1
|
Peng J, Cao J, Wang L, Guo Z, Hou X. A portable hydrogel kit based on Au@GM88A/I combined with mobile phone for polychromatic semi-quantitative and quantitative sensing analysis. Biosens Bioelectron 2024; 266:116682. [PMID: 39241339 DOI: 10.1016/j.bios.2024.116682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 07/30/2024] [Accepted: 08/16/2024] [Indexed: 09/09/2024]
Abstract
The development of an affordable, portable, and instrument-free colorimetric biosensor holds significant importance for routine monitoring and clinical diagnosis. To overcome the limitations that traditional monochromatic colorimetric kits struggle to distinguish subtle color changes with the naked eye, we designed and constructed a portable hydrogel kit for polychromatic semi-quantitative and quantitative sensing analysis. When the actual samples and I- were introduced into a gelatin hydrogel encapsulated with MIL-88A(Fe), Au NRs and oxidase (Au@GM88A/I), a noticeable color change occurred. Additionally, a mathematic model between Hue and multicolor signal was set up for the first time by mobile phone photo technology, successfully applied to the glucose detection in serum. The visual detection had a wide concentration range of 0.02-0.80 mM with a limit of detection down to 0.02 mM. Above all, hydrogel kit prepared with gelatin as a carrier addressed the issues of uneven color and slow response rate commonly seen in gels like sodium alginate and agarose. This improvement would be beneficial for enhancing the accuracy of color captured by mobile phone assisted hydrogel kits, making it a valuable tool for biomarker analysis.
Collapse
Affiliation(s)
- Jiayi Peng
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, Liaoning Province, 110016, PR China
| | - Jie Cao
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, Liaoning Province, 110016, PR China
| | - Louqun Wang
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, Liaoning Province, 110016, PR China
| | - Zongjin Guo
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, Liaoning Province, 110016, PR China
| | - Xiaohong Hou
- School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang, Liaoning Province, 110016, PR China.
| |
Collapse
|
2
|
Wang W, Kan X. Multiquenching-Based Aggregation-Induced Electrochemiluminescence Sensing for Highly Sensitive Detection of the SARS-CoV-2 N Protein. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:16484-16491. [PMID: 39046807 DOI: 10.1021/acs.langmuir.4c01849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/27/2024]
Abstract
The rapid epidemic around the world of coronavirus disease 2019 (COVID-19), caused by the SARS-CoV-2 virus, proves the need and stimulates efforts to explore efficient diagnostic tests for the sensitive detection of the SARS-CoV-2 virus. An aggregation-induced electrochemiluminescence (AIECL) sensor was developed for the ultrasensitive detection of the SARS-CoV-2 nucleocapsid (N) protein in this work. Tetraphenylethylene doped in zeolite imidazole backbone-90 (TPE-ZIF-90) showed highly efficient aggregation-induced emission (AIE) to endow TPE-ZIF-90 with high ECL intensity. Upon the capture of the SARS-CoV-2 N protein by immune recognition, an alkaline phosphatase (ALP)-modified gold nanoparticle (AuNP)-decorated zinc oxide (ZnO) nanoflower (ALP/Au-ZnO) composite was introduced on the sensing platform, which catalyzed L-ascorbate-2-phosphate trisodium salt (AA2P) to produce PO43- and ascorbic acid (AA). Based on a multiquenching of the ECL signal strategy, including resonance energy transfer (RET) between TPE-ZIF-90 and Au-ZnO, disassembly of TPE-ZIF-90 triggered by the strong coordination between PO43- and Zn2+, and RET between TPE-ZIF-90 and AuNPs produced in situ by the AA reductive reaction, the constructed AIECL sensor achieved highly sensitive detection of the SARS-CoV-2 N protein with a low limit of detection of 0.52 fg/mL. With the merits of high specificity, good stability, and proven application ability, the present RET- and enzyme-triggered multiquenching AIECL sensor may become a powerful tool in the field of SARS-CoV-2 virus diagnosis.
Collapse
Affiliation(s)
- Wanlu Wang
- Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials, Anhui Province Key Laboratory of Biomedical Materials and Chemical Measurement, College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241000, China
| | - Xianwen Kan
- Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials, Anhui Province Key Laboratory of Biomedical Materials and Chemical Measurement, College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241000, China
| |
Collapse
|
3
|
Gao X, Liu L, Jia M, Zhang H, Li X, Li J. A dual-mode fluorometric/colorimetric sensor for sulfadimethoxine detection based on Prussian blue nanoparticles and carbon dots. Mikrochim Acta 2024; 191:284. [PMID: 38652331 DOI: 10.1007/s00604-024-06358-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Accepted: 04/08/2024] [Indexed: 04/25/2024]
Abstract
A dual-mode (colorimetric/fluorescence) nanoenzyme-linked immunosorbent assay (NLISA) was developed based on Au-Cu nanocubes generating Prussian blue nanoparticles (PBNPs). It is expected that this method can be used to detect the residues of sulfonamides in the field, and solve the problem of long analysis time and high cost of the traditional method. Sulfadimethoxine (SDM) was selected as the proof-of-concept target analyte. The Au-Cu nanocubes were linked to the aptamer by amide interaction, and the Au-Cu nanocubes, SDM and antibody were immobilized on a 96-well plate using the sandwich method. The assay generates PBNPs by oxidising the Cu shells on the Au-Cu nanocubes in the presence of hydrochloric acid, Fe3+ and K3[Fe (CN)6]. In this process, the copper shell undergoes oxidation to Cu2+ and subsequently Cu2 + further quenches the fluorescence of the carbon point. PBNPs exhibit peroxidase-like activity, oxidising 3,3',5,5'-tetramethylbenzidine (TMB) to OX-TMB in the presence of H2O2, which alters the colorimetric signal. The dual-mode signals are directly proportional to the sulfadimethoxine concentration within the range 10- 3~10- 7 mg/mL. The limit of detection (LOD) of the assay is 0.023 ng/mL and 0.071 ng/mL for the fluorescent signal and the colorimetric signal, respectively. Moreover, the assay was successfully applied to determine sulfadimethoxine in silver carp, shrimp, and lamb samples with satisfactory results.
Collapse
Affiliation(s)
- Xue Gao
- College of Food Science and Technology, National & Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products. Food Safety Key Lab of Liaoning Province, Institute of Ocean Research, Bohai University, The Fresh Food Storage and Processing Technology Research Institute of Liaoning Provincial Universities, Jinzhou, Liaoning, 121013, China
| | - Lu Liu
- College of Food Science and Technology, National & Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products. Food Safety Key Lab of Liaoning Province, Institute of Ocean Research, Bohai University, The Fresh Food Storage and Processing Technology Research Institute of Liaoning Provincial Universities, Jinzhou, Liaoning, 121013, China
| | - Mu Jia
- College of Food Science and Technology, National & Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products. Food Safety Key Lab of Liaoning Province, Institute of Ocean Research, Bohai University, The Fresh Food Storage and Processing Technology Research Institute of Liaoning Provincial Universities, Jinzhou, Liaoning, 121013, China
| | - Hongmei Zhang
- College of Food Science and Technology, National & Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products. Food Safety Key Lab of Liaoning Province, Institute of Ocean Research, Bohai University, The Fresh Food Storage and Processing Technology Research Institute of Liaoning Provincial Universities, Jinzhou, Liaoning, 121013, China
| | - Xuepeng Li
- College of Food Science and Technology, National & Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products. Food Safety Key Lab of Liaoning Province, Institute of Ocean Research, Bohai University, The Fresh Food Storage and Processing Technology Research Institute of Liaoning Provincial Universities, Jinzhou, Liaoning, 121013, China.
| | - Jianrong Li
- College of Food Science and Technology, National & Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products. Food Safety Key Lab of Liaoning Province, Institute of Ocean Research, Bohai University, The Fresh Food Storage and Processing Technology Research Institute of Liaoning Provincial Universities, Jinzhou, Liaoning, 121013, China.
| |
Collapse
|
4
|
Wei J, Liu Z, Gu Q, Sun J, Jin H. A smartphone-intergrated dual-emission fluorescent nanoprobe for visual and ratiometric detection of anthrax biomarkers. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 308:123785. [PMID: 38134652 DOI: 10.1016/j.saa.2023.123785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 12/02/2023] [Accepted: 12/15/2023] [Indexed: 12/24/2023]
Abstract
A novel dual-emission fluorescent nanoprobe based on rare-earth nanosheets was fabricated to detect 2,6-pyridine dicarboxylic acid (DPA), which is the biomarker of Bacillus anthracis. 2-amino terephthalic acid (BDC-NH2) and surfactant sodium dodecyl sulfate (SDS) were co-intercalated into layered europium hydroxide (LEuH) to prepare the organic/inorganic composite, which was delaminated to obtain the rare-earth nanosheets. The ratio detection of DPA is possible due to the antenna effect between DPA and Eu3+. The nanoprobe shows high accuracy and sensitivity due to the large specific surface area of the rare-earth nanosheets. The limit of detection (LOD) is 4.4 nM for DPA in the range of 0-20 μM. In addition, a more convenient and faster smartphone-based visual detection platform was established based on the obvious color change. This work offers an effective way for developing visual sensing platforms, which opens a new path for designing fluorescent probes with superior sensing capabilities.
