1
|
D'Onofrio B, Cruché C, Hurdal KN, Hadjabdelhafid-Parisien A, Pelletier JN, Iftimie R, Davis RL, Collins SK. TPDYs: strained macrocyclic diynes for bioconjugation processes. Chem Commun (Camb) 2025; 61:681-684. [PMID: 39660419 DOI: 10.1039/d4cc05367b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2024]
Abstract
A terphenyl diyne (TPDY) macrocycle, 3,5-TPDY, has been developed incorporating a bent 1,3-diyne that is active in SPAAC processes affording atropoisomeric triazole products, as well as cycloadditions with diazoacetates and tetrazines. A pendant amine allowed bioconjugation of TPDY to two proteins in a microbial transglutaminase-catalyzed reaction. In contrast to many cycloalkyne SPAAC reagents, the TPDY stabilization occurs via interactions of π and π* orbitals of the adjacent alkynes.
Collapse
Affiliation(s)
- Bernard D'Onofrio
- Department of Chemistry and Centre for Green Chemistry and Catalysis, Université de Montréal, 1375 Avenue Thérèse-Lavoie-Roux, Montréal, QC, H2V 0B3, Canada.
| | - Corentin Cruché
- Department of Chemistry and Centre for Green Chemistry and Catalysis, Université de Montréal, 1375 Avenue Thérèse-Lavoie-Roux, Montréal, QC, H2V 0B3, Canada.
| | - Kirsten N Hurdal
- Department of Chemistry, University of Manitoba, 144 Dysart Rd., Winnipeg, MB, R3T, Canada
| | - Adem Hadjabdelhafid-Parisien
- Department of Chemistry and Centre for Green Chemistry and Catalysis, Université de Montréal, 1375 Avenue Thérèse-Lavoie-Roux, Montréal, QC, H2V 0B3, Canada.
| | - Joelle N Pelletier
- Department of Chemistry and Centre for Green Chemistry and Catalysis, Université de Montréal, 1375 Avenue Thérèse-Lavoie-Roux, Montréal, QC, H2V 0B3, Canada.
| | - Radu Iftimie
- Department of Chemistry and Centre for Green Chemistry and Catalysis, Université de Montréal, 1375 Avenue Thérèse-Lavoie-Roux, Montréal, QC, H2V 0B3, Canada.
| | - Rebecca L Davis
- Department of Chemistry, University of Manitoba, 144 Dysart Rd., Winnipeg, MB, R3T, Canada
| | - Shawn K Collins
- Department of Chemistry and Centre for Green Chemistry and Catalysis, Université de Montréal, 1375 Avenue Thérèse-Lavoie-Roux, Montréal, QC, H2V 0B3, Canada.
| |
Collapse
|
2
|
Ou L, Yi Z, Zhang Y, Zhao Y, Fu H. Staudinger Cleavages of Amides on Naphthalene for the Ipsilateral Effect of 1,8-Substituents. Org Lett 2024; 26:11190-11194. [PMID: 39680935 DOI: 10.1021/acs.orglett.4c04337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2024]
Abstract
8-(Azidomethyl)-1-naphthoic acid was elaborately prepared, and its coupling with amines provided the corresponding 8-(azidomethyl)-1-naphthamides. The Staudinger reactions of 8-(azidomethyl)-1-naphthamides with phosphine produced iminophosphoranes, and easy intramolecular cyclization of the iminophosphoranes afforded 2,3-dihydro-1H-benzo[de]isoquinolin-1-one leaving amines with almost quantitative conversion rates for the ipsilateral effect of 1,8-substituents on naphthalene. The protocol exhibits some advantages, including a readily available protecting group, cleavages of amides in almost quantitative conversion rates, an aqueous medium, reactions at room temperature, a broad substrate scope, wide functional group tolerance, and suitable scale-up reactions.
Collapse
Affiliation(s)
- Lunyu Ou
- Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Zhengyi Yi
- Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Yue Zhang
- Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Yufen Zhao
- Institute of Drug Discovery Technology, Ningbo University, Ningbo 315211, China
| | - Hua Fu
- Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing 100084, China
| |
Collapse
|
3
|
Mehrani M, Lella M, Graham KA, Borotto NB, Tal-Gan Y. Development of urea-bridged cyclic dominant negative pneumococcus competence-stimulating peptide analogs. Org Biomol Chem 2024. [PMID: 39714135 DOI: 10.1039/d4ob01524j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2024]
Abstract
Cyclization is a widely used approach to exert conformational restraint on linear peptide sequences. Herein, urea bridge chemistry was deployed to achieve side chain-to-side chain peptide cyclization on the Streptococcus pneumoniae CSP1-E1A peptide scaffold. To determine the effects of ring size and bridge position on the overall peptide conformation and find the ideal area within the CSP sequence for cyclization, we performed biological evaluation as well as secondary structure analysis on all the cyclic analogs. Biological evaluation results exhibited that even minor modifications to cyclic analogs for each of the cyclization positions could significantly alter the interaction between the peptide and its target receptor, ComD. Furthermore, structural analysis using circular dichroism (CD) and Trapped Ion Mobility Spectrometry (TIMS) emphasized the significance of incorporating the bridge position as a parameter to be modified, in addition to the traditional ring position and ring size parameters. Overall, our results showcase the importance of comprehensive conformational screening in fine-tuning the secondary structure of cyclic peptide analogs. This knowledge could be very useful for future studies aimed at optimizing peptide : protein interactions.
Collapse
Affiliation(s)
- Mona Mehrani
- Department of Chemistry, University of Nevada, Reno, 1664 North Virginia Street, Reno, NV 89557, USA.
| | - Muralikrishna Lella
- Department of Chemistry, University of Nevada, Reno, 1664 North Virginia Street, Reno, NV 89557, USA.
| | - Katherine A Graham
- Department of Chemistry, University of Nevada, Reno, 1664 North Virginia Street, Reno, NV 89557, USA.
| | - Nicholas B Borotto
- Department of Chemistry, University of Nevada, Reno, 1664 North Virginia Street, Reno, NV 89557, USA.
| | - Yftah Tal-Gan
- Department of Chemistry, University of Nevada, Reno, 1664 North Virginia Street, Reno, NV 89557, USA.
| |
Collapse
|
4
|
Zheng M, Gao W, Zhang L, Yan K, Zhang Z, Xie P, Loh TP. Allylation of Lactol in Water. Org Lett 2024; 26:10201-10206. [PMID: 39565036 DOI: 10.1021/acs.orglett.4c04189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2024]
Abstract
We developed a water-promoted cross-coupling of 3-hydroxyisobenzofuran-1(3H)-ones and allylic boronates under biocompatible conditions. This approach facilitates the synthesis of diverse 3-allylic phthalides with high yields and exceptional selectivity in a metal-free manner. The versatility and practicality of this protocol underscore its significant potential for drug development and applications in medicinal chemistry.
Collapse
Affiliation(s)
- Mengxue Zheng
- School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing, Jiangsu 211816, People's Republic of China
| | - Wenxiu Gao
- School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing, Jiangsu 211816, People's Republic of China
| | - Lei Zhang
- School of Science, Tianjin Chengjian University, Tianjin 300384, People's Republic of China
| | - Kaiyu Yan
- School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing, Jiangsu 211816, People's Republic of China
| | - Zhenguo Zhang
- College of Advanced Interdisciplinary Science and Technology, Henan University of Technology, Zhengzhou, Henan 450001, People's Republic of China
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore 637371, Singapore
| | - Peizhong Xie
- School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing, Jiangsu 211816, People's Republic of China
| | - Teck-Peng Loh
- School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing, Jiangsu 211816, People's Republic of China
- College of Advanced Interdisciplinary Science and Technology, Henan University of Technology, Zhengzhou, Henan 450001, People's Republic of China
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore 637371, Singapore
| |
Collapse
|
5
|
Song G, Yang Z, Huang Y, Bai H, Lv F, Wang S. Chemically engineered exogenous organic reactions in living cells for in situ fluorescence imaging and biomedical applications. J Mater Chem B 2024; 12:11852-11866. [PMID: 39485083 DOI: 10.1039/d4tb01925c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2024]
Abstract
The unique microenvironment within living cells, characterized by high glutathione levels, reactive oxygen species concentrations, and active enzymes, facilitates the execution of chemical reactions. Recent advances in organic chemistry and chemical biology have leveraged living cells as reactors for chemical synthesis. This review summarizes recent reports on key intracellular in situ synthesis processes, including the synthesis of near-infrared fluorescent dyes, intracellular oxidative cross-linking, bioorthogonal reactions, and intracellular polymerization reactions. These methods have been applied to fluorescence imaging, tumor treatment, and the enhancement of biological functions. Finally, we discuss the challenges and opportunities in the field of in situ intracellular synthesis. We aim to guide the design of chemical molecules for in situ synthesis, improving the efficiency and control of artificial reactions in living cells, and ultimately achieving cell factory-like exogenous biological synthesis, biological function enhancement, and biomedical applications.
Collapse
Affiliation(s)
- Gang Song
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.
- College of Chemistry, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhiwen Yang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.
- College of Chemistry, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yiming Huang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.
| | - Haotian Bai
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.
| | - Fengting Lv
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.
| | - Shu Wang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.
- College of Chemistry, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
6
|
Šlachtová V, Bellová S, Vrabel M. Synthesis of C 3-Substituted N1- tert-Butyl 1,2,4-Triazinium Salts via the Liebeskind-Srogl Reaction for Fluorogenic Labeling of Live Cells. J Org Chem 2024; 89:14634-14640. [PMID: 38224304 PMCID: PMC11494656 DOI: 10.1021/acs.joc.3c02454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 12/22/2023] [Accepted: 12/22/2023] [Indexed: 01/16/2024]
Abstract
We recently described the development and application of a new bioorthogonal conjugation, the triazinium ligation. To explore the wider application of this reaction, in this work, we introduce a general method for synthesizing C3-substituted triazinium salts based on the Liebeskind-Srogl cross-coupling reaction and catalytic thioether reduction. These methods enabled the synthesis of triazinium derivatives for investigating the effect of different substituents on the ligation kinetics and stability of the compounds under biologically relevant conditions. Finally, we demonstrate that the combination of a coumarin fluorophore attached to position C3 with a C5-(4-methoxyphenyl) substituent yields a fluorogenic triazinium probe suitable for no-wash, live-cell labeling. The developed methodology represents a promising synthetic approach to the late-stage modification of triazinium salts, potentially widening their applications in bioorthogonal reactions.
Collapse
Affiliation(s)
- Veronika Šlachtová
- Institute of Organic Chemistry
and Biochemistry of the Czech Academy of Sciences, Flemingovo nám. 2, 16000 Prague, Czech Republic
| | - Simona Bellová
- Institute of Organic Chemistry
and Biochemistry of the Czech Academy of Sciences, Flemingovo nám. 2, 16000 Prague, Czech Republic
| | - Milan Vrabel
- Institute of Organic Chemistry
and Biochemistry of the Czech Academy of Sciences, Flemingovo nám. 2, 16000 Prague, Czech Republic
| |
Collapse
|
7
|
Tanimoto H, Tomohiro T. Spot the difference in reactivity: a comprehensive review of site-selective multicomponent conjugation exploiting multi-azide compounds. Chem Commun (Camb) 2024; 60:12062-12100. [PMID: 39302239 DOI: 10.1039/d4cc03359k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/22/2024]
Abstract
Going beyond the conventional approach of pairwise conjugation between two molecules, the integration of multiple components onto a central scaffold molecule is essential for the development of high-performance molecular materials with multifunctionality. This approach also facilitates the creation of functionalized molecular probes applicable in diverse fields ranging from pharmaceuticals to polymeric materials. Among the various click functional groups, the azido group stands out as a representative click functional group due to its steric compactness, high reactivity, handling stability, and easy accessibility in the context of multi-azide scaffolds. However, the azido groups in multi-azide scaffolds have not been well exploited for site-specific use in molecular conjugation. In fact, multi-azide compounds have been well used to conjugate to the same multiple fragments. To circumvent problems of promiscuous and random coupling of multiple different fragments to multiple azido positions, it is imperative to distinguish specific azido positions and use them orthogonally for molecular conjugation. This review outlines methods and strategies to exploit specific azide positions for molecular conjugation in the presence of multiple azido groups. Illustrative examples covering di-, tri- and tetraazide click scaffolds are included.
Collapse
Affiliation(s)
- Hiroki Tanimoto
- Faculty of Pharmaceutical Sciences, University of Toyama, 2630 Sugitani, Toyama 930-0194, Japan.
| | - Takenori Tomohiro
- Faculty of Pharmaceutical Sciences, University of Toyama, 2630 Sugitani, Toyama 930-0194, Japan.
| |
Collapse
|
8
|
Li M, Li M, Geng H, Chen L, Xu L, Li X, Liu C. Sulfa-Michael Addition on Dehydroalanine: A Versatile Reaction for Protein Modifications. Org Lett 2024; 26:8329-8334. [PMID: 39311466 DOI: 10.1021/acs.orglett.4c02970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/05/2024]
Abstract
Chemical modification of proteins has been widely applied in diagnostic and therapeutic processes. Here, we report a novel bioconjugation between sulfinic acids and amino acid dehydroalanine (Dha) in the context of both small molecules and proteins. This conjugation enables the rapid formation of sulfone linkages in a chemoselective and disulfide-compatible manner under biocompatible conditions with Dha residues chemically installed in proteins and thus provides a robust tool that is simple and has exquisite site selectivity for protein functionalization in a wide range.
