1
|
Zhang H, Rafat N, Rudge J, Peddireddy SP, Kim YN, Khan T, Sarkar A. High throughput electronic detection of biomarkers using enzymatically amplified metallization on nanostructured surfaces. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2024; 16:7854-7863. [PMID: 39530206 PMCID: PMC11563207 DOI: 10.1039/d4ay01657b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2024] [Accepted: 10/31/2024] [Indexed: 11/16/2024]
Abstract
Enzyme-linked immunosorbent assays are commonly used for clinical biomarker detection. However, they remain resource-intensive and difficult to scale globally. Here we present a miniaturized direct electronic biosensing modality which generates a simple and sensitive, quantitative, resistive readout of analyte binding in immunoassays. It utilizes the enhanced metallization generated by synergistic catalytic activity of nanostructured surfaces, created using gold nanoparticles, with enzymatic metallization, catalyzed by analyte-bound enzyme-labeled antibodies, to create a connected metal layer between microelectrodes. Based on this scheme, we develop a portable, high-throughput electronic biomarker detection device and platform which allows testing 96 different low volume (3 μL) clinical samples in a handheld device. We find an analyte concentration-dependent tunable digital switch-like behavior in the measured resistance of this device. We use this system to further explore the mechanism of enhanced metallization and find optimal parameters. Finally, we use this platform to perform quantitative measurement of viral antigen-specific antibody titers from convalescent COVID-19 patient serum.
Collapse
Affiliation(s)
- Hanhao Zhang
- Georgia Institute of Technology, 315 Ferst Dr NW, Atlanta, GA 30332, USA.
| | - Neda Rafat
- Georgia Institute of Technology, 315 Ferst Dr NW, Atlanta, GA 30332, USA.
| | - Josiah Rudge
- Georgia Institute of Technology, 315 Ferst Dr NW, Atlanta, GA 30332, USA.
| | | | - Yoo Na Kim
- Georgia Institute of Technology, 315 Ferst Dr NW, Atlanta, GA 30332, USA.
| | - Taaseen Khan
- Georgia Institute of Technology, 315 Ferst Dr NW, Atlanta, GA 30332, USA.
| | - Aniruddh Sarkar
- Georgia Institute of Technology, 315 Ferst Dr NW, Atlanta, GA 30332, USA.
| |
Collapse
|
2
|
Chen W, Zhang X, Chi M, Zheng Q. Enhanced photocurrents for photoelectrochemical immunoassay of alpha-fetoprotein with Pt-functionalized Bi 2O 2S nanoflowers. Anal Chim Acta 2024; 1330:343281. [PMID: 39489964 DOI: 10.1016/j.aca.2024.343281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 09/07/2024] [Accepted: 09/26/2024] [Indexed: 11/05/2024]
Abstract
BACKGROUND Designing heterojunctions with efficient electron-hole separation holds great promise for improving photoelectric response. RESULTS Herein, we reported a multifunctional Pt co-catalyst-modified Bi2O2S nanoflowers (BOS NFs) photocatalytic component for achieving an efficient photoelectric chemistry (PEC) immunosensor for alpha-fetoprotein (AFP). Briefly, the Pt co-catalyst improved the intrinsic band gap structure of BOS on the one hand, and on the other hand, it was able to achieve a rapid decomposition of hydrogen peroxide to hydroxyl radicals, which led to the improvement of electrochemical half-responses during the amplification of target immunosignals. In addition, Pt-functionalized BOS NFs (BOS-Pt) exhibited peroxidase-like enzymatic reaction activity and related properties. By enzyme-linked immunosorbent assay, a sandwich immuno-model in the presence of AFP catalyzed the production of hydrogen peroxide from the substrate glucose and the conversion of a sizable photoelectrochemical signal catalyzed by BOS-Pt. Following condition optimization, it was determined that the developed sensor exhibited a specific response to AFP over a wide linear range of 0.05-50 ng mL-1. SIGNIFICANCE This work provides a new strategy for developing efficient immunosensors from the perspective of modulating photoelectrochemical half-reactions.
Collapse
Affiliation(s)
- Wei Chen
- Department of Hepatology, Hepatology Research Institute, The First Affiliated Hospital of Fujian Medical University, Fuzhou, 350005, Fujian Province, China; Department of Hepatology, National Regional Medical Center, Binhai Campus of the First Affiliated hospital, Fujian Medical University, Fuzhou 350212, Fujian Province, China; Clinical Research Center for Liver and Intestinal Diseases of Fujian Province, Fuzhou, 350005, Fujian Province, China
| | - Xiang Zhang
- Department of Hepatology, Hepatology Research Institute, The First Affiliated Hospital of Fujian Medical University, Fuzhou, 350005, Fujian Province, China; Department of Hepatology, National Regional Medical Center, Binhai Campus of the First Affiliated hospital, Fujian Medical University, Fuzhou 350212, Fujian Province, China; Clinical Research Center for Liver and Intestinal Diseases of Fujian Province, Fuzhou, 350005, Fujian Province, China
| | - Minhui Chi
- Department of Hepatology, Hepatology Research Institute, The First Affiliated Hospital of Fujian Medical University, Fuzhou, 350005, Fujian Province, China; Department of Hepatology, National Regional Medical Center, Binhai Campus of the First Affiliated hospital, Fujian Medical University, Fuzhou 350212, Fujian Province, China; Clinical Research Center for Liver and Intestinal Diseases of Fujian Province, Fuzhou, 350005, Fujian Province, China.
| | - Qi Zheng
- Department of Hepatology, Hepatology Research Institute, The First Affiliated Hospital of Fujian Medical University, Fuzhou, 350005, Fujian Province, China; Department of Hepatology, National Regional Medical Center, Binhai Campus of the First Affiliated hospital, Fujian Medical University, Fuzhou 350212, Fujian Province, China; Clinical Research Center for Liver and Intestinal Diseases of Fujian Province, Fuzhou, 350005, Fujian Province, China.
| |
Collapse
|
3
|
Lai Y, Huang J, Tang D, Chen X, Hou L, Zhao S, Lin T. Dual-mode photothermal/chemiluminescence vertical flow assay for sensitive point-of-care detection of carcinoembryonic antigen using Cu 2-xAg xS@liposome on a filter membrane. Biosens Bioelectron 2024; 263:116602. [PMID: 39067411 DOI: 10.1016/j.bios.2024.116602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 07/22/2024] [Accepted: 07/23/2024] [Indexed: 07/30/2024]
Abstract
Conventional lateral flow assays based on colorimetry and fluorescence still have shortages in sensitivity and selectivity due to the severe background interference from complex human fluid sample matrices. In this work, Cu2-xAgxS nanocrystals with high photothermal conversion efficiency and good peroxidase-like activity were synthesized and applied in the construction of a dual-mode near-infrared-photothermal/chemiluminescence (CL) vertical flow assay of carcinoembryonic antigen (CEA). These two-mode principles showed nearly zero background and the synthesized Cu2-xAgxS exhibited a high photothermal conversion efficiency of 75.23%, enabling the luminol-H2O2 CL system to have over 4 min of chemiluminescence. By combining filter membrane enrichment, Cu2-xAgxS@liposome encapsulation amplification, and nanozyme catalysis, a dual-mode photothermal/CL portable assay was constructed for sensitive and accurate detection of CEA in serum, with linear ranges of 0.02-40 and 0.001-30 ng mL-1, and detection limits of 0.0023 and 0.00029 ng mL-1, respectively. Furthermore, a smartphone application and a 3D printing device were combined for point-of-care testing. This assay can be completed within 20 min, with simple operation and no need for large instruments. It exhibited good sensitivity, selectivity, and stability, and is expected to be used in early diagnosis and prevention of relevant diseases in resource-limited areas.
Collapse
Affiliation(s)
- Yunping Lai
- School of Chemistry and Pharmaceutical Sciences, State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Guangxi Key Laboratory of Environmental Processes and Remediation in Ecologically Fragile Regions, Guangxi Normal University, Guilin, 541004, PR China; Chongqing Key Laboratory of Kinase Modulators as Innovative Medicine, College of Pharmacy (International Academy of Targeted Therapeutics and Innovation), Chongqing University of Arts and Sciences, Chongqing, 402160, PR China
| | - Jiamin Huang
- School of Chemistry and Pharmaceutical Sciences, State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Guangxi Key Laboratory of Environmental Processes and Remediation in Ecologically Fragile Regions, Guangxi Normal University, Guilin, 541004, PR China
| | - Dianyong Tang
- Chongqing Key Laboratory of Kinase Modulators as Innovative Medicine, College of Pharmacy (International Academy of Targeted Therapeutics and Innovation), Chongqing University of Arts and Sciences, Chongqing, 402160, PR China.
| | - Xinlian Chen
- School of Chemistry and Pharmaceutical Sciences, State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Guangxi Key Laboratory of Environmental Processes and Remediation in Ecologically Fragile Regions, Guangxi Normal University, Guilin, 541004, PR China
| | - Li Hou
- School of Chemistry and Pharmaceutical Sciences, State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Guangxi Key Laboratory of Environmental Processes and Remediation in Ecologically Fragile Regions, Guangxi Normal University, Guilin, 541004, PR China
| | - Shulin Zhao
- School of Chemistry and Pharmaceutical Sciences, State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Guangxi Key Laboratory of Environmental Processes and Remediation in Ecologically Fragile Regions, Guangxi Normal University, Guilin, 541004, PR China
| | - Tianran Lin
- School of Chemistry and Pharmaceutical Sciences, State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Guangxi Key Laboratory of Environmental Processes and Remediation in Ecologically Fragile Regions, Guangxi Normal University, Guilin, 541004, PR China.
| |
Collapse
|
4
|
Wang Y, Lai B, Yu Z, Xu Z. One-step fabrication of a self-driven point-of-care chip by femtosecond laser direct writing and its application in cancer cell H 2O 2 detection via semiconductor-based SERS. Talanta 2024; 278:126483. [PMID: 38963977 DOI: 10.1016/j.talanta.2024.126483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 06/15/2024] [Accepted: 06/25/2024] [Indexed: 07/06/2024]
Abstract
Self-driven microfluidic systems have attracted significant attention and demonstrated great potential in the field of point-of-care (POC) testing due to their device simplicity, low power consumption, increased portability, and reduced sample consumption. To develop POC detection chips with diverse characteristics that meet different requirements, there is a strong demand for feasible strategies that enable easy operation and reduce processing time. Here, a one-step processing approach using femtosecond laser direct writing technology was proposed to fabricate a capillary-actuated POC microfluidic chip. The driving force of the chip is highly dependent on its surface wettability, which can be easily adjusted by changing the laser processing parameters. This POC microfluidic chip allowed for the detection of intracellular H2O2 through a catalytic reaction system that incorporated 5-aminosalicylic acid -sensitized colloidal TiO2 nanoparticles and horse radish peroxidase, with integrating semiconductor-based surface-enhanced Raman scattering (SERS) quantitative technique. The concentration of H2O2 was determined by the SERS signal of the catalytic products in the microfluidic chip, resulting in rapid detection with minimal sample consumption. Our method provides a simple, feasible, and alternative strategy for POC testing of H2O2, with a linear range of 10-2∼10-6 M and a limit of detection of 0.55 μM. This approach was successfully applied to rapid detection of intracellular H2O2 in MCF-7 breast cancer cells with high sensitivity and minimal sample consumption. Additionally, this study not only demonstrates the exceptional advantages of femtosecond laser processing technology in fabricating diverse microfluidic chips for various applications, but also presents an efficient POC testing strategy for detecting cell signaling molecules.