Collapse
Affiliation(s)
- Jiaxin Wei
- College of New Materials and Chemical Engineering, Beijing Institute of Petrochemical Technology, Beijing 102617, China; Beijing Key Laboratory of Fuels Cleaning and Advanced Catalytic Emission Reduction Technology, Beijing 102617, China
| | - Zikang Liu
- College of New Materials and Chemical Engineering, Beijing Institute of Petrochemical Technology, Beijing 102617, China; Beijing Key Laboratory of Fuels Cleaning and Advanced Catalytic Emission Reduction Technology, Beijing 102617, China
| | - Qingyang Gu
- College of New Materials and Chemical Engineering, Beijing Institute of Petrochemical Technology, Beijing 102617, China; Beijing Key Laboratory of Fuels Cleaning and Advanced Catalytic Emission Reduction Technology, Beijing 102617, China.
| | - Jia Sun
- College of New Materials and Chemical Engineering, Beijing Institute of Petrochemical Technology, Beijing 102617, China; Beijing Key Laboratory of Fuels Cleaning and Advanced Catalytic Emission Reduction Technology, Beijing 102617, China
| | - Haibo Jin
- College of New Materials and Chemical Engineering, Beijing Institute of Petrochemical Technology, Beijing 102617, China; Beijing Key Laboratory of Fuels Cleaning and Advanced Catalytic Emission Reduction Technology, Beijing 102617, China
| |
Collapse
|
5
|
Weng P, Li C, Liu Q, Tang Z, Zhou Z, Chen S, Hao Y, Xu M. A ternary nucleotide-lanthanide coordination nanoprobe for ratiometric fluorescence detection of ciprofloxacin. LUMINESCENCE 2024; 39:e4667. [PMID: 38178733 DOI: 10.1002/bio.4667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Revised: 11/25/2023] [Accepted: 12/11/2023] [Indexed: 01/06/2024]
Abstract
Ciprofloxacin (CIP) is a widely used broad-spectrum antibiotic and has been associated with various side effects, making its accurate detection crucial for patient safety, drug quality compliance, and environmental and food safety. This study presents the development of a ternary nucleotide-lanthanide coordination nanoprobe, GMP-Tb-BDC (GMP: guanosine 5'-monophosphate, BDC: 2-amino-1,4-benzenedicarboxylic acid), for the sensitive and ratiometric detection of CIP. The GMP-Tb-BDC nanoprobe was constructed by incorporating the blue-emissive ligand BDC into the Tb/GMP coordination polymers. Upon the addition of CIP, the fluorescence of terbium ion (Tb3+ ) was significantly enhanced due to the coordination and fluorescence sensitization properties of CIP, while the emission of the BDC ligand remained unchanged. The nanoprobe demonstrated good linearity in the concentration range of 0-10 μM CIP. By leveraging mobile phone software to analyze the color signals, rapid on-site analysis of CIP was achieved. Furthermore, the nanoprobe exhibited accurate analysis of CIP in actual drug and milk samples. This study showcases the potential of the GMP-Tb-BDC nanoprobe for practical applications in CIP detection.
Collapse
Affiliation(s)
- Pei Weng
- Key Laboratory of Theoretical Organic Chemistry and Functional Molecule of Ministry of Education, School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan, China
| | - Chunlan Li
- Henan Key Laboratory of Biomolecular Recognition and Sensing, Henan Joint International Research Laboratory of Chemo/Biosensing and Early Diagnosis of Major Diseases, College of Chemistry and Chemical Engineering, Shangqiu Normal University, Shangqiu, China
| | - Qiuhua Liu
- Key Laboratory of Theoretical Organic Chemistry and Functional Molecule of Ministry of Education, School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan, China
| | - Zilong Tang
- Key Laboratory of Theoretical Organic Chemistry and Functional Molecule of Ministry of Education, School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan, China
| | - Zaichun Zhou
- Key Laboratory of Theoretical Organic Chemistry and Functional Molecule of Ministry of Education, School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan, China
| | - Shu Chen
- Key Laboratory of Theoretical Organic Chemistry and Functional Molecule of Ministry of Education, School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan, China
| | - Yuanqiang Hao
- Key Laboratory of Theoretical Organic Chemistry and Functional Molecule of Ministry of Education, School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan, China
- Henan Key Laboratory of Biomolecular Recognition and Sensing, Henan Joint International Research Laboratory of Chemo/Biosensing and Early Diagnosis of Major Diseases, College of Chemistry and Chemical Engineering, Shangqiu Normal University, Shangqiu, China
| | - Maotian Xu
- Henan Key Laboratory of Biomolecular Recognition and Sensing, Henan Joint International Research Laboratory of Chemo/Biosensing and Early Diagnosis of Major Diseases, College of Chemistry and Chemical Engineering, Shangqiu Normal University, Shangqiu, China
| |
Collapse
|
6
|
Wang T, Zhang J, Wu Y, Wang S, Jiang X, Zhang Z, Li S. Smartphone-integrated ratiometric fluorescence sensing platform based on bimetallic metal-organic framework nanowires for anthrax biomarker detection. Mikrochim Acta 2023; 190:484. [PMID: 38006440 DOI: 10.1007/s00604-023-06065-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 10/21/2023] [Indexed: 11/27/2023]
Abstract
Developing an intelligent, sensitive, and visual strategy for quickly identifying anthrax biomarkers is crucial for ensuring food safety and preventing disease outbreaks. Herein, a smartphone-integrated ratiometric fluorescent sensing platform based on bimetallic metal-organic framework (Eux/Tb1-x-MOF) nanowires was designed for specific recognition of pyridine-2,6-dicarboxylic acid (DPA, anthrax biomarker). The Eux/Tb1-x-MOF was prepared by coordinating Eu3+ and Tb3+ with BBDC ligands, which exhibited a uniform fibrous morphology and dual-emission fluorescence at 543 and 614 nm. After the introduction of DPA, the red emission at 614 nm displayed obvious fluorescence quenching, while the green emission at 543 nm was gradually enhanced. The ratiometric sensing offered a wide linear equation in the range of 0.06-15 µg/mL and a low detection limit (LOD) of 20.69 ng/mL. Furthermore, a portable smartphone installing the color recognition application can achieve sensitive, real-time, and visual detection of DPA. As a simple and effective smartphone-assisted sensing platform, this work holds admirable promise to broaden the applications in biomarker real-time determinations and other fields.
Collapse
Affiliation(s)
- Ting Wang
- College of Pharmacy, Chongqing Medical University, Chongqing, 400016, China
- Department of Pharmacy, The First Affiliated Hospital of Chongqing Medical and Pharmaceutical College, Chongqing, 400060, China
| | - Jieyuan Zhang
- College of Pharmacy, Chongqing Medical University, Chongqing, 400016, China
| | - Yue Wu
- College of Pharmacy, Chongqing Medical University, Chongqing, 400016, China
| | - Shiyi Wang
- Department of Forensic Medicine, School of Basic Medical Sciences, Chongqing Medical University, Chongqing, 400016, China
| | - Xinhui Jiang
- College of Pharmacy, Chongqing Medical University, Chongqing, 400016, China
| | - Zhengwei Zhang
- College of Pharmacy, Chongqing Medical University, Chongqing, 400016, China.
| | - Siqiao Li
- Department of Forensic Medicine, School of Basic Medical Sciences, Chongqing Medical University, Chongqing, 400016, China.
| |
Collapse
|
7
|
Ma F, Deng L, Wang T, Zhang A, Yang M, Li X, Chen X. Determination of 2, 6-dipicolinic acid as an Anthrax biomarker based on the enhancement of copper nanocluster fluorescence by reversible aggregation-induced emission. Mikrochim Acta 2023; 190:291. [PMID: 37458835 DOI: 10.1007/s00604-023-05910-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 07/10/2023] [Indexed: 07/20/2023]
Abstract
The weak fluorescence efficiency of copper nanoclusters (Cu NCs) limits their wide applications in biosensing and bioimaging areas, while the aggregation-induced emission (AIE) effect is anticipated to increase their luminescence intensity. Herein, the weak red emission of Cu NCs is increased considerably by the addition of lanthanide Tb3+, ascribed to the AIE effect. Monitoring of spores contamination can be carried out by determining the level of 2, 6-dipicolinic acid (DPA), which is a marker of spores. Due to the stronger synergy between DPA and Tb3+ for its clamped configuration of adjacent pyridine nitrogen group with the carboxylic acid group, the addition of DPA leads Tb3+ to be taken away from Cu NCs through a stronger coordination effect, causing Cu NCs to return to the dispersed state and weakened fluorescence. Based on this, an "off-on-off" fluorescent probe for DPA sensing was built, in which Tb3+ was used as a bridge to achieve AIE enhanced fluorescence effect on Cu NCs as well as a specific recognizer of DPA. The detection range for DPA was 0.1-60 μM and the detection limit was 0.06 μM, which was much lower than the infectious dose of anthrax spores. Since DPA is a unique biomarker for bacterial spores, the method was applied to the detection of actual bacterial spores and satisfactory results were obtained with a detection limit of 4.9*103 CFU mL-1.