Collapse
Affiliation(s)
- Man Li
- National Key Laboratory of Green Pesticide, College of Chemistry, Central China Normal University, Wuhan 430079, China
- School of Pharmacy, Hubei University of Science and Technology, Xianning 437100, China
- Hubei Engineering Research Center of Traditional Chinese Medicine of South Hubei Province, Xianning 437100, China
| | - Mengzhao Li
- National Key Laboratory of Green Pesticide, College of Chemistry, Central China Normal University, Wuhan 430079, China
| | - Hongen Geng
- National Key Laboratory of Green Pesticide, College of Chemistry, Central China Normal University, Wuhan 430079, China
| | - Linfeng Chen
- National Key Laboratory of Green Pesticide, College of Chemistry, Central China Normal University, Wuhan 430079, China
| | - Ludan Xu
- National Key Laboratory of Green Pesticide, College of Chemistry, Central China Normal University, Wuhan 430079, China
| | - Xiang Li
- School of Health Science and Engineering, Hubei University, Wuhan 430062, Hubei, China
| | - Chunrong Liu
- National Key Laboratory of Green Pesticide, College of Chemistry, Central China Normal University, Wuhan 430079, China
| |
Collapse
|
9
|
Wilkovitsch M, Kuba W, Keppel P, Sohr B, Löffler A, Kronister S, Del Castillo AF, Goldeck M, Dzijak R, Rahm M, Vrabel M, Svatunek D, Carlson JCT, Mikula H. Transforming Aryl-Tetrazines into Bioorthogonal Scissors for Systematic Cleavage of trans-Cyclooctenes. Angew Chem Int Ed Engl 2024:e202411707. [PMID: 39254137 DOI: 10.1002/anie.202411707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 08/30/2024] [Accepted: 09/04/2024] [Indexed: 09/11/2024]
Abstract
Bioorthogonal bond-cleavage reactions have emerged as a powerful tool for precise spatiotemporal control of (bio)molecular function in the biological context. Among these chemistries, the tetrazine-triggered elimination of cleavable trans-cyclooctenes (click-to-release) stands out due to high reaction rates, versatility, and selectivity. Despite an increasing understanding of the underlying mechanisms, application of this reaction remains limited by the cumulative performance trade-offs (i.e., click kinetics, release kinetics, release yield) of existing tools. Efficient release has been restricted to tetrazine scaffolds with comparatively low click reactivity, while highly reactive aryl-tetrazines give only minimal release. By introducing hydroxyl groups onto phenyl- and pyridyl-tetrazine scaffolds, we have developed a new class of 'bioorthogonal scissors' with unique chemical performance. We demonstrate that hydroxyaryl-tetrazines achieve near-quantitative release upon accelerated click reaction with cleavable trans-cyclooctenes, as exemplified by click-triggered activation of a caged prodrug, intramitochondrial cleavage of a fluorogenic probe (turn-on) in live cells, and rapid intracellular bioorthogonal disassembly (turn-off) of a ligand-dye conjugate.
Collapse
Affiliation(s)
- Martin Wilkovitsch
- Institute of Applied Synthetic Chemistry, TU Wien, 1060, Vienna, Austria
| | - Walter Kuba
- Institute of Applied Synthetic Chemistry, TU Wien, 1060, Vienna, Austria
| | - Patrick Keppel
- Institute of Applied Synthetic Chemistry, TU Wien, 1060, Vienna, Austria
| | - Barbara Sohr
- Institute of Applied Synthetic Chemistry, TU Wien, 1060, Vienna, Austria
| | - Andreas Löffler
- Institute of Applied Synthetic Chemistry, TU Wien, 1060, Vienna, Austria
| | - Stefan Kronister
- Institute of Applied Synthetic Chemistry, TU Wien, 1060, Vienna, Austria
| | - Andres Fernandez Del Castillo
- Institute of Applied Synthetic Chemistry, TU Wien, 1060, Vienna, Austria
- Center for Systems Biology & Department of Medicine, Massachusetts General Hospital, Harvard Medical School, 02114, Boston, MA, USA
| | - Marion Goldeck
- Institute of Applied Synthetic Chemistry, TU Wien, 1060, Vienna, Austria
- Center for Anatomy and Cell Biology, Medical University of Vienna, 1090, Vienna, Austria
| | - Rastislav Dzijak
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, 16000, Prague 6, Czech Republic
| | - Michal Rahm
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, 16000, Prague 6, Czech Republic
- University of Chemistry and Technology, Department of Chemistry of Natural Compounds, 16628, Prague 6, Czech Republic
| | - Milan Vrabel
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, 16000, Prague 6, Czech Republic
| | - Dennis Svatunek
- Institute of Applied Synthetic Chemistry, TU Wien, 1060, Vienna, Austria
| | - Jonathan C T Carlson
- Center for Systems Biology & Department of Medicine, Massachusetts General Hospital, Harvard Medical School, 02114, Boston, MA, USA
| | - Hannes Mikula
- Institute of Applied Synthetic Chemistry, TU Wien, 1060, Vienna, Austria
| |
Collapse
|
10
|
Koh DS, Stratiievska A, Jana S, Otto SC, Swanson TM, Nhim A, Carlson S, Raza M, Naves LA, Senning EN, Mehl RA, Gordon SE. Genetic code expansion, click chemistry, and light-activated PI3K reveal details of membrane protein trafficking downstream of receptor tyrosine kinases. eLife 2024; 12:RP91012. [PMID: 39162616 PMCID: PMC11335347 DOI: 10.7554/elife.91012] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/21/2024] Open
Abstract
Ligands such as insulin, epidermal growth factor, platelet-derived growth factor, and nerve growth factor (NGF) initiate signals at the cell membrane by binding to receptor tyrosine kinases (RTKs). Along with G-protein-coupled receptors, RTKs are the main platforms for transducing extracellular signals into intracellular signals. Studying RTK signaling has been a challenge, however, due to the multiple signaling pathways to which RTKs typically are coupled, including MAP/ERK, PLCγ, and Class 1A phosphoinositide 3-kinases (PI3K). The multi-pronged RTK signaling has been a barrier to isolating the effects of any one downstream pathway. Here, we used optogenetic activation of PI3K to decouple its activation from other RTK signaling pathways. In this context, we used genetic code expansion to introduce a click chemistry noncanonical amino acid into the extracellular side of membrane proteins. Applying a cell-impermeant click chemistry fluorophore allowed us to visualize delivery of membrane proteins to the plasma membrane in real time. Using these approaches, we demonstrate that activation of PI3K, without activating other pathways downstream of RTK signaling, is sufficient to traffic the TRPV1 ion channels and insulin receptors to the plasma membrane.
Collapse
Affiliation(s)
- Duk-Su Koh
- University of Washington, Department of Physiology & BiophysicsSeattleUnited States
| | | | - Subhashis Jana
- Department of Biochemistry and Biophysics, Oregon State UniversityCorvallisUnited States
| | - Shauna C Otto
- University of Washington, Department of Physiology & BiophysicsSeattleUnited States
| | - Teresa M Swanson
- University of Washington, Department of Physiology & BiophysicsSeattleUnited States
| | - Anthony Nhim
- University of Washington, Department of Physiology & BiophysicsSeattleUnited States
| | - Sara Carlson
- University of Washington, Department of Physiology & BiophysicsSeattleUnited States
| | - Marium Raza
- University of Washington, Department of Physiology & BiophysicsSeattleUnited States
| | - Ligia Araujo Naves
- University of Washington, Department of Physiology & BiophysicsSeattleUnited States
| | - Eric N Senning
- Department of Neuroscience, University of Texas at AustinAustinUnited States
| | - Ryan A Mehl
- Department of Biochemistry and Biophysics, Oregon State UniversityCorvallisUnited States
| | - Sharona E Gordon
- University of Washington, Department of Physiology & BiophysicsSeattleUnited States
| |
Collapse
|
11
|
Seul N, Lamade D, Stoychev P, Mijic M, Michenfelder RT, Rieger L, Geng P, Wagenknecht HA. Cyclopropenes as Chemical Reporters for Dual Bioorthogonal and Orthogonal Metabolic Labeling of DNA. Angew Chem Int Ed Engl 2024; 63:e202403044. [PMID: 38517205 DOI: 10.1002/anie.202403044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 03/18/2024] [Accepted: 03/19/2024] [Indexed: 03/23/2024]
Abstract
Dual bioorthogonal labeling enables the investigation and understanding of interactions in the biological environment that are not accessible by a single label. However, applying two bioorthogonal reactions in the same environment remains challenging due to cross-reactivity. We developed a pair of differently modified 2'-deoxynucleosides that solved this issue for dual and orthogonal labeling of DNA. Inverse-electron demand Diels-Alder and photoclick reactions were combined to attach two different fluorogenic labels to genomic DNA in cells. Using a small synthetic library of 1- and 3-methylcyclopropenyl-modified 2'-deoxynucleosides, two 2'-deoxyuridines were identified to be the fastest-reacting ones for each of the two bioorthogonal reactions. Their orthogonal reactivity could be evidenced in vitro. Primer extension experiments were performed with both 2'-deoxyuridines investigating their replication properties as substitutes for thymidine and evaluating subsequent labeling reactions on the DNA level. Finally, dual, orthogonal and metabolic fluorescent labeling of genomic DNA was demonstrated in HeLa cells. An experimental procedure was developed combining intracellular transport and metabolic DNA incorporation of the two 2'-deoxyuridines with the subsequent dual bioorthogonal labeling using a fluorogenic cyanine-styryl tetrazine and a fluorogenic pyrene-tetrazole. These results are fundamental for advanced metabolic labeling strategies for nucleic acids in the future, especially for live cell experiments.
Collapse
Affiliation(s)
- Nicola Seul
- Institute of Organic Chemistry, Karlsruhe Institute of Technology (KIT), Fritz-Haber-Weg 6, 76131, Karlsruhe, Germany
| | - Dennis Lamade
- Institute of Organic Chemistry, Karlsruhe Institute of Technology (KIT), Fritz-Haber-Weg 6, 76131, Karlsruhe, Germany
| | - Petko Stoychev
- Institute of Organic Chemistry, Karlsruhe Institute of Technology (KIT), Fritz-Haber-Weg 6, 76131, Karlsruhe, Germany
| | - Michaela Mijic
- Institute of Organic Chemistry, Karlsruhe Institute of Technology (KIT), Fritz-Haber-Weg 6, 76131, Karlsruhe, Germany
| | - Rita T Michenfelder
- Institute of Organic Chemistry, Karlsruhe Institute of Technology (KIT), Fritz-Haber-Weg 6, 76131, Karlsruhe, Germany
| | - Lisa Rieger
- Institute of Organic Chemistry, Karlsruhe Institute of Technology (KIT), Fritz-Haber-Weg 6, 76131, Karlsruhe, Germany
| | - Philipp Geng
- Institute of Organic Chemistry, Karlsruhe Institute of Technology (KIT), Fritz-Haber-Weg 6, 76131, Karlsruhe, Germany
| | - Hans-Achim Wagenknecht
- Institute of Organic Chemistry, Karlsruhe Institute of Technology (KIT), Fritz-Haber-Weg 6, 76131, Karlsruhe, Germany
| |
Collapse
|
12
|
Svatunek D. Computational Organic Chemistry: The Frontier for Understanding and Designing Bioorthogonal Cycloadditions. Top Curr Chem (Cham) 2024; 382:17. [PMID: 38727989 PMCID: PMC11087259 DOI: 10.1007/s41061-024-00461-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 04/06/2024] [Indexed: 05/13/2024]
Abstract
Computational organic chemistry has become a valuable tool in the field of bioorthogonal chemistry, offering insights and aiding in the progression of this branch of chemistry. In this review, I present an overview of computational work in this field, including an exploration of both the primary computational analysis methods used and their application in the main areas of bioorthogonal chemistry: (3 + 2) and [4 + 2] cycloadditions. In the context of (3 + 2) cycloadditions, detailed studies of electronic effects have informed the evolution of cycloalkyne/1,3-dipole cycloadditions. Through computational techniques, researchers have found ways to adjust the electronic structure via hyperconjugation to enhance reactions without compromising stability. For [4 + 2] cycloadditions, methods such as distortion/interaction analysis and energy decomposition analysis have been beneficial, leading to the development of bioorthogonal reactants with improved reactivity and the creation of orthogonal reaction pairs. To conclude, I touch upon the emerging fields of cheminformatics and machine learning, which promise to play a role in future reaction discovery and optimization.