Collapse
Affiliation(s)
- Yue Wang
- Department of Chemistry, College of Science, Northeastern University, Shenyang, 110819, People's Republic of China
| | - Bo Lai
- MOE Key Laboratory of Advanced Micro-structured Materials, Institute of Precision Optical Engineering (IPOE), Tongji University, Shanghai, 200092, People's Republic of China
| | - Zhi Yu
- Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang, 110016, People's Republic of China
| | - Zhangrun Xu
- Department of Chemistry, College of Science, Northeastern University, Shenyang, 110819, People's Republic of China.
| |
Collapse
|
5
|
Haghayegh F, Norouziazad A, Haghani E, Feygin AA, Rahimi RH, Ghavamabadi HA, Sadighbayan D, Madhoun F, Papagelis M, Felfeli T, Salahandish R. Revolutionary Point-of-Care Wearable Diagnostics for Early Disease Detection and Biomarker Discovery through Intelligent Technologies. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2400595. [PMID: 38958517 PMCID: PMC11423253 DOI: 10.1002/advs.202400595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 06/19/2024] [Indexed: 07/04/2024]
Abstract
Early-stage disease detection, particularly in Point-Of-Care (POC) wearable formats, assumes pivotal role in advancing healthcare services and precision-medicine. Public benefits of early detection extend beyond cost-effectively promoting healthcare outcomes, to also include reducing the risk of comorbid diseases. Technological advancements enabling POC biomarker recognition empower discovery of new markers for various health conditions. Integration of POC wearables for biomarker detection with intelligent frameworks represents ground-breaking innovations enabling automation of operations, conducting advanced large-scale data analysis, generating predictive models, and facilitating remote and guided clinical decision-making. These advancements substantially alleviate socioeconomic burdens, creating a paradigm shift in diagnostics, and revolutionizing medical assessments and technology development. This review explores critical topics and recent progress in development of 1) POC systems and wearable solutions for early disease detection and physiological monitoring, as well as 2) discussing current trends in adoption of smart technologies within clinical settings and in developing biological assays, and ultimately 3) exploring utilities of POC systems and smart platforms for biomarker discovery. Additionally, the review explores technology translation from research labs to broader applications. It also addresses associated risks, biases, and challenges of widespread Artificial Intelligence (AI) integration in diagnostics systems, while systematically outlining potential prospects, current challenges, and opportunities.
Collapse
Affiliation(s)
- Fatemeh Haghayegh
- Laboratory of Advanced Biotechnologies for Health Assessments (Lab‐HA)Biomedical Engineering ProgramLassonde School of EngineeringYork UniversityTorontoM3J 1P3Canada
- Department of Electrical Engineering and Computer Science (EECS)Lassonde School of EngineeringYork UniversityTorontoONM3J 1P3Canada
| | - Alireza Norouziazad
- Laboratory of Advanced Biotechnologies for Health Assessments (Lab‐HA)Biomedical Engineering ProgramLassonde School of EngineeringYork UniversityTorontoM3J 1P3Canada
- Department of Electrical Engineering and Computer Science (EECS)Lassonde School of EngineeringYork UniversityTorontoONM3J 1P3Canada
| | - Elnaz Haghani
- Laboratory of Advanced Biotechnologies for Health Assessments (Lab‐HA)Biomedical Engineering ProgramLassonde School of EngineeringYork UniversityTorontoM3J 1P3Canada
- Department of Electrical Engineering and Computer Science (EECS)Lassonde School of EngineeringYork UniversityTorontoONM3J 1P3Canada
| | - Ariel Avraham Feygin
- Laboratory of Advanced Biotechnologies for Health Assessments (Lab‐HA)Biomedical Engineering ProgramLassonde School of EngineeringYork UniversityTorontoM3J 1P3Canada
- Department of Electrical Engineering and Computer Science (EECS)Lassonde School of EngineeringYork UniversityTorontoONM3J 1P3Canada
| | - Reza Hamed Rahimi
- Laboratory of Advanced Biotechnologies for Health Assessments (Lab‐HA)Biomedical Engineering ProgramLassonde School of EngineeringYork UniversityTorontoM3J 1P3Canada
- Department of Electrical Engineering and Computer Science (EECS)Lassonde School of EngineeringYork UniversityTorontoONM3J 1P3Canada
| | - Hamidreza Akbari Ghavamabadi
- Laboratory of Advanced Biotechnologies for Health Assessments (Lab‐HA)Biomedical Engineering ProgramLassonde School of EngineeringYork UniversityTorontoM3J 1P3Canada
- Department of Electrical Engineering and Computer Science (EECS)Lassonde School of EngineeringYork UniversityTorontoONM3J 1P3Canada
| | - Deniz Sadighbayan
- Department of BiologyFaculty of ScienceYork UniversityTorontoONM3J 1P3Canada
| | - Faress Madhoun
- Laboratory of Advanced Biotechnologies for Health Assessments (Lab‐HA)Biomedical Engineering ProgramLassonde School of EngineeringYork UniversityTorontoM3J 1P3Canada
- Department of Electrical Engineering and Computer Science (EECS)Lassonde School of EngineeringYork UniversityTorontoONM3J 1P3Canada
| | - Manos Papagelis
- Department of Electrical Engineering and Computer Science (EECS)Lassonde School of EngineeringYork UniversityTorontoONM3J 1P3Canada
| | - Tina Felfeli
- Department of Ophthalmology and Vision SciencesUniversity of TorontoOntarioM5T 3A9Canada
- Institute of Health PolicyManagement and EvaluationUniversity of TorontoOntarioM5T 3M6Canada
| | - Razieh Salahandish
- Laboratory of Advanced Biotechnologies for Health Assessments (Lab‐HA)Biomedical Engineering ProgramLassonde School of EngineeringYork UniversityTorontoM3J 1P3Canada
- Department of Electrical Engineering and Computer Science (EECS)Lassonde School of EngineeringYork UniversityTorontoONM3J 1P3Canada
| |
Collapse
|
6
|
Wang X, Tang D, Wan X, Wang H, Tang D. Vanadium-doped metal-organic framework@Znln 2S 4 core-shell heterojunction-attenuated photoelectrochemical immunoassay. Talanta 2024; 275:126110. [PMID: 38631264 DOI: 10.1016/j.talanta.2024.126110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Revised: 04/09/2024] [Accepted: 04/13/2024] [Indexed: 04/19/2024]
Abstract
Considering that cancer has become the second leading cause of death in humans, it is essential to develop an analytical approach that can sensitively detect tumor markers for early detection. We report an attenuated photoelectrochemical (PEC) immunoassay based on the organic-inorganic heterojunction 10MIL-88B(FeV)/ZnIn2S4 (10M88B(FeV)/ZIS) as a photoactive material for monitoring carcinoembryonic antigen (CEA). The 10M88B(FeV)/ZIS heterojunctions have excellent light-harvesting properties and high electrical conductivity, which are attributed to the advantages of both organic and inorganic semiconductors, namely, remarkable photogenerated carrier separation efficiency and long photogenerated carrier lifetime. Horseradish peroxidase (HRP) in the presence of H2O2 can catalyze 3,3'-diaminofenamide (DAB) producing brown precipitates (oxDAB), which is then loaded onto the 10M88B(FeV)/ZIS heterojunction to reduce the photocurrent and enable the quantitative detection of CEA. Under optimal conditions, the photocurrent values of the PEC biosensor are linearly related to the logarithm of the CEA concentrations, ranging from 0.01 ng mL-1 to 100 ng mL-1 with a detection limit (LOD) of 4.0 pg mL-1. Notably, the accuracy of the PEC biosensor is in agreement with that of the human CEA enzyme-linked immunosorbent assay (ELISA) kit.
Collapse
Affiliation(s)
- Xin Wang
- Key Laboratory for Analytical Science of Food Safety and Biology (MOE & Fujian Province), Department of Chemistry, Fuzhou University, Fuzhou, 350108, PR China; Chongqing Key Laboratory of Kinase Modulators as Innovative Medicine, College of Pharmacy (International Academy of Targeted Therapeutics and Innovation), Chongqing University of Arts and Sciences, Chongqing, 402160, PR China.
| | - Dianyong Tang
- Chongqing Key Laboratory of Kinase Modulators as Innovative Medicine, College of Pharmacy (International Academy of Targeted Therapeutics and Innovation), Chongqing University of Arts and Sciences, Chongqing, 402160, PR China.
| | - Xinyu Wan
- Key Laboratory for Analytical Science of Food Safety and Biology (MOE & Fujian Province), Department of Chemistry, Fuzhou University, Fuzhou, 350108, PR China.
| | - Haiyang Wang
- Key Laboratory for Analytical Science of Food Safety and Biology (MOE & Fujian Province), Department of Chemistry, Fuzhou University, Fuzhou, 350108, PR China.
| | - Dianping Tang
- Key Laboratory for Analytical Science of Food Safety and Biology (MOE & Fujian Province), Department of Chemistry, Fuzhou University, Fuzhou, 350108, PR China.
| |
Collapse
|
7
|
Glória J, Oliveira DS, Gandarilla AD, Barcelay YR, Mariúba LA, Nogueira PA, Brito WR, Moreira FTC. Liquid Redox Probe-Free Plastic Antibody Development for Malaria Biomarker Recognition. ACS OMEGA 2024; 9:33130-33139. [PMID: 39100316 PMCID: PMC11292623 DOI: 10.1021/acsomega.4c04543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 06/22/2024] [Accepted: 07/04/2024] [Indexed: 08/06/2024]
Abstract
Malaria is a major public health challenge worldwide and requires accurate and efficient diagnostic methods. Traditional diagnostic approaches based on antigen-antibody interactions are associated with ethical and economic concerns. Molecularly imprinted polymers (MIPs) offer a promising alternative by providing a complementary polymer structure capable of selectively binding target molecules. In this study, we developed a liquid, redox-probe-free, MIP-based electrochemical biosensor to detect the Plasmodium falciparum malaria marker histidine-rich protein (HRP2) at the point-of-care (PoC). The imprinting phase consists of the electropolymerization of the monomer methylene blue (MB) in the presence of the target protein HRP2 at the working electrode (WE) of the modified carbon screen printed electrode (C-SPE). Subsequent removal of the protein with proteinase K and oxalic acid yielded the MIP material. The sensor assembly was monitored by cyclic voltammetry (CV), Raman spectroscopy and scanning electron microscopy (SEM). The analytical performance of the biosensor was evaluated by square-wave voltammetry (SWV) using calibration curves in buffer and serum with a detection limit of 0.43 ± 0.026 pg mL-1. Selectivity studies showed minimal interference, indicating a highly selective assay. Overall, our approach to detect the HRP2 infection marker offers simplicity, cost-effectiveness and reliability. In particular, the absence of a redox solution simplifies detection, as the polymer itself is electroactive and exhibits oxidation and reduction peaks.
