1
|
Hu G, Xu HD, Fang J. Sulfur-based fluorescent probes for biological analysis: A review. Talanta 2024; 279:126515. [PMID: 39024854 DOI: 10.1016/j.talanta.2024.126515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 06/29/2024] [Accepted: 07/03/2024] [Indexed: 07/20/2024]
Abstract
The widespread adoption of small-molecule fluorescence detection methodologies in scientific research and industrial contexts can be ascribed to their inherent merits, including elevated sensitivity, exceptional selectivity, real-time detection capabilities, and non-destructive characteristics. In recent years, there has been a growing focus on small-molecule fluorescent probes engineered with sulfur elements, aiming to detect a diverse array of biologically active species. This review presents a comprehensive survey of sulfur-based fluorescent probes published from 2017 to 2023. The diverse repertoire of recognition sites, including but not limited to N, N-dimethylthiocarbamyl, disulfides, thioether, sulfonyls and sulfoxides, thiourea, thioester, thioacetal and thioketal, sulfhydryl, phenothiazine, thioamide, and others, inherent in these sulfur-based probes markedly amplifies their capacity for detecting a broad spectrum of analytes, such as metal ions, reactive oxygen species, reactive sulfur species, reactive nitrogen species, proteins, and beyond. Owing to the individual disparities in the molecular structures of the probes, analogous recognition units may be employed to discern diverse substrates. Subsequent to this classification, the review provides a concise summary and introduction to the design and biological applications of these probe molecules. Lastly, drawing upon a synthesis of published works, the review engages in a discussion regarding the merits and drawbacks of these fluorescent probes, offering guidance for future endeavors.
Collapse
Affiliation(s)
- Guodong Hu
- School of Pharmacy, Changzhou University, Changzhou, Jiangsu, 213164, China.
| | - Hua-Dong Xu
- School of Pharmacy, Changzhou University, Changzhou, Jiangsu, 213164, China
| | - Jianguo Fang
- School of Chemistry and Chemical Engineering, Nanjing University of Science & Technology, Nanjing, Jiangsu, 210094, China.
| |
Collapse
|
2
|
Li L, Li J, Liu X, Zhao X, Zhang A, Deng Y, Peng C, Cao Z, Dehaen W, Fang Y. Shortening the early diagnostic window of Hg 2+-induced liver injury with a H 2O 2-activated fluorescence/afterglow imaging assay. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:136059. [PMID: 39369680 DOI: 10.1016/j.jhazmat.2024.136059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 09/30/2024] [Accepted: 10/03/2024] [Indexed: 10/08/2024]
Abstract
Mercury ions (Hg2+) and mercury derivatives are a serious threat to ecosystems and human health due to their toxicity, and their toxicological effects are associated with a burst of reactive oxygen species (ROS) due to the oxidative stress. Endogenous hydrogen peroxide (H2O2), a featured ROS in vivo, plays an irreplaceable role in a significant number of pathological processes. However, the exact bioeffect role that H2O2 plays in Hg2+-induced oxidative stress in a specific disease has not been well answered. In particular, optical imaging probes for H2O2 endowed with afterglow emission properties are very rare. Here, the first fluorescence/afterglow probe (FA-H2O2) for accurate and specific detection of H2O2 in cells, zebrafish, and mice under Hg2+-induced oxidative stress is reported. Moreover, FA-H2O2 in its afterglow emission enables efficient monitoring of endogenous H2O2 with a higher signal-to-noise ratio (SNR) in comparison to its fluorescence signals. More importantly, by virtue of the merits of afterglow emission that can eliminate autofluorescence, thus for the first time, shortening the diagnostic window of Hg2+-induced liver injury with FA-H2O2 via noninvasive afterglow emission tracking of H2O2 is achieved, which definitely provides a new opportunity and promising tool for early diagnosis of Hg2+-induced liver injury.
Collapse
Affiliation(s)
- Longxuan Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Jia Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Xin Liu
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Xuan Zhao
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Ao Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Yun Deng
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Cheng Peng
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Zhixing Cao
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| | - Wim Dehaen
- Department of Chemistry, Division of Sustainable Chemistry for Metals and Molecules, KU Leuven, Celestijnenlaan 200f-bus 02404, 3001 Leuven, Belgium.
| | - Yuyu Fang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; Sichuan New Green Pharmaceutical Technology Development Co. Ltd., Chengdu 611930, China.
| |
Collapse
|
3
|
Che S, Fan Y, Hu X, Yin L, Fu H, She Y. A highly sensitive fluorescent probe based on functionalised ionic liquids for timely detection of trace Hg 2+ and CH 3Hg + in food. Food Chem 2024; 463:141343. [PMID: 39340912 DOI: 10.1016/j.foodchem.2024.141343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 08/07/2024] [Accepted: 09/15/2024] [Indexed: 09/30/2024]
Abstract
A novel fluorescent probe was fabricated using fluorescein-based ionic liquids (ILs) to effectively achieve rapid and accurate detection of Hg2+ and CH3Hg+ in food. A probe developed by addition of modified fluorescein into the functionalised ILs presented a promising sensitivity toward Hg2+ and CH3Hg+ at concentrations of 0.4 and 60 nM, respectively. In addition, the novel probe could achieve visual and timely detection of Hg2+ and CH3Hg+ by the naked eyes at concentrations of 0.1 and 1 μM, respectively. The probe could also overcome the interference of potential ions and common organic ligands and detect Hg2+ and CH3Hg+ in real food samples, such as green tea and liquor. The probe could be converted into a paper-based sensor to visually detect Hg2+ and CH3Hg+ at levels as low as 10 nM.
Collapse
Affiliation(s)
- Siying Che
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China
| | - Yao Fan
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China
| | - Xuemei Hu
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China
| | - Linlin Yin
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China
| | - Haiyan Fu
- College of Pharmacy, South-Central University for Nationalities, Wuhan 430074, China.
| | - Yuanbin She
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China.
| |
Collapse
|
4
|
Cabello MC, Chen G, Melville MJ, Osman R, Kumar GD, Domaille DW, Lippert AR. Ex Tenebris Lux: Illuminating Reactive Oxygen and Nitrogen Species with Small Molecule Probes. Chem Rev 2024; 124:9225-9375. [PMID: 39137397 DOI: 10.1021/acs.chemrev.3c00892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/15/2024]
Abstract
Reactive oxygen and nitrogen species are small reactive molecules derived from elements in the air─oxygen and nitrogen. They are produced in biological systems to mediate fundamental aspects of cellular signaling but must be very tightly balanced to prevent indiscriminate damage to biological molecules. Small molecule probes can transmute the specific nature of each reactive oxygen and nitrogen species into an observable luminescent signal (or even an acoustic wave) to offer sensitive and selective imaging in living cells and whole animals. This review focuses specifically on small molecule probes for superoxide, hydrogen peroxide, hypochlorite, nitric oxide, and peroxynitrite that provide a luminescent or photoacoustic signal. Important background information on general photophysical phenomena, common probe designs, mechanisms, and imaging modalities will be provided, and then, probes for each analyte will be thoroughly evaluated. A discussion of the successes of the field will be presented, followed by recommendations for improvement and a future outlook of emerging trends. Our objectives are to provide an informative, useful, and thorough field guide to small molecule probes for reactive oxygen and nitrogen species as well as important context to compare the ecosystem of chemistries and molecular scaffolds that has manifested within the field.
Collapse
Affiliation(s)
- Maidileyvis C Cabello
- Department of Chemistry, Southern Methodist University, Dallas, Texas 75275-0314, United States
| | - Gen Chen
- Department of Chemistry, Southern Methodist University, Dallas, Texas 75275-0314, United States
| | - Michael J Melville
- Department of Chemistry, Colorado School of Mines, Golden, Colorado 80401, United States
| | - Rokia Osman
- Department of Chemistry, Southern Methodist University, Dallas, Texas 75275-0314, United States
| | - G Dinesh Kumar
- Department of Chemistry, Colorado School of Mines, Golden, Colorado 80401, United States
| | - Dylan W Domaille
- Department of Chemistry, Colorado School of Mines, Golden, Colorado 80401, United States
| | - Alexander R Lippert
- Department of Chemistry, Southern Methodist University, Dallas, Texas 75275-0314, United States
| |
Collapse
|
5
|
Liu S, Fang S, Jang WJ, Yoon J, Zhang L. Coordination Synergistic-Induced J-Aggregation Enhanced Fluorescent Performance of HBT-Excimers and Imaging Applications. Anal Chem 2024; 96:12794-12800. [PMID: 39054752 DOI: 10.1021/acs.analchem.4c02152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/27/2024]
Abstract
Developing a novel strategy to improve the optical performances of fluorescent probes is a vital factor in elevating its practical application; viz., novel biocompatible fluorescent probes with excellent multifunctions exhibited unparalleled advantages in probing functions of intracellular molecules to elucidate intracellular events in living systems. Herein, we have successfully constructed a new strategy that aggregation and coordination synergistically induce (2-hydroxylphenyl-benzothiazole) HBT derivatives to form excimers with large red-shifted fluorescence and application for insight into stress-response zinc fluctuations in living systems. We have synthesized four HBT-based derivatives and deeply investigated the response mechanism by fluorescent spectral studies, demonstrating that probes 3 and 4 showcased large red shifts in emission wavelength due to J-aggregation. More interestingly, the fluorescence of probe 4 was significantly enhanced in the presence of a zinc ion, suggesting that zinc coordination synergistically induced J-aggregation. Probe 4 was successfully applied to image zinc fluctuations in different models of living systems, proving that this probe is a powerful tool to unveil the relationship between invasive stress and diseases by monitoring endogenous zinc fluctuations.