Collapse
Affiliation(s)
- Dennis Svatunek
- Institute of Applied Synthetic Chemistry, Technische Universität Wien (TU Wien), Getreidemarkt 9, 1060, Vienna, Austria.
| |
Collapse
|
13
|
Huang W, Laughlin ST. Cell-selective bioorthogonal labeling. Cell Chem Biol 2024; 31:409-427. [PMID: 37837964 DOI: 10.1016/j.chembiol.2023.09.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 08/25/2023] [Accepted: 09/19/2023] [Indexed: 10/16/2023]
Abstract
In classic bioorthogonal labeling experiments, the cell's biosynthetic machinery incorporates bioorthogonal tags, creating tagged biomolecules that are subsequently reacted with a corresponding bioorthogonal partner. This two-step approach labels biomolecules throughout the organism indiscriminate of cell type, which can produce background in applications focused on specific cell populations. In this review, we cover advances in bioorthogonal chemistry that enable targeting of bioorthogonal labeling to a desired cell type. Such cell-selective bioorthogonal labeling is achieved in one of three ways. The first approach restricts labeling to specific cells by cell-selective expression of engineered enzymes that enable the bioorthogonal tag's incorporation. The second approach preferentially localizes the bioorthogonal reagents to the desired cell types to restrict their uptake to the desired cells. Finally, the third approach cages the reactivity of the bioorthogonal reagents, allowing activation of the reaction in specific cells by uncaging the reagents selectively in those cell populations.
Collapse
Affiliation(s)
- Wei Huang
- Department of Chemistry and Institute for Chemical Biology and Drug Discovery, Stony Brook University, Stony Brook, NY 11794, USA
| | - Scott T Laughlin
- Department of Chemistry and Institute for Chemical Biology and Drug Discovery, Stony Brook University, Stony Brook, NY 11794, USA.
| |
Collapse
|
14
|
Mehak, Singh G, Singh R, Singh G, Stanzin J, Singh H, Kaur G, Singh J. Clicking in harmony: exploring the bio-orthogonal overlap in click chemistry. RSC Adv 2024; 14:7383-7413. [PMID: 38433942 PMCID: PMC10906366 DOI: 10.1039/d4ra00494a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 02/19/2024] [Indexed: 03/05/2024] Open
Abstract
In the quest to scrutinize and modify biological systems, the global research community has continued to explore bio-orthogonal click reactions, a set of reactions exclusively targeting non-native molecules within biological systems. These methodologies have brought about a paradigm shift, demonstrating the feasibility of artificial chemical reactions occurring on cellular surfaces, in the cell cytosol, or within the body - an accomplishment challenging to achieve with the majority of conventional chemical reactions. This review delves into the principles of bio-orthogonal click chemistry, contrasting metal-catalyzed and metal-free reactions of bio-orthogonal nature. It comprehensively explores mechanistic details and applications, highlighting the versatility and potential of this methodology in diverse scientific contexts, from cell labelling to biosensing and polymer synthesis. Researchers globally continue to advance this powerful tool for precise and selective manipulation of biomolecules in complex biological systems.
Collapse
Affiliation(s)
- Mehak
- School of Chemical Engineering and Physical Sciences, Lovely Professional University Phagwara-144411 Punjab India
| | - Gurleen Singh
- School of Chemical Engineering and Physical Sciences, Lovely Professional University Phagwara-144411 Punjab India
| | - Riddima Singh
- School of Chemical Engineering and Physical Sciences, Lovely Professional University Phagwara-144411 Punjab India
| | - Gurjaspreet Singh
- Department of Chemistry and Centre of Advanced Studies in Chemistry, Panjab University Chandigarh-160014 India
| | - Jigmat Stanzin
- Department of Chemistry and Centre of Advanced Studies in Chemistry, Panjab University Chandigarh-160014 India
| | - Harminder Singh
- School of Chemical Engineering and Physical Sciences, Lovely Professional University Phagwara-144411 Punjab India
| | - Gurpreet Kaur
- Department of Chemistry, Gujranwala Guru Nanak Khalsa College Civil Lines Ludhiana-141001 Punjab India
| | - Jandeep Singh
- School of Chemical Engineering and Physical Sciences, Lovely Professional University Phagwara-144411 Punjab India
| |
Collapse
|
15
|
Li Y, Wang H, Chen Y, Ding L, Ju H. In Situ Glycan Analysis and Editing in Living Systems. JACS AU 2024; 4:384-401. [PMID: 38425935 PMCID: PMC10900212 DOI: 10.1021/jacsau.3c00717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 12/15/2023] [Accepted: 12/19/2023] [Indexed: 03/02/2024]
Abstract
Besides proteins and nucleic acids, carbohydrates are also ubiquitous building blocks of living systems. Approximately 70% of mammalian proteins are glycosylated. Glycans not only provide structural support for living systems but also act as crucial regulators of cellular functions. As a result, they are considered essential pieces of the life science puzzle. However, research on glycans has lagged far behind that on proteins and nucleic acids. The main reason is that glycans are not direct products of gene coding, and their synthesis is nontemplated. In addition, the diversity of monosaccharide species and their linkage patterns contribute to the complexity of the glycan structures, which is the molecular basis for their diverse functions. Research in glycobiology is extremely challenging, especially for the in situ elucidation of glycan structures and functions. There is an urgent need to develop highly specific glycan labeling tools and imaging methods and devise glycan editing strategies. This Perspective focuses on the challenges of in situ analysis of glycans in living systems at three spatial levels (i.e., cell, tissue, and in vivo) and highlights recent advances and directions in glycan labeling, imaging, and editing tools. We believe that examining the current development landscape and the existing bottlenecks can drive the evolution of in situ glycan analysis and intervention strategies and provide glycan-based insights for clinical diagnosis and therapeutics.
Collapse
Affiliation(s)
- Yiran Li
- State
Key Laboratory of Analytical Chemistry for Life Science, School of
Chemistry and Chemical Engineering, Nanjing
University, Nanjing 210023, China
| | - Haiqi Wang
- State
Key Laboratory of Analytical Chemistry for Life Science, School of
Chemistry and Chemical Engineering, Nanjing
University, Nanjing 210023, China
| | - Yunlong Chen
- State
Key Laboratory of Analytical Chemistry for Life Science, School of
Chemistry and Chemical Engineering, Nanjing
University, Nanjing 210023, China
| | - Lin Ding
- State
Key Laboratory of Analytical Chemistry for Life Science, School of
Chemistry and Chemical Engineering, Nanjing
University, Nanjing 210023, China
- Chemistry
and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing 210023, China
| | - Huangxian Ju
- State
Key Laboratory of Analytical Chemistry for Life Science, School of
Chemistry and Chemical Engineering, Nanjing
University, Nanjing 210023, China
| |
Collapse
|
16
|
Liang C, Zheng K, Ding Y, Gao J, Wang Z, Cheng J. Pyridine-catalyzed ring-opening reaction of cyclopropenone with bromomethyl carbonyl compounds toward furan-2(5 H)-ones. Chem Commun (Camb) 2024. [PMID: 38258845 DOI: 10.1039/d3cc05888c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
We developed a pyridine-catalyzed annulation of diaryl cyclopropenone with bromomethyl carbonyl compounds leading to 5-carbonyl furan-2(5H)-ones. Pyridinium, derived from the reaction of bromomethyl carbonyl and pyridine, triggered the reaction by the inter-molecular Michael addition to cyclopropenone. This procedure was sensitive neither to air nor moisture and proceeded at room temperature with broad substrate scopes and good functional group tolerance in moderate-to-good yields. As such, it represents a facile and practical pathway leading to 5-carbonyl furan-2(5H)-one derivatives.
Collapse
Affiliation(s)
- Chen Liang
- College of Chemistry & Materials Engineering, Wenzhou University, Wenzhou 325035, P. R. China.
| | - Kui Zheng
- College of Chemistry & Materials Engineering, Wenzhou University, Wenzhou 325035, P. R. China.
| | - Yifang Ding
- College of Chemistry & Materials Engineering, Wenzhou University, Wenzhou 325035, P. R. China.
| | - Junhang Gao
- College of Chemistry & Materials Engineering, Wenzhou University, Wenzhou 325035, P. R. China.
| | - Zhenlian Wang
- College of Chemistry & Materials Engineering, Wenzhou University, Wenzhou 325035, P. R. China.
| | - Jiang Cheng
- College of Chemistry & Materials Engineering, Wenzhou University, Wenzhou 325035, P. R. China.
- Lab of Biohealth Materials and Chemistry of Wenzhou, Wenzhou University, Wenzhou 325035, P. R. China
| |
Collapse
|
17
|
Rieger L, Pfeuffer B, Wagenknecht HA. Metabolic labelling of DNA in cells by means of the "photoclick" reaction triggered by visible light. RSC Chem Biol 2023; 4:1037-1042. [PMID: 38033731 PMCID: PMC10685802 DOI: 10.1039/d3cb00150d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 08/30/2023] [Indexed: 12/02/2023] Open
Abstract
Two pyrene-tetrazole conjugates were synthesized as photoreactive chromophores that allow for the first time the combination of metabolic labelling of DNA in cells and subsequent bioorthogonal "photoclick" modification triggered by visible light. Two strained alkenes and three alkene-modified nucleosides were used as reactive counterparts and revealed no major differences in their "photoclick" reactivity. This is a significant advantage because it allows 5-vinyl-2'-deoxyuridine to be applied as the smallest possible alkene-modified nucleoside for metabolic labelling of DNA in cells. Both pyrene-tetrazole conjugates show fluorogenicity during the "photoclick" reactions, which is a second advantage for cellular imaging. Living HeLa cells were incubated with 5-vinyl-2'-deoxyuridine for 48 h to ensure one cell division. After fixation, the newly synthesized genomic DNA was successfully labelled by irradiation with visible light at 405 nm and 450 nm. This method is an attractive tool for the visualization of genomic DNA in cells with full spatiotemporal control by the use of visible light as a reaction trigger.
Collapse
Affiliation(s)
- Lisa Rieger
- Institute of Organic Chemistry, Karlsruhe Institute of Technology (KIT), Fritz-Haber-Weg 6 Karlsruhe 76131 Germany
| | - Bastian Pfeuffer
- Institute of Organic Chemistry, Karlsruhe Institute of Technology (KIT), Fritz-Haber-Weg 6 Karlsruhe 76131 Germany
| | - Hans-Achim Wagenknecht
- Institute of Organic Chemistry, Karlsruhe Institute of Technology (KIT), Fritz-Haber-Weg 6 Karlsruhe 76131 Germany
| |
Collapse
|
18
|
Edelmann MR, Bredack C, Belli S, Mohr P, Imhoff MP, Reggiani F, Kusznir EA, Rufer AC, Holt DP, Valentine H, Wong DF, Dannals RF, Honer M, Gobbi LC. Evaluation of Tetrazine Tracers for Pretargeted Imaging within the Central Nervous System. Bioconjug Chem 2023; 34:1882-1893. [PMID: 37710950 DOI: 10.1021/acs.bioconjchem.3c00385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/16/2023]
Abstract
The pretargeting approach separates the biological half-life of an antibody from the physical half-life of the radioisotope label, providing a strategy for reducing the radiation burden. A widely explored pretargeting approach makes use of the bioorthogonal click reaction between tetrazines (Tzs) and trans-cyclooctenes (TCOs), combining the targeting specificity of monoclonal antibodies (mAbs) with the rapid clearance and precise reaction of Tzs and TCOs. Such a strategy can allow for the targeting and imaging (e.g., by positron emission tomography (PET)) of molecular markers, which cannot be addressed by solely relying on small molecules. Tz derivatives that undergo inverse electron-demand Diels-Alder (IEDDA) reactions with an antibody bearing TCO moieties have been investigated. This study describes the synthesis and characterization of 11 cold Tz imaging agent candidates. These molecules have the potential to be radiolabeled with 18F or 3H, and with the former label, they could be of use as imaging tracers for positron emission tomography studies. Selection was made using a multiparameter optimization score for the central nervous system (CNS) PET tracers. Novel tetrazines were tested for their pH-dependent chemical stability. Those which turned out to be stable in a pH range of 6.5-8 were further characterized in in vitro assays with regard to their passive permeability, microsomal stability, and P-glycoprotein transport. Furthermore, selected Tzs were examined for their systemic clearance and CNS penetration in a single-dose pharmacokinetic study in rats. Two tetrazines were successfully labeled with 18F, one of which showed brain penetration in a biodistribution study in mice. Another Tz was successfully tritium-labeled and used to demonstrate a bioorthogonal click reaction on a TCO-modified antibody. As a result, we identified one Tz as a potential fluorine-18-labeled CNS-PET agent and a second as a 3H-radioligand for an IEDDA-based reaction with a modified brain-penetrating antibody.
