1
|
Liu M, Zhou Y, Luo T, Cao X, Fan D, Huang S, Dong J, Chen F, Zeng W. Seeing the unseen: NIR probes for reactive nitrogen species biosensing and bioimaging. Talanta 2024; 285:127334. [PMID: 39673979 DOI: 10.1016/j.talanta.2024.127334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 11/25/2024] [Accepted: 12/02/2024] [Indexed: 12/16/2024]
Abstract
Reactive nitrogen species (RNS) play a crucial role in both health and disease, making their accurate and sensitive detection essential. However, their transient nature (∼milliseconds), high reactivity, and low abundance (nM-μM) in complex biological environments present significant challenges. Near-infrared (NIR) fluorescent probes have emerged as a promising solution for in vivo RNS imaging due to their enhanced sensitivity, spatiotemporal resolution, and deep tissue penetration. This review highlights recent advances in the design strategies, sensing mechanisms, and applications of NIR fluorescent probes in bioimaging. Additionally, we address current challenges and discuss future directions to advance the development of improved probes with potential for clinical translation, as well as the next generation of NIR probes for RNS biosensing and bioimaging.
Collapse
Affiliation(s)
- Meihui Liu
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410013, PR China; Hunan Key Laboratory of Diagnostic and Therapeutic Drug Research for Chronic Diseases, Central South University, Changsha, 410013, PR China
| | - Yiyang Zhou
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410013, PR China; Hunan Key Laboratory of Diagnostic and Therapeutic Drug Research for Chronic Diseases, Central South University, Changsha, 410013, PR China
| | - Ting Luo
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410013, PR China; Hunan Key Laboratory of Diagnostic and Therapeutic Drug Research for Chronic Diseases, Central South University, Changsha, 410013, PR China
| | - Xiaozheng Cao
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410013, PR China; Hunan Key Laboratory of Diagnostic and Therapeutic Drug Research for Chronic Diseases, Central South University, Changsha, 410013, PR China
| | - Duoyang Fan
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410013, PR China; Hunan Key Laboratory of Diagnostic and Therapeutic Drug Research for Chronic Diseases, Central South University, Changsha, 410013, PR China
| | - Shuai Huang
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410013, PR China; Hunan Key Laboratory of Diagnostic and Therapeutic Drug Research for Chronic Diseases, Central South University, Changsha, 410013, PR China
| | - Jie Dong
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410013, PR China; Hunan Key Laboratory of Diagnostic and Therapeutic Drug Research for Chronic Diseases, Central South University, Changsha, 410013, PR China
| | - Fei Chen
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410013, PR China; Hunan Key Laboratory of Diagnostic and Therapeutic Drug Research for Chronic Diseases, Central South University, Changsha, 410013, PR China
| | - Wenbin Zeng
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410013, PR China; Hunan Key Laboratory of Diagnostic and Therapeutic Drug Research for Chronic Diseases, Central South University, Changsha, 410013, PR China.
| |
Collapse
|
2
|
Ye C, Lin S, Li J, Meng P, Huang L, Li D. Comprehensive insights into fluorescent probes for the determination nitric oxide for diseases diagnosis. Bioorg Chem 2024; 150:107505. [PMID: 38865860 DOI: 10.1016/j.bioorg.2024.107505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 05/17/2024] [Accepted: 05/28/2024] [Indexed: 06/14/2024]
Abstract
Nitric oxide (NO) plays an important role in multiple physiological processes of the body involved in regulation, such as cardiovascular relaxation, neural homeostasis, and immune regulation, etc. The real-time monitoring of NO is of great significance in the investigation of related disease mechanisms and the evaluation of pharmacodynamics. Fluorescent probes are considered as a highly promising approach for pharmaceutical analysis and bioimaging due to their non-invasive character, real-time detection, and high sensitivity. However, there are still some challenges in the determination of biological nitric oxide with fluorescent probes, such as low anti-interference ability, poor function modifiability, and low organ specificity. Therefore, it would be beneficial to develop a new generation of fluorescent probes for real-time bioimaging of NO in vivo after this systematic summary.
Collapse
Affiliation(s)
- Chenqian Ye
- College of Life Sciences, Fujian Normal University, Fuzhou 350117, PR China; Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, Fujian Normal University, Fuzhou 350117, PR China
| | - Shufang Lin
- College of Life Sciences, Fujian Normal University, Fuzhou 350117, PR China; Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, Fujian Normal University, Fuzhou 350117, PR China
| | - Jinyi Li
- College of Life Sciences, Fujian Normal University, Fuzhou 350117, PR China; Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, Fujian Normal University, Fuzhou 350117, PR China
| | - Peng Meng
- Fujian Inspection and Research Institute for Product Quality, Fuzhou 350117, PR China
| | - Luqiang Huang
- College of Life Sciences, Fujian Normal University, Fuzhou 350117, PR China.
| | - Daliang Li
- College of Life Sciences, Fujian Normal University, Fuzhou 350117, PR China; Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, Fujian Normal University, Fuzhou 350117, PR China.
| |
Collapse
|
3
|
Sun T, Zhao H, Hu L, Shao X, Lu Z, Wang Y, Ling P, Li Y, Zeng K, Chen Q. Enhanced optical imaging and fluorescent labeling for visualizing drug molecules within living organisms. Acta Pharm Sin B 2024; 14:2428-2446. [PMID: 38828150 PMCID: PMC11143489 DOI: 10.1016/j.apsb.2024.01.018] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 01/07/2024] [Accepted: 01/25/2024] [Indexed: 06/05/2024] Open
Abstract
The visualization of drugs in living systems has become key techniques in modern therapeutics. Recent advancements in optical imaging technologies and molecular design strategies have revolutionized drug visualization. At the subcellular level, super-resolution microscopy has allowed exploration of the molecular landscape within individual cells and the cellular response to drugs. Moving beyond subcellular imaging, researchers have integrated multiple modes, like optical near-infrared II imaging, to study the complex spatiotemporal interactions between drugs and their surroundings. By combining these visualization approaches, researchers gain supplementary information on physiological parameters, metabolic activity, and tissue composition, leading to a comprehensive understanding of drug behavior. This review focuses on cutting-edge technologies in drug visualization, particularly fluorescence imaging, and the main types of fluorescent molecules used. Additionally, we discuss current challenges and prospects in targeted drug research, emphasizing the importance of multidisciplinary cooperation in advancing drug visualization. With the integration of advanced imaging technology and molecular design, drug visualization has the potential to redefine our understanding of pharmacology, enabling the analysis of drug micro-dynamics in subcellular environments from new perspectives and deepening pharmacological research to the levels of the cell and organelles.