Collapse
Affiliation(s)
- Juliane
Corrêa Glória
- Programa
de Pós-graduação em Biotecnologia da Universidade
Federal do Amazonas - UFAM, Manaus, AM 69077-000, Brazil
- Instituto
Leônidas e Maria Deane (ILMD), Fundação
Oswaldo Cruz (FIOCRUZ), Manaus, AM 69057-070, Brazil
- Programa
de Pós-graduação em Biologia da Interação
Patógeno-Hospedeiro do Instituto Leônidas e Maria Deane
(ILMD), Fundação Oswaldo Cruz
(FIOCRUZ), Manaus, AM 69057-070, Brazil
| | - Daniela S. Oliveira
- CIETI-LabRISE, Instituto Superior de Engenharia do Porto (ISEP), Porto 4249-015, Portugal
| | - Ariamna Dip Gandarilla
- Departamento
de Química, Universidade Federal
do Amazonas, Manaus, AM 69077-000, Brasil
- LABEL
− Central Analítica, Universidade
Federal do Amazonas, Manaus, AM 69077-000, Brazil
| | - Yonny Romaguera Barcelay
- Departamento
de Química, Universidade Federal
do Amazonas, Manaus, AM 69077-000, Brasil
- CEMMPRE,
Departamento de Engenharia Química, Universidade de Coimbra, Rua Sílvio Lima − Pólo II, 3030-790 Coimbra, Portugal
| | - Luis André
Morais Mariúba
- Programa
de Pós-graduação em Biotecnologia da Universidade
Federal do Amazonas - UFAM, Manaus, AM 69077-000, Brazil
- Instituto
Leônidas e Maria Deane (ILMD), Fundação
Oswaldo Cruz (FIOCRUZ), Manaus, AM 69057-070, Brazil
- Programa
de Pós-graduação em Biologia da Interação
Patógeno-Hospedeiro do Instituto Leônidas e Maria Deane
(ILMD), Fundação Oswaldo Cruz
(FIOCRUZ), Manaus, AM 69057-070, Brazil
- Programa
de Pós-graduação em Imunologia Básica
e Aplicada, Instituto de Ciências Biológicas, Universidade Federal do Amazonas (UFAM), Manaus, AM 69067-00, Brazil
| | - Paulo Afonso Nogueira
- Instituto
Leônidas e Maria Deane (ILMD), Fundação
Oswaldo Cruz (FIOCRUZ), Manaus, AM 69057-070, Brazil
- Programa
de Pós-graduação em Biologia da Interação
Patógeno-Hospedeiro do Instituto Leônidas e Maria Deane
(ILMD), Fundação Oswaldo Cruz
(FIOCRUZ), Manaus, AM 69057-070, Brazil
- Programa
de Pós-graduação em Imunologia Básica
e Aplicada, Instituto de Ciências Biológicas, Universidade Federal do Amazonas (UFAM), Manaus, AM 69067-00, Brazil
| | - Walter Ricardo Brito
- Programa
de Pós-graduação em Biotecnologia da Universidade
Federal do Amazonas - UFAM, Manaus, AM 69077-000, Brazil
- Departamento
de Química, Universidade Federal
do Amazonas, Manaus, AM 69077-000, Brasil
- LABEL
− Central Analítica, Universidade
Federal do Amazonas, Manaus, AM 69077-000, Brazil
| | | |
Collapse
|
8
|
Ji Y, Wang R, Zhao H. Toward Sensitive and Reliable Immunoassays of Marine Biotoxins: From Rational Design to Food Analysis. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:16076-16094. [PMID: 39010820 DOI: 10.1021/acs.jafc.4c01865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/17/2024]
Abstract
Marine biotoxins are metabolites produced by algae that can accumulate in shellfish or fish and enter organisms through the food chain, posing a serious threat to biological health. Therefore, accurate and rapid detection is an urgent requirement for food safety. Although various detection methods, including the mouse bioassay, liquid chromatography-mass spectrometry, and cell detection methods, and protein phosphatase inhibition assays have been developed in the past decades, the current detection methods cannot fully meet these demands. Among these methods, the outstanding immunoassay virtues of high sensitivity, reliability, and low cost are highly advantageous for marine biotoxin detection in complex samples. In this work, we review the recent 5-year progress in marine biotoxin immunodetection technologies such as optical immunoassays, electrochemical immunoassays, and piezoelectric immunoassays. With the assistance of immunoassays, the detection of food-related marine biotoxins can be implemented for ensuring public health and preventing food poisoning. In addition, the immunodetection technique platforms including lateral flow chips and microfluidic chips are also discussed. We carefully investigate the advantages and disadvantages for each immunoassay, which are compared to demonstrate the guidance for selecting appropriate immunoassays and platforms for the detection of marine biotoxins. It is expected that this review will provide insights for the further development of immunoassays and promote the rapid progress and successful translation of advanced immunoassays with food safety detection.
Collapse
Affiliation(s)
- Yuxiang Ji
- State Key Laboratory of Marine Resources Utilization in South China Sea and Center for Eco-Environment Restoration of Hainan Province, Hainan University, Haikou 570228, China
- NHC Key Laboratory of Tropical Disease Control, School of Tropical Medicine, Hainan Medical University, Haikou, Hainan 571199, China
| | - Rui Wang
- Key Laboratory of Hainan Trauma and Disaster Rescue, The First Affiliated Hospital of Hainan Medical University, Engineering Research Center for Hainan Bio-Smart Materials and Bio-Medical Devices, College of Emergency and Trauma, Hainan Medical University, Haikou 571199, China
| | - Hongwei Zhao
- State Key Laboratory of Marine Resources Utilization in South China Sea and Center for Eco-Environment Restoration of Hainan Province, Hainan University, Haikou 570228, China
| |
Collapse
|
9
|
Zhao Q, Chen Z, Shan CW, Zhan T, Han CY, Han GC, Feng XZ, Kraatz HB. Construction and evaluation of AuNPs enhanced electrochemical immunosensors with [Fe(CN) 6] 3-/4- and PPy probe for highly sensitive detection of human chorionic gonadotropin. Int J Biol Macromol 2024; 273:132963. [PMID: 38852725 DOI: 10.1016/j.ijbiomac.2024.132963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 05/24/2024] [Accepted: 06/04/2024] [Indexed: 06/11/2024]
Abstract
Human chorionic gonadotropin (HCG), a vital protein for pregnancy determination and a marker for trophoblastic diseases, finds application in monitoring early pregnancy and ectopic pregnancy. This study presents an innovative approach employing electrochemical immunosensors for enhanced HCG detection, utilizing Anti-HCG antibodies and gold nanoparticles (AuNPs) in the sensor platform. Two sensor configurations were optimized: BSA/Anti-HCG/c-AuNPs/MEL/e-AuNPs/SPCE with [Fe(CN)6]3-/4- as a redox probe (1) and BSA/Anti-HCG/PPy/e-AuNPs/SPCE using polypyrrole (PPy) as a redox probe (2). The first sensor offers linear correlation in the 0.10-500.00 pg∙mL-1 HCG range, with a limit of detection (LOD) of 0.06 pg∙mL-1, sensitivity of 32.25 μA∙pg-1∙mL∙cm-2, RSD <2.47 %, and a recovery rate of 101.03-104.81 %. The second sensor widens the HCG detection range (40.00 fg∙mL-1-5.00 pg∙mL-1) with a LOD of 16.53 fg∙mL-1, ensuring precision (RSD <1.04 %) and a recovery range of 94.61-106.07 % in serum samples. These electrochemical immunosensors have transformative potential in biomarker detection, offering enhanced sensitivity, selectivity, and stability for advanced healthcare diagnostics.
Collapse
Affiliation(s)
- Qi Zhao
- School of Life and Environmental Sciences, Guangxi Human Physiological Information Non Invasive Detection Engineering Technology Research Center, Guangxi Colleges and Universities Key Laboratory of Biomedical Sensors and Intelligent Instruments, Guilin University of Electronic Technology, Guilin 541004, PR China
| | - Zhencheng Chen
- School of Life and Environmental Sciences, Guangxi Human Physiological Information Non Invasive Detection Engineering Technology Research Center, Guangxi Colleges and Universities Key Laboratory of Biomedical Sensors and Intelligent Instruments, Guilin University of Electronic Technology, Guilin 541004, PR China
| | - Chen-Wei Shan
- School of Life and Environmental Sciences, Guangxi Human Physiological Information Non Invasive Detection Engineering Technology Research Center, Guangxi Colleges and Universities Key Laboratory of Biomedical Sensors and Intelligent Instruments, Guilin University of Electronic Technology, Guilin 541004, PR China
| | - Tao Zhan
- School of Life and Environmental Sciences, Guangxi Human Physiological Information Non Invasive Detection Engineering Technology Research Center, Guangxi Colleges and Universities Key Laboratory of Biomedical Sensors and Intelligent Instruments, Guilin University of Electronic Technology, Guilin 541004, PR China
| | - Chen-Yang Han
- School of Life and Environmental Sciences, Guangxi Human Physiological Information Non Invasive Detection Engineering Technology Research Center, Guangxi Colleges and Universities Key Laboratory of Biomedical Sensors and Intelligent Instruments, Guilin University of Electronic Technology, Guilin 541004, PR China
| | - Guo-Cheng Han
- School of Life and Environmental Sciences, Guangxi Human Physiological Information Non Invasive Detection Engineering Technology Research Center, Guangxi Colleges and Universities Key Laboratory of Biomedical Sensors and Intelligent Instruments, Guilin University of Electronic Technology, Guilin 541004, PR China.
| | - Xiao-Zhen Feng
- School of Life and Environmental Sciences, Guangxi Human Physiological Information Non Invasive Detection Engineering Technology Research Center, Guangxi Colleges and Universities Key Laboratory of Biomedical Sensors and Intelligent Instruments, Guilin University of Electronic Technology, Guilin 541004, PR China.
| | - Heinz-Bernhard Kraatz
- Department of Physical and Environmental Sciences, University of Toronto Scarborough, Toronto, Ontario M1C 1A4, Canada.
| |
Collapse
|
10
|
Jia Y, Zhu M, Zhang X, Jia D, Tian T, Shi B, Ru Z, Ma H, Wan Y, Wei Q. Nanobody-Based Microfluidic Immunosensor Chip Using Tetraphenylethylene-Derived Covalent Organic Frameworks as Aggregation-Induced Electrochemiluminescence Emitters for the Detection of Thymic Stromal Lymphopoietin. Anal Chem 2024; 96:10116-10120. [PMID: 38858219 DOI: 10.1021/acs.analchem.4c02347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2024]
Abstract
In this letter, a sensitive microfluidic immunosensor chip was developed using tetrakis(4-aminophenyl)ethene (TPE)-derived covalent organic frameworks (T-COF) as aggregation-induced electrochemiluminescence (AIECL) emitters and nanobodies as efficient immune recognition units for the detection of thymic stromal lymphopoietin (TSLP), a novel target of asthma. The internal rotation and vibration of TPE molecules were constrained within the framework structure, forcing nonradiative relaxation to convert into pronounced radiative transitions. A camel-derived nanobody exhibited superior specificity, higher residual activity and epitope recognition postcuring compared to monoclonal antibodies. Benefiting from the affinity between silver ions (Ag+) and cytosine (C), a double-stranded DNA (dsDNA) embedded with Ag+ was modified onto the surface of TSLP. A positive correlation was obtained between the TSLP concentration (1.00 pg/mL to 4.00 ng/mL) and ECL intensity, as Ag+ was confirmed to be an excellent accelerator of the generation of free radical species. We propose that utilizing COF to constrain luminescent molecules and trigger the AIECL phenomenon is another promising method for preparing signal tags to detect low-abundance disease-related markers.
Collapse
Affiliation(s)
- Yue Jia
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, Collaborative Innovation Center for Green Chemical Manufacturing and Accurate Detection, University of Jinan, Jinan 250022, P. R. China
| | - Min Zhu
- Shanghai Novamab Biopharmaceuticals Co., Ltd., Shanghai 201318, China
| | - Xiaoyue Zhang
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, Collaborative Innovation Center for Green Chemical Manufacturing and Accurate Detection, University of Jinan, Jinan 250022, P. R. China
| | - Dehao Jia
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, Collaborative Innovation Center for Green Chemical Manufacturing and Accurate Detection, University of Jinan, Jinan 250022, P. R. China
| | - Tian Tian
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, Collaborative Innovation Center for Green Chemical Manufacturing and Accurate Detection, University of Jinan, Jinan 250022, P. R. China
| | - Binnan Shi
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, Collaborative Innovation Center for Green Chemical Manufacturing and Accurate Detection, University of Jinan, Jinan 250022, P. R. China
| | - Zhuangzhuang Ru
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, Collaborative Innovation Center for Green Chemical Manufacturing and Accurate Detection, University of Jinan, Jinan 250022, P. R. China
| | - Hongmin Ma
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, Collaborative Innovation Center for Green Chemical Manufacturing and Accurate Detection, University of Jinan, Jinan 250022, P. R. China
| | - Yakun Wan
- Shanghai Novamab Biopharmaceuticals Co., Ltd., Shanghai 201318, China
| | - Qin Wei
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, Collaborative Innovation Center for Green Chemical Manufacturing and Accurate Detection, University of Jinan, Jinan 250022, P. R. China
- Department of Chemistry, Sungkyunkwan University, Suwon 16419, Republic of Korea
| |
Collapse
|
11
|
Gao W, Bai Y, Wang X, Fu H, Zhao P, Zhu P, Yu J. Self-standing perylene diimide covalent organic framework membranes for trace TMA sensing at room temperature. J Colloid Interface Sci 2024; 663:262-269. [PMID: 38401446 DOI: 10.1016/j.jcis.2024.02.145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 02/14/2024] [Accepted: 02/19/2024] [Indexed: 02/26/2024]
Abstract
The unprecedented demand for highly selective, real-time monitoring and low-power gas sensors used in food quality control has been driven by the increasing popularity of the Internet of Things (IoT). Herein, the self-standing perylene diimide based covalent organic framework membranes (COFMPDI-THSTZ) were prepared via liquid-liquid interfacial synthesis method. By incorporating the perylene diimide monomer into the COFM through molecular engineering, COFMPDI-THSTZ based sensor demonstrated an outstanding trimethylamine (TMA)-sensing performance at room temperature. Benefited from the TMA-accessible self-standing membrane morphology, π-electron delocalization effect, and extensive surface area with continuous nanochannels, the specific and highly sensitive TMA measurement has been achieved within the range of 0.03-400 ppm, with an exceptional theoretical detection limit as low as 10 ppb. Moreover, the primary internal mechanism of COFMPDI-THSTZ for this efficient TMA detection was investigated through in-situ FT-IR spectra, thereby directly elucidating that the chemisorption interaction of oxygen modulated the depletion layers on sensing material surface, resulting in alterations in sensor resistance upon exposure to the target gas. For practical usage, COFMPDI-THSTZ based sensor exhibited exceptional real-time in-situ sensing capabilities, further confirmed their potential for application in dynamic prediction evaluation of marine fish products and quality monitoring in IoT.