Collapse
Affiliation(s)
- Martin R Edelmann
- Roche Pharma Research and Early Development, Roche Innovation Center Basel, Therapeutic Modalities, Small Molecule Research, Isotope Synthesis, F. Hoffmann-La Roche Ltd, Basel CH-4070, Switzerland
- Department of Pharmacy and Pharmacology, University of Bath, Bath BA2 7AY, U.K
| | - Christoph Bredack
- Roche Pharma Research and Early Development, Roche Innovation Center Basel, Neuroscience and Rare Diseases, Discovery & Translational Medicine Area, Biomarker and Translational Technologies, F. Hoffmann-La Roche Ltd, Basel CH-4070, Switzerland
| | - Sara Belli
- Roche Pharma Research and Early Development, Roche Innovation Center Basel, Pharmaceutical Science, F. Hoffmann-La Roche Ltd, Basel CH-4070, Switzerland
| | - Peter Mohr
- Roche Pharma Research and Early Development, Roche Innovation Center Basel, Therapeutic Modalities, Small Molecule Research, Medicinal Chemistry, F. Hoffmann-La Roche Ltd, Basel CH-4070, Switzerland
| | - Marie-Paule Imhoff
- Roche Pharma Research and Early Development, Roche Innovation Center Basel, Therapeutic Modalities, Small Molecule Research, Medicinal Chemistry, F. Hoffmann-La Roche Ltd, Basel CH-4070, Switzerland
| | - Flore Reggiani
- Roche Pharma Research and Early Development, Roche Innovation Center Basel, Therapeutic Modalities, Small Molecule Research, Medicinal Chemistry, F. Hoffmann-La Roche Ltd, Basel CH-4070, Switzerland
| | - Eric A Kusznir
- Roche Pharma Research and Early Development, Roche Innovation Center Basel, Therapeutic Modalities, Small Molecule Research, Lead Discovery, F. Hoffmann-La Roche Ltd, Basel CH-4070, Switzerland
| | - Arne C Rufer
- Roche Pharma Research and Early Development, Roche Innovation Center Basel, Therapeutic Modalities, Small Molecule Research, Lead Discovery, F. Hoffmann-La Roche Ltd, Basel CH-4070, Switzerland
| | - Daniel P Holt
- Department of Radiology, Division of Nuclear Medicine and Molecular Imaging, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21218, United States
| | - Heather Valentine
- Department of Radiology, Division of Nuclear Medicine and Molecular Imaging, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21218, United States
- Section of High Resolution Brain PET, PET Center, Division of Nuclear Medicine, Russell H. Morgan Department of Radiology, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21218, United States
| | - Dean F Wong
- Department of Radiology, Division of Nuclear Medicine and Molecular Imaging, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21218, United States
- Section of High Resolution Brain PET, PET Center, Division of Nuclear Medicine, Russell H. Morgan Department of Radiology, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21218, United States
- Section of High Resolution Brain PET, PET Center, Division of Nuclear Medicine, Russell H. Morgan Department of Radiology, The Johns Hopkins University School of Medicine, Baltimore, Maryland, 21218, United States
- Solomon H. Snyder Department of Neuroscience, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21218, United States
- ⧫Department of Psychiatry and Behavioral Sciences, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21218, United States
- Department of Neurology, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21218, United States
| | - Robert F Dannals
- Department of Radiology, Division of Nuclear Medicine and Molecular Imaging, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21218, United States
| | - Michael Honer
- Roche Pharma Research and Early Development, Roche Innovation Center Basel, Neuroscience and Rare Diseases, Discovery & Translational Medicine Area, Biomarker and Translational Technologies, F. Hoffmann-La Roche Ltd, Basel CH-4070, Switzerland
| | - Luca C Gobbi
- Roche Pharma Research and Early Development, Roche Innovation Center Basel, Therapeutic Modalities, Small Molecule Research, Medicinal Chemistry, F. Hoffmann-La Roche Ltd, Basel CH-4070, Switzerland
| |
Collapse
|
19
|
Liang C, Chen Z, Hu X, Yu S, Wang Z, Cheng J. Phosphine-catalyzed ring-opening reaction of cyclopropenones with dicarbonyl compounds. Org Biomol Chem 2023; 21:7712-7716. [PMID: 37702379 DOI: 10.1039/d3ob01409f] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/14/2023]
Abstract
We developed a phosphine-catalyzed ring-opening reaction of cyclopropenones with dicarbonyl compounds as C-nucleophiles, leading to 1,3,3'-tricarbonyl compounds. During this neutral procedure, C-acylation is more dominant than O-acylation. This transition-metal free procedure features mild and neutral reaction conditions with good atom economy. As such, it represents a facile pathway to access 1,3,3'-tricarbonyl derivatives.
Collapse
Affiliation(s)
- Chen Liang
- College of Chemistry & Materials Engineering, Wenzhou University, Wenzhou 325035, P. R. China.
| | - Zhibin Chen
- College of Chemistry & Materials Engineering, Wenzhou University, Wenzhou 325035, P. R. China.
| | - Xinyue Hu
- College of Chemistry & Materials Engineering, Wenzhou University, Wenzhou 325035, P. R. China.
| | - Shengxia Yu
- College of Chemistry & Materials Engineering, Wenzhou University, Wenzhou 325035, P. R. China.
| | - Zhenlian Wang
- College of Chemistry & Materials Engineering, Wenzhou University, Wenzhou 325035, P. R. China.
| | - Jiang Cheng
- College of Chemistry & Materials Engineering, Wenzhou University, Wenzhou 325035, P. R. China.
| |
Collapse
|
20
|
Tu HF, Jeandin A, Bon C, Brocklehurst C, Lima F, Suero MG. Late-Stage Aryl C-H Bond Cyclopropenylation with Cyclopropenium Cations. Angew Chem Int Ed Engl 2023; 62:e202308379. [PMID: 37459194 DOI: 10.1002/anie.202308379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 07/17/2023] [Indexed: 07/29/2023]
Abstract
Herein, we disclose the first regio-, site- and chemoselective late-stage (hetero)aryl C-H bond cyclopropenylation with cyclopropenium cations (CPCs). The process is fast, operationally simple and shows an excellent functional group tolerance in densely-functionalized drug molecules, natural products, agrochemicals and fluorescent dyes. Moreover, we discovered that the installation of the cyclopropene ring in drug molecules could not only be used to shield against metabolic instability but also as a synthetic tool to reach medicinally-relevant sp3 -rich scaffolds exploiting the highly-strained nature of the cyclopropene ring with known transformations.
Collapse
Affiliation(s)
- Hang-Fei Tu
- Institute of Chemical Research of Catalonia (ICIQ-CERCA), Barcelona Institute of Science and Technology, Av. Països Catalans, 16, 43007, Tarragona, Spain
| | - Aliénor Jeandin
- Institute of Chemical Research of Catalonia (ICIQ-CERCA), Barcelona Institute of Science and Technology, Av. Països Catalans, 16, 43007, Tarragona, Spain
- Departament de Química Analítica i Química Orgánica, Universitat Rovira i Virgili, Calle Marcel.lí Domingo, 1, 43007, Tarragona, Spain
| | - Corentin Bon
- Global Discovery Chemistry, Novartis Institutes of BioMedical Research, 4056, Basel, Switzerland
| | - Cara Brocklehurst
- Global Discovery Chemistry, Novartis Institutes of BioMedical Research, 4056, Basel, Switzerland
| | - Fabio Lima
- Global Discovery Chemistry, Novartis Institutes of BioMedical Research, 4056, Basel, Switzerland
| | - Marcos G Suero
- Institute of Chemical Research of Catalonia (ICIQ-CERCA), Barcelona Institute of Science and Technology, Av. Països Catalans, 16, 43007, Tarragona, Spain
| |
Collapse
|
21
|
Lahiri P, Martin MS, Lino BR, Scheck RA, Van Deventer JA. Dual Noncanonical Amino Acid Incorporation Enabling Chemoselective Protein Modification at Two Distinct Sites in Yeast. Biochemistry 2023; 62:2098-2114. [PMID: 37377426 PMCID: PMC11146674 DOI: 10.1021/acs.biochem.2c00711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/29/2023]
Abstract
Incorporation of more than one noncanonical amino acid (ncAA) within a single protein endows the resulting construct with multiple useful features such as augmented molecular recognition or covalent cross-linking capabilities. Herein, for the first time, we demonstrate the incorporation of two chemically distinct ncAAs into proteins biosynthesized in Saccharomyces cerevisiae. To complement ncAA incorporation in response to the amber (TAG) stop codon in yeast, we evaluated opal (TGA) stop codon suppression using three distinct orthogonal translation systems. We observed selective TGA readthrough without detectable cross-reactivity from host translation components. Readthrough efficiency at TGA was modulated by factors including the local nucleotide environment, gene deletions related to the translation process, and the identity of the suppressor tRNA. These observations facilitated systematic investigation of dual ncAA incorporation in both intracellular and yeast-displayed protein constructs, where we observed efficiencies up to 6% of wild-type protein controls. The successful display of doubly substituted proteins enabled the exploration of two critical applications on the yeast surface─(A) antigen binding functionality and (B) chemoselective modification with two distinct chemical probes through sequential application of two bioorthogonal click chemistry reactions. Lastly, by utilizing a soluble form of a doubly substituted construct, we validated the dual incorporation system using mass spectrometry and demonstrated the feasibility of conducting selective labeling of the two ncAAs sequentially using a "single-pot" approach. Overall, our work facilitates the addition of a 22nd amino acid to the genetic code of yeast and expands the scope of applications of ncAAs for basic biological research and drug discovery.
Collapse
Affiliation(s)
- Priyanka Lahiri
- Chemical and Biological Engineering Department, Tufts University, Medford, MA 02155, USA
| | - Meghan S. Martin
- Chemistry Department, Tufts University, Medford, Massachusetts 02155, USA
| | - Briana R. Lino
- Chemical and Biological Engineering Department, Tufts University, Medford, MA 02155, USA
| | - Rebecca A. Scheck
- Chemistry Department, Tufts University, Medford, Massachusetts 02155, USA
| | - James A. Van Deventer
- Chemical and Biological Engineering Department, Tufts University, Medford, MA 02155, USA
- Biomedical Engineering Department, Tufts University, Medford, Massachusetts 02155, USA
| |
Collapse
|
22
|
Jana S, Evans EGB, Jang HS, Zhang S, Zhang H, Rajca A, Gordon SE, Zagotta WN, Stoll S, Mehl RA. Ultrafast Bioorthogonal Spin-Labeling and Distance Measurements in Mammalian Cells Using Small, Genetically Encoded Tetrazine Amino Acids. J Am Chem Soc 2023; 145:14608-14620. [PMID: 37364003 PMCID: PMC10440187 DOI: 10.1021/jacs.3c00967] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/28/2023]
Abstract
Site-directed spin-labeling (SDSL)─in combination with double electron-electron resonance (DEER) spectroscopy─has emerged as a powerful technique for determining both the structural states and the conformational equilibria of biomacromolecules. DEER combined with in situ SDSL in live cells is challenging since current bioorthogonal labeling approaches are too slow to allow for complete labeling with low concentrations of spin label prior to loss of signal from cellular reduction. Here, we overcome this limitation by genetically encoding a novel family of small, tetrazine-bearing noncanonical amino acids (Tet-v4.0) at multiple sites in proteins expressed in Escherichia coli and in human HEK293T cells. We achieved specific and quantitative spin-labeling of Tet-v4.0-containing proteins by developing a series of strained trans-cyclooctene (sTCO)-functionalized nitroxides─including a gem-diethyl-substituted nitroxide with enhanced stability in cells─with rate constants that can exceed 106 M-1 s-1. The remarkable speed of the Tet-v4.0/sTCO reaction allowed efficient spin-labeling of proteins in live cells within minutes, requiring only sub-micromolar concentrations of sTCO-nitroxide. DEER recorded from intact cells revealed distance distributions in good agreement with those measured from proteins purified and labeled in vitro. Furthermore, DEER was able to resolve the maltose-dependent conformational change of Tet-v4.0-incorporated and spin-labeled MBP in vitro and support assignment of the conformational state of an MBP mutant within HEK293T cells. We anticipate the exceptional reaction rates of this system, combined with the relatively short and rigid side chains of the resulting spin labels, will enable structure/function studies of proteins directly in cells, without any requirements for protein purification.
Collapse
Affiliation(s)
- Subhashis Jana
- Department of Biochemistry and Biophysics, Oregon State University, Corvallis, Oregon 97331, United States
| | - Eric G B Evans
- Department of Chemistry, University of Washington, Seattle, Washington 98195, United States
- Department of Physiology & Biophysics, University of Washington, Seattle, Washington 98195, United States
| | - Hyo Sang Jang
- Department of Biochemistry and Biophysics, Oregon State University, Corvallis, Oregon 97331, United States
| | - Shuyang Zhang
- Department of Chemistry, University of Nebraska, Lincoln, Nebraska 68588-0304, United States
| | - Hui Zhang
- Department of Chemistry, University of Nebraska, Lincoln, Nebraska 68588-0304, United States
| | - Andrzej Rajca
- Department of Chemistry, University of Nebraska, Lincoln, Nebraska 68588-0304, United States
| | - Sharona E Gordon
- Department of Physiology & Biophysics, University of Washington, Seattle, Washington 98195, United States
| | - William N Zagotta
- Department of Physiology & Biophysics, University of Washington, Seattle, Washington 98195, United States
| | - Stefan Stoll
- Department of Chemistry, University of Washington, Seattle, Washington 98195, United States
| | - Ryan A Mehl
- Department of Biochemistry and Biophysics, Oregon State University, Corvallis, Oregon 97331, United States
| |
Collapse
|
23
|
Singha Roy SJ, Loynd C, Jewel D, Canarelli SE, Ficaretta ED, Pham QA, Weerapana E, Chatterjee A. Photoredox-Catalyzed Labeling of Hydroxyindoles with Chemoselectivity (PhotoCLIC) for Site-Specific Protein Bioconjugation. Angew Chem Int Ed Engl 2023; 62:e202300961. [PMID: 37219923 PMCID: PMC10330600 DOI: 10.1002/anie.202300961] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Indexed: 05/24/2023]
Abstract
We have developed a novel visible-light-catalyzed bioconjugation reaction, PhotoCLIC, that enables chemoselective attachment of diverse aromatic amine reagents onto a site-specifically installed 5-hydroxytryptophan residue (5HTP) on full-length proteins of varied complexity. The reaction uses catalytic amounts of methylene blue and blue/red light-emitting diodes (455/650 nm) for rapid site-specific protein bioconjugation. Characterization of the PhotoCLIC product reveals a unique structure formed likely through a singlet oxygen-dependent modification of 5HTP. PhotoCLIC has a wide substrate scope and its compatibility with strain-promoted azide-alkyne click reaction, enables site-specific dual-labeling of a target protein.
