1
|
Li X, Han D, Li X, Zhou C, Shen B, Wei H, Lou Q, Liu C, Chen T. PdPtCu mesoporous nanocube-based electrochemical sandwich immunosensor for detection of HIV-p24. Bioelectrochemistry 2025; 161:108819. [PMID: 39307075 DOI: 10.1016/j.bioelechem.2024.108819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 09/08/2024] [Accepted: 09/13/2024] [Indexed: 12/08/2024]
Abstract
The construction of simple, stable, low-cost and reproducible enzyme-free electrochemical biosensors can effectively avoid the problem of signal attenuation caused by enzyme inactivation. Hererin, we prepared a novel nanoenzymes PdPtCu mesoporous nanocubes (MNCs) to construct a label-free sandwich electrochemical immunosensor for the highly sensitivity detection of HIV-p24. PdPtCu MNCs have excellent peroxidase activity against hydrogen peroxide (H2O2) due to their synergistic ternary composition, large surface area and ability to penetrate mesoporous channels. Moreover, highly conductive and biocompatible gold nanoparticles@graphene oxide (AuNPs@GO) was introduced as a substrate to modify a glassy carbon electrode (GCE). Owing to the excellent electrochemical performance of the PdPtCu MNCs and AuNPs@GO, the developed immunosensors exhibited a good linear response from 0.04 pg/mL to 100 ng/mL with a low detection limit of 20 fg/mL. In addition, the established method exhibited excellent practical performance in human serum. This novel strategy provides a promising platform for ultrasensitive detection of the HIV-p24 in the field of clinical diagnostics.
Collapse
Affiliation(s)
- Xin Li
- Department of Laboratory Medicine, Chongqing Jiangjin District Hospital of Traditional Chinese Medicine, Chongqing 402284, China; Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, China
| | - Daobin Han
- Department of Laboratory Medicine, Second Hospital of Shandong University, Shandong 250033, China
| | - Xinmin Li
- Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, China
| | - Chunjie Zhou
- Department of Laboratory Medicine, Chongqing Jiangjin District Hospital of Traditional Chinese Medicine, Chongqing 402284, China
| | - Bo Shen
- Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, China
| | - Honglu Wei
- Department of Laboratory Medicine, The Fifth People's Hospital of Chongqing, Chongqing 400062, China
| | - Qian Lou
- Department of Laboratory Medicine, The Fifth People's Hospital of Chongqing, Chongqing 400062, China
| | - Changjin Liu
- Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, China; Department of Laboratory Medicine, The Fifth People's Hospital of Chongqing, Chongqing 400062, China.
| | - Tingmei Chen
- Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, China.
| |
Collapse
|
2
|
Zhao J, Guo J, Li J, Zhao C, Gao Z, Song YY, Li X. Wood membrane: A sustainable electrochemical platform for enzyme-free and pretreatment-free monitoring uric acid in bodily fluids. Anal Chim Acta 2025; 1336:343522. [PMID: 39788675 DOI: 10.1016/j.aca.2024.343522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Revised: 11/27/2024] [Accepted: 12/02/2024] [Indexed: 01/12/2025]
Abstract
The detection of biomarkers is crucial for assessing disease status and progression. Uric acid (UA), a common biomarker in body fluids, plays an important role in the diagnosis and monitoring of conditions such as hyperuricemia, chronic kidney disease, and cardiovascular disease. However, the low concentration of UA in non-invasive body fluids, combined with numerous interfering substances, makes its detection challenging. Therefore, there is a pressing need to develop advanced sensor platforms that exhibit both high sensitivity and excellent specificity for accurate monitoring of UA levels in various body fluids. In this study, an electrochemical sensing system is developed by integrating a cascade interference-removal zone and a target-response zone on a wooden channel membrane (CM) for the pretreatment-free detection of UA in body fluids. In this design, cysteine-doped ZIF-67(Co) nanocrystals, a mimic with multi-enzyme activity, are modified in the interference-removal zone. The target-response zone on the other side of the CM is contacted with a solution containing Fe3+ and [Fe(CN)6]3- ions. Using saliva as a proof-of-concept, the interference species, including ascorbic acid (AA), dopamine (DA), and glutathione (GSH), are oxidized and removed when passing through the interference-removal zone, while UA reaches the target-response zone and triggers the growth of Prussian blue (PB) on site. Utilizing the peroxidase-like activity of PB, UA concentration is directly determined based on changes in transmembrane ion currents. The resulting sensing system exhibits higher sensitivity than commercial UA meters and demonstrates straightforward, continuous, and non-invasive monitoring of UA in saliva after consuming purine-rich foods. The technology provides a simple, reliable and low-cost device for sensing UA in complex biological matrices. Moreover, the CM based sensing device also provides the benefit of being incineratable and biodegradable, reducing medical and electronic waste, making it eco-friendly for daily diagnostics.
Collapse
Affiliation(s)
- Junjian Zhao
- Department of Chemistry, College of Science, Northeastern University, Shenyang, 110819, China; Department of Pharmacy, Shenyang Medical College, Shenyang, 110034, China
| | - Junli Guo
- Department of Chemistry, College of Science, Northeastern University, Shenyang, 110819, China
| | - Junhan Li
- Department of Chemistry, College of Science, Northeastern University, Shenyang, 110819, China
| | - Chenxi Zhao
- School of Forensic Medicine, China Medical University, No.77 Puhe Road, Shenyang, Liaoning, 110122, China
| | - Zhida Gao
- Department of Chemistry, College of Science, Northeastern University, Shenyang, 110819, China
| | - Yan-Yan Song
- Department of Chemistry, College of Science, Northeastern University, Shenyang, 110819, China.
| | - Xiaona Li
- School of Forensic Medicine, China Medical University, No.77 Puhe Road, Shenyang, Liaoning, 110122, China.
| |
Collapse
|
3
|
Ashrafi AM, Mukherjee A, Saadati A, Matysik FM, Richtera L, Adam V. Enhancing the substrate selectivity of enzyme mimetics in biosensing and bioassay: Novel approaches. Adv Colloid Interface Sci 2024; 331:103233. [PMID: 38924801 DOI: 10.1016/j.cis.2024.103233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 06/06/2024] [Accepted: 06/10/2024] [Indexed: 06/28/2024]
Abstract
A substantial development in nanoscale materials possessing catalytic activities comparable with natural enzymes has been accomplished. Their advantages were owing to the excellent sturdiness in an extreme environment, possibilities of their large-scale production resulting in higher profitability, and easy manipulation for modification. Despite these advantages, the main challenge for artificial enzyme mimetics is the lack of substrate selectivity where natural enzymes flourish. This review addresses this vital problem by introducing substrate selectivity strategies to three classes of artificial enzymes: molecularly imprinted polymers, nanozymes (NZs), and DNAzymes. These rationally designed strategies enhance the substrate selectivity and are discussed and exemplified throughout the review. Various functional mechanisms associated with applying enzyme mimetics in biosensing and bioassays are also given. Eventually, future directives toward enhancing the substrate selectivity of biomimetics and related challenges are discussed and evaluated based on their efficiency and convenience in biosensing and bioassays.