Collapse
Affiliation(s)
- Shudi Liu
- College of Chemistry and Chemical Engineering, Yantai University, Yantai 264005, P.R. China
| | - Shujing Fang
- College of Chemistry and Chemical Engineering, Yantai University, Yantai 264005, P.R. China
| | - Won Jun Jang
- Department of Chemistry and Nanoscience, Ewha Womans University, Seoul 03760, Korea
| | - Juyoung Yoon
- Department of Chemistry and Nanoscience, Ewha Womans University, Seoul 03760, Korea
| | - Liangwei Zhang
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Research Centre for Coastal Environmental Engineering and Technology, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, P.R. China
| |
Collapse
|
6
|
Zhang C, Zhang X, Zhou Z. Dual-site lysosome-targeted fluorescent sensor for fast distinguishing visualization of HClO and ONOO - in living cells and zebrafish. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 312:124064. [PMID: 38428215 DOI: 10.1016/j.saa.2024.124064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 02/13/2024] [Accepted: 02/19/2024] [Indexed: 03/03/2024]
Abstract
As two of important highly reactive species / nitrogen species, hypochloric acid (HClO) and peroxynitrite (ONOO-) are involved in various pathological and physiological processes, which are important factors that affect and reflect the functional state of lysosome. Nevertheless, many of their roles are still indefinite because of lack of suitable analytical methods for HClO and ONOO- detection in lysosome. Herein, we designed a lysosome-targeted probe to monitor HClO and ONOO-, which was a hydrid of the benzothiazole derivative, methyl thioether (HClO recognition site) and morpholino hydrazone (ONOO- recognition and lysosome target site). The probe exhibited high sensitivity, good selectivity and fast response toward HClO and ONOO- without spectral crosstalk, and can be employed for quantitative monitoring HClO and ONOO- with LOD of 63 and 83 nM, respectively. In addition, the dual-site probe was lysosome targetable and could be used for detection of HClO and ONOO- in living cells. Furthermore, the excellent behavior made it was suitable for imaging of HClO and ONOO- in zebrafish. Thus, the present probe provides a potent tool for distinguishing monitoring HClO and ONOO- and exploring the role of HClO and ONOO- in biological systems.
Collapse
Affiliation(s)
- Chunxiang Zhang
- College of Chemistry and Materials Engineering, Hunan University of Arts and Science, Hunan Provincial Key Laboratory of Water Treatment Functional Materials, Changde 415000, PR China
| | - Xiangyang Zhang
- College of Chemistry and Materials Engineering, Hunan University of Arts and Science, Hunan Provincial Key Laboratory of Water Treatment Functional Materials, Changde 415000, PR China
| | - Zile Zhou
- College of Chemistry and Materials Engineering, Hunan University of Arts and Science, Hunan Provincial Key Laboratory of Water Treatment Functional Materials, Changde 415000, PR China.
| |
Collapse
|
7
|
Deng W, Xu Z, Li N, Lv T, Wang L, Li M, Chen X, Liu B. Rational design of a FA1-targeting anti-interference fluorescent probe for the point-of-care testing of albuminuria. Int J Biol Macromol 2024; 261:129723. [PMID: 38272419 DOI: 10.1016/j.ijbiomac.2024.129723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Revised: 01/14/2024] [Accepted: 01/22/2024] [Indexed: 01/27/2024]
Abstract
Albuminuria is a crucial urine biomarker of human unhealthy events such as kidney diseases, cardiovascular diseases, and diabetes. However, the accurate diagnosis of albuminuria poses a significant challenge owing to the severe interference from urine fluorescence and urine drugs. Here, we report a novel flavone-based fluorescent probe, DMC, by incorporating the FA1-targeting methylquinazoline group into a flavone skeleton with the extend π-conjugation. DMC exhibited a rapid response time, high sensitivity, and selectivity towards human serum albumin (HSA) in urine. Moreover, the red-shifted fluorescence and the FA1-targeted HSA-binding of DMC efficiently mitigated the interference from both urine fluorescence and urine drug metabolites. Furthermore, the establishment of a portable testing system highlighted the potential for point-of-care testing, offering a user-friendly and accurate approach to diagnose A2-level and A3-level albuminuria. We expect that the success of this DMC-based diagnostic platform in real urine samples can signify a significant advancement in early clinical diagnosis of albuminuria and its associated diseases.
Collapse
Affiliation(s)
- Weihua Deng
- College of Material Science and Engineering, Shenzhen University, 518060 Shenzhen, China
| | - Zhongyong Xu
- College of Material Science and Engineering, Shenzhen University, 518060 Shenzhen, China.
| | - Na Li
- College of Material Science and Engineering, Shenzhen University, 518060 Shenzhen, China
| | - Taoyuze Lv
- School of Physics, The University of Sydney, NSW 2006, Australia
| | - Lei Wang
- College of Material Science and Engineering, Shenzhen University, 518060 Shenzhen, China
| | - Mingle Li
- College of Material Science and Engineering, Shenzhen University, 518060 Shenzhen, China
| | - Xiaoqiang Chen
- College of Material Science and Engineering, Shenzhen University, 518060 Shenzhen, China
| | - Bin Liu
- College of Material Science and Engineering, Shenzhen University, 518060 Shenzhen, China.
| |
Collapse
|
8
|
Pang S, An B, Miao Z, Li C, Wei N, Zhang Y. A near-infrared fluorescent probe for detecting hydrazine metabolized from isoniazid in living cells. LUMINESCENCE 2024; 39:e4676. [PMID: 38286600 DOI: 10.1002/bio.4676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 12/12/2023] [Accepted: 12/25/2023] [Indexed: 01/31/2024]
Abstract
Isoniazid is a drug for treating tuberculosis, but hydrazine (N2 H4 ), the major metabolite of isoniazid, can cause hepatotoxicity. Therefore, monitoring the content of N2 H4 in time is of great significance for studying the hepatotoxicity induced by isoniazid. In this study, a near-infrared fluorescent probe (BC-N) was designed and synthesized based on the specific reaction of acetyl ester with N2 H4 . BC-N exhibits excellent selectivity, sensitivity, and biocompatibility. In addition, BC-N is applied in the visualization of N2 H4 produced from isoniazid in living cells and is a potential tool for monitoring hepatotoxicity induced by isoniazid.