Collapse
Affiliation(s)
| | - Conor Loynd
- Department of Chemistry, Boston College, 2609 Beacon Street, Chestnut Hill, MA, 02467, USA
| | - Delilah Jewel
- Department of Chemistry, Boston College, 2609 Beacon Street, Chestnut Hill, MA, 02467, USA
| | - Sarah E Canarelli
- Department of Chemistry, Boston College, 2609 Beacon Street, Chestnut Hill, MA, 02467, USA
| | - Elise D Ficaretta
- Department of Chemistry, Boston College, 2609 Beacon Street, Chestnut Hill, MA, 02467, USA
| | - Quan A Pham
- Department of Chemistry, Boston College, 2609 Beacon Street, Chestnut Hill, MA, 02467, USA
| | - Eranthie Weerapana
- Department of Chemistry, Boston College, 2609 Beacon Street, Chestnut Hill, MA, 02467, USA
| | - Abhishek Chatterjee
- Department of Chemistry, Boston College, 2609 Beacon Street, Chestnut Hill, MA, 02467, USA
| |
Collapse
|
24
|
Gutiérrez-González A, Marcos-Atanes D, Cool LG, López F, Mascareñas JL. Ruthenium-catalyzed intermolecular alkene-alkyne couplings in biologically relevant media. Chem Sci 2023; 14:6408-6413. [PMID: 37325130 PMCID: PMC10266458 DOI: 10.1039/d3sc01254a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 05/19/2023] [Indexed: 06/17/2023] Open
Abstract
Cationic cyclopentadienyl Ru(ii) catalysts can efficiently promote mild intermolecular alkyne-alkene couplings in aqueous media, even in the presence of different biomolecular components, and in complex media like DMEM. The method can also be used for the derivatization of amino acids and peptides, therefore proposing a new way to label biomolecules with external tags. This C-C bond-forming reaction, based on simple alkene and alkyne reactants, can now be added to the toolbox of bioorthogonal reactions promoted by transition metal catalysts.
Collapse
Affiliation(s)
- Alejandro Gutiérrez-González
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS), Departamento de Química Orgánica, Universidad de Santiago de Compostela 15782 Santiago de Compostela Spain
| | - Daniel Marcos-Atanes
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS), Departamento de Química Orgánica, Universidad de Santiago de Compostela 15782 Santiago de Compostela Spain
| | - Leonard G Cool
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS), Departamento de Química Orgánica, Universidad de Santiago de Compostela 15782 Santiago de Compostela Spain
| | - Fernando López
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS), Departamento de Química Orgánica, Universidad de Santiago de Compostela 15782 Santiago de Compostela Spain
- Misión Biológica de Galicia (MBG), Consejo Superior de Investigaciones Científicas (CSIC) 36080 Pontevedra Spain
| | - José L Mascareñas
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS), Departamento de Química Orgánica, Universidad de Santiago de Compostela 15782 Santiago de Compostela Spain
| |
Collapse
|
25
|
Abularrage NS, Levandowski BJ, Giancola JB, Graham BJ, Raines RT. Bioorthogonal 4 H-pyrazole "click" reagents. Chem Commun (Camb) 2023; 59:4451-4454. [PMID: 36987784 PMCID: PMC10088812 DOI: 10.1039/d3cc00112a] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 03/07/2023] [Indexed: 03/30/2023]
Abstract
4H-Pyrazoles are emerging as useful click reagents. Fluorinating the saturated center enables 4H-pyrazoles to react rapidly as Diels-Alder dienes without a catalyst but compromises the stability of these dienes under physiological conditions. To identify more stable 4H-pyrazoles for bioorthogonal chemistry applications, we investigated the Diels-Alder reactivity and biological stability of three 4-oxo-substituted 4H-pyrazoles. We found that these dienes undergo rapid Diels-Alder reactions with endo-bicyclo[6.1.0]non-4-yne (BCN) while being much more stable to biological nucleophiles than their fluorinated counterparts. We attribute the rapid Diels-Alder reactivity of the optimal oxygen-substituted pyrazole to a combination of antiaromaticity, predistortion, and spirocyclization. Their reactivity and stability suggest that 4-oxo-4H-pyrazoles can be useful bioorthogonal reagents.
Collapse
Affiliation(s)
- Nile S Abularrage
- Department of Chemistry, Massachusetts institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA.
| | - Brian J Levandowski
- Department of Chemistry, Massachusetts institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA.
| | - JoLynn B Giancola
- Department of Chemistry, Massachusetts institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA.
| | - Brian J Graham
- Department of Chemistry, Massachusetts institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA.
| | - Ronald T Raines
- Department of Chemistry, Massachusetts institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA.
| |
Collapse
|
26
|
Sahadevan R, Binoy A, Vechalapu SK, Nanjan P, Sadhukhan S. In situ global proteomics profiling of EGCG targets using a cell-permeable and Click-able bioorthogonal probe. Int J Biol Macromol 2023; 237:123991. [PMID: 36907293 DOI: 10.1016/j.ijbiomac.2023.123991] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 03/01/2023] [Accepted: 03/05/2023] [Indexed: 03/12/2023]
Abstract
Despite possessing a wide spectrum of biological activities, molecular targets of EGCG remain elusive and as a result, its precise mode of action is still unknown. Herein, we have developed a novel cell-permeable and Click-able bioorthogonal probe for EGCG, YnEGCG for in situ detection and identification of its interacting proteins. The strategic structural modification on YnEGCG allowed it to retain innate biological activities of EGCG (IC50 59.52 ± 1.14 μM and 9.07 ± 0.01 μM for cell viability and radical scavenging activity, respectively). Chemoproteomics profiling identified 160 direct EGCG targets, with H:L ratio ≥ 1.10 from the list of 207 proteins, including multiple new proteins that were previously unknown. The targets were broadly distributed in various subcellular compartments suggesting a polypharmacological mode of action of EGCG. GO analysis revealed that the primary targets belonged to the enzymes that regulate key metabolic processes including glycolysis and energy homeostasis, also the cytoplasm (36 %) and mitochondria (15.6 %) contain the majority of EGCG targets. Further, we validated that EGCG interactome was closely associated with apoptosis indicating its role in inducing toxicity in cancer cells. For the first time, this in situ chemoproteomics approach could identify a direct and specific EGCG interactome under physiological conditions in an unbiased manner.
Collapse
Affiliation(s)
- Revathy Sahadevan
- Department of Chemistry, Indian Institute of Technology Palakkad, Kerala, India
| | - Anupama Binoy
- Department of Chemistry, Indian Institute of Technology Palakkad, Kerala, India
| | - Sai K Vechalapu
- Department of Chemistry, Indian Institute of Technology Kanpur, Uttar Pradesh, India
| | - Pandurangan Nanjan
- Department of Chemistry, Indian Institute of Technology Palakkad, Kerala, India
| | - Sushabhan Sadhukhan
- Department of Chemistry, Indian Institute of Technology Palakkad, Kerala, India; Physical & Chemical Biology Laboratory, Indian Institute of Technology Palakkad, Kerala, India; Department of Biological Sciences & Engineering, Indian Institute of Technology Palakkad, Kerala, India.
| |
Collapse
|
27
|
Dong R, Yang X, Wang B, Ji X. Mutual leveraging of proximity effects and click chemistry in chemical biology. Med Res Rev 2023; 43:319-342. [PMID: 36177531 DOI: 10.1002/med.21927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 08/14/2022] [Accepted: 09/11/2022] [Indexed: 02/05/2023]
Abstract
Nature has the remarkable ability to realize reactions under physiological conditions that normally would require high temperature and other forcing conditions. In doing so, often proximity effects such as simultaneous binding of two reactants in the same pocket and/or strategic positioning of catalytic functional groups are used as ways to achieve otherwise kinetically challenging reactions. Though true biomimicry is challenging, there have been many beautiful examples of how to leverage proximity effects in realizing reactions that otherwise would not readily happen under near-physiological conditions. Along this line, click chemistry is often used to endow proximity effects, and proximity effects are also used to further leverage the facile and bioorthogonal nature of click chemistry. This review brings otherwise seemingly unrelated topics in chemical biology and drug discovery under one unifying theme of mutual leveraging of proximity effects and click chemistry and aims to critically analyze the biomimicry use of such leveraging effects as powerful approaches in chemical biology and drug discovery. We hope that this review demonstrates the power of employing mutual leveraging proximity effects and click chemistry and inspires the development of new strategies that will address unmet needs in chemistry and biology.
Collapse
Affiliation(s)
- Ru Dong
- Department of Medicinal Chemistry, College of Pharmaceutical Science, Soochow University, Suzhou, Jiangsu, China
| | - Xiaoxiao Yang
- Department of Chemistry and Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, Georgia, USA
| | - Binghe Wang
- Department of Chemistry and Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, Georgia, USA
| | - Xingyue Ji
- Department of Medicinal Chemistry, College of Pharmaceutical Science, Soochow University, Suzhou, Jiangsu, China
| |
Collapse
|
28
|
Liu S, Ye H, Yi L, Xi Z. A unique reaction of diphenylcyclopropenone and 1,2-aminothiol with the release of thiol for multiple bioconjugation. Chem Commun (Camb) 2023; 59:1497-1500. [PMID: 36655850 DOI: 10.1039/d2cc06419g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Selective reaction of diphenylcyclopropenone (DPCP) and 1,2-aminothiol in water at pH 7.4 produces an amide conjugate with the release of thiol. In addition, structural modifications of DPCP enable the coupling rate to be tuned with a reaction constant of +3.68. Based on this chemistry, triple labelling was demonstrated by treating an N-terminal cysteine peptide with DPCP-Cl followed by thiol-maleimide and tyrosine-diazonium couplings in one pot. We anticipate that the DPCP motif will be a useful toolkit for multiple bioconjugation.
Collapse
Affiliation(s)
- Shanshan Liu
- State Key Laboratory of Organic-Inorganic Composites and Beijing Key Lab of Bioprocess, Beijing University of Chemical Technology (BUCT), Beijing 100029, China.
| | - Haishun Ye
- State Key Laboratory of Organic-Inorganic Composites and Beijing Key Lab of Bioprocess, Beijing University of Chemical Technology (BUCT), Beijing 100029, China.
| | - Long Yi
- State Key Laboratory of Organic-Inorganic Composites and Beijing Key Lab of Bioprocess, Beijing University of Chemical Technology (BUCT), Beijing 100029, China.