Collapse
Affiliation(s)
- Ting Sun
- School of Pharmaceutical Sciences, National Key Laboratory of Advanced Drug Delivery System, Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250062, China
- Institute of Biochemical and Biotechnological Drugs, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| | - Huanxin Zhao
- School of Pharmaceutical Sciences, National Key Laboratory of Advanced Drug Delivery System, Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250062, China
| | - Luyao Hu
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Xintian Shao
- School of Pharmaceutical Sciences, National Key Laboratory of Advanced Drug Delivery System, Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250062, China
- School of Life Sciences, Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250062, China
| | - Zhiyuan Lu
- School of Pharmaceutical Sciences, National Key Laboratory of Advanced Drug Delivery System, Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250062, China
| | - Yuli Wang
- Tianjin Pharmaceutical DA REN TANG Group Corporation Limited Traditional Chinese Pharmacy Research Institute, Tianjin 300457, China
- Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemistry Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Peixue Ling
- Institute of Biochemical and Biotechnological Drugs, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
- Key Laboratory of Biopharmaceuticals, Postdoctoral Scientific Research Workstation, Shandong Academy of Pharmaceutical Science, Jinan 250098, China
| | - Yubo Li
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Kewu Zeng
- School of Pharmaceutical Sciences, National Key Laboratory of Advanced Drug Delivery System, Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250062, China
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Qixin Chen
- School of Pharmaceutical Sciences, National Key Laboratory of Advanced Drug Delivery System, Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250062, China
- Departments of Diagnostic Radiology, Surgery, Chemical and Biomolecular Engineering, and Biomedical Engineering, Yong Loo Lin School of Medicine and College of Design and Engineering, National University of Singapore, Singapore 119074, Singapore
| |
Collapse
|
4
|
Zhang K, Sun L, Zhang W, Cao M, Ma X, Yu BY, Xu H, Zheng X, Tian J. Discovery of Natural Products Alleviating Renal Fibrosis with a Viscosity-Responsive Molecular Probe. Anal Chem 2024; 96:6356-6365. [PMID: 38588440 DOI: 10.1021/acs.analchem.4c00188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/10/2024]
Abstract
Renal fibrosis poses a significant threat to individuals suffering from chronic progressive kidney disease. Given the absence of effective medications for treating renal fibrosis, it becomes crucial to assess the extent of fibrosis in real time and explore the development of novel drugs with substantial therapeutic benefits. Due to the accumulation of renal tissue damage and the uncontrolled deposition of fibrotic matrix during the course of the disease, there is an increase in viscosity both intracellularly and extracellularly. Therefore, a viscosity-sensitive near-infrared fluorescence (NIRF) and photoacoustic (PA) imaging probe, BDP-KY, was developed to detect aberrant changes in viscosity during fibrosis. Furthermore, BDP-KY has been applied to screen the effective components of herbal medicine, rhubarb, resulting in the identification of potential antirenal fibrotic compounds such as emodin-8-glucoside and chrysophanol 8-O-glucoside. Ultrasound, PA, and NIRF imaging of a unilateral uretera obstruction mice model show that different concentrations of emodin-8-glucoside and chrysophanol 8-O-glucoside effectively reduce viscosity levels during the renal fibrosis process. The histological results showed a significant decrease in fibrosis factors α-smooth muscle actin and collagen deposition. Combining these findings with their pharmacokinetic characteristics, these compounds have the potential to fill the current market gap for effective antirenal fibrosis drugs. This study demonstrates the potential of BDP-KY in the evaluation of renal fibrosis, and the two identified active components from rhubarb hold great promise for the treatment of renal fibrosis.
Collapse
Affiliation(s)
- Kaiyu Zhang
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of TCM Evaluation and Translational Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Lei Sun
- Jiangsu Co-innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Jiangsu Key Lab of Biomass-based Green Fuels and Chemicals, Nanjing Forestry University, Nanjing 210037, China
| | - Wangning Zhang
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of TCM Evaluation and Translational Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Mingyuan Cao
- Guangdong Provincial Key Laboratory of Nanophotonic Manipulation, Institute of Nanophotonics, Jinan University, Guangzhou 511443, China
| | - Xiaonan Ma
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of TCM Evaluation and Translational Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Bo-Yang Yu
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of TCM Evaluation and Translational Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Haijun Xu
- Jiangsu Co-innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Jiangsu Key Lab of Biomass-based Green Fuels and Chemicals, Nanjing Forestry University, Nanjing 210037, China
| | - Xianchuang Zheng
- Guangdong Provincial Key Laboratory of Nanophotonic Manipulation, Institute of Nanophotonics, Jinan University, Guangzhou 511443, China
| | - Jiangwei Tian
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of TCM Evaluation and Translational Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| |
Collapse
|
5
|
Zhang B, Cao J, Liao SJ, Zhou PC, Shen YT, Yu W, Li W, Shen AG. Simultaneous SERS Sensing of Cysteine and Homocysteine in Blood Based on the CBT-Cys Click Reaction: Toward Precisive Diagnosis of Schizophrenia. Anal Chem 2024; 96:5331-5339. [PMID: 38498948 DOI: 10.1021/acs.analchem.4c00395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/20/2024]
Abstract
At present, there is a lack of sufficiently specific laboratory diagnostic indicators for schizophrenia. Serum homocysteine (Hcy) levels have been found to be related to schizophrenia. Cysteine (Cys) is a demethylation product in the metabolism of Hcy, and they always coexist with highly similar structures in vivo. There are few reports on the use of Cys as a diagnostic biomarker for schizophrenia in collaboration with Hcy, mainly because the rapid, economical, accurate, and high-throughput simultaneous detection of Cys and Hcy in serum is highly challenging. Herein, a click reaction-based surface-enhanced Raman spectroscopy (SERS) sensor was developed for simultaneous and selective detection of Cys and Hcy. Through the efficient and specific CBT-Cys click reaction between the probe containing cyan benzothiazole and Cys/Hcy, the tiny methylene difference between the molecular structures of Cys and Hcy was converted into the difference between the ring skeletons of the corresponding products that could be identified by plasmonic silver nanoparticle enhanced molecular fingerprint spectroscopy to realize discriminative detection. Furthermore, the SERS sensor was successfully applied to the detection in related patient serum samples, and it was found that the combined analysis of Cys and Hcy can improve the diagnostic accuracy of schizophrenia compared to a single indicator.