Collapse
Affiliation(s)
- Shude Pang
- Department of Pharmaceutical Analysis, School of Pharmacy, Qingdao University Medical College, Qingdao, China
- Department of Pharmacology, School of Pharmacy, Qingdao University Medical College, Qingdao, China
| | - Baoshuai An
- Department of Pharmaceutical Analysis, School of Pharmacy, Qingdao University Medical College, Qingdao, China
- Department of Pharmacology, School of Pharmacy, Qingdao University Medical College, Qingdao, China
| | - Zhuo Miao
- Department of Pharmaceutical Analysis, School of Pharmacy, Qingdao University Medical College, Qingdao, China
- Department of Pharmacology, School of Pharmacy, Qingdao University Medical College, Qingdao, China
| | - Cheng Li
- Department of Pharmaceutical Analysis, School of Pharmacy, Qingdao University Medical College, Qingdao, China
- Department of Pharmacology, School of Pharmacy, Qingdao University Medical College, Qingdao, China
| | - Ningning Wei
- Department of Pharmaceutical Analysis, School of Pharmacy, Qingdao University Medical College, Qingdao, China
- Department of Pharmacology, School of Pharmacy, Qingdao University Medical College, Qingdao, China
| | - Yanru Zhang
- Department of Pharmaceutical Analysis, School of Pharmacy, Qingdao University Medical College, Qingdao, China
- Department of Pharmacology, School of Pharmacy, Qingdao University Medical College, Qingdao, China
| |
Collapse
|
9
|
Li M, Lei P, Shuang S, Dong C, Zhang L. Recent advances in fluorescent probes for dual-detecting ONOO - and analytes. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 303:123179. [PMID: 37542874 DOI: 10.1016/j.saa.2023.123179] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 07/18/2023] [Accepted: 07/19/2023] [Indexed: 08/07/2023]
Abstract
Although peroxynitrite (ONOO-) plays an essential role in cellular redox homeostasis, its excess ONOO- will affect the normal physiological function of cells. Therefore, real-time monitoring of changes in local ONOO- will contribute to further revealing the biological functions. Reliable and accurate detection of biogenic ONOO- will definitely benefit for disentangling its complex functions in living systems. In the past few years, more fluorescent probes have been developed to help understand and reveal cellular ONOO- changes. However, there has been no comprehensive and critical review of multifunctional fluorescent probes for cellular ONOO- and other analytes. To highlight the recent advances, this review first summarized the recent progress of multifunctional fluorescent probes since 2018, focusing on molecular structures, response mechanisms, optical properties, and biological imaging in the detection and imaging of cellular ONOO- and analytes. We classified and discussed in detail the limitations of existing multifunctional probes, and proposed new ideas to overcome these limitations. Finally, the challenges and future development trends of ONOO- fluorescence probes were discussed. We hoped this review will provide new research directions for developing of multifunctional fluorescent probes and contribute to the early diagnosis and treatment of diseases.
Collapse
Affiliation(s)
- Minglu Li
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Tongji Shanxi Hospital, Shanxi Academy of Medical Sciences, Taiyuan, China
| | - Peng Lei
- College of Chemistry and Chemical Engineering & Institute of Environmental Science, Shanxi University, Taiyuan, China
| | - Shaomin Shuang
- College of Chemistry and Chemical Engineering & Institute of Environmental Science, Shanxi University, Taiyuan, China
| | - Chuan Dong
- College of Chemistry and Chemical Engineering & Institute of Environmental Science, Shanxi University, Taiyuan, China
| | - Liyun Zhang
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Tongji Shanxi Hospital, Shanxi Academy of Medical Sciences, Taiyuan, China.
| |
Collapse
|
10
|
Zhang X, Xiu T, Wang H, Wang H, Li P, Tang B. Recent progress in the development of small-molecule double-locked logic gate fluorescence probes. Chem Commun (Camb) 2023; 59:11017-11027. [PMID: 37667841 DOI: 10.1039/d3cc03492e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/06/2023]
Abstract
Various bioactive substances are simultaneously involved in physiological processes, and research on the synergistic effect of them can promote the study of pathological mechanisms. To achieve this purpose, several small-molecule double-locked logic gate fluorescence probes have been developed recently. They overcome many shortcomings of the traditional "single-signal" fluorescent probes, with fluorescence that can be activated by two analytes of interest order-independently or order-dependently with one output. In this review, we summarize recently published small-molecule double-locked logic gate probes for the optical detection of two bioactive substances in living systems. We envision that this review will attract significant attention from researchers to exploit more powerful functional double-locked logic gate probes.
Collapse
Affiliation(s)
- Xiaoting Zhang
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institutes of Biomedical Sciences, Shandong Normal University, Jinan 250014, People's Republic of China.
| | - Tiancong Xiu
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institutes of Biomedical Sciences, Shandong Normal University, Jinan 250014, People's Republic of China.
| | - Hui Wang
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institutes of Biomedical Sciences, Shandong Normal University, Jinan 250014, People's Republic of China.
| | - Hongtong Wang
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institutes of Biomedical Sciences, Shandong Normal University, Jinan 250014, People's Republic of China.
| | - Ping Li
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institutes of Biomedical Sciences, Shandong Normal University, Jinan 250014, People's Republic of China.
| | - Bo Tang
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institutes of Biomedical Sciences, Shandong Normal University, Jinan 250014, People's Republic of China.
- Laoshan Laboratory, 168 Wenhai Middle Rd, Aoshanwei, Jimo, People's Republic of China
| |
Collapse
|
11
|
Wang X, Wang X, Han Q. Intelligent detection strategy and bioimaging application of dual-responsive Hg 2+ and ONOO - using near-infrared probes. Anal Chim Acta 2023; 1266:341358. [PMID: 37244665 DOI: 10.1016/j.aca.2023.341358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 04/27/2023] [Accepted: 05/10/2023] [Indexed: 05/29/2023]
Abstract
Mercury is a highly toxic heavy metal pollutant. Mercury and its derivatives pose serious threats to the environment and the health of organisms. Numerous reports have indicated that Hg2+ exposure induces a burst of oxidative stress in organisms, causing severe damage to the health of the organism. A large number of reactive oxygen species (ROS) and reactive nitrogen species (RNS) are produced under conditions of oxidative stress, and superoxide anions (O2-) and NO radicals react rapidly with each other to produce peroxynitrite (ONOO-), an important downstream product. Therefore, developing an efficient and highly responsive screening method to monitor the fluctuations of Hg2+ and ONOO- levels is particularly important. In this work, we designed and synthesized a highly sensitive and highly specific near-infrared probe W-2a, which can effectively detect and distinguish Hg2+ and ONOO- through fluorescence imaging. In addition, we developed a WeChat mini-program called "Colorimetric acquisition" and built an intelligent detection platform to assess the environmental hazards of Hg2+ and ONOO-. The probe can detect Hg2+ and ONOO- in the body through dual signaling, as evidenced by cell imaging, and has successfully monitored fluctuations in the ONOO- levels in inflamed mice. In conclusion, the W-2a probe provides a highly efficient and reliable method for assessing oxidative stress-induced changes in the ONOO- levels in the body.
Collapse
Affiliation(s)
- Xiao Wang
- College of Chemistry and Chemical Engineering, Shaanxi University of Science &Technology, Xi'an, 710021, PR China
| | - Xuechuan Wang
- College of Chemistry and Chemical Engineering, Shaanxi University of Science &Technology, Xi'an, 710021, PR China; College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science & Technology, Xi'an, 710021, PR China.
| | - Qingxin Han
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science & Technology, Xi'an, 710021, PR China.
| |
Collapse
|
12
|
Li X, Chu D, Wang J, Qi Y, Yuan W, Li J, Zhou Z. A dicyanoisophorone-based ICT fluorescent probe for the detection of Hg 2+ in water/food sample analysis and live cell imaging. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 295:122628. [PMID: 36965244 DOI: 10.1016/j.saa.2023.122628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 02/18/2023] [Accepted: 03/11/2023] [Indexed: 06/18/2023]
Abstract
Mercury ions are notoriously difficult to biodegradable, and its abnormal bioaccumulation in the human body through the food chain can cause various diseases. Therefore, the quantitative and real-time detection of Hg2+ is very extremely important. Herein, we have brilliant designed and synthesized (E)-O-(4-(2-(3-(dicyanomethylene)-5,5-dimethylcyclohex-1-en-1-yl)vinyl)phenyl) O-phenyl carbonothioate (ICM-Hg) as a selective fluorescent probe for Hg2+ detection in real samples and intracellular staining. ICM-Hg displayed high specificity toward Hg2+ by activating the intramolecular charge transfer (ICT) process, resulting in distinguished color change from colorless to bright yellow along with noticeable switch on yellow fluorescence emission. The fluorescent intensity of ICM-Hg at 585 nm shows a well linear relationship in the range of Hg2+ concentration (0-45 μM), and the detection of limit for Hg2+ is calculated to be 231 nM. Promisingly, ICM-Hg can efficiently detect Hg2+ in real samples including tap water, tea, shrimp, and crab with quantitative recovery as well as the intracellular fluorescence imaging.