| | - Zhen Xi
- State Key Laboratory of Elemento-Organic Chemistry and Department of Chemical Biology, College of Chemistry, National Pesticide Engineering Research Center, Collaborative Innovation Center of Chemical Science and Engineering, Nankai University, Tianjin 300071, China
| |
Collapse
|
29
|
Jana S, Evans EGB, Jang HS, Zhang S, Zhang H, Rajca A, Gordon SE, Zagotta WN, Stoll S, Mehl RA. Ultra-Fast Bioorthogonal Spin-Labeling and Distance Measurements in Mammalian Cells Using Small, Genetically Encoded Tetrazine Amino Acids. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.26.525763. [PMID: 36747808 PMCID: PMC9901033 DOI: 10.1101/2023.01.26.525763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Studying protein structures and dynamics directly in the cellular environments in which they function is essential to fully understand the molecular mechanisms underlying cellular processes. Site-directed spin-labeling (SDSL)-in combination with double electron-electron resonance (DEER) spectroscopy-has emerged as a powerful technique for determining both the structural states and the conformational equilibria of biomacromolecules. In-cell DEER spectroscopy on proteins in mammalian cells has thus far not been possible due to the notable challenges of spin-labeling in live cells. In-cell SDSL requires exquisite biorthogonality, high labeling reaction rates and low background signal from unreacted residual spin label. While the bioorthogonal reaction must be highly specific and proceed under physiological conditions, many spin labels display time-dependent instability in the reducing cellular environment. Additionally, high concentrations of spin label can be toxic. Thus, an exceptionally fast bioorthogonal reaction is required that can allow for complete labeling with low concentrations of spin-label prior to loss of signal. Here we utilized genetic code expansion to site-specifically encode a novel family of small, tetrazine-bearing non-canonical amino acids (Tet-v4.0) at multiple sites in green fluorescent protein (GFP) and maltose binding protein (MBP) expressed both in E. coli and in human HEK293T cells. We achieved specific and quantitative spin-labeling of Tet-v4.0-containing proteins by developing a series of strained trans -cyclooctene (sTCO)-functionalized nitroxides-including a gem -diethyl-substituted nitroxide with enhanced stability in cells-with rate constants that can exceed 10 6 M -1 s -1 . The remarkable speed of the Tet-v4.0/sTCO reaction allowed efficient spin-labeling of proteins in live HEK293T cells within minutes, requiring only sub-micromolar concentrations of sTCO-nitroxide added directly to the culture medium. DEER recorded from intact cells revealed distance distributions in good agreement with those measured from proteins purified and labeled in vitro . Furthermore, DEER was able to resolve the maltose-dependent conformational change of Tet-v4.0-incorporated and spin-labeled MBP in vitro and successfully discerned the conformational state of MBP within HEK293T cells. We anticipate the exceptional reaction rates of this system, combined with the relatively short and rigid side chains of the resulting spin labels, will enable structure/function studies of proteins directly in cells, without any requirements for protein purification. TOC
Collapse
Affiliation(s)
- Subhashis Jana
- Department of Biochemistry and Biophysics, Oregon State University, Corvallis, Oregon 97331, United States
- Equal contributors
| | - Eric G B Evans
- Department of Chemistry, University of Washington, Seattle, WA 98195, United States
- Department of Physiology & Biophysics, University of Washington, Seattle, WA 98195, United States
- Equal contributors
| | - Hyo Sang Jang
- Department of Biochemistry and Biophysics, Oregon State University, Corvallis, Oregon 97331, United States
| | - Shuyang Zhang
- Department of Chemistry, University of Nebraska, Lincoln, NE 68588-0304, United States
| | - Hui Zhang
- Department of Chemistry, University of Nebraska, Lincoln, NE 68588-0304, United States
| | - Andrzej Rajca
- Department of Chemistry, University of Nebraska, Lincoln, NE 68588-0304, United States
| | - Sharona E Gordon
- Department of Physiology & Biophysics, University of Washington, Seattle, WA 98195, United States
| | - William N Zagotta
- Department of Physiology & Biophysics, University of Washington, Seattle, WA 98195, United States
| | - Stefan Stoll
- Department of Chemistry, University of Washington, Seattle, WA 98195, United States
| | - Ryan A Mehl
- Department of Biochemistry and Biophysics, Oregon State University, Corvallis, Oregon 97331, United States
| |
Collapse
|
30
|
Sun H, Huang Y, Tsai YH. Genetically Encoded 1,2-Aminothiol for Site-Specific Modification of a Cellular Membrane Protein via TAMM Condensation. Methods Mol Biol 2023; 2676:191-199. [PMID: 37277634 DOI: 10.1007/978-1-0716-3251-2_14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Site-specific modification of proteins has wide applications in probing and perturbing biological systems. A popular means to achieve such a modification on a target protein is through a reaction between bioorthogonal functionalities. Indeed, various bioorthogonal reactions have been developed, including a recently reported reaction between 1,2-aminothiol and ((alkylthio)(aryl)methylene)malononitrile (TAMM). Here, we describe the procedure that combines genetic code expansion and TAMM condensation for site-specific modification of cellular membrane proteins. The 1,2-aminothiol functionality is introduced through a genetically incorporated noncanonical amino acid to a model membrane protein on mammalian cells. Treatment of the cells with a fluorophore-TAMM conjugate leads to fluorescent labeling of the target protein. This method can be applied to modify different membrane proteins on live mammalian cells.
Collapse
Affiliation(s)
- Han Sun
- Institute of Molecular Physiology, Shenzhen Bay Laboratory, Shenzhen, China
| | - Yang Huang
- Institute of Molecular Physiology, Shenzhen Bay Laboratory, Shenzhen, China
- School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Yu-Hsuan Tsai
- Institute of Molecular Physiology, Shenzhen Bay Laboratory, Shenzhen, China.
| |
Collapse
|
31
|
Yi W, Xiao P, Liu X, Zhao Z, Sun X, Wang J, Zhou L, Wang G, Cao H, Wang D, Li Y. Recent advances in developing active targeting and multi-functional drug delivery systems via bioorthogonal chemistry. Signal Transduct Target Ther 2022; 7:386. [PMID: 36460660 PMCID: PMC9716178 DOI: 10.1038/s41392-022-01250-1] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 10/25/2022] [Accepted: 11/07/2022] [Indexed: 12/03/2022] Open
Abstract
Bioorthogonal chemistry reactions occur in physiological conditions without interfering with normal physiological processes. Through metabolic engineering, bioorthogonal groups can be tagged onto cell membranes, which selectively attach to cargos with paired groups via bioorthogonal reactions. Due to its simplicity, high efficiency, and specificity, bioorthogonal chemistry has demonstrated great application potential in drug delivery. On the one hand, bioorthogonal reactions improve therapeutic agent delivery to target sites, overcoming off-target distribution. On the other hand, nanoparticles and biomolecules can be linked to cell membranes by bioorthogonal reactions, providing approaches to developing multi-functional drug delivery systems (DDSs). In this review, we first describe the principle of labeling cells or pathogenic microorganisms with bioorthogonal groups. We then highlight recent breakthroughs in developing active targeting DDSs to tumors, immune systems, or bacteria by bioorthogonal chemistry, as well as applications of bioorthogonal chemistry in developing functional bio-inspired DDSs (biomimetic DDSs, cell-based DDSs, bacteria-based and phage-based DDSs) and hydrogels. Finally, we discuss the difficulties and prospective direction of bioorthogonal chemistry in drug delivery. We expect this review will help us understand the latest advances in the development of active targeting and multi-functional DDSs using bioorthogonal chemistry and inspire innovative applications of bioorthogonal chemistry in developing smart DDSs for disease treatment.
Collapse
Affiliation(s)
- Wenzhe Yi
- grid.9227.e0000000119573309State Key Laboratory of Drug Research & Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203 China
| | - Ping Xiao
- grid.9227.e0000000119573309State Key Laboratory of Drug Research & Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203 China
| | - Xiaochen Liu
- grid.9227.e0000000119573309State Key Laboratory of Drug Research & Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203 China
| | - Zitong Zhao
- grid.9227.e0000000119573309State Key Laboratory of Drug Research & Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203 China
| | - Xiangshi Sun
- grid.9227.e0000000119573309State Key Laboratory of Drug Research & Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203 China
| | - Jue Wang
- grid.9227.e0000000119573309State Key Laboratory of Drug Research & Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203 China
| | - Lei Zhou
- grid.9227.e0000000119573309State Key Laboratory of Drug Research & Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203 China
| | - Guanru Wang
- grid.9227.e0000000119573309State Key Laboratory of Drug Research & Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203 China
| | - Haiqiang Cao
- grid.9227.e0000000119573309State Key Laboratory of Drug Research & Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203 China
| | - Dangge Wang
- grid.9227.e0000000119573309State Key Laboratory of Drug Research & Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203 China ,Yantai Key Laboratory of Nanomedicine & Advanced Preparations, Yantai Institute of Materia Medica, Yantai, 264000 China
| | - Yaping Li
- grid.9227.e0000000119573309State Key Laboratory of Drug Research & Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203 China ,Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug Discovery, Yantai, 264000 China
| |
Collapse
|
32
|
Tanimoto H. Development of Synthetic Chemistry on Organic Azides by Breaking their 1,3-Dipolar Characteristics. J SYN ORG CHEM JPN 2022. [DOI: 10.5059/yukigoseikyokaishi.80.1100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
33
|
Zhao G, Li Z, Zhang R, Zhou L, Zhao H, Jiang H. Tetrazine bioorthogonal chemistry derived in vivo imaging. Front Mol Biosci 2022; 9:1055823. [PMID: 36465558 PMCID: PMC9709424 DOI: 10.3389/fmolb.2022.1055823] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Accepted: 10/26/2022] [Indexed: 09/02/2023] Open
Abstract
Bioorthogonal chemistry represents plenty of highly efficient and biocompatible reactions that proceed selectively and rapidly in biological situations without unexpected side reactions towards miscellaneous endogenous functional groups. Arise from the strict demands of physiological reactions, bioorthogonal chemical reactions are natively selective transformations that are rarely found in biological environments. Bioorthogonal chemistry has long been applied to tracking and real-time imaging of biomolecules in their physiological environments. Thereinto, tetrazine bioorthogonal reactions are particularly important and have increasing applications in these fields owing to their unique properties of easily controlled fluorescence or radiation off-on mechanism, which greatly facilitate the tracking of real signals without been disturbed by background. In this mini review, tetrazine bioorthogonal chemistry for in vivo imaging applications will be attentively appraised to raise some guidelines for prior tetrazine bioorthogonal chemical studies.
Collapse
Affiliation(s)
- Gaoxiang Zhao
- The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
- Cancer Institute, Affiliated Hospital of Qingdao University, Qingdao, China
| | - Zhutie Li
- China United Test and Evaluation (Qingdao) Co. Ltd., Qingdao, China
| | - Renshuai Zhang
- The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
- Cancer Institute, Affiliated Hospital of Qingdao University, Qingdao, China
| | - Liman Zhou
- Key Laboratory of Chemistry and Engineering of Forest Products, State Ethnic Affairs Commission, Guangxi Key Laboratory of Chemistry and Engineering of Forest Products, Guangxi Collaborative Innovation Center for Chemistry and Engineering of Forest Products, School of Chemistry and Chemical Engineering, Guangxi Minzu University, Nanning, China
| | - Haibo Zhao
- The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
- Department of Sports Medicine, Affiliated Hospital of Qingdao University, Qingdao, China
| | - Hongfei Jiang
- The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
- Cancer Institute, Affiliated Hospital of Qingdao University, Qingdao, China
| |
Collapse
|
34
|
Bai H, Han L, Wang X, Yan H, Leng H, Chen S, Ma H. Anion Migrated Ring Opening and Rearrangement in Anionic Polymerization Induced C7 and C8 Polymerizations. Macromolecules 2022. [DOI: 10.1021/acs.macromol.2c01233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Hongyuan Bai
- Department of Polymer Science and Engineering, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
| | - Li Han
- Department of Polymer Science and Engineering, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
| | - Xuefei Wang
- Department of Polymer Science and Engineering, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
| | - Hong Yan
- Department of Polymer Science and Engineering, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
| | - Haitao Leng
- Department of Polymer Science and Engineering, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
| | - Siwei Chen
- Department of Polymer Science and Engineering, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
| | - Hongwei Ma
- Department of Polymer Science and Engineering, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
| |
Collapse
|
35
|
Tu HF, Jeandin A, Suero MG. Catalytic Synthesis of Cyclopropenium Cations with Rh-Carbynoids. J Am Chem Soc 2022; 144:16737-16743. [PMID: 36074785 PMCID: PMC9501905 DOI: 10.1021/jacs.2c07769] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Indexed: 11/30/2022]
Abstract
Herein, we report the first catalytic one-step synthesis of cyclopropenium cations (CPCs) with readily available alkynes and hypervalent iodine reagents as carbyne sources. Key to the process is the catalytic generation of a novel Rh-carbynoid that formally transfers monovalent cationic carbynes (:+C-R) to alkynes via an oxidative [2+1] cycloaddition. Our process is able to synthesize a new type of CPC substituted with an ester group that underpins the regioselective attack of a broad range of carbon and heteroatomic nucleophiles, thus providing a new platform for the synthesis of valuable cyclopropenes difficult or not possible to make by current methodologies.
Collapse
Affiliation(s)
- Hang-Fei Tu
- Institute
of Chemical Research of Catalonia (ICIQ), The Barcelona Institute
of Science and Technology, Països Catalans 16, 43007 Tarragona, Spain
| | - Aliénor Jeandin
- Institute
of Chemical Research of Catalonia (ICIQ), The Barcelona Institute
of Science and Technology, Països Catalans 16, 43007 Tarragona, Spain
- Departament
de Química Analítica i Química Orgánica, Universitat Rovira i Virgili, Calle Marcel.lí Domingo, 1, 43007 Tarragona, Spain
| | - Marcos G. Suero
- Institute
of Chemical Research of Catalonia (ICIQ), The Barcelona Institute
of Science and Technology, Països Catalans 16, 43007 Tarragona, Spain
| |
Collapse
|
36
|
Bertheussen K, van de Plassche M, Bakkum T, Gagestein B, Ttofi I, Sarris AJC, Overkleeft HS, van der Stelt M, van Kasteren SI. Live-Cell Imaging of Sterculic Acid-a Naturally Occurring 1,2-Cyclopropene Fatty Acid-by Bioorthogonal Reaction with Turn-On Tetrazine-Fluorophore Conjugates. Angew Chem Int Ed Engl 2022; 61:e202207640. [PMID: 35838324 PMCID: PMC9546306 DOI: 10.1002/anie.202207640] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Indexed: 12/25/2022]
Abstract
In the field of lipid research, bioorthogonal chemistry has made the study of lipid uptake and processing in living systems possible, whilst minimising biological properties arising from detectable pendant groups. To allow the study of unsaturated free fatty acids in live cells, we here report the use of sterculic acid, a 1,2-cyclopropene-containing oleic acid analogue, as a bioorthogonal probe. We show that this lipid can be readily taken up by dendritic cells without toxic side effects, and that it can subsequently be visualised using an inverse electron-demand Diels-Alder reaction with quenched tetrazine-fluorophore conjugates. In addition, the lipid can be used to identify changes in protein oleoylation after immune cell activation. Finally, this reaction can be integrated into a multiplexed bioorthogonal reaction workflow by combining it with two sequential copper-catalysed Huisgen ligation reactions. This allows for the study of multiple biomolecules in the cell simultaneously by multimodal confocal imaging.