Collapse
Affiliation(s)
- Wenqing Gao
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, PR China
| | - Yujiao Bai
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, PR China
| | - Xinlei Wang
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, PR China
| | - Hongyu Fu
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, PR China
| | - Peini Zhao
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, PR China
| | - Peihua Zhu
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, PR China.
| | - Jinghua Yu
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, PR China.
| |
Collapse
|
12
|
Yu Z, Tang J, Zeng C, Gao Y, Wu D, Zeng Y, Liu X, Tang D. Shaping the Future of the Neurotransmitter Sensor: Tailored CdS Nanostructures for State-of-the-Art Self-Powered Photoelectrochemical Devices. ACS Sens 2024; 9:2684-2694. [PMID: 38693685 DOI: 10.1021/acssensors.4c00621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2024]
Abstract
Semiconductor-based photoelectrochemical (PEC) test protocols offer a viable solution for developing efficient individual health monitoring by converting light and chemical energy into electrical signals. However, slow reaction kinetics and electron-hole complexation at the interface limit their practical application. Here, we reported a triple-engineered CdS nanohierarchical structures (CdS NHs) modification scheme including morphology, defective states, and heterogeneous structure to achieve precise monitoring of the neurotransmitter dopamine (DA) in plasma and noninvasive body fluids. By precisely manipulating the Cd-S precursor, we achieved precise control over ternary CdS NHs and obtained well-defined layered self-assembled CdS NHs through a surface carbon treatment. The integration of defect states and the thin carbon layer effectively established carrier directional transfer pathways, thereby enhancing interface reaction sites and improving the conversion efficiency. The CdS NHs microelectrode fabricated demonstrated a remarkable negative response toward DA, thereby enabling the development of a miniature self-powered PEC device for precise quantification in human saliva. Additionally, the utilization of density functional theory calculations elucidated the structural characteristics of DA and the defect state of CdS, thus establishing crucial theoretical groundwork for optimizing the polymerization process of DA. The present study offers a potential engineering approach for developing high energy conversion efficiency PEC semiconductors as well as proposing a novel concept for designing sensitive testing strategies.
Collapse
Affiliation(s)
- Zhichao Yu
- Key Laboratory of Analytical Science for Food Safety and Biology (MOE & Fujian Province), Department of Chemistry, Fuzhou University, Fuzhou 350108, People's Republic of China
| | - Juan Tang
- National Engineering Research Center for Carbohydrate Synthesis, Key Lab of Fluorine and Silicon for Energy Materials and Chemistry of Ministry of Education, Key Laboratory for Green Chemistry of Jiangxi Province, Department of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang 330022, People's Republic of China
| | - Chenyi Zeng
- Key Laboratory of Analytical Science for Food Safety and Biology (MOE & Fujian Province), Department of Chemistry, Fuzhou University, Fuzhou 350108, People's Republic of China
| | - Yuan Gao
- Key Laboratory of Analytical Science for Food Safety and Biology (MOE & Fujian Province), Department of Chemistry, Fuzhou University, Fuzhou 350108, People's Republic of China
| | - Di Wu
- Key Laboratory of Analytical Science for Food Safety and Biology (MOE & Fujian Province), Department of Chemistry, Fuzhou University, Fuzhou 350108, People's Republic of China
| | - Yongyi Zeng
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou 350025, People's Republic of China
| | - Xiaolong Liu
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou 350025, People's Republic of China
| | - Dianping Tang
- Key Laboratory of Analytical Science for Food Safety and Biology (MOE & Fujian Province), Department of Chemistry, Fuzhou University, Fuzhou 350108, People's Republic of China
| |
Collapse
|
13
|
Mansouri S. Recent Advancements in Molecularly Imprinted Polymers Based Aptasensors: Critical Role of Nanomaterials for the Efficient Food Safety Analysis. Crit Rev Anal Chem 2024:1-16. [PMID: 38754013 DOI: 10.1080/10408347.2024.2351826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/18/2024]
Abstract
Biosensors are being studied extensively for their ability to detect and analyze molecules. There has been a growing interest in combining molecular imprinted polymers (MIPs) and aptamers to create hybrid recognition elements that offer advantages such as target binding, sensitivity, selectivity, and stability. These hybrid elements have been successfully used in identifying a wide range of analytes in food samples. However, the application of MIP-based aptasensors in different sensing approaches is still challenging due to the low conductivity of MIPs-aptamers and limited adsorption capacity of MIPs. To address these limitations, researchers have been exploring the use of nanomaterials (NMs) to design efficient multiple-recognition systems that exploit the synergies between aptamers and MIPs. These hybrid systems can enhance the sensitivity and selectivity of MIP-based aptasensors in quantifying analytical samples. This review provides a comprehensive overview of recent advancements in the field of MIP-based aptasensors. It also introduces technologies that combine MIPs and aptamers to achieve higher sensitivity and selectivity in quantifying analytical samples. The review also highlights potential future trends and practical approaches that can be employed to address the limitations of MIP-based aptasensors, including the use of new NMs, the development of new fabrication techniques, and the integration of MIP-based aptasensors with other analytical tools.
Collapse
Affiliation(s)
- Sofiene Mansouri
- Department of Biomedical Technology, College of Applied Medical Sciences, Al-Kharj, Prince Sattam bin Abdulaziz University, Al-Kharj, Saudi Arabiain
- Laboratory of Biophysics and Medical Technologies, University of Tunis El Manar, Higher Institute of Medical Technologies of Tunis, Tunis, Tunisia
| |
Collapse
|
14
|
Er OF, Kivrak H, Alpaslan D, Dudu TE. One-Step Electrochemical Sensing of CA-125 Using Onion Oil-Based Novel Organohydrogels as the Matrices. ACS OMEGA 2024; 9:17919-17930. [PMID: 38680375 PMCID: PMC11044171 DOI: 10.1021/acsomega.3c09149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 03/06/2024] [Accepted: 03/20/2024] [Indexed: 05/01/2024]
Abstract
To reduce the high mortality rates caused by ovarian cancer, creating high-sensitivity, quick, basic, and inexpensive methods for following cancer antigen 125 (CA-125) levels in blood tests is of extraordinary significance. CA-125 is known as the exclusive glycoprotein employed in clinical examinations to monitor and diagnose ovarian cancer and detect its relapses as a tumor marker. Elevated concentrations of this antigen are linked to the occurrence of ovarian cancer. Herein, we designed organohydrogels (ONOHs) for identifying the level of CA-125 antigen at fast and high sensitivity with electrochemical strategies in a serum medium. The ONOH structures are synthesized with glycerol, agar, and glutaraldehyde and at distinct ratios of onion oil, and then, the ONOHs are characterized with Fourier transform infrared spectroscopy (FTIR) and scanning electron microscope (SEM). Electrochemical measurements are performed by cyclic voltammetry (CV), differential pulse voltammetry (DPV), and electrochemical impedance spectroscopy (EIS) in the absence and presence of CA-125 on the designed ONOHs. For the prepared ONOH-3 electrode, two distinct linear ranges are determined as 0.41-8.3 and 8.3-249.0 U/mL. The limit of quantitation and limit of detection values are calculated as 2.415 and 0.805 μU/mL, respectively, (S/N = 3). These results prove that the developed electrode material has high sensitivity, stability, and selectivity for the detection of the CA-125 antigen. In addition, this study can be reasonable for the practical detection of CA125 in serum, permitting early cancer diagnostics and convenient treatment.
Collapse
Affiliation(s)
- Omer Faruk Er
- Rare
Earth Elements Research Institute, Turkish Energy Nuclear and Mineral
Research Agency, Ankara 06980, Turkey
- Department
of Chemical Engineering, Faculty of Engineering, Van Yuzuncu Yil University, Van 65000, Turkey
| | - Hilal Kivrak
- Department
of Chemical Engineering, Faculty of Engineering and Architectural
Sciences, Eskisehir Osmangazi University, Eskisehir 26040, Turkey
- Translational
Medicine Research and Clinical Center, Eskisehir
Osmangazi University, Eskisehir 26040, Turkey
| | - Duygu Alpaslan
- Department
of Chemical Engineering, Faculty of Engineering, Van Yuzuncu Yil University, Van 65000, Turkey
| | - Tuba Ersen Dudu
- Department
of Chemical Engineering, Faculty of Engineering, Van Yuzuncu Yil University, Van 65000, Turkey
| |
Collapse
|
15
|
Lou F, Wang S, Han B, Li Q, Tang D. Portable photoelectrochemical immunoassay with micro-electro-mechanical-system for alpha-fetoprotein in hepatocellular carcinoma. Anal Chim Acta 2024; 1298:342411. [PMID: 38462335 DOI: 10.1016/j.aca.2024.342411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 02/16/2024] [Accepted: 02/23/2024] [Indexed: 03/12/2024]
Abstract
Early detection of cancer has a profound impact on patient survival and treatment outcomes considering high treatment success rates and reduced treatment complexity. Here, we developed a portable photoelectrochemical (PEC) immune platform for sensitive testing of alpha-fetoprotein (AFP) based on Pt nanocluster (Pt NCs) loaded defective-state g-C3N4 photon-electron transducers. The broad forbidden band structure of g-C3N4 was optimized by the nitrogen doping strategy and additional homogeneous porous structure was introduced to further enhance the photon utilization. In addition, the in-situ growth of Pt NCs provided efficient electron transfer catalytic sites for sacrificial agents, which were used to further improve the sensitivity of the sensor. Efficient photoelectric conversion under a hand-held flashlight was determined by the geometry of the transducer and the energy band design, and the portable design of the PEC sensor was realized. The developed sensing platform exhibited a wide linear response range (0.1-50 ng mL-1) and low limit of detection (0.043 ng mL-1) for AFP under optimum conditions. This work provides a new idea for designing portable PEC biosensing platforms to meet the current mainstream POC testing needs.
Collapse
Affiliation(s)
- Fangming Lou
- School of Chemistry and Environmental Engineering, Hubei Minzu University, Enshi, 445000, Hubei, PR China; Hubei Provincial Key Laboratory of Rheumatic Disease Occurrence and Intervention, Enshi, 445000, Hubei, PR China.
| | - Shaojie Wang
- School of Chemistry and Environmental Engineering, Hubei Minzu University, Enshi, 445000, Hubei, PR China
| | - Bo Han
- School of Chemistry and Environmental Engineering, Hubei Minzu University, Enshi, 445000, Hubei, PR China
| | - Qunfang Li
- School of Chemistry and Environmental Engineering, Hubei Minzu University, Enshi, 445000, Hubei, PR China
| | - Dianping Tang
- Key Laboratory for Analytical Science of Food Safety and Biology (MOE & Fujian Province), Department of Chemistry, Fuzhou University, Fuzhou, 350108, PR China
| |
Collapse
|
16
|
Wang Y, Yang M, Wang X, Ge S, Yu J. Construction of built-in correction photoelectrochemical sensing platform for diagnosis of Alzheimer's disease. Biosens Bioelectron 2024; 249:116020. [PMID: 38219467 DOI: 10.1016/j.bios.2024.116020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 01/02/2024] [Accepted: 01/08/2024] [Indexed: 01/16/2024]
Abstract
The occurrence of Alzheimer's disease (AD) is strongly associated with the progressive aggregation of a 42-amino-acid fragment derived from the amyloid-β precursor protein (Aβ1-42). Therefore, it is crucial to establish a versatile platform that can effectively detect Aβ1-42 to aid in the early-stage preclinical diagnosis of AD. Herein, we introduce a specialized split-type analytical platform that enables sensitive and accurate monitoring of Aβ1-42 based on a self-corrected photoelectrochemical (PEC) sensing system. To realize this design, gelatinized Ti3C2@Bi2WO6 Schottky heterojunctions were prepared and served as photoelectrodes for tackling the photoinduced charge carriers. Functionalized CaCO3@CuO2 nanocomposites were used as signal converters to detect Aβ1-42 and amplify the signal further. Benefiting from the glucose oxidation induced acid microenvironment and H2O2 output, the nanocomposites are able to rapidly decompose, producing Ca2+ and Fenton-like catalyst Cu2+. The Cu2+-driven Fenton-like reaction generated ·OH, which accelerated the 3,3',5,5'-tetramethylbenzidine (TMB) oxidation. Additionally, Ca2+ was cross-linked with alginate inducing gelation on the surface of Ti3C2@Bi2WO6 Schottky heterojunctions, influencing mass transfer and light absorption. Eventually results in the shift of photocurrent, allowing for precise quantification with a detection limit of 0.06 pg mL-1. The combination of colorimetric variation and the photoelectric effect provide a more accurate and reliable result. This research opens up new possibilities for constructing PEC platforms and beyond.
