- College of Chemistry
- Nankai University
- Tianjin 300071
| | - Shengyun Liao
- Tianjin Key Laboratory of Organic Solar Cells and Photochemical Conversion
- School of Chemistry and Chemical Engineering
- Tianjin University of Technology
- Tianjin 300384
- China
| | - Wen Gu
- Collaborative Innovation Center of Chemical Science and Engineering
- Key Laboratory of Advanced Energy Materials Chemistry (MOE)
- College of Chemistry
- Nankai University
- Tianjin 300071
| | - Xin Liu
- Collaborative Innovation Center of Chemical Science and Engineering
- Key Laboratory of Advanced Energy Materials Chemistry (MOE)
- College of Chemistry
- Nankai University
- Tianjin 300071
| |
Collapse
|
42
|
Zhang XX, Zhu QY, Lu JY, Zhang FR, Huang WT, Ding XZ, Xia LQ. The Boolean logic tree of molecular self-assembly system based on cobalt oxyhydroxide nanoflakes for three-state logic computation, sensing and imaging of pyrophosphate in living cells and in vivo. Analyst 2018; 144:274-283. [PMID: 30398257 DOI: 10.1039/c8an01565a] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Sensing of pyrophosphate (PPi) is helpful to better understand many life processes and diagnose various early-stage diseases. However, many traditional reported methods based on artificial receptors for sensing of PPi exhibit some disadvantages including difficulties in designing appropriate binding sites and complicated multi-step assembly/functionalization. Thus, it is significantly important and a big challenge to know how to use a simple molecular self-assembly or an interaction system to solve the above-mentioned limits to achieve the quantitative analysis of specific substances in the system. Based on the natural connection and similarity (such as stimulus responsiveness) between sensing and logic computing, in this study, the Boolean logic tree of molecular self-assembly system based on the cobalt oxyhydroxide (CoOOH) nanoplatform is constructed and applied to organize and connect "plug and play" molecular events (fluorescent dye, acridine orange and anion, PPi). By using molecules as inputs and the corresponding fluorescence signal as the output, the CoOOH-based molecular self-assembly system can be programmed for three-input fluorescent Boolean logic computation, fluorescent three-state logic computation, detection of PPi (linear range from 50 to 6400 nM with a detection limit of 20 nM) and even for imaging in living cancer cells and in vivo (in systems such as Zebrafish and Carassius auratus). Our approach adds a new dimension for expanding molecular logic computing and sensing systems, which will not only provide more opportunities for developing novel logic computing paradigms, but also be helpful in promoting the development and applications of intelligent molecular computing and sensing systems.
Collapse
Affiliation(s)
- Xin Xing Zhang
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha 410081, P. R. China.
| | - Qiu Yan Zhu
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha 410081, P. R. China.
| | - Jiao Yang Lu
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha 410081, P. R. China.
| | - Fu Rui Zhang
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha 410081, P. R. China.
| | - Wei Tao Huang
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha 410081, P. R. China.
| | - Xue Zhi Ding
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha 410081, P. R. China.
| | - Li Qiu Xia
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha 410081, P. R. China.
| |
Collapse
|
43
|
Yang S, Feng W, Feng G. Development of a near-infrared fluorescent sensor with a large Stokes shift for sensing pyrophosphate in living cells and animals. Anal Chim Acta 2018; 1034:119-127. [DOI: 10.1016/j.aca.2018.05.076] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Revised: 05/25/2018] [Accepted: 05/30/2018] [Indexed: 10/14/2022]
|
44
|
Sengupta A, Liu Y, Flood AH, Raghavachari K. Anion‐Binding Macrocycles Operate Beyond the Electrostatic Regime: Interaction Distances Matter. Chemistry 2018; 24:14409-14417. [PMID: 30036449 DOI: 10.1002/chem.201802657] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Indexed: 12/22/2022]
Affiliation(s)
- Arkajyoti Sengupta
- Department of Chemistry Indiana University 800 E. Kirkwood Avenue Bloomington Indiana 47405 USA
- Current Address: Department of Chemistry Michigan State University East Lansing Michigan 48824 USA
| | - Yun Liu
- Department of Chemistry Indiana University 800 E. Kirkwood Avenue Bloomington Indiana 47405 USA
- Current Address: Beckman Institute for Advanced Science and Technology University of Illinois at Urbana-Champaign Urbana Illinois 61801 USA
| | - Amar H. Flood
- Department of Chemistry Indiana University 800 E. Kirkwood Avenue Bloomington Indiana 47405 USA
| | - Krishnan Raghavachari
- Department of Chemistry Indiana University 800 E. Kirkwood Avenue Bloomington Indiana 47405 USA
| |
Collapse
|
45
|
Qi F, Han Y, Ye Z, Liu H, Wei L, Xiao L. Color-Coded Single-Particle Pyrophosphate Assay with Dark-Field Optical Microscopy. Anal Chem 2018; 90:11146-11153. [PMID: 30114901 DOI: 10.1021/acs.analchem.8b03211] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
In this work, we demonstrate a convenient yet sensitive color-coded single-particle detection method for the quantification of pyrophosphate (PPi) by using single gold nanoparticle (GNP) as the probe. The design is based on GNP-dependent catalytic deposition of Cu onto the surface of GNPs with reduced nicotinamide adenine dinucleotide (NADH). Without PPi, Cu2+ can be directly reduced to Cu0 through the gold-catalyzed oxidization of NADH. In the presence of PPi, the coating process is impeded due to the strong coordination capability of PPi with Cu2+. The selective coating of Cu shell onto the GNPs surface results in the extraordinary red-shift of localized surface plasmon resonance from individual GNPs. By quantitatively counting the fraction of yellow particles with color-coded dark-field optical microscopy, the trace amounts of PPi in solution can be accurately quantified. The limit-of-detection is as low as 1.49 nM with a linear dynamic range of 0-4.29 μM, which is much lower than the spectroscopic measurements in bulk solution. In artificial urine sample, good recovery efficiency was achieved. As a consequence, the method demonstrated herein will find promising applications for the ultrasensitive detection of target biomolecules under biological milieu in the future.