Collapse
Affiliation(s)
- Amir M Ashrafi
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, CZ-613 00 Brno, Czech Republic; Institute of Photonics and Electronics, Czech Academy of Sciences, Prague, Czech Republic.
| | - Atripan Mukherjee
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, CZ-613 00 Brno, Czech Republic; ELI Beamlines Facility, The Extreme Light Infrastructure ERIC, Za Radnici 835, 252 41 Dolni Brezany, Czech Republic.
| | - Arezoo Saadati
- Central European Institute of Technology, Brno University of Technology, Purkynova 123, CZ-612 00 Brno, Czech Republic.
| | - Frank-Michael Matysik
- Institute of Analytical Chemistry, Chemo- and Biosensors, University Regensburg, 93053 Regensburg, Germany.
| | - Lukas Richtera
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, CZ-613 00 Brno, Czech Republic.
| | - Vojtech Adam
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, CZ-613 00 Brno, Czech Republic.
| |
Collapse
|
4
|
Shahid S, Khan A, Shahid W, Rehan M, Asif R, Nisar H, Kanwal Q, Choi JR. Nanoenzymes: A Radiant Hope for the Early Diagnosis and Effective Treatment of Breast and Ovarian Cancers. Int J Nanomedicine 2024; 19:5813-5835. [PMID: 38895143 PMCID: PMC11184228 DOI: 10.2147/ijn.s460712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 04/16/2024] [Indexed: 06/21/2024] Open
Abstract
Breast and ovarian cancers, despite having chemotherapy and surgical treatment, still have the lowest survival rate. Experimental stages using nanoenzymes/nanozymes for ovarian cancer diagnosis and treatment are being carried out, and correspondingly the current treatment approaches to treat breast cancer have a lot of adverse side effects, which is the reason why researchers and scientists are looking for new strategies with less side effects. Nanoenzymes have intrinsic enzyme-like activities and can reduce the shortcomings of naturally occurring enzymes due to the ease of storage, high stability, less expensive, and enhanced efficiency. In this review, we have discussed various ways in which nanoenzymes are being used to diagnose and treat breast and ovarian cancer. For breast cancer, nanoenzymes and their multi-enzymatic properties can control the level of reactive oxygen species (ROS) in cells or tissues, for example, oxidase (OXD) and peroxidase (POD) activity can be used to generate ROS, while catalase (CAT) or superoxide dismutase (SOD) activity can scavenge ROS. In the case of ovarian cancer, most commonly nanoceria is being investigated, and also when folic acid is combined with nanoceria there are additional advantages like inhibition of beta galactosidase. Nanocarriers are also used to deliver small interfering RNA that are effective in cancer treatment. Studies have shown that iron oxide nanoparticles are actively being used for drug delivery, similarly ferritin carriers are used for the delivery of nanozymes. Hypoxia is a major factor in ovarian cancer, therefore MnO2-based nanozymes are being used as a therapy. For cancer diagnosis and screening, nanozymes are being used in sonodynamic cancer therapy for cancer diagnosis and screening, whereas biomedical imaging and folic acid gold particles are also being used for image guided treatments. Nanozyme biosensors have been developed to detect ovarian cancer. This review article summarizes a detailed insight into breast and ovarian cancers in light of nanozymes-based diagnostic and therapeutic approaches.
Collapse
Affiliation(s)
- Samiah Shahid
- Research Centre for Health Sciences (RCHS), The University of Lahore, Lahore, Pakistan
- Institute of Molecular Biology and Biotechnology (IMBB), The University of Lahore, Lahore, Pakistan
| | - Ayesha Khan
- Research Centre for Health Sciences (RCHS), The University of Lahore, Lahore, Pakistan
| | - Wajeehah Shahid
- Department of Physics, The University of Lahore, Lahore, Pakistan
| | - Mehvesh Rehan
- Institute of Molecular Biology and Biotechnology (IMBB), The University of Lahore, Lahore, Pakistan
| | - Roha Asif
- Research Centre for Health Sciences (RCHS), The University of Lahore, Lahore, Pakistan
| | - Haseeb Nisar
- School of Life Sciences, University of Management and Technology, Lahore, Pakistan
| | - Qudsia Kanwal
- Department of Chemistry, The University of Lahore, Lahore, Pakistan
| | - Jeong Ryeol Choi
- School of Electronic Engineering, Kyonggi University, Suwon, Kyeonggi-do, 16227, Republic of Korea
| |
Collapse
|
5
|
Zhao J, Wang Z, Yang M, Guo J, Gao Z, Song P, Song YY. Pore-Forming Toxin-Driven Recovery of Peroxidase-Mimicking Activity in Biomass Channels for Label-Free Electrochemical Bacteria Sensing. Anal Chem 2024; 96:7661-7668. [PMID: 38687969 DOI: 10.1021/acs.analchem.4c00589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2024]
Abstract
The development of sensitive, selective, and rapid methods to detect bacteria in complex media is essential to ensuring human health. Virulence factors, particularly pore-forming toxins (PFTs) secreted by pathogenic bacteria, play a crucial role in bacterial diseases and serve as indicators of disease severity. In this study, a nanochannel-based label-free electrochemical sensing platform was developed for the detection of specific pathogenic bacteria based on their secreted PFTs. In this design, wood substrate channels were functionalized with a Fe-based metal-organic framework (FeMOF) and then protected with a layer of phosphatidylcholine (PC)-based phospholipid membrane (PM) that serves as a peroxidase mimetic and a channel gatekeeper, respectively. Using Staphylococcus aureus (S. aureus) as the model bacteria, the PC-specific PFTs secreted by S. aureus perforate the PM layer. Now exposed to the FeMOF, uncharged 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonate) (ABTS) molecules in the electrolyte undergo oxidation to cationic products (ABTS•+). The measured transmembrane ionic current indicates the presence of S. aureus and methicillin-resistant S. aureus (MRSA) with a low detection limit of 3 cfu mL-1. Besides excellent specificity, this sensing approach exhibits satisfactory performance for the detection of target bacteria in the complex media of food.
Collapse
Affiliation(s)
- Junjian Zhao
- Department of Chemistry, College of Science, Northeastern University, Shenyang 110819, China
| | - Zirui Wang
- Department of Chemistry, College of Science, Northeastern University, Shenyang 110819, China
| | - Mei Yang
- Department of Chemistry, College of Science, Northeastern University, Shenyang 110819, China
| | - Junli Guo
- Department of Chemistry, College of Science, Northeastern University, Shenyang 110819, China
- Foshan Graduate School of Innovation, Northeastern University, Foshan 528311, China
| | - Zhida Gao
- Department of Chemistry, College of Science, Northeastern University, Shenyang 110819, China
| | - Pei Song
- Central Laboratory, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua 321000, China
| | - Yan-Yan Song
- Department of Chemistry, College of Science, Northeastern University, Shenyang 110819, China
| |
Collapse
|
6
|
Yang Z, Guo J, Wang L, Zhang J, Ding L, Liu H, Yu X. Nanozyme-Enhanced Electrochemical Biosensors: Mechanisms and Applications. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2307815. [PMID: 37985947 DOI: 10.1002/smll.202307815] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 10/22/2023] [Indexed: 11/22/2023]
Abstract
Nanozymes, as innovative materials, have demonstrated remarkable potential in the field of electrochemical biosensors. This article provides an overview of the mechanisms and extensive practical applications of nanozymes in electrochemical biosensors. First, the definition and characteristics of nanozymes are introduced, emphasizing their significant role in constructing efficient sensors. Subsequently, several common categories of nanozyme materials are delved into, including metal-based, carbon-based, metal-organic framework, and layered double hydroxide nanostructures, discussing their applications in electrochemical biosensors. Regarding their mechanisms, two key roles of nanozymes are particularly focused in electrochemical biosensors: selective enhancement and signal amplification, which crucially support the enhancement of sensor performance. In terms of practical applications, the widespread use of nanozyme-based electrochemical biosensors are showcased in various domains. From detecting biomolecules, pollutants, nucleic acids, proteins, to cells, providing robust means for high-sensitivity detection. Furthermore, insights into the future development of nanozyme-based electrochemical biosensors is provided, encompassing improvements and optimizations of nanozyme materials, innovative sensor design and integration, and the expansion of application fields through interdisciplinary collaboration. In conclusion, this article systematically presents the mechanisms and applications of nanozymes in electrochemical biosensors, offering valuable references and prospects for research and development in this field.