Collapse
Affiliation(s)
- Biao Zhang
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, P. R. China
- School of Bioengineering and Health, Wuhan Textile University, Wuhan 430200, P. R. China
| | - Jun Cao
- School of Bioengineering and Health, Wuhan Textile University, Wuhan 430200, P. R. China
| | - Si-Jie Liao
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, P. R. China
- School of Bioengineering and Health, Wuhan Textile University, Wuhan 430200, P. R. China
| | - Peng-Cheng Zhou
- School of Bioengineering and Health, Wuhan Textile University, Wuhan 430200, P. R. China
| | - Yu-Ting Shen
- College of Chemistry and Chemical Engineering, Wuhan Textile University, Wuhan 430200, P. R. China
| | - Wei Yu
- School of Pharmacy, Xianning Medical College, Hubei University of Science and Technology, Xianning 437100, P. R. China
| | - Wei Li
- College of Chemistry and Chemical Engineering, Wuhan Textile University, Wuhan 430200, P. R. China
| | - Ai-Guo Shen
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, P. R. China
- School of Bioengineering and Health, Wuhan Textile University, Wuhan 430200, P. R. China
| |
Collapse
|
6
|
Han T, Sun Y, Zhao C, Wang HY, Yu H, Liu Y. Mitochondrial-Targeted Ratiometric Near-Infrared Fluorescence Probe for Monitoring Nitric Oxide in Rheumatoid Arthritis. J Med Chem 2024; 67:4026-4035. [PMID: 38359302 DOI: 10.1021/acs.jmedchem.3c02344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2024]
Abstract
Rheumatoid arthritis (RA) is a destructive autoimmune disease, where nitric oxide (NO) is closely implicated in the inflammatory processes of RA. Therefore, direct visualization of NO is essential to assess the pathological changes in RA. Herein, a mitochondrial-targeted near-infrared ratiometric fluorescent probe (NFL-NH2), based on the intramolecular charge transfer effect, was synthesized and applied to monitor the changes of NO content in early RA. Specially, probe NFL-NH2 showed a 44-fold fluorescent intensity ratio (I705/I780) response toward NO with a detection limit of 0.536 nM, enabling qualitative and quantitative analysis of NO. Additionally, NFL-NH2 can accurately target mitochondria and sensitively detect exogenous and endogenous NO in RAW 264.7 cells. Notably, in vivo RA monitoring assays demonstrated that NFL-NH2 can rapidly detect NO levels associated with the inflammatory damage degree in RA mice models by ratiometric fluorescence imaging. These results validate that NFL-NH2 holds significant potential for diagnosing NO-mediated RA diseases.
Collapse
Affiliation(s)
- Tingting Han
- School of Engineering, China Pharmaceutical University, Nanjing 211198, China
| | - Ye Sun
- School of Engineering, China Pharmaceutical University, Nanjing 211198, China
| | - Chao Zhao
- School of Engineering, China Pharmaceutical University, Nanjing 211198, China
| | - Hai-Yan Wang
- School of Mechanical Engineering, Southeast University, Nanjing 211189, China
| | - Hui Yu
- School of Engineering, China Pharmaceutical University, Nanjing 211198, China
| | - Yi Liu
- School of Engineering, China Pharmaceutical University, Nanjing 211198, China
| |
Collapse
|
7
|
Li T, Zhang Y, Wu F, Chen G, Li C, Wang Q. Rational Design of NIR-II Ratiometric Fluorescence Probes for Accurate Bioimaging and Biosensing In Vivo. SMALL METHODS 2024:e2400132. [PMID: 38470209 DOI: 10.1002/smtd.202400132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 02/27/2024] [Indexed: 03/13/2024]
Abstract
Intravital fluorescence imaging in the second near-infrared window (NIR-II, 900-1700 nm) has emerged as a promising method for non-invasive diagnostics in complex biological systems due to its advantages of less background interference, high tissue penetration depth, high imaging contrast, and sensitivity. However, traditional NIR-II fluorescence imaging, which is characterized by the "always on" or "turn on" mode, lacks the ability of quantitative detection, leading to low reproducibility and reliability during bio-detection. In contrast, NIR-II ratiometric fluorescence imaging can realize quantitative and reliable analysis and detection in vivo by providing reference signals for fluorescence correction, generating new opportunities and prospects during in vivo bioimaging and biosensing. In this review, the current design strategies and sensing mechanisms of NIR-II ratiometric fluorescence probes for bioimaging and biosensing applications are systematically summarized. Further, current challenges, future perspectives and opportunities for designing NIR-II ratiometric fluorescence probes are also discussed. It is hoped that this review can provide effective guidance for the design of NIR-II ratiometric fluorescence probes and promote its adoption in reliable biological imaging and sensing in vivo.
Collapse
Affiliation(s)
- Tuanwei Li
- CAS Key Laboratory of Nano-Bio Interface, Suzhou Key Laboratory of Functional Molecular Imaging Technology, Division of Nanobiomedicine and i-Lab, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, China
| | - Yejun Zhang
- CAS Key Laboratory of Nano-Bio Interface, Suzhou Key Laboratory of Functional Molecular Imaging Technology, Division of Nanobiomedicine and i-Lab, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, China
| | - Feng Wu
- CAS Key Laboratory of Nano-Bio Interface, Suzhou Key Laboratory of Functional Molecular Imaging Technology, Division of Nanobiomedicine and i-Lab, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, China
| | - Guangcun Chen
- CAS Key Laboratory of Nano-Bio Interface, Suzhou Key Laboratory of Functional Molecular Imaging Technology, Division of Nanobiomedicine and i-Lab, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, China
| | - Chunyan Li
- CAS Key Laboratory of Nano-Bio Interface, Suzhou Key Laboratory of Functional Molecular Imaging Technology, Division of Nanobiomedicine and i-Lab, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, China
| | - Qiangbin Wang
- CAS Key Laboratory of Nano-Bio Interface, Suzhou Key Laboratory of Functional Molecular Imaging Technology, Division of Nanobiomedicine and i-Lab, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, China
| |
Collapse
|
8
|
Fu Q, Yang X, Wang M, Zhu K, Wang Y, Song J. Activatable Probes for Ratiometric Imaging of Endogenous Biomarkers In Vivo. ACS NANO 2024; 18:3916-3968. [PMID: 38258800 DOI: 10.1021/acsnano.3c10659] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
Dynamic variations in the concentration and abnormal distribution of endogenous biomarkers are strongly associated with multiple physiological and pathological states. Therefore, it is crucial to design imaging systems capable of real-time detection of dynamic changes in biomarkers for the accurate diagnosis and effective treatment of diseases. Recently, ratiometric imaging has emerged as a widely used technique for sensing and imaging of biomarkers due to its advantage of circumventing the limitations inherent to conventional intensity-dependent signal readout methods while also providing built-in self-calibration for signal correction. Here, the recent progress of ratiometric probes and their applications in sensing and imaging of biomarkers are outlined. Ratiometric probes are classified according to their imaging mechanisms, and ratiometric photoacoustic imaging, ratiometric optical imaging including photoluminescence imaging and self-luminescence imaging, ratiometric magnetic resonance imaging, and dual-modal ratiometric imaging are discussed. The applications of ratiometric probes in the sensing and imaging of biomarkers such as pH, reactive oxygen species (ROS), reactive nitrogen species (RNS), glutathione (GSH), gas molecules, enzymes, metal ions, and hypoxia are discussed in detail. Additionally, this Review presents an overview of challenges faced in this field along with future research directions.