Collapse
Affiliation(s)
- Xiangqian Li
- School of Chemical & Environmental Engineering, Key Lab of Ecological Restoration in Hilly Areas, Pingdingshan University, Pingdingshan 467000, PR China
| | - Dandan Chu
- Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou 450003, PR China
| | - Juan Wang
- College of Chemistry and Chemical Engineering, Henan Key Laboratory of Function-Oriented Porous Materials, Luoyang Normal University, Luoyang 471934, PR China
| | - Yueheng Qi
- Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou 450003, PR China
| | - Weiwei Yuan
- College of Chemistry and Chemical Engineering, Henan Key Laboratory of Function-Oriented Porous Materials, Luoyang Normal University, Luoyang 471934, PR China
| | - Jingguo Li
- Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou 450003, PR China.
| | - Zhan Zhou
- Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou 450003, PR China; College of Chemistry and Chemical Engineering, Henan Key Laboratory of Function-Oriented Porous Materials, Luoyang Normal University, Luoyang 471934, PR China.
| |
Collapse
|
13
|
Guo Y, Yin L, Qian X, Yang Y, Luo X. PET/d-PET (PdP) Pairing for the Design of Dual-Channel Probes. Anal Chem 2023. [PMID: 37314854 DOI: 10.1021/acs.analchem.3c02054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Design principles of two-channel fluorescence probes are limited. Herein, we report a new principle, i.e., PET/d-PET (PdP) pairing, for the rational design of two-channel probes. Two fluorophores are required in such a PdP-type probe. They mutually quench their fluorescence via PET and d-PET. In the presence of an analyte-of-interest, such a PdP pair is converted into a FRET pair for signaling. The embodiment of such a principle is Rh-TROX, by tethering a rhodamine fluorophore with an ROS-sensitive probe (TotalROX). Fluorescence of both fluorophores in Rh-TROX was quenched as expected. The addition of highly reactive oxidative species led to the recovery of the fluorescence properties of both. The simultaneous fluorescence enhancement in two channels is a viable way to avoid false-positive signals. The new PdP principle could potentially be applied to the development of probes for another range of substrates.
Collapse
Affiliation(s)
- Yinghua Guo
- Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, State Key Laboratory of Bioreactor Engineering, Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Lei Yin
- Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, State Key Laboratory of Bioreactor Engineering, Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Xuhong Qian
- Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, State Key Laboratory of Bioreactor Engineering, Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200241, China
| | - Youjun Yang
- Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, State Key Laboratory of Bioreactor Engineering, Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Xiao Luo
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200241, China
| |
Collapse
|
14
|
Lei P, Li M, Dong C, Shuang S. Multifunctional Mitochondria-Targeting Near-Infrared Fluorescent Probe for Viscosity, ONOO -, Mitophagy, and Bioimaging. ACS Biomater Sci Eng 2023; 9:3581-3589. [PMID: 37252846 DOI: 10.1021/acsbiomaterials.3c00307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Irregularities in mitochondrial viscosity and peroxynitrite (ONOO-) concentration can lead to mitochondrial dysfunction. It is still a great challenge to develop near-infrared (NIR) fluorescent probes to simultaneously detect viscosity, endogenous ONOO-, and mitophagy. Herein, a multifunctional mitochondria-targeting NIR fluorescent probe P-1 was first synthesized for simultaneously detecting viscosity, ONOO-, and mitophagy. P-1 used quinoline cations as a mitochondrial targeting moiety, arylboronate as an ONOO- responsive group, and detected the change of viscosity by the twisted internal charge transfer (TICT) mechanism. The probe has an excellent response to the viscosity during inflammation by lipopolysaccharides (LPSs) and mitophagy induced by starvation at 670 nm. The viscosity changes of the probe induced by nystatin in zebrafish showed that P-1 was able to detect microviscosity in vivo. P-1 also showed good sensitivity with a detection limit of 6.2 nM for ONOO- detection and was successfully applied to the endogenous ONOO- detection in zebrafish. Moreover, P-1 has the ability to distinguish between cancer cells and normal cells. All of these features make P-1 a promising candidate to detect mitophagy and ONOO- -associated physiological and pathological processes.
Collapse
Affiliation(s)
- Peng Lei
- School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan 030006, China
| | - Minglu Li
- Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan 030032, China
| | - Chuan Dong
- Institute of Environmental Science, Shanxi University, Taiyuan 030006, China
| | - Shaomin Shuang
- School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan 030006, China
| |
Collapse
|
15
|
Li J, Huang H, Zhang C, Chen X, Hu Y, Huang X. Dual-key-and-lock AIE probe for thiosulfate and Ag + detection in mitochondria. Talanta 2023; 255:124222. [PMID: 36586391 DOI: 10.1016/j.talanta.2022.124222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 12/16/2022] [Accepted: 12/25/2022] [Indexed: 12/28/2022]
Abstract
Ag+ ion detection has attracted much attention due to its important role in chemical and biological processes, as well as its potential threat to the environment and human health. Herein, we firstly constructed a dual-key-and-lock sensing strategy for Ag+ detection based on three-component co-assembly. An aggregation-induced emission luminogen (AIEgen), namely triphenylamine-thiophene-pyridinium (abbreviated to TPA-T-Py), showed unique co-assembly capability with Ag+ and S2O32- in PBS buffer (pH 7.4, 0.01 M). Cell imaging further proved that mitochondria can be lit up by TPA-T-Py under the dual key stimulation, which was successfully used for Ag+ and S2O32- detection in vitro. In brief, we provide a promising strategy for the construction of dual-lock imaging agents with organelle-targeting ability.
Collapse
Affiliation(s)
- Junrong Li
- Hubei Key Laboratory of Pollutant Analysis and Reuse Technology, College of Chemistry and Chemical Engineering, Hubei Normal University, Huangshi, 435002, China
| | - Hong Huang
- College of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiaxing, 314001, China
| | - Chuang Zhang
- Hubei Key Laboratory of Pollutant Analysis and Reuse Technology, College of Chemistry and Chemical Engineering, Hubei Normal University, Huangshi, 435002, China
| | - Xulang Chen
- Hubei Key Laboratory of Pollutant Analysis and Reuse Technology, College of Chemistry and Chemical Engineering, Hubei Normal University, Huangshi, 435002, China
| | - Yanjun Hu
- Hubei Key Laboratory of Pollutant Analysis and Reuse Technology, College of Chemistry and Chemical Engineering, Hubei Normal University, Huangshi, 435002, China
| | - Xiaohuan Huang
- Hubei Key Laboratory of Pollutant Analysis and Reuse Technology, College of Chemistry and Chemical Engineering, Hubei Normal University, Huangshi, 435002, China.
| |
Collapse
|
16
|
Han M, Xie Y, Wang R, Li Y, Bian C, Xia S. 4-Mercaptopyridine-Modified Sensor for the Sensitive Electrochemical Detection of Mercury Ions. MICROMACHINES 2023; 14:739. [PMID: 37420972 DOI: 10.3390/mi14040739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 03/16/2023] [Accepted: 03/25/2023] [Indexed: 07/09/2023]
Abstract
As a highly toxic heavy metal ion, mercury ion (Hg2+) pollution has caused serious harm to the environment and human health. In this paper, 4-mercaptopyridine (4-MPY) was selected as the sensing material and decorated on the surface of a gold electrode. Trace Hg2+ could be detected by both differential pulse voltammetry (DPV) and electrochemical impedance spectroscopy (EIS) methods. The proposed sensor displayed a wide detection range from 0.01 μg/L to 500 μg/L with a low limit of detection (LOD) of 0.002 μg/L by EIS measurements. Combined with molecular simulations and electrochemical analyses, the chelating mechanism between Hg2+ and 4-MPY was explored. Through the analysis of binding energy (BE) values and stability constants, 4-MPY showed an excellent selectivity for Hg2+. In the presence of Hg2+, the coordination of Hg2+ with the pyridine nitrogen of 4-MPY was generated at the sensing region, which caused a change in the electrochemical activity of the electrode surface. Due to the strong specific binding capability, the proposed sensor featured excellent selectivity and an anti-interference capability. Furthermore, the practicality of the sensor for Hg2+ detection was validated with the samples of tap water and pond water, which demonstrated its potential application for on-site environmental detection.
Collapse
Affiliation(s)
- Mingjie Han
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100190, China
- School of Electronic, Electrical and Communication Engineering, University of Chinese Academy of Sciences, Beijing 100190, China
| | - Yong Xie
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100190, China
- School of Electronic, Electrical and Communication Engineering, University of Chinese Academy of Sciences, Beijing 100190, China
| | - Ri Wang
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100190, China
- School of Electronic, Electrical and Communication Engineering, University of Chinese Academy of Sciences, Beijing 100190, China
| | - Yang Li
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100190, China
| | - Chao Bian
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100190, China
| | - Shanhong Xia
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100190, China
| |
Collapse
|
17
|
Xue SS, Li Y, Pan W, Li N, Tang B. Multi-stimuli-responsive molecular fluorescent probes for bioapplications. Chem Commun (Camb) 2023; 59:3040-3049. [PMID: 36786045 DOI: 10.1039/d2cc07008a] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Stimuli-responsive fluorescent probes have been widely utilized in detecting the physiological and pathological states of living systems. Numerous stimuli-responsive fluorescent probes have been developed due to their advantages of good sensitivity, high resolution, and high contrast fluorescent signals. In this feature article, the progress of multi-stimuli-responsive probes, including organic molecules and metal complexes, for the detection of various biomarkers for bio-applications is summarized. The feature article focuses on the applications of organic-molecule- and metal-complex-based molecular probes in biological systems for detecting different biomarkers of cancer or other diseases. The current challenges and potential future directions of these probes for applications in biological systems are also discussed.