Collapse
Affiliation(s)
- Kristine Bertheussen
- Department of Bio-Organic SynthesisLeiden Institute of ChemistryLeiden UniversityEinsteinweg 552333 CCLeidenThe Netherlands
| | - Merel van de Plassche
- Department of Bio-Organic SynthesisLeiden Institute of ChemistryLeiden UniversityEinsteinweg 552333 CCLeidenThe Netherlands
| | - Thomas Bakkum
- Department of Bio-Organic SynthesisLeiden Institute of ChemistryLeiden UniversityEinsteinweg 552333 CCLeidenThe Netherlands
| | - Berend Gagestein
- Department of Molecular PhysiologyLeiden Institute of ChemistryLeiden UniversityEinsteinweg 552333 CCLeidenThe Netherlands
| | - Iakovia Ttofi
- Department of Molecular PhysiologyLeiden Institute of ChemistryLeiden UniversityEinsteinweg 552333 CCLeidenThe Netherlands
| | - Alexi J. C. Sarris
- Department of Bio-Organic SynthesisLeiden Institute of ChemistryLeiden UniversityEinsteinweg 552333 CCLeidenThe Netherlands
| | - Herman S. Overkleeft
- Department of Bio-Organic SynthesisLeiden Institute of ChemistryLeiden UniversityEinsteinweg 552333 CCLeidenThe Netherlands
| | - Mario van der Stelt
- Department of Molecular PhysiologyLeiden Institute of ChemistryLeiden UniversityEinsteinweg 552333 CCLeidenThe Netherlands
| | - Sander I. van Kasteren
- Department of Bio-Organic SynthesisLeiden Institute of ChemistryLeiden UniversityEinsteinweg 552333 CCLeidenThe Netherlands
| |
Collapse
|
37
|
Trinh KTL, Lee NY. Recent Methods for the Viability Assessment of Bacterial Pathogens: Advances, Challenges, and Future Perspectives. Pathogens 2022; 11:1057. [PMID: 36145489 PMCID: PMC9500772 DOI: 10.3390/pathogens11091057] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 09/14/2022] [Accepted: 09/15/2022] [Indexed: 11/28/2022] Open
Abstract
Viability assessment is a critical step in evaluating bacterial pathogens to determine infectious risks to public health. Based on three accepted viable criteria (culturability, metabolic activity, and membrane integrity), current viability assessments are categorized into three main strategies. The first strategy relies on the culturability of bacteria. The major limitation of this strategy is that it cannot detect viable but nonculturable (VBNC) bacteria. As the second strategy, based on the metabolic activity of bacteria, VBNC bacteria can be detected. However, VBNC bacteria sometimes can enter a dormant state that allows them to silence reproduction and metabolism; therefore, they cannot be detected based on culturability and metabolic activity. In order to overcome this drawback, viability assessments based on membrane integrity (third strategy) have been developed. However, these techniques generally require multiple steps, bulky machines, and laboratory technicians to conduct the tests, making them less attractive and popular applications. With significant advances in microfluidic technology, these limitations of current technologies for viability assessment can be improved. This review summarized and discussed the advances, challenges, and future perspectives of current methods for the viability assessment of bacterial pathogens.
Collapse
Affiliation(s)
- Kieu The Loan Trinh
- Department of Industrial Environmental Engineering, Gachon University, 1342 Seongnam-daero, Sujeong-gu, Seongnam-si 13120, Korea
| | - Nae Yoon Lee
- Department of BioNano Technology, Gachon University, 1342 Seongnam-daero, Sujeong-gu, Seongnam-si 13120, Korea
| |
Collapse
|
38
|
Bertheussen K, van de Plassche M, Bakkum T, Gagestein B, Ttofi I, Sarris AJ, Overkleeft HS, van der Stelt M, van Kasteren SI. Live‐Cell Imaging of Sterculic Acid – a Naturally Occurring 1,2‐Cyclopropene Fatty Acid – by Bioorthogonal Reaction with Turn‐On Tetrazine‐Fluorophore Conjugates. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202207640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Kristine Bertheussen
- Leiden University: Universiteit Leiden Leiden Institute of Chemistry NETHERLANDS
| | | | - Thomas Bakkum
- Leiden University: Universiteit Leiden Leiden Institute of Chemistry NETHERLANDS
| | - Berend Gagestein
- Leiden University: Universiteit Leiden Leiden Institute of Chemistry NETHERLANDS
| | - Iakovia Ttofi
- Leiden University: Universiteit Leiden Leiden Institute of Chemistry NETHERLANDS
| | - Alexi J.C. Sarris
- Leiden University: Universiteit Leiden Leiden Institute of Chemistry NETHERLANDS
| | - Herman S. Overkleeft
- Leiden University: Universiteit Leiden Leiden Institute of Chemistry NETHERLANDS
| | - Mario van der Stelt
- Leiden University: Universiteit Leiden Leiden Institute of Chemistry NETHERLANDS
| | - Sander Izaak van Kasteren
- Leiden University Leiden Institute of Chemistry Gorlaeus LaboratoryEinsteinweg 55 2333 CC Leiden NETHERLANDS
| |
Collapse
|
39
|
Xi Z, Kong H, Chen Y, Deng J, Xu W, Liang Y, Zhang Y. Metal- and Strain-Free Bioorthogonal Cycloaddition of o-Diones with Furan-2(3H)-one as Anionic Cycloaddend. Angew Chem Int Ed Engl 2022; 61:e202200239. [PMID: 35304810 DOI: 10.1002/anie.202200239] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Indexed: 12/18/2022]
Abstract
The development of new bioorthogonal reactions with mutual orthogonality to classic bioorthogonal reactions such as the strain-promoted azide-alkyne click reaction and the inverse-electron-demand Diels-Alder reaction is of great importance in providing chemical tools for multiplex labelling of live cells. Here we report the first anionic cycloaddend-promoted bioorthogonal cycloaddition reaction between phenanthrene-9,10-dione and furan-2(3H)-one derivatives, where the high polarity of water is exploited to stabilize the highly electron-rich anionic cycloaddend. The reaction is metal- and strain-free, which proceeds rapidly in aqueous solution and on live cells with a second-order rate constant up to 119 M-1 s-1 . The combined utilization of this reaction together with the two other widely used bioorthogonal reactions allows for mutually orthogonal labelling of three types of proteins or three groups of living cells in one batch without cross-talking. Such results highlight the great potential for multiplex labelling of different biomolecules in live cells.
Collapse
Affiliation(s)
- Ziwei Xi
- State Key Laboratory of Analytical Chemistry for Life Sciences, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing, 210023, China
| | - Hao Kong
- State Key Laboratory of Analytical Chemistry for Life Sciences, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing, 210023, China
| | - Yu Chen
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing, 210023, China
| | - Jiafang Deng
- State Key Laboratory of Analytical Chemistry for Life Sciences, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing, 210023, China
| | - Wenyuan Xu
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing, 210023, China
| | - Yong Liang
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing, 210023, China
| | - Yan Zhang
- State Key Laboratory of Analytical Chemistry for Life Sciences, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing, 210023, China
| |
Collapse
|
40
|
Liu F, Chen HM, Armstrong Z, Withers SG. Azido Groups Hamper Glycan Acceptance by Carbohydrate Processing Enzymes. ACS CENTRAL SCIENCE 2022; 8:656-662. [PMID: 35647280 PMCID: PMC9136970 DOI: 10.1021/acscentsci.1c01172] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Indexed: 06/15/2023]
Abstract
Azido sugars have found frequent use as probes of biological systems in approaches ranging from cell surface metabolic labeling to activity-based proteomic profiling of glycosidases. However, little attention is typically paid to how well azide-substituted sugars represent the parent molecule, despite the substantial difference in size and structure of an azide compared to a hydroxyl. To quantitatively assess how well azides are accommodated, we have used glycosidases as tractable model enzyme systems reflecting what would also be expected for glycosyltransferases and other sugar binding/modifying proteins. In this vein, specificity constants have been measured for the hydrolysis of a series of azidodeoxy glucosides and N-acetylhexosaminides by a large number of glycosidases produced from expressed synthetic gene and metagenomic libraries. Azides at secondary carbons are not significantly accommodated, and thus, associated substrates are not processed, while those at primary carbons are productively recognized by only a small subset of the enzymes and often then only very poorly. Accordingly, in the absence of careful controls, results obtained with azide-modified sugars may not be representative of the situation with the natural sugar and should be interpreted with considerable caution. Azide incorporation can indeed provide a useful tool to monitor and detect glycosylation, but careful consideration should go into the selection of sites of azide substitution; such studies should not be used to quantitate glycosylation or to infer the absence of glycosylation activity.
Collapse
|
41
|
Abstract
Heterocyclic rings are the fundamental building blocks of biological systems and have wide applications in synthetic chemistry and medicinal science. The development of novel synthetic methodology for heterocyclic skeletons from a variety of starting materials has made great progress in the past decades. Meanwhile, highly strained cyclopropenes as reactive reagents in organic transformations have drawn much attention from chemists. The rich chemical reactivity and reaction routes have been well investigated, and some review articles related to the reactivity of cyclopropenes and the construction of carbocycles and acyclic compounds have appeared in these years. Thus, this review mainly focuses on the progress in the construction of heterocyclic rings starting from various cyclopropenes including the reactions of commonly available stable cyclopropenes, in situ generated reactive cyclopropenes and cyclopropene precursors during this decade. Firstly, the transformations of common cyclopropenes into donor-type vinyl metal carbenes via transition metal induced ring opening, direct metalation of the CC bond of metal complexes, and cycloaddition reactions with 1,3-dipoles are described. Next, the annulation reactions of reactive cyclopropenes generated in situ with donor-acceptor reagents, intramolecular nucleophilic addition, and the cycloaddition reactions with 1,3-dipoles are introduced. Then, the transformation of cyclopropene precursors such as alkyl 1-chloro- or 1-alkoxy-2-aroylcyclopropanecarboxylates into five-membered heteroaromatic compounds is also mentioned. In addition, a brief outlook of the opportunity and challenges in the field of bio-orthogonal reactions related to cyclopropenes is given.
Collapse
Affiliation(s)
- Hengrui Huo
- School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan 430074, China. .,Hebei Key Laboratory of Heterocyclic Compounds, College of Chemical Engineering and Materials, Handan University, 530 North College Road, Handan 056005, China
| | - Yuefa Gong
- School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan 430074, China.
| |
Collapse
|
42
|
Heiss TK, Dorn RS, Ferreira AJ, Love AC, Prescher JA. Fluorogenic Cyclopropenones for Multicomponent, Real-Time Imaging. J Am Chem Soc 2022; 144:7871-7880. [PMID: 35442034 PMCID: PMC9377832 DOI: 10.1021/jacs.2c02058] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Fluorogenic bioorthogonal reactions enable biomolecule visualization in real time. These reactions comprise reporters that "light up" upon reaction with complementary partners. While the spectrum of fluorogenic chemistries is expanding, few transformations are compatible with live cells due to cross-reactivities or insufficient signal turn-on. To address the need for more suitable chemistries for cellular imaging, we developed a fluorogenic reaction featuring cyclopropenone reporters and phosphines. The transformation involves regioselective activation and cyclization of cyclopropenones to form coumarin products. With optimal probes, the reaction provides >1600-fold signal turn-on, one of the highest fluorescence enhancements reported to date. The bioorthogonal motifs were evaluated in vitro and in cells. The reaction was also found to be compatible with other common fluorogenic transformations, enabling multicomponent, real-time imaging. Collectively, these data suggest that the cyclopropenone-phosphine reaction will bolster efforts to track biomolecule targets in their native settings.