Collapse
Affiliation(s)
- Fanghui Ma
- Hunan Provincial Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, China
| | - Lei Deng
- Hunan Provincial Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, China
| | - Tingting Wang
- Hunan Provincial Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, China
| | - Aomei Zhang
- Hunan Provincial Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, China
| | - Minghui Yang
- Hunan Provincial Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, China.
- National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, Central South University, Changsha, 410083, China.
- Furong Labratory, Changsha, 410083, China.
| | - Xiaoqing Li
- National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, Central South University, Changsha, 410083, China.
- Furong Labratory, Changsha, 410083, China.
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, 410000, Hunan, China.
| | - Xiang Chen
- National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, Central South University, Changsha, 410083, China.
- Furong Labratory, Changsha, 410083, China.
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, 410000, Hunan, China.
| |
Collapse
|
8
|
Qi J, Li B, Lin D, Du Z, Fu L, Wang X, Zhang Z, Luo L, Chen L. Dual-Mode Undistorted Visual Fluorescent Sensing Strategy through Manipulating the Coffee-Ring Effect on Microfluidic Paper-Based Chip. Anal Chem 2023. [PMID: 37418553 DOI: 10.1021/acs.analchem.3c00947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/09/2023]
Abstract
To overcome the insufficient sensitivity due to distortion of the fluorescent images by mobile devices, we first developed a novel dual-mode strategy for undistorted visual fluorescent sensing on μPAD by technically manipulating the coffee-ring effect of the fluid sample. Based on the manipulating coffee-ring effect, we divided the horizontal direction of the resulting fluorescence image into 600 pixels and obtained more accurate quantitative information to avoid image distortion. The bovine serum albumin-stabilized gold nanoclusters-copper ion complex was used as the fluorescent probe, combined with a small imaging box and a smartphone, to achieve a rapid testing of histidine in human urine. The output image was analyzed in dual mode: RGB numerical analysis in pixel units and the direct measurement of the fluorescent strips length (limit of detection (LOD) is 0.021 and 0.5 mM, respectively), and improved antidistortion for visual fluorescent sensing. This strategy can overcome the distortion of a smartphone-visualized fluorescent image and shows great potential for rapid and convenient analysis.
Collapse
Affiliation(s)
- Ji Qi
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Research Centre for Coastal Environmental Engineering and Technology, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China
- Key Laboratory of Ocean Observation Technology, MNR, Tianjin 300110, China
| | - Bowei Li
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Research Centre for Coastal Environmental Engineering and Technology, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China
| | - Dong Lin
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Research Centre for Coastal Environmental Engineering and Technology, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China
| | - Zhiqiang Du
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Research Centre for Coastal Environmental Engineering and Technology, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China
| | - Longwen Fu
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Research Centre for Coastal Environmental Engineering and Technology, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China
| | - Xiaoyan Wang
- School of Pharmacy, Binzhou Medical University, Yantai 264003, China
| | - Zhiyang Zhang
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Research Centre for Coastal Environmental Engineering and Technology, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China
| | - Liqiang Luo
- College of Sciences, Shanghai University, Shanghai 200444, China
| | - Lingxin Chen
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Research Centre for Coastal Environmental Engineering and Technology, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China
- School of Pharmacy, Binzhou Medical University, Yantai 264003, China
| |
Collapse
|
9
|
Heng H, Ma D, Gu Q, Li J, Jin H, Shen P, Wei J, Wang Z. A core-shell structure ratiometric fluorescent probe based on carbon dots and Tb 3+ for the detection of anthrax biomarker. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 299:122793. [PMID: 37187145 DOI: 10.1016/j.saa.2023.122793] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 04/18/2023] [Accepted: 04/26/2023] [Indexed: 05/17/2023]
Abstract
A novel core-shell structure ratiometric fluorescent probe was developed, which can selectively and sensitively detect 2,6-dipicolinic acid (DPA) as an anthrax biomarker. Carbon dots (CDs) was embedded into SiO2 nanoparticles, which was acted as an internal reference signal. Tb3+ with green emission was connected to the carboxyl functionalized SiO2, which was acted as a responsive signal. With the addition of DPA, the emission of CDs at 340 nm was unchanged, while the fluorescence of Tb3+ at 544 nm was enhanced by the antenna effect. In the concentration range of 0.1-2 μM, the fluorescence intensity ratio of I544/I340 showed a good linear relationship with the concentration of DPA, and the limit of detection (LOD) was 10.2 nM. In addition, the dual-emission probe showed an obvious fluorescence color change from colourless to green with increasing DPA under UV light, which enabled visual detection.
Collapse
Affiliation(s)
- Hui Heng
- College of New Materials and Chemical Engineering, Beijing Institute of Petrochemical Technology, Beijing 102617, China; Beijing Key Laboratory of Fuels Cleaning and Advanced Catalytic Emission Reduction Technology, Beijing 102617, China
| | - Deming Ma
- College of New Materials and Chemical Engineering, Beijing Institute of Petrochemical Technology, Beijing 102617, China
| | - Qingyang Gu
- College of New Materials and Chemical Engineering, Beijing Institute of Petrochemical Technology, Beijing 102617, China; Beijing Key Laboratory of Fuels Cleaning and Advanced Catalytic Emission Reduction Technology, Beijing 102617, China.
| | - Jinyan Li
- College of New Materials and Chemical Engineering, Beijing Institute of Petrochemical Technology, Beijing 102617, China; Beijing Key Laboratory of Fuels Cleaning and Advanced Catalytic Emission Reduction Technology, Beijing 102617, China
| | - Haibo Jin
- College of New Materials and Chemical Engineering, Beijing Institute of Petrochemical Technology, Beijing 102617, China; Beijing Key Laboratory of Fuels Cleaning and Advanced Catalytic Emission Reduction Technology, Beijing 102617, China
| | - Ping Shen
- College of New Materials and Chemical Engineering, Beijing Institute of Petrochemical Technology, Beijing 102617, China; Beijing Key Laboratory of Fuels Cleaning and Advanced Catalytic Emission Reduction Technology, Beijing 102617, China
| | - Jiaxin Wei
- College of New Materials and Chemical Engineering, Beijing Institute of Petrochemical Technology, Beijing 102617, China; Beijing Key Laboratory of Fuels Cleaning and Advanced Catalytic Emission Reduction Technology, Beijing 102617, China
| | - Ziwei Wang
- College of New Materials and Chemical Engineering, Beijing Institute of Petrochemical Technology, Beijing 102617, China; Beijing Key Laboratory of Fuels Cleaning and Advanced Catalytic Emission Reduction Technology, Beijing 102617, China
| |
Collapse
|
10
|
Tang J, Shan Y, Jiang Y. The control of dry-out patterns using bubble-containing droplets. J Colloid Interface Sci 2023; 645:12-21. [PMID: 37130484 DOI: 10.1016/j.jcis.2023.04.077] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 04/11/2023] [Accepted: 04/18/2023] [Indexed: 05/04/2023]
Abstract
HYPOTHESIS For an evaporating nanofluid droplet that contains a bubble inside, we suspect the bubble boundary remains pinned during evaporation whereas the droplet perimeter recedes. Thus, the dry-out patterns are mainly determined by the presence of the bubble and their morphology can be tuned by the size and location of the added bubble. EXPERIMENTS Bubbles with varying base diameters and lifetimes are added into evaporating droplets that contain nanoparticles with different types, sizes, concentrations, shapes, and wettability. The geometric dimensions of the dry-out patterns are measured. FINDINGS For a droplet containing a long-lifetime bubble, a complete ring-like deposit forms, and its diameter and thickness increases and decreases with the bubble base diameter, respectively. The ring completeness, i.e., the ratio of actual ring length to its imaginary perimeter, decreases with the decrease in bubble lifetime. The pinning of droplet receding contact line by particles near the bubble perimeter has been found to be the key factor leading to ring-like deposits. This study introduces a strategy of producing ring-like deposit and allows a control of the ring morphology in a simple, cheap, and impurity-free fashion, which is applicable to various applications associated with evaporative self-assembly.