Collapse
Affiliation(s)
- Zhongwei Yang
- Institute for Advanced Interdisciplinary Research (iAIR), School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, P. R. China
| | - Jiawei Guo
- Institute for Advanced Interdisciplinary Research (iAIR), School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, P. R. China
| | - Longwei Wang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety & CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, University of Chinese Academy of Science, Beijing, 100190, P. R. China
| | - Jian Zhang
- Division of Systems and Synthetic Biology, Department of Life Sciences, Chalmers University of Technology, Göteborg, 41296, Sweden
| | - Longhua Ding
- Institute for Advanced Interdisciplinary Research (iAIR), School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, P. R. China
| | - Hong Liu
- Institute for Advanced Interdisciplinary Research (iAIR), School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, P. R. China
- State Key Laboratory of Crystal Materials, Shandong University, Jinan, 250100, P. R. China
| | - Xin Yu
- Institute for Advanced Interdisciplinary Research (iAIR), School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, P. R. China
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, Qingdao University of Science and Technology, Qingdao, 266042, P. R. China
| |
Collapse
|
7
|
Li D, Fan T, Mei X. A comprehensive exploration of the latest innovations for advancements in enhancing selectivity of nanozymes for theranostic nanoplatforms. NANOSCALE 2023; 15:15885-15905. [PMID: 37755133 DOI: 10.1039/d3nr03327a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/28/2023]
Abstract
Nanozymes have captured significant attention as a versatile and promising alternative to natural enzymes in catalytic applications, with wide-ranging implications for both diagnosis and therapy. However, the limited selectivity exhibited by many nanozymes presents challenges to their efficacy in diagnosis and raises concerns regarding their impact on the progression of disease treatments. In this article, we explore the latest innovations aimed at enhancing the selectivity of nanozymes, thereby expanding their applications in theranostic nanoplatforms. We place paramount importance on the critical development of highly selective nanozymes and present innovative strategies that have yielded remarkable outcomes in augmenting selectivities. The strategies encompass enhancements in analyte selectivity by incorporating recognition units, refining activity selectivity through the meticulous control of structural and elemental composition, integrating synergistic materials, fabricating selective nanomaterials, and comprehensively fine-tuning selectivity via approaches such as surface modification, cascade nanozyme systems, and manipulation of external stimuli. Additionally, we propose optimized approaches to propel the further advancement of these tailored nanozymes while considering the limitations associated with existing techniques. Our ultimate objective is to present a comprehensive solution that effectively addresses the limitations attributed to non-selective nanozymes, thus unlocking the full potential of these catalytic systems in the realm of theranostics.
Collapse
Affiliation(s)
- Dan Li
- College of Pharmacy, Jinzhou Medical University, 40 Songpo Rd, Jinzhou 121000, China.
| | - Tuocen Fan
- Jinzhou Medical University, 40 Songpo Rd, Jinzhou 121000, China.
| | - Xifan Mei
- Jinzhou Medical University, 40 Songpo Rd, Jinzhou 121000, China.
| |
Collapse
|
8
|
Gong Z, Tong L, Wang J, Huang S, Chen G, Ouyang G. Photonanozyme with Light Mediated Activity. Chempluschem 2023; 88:e202300352. [PMID: 37624692 DOI: 10.1002/cplu.202300352] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Revised: 08/18/2023] [Accepted: 08/25/2023] [Indexed: 08/27/2023]
Abstract
Since the discovery that Fe3 O4 nanoparticle has intrinsic natural peroxidase-like activity by Yan et al in 2007, mimicking native enzymes via nano-engineering (named as nanozyme) pays a new avenue to bypass the fragility and recyclability of natural enzymes and thus expedites the biocatalysis in multidisciplinary applications. In addition, the high programmability and structural stability attributes of nanozyme afford the ease of coupling with electromagnetic waves of different energies, providing great opportunities to construct photo-responsive nanozyme under user-defined electromagnetic waves, which is known as photo-nanozyme. In this concept, we aim to providing a summary of how electromagnetic waves with varying wavelengths can serve as external stimuli to induce or enhance the biocatalytic performance of photo-nanozymes, thereby offering fascinating functions that cannot be achieved by pristine nanozyme.
Collapse
Affiliation(s)
- Zeyu Gong
- School of Chemical Engineering and Technology, Sun Yat-sen University, 519082, Zhuhai, China
| | - Linjing Tong
- School of Chemistry, Sun Yat-sen University, Guangzhou, 510006, China
| | - Junhui Wang
- School of Chemical Engineering and Technology, Sun Yat-sen University, 519082, Zhuhai, China
| | - Siming Huang
- School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou, 511436, China
| | - Guosheng Chen
- School of Chemistry, Sun Yat-sen University, Guangzhou, 510006, China
| | - Gangfeng Ouyang
- School of Chemical Engineering and Technology, Sun Yat-sen University, 519082, Zhuhai, China
| |
Collapse
|
9
|
Yan Z, Peng Z, Lai J, Xu P, Qiu P. Simplifying the complexity: Single enzyme (choline oxidase) inhibition-based biosensor with dual-readout method for organophosphorus pesticide detection. Talanta 2023; 265:124905. [PMID: 37421789 DOI: 10.1016/j.talanta.2023.124905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 06/23/2023] [Accepted: 07/01/2023] [Indexed: 07/10/2023]
Abstract
Organophosphorus pesticides (OPs) are widely used in agricultural production, but their residues could cause pollution to the environment and living organisms. In this paper, a simple dual-readout method for OPs detection was proposed based on ChOx single enzyme inhibition. Firstly, ChOx can catalyze the production of H2O2 from choline chloride (Ch-Cl). Bifunctional iron-doped carbon dots (Fe-CDs) with good peroxidase-like activity and superior fluorescence properties can catalyze the oxidation of 3,3',5,5'-tetramethylbenzidine (TMB) to blue oxidized TMB (oxTMB) by H2O2 formed, and oxTMB could quench the fluorescence of Fe-CDs. In light of the fact that OPs exhibited activity in inhibiting ChOx, less H2O2 and the decreasing oxTMB led to a result that the fluorescence of the system recovered and the solution became lighter in blue color. Moreover, the process of ChOx inhibition by OPs was analyzed by molecular docking technique and it was found that OPs interact with key amino acid residues catalyzed by ChOx (Asn510, His466, Ser101, His351, Phe357, Trp331, Glu312). Finally, a dual-mode (colorimetry and fluorescence) sensor was created for the detection of OPs with the detection limit of 6 ng/L, and was successfully used in the quantitative determination of OPs in actual samples with satisfactory results.
Collapse
Affiliation(s)
- Ziyu Yan
- Department of Chemistry, Nanchang University, Nanchang, 330031, China
| | - Zoujun Peng
- Department of Chemistry, Nanchang University, Nanchang, 330031, China; Institute for Advanced Study, Nanchang University, Nanchang, 330031, China
| | - Juanhua Lai
- Jiangxi Center of Medical Device Testing, Nanchang, 330047, China
| | - Peng Xu
- Center of Analysis and Testing, Nanchang University, Nanchang, 330031, China.
| | - Ping Qiu
- Department of Chemistry, Nanchang University, Nanchang, 330031, China; Jiangxi Province Key Laboratory of Modern Analytical Science, Nanchang University, Nanchang, 330031, China.