Collapse
Affiliation(s)
- Qinrui Fu
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, Shandong 266021, China
| | - Xiao Yang
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, Shandong 266021, China
| | - Mengzhen Wang
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, Shandong 266021, China
| | - Kang Zhu
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Yin Wang
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, Shandong 266021, China
| | - Jibin Song
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| |
Collapse
|
9
|
Lin P, Jiang S, Liu T, Yuan X, Luo K, Xie C, Zhao X, Zhou L. Activatable fluorescent probes for early diagnosis and evaluation of liver injury. Analyst 2024; 149:638-664. [PMID: 38170876 DOI: 10.1039/d3an01631e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
With the increase in people's living standards, the number of patients suffering from liver injury keeps on increasing. Traditional diagnostic methods can no longer meet the needs of early and accurate diagnosis due to their limitations in application. However, fluorescent probes based on different fluorophores and nanomaterials have been gradually lighting up medical research due to their unique properties, such as high specificity and non-invasiveness. In addition, accurate identification of the different types of liver injury biomarkers can significantly improve the level of early diagnosis. Therefore, this review reviews the fluorescent probes used in the detection of biomarkers of liver injury over recent years and briefly summarizes the corresponding biomarkers of different types of liver injury. Impressively, this review also lists the structures and the response mechanisms of the different probes, and concludes with an outlook, suggesting directions in which improvements can be made. Finally, we hope that this review will contribute to the further development of fluorescent probes for the early diagnosis and assessment of liver injury.
Collapse
Affiliation(s)
- Pengxu Lin
- College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan 410004, China.
| | - Shali Jiang
- College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan 410004, China.
| | - Ting Liu
- College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan 410004, China.
| | - Xiaomin Yuan
- College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan 410004, China.
| | - Kun Luo
- College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan 410004, China.
| | - Can Xie
- College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan 410004, China.
| | - Xiongjie Zhao
- College of Chemistry and Biological Engineering, Hunan University of Science and Engineering, Yongzhou, Hunan 425199, China
| | - Liyi Zhou
- College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan 410004, China.
| |
Collapse
|
10
|
Yang Y, Jiang Q, Zhang F. Nanocrystals for Deep-Tissue In Vivo Luminescence Imaging in the Near-Infrared Region. Chem Rev 2024; 124:554-628. [PMID: 37991799 DOI: 10.1021/acs.chemrev.3c00506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2023]
Abstract
In vivo imaging technologies have emerged as a powerful tool for both fundamental research and clinical practice. In particular, luminescence imaging in the tissue-transparent near-infrared (NIR, 700-1700 nm) region offers tremendous potential for visualizing biological architectures and pathophysiological events in living subjects with deep tissue penetration and high imaging contrast owing to the reduced light-tissue interactions of absorption, scattering, and autofluorescence. The distinctive quantum effects of nanocrystals have been harnessed to achieve exceptional photophysical properties, establishing them as a promising category of luminescent probes. In this comprehensive review, the interactions between light and biological tissues, as well as the advantages of NIR light for in vivo luminescence imaging, are initially elaborated. Subsequently, we focus on achieving deep tissue penetration and improved imaging contrast by optimizing the performance of nanocrystal fluorophores. The ingenious design strategies of NIR nanocrystal probes are discussed, along with their respective biomedical applications in versatile in vivo luminescence imaging modalities. Finally, thought-provoking reflections on the challenges and prospects for future clinical translation of nanocrystal-based in vivo luminescence imaging in the NIR region are wisely provided.
Collapse
Affiliation(s)
- Yang Yang
- College of Energy Materials and Chemistry, State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, Inner Mongolia University, Hohhot 010021, China
| | - Qunying Jiang
- College of Energy Materials and Chemistry, State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, Inner Mongolia University, Hohhot 010021, China
| | - Fan Zhang
- College of Energy Materials and Chemistry, State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, Inner Mongolia University, Hohhot 010021, China
- Department of Chemistry, State Key Laboratory of Molecular Engineering of Polymers, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai 200433, China
| |
Collapse
|
11
|
Tang Y, Li Y, Wang Z, Huang W, Fan Q, Liu B. In Situ Noninvasive Observation of Nitric Oxide Fluctuation in SARS-CoV-2 Infection In Vivo by Organic Near-Infrared-II Fluorescent Molecular Nanoprobes. ACS NANO 2023; 17:18299-18307. [PMID: 37712857 DOI: 10.1021/acsnano.3c05410] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/16/2023]
Abstract
The pathogenesis understanding of SARS-CoV-2 infection is crucial to prevent the rampant spread of COVID-19 and its contribution to deterioration in health, even death. Nitric oxide (NO), a crucial molecule involved in signal transduction and cytotoxicity, is a possible key regulator in the occurrence and development of COVID-19. However, understanding the pathogenesis of NO in SARS-CoV-2 infection is still in its infancy due to the lack of suitable in situ monitoring probes of NO fluctuation in the complex SARS-CoV-2 infection environment in deep lung tissues. Herein, we developed an activatable near-infrared-II fluorescent molecular nanoprobe (OSNP) that uncages high-resolution and deep-tissue-penetrating near-infrared-II fluorescence signal in specific response to NO for in situ and noninvasive visualization of NO fluctuation in a SARS-CoV-2 infection mouse model in lung tissues. In vivo visualization revealed that the NO level is a positive relationship with SARS-CoV-2 infection progress. With the assistance of immuno-histochemical analyses, we uncovered the NO-involved pathological mechanism, that being the improved NO level is associated with an increase in inducible NO synthase rather than endothelial NO synthase. Our study not only provides the example of a near-infrared-II fluorescent imaging of NO in SARS-CoV-2 infection but also provides opportunities to uncover tunderlying pathomechanism of NO for SARS-Cov-2 infections.