Collapse
Affiliation(s)
- Fang Qi
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Biosensing and Molecular Recognition, College of Chemistry , Nankai University , Tianjin 300071 , China
| | - Yameng Han
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Biosensing and Molecular Recognition, College of Chemistry , Nankai University , Tianjin 300071 , China
| | - Zhongju Ye
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Biosensing and Molecular Recognition, College of Chemistry , Nankai University , Tianjin 300071 , China
| | - Hua Liu
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Biosensing and Molecular Recognition, College of Chemistry , Nankai University , Tianjin 300071 , China
| | - Lin Wei
- Key Laboratory of Chemical Biology & Traditional Chinese Medicine Research, Key Laboratory of Phytochemical R&D of Hunan Province, College of Chemistry and Chemical Engineering , Hunan Normal University , Changsha 410082 , China
| | - Lehui Xiao
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Biosensing and Molecular Recognition, College of Chemistry , Nankai University , Tianjin 300071 , China
| |
Collapse
|
46
|
Oh J, Hong JI. Cation Effect on Fluorescent Sensing of Pyrophosphate by a Bis(Zn-DPA) Probe. B KOREAN CHEM SOC 2018. [DOI: 10.1002/bkcs.11494] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Affiliation(s)
- Jinrok Oh
- Department of Chemistry; Seoul National University; Seoul 08826 South Korea
| | - Jong-In Hong
- Department of Chemistry; Seoul National University; Seoul 08826 South Korea
| |
Collapse
|
47
|
Esteves CV, Esteban-Gómez D, Platas-Iglesias C, Tripier R, Delgado R. Steric Effects on the Binding of Phosphate and Polyphosphate Anions by Zinc(II) and Copper(II) Dinuclear Complexes of m-Xylyl-bis-cyclen. Inorg Chem 2018; 57:6466-6478. [DOI: 10.1021/acs.inorgchem.8b00539] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Catarina V. Esteves
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780−157 Oeiras, Portugal
| | - David Esteban-Gómez
- Departamento de Química, Facultade de Ciencias & Centro de Investigaciones Científicas Avanzadas, Universidade da Coruña, 15071 A Coruña, Spain
| | - Carlos Platas-Iglesias
- Departamento de Química, Facultade de Ciencias & Centro de Investigaciones Científicas Avanzadas, Universidade da Coruña, 15071 A Coruña, Spain
| | - Raphaël Tripier
- UFR des Sciences et Techniques, Université de Bretagne Occidentale, UMR-CNRS 6521, IBSAM, 6 avenue Victor le Gorgeu, C.S. 93837 29238 Brest Cedex 3, France
| | - Rita Delgado
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780−157 Oeiras, Portugal
| |
Collapse
|
48
|
Carreira-Barral I, Fernández-Pérez I, Mato-Iglesias M, de Blas A, Platas-Iglesias C, Esteban-Gómez D. Recognition of AMP, ADP and ATP through Cooperative Binding by Cu(II) and Zn(II) Complexes Containing Urea and/or Phenylboronic-Acid Moieties. Molecules 2018; 23:molecules23020479. [PMID: 29470445 PMCID: PMC6017333 DOI: 10.3390/molecules23020479] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Revised: 02/16/2018] [Accepted: 02/20/2018] [Indexed: 12/16/2022] Open
Abstract
We report a series of Cu(II) and Zn(II) complexes with different ligands containing a dipicolyl unit functionalized with urea groups that may contain or not a phenylboronic acid function. These complexes were designed for the recognition of phosphorylated anions through coordination to the metal ion reinforced by hydrogen bonds involving the anion and NH groups of urea. The complexes were isolated and several adducts with pyrophosphate were characterized using X-ray diffraction measurements. Coordination of one of the urea nitrogen atoms to the metal ion promoted the hydrolysis of the ligands containing 1,3-diphenylurea units, while ligands bearing 1-ethyl-3-phenylurea groups did not hydrolyze significantly at room temperature. Spectrophotometric titrations, combined with 1H and 31P NMR studies, were used in investigating the binding of phosphate, pyrophosphate (PPi), and nucleoside 5′-polyphosphates (AMP, ADP, ATP, CMP, and UMP). The association constants determined in aqueous solution (pH 7.0, 0.1 M MOPS) point to a stronger association with PPi, ADP, and ATP as compared with the anions containing a single phosphate unit. The [CuL4]2+ complex shows important selectivity for pyrophosphate (PPi) over ADP and ATP.