Collapse
Affiliation(s)
- Jiaxin Tang
- School of Energy and Power Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China; Department of Mechanical Engineering, Guangdong Technion - Israel Institute of Technology, Shantou, Guangdong 515063, China
| | - Yanguang Shan
- School of Energy and Power Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China.
| | - Youhua Jiang
- Department of Mechanical Engineering, Guangdong Technion - Israel Institute of Technology, Shantou, Guangdong 515063, China; Faculty of Mechanical Engineering, Technion - Israel Institute of Technology, Haifa 3200003, Israel.
| |
Collapse
|
11
|
Arroyos G, E M Campanella J, M da Silva C, C G Frem R. Detection of anthrax biomarker and metallic ions in aqueous media using spherical-shaped lanthanide infinite coordination polymers. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 286:122033. [PMID: 36283208 DOI: 10.1016/j.saa.2022.122033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 10/14/2022] [Accepted: 10/18/2022] [Indexed: 06/16/2023]
Abstract
We report a lanthanide-based infinite coordination polymer (ICP) system synthesized using pyrazole-3,5-dicarboxylic acid as linker, malonic acid as coordination modulator and water as solvent. The precursors self-assembly into microspherical particles, which are water-stable and exhibit excellent dispersibility. Bimetallic samples based on Tb3+ doped with Eu3+ were investigated as ratiometric dipicolinic acid (DPA) sensors, which is a biomarker for Bacillus anthracis spores. Along with the calibration curves, a detection in a real sample extracted from Bacillus subtilis (model organism) was performed. The samples proved to be highly sensitive and selective for ratiometric DPA detection. In a secondary study, the monometallic sample containing only Tb3+ was also investigated as a sensor for ionic species in aqueous media. The Cr3+, Fe3+, Cu2+, and Cr2O72- ionic species could be detected in water by luminescence quenching mechanism. Therefore, we found that the reported ICP system can be judiciously constructed in order to act as a multimodal probe for several chemical species.
Collapse
Affiliation(s)
- Guilherme Arroyos
- Institute of Chemistry, São Paulo State University, UNESP, Araraquara, SP 14800-060, Brazil.
| | - Jonatas E M Campanella
- Institute of Chemistry, São Paulo State University, UNESP, Araraquara, SP 14800-060, Brazil
| | - Caroline M da Silva
- Institute of Chemistry, São Paulo State University, UNESP, Araraquara, SP 14800-060, Brazil
| | - Regina C G Frem
- Institute of Chemistry, São Paulo State University, UNESP, Araraquara, SP 14800-060, Brazil
| |
Collapse
|
12
|
Europium-modified carbon nitride nanosheets for smartphone-based fluorescence sensitive recognition of anthrax biomarker dipicolinic acid. Food Chem 2023; 398:133884. [DOI: 10.1016/j.foodchem.2022.133884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 07/10/2022] [Accepted: 08/05/2022] [Indexed: 11/19/2022]
|
13
|
Xu Y, Shi X, Ran F, Zhang Z, Phipps J, Liu X, Zhang H. Differential sensitization toward lanthanide metal-organic framework for detection of an anthrax biomarker. Mikrochim Acta 2022; 190:27. [PMID: 36520274 DOI: 10.1007/s00604-022-05603-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 11/28/2022] [Indexed: 12/23/2022]
Abstract
A novel Tb-doped Eu-based metal-organic framework (Eu-MOF@Tb) has been developed by incorporating hexanuclear europium cluster and 2,2'-bipyridine-5,5'-dicarboxylic acid as well as coordination with Tb(III). Owing to the diverse coordination status of Tb(III) and Eu(III) in MOF, antenna effect emission from Tb(III) can be invoked by dipicolinic acid (DPA), but the luminescence originating from Eu(III) remains unchanged. Taking advantage of this phenomenon, a ratiometric luminescent method for detection of DPA, a biomarker for Bacillus subtilis spores, was developed through differential sensitization toward lanthanide ions. This analysis method allowed for the detection of DPA in the 0.2-10 μM concentration range, with a detection limit of 60 nM. It was further validated by spiked recoveries (89.3-110%) of real-world samples with RSD values in the range 3.9-11%. Alongside this, a paper indicator test was prepared for naked-eye detection of DPA via a dose-sensitive color evolution from red to green under UV light. The effectiveness of the proposed approach was explored in the detection of bacterial spores in real biological and environmental samples and indicated great potential for applications as a real-time monitoring system against the anthrax threat.
Collapse
Affiliation(s)
- Yixuan Xu
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metals Chemistry and Resources Utilization of Gansu Province and College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, China
| | - Xuerong Shi
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metals Chemistry and Resources Utilization of Gansu Province and College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, China
| | - Fanpeng Ran
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metals Chemistry and Resources Utilization of Gansu Province and College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, China
| | - Ziqi Zhang
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metals Chemistry and Resources Utilization of Gansu Province and College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, China
| | - Josh Phipps
- Department of Chemistry, University of North Texas, 1508 W Mulberry St, Denton, TX, 76201, USA
| | - Xiaoyan Liu
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metals Chemistry and Resources Utilization of Gansu Province and College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, China.
| | - Haixia Zhang
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metals Chemistry and Resources Utilization of Gansu Province and College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, China
| |
Collapse
|
14
|
Huo P, Li Z, Yao R, Deng Y, Gong C, Zhang D, Fan C, Pu S. Dual-ligand lanthanide metal-organic framework for ratiometric fluorescence detection of the anthrax biomarker dipicolinic acid. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 282:121700. [PMID: 35933778 DOI: 10.1016/j.saa.2022.121700] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 07/27/2022] [Accepted: 07/29/2022] [Indexed: 06/15/2023]
Abstract
Dipicolinic acid (DPA) is a unique biomarker of Bacillus anthracis. Development of a simple, fast, sensitive and timely DPA detection method is of great importance and interest for preventing mass disease outbreaks and treatment of anthrax. In this work, a novel lanthanide-doped fluorescence probe was constructed by coordination of Eu3+ with bifunctional UiO-66-(COOH)2-NH2 MOFs materials for efficient monitoring DPA. UiO-66-(COOH)2-NH2 MOFs were prepared using Zr4+ as a metal node, 1,2,4,5-benzenetetracarboxylic acid (H4BTC) and 2-aminoterephthalic acid (NH2-BDC) as bridging ligand through a simple one-pot synthesis method. By virtue their abundant carboxyl groups, UiO-66-(COOH)2-NH2 can readily grasp Eu3+ to form UiO-66-(COOH)2-NH2/Eu with coordinated water molecules at Eu sites. Upon interaction with DPA molecules, the coordinated H2O molecules were replaced by DPA molecules which transfer energy to Eu3+ in UiO-66-(COOH)2-NH2/Eu and sensitize Eu3+ luminescence. Meanwhile, DPA has a characteristic absorption band at 270 nm, which overlapped with the excitation spectrum of NH2-BDC, allowing the fluorescence of UiO-66-(COOH)2-NH2/Eu at 453 nm to be greatly quenched by DPA through inner filter effect (IFE). Therefore, the rationally designed UiO-66-(COOH)2-NH2/Eu complex not only exhibits strong hydrophilicity and high dispersion, but also serves as ratiometric fluorescence sensing platform for monitoring DPA concentration. This sensing platform showed a satisfactory linear relationship from 0.2 μM to 40 μM with a limit of detection of 25.0 nM and a noticeable fluorescence color change from blue to red, holding a great promise in practical applications.
Collapse
Affiliation(s)
- Panpan Huo
- Jiangxi Key Laboratory of Organic Chemistry, Jiangxi Science and Technology Normal University, Nanchang 330013, PR China
| | - Zhijian Li
- Jiangxi Key Laboratory of Organic Chemistry, Jiangxi Science and Technology Normal University, Nanchang 330013, PR China.
| | - Ruihong Yao
- Jiangxi Key Laboratory of Organic Chemistry, Jiangxi Science and Technology Normal University, Nanchang 330013, PR China
| | - Yonghui Deng
- Department of Chemistry, Fudan University, Shanghai 200433, PR China
| | - Congcong Gong
- Jiangxi Key Laboratory of Organic Chemistry, Jiangxi Science and Technology Normal University, Nanchang 330013, PR China
| | - Daobin Zhang
- Jiangxi Key Laboratory of Organic Chemistry, Jiangxi Science and Technology Normal University, Nanchang 330013, PR China
| | - Congbin Fan
- Jiangxi Key Laboratory of Organic Chemistry, Jiangxi Science and Technology Normal University, Nanchang 330013, PR China
| | - Shouzhi Pu
- Jiangxi Key Laboratory of Organic Chemistry, Jiangxi Science and Technology Normal University, Nanchang 330013, PR China; YuZhang Normal University, Nanchang 330013, PR China.