| |
Collapse
|
10
|
Kohansal F, Mobed A, Aletaha N, Ghaseminasab K, Dolati S, Hasanzadeh M. Biosensing of telomerase antigen using sandwich type immunosensor based on poly(β-Cyclodextrin) decorated by Au@Pt nanoparticles: An innovative immune-platform toward early-stage identification of cancer. Microchem J 2023. [DOI: 10.1016/j.microc.2023.108649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/31/2023]
|
11
|
Zhang X, Zhou S, Xie L, Zeng H, Liu T, Huang Y, Yan M, Liang Q, Liang K, Jiang L, Kong B. Superassembly of 4-Aminothiophenol-Modified Mesoporous Titania-Alumina Oxide Heterochannels for Smart Ion Transport Based on the Photo-Induced Electron-Transfer Process. ACS APPLIED MATERIALS & INTERFACES 2023. [PMID: 37368865 DOI: 10.1021/acsami.3c05207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/29/2023]
Abstract
Light-responsive nanochannels have attracted extensive attention due to their noninvasive external field control and intelligent ion regulation. However, the limited photoresponsive current and the low photoelectric conversion efficiency still restrict their development. Here, a light-controlled nanochannel composed of 4-aminothiophenol and gold nanoparticles-modified mesoporous titania nanopillar arrays and alumina oxide (4-ATP-Au-MTI/AAO) is fabricated by the interfacial super-assembly strategy. Inspired by the process of electron transfer between photosystem I and photosystem II, the efficient electron transfer between TiO2, AuNPs, and 4-ATP under light is achieved by coupling the photoresponsive materials and functional molecules. Under illumination, 4-ATP is oxidized to p-nitrothiophenol (PNTP), which brings about changes in the wettability of the nanochannel, resulting in significant improvement (252.8%) of photoresponsive current. In addition, under the action of the reductant, the nanochannels can be restored to the initial dark state, enabling multiple reversible cycles. This work opens a new route for the fabrication of high-performance light-controlled nanochannels by coupling light-responsive materials and light-responsive molecules, which may guide the development of photoelectric conversion nanochannel systems.
Collapse
Affiliation(s)
- Xin Zhang
- Department of Chemistry, Shanghai Key Lab of Molecular Catalysis and Innovative Materials, Collaborative Innovation Center of Chemistry for Energy Materials, Fudan University, Shanghai 200438, P. R. China
| | - Shan Zhou
- Department of Chemistry, Shanghai Key Lab of Molecular Catalysis and Innovative Materials, Collaborative Innovation Center of Chemistry for Energy Materials, Fudan University, Shanghai 200438, P. R. China
| | - Lei Xie
- School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, P. R. China
| | - Hui Zeng
- Department of Chemistry, Shanghai Key Lab of Molecular Catalysis and Innovative Materials, Collaborative Innovation Center of Chemistry for Energy Materials, Fudan University, Shanghai 200438, P. R. China
| | - Tianyi Liu
- Department of Chemistry, Shanghai Key Lab of Molecular Catalysis and Innovative Materials, Collaborative Innovation Center of Chemistry for Energy Materials, Fudan University, Shanghai 200438, P. R. China
| | - Yanan Huang
- Department of Chemistry, Shanghai Key Lab of Molecular Catalysis and Innovative Materials, Collaborative Innovation Center of Chemistry for Energy Materials, Fudan University, Shanghai 200438, P. R. China
| | - Miao Yan
- Department of Chemistry, Shanghai Key Lab of Molecular Catalysis and Innovative Materials, Collaborative Innovation Center of Chemistry for Energy Materials, Fudan University, Shanghai 200438, P. R. China
| | - Qirui Liang
- Department of Chemistry, Shanghai Key Lab of Molecular Catalysis and Innovative Materials, Collaborative Innovation Center of Chemistry for Energy Materials, Fudan University, Shanghai 200438, P. R. China
| | - Kang Liang
- School of Chemical Engineering and Graduate School of Biomedical Engineering, The University of New South Wales, Sydney, New South Wales 2052, Australia
| | - Lei Jiang
- CAS Key Laboratory of Bio-Inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Biao Kong
- Department of Chemistry, Shanghai Key Lab of Molecular Catalysis and Innovative Materials, Collaborative Innovation Center of Chemistry for Energy Materials, Fudan University, Shanghai 200438, P. R. China
- Yiwu Research Institute of Fudan University, Yiwu, Zhejiang 322000, P. R. China
- Shandong Research Institute, Fudan University, Jinan, Shandong 250103, P. R. China
| |
Collapse
|
12
|
Wu W, Li J. Recent Progress on Nanozymes in Electrochemical Sensing. J Electroanal Chem (Lausanne) 2023. [DOI: 10.1016/j.jelechem.2023.117391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
|
13
|
Wu L, Wang X, Wu X, Xu S, Liu M, Cao X, Tang T, Huang X, Huang H. MnO 2 Nanozyme-Mediated CRISPR-Cas12a System for the Detection of SARS-CoV-2. ACS APPLIED MATERIALS & INTERFACES 2022; 14:50534-50542. [PMID: 36301087 PMCID: PMC9631339 DOI: 10.1021/acsami.2c14497] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Accepted: 10/13/2022] [Indexed: 06/16/2023]
Abstract
The CRISPR-Cas system was developed into a molecular diagnostic tool with high sensitivity, low cost, and high specificity in recent years. Colorimetric assays based on nanozymes offer an attractive point-of-care testing method for their low cost of use and user-friendly operation. Here, a MnO2 nanozyme-mediated CRISPR-Cas12a system was instituted to detect SARS-CoV-2. MnO2 nanorods linked to magnetic beads via a single-stranded DNA (ssDNA) linker used as an oxidase-like nanozyme inducing the color change of 3,3',5,5'-tetramethylbenzidine, which can be distinguished by the naked eye. The detection buffer color will change when the Cas12a is activated by SARS-CoV-2 and indiscriminately cleave the linker ssDNA. The detection limit was 10 copies per microliter and showed no cross-reaction with other coronaviruses. The nanozyme-mediated CRISPR-Cas12a system shows high selectivity and facile operation, with great potential for molecular diagnosis in point-of-care testing applications.
Collapse
Affiliation(s)
- Lina Wu
- School of Food Science and Pharmaceutical Engineering,
Nanjing Normal University, Nanjing210023,
People’s Republic of China
- Zhejiang Laboratory,
Hangzhou311100, People’s Republic of China
| | - Xinjie Wang
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern
Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs,
Agricultural Genomics Institute at Shenzhen, Chinese Academy of
Agricultural Sciences, Shenzhen, 518120, People’s Republic
of China
| | - Xiangchuan Wu
- School of Food Science and Pharmaceutical Engineering,
Nanjing Normal University, Nanjing210023,
People’s Republic of China
| | - Shiqi Xu
- School of Food Science and Pharmaceutical Engineering,
Nanjing Normal University, Nanjing210023,
People’s Republic of China
| | - Ming Liu
- State Key Laboratory of Respiratory Disease, National
Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory
Health, The First Affiliated Hospital, Guangzhou Medical
University, Guangzhou510120, China
| | - Xizhong Cao
- State Key Laboratory of Respiratory Disease, National
Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory
Health, The First Affiliated Hospital, Guangzhou Medical
University, Guangzhou510120, China
| | - Taishan Tang
- State Key Laboratory of Respiratory Disease, National
Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory
Health, The First Affiliated Hospital, Guangzhou Medical
University, Guangzhou510120, China
| | - Xingxu Huang
- Zhejiang Laboratory,
Hangzhou311100, People’s Republic of China
| | - He Huang
- School of Food Science and Pharmaceutical Engineering,
Nanjing Normal University, Nanjing210023,
People’s Republic of China
| |
Collapse
|
14
|
Zhao C, Jian X, Gao Z, Song YY. Plasmon-Mediated Peroxidase-like Activity on an Asymmetric Nanotube Architecture for Rapid Visual Detection of Bacteria. Anal Chem 2022; 94:14038-14046. [PMID: 36170584 DOI: 10.1021/acs.analchem.2c03471] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Rapid and sensitive detection of bacteria from a complex real media remains a challenge. Herein, we report a visual bacterial sensing assay with excellent specificity, anti-interference ability, and sensitivity based on a surface plasmon resonance (SPR)-enhanced peroxidase (POD) mimetic. The POD mimetic based on Pt nanoparticles (NPs) asymmetrically decorated on Au/TiO2 magnetic nanotubes (Au/Pt/MTNTs) is designed by combining the intrinsic photocatalytic activity of TiO2 and the limited transport depth of light. It is revealed that the localized surface plasmon resonance (LSPR) effect of the asymmetric nanotubes is more effective in facilitating the generation of hot electrons, which are subsequently transferred to Pt and MTNTs, thus greatly promoting the catalytic performance. Using Staphylococcus aureus (S. aureus) as a model of Gram-positive bacteria, the dependence of the colorimetric reaction on the active sites of the POD mimetic is used for the sensing of target bacteria. Owing to the specific recognition between S. aureus and peptide, the fluorescein isothiocyanate (FITC) labeled peptide probes are captured by S. aureus and removed from the Au/Pt/MTNTs, leading to the recovery of POD-like activity and fluorescence emission of S. aureus. Particularly, benefiting from the Au-SPR effect and the magnetic feature of the Au/Pt/MTNTs, the recovery of catalytic activity induced an improved colorimetric assay with a wider linear response for S. aureus qualification and a detection limit of four cells, as well as satisfactory selectivity and feasibility for application in real samples. The plasmon-enhanced POD activity would provide a simple-yet-effective approach to achieve a colorimetric bioassay with high efficiency and sensitivity. This asymmetric design can also be utilized to engineer nanozymes in colorimetric assays for the specific detection of biotoxins, biomarkers, and cancer cells.