Collapse
Affiliation(s)
- Shan-Shan Xue
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Centre of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institute of Molecular and Nano Science, Shandong Normal University, Jinan, 250014, P. R. China.
| | - Yuanyuan Li
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Centre of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institute of Molecular and Nano Science, Shandong Normal University, Jinan, 250014, P. R. China.
| | - Wei Pan
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Centre of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institute of Molecular and Nano Science, Shandong Normal University, Jinan, 250014, P. R. China.
| | - Na Li
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Centre of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institute of Molecular and Nano Science, Shandong Normal University, Jinan, 250014, P. R. China.
| | - Bo Tang
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Centre of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institute of Molecular and Nano Science, Shandong Normal University, Jinan, 250014, P. R. China.
| |
Collapse
|
18
|
Advances in organic fluorescent probes for bromide ions, hypobromous acid and related eosinophil peroxidase-A review. Anal Chim Acta 2023; 1244:340626. [PMID: 36737144 DOI: 10.1016/j.aca.2022.340626] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 11/10/2022] [Accepted: 11/11/2022] [Indexed: 11/16/2022]
Abstract
Elemental bromine is among the essential elements for human health. In living organisms, bromide (Br-) and hydrogen peroxide (H2O2) can be catalyzed by eosinophil peroxidase (EPO) to generate a reactive oxygen species (ROS), hypobromous acid (HOBr), which exhibits properties similar to those of hypochlorous acid (HOCl). Moreover, HOBr possesses strong oxidative and antibacterial properties, which are believed to play an important role in the neutrophil host defense system. However, overexpression or misexpression of HOBr can cause organismal and tissue damage, which is closely related to the development of various diseases. Therefore, an increasing number of studies has demonstrated physiological associations with the conversion of Br- to HOBr. With the development of fluorescence imaging technology, developing fluorescent probes with novel structures and high selectivity to detect changes in Br-, HOBr, and the related enzyme EPO levels in organisms has become very important. This paper summarizes Br-, HOBr, and EPO fluorescent probes reported in recent years, including the design principles, mechanisms, optical properties, and bioapplications. Finally, the application prospects and challenges are also discussed.
Collapse
|
19
|
Zhang L, Zhang L, Zhang X, Liu P, Wang Y, Han X, Chen L. Fluorescent imaging to provide visualized evidences for mercury induced hypoxia stress. JOURNAL OF HAZARDOUS MATERIALS 2023; 444:130374. [PMID: 36399820 DOI: 10.1016/j.jhazmat.2022.130374] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 10/24/2022] [Accepted: 11/08/2022] [Indexed: 06/16/2023]
Abstract
As one typical toxic and dangerous heavy metal, mercury brings incalculable hazards to the environment and human, the mechanism at the molecular level is unclear. There is no visualized evidence to support directly that mercury ions (Hg2+) exposure may induce secondary stress, which is associated with the risk of hypoxia microenvironment in biological systems. Hypoxia occurs in many physiological and pathophysiological processes in the living system, accompanying overexpression of various biomarkers, such as nitroreductase (NTR). Hence, we had successfully developed two NTR-selective fluorescent probes with excellent performance for evaluating the hypoxia degree in vivo and in vitro. We visualized and qualitatively monitored the fluctuations of the endogenous NTR levels in living cells and zebrafish. The imaging results exhibited that different doses of Hg2+ exposure elevated the NTR levels and the same trend in changes of NTR as extrinsic hypoxia exposure, suggesting that Hg2+ exposure induced microenvironmental changes resulting in the hypoxia stress. This is the first time to provide visual evidence to support that Hg2+ stress may involve in the intracellular hypoxia microenvironment through monitoring the dynamic of NTR levels in the living systems. Our results may provide a novel insight into the molecular mechanisms of typical heavy metal element induced toxicity.
Collapse
Affiliation(s)
- Li Zhang
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Shandong Key Laboratory of Coastal Environmental Processes, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Liangwei Zhang
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Shandong Key Laboratory of Coastal Environmental Processes, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China.
| | - Xia Zhang
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Shandong Key Laboratory of Coastal Environmental Processes, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China; University of Chinese Academy of Sciences, Beijing 100049, China; School of Pharmacy, Binzhou Medical University, Yantai 264003, China
| | - Ping Liu
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Shandong Key Laboratory of Coastal Environmental Processes, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China
| | - Yue Wang
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Shandong Key Laboratory of Coastal Environmental Processes, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaoyue Han
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Shandong Key Laboratory of Coastal Environmental Processes, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lingxin Chen
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Shandong Key Laboratory of Coastal Environmental Processes, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China; Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology, Qingdao 266237, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China; School of Pharmacy, Binzhou Medical University, Yantai 264003, China.
| |
Collapse
|
20
|
Zhu H, Liu M, Liu C, Yu M, Wang K, Li X, Sheng W, Zhu B. Portable ratiometric fluorescence analytical device for copper ions based on smartphone in environment and living organisms. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 857:159488. [PMID: 36265623 DOI: 10.1016/j.scitotenv.2022.159488] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 10/10/2022] [Accepted: 10/12/2022] [Indexed: 06/16/2023]
Abstract
The concentration of copper ions (Cu2+) in the environment is closely related to water quality, food, and biological health. As an indispensable metal element for the human body, its content is closely related to many diseases. However, the current detection methods for Cu2+ have some limitations, such as complicated operations and unfavorable on-site analysis. Therefore, this work constructs a novel ratiometric fluorescent probe (QLP), which has the advantages of rapid response, good anti-interference ability and high sensitivity. It has been successfully used for the detection of Cu2+ in water samples, soil, and food. In addition, low cytotoxicity and strong tissue penetration make it suitable for the detection of Cu2+ in living cells and zebrafish, offering a chemical tool for exploring the physiological and pathological processes related to Cu2+. It is important to use probe QLP and portable UV lamp to create an easy-to-operate Cu2+ detection platform, which can quickly detect Cu2+ on-site by combining with a smartphone. This work not only provides a detection tool for on-site analysis of Cu2+, but also provides a reference strategy for the development of on-site detection methods for other environmental pollutants.
Collapse
Affiliation(s)
- Hanchuang Zhu
- School of Water Conservancy and Environment, University of Jinan, Jinan 250022, China
| | - Mengyuan Liu
- School of Water Conservancy and Environment, University of Jinan, Jinan 250022, China
| | - Caiyun Liu
- School of Water Conservancy and Environment, University of Jinan, Jinan 250022, China.
| | - Miaohui Yu
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250103, China
| | - Kun Wang
- School of Water Conservancy and Environment, University of Jinan, Jinan 250022, China
| | - Xinke Li
- School of Water Conservancy and Environment, University of Jinan, Jinan 250022, China
| | - Wenlong Sheng
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250103, China.
| | - Baocun Zhu
- School of Water Conservancy and Environment, University of Jinan, Jinan 250022, China.
| |
Collapse
|
21
|
Wei P, Xiao L, Gou Y, He F, Wang P, Yang X. A novel peptide-based relay fluorescent probe with a large Stokes shift for detection of Hg 2+ and S 2- in 100 % aqueous medium and living cells: Visual detection via test strips and smartphone. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 285:121836. [PMID: 36126620 DOI: 10.1016/j.saa.2022.121836] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 08/08/2022] [Accepted: 09/01/2022] [Indexed: 06/15/2023]
Abstract
Herein, a novel relay peptide-based fluorescent probe DGRK was synthesized via solid phase peptide synthesis (SPPS) technology. DGRK exhibited excellent water-solubility, good stability, remarkably large Stokes shift (230 nm) and high selectivity response to Hg2+ with a non-fluorescence complex DGRK-Hg2+ formation via a 1:1 binding mode. Further studies indicated that the DGRK-Hg2+ complex could act as a secondary probe for rapidly and sequentially detecting S2- based on fluorescent "off-on" response, and without interference from a range of anions. The limit of detection (LOD) for Hg2+ and S2- were calculated to be 33.6 nM and 60.9 nM, respectively. In addition, The reversibility of interaction of confirmed that the continuous and reversible recognition behavior of Hg2+ and S2- by the probe DGRK, and could be cycled more than 5 times. In addition, DGRK could be successfully applied to the fluorescence imaging of Hg2+ and S2- in two living cells based on excellent cells permeability and low cytotoxicity. Meanwhile, DGRK was successfully used to create the low-cost and portable test strips for visual detection and rapid analysis under 365 nm UV lamp, and the test strips combined with a smartphone (RGB color) was successfully applied to the semi-quantitative analysis and monitoring of dynamic changes of Hg2+ levels.