| |
Collapse
|
15
|
Yang M, Chen D, Hu J, Zheng X, Lin ZJ, Zhu H. The application of coffee-ring effect in analytical chemistry. Trends Analyt Chem 2022. [DOI: 10.1016/j.trac.2022.116752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
|
16
|
A ratiometric fluorescent nanoprobe based on ZIF-8@AuNCs–Tb for visual detection of 2,6-pyridinedicarboxylic acid. J RARE EARTH 2022. [DOI: 10.1016/j.jre.2021.08.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
17
|
Yu L, Feng L, Xiong L, Li S, Wang S, Wei Z, Xiao Y. Portable visual assay of Bacillus anthracis biomarker based on ligand-functionalized dual-emission lanthanide metal-organic frameworks and smartphone-integrated mini-device. JOURNAL OF HAZARDOUS MATERIALS 2022; 434:128914. [PMID: 35452990 DOI: 10.1016/j.jhazmat.2022.128914] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Revised: 04/01/2022] [Accepted: 04/11/2022] [Indexed: 06/14/2023]
Abstract
A single-functionalized ligand single-Ln3+ based dual-emission Ln-MOF fluorescent sensor was established for portable and visual dipicolinic acid (DPA, Bacillus anthracis biomarker) detection. First, a theory calculation-based prediction model was developed for designing single-functionalized ligand single-Ln3+ dual-emission Ln-MOFs. The model consisted of three calculation modules: intramolecular hydrogen bonds, excited state energy levels, and coordination stability with Ln3+ of ligands. Tb3+ and Eu3+ were selected as metal luminescence centers, PTA-X (PTA: p-phthalic acid, X = NH2, CH3, H, OH) with different functional groups as one-step functionalization ligands, and the luminescent feature of four Tb-MOFs and four Eu-MOFs was predicted with the model. Coupled with prediction results and experimental verification results, Tb-PTA-OH was rapidly determined to be the sole dual-emission Ln-MOF. Then, Tb-PTA-OH was applied to DPA detection by ratiometric fluorescence, and an ultra-low limit of detection (13.4 nM) was obtained, which is much lower than the lowest anthrax infectious dose (60 μM). A portable visual assay method based on paper-microchip and smartphone integrated mini-device was further established (limit of qualification 0.48 μM). A new sensing mechanism and a "triple gates" selectivity mechanism to DPA were proposed. This work reveals guidelines for material design and mini-device customization in detecting hazardous substances.
Collapse
Affiliation(s)
- Long Yu
- Department of Thyroid and Breast Surgery, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China; Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (Ministry of Education), Wuhan 430071, China
| | - Lixiang Feng
- Department of Thyroid and Breast Surgery, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China; Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (Ministry of Education), Wuhan 430071, China
| | - Li Xiong
- Department of Thyroid and Breast Surgery, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China; Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (Ministry of Education), Wuhan 430071, China
| | - Shuo Li
- Department of Thyroid and Breast Surgery, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China; Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (Ministry of Education), Wuhan 430071, China
| | - Shuo Wang
- Department of Thyroid and Breast Surgery, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China; Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (Ministry of Education), Wuhan 430071, China
| | - Zhongyu Wei
- Department of Thyroid and Breast Surgery, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China; Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (Ministry of Education), Wuhan 430071, China
| | - Yuxiu Xiao
- Department of Thyroid and Breast Surgery, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China; Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (Ministry of Education), Wuhan 430071, China.
| |
Collapse
|
18
|
Pham ATT, Tohl D, Wallace A, Hu Q, Li J, Reynolds KJ, Tang Y. Developing a fluorescent sensing based portable medical open-platform - a case study for albuminuria measurement in chronic kidney disease screening and monitoring. SENSING AND BIO-SENSING RESEARCH 2022. [DOI: 10.1016/j.sbsr.2022.100504] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
|
19
|
Leng X, Hao W, Yang X, Zhang Z, Li H, Ma Y, Cheng Y, Schipper D. Rapid and Reliable Excitation Wavelength-Dependent Detection of 2,6-Dipicolinic Acid Based on a Luminescent Cd(II)-Tb(III) Nanocluster. Inorg Chem 2022; 61:8484-8489. [PMID: 35610558 DOI: 10.1021/acs.inorgchem.2c00393] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A Cd(II)-Tb(III) nanocluster {[Cd10Tb9L8(OH)16(OAc)23(H2O)3][Cd10Tb9L8(OH)16(OAc)23(H2O)4]}·3H2O (1), which contains two crystallographically independent components, was constructed from a tridentate ligand (HL, 3-ethoxysalicylaldehyde). It exhibits rapid and reliable excitation wavelength-dependent luminescence response to 2,6-dipicolinic acid (DPA) [limit of detection = 0.23 nM], which is not influenced by aromatic carboxylates, amino acids, and ions. The test papers of 1 can be used to check DPA in solution. The equation IEx272nm/IEx329nm = 0.0109 × [DPA]2 + 0.106 × [DPA] + 2.39 of 1 for the luminescence response could be used to quantitatively measure the concentration of DPA in tap water. 1 displays rapid and stable luminescence response to DPA, with the sensing times shorter than 5 s and no changes for the lanthanide luminescence over 24 h.
Collapse
Affiliation(s)
- Xilong Leng
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325035, China
| | - Wenxin Hao
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325035, China
| | - Xiaoping Yang
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325035, China
| | - Zhen Zhang
- Tangshan Key Laboratory of Optoelectronic Materials, School of Physics and Technology, Tang Shan Normal University, Tangshan 063000, China
| | - Hao Li
- Institute of Theoretical and Computational Chemistry, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Yanan Ma
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325035, China
| | - Yuebo Cheng
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325035, China
| | - Desmond Schipper
- The University of Texas at Austin, Department of Chemistry and Biochemistry, 1 University Station A5300, Austin, Texas 78712, United States
| |
Collapse
|
20
|
Li J, Gu Q, Heng H, Wang Z, Jin H, He J. Rare-Earth hydroxide nanosheets based ratio fluorescence nanoprobe for dipicolinic acid detection. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 272:120969. [PMID: 35158139 DOI: 10.1016/j.saa.2022.120969] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Revised: 01/26/2022] [Accepted: 01/27/2022] [Indexed: 06/14/2023]
Abstract
We demonstrate a novel ratio fluorescence nanoprobe for dipicolinic acid (DPA) as an anthrax biomarker based on layered rare-earth hydroxide (LRH). 3-Amino-benzenesulfonic acid (AS) was intercalated into layered terbium hydroxide to form composite and then delaminated into nanosheets in formamide. The monolayer nanosheets were beneficial to expose the Ln3+ luminescence centers to the environment more completely, contributing a high sensitive detection to the environment. With the increase of DPA concentration, the emission intensity of AS kept constant which worked as a stable internal reference, while the fluorescence of Tb3+ was enhanced obviously due to the antenna effect. In the 0.05-5.0 μM concentration range, the I544/I360 fluorescence ratio changed with the DPA concentration, which exhibited a good linear relationship (R2 = 0.999) and an ultralow detection limit of 3.8 nM. In addition, the probe showed high selectivity and sensitivity to the DPA detection as an anthrax biomarker, which can be applied in real tap water with good performances. This work could extend the applications of LRH nanosheets in detection and offer an extremely effective and easy technique for detecting DPA.
Collapse
Affiliation(s)
- Jinyan Li
- College of New Materials and Chemical Engineering, Beijing Institute of Petrochemical Technology, Beijing 102617, China; Beijing Key Laboratory of Fuels Cleaning and Advanced Catalytic Emission Reduction Technology, Beijing 102617, China
| | - Qingyang Gu
- College of New Materials and Chemical Engineering, Beijing Institute of Petrochemical Technology, Beijing 102617, China; Beijing Key Laboratory of Fuels Cleaning and Advanced Catalytic Emission Reduction Technology, Beijing 102617, China.