Collapse
Affiliation(s)
- Chenxi Zhao
- College of Sciences, Northeastern University, Shenyang 110004, China
| | - Xiaoxia Jian
- College of Sciences, Northeastern University, Shenyang 110004, China
| | - Zhida Gao
- College of Sciences, Northeastern University, Shenyang 110004, China
| | - Yan-Yan Song
- College of Sciences, Northeastern University, Shenyang 110004, China
| |
Collapse
|
15
|
Enzyme-free sandwich-type electrochemical immunosensor based on high catalytic binary PdCu mesoporous metal nanoparticles and conductive black phosphorous nanosheets for ultrasensitive detection of pro-SFTPB in non-small cell lung cancer. J Electroanal Chem (Lausanne) 2022. [DOI: 10.1016/j.jelechem.2022.116415] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
16
|
Yin Z, Liu C, Yi Y, Wu H, Fu X, Yan Y. A label-free electrochemical immunosensor based on PdPtCu@BP bilayer nanosheets for point-of-care kidney injury molecule-1 testing. J Electroanal Chem (Lausanne) 2022. [DOI: 10.1016/j.jelechem.2022.116420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
17
|
Wang X, Dong S, Wei H. Recent advances on nanozyme‐based electrochemical biosensors. ELECTROANAL 2022. [DOI: 10.1002/elan.202100684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
18
|
Zhang J, Zhou S, Tan S, Yi K, Jin M, Shi Q, Wu F, Liu N. Highly Sensitive Glass Nanopipette Sensor Using Composite Probes of DNA-Functionalized Metal-Organic Frameworks. Anal Chem 2022; 94:3701-3707. [PMID: 35166108 DOI: 10.1021/acs.analchem.1c05571] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Pore structure-based analytical techniques have great potential applications for the detection of biological molecules. However, the sophistication of traditional pore sensors is restricted in their applicability of analytical chemistry due to a lack of effective carrier probes. Here, we used porous coordination network-224 (PCN-224) composite probes in conjunction with a glass nanopipette (GN) as a sensing platform. The sensor exhibits a good fluorescence signal and a change in GN's ionic current at the same time. Due to the volume exclusion mechanism coming from PCN-224, the detection limit of target DNA reaches 10 fM in a GN with a diameter of up to ca. 260 nm, outperforming a simple probe. The structure of the composite probe is optimized by the probe's pairing efficiency. Furthermore, the sensor can also discriminate between 1-, 3-, and 5-mismatch DNA sequences and capture the target DNA from a complex mixture. Based on the GN platform, a series of techniques for detecting biomolecules are expected to emerge because of its simplicity, robustness, and universality by incorporating advanced nanoprobes.
Collapse
Affiliation(s)
- Jinzheng Zhang
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325000, P. R. China.,Key Laboratory of Carbon Materials of Zhejiang Province, College of Chemistry & Materials Engineering, Wenzhou University, Wenzhou 325027, P. R. China
| | - Shuailong Zhou
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325000, P. R. China
| | - Shiyi Tan
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325000, P. R. China.,Key Laboratory of Carbon Materials of Zhejiang Province, College of Chemistry & Materials Engineering, Wenzhou University, Wenzhou 325027, P. R. China
| | - Kangyan Yi
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325000, P. R. China.,Key Laboratory of Carbon Materials of Zhejiang Province, College of Chemistry & Materials Engineering, Wenzhou University, Wenzhou 325027, P. R. China
| | - Mengya Jin
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325000, P. R. China
| | - Qian Shi
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325000, P. R. China
| | - Fen Wu
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325000, P. R. China
| | - Nannan Liu
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325000, P. R. China.,Key Laboratory of Carbon Materials of Zhejiang Province, College of Chemistry & Materials Engineering, Wenzhou University, Wenzhou 325027, P. R. China.,Institute of New Materials & Industry Technology, Wenzhou University, Wenzhou 325000, P. R. China
| |
Collapse
|
19
|
Ultrasensitive photoelectrochemical aptasensor for detecting telomerase activity based on Ag 2S/Ag decorated ZnIn 2S 4/C 3N 4 3D/2D Z-scheme heterostructures and amplified by Au/Cu 2+-boron-nitride nanozyme. Biosens Bioelectron 2022; 203:114048. [PMID: 35121445 DOI: 10.1016/j.bios.2022.114048] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 01/25/2022] [Indexed: 02/07/2023]
Abstract
Enzyme-mediated signal amplification strategies have gained substantial attention in photoelectrochemical (PEC) biosensing, while natural enzyme on the photoelectrode inevitably obstructs the interfacial electron transfer, in turn deteriorating the photocurrent responses. Herein, Au nanoparticles and Cu2+-modified boron nitride nanosheets (AuNPs/Cu2+-BNNS) behaved as nanozyme to achieve remarkable magnification in the PEC signals from a novel signal-off aptasensor for ultra-sensitive assay of telomerase (TE) activity based on Ag2S/Ag nanoparticles decorated ZnIn2S4/C3N4 Z-scheme heterostructures (termed as Ag2S/Ag/ZnIn2S4/C3N4, synthesized by hydrothermal treatment). Specifically, telomerase primer sequences (TS) were extended by TE in the presence of deoxyribonucleoside triphosphates (dNTPs), which was directly bond with the thiol modified complementary DNA (cDNA), achieving efficient linkage with the nanozyme via Au-S bond. The immobilized nanoenzyme catalyzed the oxidation between 4-chloro-1-naphthol (4-CN) and H2O2 to generate insoluble precipitation on the photo-electrode. By virtue of the inhibited PEC signals with the TE-enabled TS extension, an aptasensor for assay of TE activity was developed, showing the wide linear range of 50-5×105 cell mL-1 and a low detection limit of 19 cell mL-1. This work provides some valuable guidelines for developing advanced nanozyme-based PEC bioanalysis of diverse cancer cells.