Collapse
Affiliation(s)
- Ping Wei
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, College of Chemistry and Chemical Engineering, China West Normal University, Shida Road 1#, Nanchong 637009, PR China
| | - Lin Xiao
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, College of Chemistry and Chemical Engineering, China West Normal University, Shida Road 1#, Nanchong 637009, PR China
| | - Yuting Gou
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, College of Chemistry and Chemical Engineering, China West Normal University, Shida Road 1#, Nanchong 637009, PR China
| | - Fang He
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, College of Chemistry and Chemical Engineering, China West Normal University, Shida Road 1#, Nanchong 637009, PR China
| | - Peng Wang
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, College of Chemistry and Chemical Engineering, China West Normal University, Shida Road 1#, Nanchong 637009, PR China; Key Laboratories of Fine Chemicals and Surfactants in Sichuan Provincial Universities, Sichuan University of Science & Engineering, Zigong 643000, PR China.
| | - Xiupei Yang
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, College of Chemistry and Chemical Engineering, China West Normal University, Shida Road 1#, Nanchong 637009, PR China.
| |
Collapse
|
22
|
An B, Pang S, Zhang Y, Wei N. A novel near-infrared fluorescent probe for visualization of intracellular hydrogen peroxide. Front Chem 2022; 10:1025723. [PMID: 36339043 PMCID: PMC9634107 DOI: 10.3389/fchem.2022.1025723] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 10/12/2022] [Indexed: 11/13/2022] Open
Abstract
Hydrogen peroxide (H2O2) as a crucial reactive oxygen species (ROS) plays a crucial role in redox signaling in physiological and pathological processes of living cells. Its normal production is closely related to signal transduction of living cells. Overproduction of H2O2in vivo has been proved to be related to many diseases. Some were developed to reveal the roles of H2O2. However, current fluorescent probes for the detection of H2O2 are restricted in their short emission wavelengths and small Stokes shifts that significantly decrease the sensitivity of detection and cellular visualization. In this work, a novel fluorescent probe BC-B was designed and synthesized with pinacol phenylboronic acid ester as a recognition group and near-infrared fluorophore BC-OH as a reporter group. BC-B probe exhibits a large Stokes shift (122 nm) and near-infrared emission (672 nm), showing an excellent selectivity and sensitivity in detection of H2O2 with the limit of 0.003 μmol/L. Confocal fluorescence imaging further demonstrates that BC-B can be used for detecting endogenous H2O2 in living cells.
Collapse
|
23
|
Rational design of a water-soluble TICT-AIEE-active fluorescent probe for mercury ion detection. Anal Chim Acta 2022; 1230:340337. [DOI: 10.1016/j.aca.2022.340337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 06/23/2022] [Accepted: 08/29/2022] [Indexed: 11/18/2022]
|
24
|
Wang X, Cheng S, Liu C, Zhang Y, Su M, Rong X, Zhu H, Yu M, Sheng W, Zhu B. A novel ratiometric fluorescent probe for the detection of nickel ions in the environment and living organisms. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 840:156445. [PMID: 35675887 DOI: 10.1016/j.scitotenv.2022.156445] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 05/30/2022] [Accepted: 05/31/2022] [Indexed: 06/15/2023]
Abstract
Nickel resources are abundant in the world, and the application of nickel in production and life is more and more extensive. However, excessive nickel entering the environment will not only cause environmental pollution but also seriously endanger plants, animals and human health. Nickel compounds are carcinogenic and have been classified as a class 1 carcinogen. Nickel mainly exists in the form of divalent ions in the environment. However, there are few simple and effective methods for the detection of nickel ions, and these methods still have certain limitations. At present, the mechanisms of nickel influence in organisms are also unclear. Therefore, we constructed a ratiometric fluorescent probe Ra-Ni, which can achieve its own self-calibration and avoid the interference of other factors, thereby realizing the specific identification of nickel ions. The probe can detect nickel ions sensitively with a detection limit as low as 26.2 nM and can respond in a short time (< 2 min), which proves the great potential of the probe in the detection of nickel ions. At the same time, Ra-Ni has also been successfully used for imaging nickel ions in living cells and zebrafish, providing an effective tool for the study of physiological and pathological processes. The detection effect of nickel ions in actual water sample is also satisfactory, which further demonstrates the practicability of Ra-Ni in environmental applications.
Collapse
Affiliation(s)
- Xin Wang
- School of Water Conservancy and Environment, University of Jinan, Jinan 250022, China
| | - Siyu Cheng
- School of Water Conservancy and Environment, University of Jinan, Jinan 250022, China
| | - Caiyun Liu
- School of Water Conservancy and Environment, University of Jinan, Jinan 250022, China.
| | - Yan Zhang
- School of Water Conservancy and Environment, University of Jinan, Jinan 250022, China
| | - Meijun Su
- School of Water Conservancy and Environment, University of Jinan, Jinan 250022, China
| | - Xiaodi Rong
- School of Water Conservancy and Environment, University of Jinan, Jinan 250022, China
| | - Hanchuang Zhu
- School of Water Conservancy and Environment, University of Jinan, Jinan 250022, China
| | - Miaohui Yu
- Biology Institute, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250103, China
| | - Wenlong Sheng
- Biology Institute, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250103, China.
| | - Baocun Zhu
- School of Water Conservancy and Environment, University of Jinan, Jinan 250022, China.
| |
Collapse
|
25
|
Wang Z, Gong J, Wang P, Xiong J, Zhang F, Mao Z. An activatable fluorescent probe enables in vivo evaluation of peroxynitrite levels in rheumatoid arthritis. Talanta 2022; 252:123811. [DOI: 10.1016/j.talanta.2022.123811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 07/31/2022] [Accepted: 08/01/2022] [Indexed: 10/15/2022]
|
26
|
Li SS, Wang AJ, Yuan PX, Mei LP, Zhang L, Feng JJ. Heterometallic nanomaterials: activity modulation, sensing, imaging and therapy. Chem Sci 2022; 13:5505-5530. [PMID: 35694355 PMCID: PMC9116289 DOI: 10.1039/d2sc00460g] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 04/12/2022] [Indexed: 11/23/2022] Open
Abstract
Heterometallic nanomaterials (HMNMs) display superior physicochemical properties and stability to monometallic counterparts, accompanied by wider applications in the fields of catalysis, sensing, imaging, and therapy due to synergistic effects between multi-metals in HMNMs. So far, most reviews have mainly concentrated on introduction of their preparation approaches, morphology control and applications in catalysis, assay of heavy metal ions, and antimicrobial activity. Therefore, it is very important to summarize the latest investigations of activity modulation of HMNMs and their recent applications in sensing, imaging and therapy. Taking the above into consideration, we briefly underline appealing chemical/physical properties of HMNMs chiefly tailored through the sizes, shapes, compositions, structures and surface modification. Then, we particularly emphasize their widespread applications in sensing of targets (e.g. metal ions, small molecules, proteins, nucleic acids, and cancer cells), imaging (frequently involving photoluminescence, fluorescence, Raman, electrochemiluminescence, magnetic resonance, X-ray computed tomography, photoacoustic imaging, etc.), and therapy (e.g. radiotherapy, chemotherapy, photothermal therapy, photodynamic therapy, and chemodynamic therapy). Finally, we present an outlook on their forthcoming directions. This timely review would be of great significance for attracting researchers from different disciplines in developing novel HMNMs.
Collapse
Affiliation(s)
- Shan-Shan Li
- Institute for Chemical Biology & Biosensing, College of Life Sciences, Qingdao University 308 Ningxia Road Qingdao 266071 China
| | - Ai-Jun Wang
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Life Sciences, College of Geography and Environmental Sciences, Zhejiang Normal University Jinhua 321004 China
| | - Pei-Xin Yuan
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Life Sciences, College of Geography and Environmental Sciences, Zhejiang Normal University Jinhua 321004 China
| | - Li-Ping Mei
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Life Sciences, College of Geography and Environmental Sciences, Zhejiang Normal University Jinhua 321004 China
| | - Lu Zhang
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Life Sciences, College of Geography and Environmental Sciences, Zhejiang Normal University Jinhua 321004 China
| | - Jiu-Ju Feng
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Life Sciences, College of Geography and Environmental Sciences, Zhejiang Normal University Jinhua 321004 China
| |
Collapse
|
27
|
Han Z, Xiong J, Ren TB, Zhang XB. Recent advances in dual-target-activated fluorescent probes for biosensing and bioimaging. Chem Asian J 2022; 17:e202200387. [PMID: 35579099 DOI: 10.1002/asia.202200387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 05/16/2022] [Indexed: 11/08/2022]
Abstract
Fluorescent probes have been powerful tools for visualizing and quantifying multiple dynamic processes in living cells. However, the currently developed probes are often constructed by conjugation a fluorophore with a recognition moiety and given signal-output after triggering with one singly target interest. Compared with the single-target-activated fluorescent probes mentioned above, the dual-target-activated ones, triggering with one target under stimulus (such as photoirradiation, microenvironment) or another targets, have the advantages of advoiding nonspecific activation and "false positive" results in complicated environments. In recent years, many dual-target-activated fluorescent probes have been developed to detect various biologically relevant species. In view of the importance of a comprehensive understanding of dual-target- activated fluorescent probes, a thorough summary of this topic is urgently needed. However, no comprehensive and critical review on dual target activated fluorescent probes has been published recently. In this review, we focus on the dual-target-activated fluorescent probes and briefly outline their types and current state of development. In each type, the chemical structure, proposed responsive mechanism and application of probes are highlighted. At last, the challenges and prospective opportunities of every type were proposed.