Collapse
Affiliation(s)
- Yanhu Wang
- Key Laboratory for Applied Technology of Sophisticated Analytical Instruments of Shandong Province, Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250014, PR China; School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, PR China.
| | - Mengchun Yang
- Key Laboratory for Applied Technology of Sophisticated Analytical Instruments of Shandong Province, Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250014, PR China
| | - Xiao Wang
- Key Laboratory for Applied Technology of Sophisticated Analytical Instruments of Shandong Province, Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250014, PR China
| | - Shenguang Ge
- Institute for Advanced Interdisciplinary Research, University of Jinan, Jinan, 250022, PR China
| | - Jinghua Yu
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, PR China.
| |
Collapse
|
17
|
Li Y, Jia B, Song P, Long N, Shi L, Li P, Wang J, Zhou L, Kong W. Precision-SELEX aptamer screening for the colorimetric and fluorescent dual-readout aptasensing of AFB 1 in food. Food Chem 2024; 436:137661. [PMID: 37826895 DOI: 10.1016/j.foodchem.2023.137661] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Revised: 09/29/2023] [Accepted: 10/03/2023] [Indexed: 10/14/2023]
Abstract
As nucleic acid-based affinity elements, aptamers have attracted significant attention for a wide range of analytical applications. Although several aflatoxin B1 (AFB1) aptamers have been identified, they are unsuitable for overcoming the unavoidable cross-reactions from interferents in complex food matrices due to their poor binding affinities and specificities. Herein, a novel precision-systematic evolution of ligands by exponential enrichment (P-SELEX) strategy through introducing the counter (matrix without target AFB1) and positive (with AFB1) screening steps was implemented to accurately identify AFB1 aptamers. A DNA aptamer A-42-2 at a 24-nt length was selected finally, which possessed nanomolar-level affinity of 5.55 nM, high specificity to other interferents, and strong anti-cross-reactivity ability for matrix components. Then, an A-42-2 aptamer-based ultra-sensitive colorimetric and fluorescent dual-readout aptasensor was fabricated for AFB1 detection in three kinds of complex food samples rich in starch without cross-reactions. The aptasensor displayed outstanding detection capacity with a wide liner range of 0.25-30 nM (1.95-234.4 μg/kg), while the detection limit for colorimetric measurement as low as 0.22 nM (1.72 μg/kg) and 0.048 nM (0.20 μg/kg) for fluorescent determination. P-SELEX is ideal for screening and applying aptamers in complex food matrices, creating more opportunities for the efficient and cost-effective development of high-quality aptamers and aptasensors for other targets.
Collapse
Affiliation(s)
- Ying Li
- School of Traditional Chinese Medicine, Capital Medical University, Beijing 100069, China; Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, China
| | - Boyu Jia
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, China
| | - Pengyue Song
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, China
| | - Nan Long
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, China
| | - Linchun Shi
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, China
| | - Peng Li
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau 999078, China
| | - Jiabo Wang
- School of Traditional Chinese Medicine, Capital Medical University, Beijing 100069, China
| | - Lidong Zhou
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, China
| | - Weijun Kong
- School of Traditional Chinese Medicine, Capital Medical University, Beijing 100069, China.
| |
Collapse
|
18
|
Mao A, Zhang Y, Xu Q, Li J, Li H. Superoxide dismutase-like cerium dioxide hollow sphere-based highly specific photoelectrochemical biosensing for ascorbic acid. Talanta 2024; 269:125472. [PMID: 38039673 DOI: 10.1016/j.talanta.2023.125472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 11/10/2023] [Accepted: 11/22/2023] [Indexed: 12/03/2023]
Abstract
Conventional N-type semiconductor-based photoelectrochemical (PEC) sensors are difficult to achieve high selectivity for ascorbic acid (AA) detection in real samples because co-existing reducing agents act as hole sacrificial agents like AA to promote the increase of photocurrent. Cerium dioxide (CeO2) is a superoxide dismutase-like nanozyme with the reversible Ce3+/Ce4+ redox pair as well as one of alternative N-type semiconductors. To address the problem of PEC detection selectivity of AA, bifunctional CeO2 is a good choice. Herein, a novel and rational PEC biosensor for AA is constructed based on CeO2 hollow spheres as both AA superoxide dismutase-like nanozyme and the photoelectric beacon, which enable the PEC approach with high selectivity. In this protocol, AA can selectively induce a decrease in the CeO2-based photoanode current, which is significantly different from the conventional N-type semiconductor-based PEC sensor, this unique working mechanism is also proposed. The results show that the CeO2-based photocurrent response decreases linearly with AA concentrations in the ranges of 1 μM-600 μM and 600 μM-3000 μM, with a limit of detection of 0.33 μM. Moreover, the fabricated PEC biosensor has advantages of cost-effectiveness, replicability, and stability. Additionally, the sensor is competent for AA determination in practical settings and has achieved satisfactory results.
Collapse
Affiliation(s)
- Airong Mao
- School of Chemistry and Chemical Engineering, Yancheng Institute of Technology, Yancheng, 224051, PR China
| | - Yanxin Zhang
- School of Chemistry and Chemical Engineering, Yancheng Institute of Technology, Yancheng, 224051, PR China
| | - Qin Xu
- College of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, 225002, PR China
| | - Jing Li
- School of Chemistry and Chemical Engineering, Yancheng Institute of Technology, Yancheng, 224051, PR China.
| | - Hongbo Li
- School of Chemistry and Chemical Engineering, Yancheng Institute of Technology, Yancheng, 224051, PR China.
| |
Collapse
|
19
|
Guo H, Wang X, Wang S, Ma H, Liu J. A signal "switch-on" photoelectrochemical sensor based on a 3D-FM/BiOI heterostructure for the sensitive detection of l-ascorbic acid. RSC Adv 2024; 14:4556-4567. [PMID: 38312719 PMCID: PMC10836330 DOI: 10.1039/d3ra08288a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 01/17/2024] [Indexed: 02/06/2024] Open
Abstract
A highly efficient 3D flower MoS2 (3D-FM)-based heterostructure photocatalyst (3D-FM/BiOI) was successfully obtained via a simple hydrothermal synthesis strategy. 3D-FM/BiOI showed prominent photoelectrochemical performance, distinguished stability and good selectivity. The introduction of 3D-FM, by promoting the photoelectric property attributed to it, facilitated the separation of photogenerated electron-hole pairs. Since the redox process of l-ascorbic acid (l-AA) resulted in an increasing photocurrent of 3D-FM/BiOI, a signal "switch-on" photoelectrochemical sensor (PECS) was designed to sensitively determine l-AA for the first time. Under optimized conditions, the 3D-FM/BiOI PECS worked over a wide range from 1 μM to 0.8 mM with a low detection limit of 0.05 μM (S/N = 3). The PECS was successfully exploited for l-AA sensing in human urine with excellent accuracy and applicability, demonstrating its practical precision and superb serviceability. Furthermore, the 3D-FM/BiOI PECS exhibited satisfactory selectivity and stability, providing a great potential platform for the construction of an l-AA sensor in various practical samples and complicated environments.
Collapse
Affiliation(s)
- Huijun Guo
- Center of Characterization and Analysis, Jinlin Institute of Chemical Technology Jilin 132000 China
| | - Xin Wang
- Center of Characterization and Analysis, Jinlin Institute of Chemical Technology Jilin 132000 China
| | - Shihao Wang
- Center of Characterization and Analysis, Jinlin Institute of Chemical Technology Jilin 132000 China
| | - Hanyu Ma
- Center of Characterization and Analysis, Jinlin Institute of Chemical Technology Jilin 132000 China
| | - Jianzhi Liu
- Center of Characterization and Analysis, Jinlin Institute of Chemical Technology Jilin 132000 China
| |
Collapse
|
20
|
Zeng X, Gao Q, Song P, Zhang X, Xie J, Dong Q, Qi J, Xing XS, Du J. Integration of a Cu 2O/ZnO heterojunction and Ag@SiO 2 into a photoanode for enhanced solar water oxidation. RSC Adv 2024; 14:4568-4574. [PMID: 38312728 PMCID: PMC10836412 DOI: 10.1039/d3ra07738a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 01/25/2024] [Indexed: 02/06/2024] Open
Abstract
Photoelectrochemical water splitting (PEC-WS) has attracted considerable attention owing to its low energy consumption and sustainable nature. Constructing semiconductor heterojunctions with controllable band structure can effectively facilitate photogenerated carrier separation. In this study, a FTO/ZnO/Cu2O/Ag@SiO2 photoanode with a Cu2O/ZnO p-n heterojunction and Ag@SiO2 nanoparticles is constructed to investigate its PEC-WS performance. Compared with a bare ZnO photoanode, the photocurrent density of the FTO/ZnO/Cu2O/Ag@SiO2 photoanode (0.77 mA cm-2) at 1.23 VRHE exhibits an increment of 88%, and a cathodic shift of 0.1 V for the on-set potential (0.4 VRHE). Detailed photoelectrochemical analyses reveal that the Cu2O/ZnO p-n heterojunction formed between Cu2O and ZnO can effectively promote photogenerated carrier separation. The surface plasmonic effect of the Ag@SiO2 nanoparticles can further promote the photogenerated carrier transfer efficiency, which synergistically improves the PEC-WS performance.
Collapse
Affiliation(s)
- Xuyang Zeng
- College of Chemistry, Zhengzhou University Zhengzhou 450000 P. R. China
- Henan Key Laboratory of New Optoelectronic Functional Materials, College of Chemistry and Chemical Engineering, Anyang Normal University Anyang 455000 P. R. China
| | - Qianyu Gao
- College of Chemistry, Zhengzhou University Zhengzhou 450000 P. R. China
- Henan Key Laboratory of New Optoelectronic Functional Materials, College of Chemistry and Chemical Engineering, Anyang Normal University Anyang 455000 P. R. China
| | - Peilin Song
- Henan Key Laboratory of New Optoelectronic Functional Materials, College of Chemistry and Chemical Engineering, Anyang Normal University Anyang 455000 P. R. China
| | - Xinru Zhang
- Henan Key Laboratory of New Optoelectronic Functional Materials, College of Chemistry and Chemical Engineering, Anyang Normal University Anyang 455000 P. R. China
| | - Jiaying Xie
- Henan Key Laboratory of New Optoelectronic Functional Materials, College of Chemistry and Chemical Engineering, Anyang Normal University Anyang 455000 P. R. China
| | - Qingwen Dong
- Henan Key Laboratory of New Optoelectronic Functional Materials, College of Chemistry and Chemical Engineering, Anyang Normal University Anyang 455000 P. R. China
| | - Junjie Qi
- Henan Key Laboratory of New Optoelectronic Functional Materials, College of Chemistry and Chemical Engineering, Anyang Normal University Anyang 455000 P. R. China
| | - Xiu-Shuang Xing
- Henan Key Laboratory of New Optoelectronic Functional Materials, College of Chemistry and Chemical Engineering, Anyang Normal University Anyang 455000 P. R. China
| | - Jimin Du
- College of Chemistry, Zhengzhou University Zhengzhou 450000 P. R. China
- Henan Key Laboratory of New Optoelectronic Functional Materials, College of Chemistry and Chemical Engineering, Anyang Normal University Anyang 455000 P. R. China
| |
Collapse
|
21
|
Qiu Z, Lei Y, Lin X, Zhu J, Zeng R, Sa R, Tang D, Chen Q, Chen Y. A laser-induced zinc oxide/graphene photoelectrode for a photocurrent-polarity-switching photoelectrochemical biosensor with bipedal DNA walker amplification. J Mater Chem B 2024; 12:984-990. [PMID: 38193153 DOI: 10.1039/d3tb02742b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2024]
Abstract
A photocurrent-polarity-switching photoelectrochemical (PEC) biosensor was developed for the ultrasensitive detection of tobramycin (TOB) through bipedal DNA walker amplification with hemin-induced photocurrent-polarity-switching using a laser-induced zinc oxide/graphene (ZnO/LIG) photoelectrode. Specifically, the ZnO/LIG photoelectrode was synthesized in situ by a laser direct writing (LDW) technique. In the presence of TOB, it reacted with HP1 and HP2 and the DNA walker response was activated to form a stable hemin/G-quadruplex. Furthermore, hemin induced a polarity shift in the photocurrent signal. The developed analytical platform exhibited excellent photoelectron transport performance of ZnO/LIG, the signal amplification effect of the DNA walker strategy, and the photocurrent-polarity-switching ability of hemin. Therefore, it demonstrated satisfying photocurrent responses to the target TOB within the working range of 20 nM-1.0 μM at a low detection limit of 5.43 nM. The PEC platform exhibited good stability, reproducibility, sufficient sensitivity and high selectivity for complex experimental samples. Moreover, the photocurrent-polarity-switching PEC biosensor improved the anti-interference ability and avoided false positives or negatives.