Collapse
Affiliation(s)
- Israel Carreira-Barral
- Departamento de Química, Facultade de Ciencias, Universidade da Coruña, Centro de Investigacións Científicas Avanzadas (CICA), 15071 A Coruña, Galicia, Spain.
- Departamento de Química, Facultad de Ciencias, Universidad de Burgos, 09001 Burgos, Spain.
| | - Isabel Fernández-Pérez
- Departamento de Química, Facultade de Ciencias, Universidade da Coruña, Centro de Investigacións Científicas Avanzadas (CICA), 15071 A Coruña, Galicia, Spain.
| | - Marta Mato-Iglesias
- Departamento de Química, Facultade de Ciencias, Universidade da Coruña, Centro de Investigacións Científicas Avanzadas (CICA), 15071 A Coruña, Galicia, Spain.
| | - Andrés de Blas
- Departamento de Química, Facultade de Ciencias, Universidade da Coruña, Centro de Investigacións Científicas Avanzadas (CICA), 15071 A Coruña, Galicia, Spain.
| | - Carlos Platas-Iglesias
- Departamento de Química, Facultade de Ciencias, Universidade da Coruña, Centro de Investigacións Científicas Avanzadas (CICA), 15071 A Coruña, Galicia, Spain.
| | - David Esteban-Gómez
- Departamento de Química, Facultade de Ciencias, Universidade da Coruña, Centro de Investigacións Científicas Avanzadas (CICA), 15071 A Coruña, Galicia, Spain.
| |
Collapse
|
49
|
Rani R, Kumar G, Paul K, Luxami V. Donor–π–acceptor (D–π–A) dyad for ratiometric detection of Hg2+ and PPi. NEW J CHEM 2018. [DOI: 10.1039/c8nj00741a] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A donor–π–acceptor (D–π–A) dyad 1 has been successfully synthesized by linking phenanthrenequinone as an electron donor unit and anthraquinone as an electron acceptor unit through a phenyl ring.
Collapse
Affiliation(s)
- Richa Rani
- School of Chemistry and Biochemistry
- Thapar Institute of Engineering and Technology
- Patiala-147004
- India
| | - Gulshan Kumar
- School of Chemistry and Biochemistry
- Thapar Institute of Engineering and Technology
- Patiala-147004
- India
| | - Kamaldeep Paul
- School of Chemistry and Biochemistry
- Thapar Institute of Engineering and Technology
- Patiala-147004
- India
| | - Vijay Luxami
- School of Chemistry and Biochemistry
- Thapar Institute of Engineering and Technology
- Patiala-147004
- India
| |
Collapse
|
50
|
Mawai K, Nathani S, Roy P, Singh UP, Ghosh K. Combined experimental and theoretical studies on selective sensing of zinc and pyrophosphate ions by rational design of compartmental chemosensor probe: Dual sensing behaviour via secondary recognition approach and cell imaging studies. Dalton Trans 2018; 47:6421-6434. [DOI: 10.1039/c8dt01016a] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
A compartmental chemosensor probe HL was designed and synthesized for dual sensing of zinc ions and PPi via secondary recognition approach.
Collapse
Affiliation(s)
- Kiran Mawai
- Department of Chemistry
- Indian Institute of Technology Roorkee
- Roorkee-247667
- India
| | - Sandip Nathani
- Department of Biotechnology
- Indian Institute of Technology Roorkee
- Roorkee-247667
- India
| | - Partha Roy
- Department of Biotechnology
- Indian Institute of Technology Roorkee
- Roorkee-247667
- India
| | - U. P. Singh
- Department of Chemistry
- Indian Institute of Technology Roorkee
- Roorkee-247667
- India
| | - Kaushik Ghosh
- Department of Chemistry
- Indian Institute of Technology Roorkee
- Roorkee-247667
- India
| |
Collapse
|