| | - Hui Heng
- College of New Materials and Chemical Engineering, Beijing Institute of Petrochemical Technology, Beijing 102617, China; Beijing Key Laboratory of Fuels Cleaning and Advanced Catalytic Emission Reduction Technology, Beijing 102617, China
| | - Ziwei Wang
- College of New Materials and Chemical Engineering, Beijing Institute of Petrochemical Technology, Beijing 102617, China; Beijing Key Laboratory of Fuels Cleaning and Advanced Catalytic Emission Reduction Technology, Beijing 102617, China
| | - Haibo Jin
- College of New Materials and Chemical Engineering, Beijing Institute of Petrochemical Technology, Beijing 102617, China; Beijing Key Laboratory of Fuels Cleaning and Advanced Catalytic Emission Reduction Technology, Beijing 102617, China
| | - Jing He
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| |
Collapse
|
21
|
Stimulus response of HNT-CDs-Eu nano-sensor: Toward visual point-of-care monitoring of a bacterial spore biomarker with hypersensitive multi-color agarose gel based analytical device. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.128356] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
22
|
Li Y, Min Q, Wang Y, Zhuang X, Hao X, Tian C, Fu X, Luan F. A portable visual coffee ring based on carbon dot sensitized lanthanide complex coordination to detect bisphenol A in water. RSC Adv 2022; 12:7306-7312. [PMID: 35424689 PMCID: PMC8982287 DOI: 10.1039/d2ra00039c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Accepted: 02/24/2022] [Indexed: 11/21/2022] Open
Abstract
In this work, a ratiometric fluorescence sensor along with a portable coffee ring visualized detection method for bisphenol A (BPA) was developed based on carbon dots. The probe was formed by the coordination polymerization of Eu3+ and 5'-adenosine monophosphate on the surface of carbon dots containing a large number of hydroxyl and carbonyl groups. The results showed that the fluorescence intensity ratio and the concentration of BPA had a good linear relationship in a wide range of 0.1-100 μM with a detection limit of 20 nM (S/N = 3). The recoveries of the added standard BPA in water samples ranged from 91.80 to 102.7% with relative standard deviation values no more than 1.84% (n = 3). In addition, the changes of the fluorescence color of the CDs@Eu-AMP suspension with different BPA concentrations can be easily visualized under a UV lamp by the naked eye, which highlights the great potential of the coffee ring detection method for the fast and convenient monitoring of BPA in real water samples.
Collapse
Affiliation(s)
- Yixiao Li
- College of Chemistry and Chemical Engineering, Yantai University Yantai China
| | - Qi Min
- College of Chemistry and Chemical Engineering, Yantai University Yantai China
| | - Yunfei Wang
- College of Chemistry and Chemical Engineering, Yantai University Yantai China
| | - Xuming Zhuang
- College of Chemistry and Chemical Engineering, Yantai University Yantai China
| | - Xiaowen Hao
- College of Chemistry and Chemical Engineering, Yantai University Yantai China
| | - Chunyuan Tian
- College of Chemistry and Chemical Engineering, Yantai University Yantai China
| | - Xiuli Fu
- College of Chemistry and Chemical Engineering, Yantai University Yantai China
| | - Feng Luan
- College of Chemistry and Chemical Engineering, Yantai University Yantai China
| |
Collapse
|
23
|
Tb3+-xylenol orange complex-based colorimetric and luminometric dual-readout sensing platform for dipicolinic acid and metal ions. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.02.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
24
|
Niu X, Wang M, Zhang M, Cao R, Liu Z, Hao F, Sheng L, Xu H. Smart intercalation and coordination strategy to construct stable ratiometric fluorescence nanoprobes for the detection of anthrax biomarker. Inorg Chem Front 2022. [DOI: 10.1039/d2qi00957a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
L@Mg-Al-Ln-LDHs (Ln = Tb, Eu) constructed by the intercalation coordination strategy exhibited a strong and stable fluorescence reference signal and achieved reliable ratiometric detection of DPA in complex environments and actual spores.
Collapse
Affiliation(s)
- Xiaoxiao Niu
- School of Chemistry and Materials Engineering, Fuyang Normal University, Fuyang, Anhui 236037, P. R. China
| | - Meixiang Wang
- School of Chemistry and Materials Engineering, Fuyang Normal University, Fuyang, Anhui 236037, P. R. China
| | - Mengyu Zhang
- School of Chemistry and Materials Engineering, Fuyang Normal University, Fuyang, Anhui 236037, P. R. China
| | - Rui Cao
- School of Chemistry and Materials Engineering, Fuyang Normal University, Fuyang, Anhui 236037, P. R. China
| | - Zhaodi Liu
- School of Chemistry and Materials Engineering, Fuyang Normal University, Fuyang, Anhui 236037, P. R. China
| | - Fuying Hao
- School of Chemistry and Materials Engineering, Fuyang Normal University, Fuyang, Anhui 236037, P. R. China
| | - Liangquan Sheng
- School of Chemistry and Materials Engineering, Fuyang Normal University, Fuyang, Anhui 236037, P. R. China
| | - Huajie Xu
- School of Chemistry and Materials Engineering, Fuyang Normal University, Fuyang, Anhui 236037, P. R. China
| |
Collapse
|
25
|
Ouyang S, Zhang Y, Yao S, Feng L, Li P, Zhu S. The efficiency of
MSC‐based
targeted
AIE
nanoparticles for gastric cancer diagnosis and treatment: An experimental study. Bioeng Transl Med 2021; 7:e10278. [PMID: 35600644 PMCID: PMC9115694 DOI: 10.1002/btm2.10278] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 12/02/2021] [Accepted: 12/06/2021] [Indexed: 12/18/2022] Open
Abstract
Mesenchymal stem cells (MSCs), due to their tumor tropism, are strongly recruited by various solid tumors and mobilized by inflammatory signals in the tumor microenvironment. However, effective cellular uptake is critical for MSC‐based drug delivery. In this study, we synthesized a spherical copolymer, polyethylenimine–poly(ε‐caprolactone), with aggregation‐induced emission (AIE) material and the anticancer drug, paclitaxel, coloaded onto its inner core. This was followed by the addition of a transactivator of transcription (TAT) peptide, a type of cell‐penetrating peptide, to modify the nanoparticles (NPs). Finally, the MSCs were employed to carry the TAT‐modified AIE‐NPs drug to the tumor sites and assist in simultaneous cancer diagnosis and targeted tumor therapy. In vitro, the TAT‐modified AIE‐NPs showed good biocompatibility, targeting, and stability in an aqueous solution besides high drug‐loading and encapsulation efficiency. In vitro, the AIE‐NPs exhibited a controllable release under a mildly acidic environment. The in vivo and in vitro studies showed high antitumor efficacy and low cytotoxicity of the AIE‐NP drug, whereas biodistribution confirmed the tumor tropism of MSCs. To summarize, the MSC‐based AIE‐NP drugs loaded with TAT possessed good biocompatibility and high antitumor efficacy via the enhanced NP‐drug uptake. In addition, the tumor tropism of MSCs provided selective drug uptake by the tumor cells and thus reduced the systemic side effects.
Collapse
Affiliation(s)
- Sushan Ouyang
- Department of Gastroenterology and Hepatology The First Affiliated Hospital of Sun Yat‐sen University Guangzhou China
| | - Yi Zhang
- Department of Hepatobiliary Surgery The Third Affiliated Hospital of Sun Yat‐sen University Guangzhou China
| | - Sheng Yao
- Department of Gastroenterology and Hepatology The First Affiliated Hospital of Sun Yat‐sen University Guangzhou China
- Department of Gastroenterology The Second Affiliated Hospital of Zhejiang University School of Medicine Hangzhou China
| | - Longbao Feng
- Beogene Biotech (Guangzhou) Co., Ltd. Guangzhou China
| | - Ping Li
- Department of Gastroenterology and Hepatology The First Affiliated Hospital of Sun Yat‐sen University Guangzhou China
| | - Senlin Zhu
- Department of Gastroenterology and Hepatology The First Affiliated Hospital of Sun Yat‐sen University Guangzhou China
| |
Collapse
|
26
|
Abstract
Bacillus anthracis, present in two forms of vegetative cells and spores, is a pathogen that infects humans through contact with infected animals or contaminated animal products and is also maliciously used in terrorist acts. Therefore, a rapid and sensitive test for B. anthracis is necessary but challenging. The challenge comes from the following aspects: an accurate distinction of B. anthracis from other Bacillus species due to their high genomic similarity and the horizontal gene transfer between Bacillus members; direct detection of the B. anthracis spores without damaging them for component extraction to avoid the risk of spore atomization; and the rapid detections of B. anthracis in complex samples, such as soil and suspicious powders, without sample pretreatments and expensive large-scale equipment. Although culturing B. anthracis from samples is the conventional method for the detection of B. anthracis, it is time-consuming and the detection results would not be easy to interpret because many Bacillus species share similar phenotypic features such as a lack of motility and hemolysis, resistance to gamma phages, and so on. Intensive and extensive effort has been expended to develop reliable detection technologies, among which biosensors exhibit comprehensive advantages in terms of sensitivity, specificity, and portability. Here, we briefly review the research progress, providing highlights of the latest achievements and our own practice and experience. The contents can be summarized in three aspects: the discovery of detection targets, including genes, toxins, and other components; the creation of molecular recognition elements, such as monoclonal antibodies, single-chain antibody fragments, specific peptides, and aptamers; and the design and construction of biosensing systems by the integration of appropriate molecular recognition elements and transducer devices. These sensor devices have their own characteristics and different principles. For example, the surface plasmon resonance biosensor and quartz crystal microbalance biosensor are very sensitive, while the multiplex PCR-on-a-chip can detect multitargets. Biosensors for direct spore detection are highly recommended because they are not only fast but also avoid contamination from aerosol-containing spores. The introduction of nanotechnology has significantly improved the performance of biosensors. Superparamagnetic nanoparticles and phage-displayed gold nanoparticle ligand peptides have made the results of spore detection visible to the naked eye. Because of space constraints, many advanced biosensors for B. anthracis are not described in detail but are cited as references. Although biosensors provide a variety of options for various application scenarios, the challenges have not been fully addressed, which leaves room for the development of more advanced and practical B. anthracis detection means.