Collapse
Affiliation(s)
- Tyler K Heiss
- Department of Chemistry, University of California, Irvine, California 92697, United States
| | - Robert S Dorn
- Department of Chemistry, University of California, Irvine, California 92697, United States
| | - Andrew J Ferreira
- Department of Chemistry, University of California, Irvine, California 92697, United States
| | - Anna C Love
- Department of Chemistry, University of California, Irvine, California 92697, United States
| | - Jennifer A Prescher
- Department of Chemistry, University of California, Irvine, California 92697, United States.,Molecular Biology & Biochemistry, University of California, Irvine, California 92697, United States.,Pharmaceutical Sciences, University of California, Irvine, California 92697, United States
| |
Collapse
|
43
|
Zhu Z, Boger DL. N1/N4 1,4-Cycloaddition of 1,2,4,5-Tetrazines with Enamines Promoted by the Lewis Acid ZnCl 2. J Org Chem 2022; 87:6288-6301. [PMID: 35417656 PMCID: PMC9081262 DOI: 10.1021/acs.joc.2c00543] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The second example of selective N1/N4 1,4-cycloaddition (vs C3/C6 1,4-cycloaddition) of 1,2,4,5-tetrazines with preformed or in situ generated enamines now promoted by the Lewis acid ZnCl2 and with an expanded scope is described. The reaction constitutes a formal [4 + 2] cycloaddition across two nitrogen atoms (N1/N4 vs C3/C6) of a 1,2,4,5-tetrazine followed by retro [4 + 2] cycloaddition loss of a nitrile and aromatization to provide 1,2,4-triazines. Optimization of reaction parameters, simplification of its implementation through in situ enamine generation from ketones, definition of the enamine reaction scope for 3,6-bis(thiomethyl)-1,2,4,5-tetrazine, exploration of the 1,2,4,5-tetrazine scope, and representative applications of the product 1,2,4-triazines are detailed. The work establishes and further extends a powerful method for efficient one-step regioselective synthesis of 1,2,4-triazines under mild reaction conditions directly now from easily accessible ketones. It extends the substrate scope of a solvent (hexafluoroisopropanol) hydrogen bonding-promoted reaction that we recently reported with aryl-conjugated enamines, permitting the use of simple ketone-derived enamines and expanding the generality of the remarkable reaction. The reaction is regioselective with respect to the site of reaction with unsymmetrical ketones and provides exclusively a single 1,2,4-triazine regioisomer consistent with our previously established stepwise mechanism of formal N1/N4 1,4-cycloaddition, overcoming the challenges observed in conventional approaches to 1,2,4-triazines.
Collapse
Affiliation(s)
- Zixi Zhu
- Department of Chemistry and The Skaggs Institute for Chemical Biology, The Scripps Research Institute, 10550 N. Torrey Pines Road, La Jolla, California 92037, United States
| | - Dale L Boger
- Department of Chemistry and The Skaggs Institute for Chemical Biology, The Scripps Research Institute, 10550 N. Torrey Pines Road, La Jolla, California 92037, United States
| |
Collapse
|
44
|
Click amidations, esterifications and one–pot reactions catalyzed by Cu salts and multimetal–organic frameworks (M–MOFs). MOLECULAR CATALYSIS 2022. [DOI: 10.1016/j.mcat.2022.112228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
45
|
Xi Z, Kong H, Chen Y, Deng J, Xu W, Liang Y, Zhang Y. Metal‐ and Strain‐free Bioorthogonal Cycloaddition of o‐Diones with Furan‐2(3H)‐one as Anionic Cycloaddend. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202200239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Ziwei Xi
- Nanjing University School of Chemistry and Chemical Engineering CHINA
| | - Hao Kong
- Nanjing University School of Chemistry and Chemical Engineering CHINA
| | - Yu Chen
- Nanjing University School of Chemistry and Chemical Engineering CHINA
| | - Jiafang Deng
- Nanjing University School of Chemistry and Chemical Engineering CHINA
| | - Wenyuan Xu
- Nanjing University School of Chemistry and Chemical Engineering CHINA
| | - Yong Liang
- Nanjing University Chemistry 163 Xianlin Ave 210023 Nanjing CHINA
| | - Yan Zhang
- Nanjing University School of Chemistry and Chemical Engineering CHINA
| |
Collapse
|
46
|
Wu D, Yang K, Zhang Z, Feng Y, Rao L, Chen X, Yu G. Metal-free bioorthogonal click chemistry in cancer theranostics. Chem Soc Rev 2022; 51:1336-1376. [PMID: 35050284 DOI: 10.1039/d1cs00451d] [Citation(s) in RCA: 67] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Bioorthogonal chemistry is a powerful tool to site-specifically activate drugs in living systems. Bioorthogonal reactions between a pair of biologically reactive groups can rapidly and specifically take place in a mild physiological milieu without perturbing inherent biochemical processes. Attributed to their high selectivity and efficiency, bioorthogonal reactions can significantly decrease background signals in bioimaging. Compared with metal-catalyzed bioorthogonal click reactions, metal-free click reactions are more biocompatible without the metal catalyst-induced cytotoxicity. Although a great number of bioorthogonal chemistry-based strategies have been reported for cancer theranostics, a comprehensive review is scarce to highlight the advantages of these strategies. In this review, recent progress in cancer theranostics guided by metal-free bioorthogonal click chemistry will be depicted in detail. The elaborate design as well as the advantages of bioorthogonal chemistry in tumor theranostics are summarized and future prospects in this emerging field are emphasized.
Collapse
Affiliation(s)
- Dan Wu
- College of Materials Science and Engineering, Zhejiang University of Technology Hangzhou, 310014, P. R. China.
| | - Kuikun Yang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Avenida da Universidade, Taipa, Macau 999078, P. R. China
| | - Zhankui Zhang
- College of Materials Science and Engineering, Zhejiang University of Technology Hangzhou, 310014, P. R. China.
| | - Yunxuan Feng
- Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Department of Chemistry, Tsinghua University, Beijing 100084, P. R. China.
| | - Lang Rao
- Institute of Biomedical Health Technology and Engineering, Shenzhen Bay Laboratory, Shenzhen 518132, P. R. China.
| | - Xiaoyuan Chen
- Yong Loo Lin School of Medicine and Faculty of Engineering, National University of Singapore, Singapore, 117597, Singapore.
| | - Guocan Yu
- Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Department of Chemistry, Tsinghua University, Beijing 100084, P. R. China.
| |
Collapse
|
47
|
Cao S, Tang T, Li J, He Z. Visible light-driven [3 + 3] annulation reaction of 2 H-azirines with Huisgen zwitterions and synthesis of 1,2,4-triazines. Org Chem Front 2022. [DOI: 10.1039/d2qo00564f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A visible light-driven [3 + 3] annulation reaction of 2H-azirines with Huisgen zwitterions is developed for the first time.
Collapse
Affiliation(s)
- Shixuan Cao
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Tong Tang
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Jiatian Li
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Zhengjie He
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300071, China
| |
Collapse
|
48
|
McKenna SM, Fay EM, McGouran JF. Flipping the Switch: Innovations in Inducible Probes for Protein Profiling. ACS Chem Biol 2021; 16:2719-2730. [PMID: 34779621 PMCID: PMC8689647 DOI: 10.1021/acschembio.1c00572] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
![]()
Over the past two
decades, activity-based probes have enabled a
range of discoveries, including the characterization of new enzymes
and drug targets. However, their suitability in some labeling experiments
can be limited by nonspecific reactivity, poor membrane permeability,
or high toxicity. One method for overcoming these issues is through
the development of “inducible” activity-based probes.
These probes are added to samples in an unreactive state and require in situ transformation to their active form before labeling
can occur. In this Review, we discuss a variety of approaches to inducible
activity-based probe design, different means of probe activation,
and the advancements that have resulted from these applications. Additionally,
we highlight recent developments which may provide opportunities for
future inducible activity-based probe innovations.
Collapse
Affiliation(s)
- Sean M. McKenna
- School of Chemistry and Trinity Biomedical Sciences Institute, Trinity College Dublin, 152-160 Pearse St, Dublin 2, Ireland
- Synthesis and Solid State Pharmaceutical Centre (SSPC), Bernal Institute, Limerick V94 T9PX, Ireland
| | - Ellen M. Fay
- School of Chemistry and Trinity Biomedical Sciences Institute, Trinity College Dublin, 152-160 Pearse St, Dublin 2, Ireland
| | - Joanna F. McGouran
- School of Chemistry and Trinity Biomedical Sciences Institute, Trinity College Dublin, 152-160 Pearse St, Dublin 2, Ireland
- Synthesis and Solid State Pharmaceutical Centre (SSPC), Bernal Institute, Limerick V94 T9PX, Ireland
| |
Collapse
|
49
|
Zhang FG, Chen Z, Tang X, Ma JA. Triazines: Syntheses and Inverse Electron-demand Diels-Alder Reactions. Chem Rev 2021; 121:14555-14593. [PMID: 34586777 DOI: 10.1021/acs.chemrev.1c00611] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Triazines are an important class of six-membered aromatic heterocycles possessing three nitrogen atoms, resulting in three types of regio-isomers: 1,2,4-triazines (a-triazines), 1,2,3-triazines (v-triazines), and 1,3,5-triazines (s-triazines). Notably, the application of triazines as cyclic aza-dienes in inverse electron-demand Diels-Alder (IEDDA) cycloaddition reactions has been established as a unique and powerful method in N-heterocycle synthesis, natural product preparation, and bioorthogonal chemistry. In this review, we comprehensively summarize the advances in the construction of these triazines via annulation and ring-expansion reactions, especially emphasizing recent developments and challenges. The synthetic transformations of triazines are focused on IEDDA cycloaddition reactions, which have allowed access to a wide scope of heterocycles, including pyridines, carbolines, azepines, pyridazines, pyrazines, and pyrimidines. The utilization of triazine IEDDA reactions as key steps in natural product synthesis is also discussed. More importantly, a particular attention is paid on the bioorthogonal application of triazines in fast click ligation with various strained alkenes and alkynes, which opens a new opportunity for studying biomolecules in chemical biology.
Collapse
Affiliation(s)
- Fa-Guang Zhang
- Department of Chemistry, Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Frontiers Science Center for Synthetic Biology (Ministry of Education), and Tianjin Collaborative Innovation Center of Chemical Science & Engineering, Tianjin University, Tianjin 300072, P. R. China.,Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou 350207, P. R. China
| | - Zhen Chen
- College of Chemical Engineering, Jiangsu Provincial Key Lab for the Chemistry and Utilization of Agro-Forest Biomass, Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Jiangsu Key Lab of Biomass-Based Green Fuels and Chemicals, Nanjing Forestry University, Nanjing, Jiangsu 210037, P. R. China
| | - Xiaodong Tang
- Department of Chemistry, Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Frontiers Science Center for Synthetic Biology (Ministry of Education), and Tianjin Collaborative Innovation Center of Chemical Science & Engineering, Tianjin University, Tianjin 300072, P. R. China.,Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou 350207, P. R. China
| | - Jun-An Ma
- Department of Chemistry, Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Frontiers Science Center for Synthetic Biology (Ministry of Education), and Tianjin Collaborative Innovation Center of Chemical Science & Engineering, Tianjin University, Tianjin 300072, P. R. China.,Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou 350207, P. R. China
| |
Collapse
|
50
|
Krell K, Pfeuffer B, Rönicke F, Chinoy ZS, Favre C, Friscourt F, Wagenknecht H. Fast and Efficient Postsynthetic DNA Labeling in Cells by Means of Strain-Promoted Sydnone-Alkyne Cycloadditions. Chemistry 2021; 27:16093-16097. [PMID: 34633713 PMCID: PMC9297951 DOI: 10.1002/chem.202103026] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Indexed: 12/16/2022]
Abstract
Sydnones are highly stable mesoionic 1,3-dipoles that react with cyclooctynes through strain-promoted sydnone-alkyne cycloaddition (SPSAC). Although sydnones have been shown to be valuable bioorthogonal chemical reporters for the labeling of proteins and complex glycans, nucleic acids have not yet been tagged by SPSAC. Evaluation of SPSAC kinetics with model substrates showed fast reactions with cyclooctyne probes (up to k=0.59 M-1 s-1 ), and two different sydnones were effectively incorporated into both 2'-deoxyuridines at position 5, and 7-deaza-2'-deoxyadenosines at position 7. These modified nucleosides were synthetically incorporated into single-stranded DNAs, which were successfully postsynthetically labeled with cyclooctyne probes both in vitro and in cells. These results show that sydnones are versatile bioorthogonal tags and have the premise to become essential tools for tracking DNA and potentially RNA in living cells.
Collapse
Affiliation(s)
- Katja Krell
- Institute of Organic ChemistryKarlsruhe Institute of Technology (KIT)Fritz-Haber-Weg 676131KarlsruheGermany
| | - Bastian Pfeuffer
- Institute of Organic ChemistryKarlsruhe Institute of Technology (KIT)Fritz-Haber-Weg 676131KarlsruheGermany
| | - Franziska Rönicke
- Institute of Organic ChemistryKarlsruhe Institute of Technology (KIT)Fritz-Haber-Weg 676131KarlsruheGermany
| | - Zoeisha S. Chinoy
- Institut Européen de Chimie et Biologie and ISM CNRS UMR5255Université de Bordeaux2 Rue Robert Escarpit33607PessacFrance
| | - Camille Favre
- Institut Européen de Chimie et Biologie and ISM CNRS UMR5255Université de Bordeaux2 Rue Robert Escarpit33607PessacFrance
| | - Frédéric Friscourt
- Institut Européen de Chimie et Biologie and ISM CNRS UMR5255Université de Bordeaux2 Rue Robert Escarpit33607PessacFrance
| | - Hans‐Achim Wagenknecht
- Institute of Organic ChemistryKarlsruhe Institute of Technology (KIT)Fritz-Haber-Weg 676131KarlsruheGermany
| |
Collapse
|