Collapse
Affiliation(s)
- Zhenli Qiu
- Fujian Provincial University Engineering Research Center of Green Materials and Chemical Engineering, College of Materials and Chemical Engineering, Minjiang University, Fuzhou 350108, P. R. China.
- College of Environment & Safety Engineering, Fuzhou University, Fuzhou, 350108, P. R. China
| | - Yufen Lei
- Fujian Provincial University Engineering Research Center of Green Materials and Chemical Engineering, College of Materials and Chemical Engineering, Minjiang University, Fuzhou 350108, P. R. China.
- College of Environment & Safety Engineering, Fuzhou University, Fuzhou, 350108, P. R. China
| | - Xintong Lin
- Fujian Provincial University Engineering Research Center of Green Materials and Chemical Engineering, College of Materials and Chemical Engineering, Minjiang University, Fuzhou 350108, P. R. China.
- College of Environment & Safety Engineering, Fuzhou University, Fuzhou, 350108, P. R. China
| | - Jinman Zhu
- Fujian Provincial University Engineering Research Center of Green Materials and Chemical Engineering, College of Materials and Chemical Engineering, Minjiang University, Fuzhou 350108, P. R. China.
- College of Environment & Safety Engineering, Fuzhou University, Fuzhou, 350108, P. R. China
| | - Ruijin Zeng
- Key Laboratory of Analysis and Detection for Food Safety (MOE & Fujian Province), State Key Laboratory of Photocatalysis on Energy and Environment, Department of Chemistry, Fuzhou University, Fuzhou 350108, China
| | - Rongjian Sa
- Fujian Provincial University Engineering Research Center of Green Materials and Chemical Engineering, College of Materials and Chemical Engineering, Minjiang University, Fuzhou 350108, P. R. China.
| | - Dianping Tang
- Key Laboratory of Analysis and Detection for Food Safety (MOE & Fujian Province), State Key Laboratory of Photocatalysis on Energy and Environment, Department of Chemistry, Fuzhou University, Fuzhou 350108, China
| | - Qiang Chen
- Fujian Provincial University Engineering Research Center of Green Materials and Chemical Engineering, College of Materials and Chemical Engineering, Minjiang University, Fuzhou 350108, P. R. China.
| | - Yiting Chen
- Fujian Provincial University Engineering Research Center of Green Materials and Chemical Engineering, College of Materials and Chemical Engineering, Minjiang University, Fuzhou 350108, P. R. China.
- College of Environment & Safety Engineering, Fuzhou University, Fuzhou, 350108, P. R. China
| |
Collapse
|
22
|
Liu S, Wu J, Li S, Wang L. DNA Polymerase-Steered Self-Propelled and Self-Enhanced DNA Walker for Rapid and Distinctly Amplified Electrochemical Sensing. Anal Chem 2024; 96:828-838. [PMID: 38158364 DOI: 10.1021/acs.analchem.3c04340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2024]
Abstract
The development of a simple, rapid, easy-to-operate, and ultrasensitive DNA walker-based sensing system is challenging but would be very intriguing for the enormous applications in biological analysis and disease monitoring. Herein, a new self-propelled and self-enhanced DNA walking strategy was developed on the basis of a simple DNA polymerase-steered conversion from a typical alternate DNA assembly process. The sensing platform was fabricated easily by immobilizing only one hairpin probe (H1) and the sensing process was based on a simple one-step mixing with another hairpin-like DNA probe (H2) and DNA polymerase. The DNA polymerization could achieve target recycling and successive DNA walking steps. Interestingly, along with each DNA walking step, the new DNA walker sequence could be autonomously accumulated for a self-enhanced DNA walking effect. This provided a multilevel signal amplification ability for the ultrasensitive detection of the target with a low detection limit of 0.18 fM. Moreover, it could greatly reduce the reaction time with the sensing process finished within 1 h. The detection selectivity and the applicative potential in a complicated biological matrix were also demonstrated. Furthermore, the flexible control of sensing modes (self-enhanced DNA walking or the alternate DNA assembly) by using DNA polymerase or not offered a powerful means for sensing performance modulation. It thus opens a new avenue toward the development of a DNA walker-based sensing platform with both rapid and ultrasensitive features and might hold a huge potential for point-of-care diagnostic applications.
Collapse
Affiliation(s)
- Shufeng Liu
- College of Chemistry and Chemical Engineering, Yantai University, 30 Qingquan Road, Yantai 264005, China
| | - Jialiang Wu
- College of Chemistry and Chemical Engineering, Yantai University, 30 Qingquan Road, Yantai 264005, China
| | - Shuang Li
- College of Chemistry and Chemical Engineering, Yantai University, 30 Qingquan Road, Yantai 264005, China
| | - Li Wang
- College of Chemistry and Chemical Engineering, Yantai University, 30 Qingquan Road, Yantai 264005, China
| |
Collapse
|
23
|
Wang X, Yuan W, Kuang Y, Chen X, Wang X, Zhang X. Ratiometric electrochemical immunosensor for simultaneous detection of C-myc and Bcl-2 based on multi-role alloy composites. Mikrochim Acta 2024; 191:85. [PMID: 38195845 DOI: 10.1007/s00604-023-06161-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 12/17/2023] [Indexed: 01/11/2024]
Abstract
A ratiometric electrochemical immunosensor is proposed for simultaneous detection of cellular-myelocytomatosis oncoprotein (C-myc) and B-cell lymphoma 2 (Bcl-2) via the potential-resolved strategy. It relied on multi-role co-loaded alloy composites (CLACs) and poly(3,4-ethylenedioxythiophene) (PEDOT)-graphene oxide (GO)-multiwalled carbon nanotubes (MWCNTs) (PGM) modified electrodes. CLACs with good catalytic and enzyme-like properties were synthesized in one step by loading tetramethylbenzidine (TMB) or methylene blue (MB) into Pt-Pd alloy and used as label materials. After immunological reactions, CLACs showed distinguishable dual differential pulse voltammetry signals at - 0.26 V and 0.38 V, corresponding to C-myc and Bcl-2, and the PGM had an electrochemical signal at 1.2 V, which could be used as a reference signal to construct a ratiometric sensor. CLACs had a satisfactory synergistic effect with the PGM, and eventually achieved quadruple signal amplification. Thus, benefiting from multiple magnification and ratiometric self-calibration functions, sensitive detections of C-myc and Bcl-2 were achieved, with detection limits as low as 0.5 and 2.5 pg mL-1, respectively. Additionally, when the designed method was applied to blood samples from lymphoma patients, results consistent with the ELISA kit were obtained. This will open avenues for constructing multiple protein detection sensors.
Collapse
Affiliation(s)
- Xiaoying Wang
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, 210009, China.
| | - Wei Yuan
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, 210009, China
| | - Yijing Kuang
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, 210009, China
| | - Xuyuan Chen
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, 210009, China
| | - Xiaoning Wang
- Department of Hematology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China
| | - Xiaoyu Zhang
- R&D Center, Nanjing Sanhome Pharmaceutical Co. Ltd., Nanjing, 211135, China
| |
Collapse
|
24
|
Dai H, Yin M, Zhang S, Wei J, Jiao T, Chen Q, Chen Q, Chen X, Oyama M, Chen X. A paper-based photoelectrochemical aptsensor using near-infrared light-responsive AgBiS 2 nanoflowers as probes for the detection of Staphylococcus aureus in pork. Talanta 2024; 266:125128. [PMID: 37639873 DOI: 10.1016/j.talanta.2023.125128] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 07/11/2023] [Accepted: 08/24/2023] [Indexed: 08/31/2023]
Abstract
Staphylococcus aureus is a gram-positive bacterium that can easily cause outbreaks of food-borne diseases. In this work, a signal-enhanced three-dimensional paper-based photoelectrochemical (PEC) aptsensor for the rapid and sensitive determination of S. aureus was developed. Specifically, gold nanoparticles (AuNPs) were electrodeposited on a paper-based working electrode to provide binding sites for a sulfhydryl-functionalized aptamer. Subsequently, S. aureus was captured with high specificity by a carboxyl-functionalized aptamer modified with amino-functionalized AgBiS2 nanoflowers (NH2-AgBiS2 NFs), which functionalized as PEC probes that generated strong photocurrent under irradiation with 980-nm light. By exploiting the "aptamer-target-aptamer" PEC sensing platform, the rapid and ultrasensitive detection of S. aureus was achieved. The sensor had a wide linear range of 20 to 2 × 107 CFU/mL and low limit of detection of 4 CFU/mL. Further, the applicability of the as-prepared aptsensor was successfully certified for the analysis of pork samples artificially contaminated with S. aureus.
Collapse
Affiliation(s)
- Hanjie Dai
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen, 361021, China.
| | - Mingming Yin
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen, 361021, China
| | - Shumin Zhang
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen, 361021, China
| | - Jie Wei
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen, 361021, China
| | - Tianhui Jiao
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen, 361021, China
| | - Qingmin Chen
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen, 361021, China
| | - Quansheng Chen
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen, 361021, China
| | - Xi Chen
- State Key Laboratory of Marine Environmental Science, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Munetaka Oyama
- Department of Material Chemistry, Graduate School of Engineering, Kyoto University, Nishikyo-ku, Kyoto, 615-8520, Japan
| | - Xiaomei Chen
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen, 361021, China.
| |
Collapse
|
25
|
Li Q, Guo YM, He XY, Li GL. Bifunctional Cu(II)-containing PDA-PEI copolymer dots: Demonstration of a dual-mode platform for colorimetric-fluorescent detection of glyphosate in the environment. Talanta 2023; 265:124865. [PMID: 37418960 DOI: 10.1016/j.talanta.2023.124865] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 06/09/2023] [Accepted: 06/20/2023] [Indexed: 07/09/2023]
Abstract
The reliable and accurate detection of glyphosate is urgently demanded because it is related to food and environmental safety. In this contribution, a PDA-PEI/Cu2+ complex that possesses peroxidase-mimetic activity and stimulus-responsive fluorescence was fabricated by coordinating Cu2+ with polydopamine-polyethyleneimine copolymer dots (PDA-PEI CPDs). With the introduction of Cu2+, the fluorescence intensity of PDA-PEI CPDs dropped sharply owing to the electron transfer effect. As a peroxidase-mimicking nanozyme, the PDA-PEI/Cu2+ complex owns catalytic capacity to oxidize the colorless 3,3',5,5'-tetramethylbenzidine (TMB) into blue oxTMB, leading a further fluorescence quenching by internal filtering effect by oxTMB. Once the glyphosate participated, the fluorescence signal of PDA-PEI CPDs is recovered significantly because of the formation of more stable Glyp-Cu2+ complexes, meanwhile the peroxidase-mimicking activity of PDA-PEI/Cu2+ complex could be strongly hindered. According to this principle, a novel and extremely convenient 'turn off' colorimetric and 'turn on' fluorescence sensing platform can be established for dual-mode detection of glyphosate. The favorable sensitivity and selectivity and were verified in the analysis of glyphosate in the environment through the marriage of dual-signal sensing platform. The detection limit of the dual-mode glyphosate sensing platform was 103.82 ng/mL for colorimetric assay and 16.87 ng/mL for fluorescent assay, respectively. Satisfactory recoveries in the range of 96.40%-104.66% were obtained, indicating the potential of this method for application in complicated real sample. Thereby, this strategy broadens the applications of polydopamine nanomaterials and holds a promising application in determination of pesticide residues.