Collapse
Affiliation(s)
- Zhixiang Han
- Jiangsu University, School of the Environment and Safety Engineering, CHINA
| | - Jie Xiong
- Jiangsu University, School of the Environment and Safety Engineering, CHINA
| | - Tian-Bing Ren
- Hunan University, College of Chemistry and Chemical Engineering, 410082, Changsha, CHINA
| | - Xiao-Bing Zhang
- Hunan University, College of Chemistry and Chemical Engineering, 410082, Changsha, CHINA
| |
Collapse
|
28
|
Zhao XB, Kang JY, Shi YP. Noncovalent Dual-Locked Near-Infrared Fluorescent Probe for Precise Imaging of Tumor via Hypoxia/Glutathione Activation. Anal Chem 2022; 94:6574-6581. [PMID: 35437984 DOI: 10.1021/acs.analchem.2c00406] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Stimulus-responsive fluorescent probes have broad applications in the early detection and treatment of tumors and thus promote the personalized treatment of tumors and improve patient survival. Among the repertoires of probes, dual-locked near-infrared (NIR) fluorescent probes are of great significance due to their improved specificity and multiplex detection in tumor imaging but remain to be explored. In this work, a facile noncovalent strategy for constructing dual-locked probes was proposed. A glutathione (GSH)-activatable single-locked probe CySS (first lock) was preloaded into a hypoxia-responsive molecular container CF3C4A (second lock) through a host-guest interaction to form the dual-locked probe CF3C4A-CySS. Under physiological conditions, CF3C4A-CySS binds strongly to avoid undesired leakage in normal tissues. We have proven that CF3C4A-CySS can be activated and "turn on" its NIR fluorescent signal under the dual key stimulation of hypoxia and GSH in the tumor microenvironment, which enables precise tumor imaging with enhanced accuracy and specificity. Both in vitro and in vivo results indicated the superiority of CF3C4A-CySS in tumor imaging. This work not only provides an effective tool for tumor imaging but also proposes a promising strategy for dual-locked imaging agent construction.
Collapse
Affiliation(s)
- Xiao-Bo Zhao
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences (CAS), Lanzhou 730000, People's Republic of China
| | - Jing-Yan Kang
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences (CAS), Lanzhou 730000, People's Republic of China
| | - Yan-Ping Shi
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences (CAS), Lanzhou 730000, People's Republic of China
| |
Collapse
|
29
|
Fu Y, Zhang X, Liu J, Qian G, Xu ZP, Zhang R. Fluorescence detection and imaging of intracellular sulphite using a remote light activatable photochromic nanoprobe. J Mater Chem B 2022; 10:3366-3374. [PMID: 35383812 DOI: 10.1039/d2tb00021k] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The development of a responsive fluorescent probe for the detection of a particular biomolecule in a specific site at the desired moment is important in the fields of bioanalysis and imaging, molecular biology and biomedical research. In this work, we report the development of a remote-light activatable nanoprobe for the fluorescence detection of sulphite in pure aqueous solution and its imaging applications in living cells. The nanoprobe, Poly-Cm-SP, is fabricated simply by wrapping photochromic molecules (Cm-SP) into a polymer nanoparticle. Upon alternate UV/Vis light irradiation for several seconds, the Poly-Cm-SP nanoprobe exhibits red/blue fluorescence switch due to the inactive/active FRET processes from coumarins to the SP/MR isomers of the photochromic molecule. In the presence of sulphite, the specific reaction of sulphite with the electron deficit "CC" bond of the MR isomer occurs, resulting in an inefficient FRET process and thus exhibiting a constant "ON" blue channel fluorescence signal. After UV-light irradiation, the formation of activated Poly-Cm-MRin situ thus enables the detection of sulphite through recording the ratiometric changes of fluorescence signals at both blue and red channels. The Poly-Cm-SP nanoprobe possesses excellent biocompatibility and lysosome distribution capability, allowing it to be used for photochromic imaging and sulphite detection in the lysosomes of living macrophage cells. This work thus offers a new remote-light activatable nanoprobe for the detection and imaging of sulphite in biological systems.
Collapse
Affiliation(s)
- Youxin Fu
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, QLD 4072, Australia.
| | - Xing Zhang
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, QLD 4072, Australia. .,School of Environmental Science and Chemical Engineering, Shanghai University, Shanghai 200444, China
| | - Jianping Liu
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, QLD 4072, Australia.
| | - Guangren Qian
- School of Environmental Science and Chemical Engineering, Shanghai University, Shanghai 200444, China
| | - Zhi Ping Xu
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, QLD 4072, Australia.
| | - Run Zhang
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, QLD 4072, Australia.
| |
Collapse
|
30
|
Recent advances in chromophore-assembled upconversion nanoprobes for chemo/biosensing. Trends Analyt Chem 2022. [DOI: 10.1016/j.trac.2022.116602] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
31
|
Yang X, Zhang D, Ye Y, Zhao Y. Recent advances in multifunctional fluorescent probes for viscosity and analytes. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2021.214336] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
32
|
Li Y, Wen X, Ding X, Teng X, Xiong X, Liu Y. Two types of rhodamine–naphthalimide-based fluorescence sensors for different ratiometric detection of Hg(II) or Fe(III). RESEARCH ON CHEMICAL INTERMEDIATES 2022. [DOI: 10.1007/s11164-021-04618-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
33
|
Su M, Liu C, Liang Y, Zhang Y, Rong X, Wang X, Li X, Wang K, Zhu H, Yu M, Sheng W, Zhu B. A novel water-soluble naphthalimide-based turn-on fluorescent probe for mercury ion detection in living cells and zebrafish. NEW J CHEM 2022. [DOI: 10.1039/d2nj01314b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Mercury (Hg), as the only heavy metal that can complete the cycle in the biosphere, can further accumulate in the human body through the food chain, causing irreversible damage to...
Collapse
|
34
|
Development of a Si-rhodamine-based NIR fluorescence probe for highly specific and quick response of Hg2+ and its applications to biological imaging. Microchem J 2021. [DOI: 10.1016/j.microc.2021.106855] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
35
|
Liang T, Zhang D, Hu W, Tian C, Zeng L, Wu T, Lei D, Qiang T, Yang X, Sun X. A dual lock-and-key two photon fluorescence probe in response to hydrogen peroxide and viscosity: Application in cellular imaging and inflammation therapy. Talanta 2021; 235:122719. [PMID: 34517587 DOI: 10.1016/j.talanta.2021.122719] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 07/12/2021] [Accepted: 07/14/2021] [Indexed: 02/08/2023]
Abstract
Here, a dual lock-and-key fluorescence probe was developed for visualizing the inflammatory process in myocardial H9C2 cells. The probe possessed two-photon properties, viscosity sensitivity, and hydrogen peroxide (H2O2) responsiveness. A thiocarbamate spacer between fluorophore and H2O2 responsive unit enabled the release of carbonyl sulfide (COS). This rapidly converts to the anti-inflammatory hydrogen sulfide (H2S) by the ubiquitous enzyme carbon anhydrase. The probe displayed a dual response towards hydrogen peroxide and viscosity in vitro. No obvious fluorescence changes were observed towards either hydrogen peroxide or viscosity alone. In cellular experiments, the probe demonstrated good biocompatibility, low toxicity, and was shown responses towards exogenous and endogenous hydrogen peroxide under viscosity conditions. LPS induced cell inflammation showed it was able to effectively alleviate the inflammation-caused damage by releasing H2S and eliminating H2O2. The new protocol demonstrates its promising to achieve diagnosis and treatment of cellular inflammatory process.