Collapse
|
20
|
A highly selective ATP-responsive biomimetic nanochannel based on smart copolymer. Anal Chim Acta 2021; 1188:339167. [PMID: 34794583 DOI: 10.1016/j.aca.2021.339167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 10/01/2021] [Accepted: 10/09/2021] [Indexed: 11/20/2022]
Abstract
ATP-sensitive potassium (KATP) channels couple intracellular metabolism to the electrical activity by regulating K+ flux across the plasma membrane, thus playing an important role in both normal and pathophysiology. To understand the mechanism of ATP regulating biological ion channels, developing an ATP-responsive artificial nanochannel is an appealing but challenging topic because KATP channel is a heteromultimer of two subunits (potassium channel subunit (Kir6.x) and sulfonylurea receptor (SUR)) and exhibit dynamic functions with adjustability and reversibility. Inspired by the structure of KATP channels, we designed a smart copolymer modified nanochannel that may address the challenge. In the tricomponent poly(N-isopropylacrylamide) (PNIPAAm, PNI)-based copolymer system, phenylthiourea was used to bind the phosphate units of nucleotides and phenylboronic acid was introduced to combine the pentose ring of the nucleoside unit. Besides, a -COOH group with electron-withdrawing property was added into the phenylthiourea units, which may promote the hydrogen-bond-donating ability of thiourea. Specially, the smart copolymer not only provided static binding sites for recognition but also translated the recognition of ATP into their dynamic conformational transitions by changing the hydrogen-bonding environments surrounding PNIPAAm chains, thus achieving the gating function of nanochannel, which resembled the integration and coordination of Kir6.x and SUR units in active KATP. The ATP-regulated ion channel exhibited excellent stability and reversibility. This study is the first example showing how to learn from nature to assemble the ATP-responsive artificial nanochannel and demonstrate the possible mechanism of ATP gating.
Collapse
|
21
|
Lian M, Liu M, Zhang X, Zhang W, Zhao J, Zhou X, Chen D. Template-Regulated Bimetallic Sulfide Nanozymes with High Specificity and Activity for Visual Colorimetric Detection of Cellular H 2O 2. ACS APPLIED MATERIALS & INTERFACES 2021; 13:53599-53609. [PMID: 34726914 DOI: 10.1021/acsami.1c15839] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
For the past several decades, most of the research studies on nanozymes have been aimed at improving their catalytic activity and diversity; however, developing nanozymes with strong catalytic activity and great specificity remains a challenge. Herein, a simple and efficient template synthesis method was used to synthesize bimetallic sulfide nanoparticles, NiCo2S4 NPs, and prove that they have excellent peroxidase-like activity with good specificity. By regulating polyvinyl pyrrolidone (PVP) and hexadecyl trimethyl ammonium bromide as the templating agent, we have obtained the NiCo2S4 (PVP) NPs with a high Ni/Co ratio, thus exhibiting superior peroxidase activity. In addition, the NiCo2S4 NPs selectively catalyzed and oxidized colorless 3,3,5,5-tetramethylbenzidine (TMB). On being treated with H2O2, TMB turns blue while other substrates did not undergo the oxidation reaction under the same conditions, such as 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) diammonium (ABTS) and dopamine. The high specificity of NiCo2S4 NPs is due to the strong electrostatic driving coordination between negatively charged NiCo2S4 NPs and positively charged TMB. Due to the peroxidase activity of the developed NiCo2S4 NPs, a simple, low-cost, and reliable colorimetric method was established. Simultaneously, this method for in situ quantitative monitoring of H2O2 produced by MDA-MB-231 cells was also achieved. This study has provided a theoretical basis for the improvement of the activity and specificity of bimetallic sulfide nanozymes and may offer guidance for the further reasonable design of related materials.
Collapse
Affiliation(s)
- Meiling Lian
- Key Laboratory of Civil Aviation Thermal Hazards Prevention and Emergency Response, Civil Aviation University of China, Tianjin 300300, China
| | - Meihan Liu
- Key Laboratory of Civil Aviation Thermal Hazards Prevention and Emergency Response, Civil Aviation University of China, Tianjin 300300, China
| | - Xiao Zhang
- Key Laboratory of Civil Aviation Thermal Hazards Prevention and Emergency Response, Civil Aviation University of China, Tianjin 300300, China
| | - Wei Zhang
- Key Laboratory of Civil Aviation Thermal Hazards Prevention and Emergency Response, Civil Aviation University of China, Tianjin 300300, China
| | - Jingbo Zhao
- Key Laboratory of Civil Aviation Thermal Hazards Prevention and Emergency Response, Civil Aviation University of China, Tianjin 300300, China
| | - Xiaomeng Zhou
- Key Laboratory of Civil Aviation Thermal Hazards Prevention and Emergency Response, Civil Aviation University of China, Tianjin 300300, China
| | - Da Chen
- Key Laboratory of Civil Aviation Thermal Hazards Prevention and Emergency Response, Civil Aviation University of China, Tianjin 300300, China
| |
Collapse
|
22
|
Dai Z, Guo J, Zhao C, Gao Z, Song YY. Fabrication of Homochiral Metal-Organic Frameworks in TiO 2 Nanochannels for In Situ Identification of 3,4-Dihydroxyphenylalanine Enantiomers. Anal Chem 2021; 93:11515-11524. [PMID: 34378917 DOI: 10.1021/acs.analchem.1c01903] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Enantioselective identification of chiral molecules is important for biomedical and pharmaceutical research. However, owing to identical molecular formulas and chemical properties of enantiomers, signal transduction and amplification are still the two major challenges in chiral sensing. In this study, we developed an enantioselective membrane by integrating homochiral metal-organic frameworks (MOFs) with nanochannels for the sensitive identification and quantification of chiral compounds. The membrane was designed using a TiO2 nanochannel membrane (TiNM) as the metal ion precursor of MOFs (using MIL-125(Ti)) and incorporating l-glutamine (l-Glu) into the framework of MIL-125(Ti). Using 3,4-dihydroxyphenylalanine (DOPA) as the model analyte, the as-prepared homochiral l-Glu/MIL-125(Ti)/TiNM exhibits a remarkable chiral recognition to d-DOPA than l-DOPA. More importantly, benefiting from the highly enlarged surface area and confinement effect provided by the MOFs-in-nanochannel architecture, the discrimination for chiral recognition is largely amplified through the chelation interaction of Fenton-like activity of Fe3+ onto DOPA. Using 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonate) (ABTS) as the substrate, the positively charged ABTS•+ product via Fenton-like reaction induces significant ionic transport changes in nanochannels, which in turn provides information about chiral recognition. This innovative signal amplification strategy on homochiral nanochannels might pave a new way for sensitive monitoring and chiral recognition.
Collapse
Affiliation(s)
- Zhenqing Dai
- College of Science, Northeastern University, Shenyang 110004, China
| | - Junli Guo
- College of Science, Northeastern University, Shenyang 110004, China
| | - Chenxi Zhao
- College of Science, Northeastern University, Shenyang 110004, China
| | - Zhida Gao
- College of Science, Northeastern University, Shenyang 110004, China
| | - Yan-Yan Song
- College of Science, Northeastern University, Shenyang 110004, China
| |
Collapse
|
23
|
Mao H, Ma Q, Xu H, Xu L, Du Q, Gao P, Xia F. Exploring the contribution of charged species at the outer surface to the ion current signal of nanopores: a theoretical study. Analyst 2021; 146:5089-5094. [PMID: 34297030 DOI: 10.1039/d1an00826a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Nanopores attached to charged species realize the artificial regulation of ion transport by the electrostatic effect in nanoconfines, produce a sensitive ion current signal and play a critical role in nanopore-based analyses. However, until now, the contribution of the charged species at the outer surface, an inherent component of nanopores, to the ion current signal has not yet been fully investigated. Here, we theoretically investigate the contribution of the charged species at the outer surface to the ion current signal of a conical nanopore. The results indicate that when the electrostatic effect at the tip of the conical nanopore is strengthened, the contribution from the charged species at the outer surface to the ionic current signal becomes stronger or even predominant compared with that of the inner walls. This effect can be further enhanced using nanopore arrays with small openings and low pore density in a low concentration electrolyte. This work focuses on the working mechanism of nanopores with a high-efficient signal conversion and promotes the performance of nanopores with a regional distribution of charged probes and targets.