Collapse
Affiliation(s)
- Qing Li
- College of Life Science and Chemistry, Hunan University of Technology, Zhuzhou, 412007, China; State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China.
| | - Yu-Meng Guo
- College of Life Science and Chemistry, Hunan University of Technology, Zhuzhou, 412007, China
| | - Xiang-Yi He
- College of Life Science and Chemistry, Hunan University of Technology, Zhuzhou, 412007, China
| | - Guang-Li Li
- College of Life Science and Chemistry, Hunan University of Technology, Zhuzhou, 412007, China.
| |
Collapse
|
26
|
Gu Y, Guo Y, Deng Y, Song H, Nian R, Liu W. Development of a highly sensitive immunoassay based on pentameric nanobodies for carcinoembryonic antigen detection. Anal Chim Acta 2023; 1279:341840. [PMID: 37827654 DOI: 10.1016/j.aca.2023.341840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 09/21/2023] [Indexed: 10/14/2023]
Abstract
BACKGROUND Carcinoembryonic antigen-related cell adhesion molecule 5 (CEACAM-5) is a well-characterized biomarker for the clinical diagnosis of various cancers. Nanobodies, considered the smallest antibody fragments with intact antigen-binding capacity, have gained significant attention in disease diagnosis and therapy. Due to their peculiar properties, nanobodies have become promising alternative diagnostic reagents in immunoassay. However, nanobodies-based immunoassay is still hindered by small molecular size and low antigen capture efficacy. Therefore, there is a pressing need to develop novel nanobody-based immunoassays with superior performance. RESULTS A novel pentameric nanobodies-based immunoassay (PNIA) was developed with enhanced sensitivity and specificity for CEACAM-5 detection. The binding epitopes of three anti-CEACAM-5 nanobodies (Nb1, Nb2 and Nb3) were analyzed. To enhance the capture and detection efficacy of CEACAM-5 in the immunoassay, we engineered bispecific nanobodies (Nb1-Nb2-rFc) as the capture antibody, and developed the FITC-labeled pentameric nanobodies (Nb3-VT1B) as the detection antibody. The binding affinities of Nb1-Nb2-rFc (1.746 × 10-10) and Nb3-VT1B (1.279 × 10-11) were significantly higher than those of unmodified nanobodies (Nb1-rFc, 4.063 × 10-9; Nb2-rFc, 2.136 × 10-8; Nb3, 3.357 × 10-9). The PNIA showed a linear range of 0.625-160 ng mL-1 with a correlation coefficient R2 of 0.9985, and a limit of detection of 0.52 ng mL-1, which was 24-fold lower than the immunoassay using monomeric nanobody. The PNIA was validated with the spiked human serum. The average recoveries ranged from 91.8% to 102% and the coefficients of variation ranged from 0.026% to 0.082%. SIGNIFICANCE AND NOVELTY The advantages of nanobodies offer a promising alternative to conventional antibodies in disease diagnosis. The novel PNIA demonstrated superior sensitivity and high specificity for the detection of CEACAM-5 antigen. This bispecific or multivalent nanobody design will provide some new insights into the design of immunoassays for clinical diagnosis.
Collapse
Affiliation(s)
- Yi Gu
- CAS Key Laboratory of Biobased Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, No. 189, Songling Road, Qingdao, 266101, China; University of Chinese Academy of Sciences, No 19(A), Yuquan Road, Beijing, 100049, China
| | - Yang Guo
- CAS Key Laboratory of Biobased Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, No. 189, Songling Road, Qingdao, 266101, China; University of Chinese Academy of Sciences, No 19(A), Yuquan Road, Beijing, 100049, China
| | - Yang Deng
- CAS Key Laboratory of Biobased Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, No. 189, Songling Road, Qingdao, 266101, China; University of Chinese Academy of Sciences, No 19(A), Yuquan Road, Beijing, 100049, China
| | - Haipeng Song
- Shenzhen Innova Nanobodi Co., Ltd, No. 1301 Guanguang Road, Shenzhen, 518110, China
| | - Rui Nian
- CAS Key Laboratory of Biobased Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, No. 189, Songling Road, Qingdao, 266101, China; Shandong Energy Institute, No. 189, Songling Road, Qingdao, 266101, China; Qingdao New Energy Shandong Laboratory, No. 189, Songling Road, Qingdao, 266101, China.
| | - Wenshuai Liu
- CAS Key Laboratory of Biobased Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, No. 189, Songling Road, Qingdao, 266101, China; Shandong Energy Institute, No. 189, Songling Road, Qingdao, 266101, China; Qingdao New Energy Shandong Laboratory, No. 189, Songling Road, Qingdao, 266101, China.
| |
Collapse
|
27
|
Liang H, Xiao Y, Chen R, Li Y, Zhou S, Liu J, Song Y, Wang L. Immunosensing of neuron-specific enolase based on signal amplification strategies via catalysis of ascorbic acid by heteropolysate COF. Biosens Bioelectron 2023; 238:115593. [PMID: 37597283 DOI: 10.1016/j.bios.2023.115593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Revised: 08/09/2023] [Accepted: 08/10/2023] [Indexed: 08/21/2023]
Abstract
In view of the importance of quantification of neuron-specific enolase (NSE), an electrochemical NSE immunosensor was developed. The sandwich voltammetric immunosensor utilized vinyl-functionalized crystalline covalent organic framework (COFTAPT-Dva) modified electrode to load lots of Ab1 via thiol-ene "click" reaction as matrix. A crystalline cationic EB-COF:Br was used to load Au nanoparticles (AuNPs) and H3[PMo12O40] (PMo12) as immunoprobe. The AuNPs with the size of about 30 nm were firstly grown on EB-COF:Br and then a large number of electroactive PMo12 were uniformly assembled on AuNPs/EB-COF:Br via ion exchanging reaction. The AuNPs not only facilitated the bonding of Ab2 based on Au-S bond, but also improved performance of Ab2/AuNPs/EB-COF:PMo12 immunoprobe. The sensitivity of sandwich electrochemical immunosensor could be primarily amplified based on loaded abundant PMo12. Secondary sensitivity amplification of immunosensor could be achieved by using PMo12 to catalyze ascorbic acid. The linear range of sandwich voltammetric immunosensor based on current change of differential pulse voltammetry is 500 ± 36 fg mL-1 - 100 ± 8 ng mL-1. Thanks to the dual sensitivity amplification strategy, the sensitivity is as high as 54.06 ± 3.2 μA cm-2/lg(cNSE/ng mL-1), and the detection limit is as low as 166 ± 10.8 fg mL-1. It proves that it is completely feasible to amplify sensitivity of sandwich voltammetric immunosensors using polyoxometalate-COF and its catalytic substrate.
Collapse
Affiliation(s)
- Huihui Liang
- College of Chemistry and Chemical Engineering, Jiangxi Normal University, 99 Ziyang Road, Nanchang, 330022, China; Key Laboratory of Evaluation of Traditional Chinese Medicine Efficacy (Prevention and Treatment of Brain Disease with Mental Disorders), Jiangxi University of Chinese Medicine, 1688 Meiling Road, Nanchang, 330004, China
| | - Yawen Xiao
- College of Chemistry and Chemical Engineering, Jiangxi Normal University, 99 Ziyang Road, Nanchang, 330022, China
| | - Rongfang Chen
- College of Chemistry and Chemical Engineering, Jiangxi Normal University, 99 Ziyang Road, Nanchang, 330022, China
| | - Yanyan Li
- College of Chemistry and Chemical Engineering, Jiangxi Normal University, 99 Ziyang Road, Nanchang, 330022, China
| | - Shilin Zhou
- College of Chemistry and Chemical Engineering, Jiangxi Normal University, 99 Ziyang Road, Nanchang, 330022, China
| | - Jianming Liu
- College of Chemistry and Chemical Engineering, Jiangxi Normal University, 99 Ziyang Road, Nanchang, 330022, China
| | - Yonghai Song
- College of Chemistry and Chemical Engineering, Jiangxi Normal University, 99 Ziyang Road, Nanchang, 330022, China.
| | - Li Wang
- College of Chemistry and Chemical Engineering, Jiangxi Normal University, 99 Ziyang Road, Nanchang, 330022, China.
| |
Collapse
|
28
|
Yu S, Zhang J, Hu Y, Li L, Kong J, Zhang X. Ultrasensitive detection of miRNA-21 by click chemistry and fluorescein-mediated photo-ATRP signal amplification. Anal Chim Acta 2023; 1277:341661. [PMID: 37604612 DOI: 10.1016/j.aca.2023.341661] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 07/03/2023] [Accepted: 07/25/2023] [Indexed: 08/23/2023]
Abstract
The development of a convenient and efficient assay using miRNA-21 as a lung cancer marker is of great importance for the early prevention of cancer. Herein, an electrochemical biosensor for the detection of miRNA-21 was successfully fabricated under blue light excitation using click chemistry and photocatalytic atom transfer radical polymerization (photo-ATRP). By using hairpin DNA as a recognition probe, the electrochemical sensor deposits numerous electroactive monomers (ferrocenylmethyl methacrylate) on the electrode surface under the reaction of photocatalyst (fluorescein) and pentamethyldiethylenetriamine, thereby achieving signal amplification. This biosensor is sensitive, precise and selective for miRNA-21, and is highly specific for RNAs with different base mismatches. Under optimal conditions, the biosensor showed a linear relationship in the range of 10 fM ∼1 nM (R2 = 0.995), with a detection limit of 1.35 fM. Furthermore, the biosensor exhibits anti-interference performance when analyzing RNAs in serum samples. The biosensor is based on green chemistry and has the advantages of low cost, specificity and anti-interference ability, providing economic benefits while achieving detection objectives, which makes it highly promising for the analysis of complex samples.
Collapse
Affiliation(s)
- Shuaibing Yu
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, 210094, PR China
| | - Jian Zhang
- Nanjing Lishui District Hospital of Traditional Chinese Medicine, Nanjing, 211200, PR China; Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, 210028, PR China
| | - Yaodong Hu
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, 210094, PR China
| | - Lianzhi Li
- School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng, 252059, PR China
| | - Jinming Kong
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, 210094, PR China.
| | - Xueji Zhang
- School of Biomedical Engineering, Shenzhen University Health Science Center, Shenzhen, Guangdong, 518060, PR China
| |
Collapse
|
29
|
Pournamdari E, Niknam L. Resonance Rayleigh scattering technique-using chitosan-capped gold nanoparticles, approaches spectrofluorimetric method for determination of Bentazone residual in water samples. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART. B, PESTICIDES, FOOD CONTAMINANTS, AND AGRICULTURAL WASTES 2023; 58:628-636. [PMID: 37767957 DOI: 10.1080/03601234.2023.2262348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/29/2023]
Abstract
In this study, a resonance Rayleigh scattering technique-based sensing method for detecting Bentazone residual in water samples has been developed. This technique was carried out using chitosan-capped gold nanoparticles with a spectrofluorimetric method. Experimental results revealed that the developed method could allow the detection of Bentazone residual as low as a concentration of 0.02 ng mL-1 within 50-sec time. Overall results confirmed the very low detection limit for measuring the Bentazone. The chitosan-capped gold nanoparticles as an excellent sensor were applied to measure and analyze Bentazone in water samples.