Collapse
Affiliation(s)
- Dian-Bing Wang
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Meng-Meng Cui
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Min Li
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Xian-En Zhang
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
- Faculty of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| |
Collapse
|
27
|
Arroyos G, da Silva CM, Theodoroviez LB, Campanella JEM, Frem RCG. Insights on Luminescent Micro- and Nanospheres of Infinite Coordination Polymers. Chemistry 2021; 28:e202103104. [PMID: 34582106 DOI: 10.1002/chem.202103104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Indexed: 11/12/2022]
Abstract
Coordination polymers have been extensively studied in recent years. Some of these materials can exhibit several properties such as permanent porosity, high surface area, thermostability and light emission, as well as open sites for chemical functionalization. Concerning the fact that this kind of compounds are usually solids, the size and morphology of the particles are important parameters when an application is desired. Inside this context, there is a subclass of coordination polymers, named infinite coordination polymers (ICPs), which auto-organize as micro- or nanoparticles with low crystallinity. Specifically, the particles exhibiting spherical shapes and reduced sizes can be better dispersed, enter cells much easier than bulk crystals and be converted to inorganic materials by topotactic transformation. Luminescent ICPs, in particular, can find applications in several areas, such as sensing probes, light-emitting devices and bioimaging. In this review, we present the state-of-the-art of ICP-based spherical particles, including the growth mechanisms, some applications for luminescent ICPs and the challenges to overcome in future commercial usage of these materials.
Collapse
Affiliation(s)
- Guilherme Arroyos
- Institute of Chemistry of Araraquara, São Paulo State University - Unesp, 14800-025, Araraquara SP, Brazil
| | - Caroline M da Silva
- Institute of Chemistry of Araraquara, São Paulo State University - Unesp, 14800-025, Araraquara SP, Brazil
| | - Lucas B Theodoroviez
- Institute of Chemistry of Araraquara, São Paulo State University - Unesp, 14800-025, Araraquara SP, Brazil
| | - Jonatas E M Campanella
- Institute of Chemistry of Araraquara, São Paulo State University - Unesp, 14800-025, Araraquara SP, Brazil
| | - Regina C G Frem
- Institute of Chemistry of Araraquara, São Paulo State University - Unesp, 14800-025, Araraquara SP, Brazil
| |
Collapse
|
28
|
Qiu P, Yuan P, Deng Z, Su Z, Bai Y, He J. One-pot facile synthesis of enzyme-encapsulated Zn/Co-infinite coordination polymer nanospheres as a biocatalytic cascade platform for colorimetric monitoring of bacteria viability. Mikrochim Acta 2021; 188:322. [PMID: 34487260 DOI: 10.1007/s00604-021-04981-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Accepted: 08/09/2021] [Indexed: 12/27/2022]
Abstract
A rapid method for colorimetric monitoring of bacterial viability is described. The colorimetric method was carried out based on glucose oxidase-encapsulated Zn/Co-infinite coordination polymer (Zn/Co-ICP@GOx), which was prepared in aqueous solution free of toxic organic solvents at room temperature. The Zn/Co-ICP@GOx was confirmed to be a robust sphere structure with an average diameter of 147.53 ± 20.40 nm. It integrated the catalytic activity of natural enzyme (GOx) and mimetic peroxidase (Co (П)) all in one, efficiently acting as a biocatalytic cascade platform for glucose catalytic reaction. Exhibiting good multi-enzyme catalytic activity, stability, and selectivity, Zn/Co-ICP@GOx can be used for colorimetric glucose detection. The linear range was 0.01-1.0 mmol/L, and the limit of detection (LOD) was 0.005 mmol/L. As the glucose metabolism is a common expression of bacteria, the remaining glucose can indirectly represent the bacterial viability. Hence, a Zn/Co-ICP@GOx-based colorimetric method was developed for monitoring of bacterial viability. The color was intuitively observed with the naked eye, and the bacterial viability was accurately quantified by measurement of the absorbance at 510 nm. The method was applied to determination of bacterial viability in water and milk samples with recoveries of 99.0-103% and RSD of 0.43-7.5%. The method was rapid (less than 40 min) and applicable to different bacterial species irrespective of Gram-positive and Gram-negative bacteria, providing a universal and promising strategy for real-time monitoring of bacterial viability.
Collapse
Affiliation(s)
- Peipei Qiu
- Guangdong Provincial Engineering Research Center of Public Health Detection and Assessment, Guangdong Pharmaceutical University, Guangzhou, 510310, China
| | - Ping Yuan
- Guangdong Provincial Engineering Research Center of Public Health Detection and Assessment, Guangdong Pharmaceutical University, Guangzhou, 510310, China
| | - Zhichen Deng
- Guangdong Provincial Engineering Research Center of Public Health Detection and Assessment, Guangdong Pharmaceutical University, Guangzhou, 510310, China
| | - Zhengquan Su
- Guangdong Engineering Research Center of Natural Products and New Drugs, Guangdong Provincial University Engineering Technology Research Center of Natural Products and Drugs, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Yan Bai
- Guangdong Provincial Engineering Research Center of Public Health Detection and Assessment, Guangdong Pharmaceutical University, Guangzhou, 510310, China.
| | - Jincan He
- Guangdong Provincial Engineering Research Center of Public Health Detection and Assessment, Guangdong Pharmaceutical University, Guangzhou, 510310, China.
| |
Collapse
|
29
|
Pham ATT, Wallace A, Zhang X, Tohl D, Fu H, Chuah C, Reynolds KJ, Ramsey C, Tang Y. Optical-Based Biosensors and Their Portable Healthcare Devices for Detecting and Monitoring Biomarkers in Body Fluids. Diagnostics (Basel) 2021; 11:diagnostics11071285. [PMID: 34359368 PMCID: PMC8307945 DOI: 10.3390/diagnostics11071285] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 07/06/2021] [Accepted: 07/14/2021] [Indexed: 12/11/2022] Open
Abstract
The detection and monitoring of biomarkers in body fluids has been used to improve human healthcare activities for decades. In recent years, researchers have focused their attention on applying the point-of-care (POC) strategies into biomarker detection. The evolution of mobile technologies has allowed researchers to develop numerous portable medical devices that aim to deliver comparable results to clinical measurements. Among these, optical-based detection methods have been considered as one of the common and efficient ways to detect and monitor the presence of biomarkers in bodily fluids, and emerging aggregation-induced emission luminogens (AIEgens) with their distinct features are merging with portable medical devices. In this review, the detection methodologies that use optical measurements in the POC systems for the detection and monitoring of biomarkers in bodily fluids are compared, including colorimetry, fluorescence and chemiluminescence measurements. The current portable technologies, with or without the use of smartphones in device development, that are combined with optical biosensors for the detection and monitoring of biomarkers in body fluids, are also investigated. The review also discusses novel AIEgens used in the portable systems for the detection and monitoring of biomarkers in body fluid. Finally, the potential of future developments and the use of optical detection-based portable devices in healthcare activities are explored.
Collapse
Affiliation(s)
- Anh Tran Tam Pham
- Australia-China Science and Research Fund Joint Research Centre for Personal Health Technologies, Flinders University, Tonsley, SA 5042, Australia; (A.T.T.P.); (A.W.); (X.Z.); (D.T.); (H.F.); (K.J.R.); (C.R.)
- Medical Device Research Institute, Flinders University, Tonsley, SA 5042, Australia;
| | - Angus Wallace
- Australia-China Science and Research Fund Joint Research Centre for Personal Health Technologies, Flinders University, Tonsley, SA 5042, Australia; (A.T.T.P.); (A.W.); (X.Z.); (D.T.); (H.F.); (K.J.R.); (C.R.)
- Medical Device Research Institute, Flinders University, Tonsley, SA 5042, Australia;
| | - Xinyi Zhang
- Australia-China Science and Research Fund Joint Research Centre for Personal Health Technologies, Flinders University, Tonsley, SA 5042, Australia; (A.T.T.P.); (A.W.); (X.Z.); (D.T.); (H.F.); (K.J.R.); (C.R.)
- Medical Device Research Institute, Flinders University, Tonsley, SA 5042, Australia;
| | - Damian Tohl
- Australia-China Science and Research Fund Joint Research Centre for Personal Health Technologies, Flinders University, Tonsley, SA 5042, Australia; (A.T.T.P.); (A.W.); (X.Z.); (D.T.); (H.F.); (K.J.R.); (C.R.)