Collapse
Affiliation(s)
- Haowei Mao
- State Key Laboratory of Biogeology and Environmental Geology, Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan, P. R. China.
| | | | | | | | | | | | | |
Collapse
|
24
|
Ashrafi AM, Bytesnikova Z, Barek J, Richtera L, Adam V. A critical comparison of natural enzymes and nanozymes in biosensing and bioassays. Biosens Bioelectron 2021; 192:113494. [PMID: 34303137 DOI: 10.1016/j.bios.2021.113494] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Revised: 07/02/2021] [Accepted: 07/06/2021] [Indexed: 02/06/2023]
Abstract
Nanozymes (NZs) are nanomaterials that mimic enzyme-like catalytic activity. They have attracted substantial attention due to their inherent physicochemical properties for use as promising alternatives to natural enzymes (NEs) in a variety of research fields. Particularly, in biosensing and bioassays, NZs have opened a new horizon to eliminate the intrinsic limitations of NEs, including their denaturation at extreme pH values and temperatures, poor reusability and recyclability, and high production costs. Moreover, the catalytic activity of NZs can be modulated in the preparation step by following an appropriate synthesis strategy. This review aims to gain insight into the potential substitution of NEs by NZs in biosensing and bioassays while considering both the pros and cons.
Collapse
Affiliation(s)
- Amir M Ashrafi
- Department of Chemistry and Biochemistry, Mendel University in Brno, CZ-613 00, Brno, Czech Republic; Central European Institute of Technology, Brno University of Technology, 612 00, Brno, Czech Republic
| | - Zuzana Bytesnikova
- Department of Chemistry and Biochemistry, Mendel University in Brno, CZ-613 00, Brno, Czech Republic; Central European Institute of Technology, Brno University of Technology, 612 00, Brno, Czech Republic
| | - Jiri Barek
- Charles University, Faculty of Science, Department of Analytical Chemistry, UNESCO Laboratory of Environmental Electrochemistry, Albertov 6, CZ-12843, Prague 2, Czech Republic
| | - Lukas Richtera
- Department of Chemistry and Biochemistry, Mendel University in Brno, CZ-613 00, Brno, Czech Republic; Central European Institute of Technology, Brno University of Technology, 612 00, Brno, Czech Republic
| | - Vojtech Adam
- Department of Chemistry and Biochemistry, Mendel University in Brno, CZ-613 00, Brno, Czech Republic; Central European Institute of Technology, Brno University of Technology, 612 00, Brno, Czech Republic.
| |
Collapse
|
25
|
Cai J, Ma W, Hao C, Sun M, Guo J, Xu L, Xu C, Kuang H. Artificial light-triggered smart nanochannels relying on optoionic effects. Chem 2021. [DOI: 10.1016/j.chempr.2021.04.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
26
|
Xu H, Guo J, Yang L, Gao Z, Song YY. Construction of Peroxidase-like Metal-Organic Frameworks in TiO 2 Nanochannels: Robust Free-Standing Membranes for Diverse Target Sensing. Anal Chem 2021; 93:9486-9494. [PMID: 34170111 DOI: 10.1021/acs.analchem.1c01287] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The high cost and easy denaturation of natural enzymes under environmental conditions hinder their practical usefulness in sensing devices. In this study, peroxidase (POD)-like metal-organic frameworks (MOFs) were in situ grown in the nanochannels of an anodized TiO2 membrane (TiO2NM) as an electrochemical platform for multitarget sensing. By directly using a nanochannel wall as the precursor of metal nodes, Ti-MOFs were in situ derived on the nanochannel wall. Benefitting from the presence of bipyridine groups on the ligands, the MOFs in the nanochannels provide plenty of sites for Fe3+ anchoring, thus endowing the resulting membrane (named as Fe3+:MOFs/TiO2NM) with remarkable POD-like activity. Such Fe3+-induced POD-like activity is very sensitive to thiol-containing molecules owing to the strong coordination effect of thiols on Fe3+. Most importantly, the POD-like activity of nanochannels can be in situ characterized by the current-potential (I-V) properties via catalyzing the oxidation of 2,2'-azinobis(3-ethylbenzothiazoline-6-sulfonate) (ABTS) substrate to the corresponding positively charged product ABTS•+. As a proof-of-concept application, the free-standing POD-like membranes were applied as a label-free assay in sensing cysteine, as well as monitoring acetylcholinesterase (AChE) activity through the generated thiol-containing product. Furthermore, based on the toxicity effect of organophosphorus (OP) compounds on AChE, the robust membranes were successfully utilized to evaluate the toxicity of diverse OP compounds. The POD-like nanochannels open up an innovative way to expand the application of nanochannel-based electrochemical sensing platforms in drug inspection, food safety, and environmental pollution.
Collapse
Affiliation(s)
- Huijie Xu
- College of Sciences, Northeastern University, Shenyang 110004, China
| | - Junli Guo
- College of Sciences, Northeastern University, Shenyang 110004, China
| | - Lingling Yang
- College of Sciences, Northeastern University, Shenyang 110004, China
| | - Zhida Gao
- College of Sciences, Northeastern University, Shenyang 110004, China
| | - Yan-Yan Song
- College of Sciences, Northeastern University, Shenyang 110004, China
| |
Collapse
|
27
|
Deiminiat B, Rounaghi GH. A novel visible light photoelectrochemical aptasensor for determination of bisphenol A based on surface plasmon resonance of gold nanoparticles activated g-C3N4 nanosheets. J Electroanal Chem (Lausanne) 2021. [DOI: 10.1016/j.jelechem.2021.115122] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
28
|
Jia H, Shang N, He X, Nsabimana A, Sun D, Wang H, Zhang Y. Epoxy-functionalized macroporous carbon with embedded platinum nanoparticles for electrochemical detection of telomerase activity via telomerase-triggered catalytic hairpin assembly. Talanta 2021; 225:121957. [PMID: 33592712 DOI: 10.1016/j.talanta.2020.121957] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Revised: 11/21/2020] [Accepted: 12/01/2020] [Indexed: 01/14/2023]
Abstract
Telomerase is regarded as a crucial biomarker for the early diagnosis of malignant tumors and a valuable therapeutic target. In this work, a telomerase-triggered amplification strategy was designed on the basis of a catalyzed hairpin assembly (CHA) for bridging a signal probe of platinum nanoparticles (Pt NPs) anchored on three-dimensional (3D) epoxy-functionalized macroporous carbon (Pt/MPC-COOH) in an ultrasensitive electrochemical biosensor. Pt/MPC-COOH nanomaterials with interconnected macroporous structure not only immobilized hairpin DNA probe 2 (H2) via an amide reaction (Pt/MPC-COOH-H2), but they also generated an obvious electrochemical signal in response to acetaminophen (AP) oxidation. After the introduction of telomerase, telomerase primer (TP) was extended to a telomerase extension product (TEP) with several hexamer repeats (TTAGGG)n to initiate the CHA cycle, leading to signal amplification. Subsequently, with the TEP-triggered CHA cycle amplification strategy, a large amount of Pt/MPC-COOH-H2 was introduced on the electrode surface for the construction of the electrochemical platform, which realized the sensitive detection of telomerase activity from 102 to107 cells mL-1 with a limit of detection (LOD) of 9.02 cells mL-1. This strategy provides a sensitive method for the detection of biomolecules that could be useful for bioanalysis and early clinical diagnoses of diseases.