Collapse
Affiliation(s)
- Tianyu Liang
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China; College of Bioresources and Materials Engineering, Shaanxi University of Science & Technology, Xi'an, 710021, China
| | - Dongliang Zhang
- Department of Burns and Cutaneous Surgery, Xijing Hospital, The Fourth Military Medical University, Xi 'an, 710032, China
| | - Wei Hu
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China; College of Bioresources and Materials Engineering, Shaanxi University of Science & Technology, Xi'an, 710021, China.
| | - Chenyang Tian
- Department of Burns and Cutaneous Surgery, Xijing Hospital, The Fourth Military Medical University, Xi 'an, 710032, China
| | - Lingyu Zeng
- Department of Chemistry, The University of Texas at Austin, Texas, 78712, United States
| | - Tianhong Wu
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Dongqing Lei
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Taotao Qiang
- College of Bioresources and Materials Engineering, Shaanxi University of Science & Technology, Xi'an, 710021, China
| | - Xuekang Yang
- Department of Burns and Cutaneous Surgery, Xijing Hospital, The Fourth Military Medical University, Xi 'an, 710032, China.
| | - Xiaolong Sun
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China.
| |
Collapse
|
36
|
Dahal D, Ojha KR, Pokhrel S, Paruchuri S, Konopka M, Liu Q, Pang Y. NIR-emitting styryl dyes with large Stokes' shifts for imaging application: From cellular plasma membrane, mitochondria to Zebrafish neuromast. DYES AND PIGMENTS : AN INTERNATIONAL JOURNAL 2021; 194:109629. [PMID: 34366501 PMCID: PMC8345024 DOI: 10.1016/j.dyepig.2021.109629] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Near-infrared (NIR) emitting probes with very large Stokes' shifts play a crucial role in bioimaging applications, as the optical signals in this region exhibit high signal to background ratio and allow deeper tissue penetration. Herein we illustrate NIR-emitting probe 2 with very large Stokes' shifts (Δλ ≈ 260 - 272 nm) by integrating the excited-state intramolecular proton transfer (ESIPT) unit 2-(2'-hydroxyphenyl)benzoxazole (HBO) into a pyridinium derived cyanine. The ESIPT not only enhances the Stokes' shifts but also improves the quantum efficiency of the probe 2 (фfl = 0.27 - 0.40 in DCM). The application of 2 in live cells imaging reveals that compound 2 stains mitochondria in eukaryotic cells, normal human lungs fibroblast (NHLF), Zebrafish's neuromast hair cells, and support cells, and inner plasma membrane in prokaryotic cells, Escherichia coli (E. coli).
Collapse
Affiliation(s)
- Dipendra Dahal
- Department of Chemistry, The University of Akron, Akron, OH 44325, USA
| | - Krishna R Ojha
- Department of Chemistry, The University of Akron, Akron, OH 44325, USA
| | - Sabita Pokhrel
- Department of Chemistry, The University of Akron, Akron, OH 44325, USA
| | - Sailaja Paruchuri
- Department of Chemistry, The University of Akron, Akron, OH 44325, USA
| | - Michael Konopka
- Department of Chemistry, The University of Akron, Akron, OH 44325, USA
| | - Qin Liu
- Department of Biology, The University of Akron, Akron, OH 44325, USA
| | - Yi Pang
- Department of Chemistry, The University of Akron, Akron, OH 44325, USA
- Maurice Morton Institute of Polymer Science, The University of Akron, Akron, OH 44325, USA
| |
Collapse
|
37
|
Liu J, Li J, Tang J, Yang X, Zhang D, Ye Y, Zhao Y. Mitochondria-targeted NIR fluorescent probe for sensing Hg 2+/HSO 3- and its intracellular applications. Talanta 2021; 234:122606. [PMID: 34364419 DOI: 10.1016/j.talanta.2021.122606] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 06/07/2021] [Accepted: 06/09/2021] [Indexed: 12/31/2022]
Abstract
Mercury and sulfur dioxide (SO2) are common pollutants in the ecological environment, which are important factors causing many diseases of organisms. The lack of appropriate analytical tools has limited the further understanding of the relationship between ionic mercury (Hg2+) and SO2. Herein, a bifunctional fluorescent probe LJ was designed and explored to simultaneously detect Hg2+ and SO2 via desulfurization reaction and Michael addition reaction, respectively. Probe LJ showed distinct fluorescence responses which a large near-infrared fluorescence enhancement towards Hg2+ at λem = 713 nm and a blue shift at λem = 450 nm towards SO2 without any spectral cross interferences. To the best of our knowledge, this is the first fluorescent probe with dual fluorescent emission channels to detect Hg2+ and SO2 with the detection limit of 187 nM and 354 nM, respectively. Moreover, cell fluorescent imaging experiments indicated that the probe was mitochondria targetable and provided evidence that SO2 could be used as an antidote to attenuate the toxicity of Hg2+ in living cells.
Collapse
Affiliation(s)
- Jianfei Liu
- Green Catalysis Center, And College of Chemistry, Zhengzhou University, Zhengzhou, 450001, China
| | - Jie Li
- Green Catalysis Center, And College of Chemistry, Zhengzhou University, Zhengzhou, 450001, China
| | - Jun Tang
- Green Catalysis Center, And College of Chemistry, Zhengzhou University, Zhengzhou, 450001, China
| | - Xiaopeng Yang
- Green Catalysis Center, And College of Chemistry, Zhengzhou University, Zhengzhou, 450001, China
| | - Di Zhang
- Institute of Agricultural Quality Standards and Testing Technology, Henan Academy of Agricultural Sciences, Zhengzhou, 450002, China.
| | - Yong Ye
- Green Catalysis Center, And College of Chemistry, Zhengzhou University, Zhengzhou, 450001, China.
| | - Yufen Zhao
- Green Catalysis Center, And College of Chemistry, Zhengzhou University, Zhengzhou, 450001, China; Institute of Drug Discovery Technology, Ningbo University, Ningbo, 450052, China
| |
Collapse
|
38
|
She ZP, Wang WX, Mao GJ, Jiang WL, Wang ZQ, Li Y, Li CY. A near-infrared fluorescent probe for accurately diagnosing cancer by sequential detection of cysteine and H . Chem Commun (Camb) 2021; 57:4811-4814. [PMID: 33982685 DOI: 10.1039/d1cc01228b] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
A near-infrared fluorescent probe, CyAc, is synthesized for accurately diagnosing cancer in vivo by sequential detection of Cys and H+. CyAc can not only achieve a good distinction between normal cells and cancer cells, but also distinguish normal mice from tumor mice.
Collapse
Affiliation(s)
- Zun-Pan She
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan, 411105, P. R. China.
| | | | | | | | | | | | | |
Collapse
|
39
|
Wang Z, Wang W, Wang P, Song X, Mao Z, Liu Z. Highly Sensitive Near-Infrared Imaging of Peroxynitrite Fluxes in Inflammation Progress. Anal Chem 2021; 93:3035-3041. [PMID: 33494590 DOI: 10.1021/acs.analchem.0c05118] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Inflammation is an important protection reaction in living organisms associated with many diseases. Since peroxynitrite (ONOO-) is engaged in the inflammatory processes, illustrating the key nexus between ONOO- and inflammation is significant. Due to the lack of sensitive ONOO- in vivo detection methods, the research still remains at its infancy. Herein, a highly sensitive NIR fluorescence probe DDAO-PN for in vivo detection of ONOO- in inflammation progress was reported. The probe responded to ONOO- with significant NIR fluorescence enhancement at 657 nm (84-fold) within 30 s in solution. Intracellular imaging of exogenous ONOO- with the probe demonstrated a 68-fold fluorescence increase (F/F0). Impressively, the probe can in vivo detect ONOO- fluxes in LPS-induced rear leg inflammation with a 4.0-fold fluorescence increase and LPS-induced peritonitis with an 8.0-fold fluorescence increase The remarkable fluorescence enhancement and quick response enabled real-time tracking of in vivo ONOO- with a large signal-to-noise (S/N) ratio. These results clearly denoted that DDAO-PN was able to be a NIR fluorescence probe for in vivo detection and high-fidelity imaging of ONOO- with high sensitivity and will boost the research of inflammation-related diseases.
Collapse
Affiliation(s)
- Zhao Wang
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules & College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, China
| | - Weiwei Wang
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules & College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, China
| | - Pengzhan Wang
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules & College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, China
| | - Xinjian Song
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, Hubei 430072, China
| | - Zhiqiang Mao
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules & College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, China
| | - Zhihong Liu
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules & College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, China.,Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, Hubei 430072, China
| |
Collapse
|