Collapse
Affiliation(s)
- Yufu Tang
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore 117585, Singapore
| | - Yuanyuan Li
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing 210023, China
| | - Zhen Wang
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing 210023, China
| | - Wei Huang
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing 210023, China
| | - Quli Fan
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing 210023, China
| | - Bin Liu
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore 117585, Singapore
| |
Collapse
|
12
|
Wang Q, Zhang X, Tang Y, Xiong Y, Wang X, Li C, Xiao T, Lu F, Xu M. High-Performance Hybrid Phototheranostics for NIR-IIb Fluorescence Imaging and NIR-II-Excitable Photothermal Therapy. Pharmaceutics 2023; 15:2027. [PMID: 37631241 PMCID: PMC10457990 DOI: 10.3390/pharmaceutics15082027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 07/20/2023] [Accepted: 07/25/2023] [Indexed: 08/27/2023] Open
Abstract
Photothermal therapy operated in the second near-infrared (NIR-II, 1000-1700 nm) window and fluorescence imaging in the NIR-IIb (1500-1700 nm) region have become the most promising techniques in phototheranostics. Their combination enables simultaneous high-resolution optical imaging and deep-penetrating phototherapy, which is essential for high-performance phototheranostics. Herein, carboxyl-functionalized small organic photothermal molecules (Se-TC) and multi-layered NIR-IIb emissive rare-earth-doped nanoparticles (NaYF4:Yb,Er,Ce@NaYF4:Yb,Nd@NaYF4, RENP) were rationally designed and successfully synthesized. Then, high-performance hybrid phototheranostic nanoagents (Se-TC@RENP@F) were easily constructed through the coordination between Se-TC and RENP and followed by subsequent F127 encapsulation. The carboxyl groups of Se-TC can offer strong binding affinity towards rare-earth-doped nanoparticles, which help improving the stability of Se-TC@RENP@F. The multilayered structure of RENP largely enhance the NIR-IIb emission under 808 nm excitation. The obtained Se-TC@RENP@F exhibited high 1064 nm absorption (extinction coefficient: 24.7 L g-1 cm-1), large photothermal conversion efficiency (PCE, 36.9%), good NIR-IIb emission (peak: 1545 nm), as well as great photostability. Upon 1064 nm laser irradiation, high hyperthermia can be achieved to kill tumor cells efficiently. In addition, based on the excellent NIR-IIb emission of Se-TC@RENP@F, in vivo angiography and tumor detection can be realized. This work provides a distinguished paradigm for NIR-IIb-imaging-guided NIR-II photothermal therapy and establishes an artful strategy for high-performance phototheranostics.
Collapse
Affiliation(s)
- Qi Wang
- State Key Laboratory for Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, Nanjing 210023, China
| | - Xinmin Zhang
- State Key Laboratory for Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, Nanjing 210023, China
| | - Youguang Tang
- State Key Laboratory for Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, Nanjing 210023, China
| | - Yanwei Xiong
- State Key Laboratory for Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, Nanjing 210023, China
| | - Xu Wang
- State Key Laboratory for Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, Nanjing 210023, China
| | - Chunlai Li
- Department of Liver Surgery, Shanghai Institute of Transplantation, Shanghai Engineering Research Center of Transplantation and Immunology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Tangxin Xiao
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China
| | - Feng Lu
- State Key Laboratory for Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, Nanjing 210023, China
| | - Mengze Xu
- Center for Cognition and Neuroergonomics, State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Zhuhai 519087, China
| |
Collapse
|
13
|
Dai Y, Zhou J, Wei C, Chai L, Xie X, Liu R, Lv Y. "Iridium Signature" Mass Spectrometric Probes: New Tools Integrated in a Liquid Chromatography-Mass Spectrometry Workflow for Routine Profiling of Nitric Oxide and Metabolic Fingerprints in Cells. Anal Chem 2023. [PMID: 37262414 DOI: 10.1021/acs.analchem.3c01076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Nitric oxide (NO) is a highly reactive signaling molecule involved in diverse biological processes. Simultaneous profiling of NO and associated metabolic fingerprints in a single assay allows more accurate assessments of cell states and offers the possibility to better understand its exact biological roles. Herein, a multiplexing LC-MS workflow was established for simultaneous detection of intracellular NO and various metabolites based on a novel "iridium signature" mass spectrometric probe (Ir-MSP841). This Ir-MSP841 can convert highly liable NO to a stable permanently charged triazole product (Ir-TP852), enabling direct MS detection of NO. This 191/193Ir-signature mass spectrometric probe-based approach is endowed with overwhelming advantages of interference-free, high quantitative accuracy, and great sensitivity (limit of detection down to 0.14 nM). It also reveals good linearity over a wide concentration range 12.5-500 nM and has been successfully employed for exploring the release behaviors of three representative NO donors in cells. Meanwhile, metabolic profiling results reveal that varying the concentrations of NO has distinct effects on various cellular metabolites. This study provides a robust, sensitive, and versatile method for simultaneous detection of NO and numerous metabolites in a single LC-MS run and expands its applications in biomedical research.
Collapse
Affiliation(s)
- Yongcheng Dai
- Key Laboratory of Green Chemistry and Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu, Sichuan 610064, China
| | - Jing Zhou
- Analytical and Testing Center, Sichuan University, Chengdu 610064, China
| | - Chudong Wei
- Key Laboratory of Green Chemistry and Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu, Sichuan 610064, China
| | - Li Chai
- Core Facility of West China Hospital, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Xiaobo Xie
- Analytical and Testing Center, Sichuan University, Chengdu 610064, China
| | - Rui Liu
- Key Laboratory of Green Chemistry and Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu, Sichuan 610064, China
| | - Yi Lv
- Key Laboratory of Green Chemistry and Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu, Sichuan 610064, China
- Analytical and Testing Center, Sichuan University, Chengdu 610064, China
| |
Collapse
|
14
|
Swartchick CB, Chan J. Leveraging coordination chemistry to visualize metal ions via photoacoustic imaging. Curr Opin Chem Biol 2023; 74:102312. [PMID: 37146434 DOI: 10.1016/j.cbpa.2023.102312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Revised: 03/14/2023] [Accepted: 03/29/2023] [Indexed: 05/07/2023]
Abstract
Metal ions are indispensable to all living systems owing to their diverse roles. Perturbation of metal homeostasis have been linked to many pathological conditions. As such, visualizing metal ions in these complex environments are of utmost importance. Photoacoustic imaging is a promising modality that combines the sensitivity of fluorescence to the superior resolution of ultrasound, through a light-in sound-out process, making it an appealing modality for metal ion detection in vivo. In this review, we highlight recent advances in the development of photoacoustic imaging probes for in vivo detection of metal ions, such as potassium, copper, zinc, and palladium. In addition, we provide our perspective and outlook on the exciting field.