- Medical Device Research Institute, Flinders University, Tonsley, SA 5042, Australia;
| | - Hao Fu
- Australia-China Science and Research Fund Joint Research Centre for Personal Health Technologies, Flinders University, Tonsley, SA 5042, Australia; (A.T.T.P.); (A.W.); (X.Z.); (D.T.); (H.F.); (K.J.R.); (C.R.)
- Medical Device Research Institute, Flinders University, Tonsley, SA 5042, Australia;
| | - Clarence Chuah
- Medical Device Research Institute, Flinders University, Tonsley, SA 5042, Australia;
| | - Karen J. Reynolds
- Australia-China Science and Research Fund Joint Research Centre for Personal Health Technologies, Flinders University, Tonsley, SA 5042, Australia; (A.T.T.P.); (A.W.); (X.Z.); (D.T.); (H.F.); (K.J.R.); (C.R.)
- Medical Device Research Institute, Flinders University, Tonsley, SA 5042, Australia;
| | - Carolyn Ramsey
- Australia-China Science and Research Fund Joint Research Centre for Personal Health Technologies, Flinders University, Tonsley, SA 5042, Australia; (A.T.T.P.); (A.W.); (X.Z.); (D.T.); (H.F.); (K.J.R.); (C.R.)
- Medical Device Research Institute, Flinders University, Tonsley, SA 5042, Australia;
| | - Youhong Tang
- Australia-China Science and Research Fund Joint Research Centre for Personal Health Technologies, Flinders University, Tonsley, SA 5042, Australia; (A.T.T.P.); (A.W.); (X.Z.); (D.T.); (H.F.); (K.J.R.); (C.R.)
- Medical Device Research Institute, Flinders University, Tonsley, SA 5042, Australia;
- Correspondence: ; Tel.: +61-8-8201-2138
| |
Collapse
|
30
|
Huang C, Luo Y, Li J, Liu C, Zhou T, Deng J. pH-Regulated H 4TCPE@Eu/AMP ICP Sensor Array and Its Fingerprinting on Test Papers: Toward Point-of-Use Systematic Analysis of Environmental Antibiotics. Anal Chem 2021; 93:9183-9192. [PMID: 34164990 DOI: 10.1021/acs.analchem.1c01214] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
In this work, 1,1,2,2-tetra(4-carboxylphenyl)ethylene (H4TCPE) was selected as the guest and incorporated into a Eu/AMP ICP host to establish a "lab-on-an-AIE@Ln/ICP" sensor array for identifying and sensing environmental antibiotics simultaneously. First, on the basis of a theoretical study of the antenna effect and reductive photoinduced charge transfer between the as-prepared H4TCPE@Eu/AMP ICPs and antibiotics, respectively, the response from the sensitized time-resolved fluorescence of the host and the unique aggregation-induced emission (AIE) of the guest were selected as the main sensing elements for the sensor array. With the regulation of pH, the diverse fluorescence responses for antibiotics with either structural differences (flumequine, oxytetracycline, and sulfadiazine) or structural similarities (oxytetracycline, tetracycline, and doxycycline) were recorded and processed by principal component analysis; systematic analysis of environmental antibiotics was therefore realized. Encouraged by the superior anti-aggregation-caused quenching effect of H4TCPE@Eu/AMP ICPs on the test strip, the distinct fluorescence color changes of the "lab-on-an-AIE@Ln/ICP" sensor array were further explored with the aid of smartphones. The fingerprinting pattern of the sensor array on test paper eventually holds great potential for the point-of-use systematic analysis of environmental antibiotics even in complicated real samples.
Collapse
Affiliation(s)
- Chunyu Huang
- School of Ecological and Environmental Sciences, Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, Shanghai Key Lab for Urban Ecological Process and Eco-Restoration, East China Normal University, Shanghai 200241, China.,Institute of Eco-Chongming, 3663 Zhongshan Road, Shanghai 200062, China
| | - Yuxin Luo
- School of Ecological and Environmental Sciences, Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, Shanghai Key Lab for Urban Ecological Process and Eco-Restoration, East China Normal University, Shanghai 200241, China.,Institute of Eco-Chongming, 3663 Zhongshan Road, Shanghai 200062, China
| | - Jiacheng Li
- School of Ecological and Environmental Sciences, Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, Shanghai Key Lab for Urban Ecological Process and Eco-Restoration, East China Normal University, Shanghai 200241, China.,Institute of Eco-Chongming, 3663 Zhongshan Road, Shanghai 200062, China
| | - Chang Liu
- School of Ecological and Environmental Sciences, Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, Shanghai Key Lab for Urban Ecological Process and Eco-Restoration, East China Normal University, Shanghai 200241, China.,Institute of Eco-Chongming, 3663 Zhongshan Road, Shanghai 200062, China
| | - Tianshu Zhou
- School of Ecological and Environmental Sciences, Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, Shanghai Key Lab for Urban Ecological Process and Eco-Restoration, East China Normal University, Shanghai 200241, China.,Institute of Eco-Chongming, 3663 Zhongshan Road, Shanghai 200062, China
| | - Jingjing Deng
- School of Ecological and Environmental Sciences, Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, Shanghai Key Lab for Urban Ecological Process and Eco-Restoration, East China Normal University, Shanghai 200241, China.,Institute of Eco-Chongming, 3663 Zhongshan Road, Shanghai 200062, China
| |
Collapse
|
31
|
Cheng S, Hou D, Li C, Liu S, Zhang C, Kong Q, Ye M, Wu S, Xian Y. Dual‐Ligand Functionalized Ag
2
S Quantum Dots for Turn‐On Detection of Lead (II) Ions in Mineral Samples Based on Aggregation‐Induced Enhanced Emission. ChemistrySelect 2021. [DOI: 10.1002/slct.202100654] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Shasha Cheng
- Department of Chemistry School of Chemistry and Molecular Engineering East China Normal University Shanghai 200241 China (“T” should be deleted
| | - Dongyan Hou
- Department of Chemistry School of Chemistry and Molecular Engineering East China Normal University Shanghai 200241 China (“T” should be deleted
| | - Chen Li
- Technical Center for Industrial Product and Raw Material Inspection and Testing of Shanghai Customs Shanghai 200135 China
| | - Shu Liu
- Technical Center for Industrial Product and Raw Material Inspection and Testing of Shanghai Customs Shanghai 200135 China
| | - Cuiling Zhang
- Department of Chemistry School of Chemistry and Molecular Engineering East China Normal University Shanghai 200241 China (“T” should be deleted
| | - Qianqian Kong
- Department of Chemistry School of Chemistry and Molecular Engineering East China Normal University Shanghai 200241 China (“T” should be deleted
| | - Mingqiang Ye
- Department of Chemistry School of Chemistry and Molecular Engineering East China Normal University Shanghai 200241 China (“T” should be deleted
| | - Shan Wu
- Department of Chemistry School of Chemistry and Molecular Engineering East China Normal University Shanghai 200241 China (“T” should be deleted
| | - Yuezhong Xian
- Department of Chemistry School of Chemistry and Molecular Engineering East China Normal University Shanghai 200241 China (“T” should be deleted
| |
Collapse
|
32
|
Wang ZX, Hu L, Gao YF, Kong FY, Li HY, Zhu J, Fang HL, Wang W. Aggregation-Induced Emission Behavior of Dual-NIR-Emissive Zinc-Doped Carbon Nanosheets for Ratiometric Anthrax Biomarker Detection. ACS APPLIED BIO MATERIALS 2020; 3:9031-9042. [DOI: 10.1021/acsabm.0c01260] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- Zhong-Xia Wang
- School of Chemistry and Chemical Engineering, Yancheng Institute of Technology, Yancheng 224051, P.R. China
| | - Lei Hu
- School of Chemistry and Chemical Engineering, Yancheng Institute of Technology, Yancheng 224051, P.R. China
| | - Yuan-Fei Gao
- School of Chemistry and Chemical Engineering, Yancheng Institute of Technology, Yancheng 224051, P.R. China
| | - Fen-Ying Kong
- School of Chemistry and Chemical Engineering, Yancheng Institute of Technology, Yancheng 224051, P.R. China
| | - Heng-Ye Li
- School of Chemistry and Chemical Engineering, Yancheng Institute of Technology, Yancheng 224051, P.R. China
| | - Jing Zhu
- School of Chemistry and Chemical Engineering, Yancheng Institute of Technology, Yancheng 224051, P.R. China
| | - Hai-Lin Fang
- School of Chemistry and Chemical Engineering, Yancheng Institute of Technology, Yancheng 224051, P.R. China
| | - Wei Wang
- School of Chemistry and Chemical Engineering, Yancheng Institute of Technology, Yancheng 224051, P.R. China
| |
Collapse
|