Collapse
Affiliation(s)
- Huixian Jia
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, Key Laboratory of Analytical Science and Technology of Hebei Province, College of Chemistry and Environmental Science, Institute of Life Science and Green Development, Hebei University, 071002, Baoding, PR China
| | - Ningzhao Shang
- College of Science, Hebei Agricultural University, 071001, Baoding, PR China
| | - Xiaobo He
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, Key Laboratory of Analytical Science and Technology of Hebei Province, College of Chemistry and Environmental Science, Institute of Life Science and Green Development, Hebei University, 071002, Baoding, PR China
| | - Anaclet Nsabimana
- Chemistry Department, College of Science and Technology, University of Rwanda, Po Box: 3900, Kigali, Rwanda
| | - Danna Sun
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, Key Laboratory of Analytical Science and Technology of Hebei Province, College of Chemistry and Environmental Science, Institute of Life Science and Green Development, Hebei University, 071002, Baoding, PR China
| | - Huan Wang
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, Key Laboratory of Analytical Science and Technology of Hebei Province, College of Chemistry and Environmental Science, Institute of Life Science and Green Development, Hebei University, 071002, Baoding, PR China
| | - Yufan Zhang
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, Key Laboratory of Analytical Science and Technology of Hebei Province, College of Chemistry and Environmental Science, Institute of Life Science and Green Development, Hebei University, 071002, Baoding, PR China.
| |
Collapse
|
29
|
Abstract
Since the discovery of the enzyme-like activities of nanomaterials, the study of nanozymes has become one of the most popular research frontiers of diverse areas including biosensors. DNA also plays a very important role in the construction of biosensors. Thus, the idea of combined applications of nanozymes with DNA (DNA-nanozyme) is very attractive for the development of nanozyme-based biosensors, which has attracted considerable interest of researchers. To date, many sensors based on DNA-functionalized or templated nanozymes have been reported for the detection of various targets and highly accelerated the development of nanozyme-based sensors. In this review, we summarize the main applications and advances of DNA-nanozyme-based sensors. Additionally, perspectives and challenges are also discussed at the end of the review.
Collapse
Affiliation(s)
- Renzhong Yu
- School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, P. R. China.
| | - Rui Wang
- School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, P. R. China.
| | - Zhaoyin Wang
- School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, P. R. China.
| | - Qinshu Zhu
- School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, P. R. China. and Nanjing Normal University Centre for Analysis and Testing, Nanjing, 210023, P.R. China
| | - Zhihui Dai
- School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, P. R. China. and Nanjing Normal University Centre for Analysis and Testing, Nanjing, 210023, P.R. China
| |
Collapse
|
30
|
Chemical Redox-Modulated Etching of Plasmonic Nanoparticles for Nitrite Detection: Comparison Among Gold Nanosphere, Nanorod, and Nanotriangle. JOURNAL OF ANALYSIS AND TESTING 2021. [DOI: 10.1007/s41664-021-00153-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
31
|
Tian Y, Zhao J, Han D, Zhao S, Zhang Y, Cui G. Study of a novel fabrication method of 3D Ag-based nanoporous structures for electrochemical detection. J Electroanal Chem (Lausanne) 2021. [DOI: 10.1016/j.jelechem.2021.114990] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
32
|
Kong FY, Zou HY, Xiong M, Zhang JD, Wang W, Zhao WW. 3D NiO nanoflakes/carbon fiber meshwork: Facile preparation and utilization as general platform for photocathodic bioanalysis. Anal Chim Acta 2021; 1143:173-180. [PMID: 33384115 DOI: 10.1016/j.aca.2020.11.046] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 11/18/2020] [Accepted: 11/28/2020] [Indexed: 10/22/2022]
Abstract
Herein, we describe a customized approach for facile preparation of three-dimensional (3D) NiO nanoflakes (NFs)/carbon fiber meshwork (CFM) and its validation as a common photocathode matrix for photoelectrochemical (PEC) bioanalysis, which to our knowledge has not been reported. Specifically, 3D NiO NFs/CFM was fabricated by a sequential liquid phase deposition and annealing process, which was then characterized by scanning electron microscopy, X-ray photoelectron spectrum, UV-vis absorption spectra and N2 adsorption-desorption measurement. Sensitized by BiOI and incorporated with an alkaline phosphatase (ALP)/tyrosinase (TYR) bi-enzyme cascade system, a sensitive split-type cathodic PEC bioanalysis for the determination of ALP was achieved. This method can detect ALP concentrations down to 3 × 10-5 U L-1 with a linear response range of 0.001-10 U L-1. Moreover, this proposed system exhibited good selectivity, stability and excellent performance for real sample analysis. This research features the facile preparation of 3D NiO NFs/CFM that could acts as a universal matrix for photocathodic analysis, and is envisioned to stimulate more effort for advanced 3D photocathode for PEC bioanalysis and beyond.
Collapse
Affiliation(s)
- Fen-Ying Kong
- School of Chemistry and Chemical Engineering, Yancheng Institute of Technology, Yancheng, 224051, China
| | - Hui-Yu Zou
- School of Chemistry and Chemical Engineering, Yancheng Institute of Technology, Yancheng, 224051, China
| | - Meng Xiong
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, 212018, China
| | - Jia-Dong Zhang
- National & Local Joint Engineering Research Center for Deep Utilization Technology of Rock-salt Resource, Huaiyin Institute of Technology, Huai'an, 223003, China
| | - Wei Wang
- School of Chemistry and Chemical Engineering, Yancheng Institute of Technology, Yancheng, 224051, China.
| | - Wei-Wei Zhao
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China.
| |
Collapse
|
33
|
Hughes C, McCann RM, Freeland B, Brabazon D. Electrochemical and chronoamperometry assessment of nano‑gold sensor surfaces produced via novel laser fabrication methods. J Electroanal Chem (Lausanne) 2021. [DOI: 10.1016/j.jelechem.2020.114813] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
34
|
Using the photoinduced volt-ampere curves to study the p/n types of the corrosion products with semiconducting properties. J Electroanal Chem (Lausanne) 2021. [DOI: 10.1016/j.jelechem.2020.114961] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
35
|
Jiang T, Sun X, Wei L, Li M. Electrochemical determination of artemisinin based on signal inhibition for the reduction of hemin. Anal Bioanal Chem 2020; 413:565-576. [PMID: 33145645 DOI: 10.1007/s00216-020-03028-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2020] [Revised: 10/21/2020] [Accepted: 10/24/2020] [Indexed: 11/24/2022]
Abstract
A novel electrochemical sensor was constructed for the determination of artemisinin (ART) based on the inhibition of redox for hemin caused by ART. As far as we know, this strategy for ART determination may be proposed for the first time. In this work, untreated multi-walled carbon nanotubes were cast on the glassy carbon electrode (GCE) as conductive carrier. We prepared a bimetallic organic framework named FeGd-MOF and combined it with hemin by a simple physical mixed method. Then, we fabricated the working electrode by layer-by-layer modification and immobilization. The sensor measured by the differential pulse voltammetry (DPV) technique had calibration curves for the determination of ART, which was 0.3-350 μM with the correlation coefficient R2 = 0.9998. Furthermore, the obtained linear range could be practically used in real sample analysis such as dried leaves of Artemisia apiacea. Under the optimized condition, the electrochemical sensor exhibited high sensitivity, good stability, and excellent anti-interference performance. The limit of detection (LOD) for this sensor was 0.17 μM (signal to noise ratio, S/N = 3), which was much lower than that for some other reported electrochemical sensors. The recovery rates were in the range of 99.54-104.34% in real samples, indicating that the sensor had good repetition and high accuracy. Graphical abstract.
Collapse
Affiliation(s)
- Tian Jiang
- Anhui Key Laboratory of Chemo-Biosensing, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, 241000, Anhui, China
| | - Xiuxiu Sun
- Anhui Key Laboratory of Chemo-Biosensing, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, 241000, Anhui, China
| | - Lingli Wei
- Anhui Key Laboratory of Chemo-Biosensing, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, 241000, Anhui, China
| | - Maoguo Li
- Anhui Key Laboratory of Chemo-Biosensing, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, 241000, Anhui, China.
| |
Collapse
|