Collapse
Affiliation(s)
- Chelsea B Swartchick
- Department of Chemistry and Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, United States
| | - Jefferson Chan
- Department of Chemistry and Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, United States.
| |
Collapse
|
15
|
Afshari MJ, Cheng X, Duan G, Duan R, Wu S, Zeng J, Gu Z, Gao M. Vision for Ratiometric Nanoprobes: In Vivo Noninvasive Visualization and Readout of Physiological Hallmarks. ACS NANO 2023; 17:7109-7134. [PMID: 37036400 DOI: 10.1021/acsnano.3c01641] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Lesion areas are distinguished from normal tissues surrounding them by distinct physiological characteristics. These features serve as biological hallmarks with which targeted biomedical imaging of the lesion sites can be achieved. Although tremendous efforts have been devoted to providing smart imaging probes with the capability of visualizing the physiological hallmarks at the molecular level, the majority of them are merely able to derive anatomical information from the tissues of interest, and thus are not suitable for taking part in in vivo quantification of the biomarkers. Recent advances in chemical construction of advanced ratiometric nanoprobes (RNPs) have enabled a horizon for quantitatively monitoring the biological abnormalities in vivo. In contrast to the conventional probes whose dependency of output on single-signal profiles restricts them from taking part in quantitative practices, RNPs are designed to provide information in two channels, affording a self-calibration opportunity to exclude the analyte-independent factors from the outputs and address the issue. Most of the conventional RNPs have encountered several challenges regarding the reliability and sufficiency of the obtained data for high-performance imaging. In this Review, we have summarized the recent progresses in developing highly advanced RNPs with the capabilities of deriving maximized information from the lesion areas of interest as well as adapting themselves to the complex biological systems in order to minimize microenvironmental-induced falsified signals. To provide a better outlook on the current advanced RNPs, nanoprobes based on optical, photoacoustic, and magnetic resonance imaging modalities for visualizing a wide range of analytes such as pH, reactive species, and different derivations of amino acids have been included. Furthermore, the physicochemical properties of the RNPs, the major constituents of the nanosystems and the analyte recognition mechanisms have been introduced. Moreover, the alterations in the values of the ratiometric signal in response to the analyte of interest as well as the time at which the highest value is achieved, have been included for most of RNPs discussed in this Review. Finally, the challenges as well as future perspectives in the field are discussed.
Collapse
Affiliation(s)
- Mohammad Javad Afshari
- Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, People's Republic of China
| | - Xiaju Cheng
- Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, People's Republic of China
| | - Guangxin Duan
- Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, People's Republic of China
| | - Ruixue Duan
- Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, People's Republic of China
| | - Shuwang Wu
- Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, People's Republic of China
| | - Jianfeng Zeng
- Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, People's Republic of China
| | - Zi Gu
- School of Chemical Engineering and Australian Centre for NanoMedicine (ACN), University of New South Wales, Sydney, New South Wales 2052, Australia
| | - Mingyuan Gao
- Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, People's Republic of China
| |
Collapse
|
16
|
Rathnamalala CSL, Hernandez S, Lucero MY, Swartchick CB, Kalam Shaik A, Hammer NI, East AK, Gwaltney SR, Chan J, Scott CN. Xanthene-Based Nitric Oxide-Responsive Nanosensor for Photoacoustic Imaging in the SWIR Window. Angew Chem Int Ed Engl 2023; 62:e202214855. [PMID: 36722146 PMCID: PMC10088865 DOI: 10.1002/anie.202214855] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 01/25/2023] [Accepted: 01/27/2023] [Indexed: 02/02/2023]
Abstract
Shortwave infrared (SWIR) dyes are characterized by their ability to absorb light from 900 to 1400 nm, which is ideal for deep tissue imaging owing to minimized light scattering and interference from endogenous pigments. An approach to access such molecules is to tune the photophysical properties of known near-infrared dyes. Herein, we report the development of a series of easily accessible (three steps) SWIR xanthene dyes based on a dibenzazepine donor conjugated to thiophene (SCR-1), thienothiophene (SCR-2), or bithiophene (SCR-3). We leverage the fact that SCR-1 undergoes a bathochromic shift when aggregated for in vivo studies by developing a ratiometric nanoparticle for NO (rNP-NO), which we employed to successfully visualize pathological levels of nitric oxide in a drug-induced liver injury model via deep tissue SWIR photoacoustic (PA) imaging. Our work demonstrates how easily this dye series can be utilized as a component in nanosensor designs for imaging studies.
Collapse
Affiliation(s)
| | - Selena Hernandez
- Department of Chemistry and Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana Champaign, 600 South Mathews Avenue, Urbana, IL, USA
| | - Melissa Y Lucero
- Department of Chemistry and Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana Champaign, 600 South Mathews Avenue, Urbana, IL, USA
| | - Chelsea B Swartchick
- Department of Chemistry and Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana Champaign, 600 South Mathews Avenue, Urbana, IL, USA
| | | | | | - Amanda K East
- Department of Chemistry and Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana Champaign, 600 South Mathews Avenue, Urbana, IL, USA
| | - Steven R Gwaltney
- Department of Chemistry, Mississippi State University, 310 President Circle, Mississippi State, MS 39762, USA
| | - Jefferson Chan
- Department of Chemistry and Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana Champaign, 600 South Mathews Avenue, Urbana, IL, USA
| | - Colleen N Scott
- Department of Chemistry, Mississippi State University, 310 President Circle, Mississippi State, MS 39762, USA
| |
Collapse
|
17
|
Arnau Del Valle C, Thomas P, Galindo F, Muñoz MP, Marín MJ. Gold nanoparticle-based two-photon fluorescent nanoprobe for monitoring intracellular nitric oxide levels. J Mater Chem B 2023; 11:3387-3396. [PMID: 36919860 DOI: 10.1039/d3tb00103b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023]
Abstract
Nitric oxide (NO) plays an important role in the regulation of the immune, cardiovascular and nervous systems. Consequently, being able to monitor and quantify intracellular NO levels would provide a greater understanding of the implications of this molecule in the different biological processes, including, for example, in cancer. Here, we report a broadly applicable two-photon excitable fluorescent nanoprobe able to detect and potentially quantify NO levels in an extensive range of cellular environments. The nanoprobe consists of a thiolated photoinduced electron transfer-based two=photon fluorescent probe attached onto the surface of 2.4 ± 0.7 nm gold nanoparticles (DANPY-NO@AuNPs). The nanoprobe, which can be synthesised in a reproducible manner and exhibits great stability when stored at room temperature, is able to selectively detect NO in solution, with a dynamic range up to 150 μM, and at pH values of biological relevance. DANPY-NO@AuNPs were able to selectively detect endogenous NO in RAW264.7γ NO- macrophages and THP-1 human leukemic cells; and endogenous and exogenous NO in endothelial cells. The nanoprobe accumulated in the acidic organelles of the tested cell lines showing negligible toxicity. Importantly, DANPY-NO@AuNPs showed potential to quantify intracellular NO concentrations in MDA-MB-231 breast cancer cells. The biological evaluation of the nanoprobe was undertaken using confocal laser scanning (images and intracellular emission spectra) and multiphoton microscopies, and flow cytometry. Based on their excellent sensitivity and stability, and outstanding versatility, DANPY-NO@AuNPs can be applied for the spatiotemporal monitoring of in vitro and in vivo NO levels.
Collapse
Affiliation(s)
- Carla Arnau Del Valle
- School of Chemistry, University of East Anglia, Norwich Research Park, Norwich, NR4 7TJ, UK.
| | - Paul Thomas
- Henry Wellcome Laboratory for Cell Imaging, Faculty of Science, University of East Anglia, Norwich Research Park, Norwich, NR4 7T, UK
| | - Francisco Galindo
- Departamento de Química Inorgánica y Orgánica, Universitat Jaume I, Av. Sos Baynat s/n, Castellón de la Plana, 12071, Spain
| | - María Paz Muñoz
- School of Chemistry, University of East Anglia, Norwich Research Park, Norwich, NR4 7TJ, UK. .,Department of Chemistry, Lancaster University, Bailrigg, Lancaster, LA1 4YB, UK
| | - María J Marín
- School of Chemistry, University of East Anglia, Norwich Research Park, Norwich, NR4 7TJ, UK.
| |
Collapse
|
18
|
Zhang X, Shen S, Liu D, Li X, Shi W, Ma H. Combination of changeable π-conjugation and hydrophilic groups for developing water-soluble small-molecule NIR-II fluorogenic probes. Chem Sci 2023; 14:2928-2934. [PMID: 36937580 PMCID: PMC10016431 DOI: 10.1039/d3sc00355h] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 02/16/2023] [Indexed: 02/18/2023] Open
Abstract
Small-molecule probes emitting in the second near-infrared window (NIR-II) are attracting great attention because of their deep-tissue imaging ability. However, developing NIR-II fluorogenic (off-on) probes with good water solubility remains a great challenge due to the lack of a facile approach. Herein we first report the combination of changeable π-conjugation and hydrophilic groups as an effective strategy for developing water-soluble NIR-II fluorogenic probes. With the strategy, new water-soluble NIR-II fluorophores are prepared, among which NIR-II-F2 and NIR-II-F3 show superior stability and bright fluorescence in aqueous media, and are thus used to design two water-soluble NIR-II fluorogenic probes for leucine aminopeptidase (LAP). The excellent performance in real aqueous bio-environments is demonstrated by imaging mouse vasculatures and organs with NIR-II-F2, and LAP in drug-induced liver injury mice with one of the enzymatic probes; however, water-insoluble dyes cannot achieve such in vivo imaging under the same conditions. Our strategy may be helpful for further developing water-soluble organic NIR-II fluorogenic probes for in vivo imaging of other analytes.
Collapse
Affiliation(s)
- Xiaofan Zhang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences Beijing 100049 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Shili Shen
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences Beijing 100049 China
- School of Chemistry and Pharmaceutical Engineering, Shandong First Medical University & Shandong Academy of Medical Sciences Tai'an Shandong 271016 China
| | - Diankai Liu
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences Beijing 100049 China
| | - Xiaohua Li
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences Beijing 100049 China
| | - Wen Shi
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences Beijing 100049 China
| | - Huimin Ma
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences Beijing 100049 China
- University of Chinese Academy of Sciences Beijing 100049 China
| |
Collapse
|
19
|
Liu Q, Yuan J, Jiang R, He L, Yang X, Yuan L, Cheng D. γ-Glutamyltransferase-Activatable Fluoro-Photoacoustic Reporter for Highly Sensitive Diagnosis of Acute Liver Injury and Tumor. Anal Chem 2023; 95:2062-2070. [PMID: 36633322 DOI: 10.1021/acs.analchem.2c04894] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
γ-Glutamyltransferase (GGT) has been recognized as an important clinical biomarker that is closely related to many diseases. Visualizing the GGT fluctuation facilitates early disease-related diagnosis and therapy. Herein, an activated probe (NIR-GGT) for the imaging of GGT activity was prepared. The probe consists of a stable NIR fluorophore with the tunable amino group decorated with the γ-glutamate group as a GGT-sensing unit linked by a self-elimination group. NIR-GGT can sensitively recognize GGT and cause a strong turn-on fluorescent and photoacoustic signal. The up-regulation of the GGT expression in acetaminophen-induced acute liver injury was imaged using NIR-GGT. The probe can track changes in the GGT level in the early stages of drug-induced acute liver injury (DIALI) and its remedy process by fluorescent and photoacoustic dual-modality imaging with a high temporal-spatial resolution. NIR-GGT can also be used to differentiate between tumor and para-carcinowa tissues in vivo. The probe may be a potential tool for the diagnosis of early-stage DIALI and accurate tumor resection in the clinical field.
Collapse
Affiliation(s)
- Qian Liu
- Hunan Provincial Clinical Research Center for Metabolic Associated Fatty Liver Disease, Clinical Research Institute, the Affiliated Nanhua Hospital, Hengyang Medical School, University of South China, Hengyang 421002, Hunan, China
| | - Jie Yuan
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, PR China
- Henan Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Key Laboratory of Green Chemical Media and Reactions; School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, China
| | - Renfeng Jiang
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Department of Pharmacy and Pharmacology, Hengyang Medical School, University of South China, Hengyang 421002, Hunan, China
| | - Longwei He
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Department of Pharmacy and Pharmacology, Hengyang Medical School, University of South China, Hengyang 421002, Hunan, China
| | - Xuefeng Yang
- Hunan Provincial Clinical Research Center for Metabolic Associated Fatty Liver Disease, Clinical Research Institute, the Affiliated Nanhua Hospital, Hengyang Medical School, University of South China, Hengyang 421002, Hunan, China
| | - Lin Yuan
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, PR China
| | - Dan Cheng
- Hunan Provincial Clinical Research Center for Metabolic Associated Fatty Liver Disease, Clinical Research Institute, the Affiliated Nanhua Hospital, Hengyang Medical School, University of South China, Hengyang 421002, Hunan, China
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, PR China
| |
Collapse
|
20
|
Chang B, Chen J, Bao J, Dong K, Chen S, Cheng Z. Design strategies and applications of smart optical probes in the second near-infrared window. Adv Drug Deliv Rev 2023; 192:114637. [PMID: 36476990 DOI: 10.1016/j.addr.2022.114637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 10/30/2022] [Accepted: 11/23/2022] [Indexed: 12/12/2022]
Abstract
Over the last decade, a series of synergistic advances in the synthesis chemistries and imaging instruments have largely boosted a significant revolution, in which large-scale biomedical applications are now benefiting from optical bioimaging in the second near-infrared window (NIR-II, 1000-1700 nm). The large tissue penetration and limited autofluorescence associated with long-wavelength imaging improve translational potential of NIR-II imaging over common visible-light (400-650 nm) and NIR-I (750-900 nm) imaging, with ongoing profound effects on the studies of precision medicine. Unfortunately, the majority of NIR-II probes are designed as "always-on" luminescent imaging contrasts, continuously generating unspecific signals regardless of whether they reach pathological locations. Thus, in vivo imaging by traditional NIR-II probes usually suffers from weak detect precision due to high background noise. In this context, the advances of optical imaging now enter into an era of precise control of NIR-II photophysical kinetics. Developing NIR-II optical probes that can efficiently activate their luminescent signal in response to biological targets of interest and substantially suppress the background interferences have become a highly prospective research frontier. In this review, the merits and demerits of optical imaging probes from visible-light, NIR-I to NIR-II windows are carefully discussed along with the lens of stimuli-responsive photophysical kinetics. We then highlight the latest development in engineering methods for designing smart NIR-II optical probes. Finally, to appreciate such advances, challenges and prospect in rapidly growing study of smart NIR-II probes are addressed in this review.
Collapse
Affiliation(s)
- Baisong Chang
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, China
| | - Jie Chen
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, China
| | - Jiasheng Bao
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, China
| | - Kangfeng Dong
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, China
| | - Si Chen
- Department of Neurology, Xiangya Hospital, Central South University, Xiangya Road 88, Changsha 410008, China.
| | - Zhen Cheng
- State Key Laboratory of Drug Research, Molecular Imaging Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug Discovery, Yantai 264000, China.
| |
Collapse
|
21
|
Shang Z, Shu L, Liu J, Meng Q, Wang Y, Sun J, Zhang R, Zhang Z. Triphenylamine-embedded copper(II) complex as a "turn-on" fluorescent probe for the detection of nitric oxide in living animals. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2022; 14:4537-4544. [PMID: 36314283 DOI: 10.1039/d2ay01629j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Nitric oxide (NO) is one of three major signaling molecules, which is involved in a large amount of physiological and pathological processes in biological systems. Furthermore, more and more evidence indicates that NO levels are closely associated with several aspects of human health. Accordingly, it is of great significance to develop a convenient and reliable detection method for NO in biological systems. In this work, a novel triphenylamine-embedded copper(II) complex (NZ-Cu2+) has been developed to be used as a fluorescence probe for the detection of NO in living animals. The proposed sensing mechanism of NZ-Cu2+ towards NO has been confirmed by high-resolution mass spectrometry, spectroscopic titration and density functional theory calculation. NO induced the conversion of paramagnetic Cu2+ to diamagnetic Cu+, which blocked the photoinduced electron transfer process of NZ-Cu2+, resulting in a remarkable enhancement of the emission spectra. The NZ-Cu2+ probe possesses several advantages including high selectivity, low detection limit (12.9 nM), long emission wavelength (640 nm), large Stokes shift (201 nm), fast response time (60 s) and low cytotoxicity. More importantly, NZ-Cu2+ has been successfully applied to detect NO in vivo by fluorescence imaging.
Collapse
Affiliation(s)
- Zhuye Shang
- School of Chemical Engineering, University of Science and Technology Liaoning, Anshan, Liaoning Province, 114051, P. R. China.
| | - Li Shu
- School of Chemical Engineering, University of Science and Technology Liaoning, Anshan, Liaoning Province, 114051, P. R. China.
| | - Jianhua Liu
- School of Chemical Engineering, University of Science and Technology Liaoning, Anshan, Liaoning Province, 114051, P. R. China.
| | - Qingtao Meng
- School of Chemical Engineering, University of Science and Technology Liaoning, Anshan, Liaoning Province, 114051, P. R. China.
| | - Yue Wang
- School of Chemical Engineering, University of Science and Technology Liaoning, Anshan, Liaoning Province, 114051, P. R. China.
| | - Jianguo Sun
- Eye Institute and Department of Ophthalmology & Visual Science, Eye & ENT Hospital, Shanghai Medical College, Fudan University, Shanghai, China.
| | - Run Zhang
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, 4072, Australia
| | - Zhiqiang Zhang
- School of Chemical Engineering, University of Science and Technology Liaoning, Anshan, Liaoning Province, 114051, P. R. China.
| |
Collapse
|
22
|
Qiu Q, Chang T, Wu Y, Qu C, Chen H, Cheng Z. Liver injury long-term monitoring and fluorescent image-guided tumor surgery using self-assembly amphiphilic donor-acceptor NIR-II dyes. Biosens Bioelectron 2022; 212:114371. [DOI: 10.1016/j.bios.2022.114371] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 05/03/2022] [Accepted: 05/10/2022] [Indexed: 12/23/2022]
|
23
|
Chen J, Chen L, Zeng F, Wu S. Aminopeptidase N Activatable Nanoprobe for Tracking Lymphatic Metastasis and Guiding Tumor Resection Surgery via Optoacoustic/NIR-II Fluorescence Dual-Mode Imaging. Anal Chem 2022; 94:8449-8457. [DOI: 10.1021/acs.analchem.2c01241] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Junjie Chen
- State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, College of Materials Science and Engineering, South China University of Technology, Wushan Road 381, Guangzhou 510640, China
| | - Longqi Chen
- State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, College of Materials Science and Engineering, South China University of Technology, Wushan Road 381, Guangzhou 510640, China
| | - Fang Zeng
- State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, College of Materials Science and Engineering, South China University of Technology, Wushan Road 381, Guangzhou 510640, China
| | - Shuizhu Wu
- State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, College of Materials Science and Engineering, South China University of Technology, Wushan Road 381, Guangzhou 510640, China
| |
Collapse
|