Collapse
Affiliation(s)
- Elham Pournamdari
- Department of Chemistry, Islamshahr Branch, Islamic Azad University, Islamshahr, Iran
| | - Leila Niknam
- Department of Chemistry, Islamshahr Branch, Islamic Azad University, Islamshahr, Iran
| |
Collapse
|
30
|
Chen S, Yu Z, Wang Y, Tang J, Zeng Y, Liu X, Tang D. Block-Polymer-Restricted Sub-nanometer Pt Nanoclusters Nanozyme-Enhanced Immunoassay for Monitoring of Cardiac Troponin I. Anal Chem 2023; 95:14494-14501. [PMID: 37707360 DOI: 10.1021/acs.analchem.3c03249] [Citation(s) in RCA: 60] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/15/2023]
Abstract
Noble-metal nanozymes have demonstrated great potential in various fields. However, aggregation of single-particle nanoparticles severely affects their exposed catalytically active sites to the extent of exhibiting weak enzyme-like activity. Here, we present an organic block surfactant (polyvinylpyrrolidone, PVP) to construct monodisperse water-stable Pt nanoclusters (Pt NCs) for an enhanced immunoassay of cardiac troponin I (cTnI). The PVP-modified Pt NC nanozyme exhibited up to 16.3 U mg-1 peroxidase-mimicking activity, which was mainly attributed to the ligand modification on the surface and the electron-absorbing effect of the ligand on the Pt NCs. The PVP-modified Pt NCs have a lower OH-transition potential, as determined by density functional theory. Under optimized experimental conditions, the enhanced nanozyme immunoassay strategy exhibited an ultrawide dynamic response range of 0.005-50 ng mL-1 for cTnI targets with a detection limit of 1.3 pg mL-1, far superior to some reported test protocols. This work provides a designable pathway for the design of artificial enzymes with high enzyme-like activity to further expand the practical range of enzyme alternatives.
Collapse
Affiliation(s)
- Shuyun Chen
- Key Laboratory of Analytical Science for Food Safety and Biology (MOE & Fujian Province), Department of Chemistry, Fuzhou University, Fuzhou 350108, People's Republic of China
| | - Zhichao Yu
- Key Laboratory of Analytical Science for Food Safety and Biology (MOE & Fujian Province), Department of Chemistry, Fuzhou University, Fuzhou 350108, People's Republic of China
| | - Yunsen Wang
- Key Laboratory of Analytical Science for Food Safety and Biology (MOE & Fujian Province), Department of Chemistry, Fuzhou University, Fuzhou 350108, People's Republic of China
| | - Juan Tang
- Key Laboratory for Green Chemistry of Jiangxi Province, Department of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang 330022, People's Republic of China
| | - Yongyi Zeng
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou 350025, People's Republic of China
| | - Xiaolong Liu
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou 350025, People's Republic of China
| | - Dianping Tang
- Key Laboratory of Analytical Science for Food Safety and Biology (MOE & Fujian Province), Department of Chemistry, Fuzhou University, Fuzhou 350108, People's Republic of China
| |
Collapse
|
31
|
Li W, Zhang M, Han D, Yang H, Hong Q, Fang Y, Zhou Z, Shen Y, Liu S, Huang C, Zhu H, Zhang Y. Carbon Nitride-Based Heterojunction Photoelectrodes with Modulable Charge-Transfer Pathways toward Selective Biosensing. Anal Chem 2023; 95:13716-13724. [PMID: 37650675 DOI: 10.1021/acs.analchem.3c03221] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
Abstract
Photoelectrochemical (PEC) sensing enables the rapid, accurate, and highly sensitive detection of biologically important chemicals. However, achieving high selectivity without external biological elements remains a challenge because the PEC reactions inherently have poor selectivity. Herein, we report a strategy to address this problem by regulating the charge-transfer pathways using polymeric carbon nitride (pCN)-based heterojunction photoelectrodes. Interestingly, because of redox reactions at different semiconductor/electrolyte interfaces with specific charge-transfer pathways, each analyte demonstrated a unique combination of photocurrent-change polarity. Based on this principle, a pCN-based PEC sensor for the highly selective sensing of ascorbic acid in serum against typical interferences, such as dopamine, glutathione, epinephrine, and citric acid was successfully developed. This study sheds light on a general PEC sensing strategy with high selectivity without biorecognition units by engineering charge-transfer pathways in heterojunctions on photoelectrodes.
Collapse
Affiliation(s)
- Wang Li
- Jiangsu Engineering Laboratory of Smart Carbon-Rich Materials and Device, Jiangsu Province Hi-Tech Key Laboratory for Bio-Medical Research, School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China
| | - Mingming Zhang
- Center of Clinical Laboratory Medicine, Zhongda Hospital, and Jiangsu Provincial Key Laboratory of Critical Care Medicine, Medical School, Southeast University, Nanjing 210009, China
| | - Dan Han
- Jiangsu Engineering Laboratory of Smart Carbon-Rich Materials and Device, Jiangsu Province Hi-Tech Key Laboratory for Bio-Medical Research, School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China
| | - Hong Yang
- Jiangsu Engineering Laboratory of Smart Carbon-Rich Materials and Device, Jiangsu Province Hi-Tech Key Laboratory for Bio-Medical Research, School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China
| | - Qing Hong
- Jiangsu Engineering Laboratory of Smart Carbon-Rich Materials and Device, Jiangsu Province Hi-Tech Key Laboratory for Bio-Medical Research, School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China
| | - Yanfeng Fang
- Jiangsu Engineering Laboratory of Smart Carbon-Rich Materials and Device, Jiangsu Province Hi-Tech Key Laboratory for Bio-Medical Research, School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China
| | - Zhixin Zhou
- Jiangsu Engineering Laboratory of Smart Carbon-Rich Materials and Device, Jiangsu Province Hi-Tech Key Laboratory for Bio-Medical Research, School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China
| | - Yanfei Shen
- Center of Clinical Laboratory Medicine, Zhongda Hospital, and Jiangsu Provincial Key Laboratory of Critical Care Medicine, Medical School, Southeast University, Nanjing 210009, China
| | - Songqin Liu
- Jiangsu Engineering Laboratory of Smart Carbon-Rich Materials and Device, Jiangsu Province Hi-Tech Key Laboratory for Bio-Medical Research, School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China
| | - Chaofeng Huang
- School of Chemistry and Chemical Engineering, State Key Laboratory Incubation Base for Green Processing of Chemical Engineering, Shihezi University, Shihezi 832000, China
| | - Haibin Zhu
- Jiangsu Engineering Laboratory of Smart Carbon-Rich Materials and Device, Jiangsu Province Hi-Tech Key Laboratory for Bio-Medical Research, School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China
| | - Yuanjian Zhang
- Jiangsu Engineering Laboratory of Smart Carbon-Rich Materials and Device, Jiangsu Province Hi-Tech Key Laboratory for Bio-Medical Research, School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China
| |
Collapse
|
32
|
Bai Y, Miao J, Bian X, Wang Q, Gao W, Xue Y, Yang G, Zhu P, Yu J. In situ growth of a cobalt porphyrin-based covalent organic framework on multi-walled carbon nanotubes for ultrasensitive real-time monitoring of living cell-released nitric oxide. Analyst 2023; 148:4219-4226. [PMID: 37540136 DOI: 10.1039/d3an00947e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/05/2023]
Abstract
Nitric oxide (NO), as a critical transcellular messenger, participates in a variety of physiological and pathological processes. However, its real-time detection still faces challenges due to its short half-life and trace amounts. Here, MWCNTs@COF-366-Co was prepared by in situ growth of a cobalt porphyrin-based covalent organic framework (COF-366-Co) on multi-walled carbon nanotubes (MWCNTs), and a unique biosensing platform for ultrasensitive real-time NO determination was established. Remarkably, MWCNTs@COF-366-Co contains plenty of atomically arranged M-N4 active sites for electrocatalysis, which provides more efficient electron transfer pathways and resolves the random arrangement issue of active sites. COF-366-Co with a high surface area contains a large number of exposed active M-N4 sites, providing faster NO transport/diffusion and more efficient electron transfer pathways. Due to the synergy of atomic-level periodic structural features of COF-366-Co and high conductivity of MWCNTs, the MWCNTs@COF-366-Co electrochemical biosensor exhibited excellent NO determination performance in a wide range from 0.09 to 400 μM, with high sensitivity (8.9 μA μM-1 cm-2) and a low limit of detection (16 nM). Moreover, the biosensor has been successfully used to sensitively monitor NO molecules released from human umbilical vein endothelial cells (HUVECs). This research not only designed a multifunctional intelligent biosensor platform, but also provided a broad prospect for continuous dynamic monitoring of the activity of living cells and their released metabolites.
Collapse
Affiliation(s)
- Yujiao Bai
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, P. R. China
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, P. R. China.
| | - Jiansong Miao
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, P. R. China.
| | - Xiaodi Bian
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, P. R. China.
| | - Qian Wang
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, P. R. China.
| | - Wenqing Gao
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, P. R. China
| | - Yu Xue
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, P. R. China
| | - Guihua Yang
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, P. R. China
| | - Peihua Zhu
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, P. R. China
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, P. R. China.
| | - Jinghua Yu
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, P. R. China.
| |
Collapse
|
33
|
El-Kimary EI, Allam AN, Khafagy ES, Hegazy WAH. Analytical Methodologies for the Estimation of Oxazolidinone Antibiotics as Key Members of anti-MRSA Arsenal: A Decade in Review. Crit Rev Anal Chem 2023; 54:3141-3170. [PMID: 37378883 DOI: 10.1080/10408347.2023.2228902] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/29/2023]
Abstract
Gram-positive bacterial infections are among the most serious diseases related with high mortality rates and huge healthcare costs especially with the rise of antibiotic-resistant strains that limits treatment options. Thus, development of new antibiotics combating these multi-drug resistant bacteria is crucial. Oxazolidinone antibiotics are the only totally synthetic group of antibiotics that showed activity against multi-drug resistant Gram positive bacteria including MRSA because of their unique mechanism of action in targeting protein synthesis. This group include approved marketed members (tedizolid, linezolid and contezolid) or those under development (delpazlolid, radezolid and sutezolid). Due to the significant impact of this class, larger number of analytical methods were required to meet the needs of both clinical and industrial studies. Analyzing these drugs either alone or with other antimicrobial agents commonly used in ICU, in the presence of pharmaceutical or endogenous biological interferences, or in the presence of matrix impurities as metabolites and degradation products poses a big analytical challenge. This review highlights current analytical approaches published in the last decade (2012-2022) that dealt with the determination of these drugs in different matrices and discusses their advantages and disadvantages. Various techniques have been described for their determination including chromatographic, spectroscopic, capillary electrophoretic and electroanalytical methods. The review comprises six sections (one for each drug) with their related tables that depict critical figures of merit and some experimental conditions for the reviewed methods. Furthermore, future perspectives about the analytical methodologies that can be developed in the near future for determination of these drugs are suggested.
Collapse
Affiliation(s)
- Eman I El-Kimary
- Faculty of Pharmacy, Department of Pharmaceutical Analytical Chemistry, Alexandria University, Alexandria, Egypt
- Pharmacy Program, Department of Pharmaceutical Sciences (Chemistry), Oman College of Health Sciences, Muscat, Oman
| | - Ahmed N Allam
- Faculty of Pharmacy, Department of Pharmaceutics, Alexandria University, Alexandria, Egypt
- Pharmacy Program, Department of Pharmaceutics, Oman College of Health Sciences, Muscat, Oman
| | - El-Sayed Khafagy
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-kharj, Saudi Arabia
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Suez Canal University, Ismailia, Egypt
| | - Wael A H Hegazy
- Department of Microbiology and Immunology, Faculty of Pharmacy, Zagazig University, Zagazig, Egypt
- Pharmacy Program, Department of Pharmaceutical Sciences (Microbiology and Immunology), Oman College of Health Sciences, Muscat, Oman
| |
Collapse
|
34
|
Lin Q, Yu Z, Lu L, Huang X, Wei Q, Tang D. Smartphone-based photoelectrochemical immunoassay of prostate-specific antigen based on Co-doped Bi2O2S nanosheets. Biosens Bioelectron 2023; 230:115260. [PMID: 36989664 DOI: 10.1016/j.bios.2023.115260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 03/07/2023] [Accepted: 03/22/2023] [Indexed: 03/29/2023]
Abstract
Portable and on-site detection of target biomarker is of great significance in early diagnosis of diseases. Herein, we designed a portable smartphone-based PEC immunoassay platform to detect prostate specific antigen (PSA) adopting Co-doped Bi2O2S nanosheets as photoactive materials. The fast photocurrent response under visible light and excellent electrical transport rate invest Co-doped Bi2O2S with the property of being effectively excited even under a weak light source. Therefore, with the incorporation of a carriable flashlight that act as the excitation light source, disposable screen-printed electrodes, a microelectrochemical workstation and a smartphone that served as control center, point-of-care analytical detection of low-abundance small molecule analytes was successfully realized. Specifically, a sandwich-type immunoreaction was performed using alkaline phosphatase labeled secondary antibody as signal indicator. In the presence of PSA, ascorbic acid as generated through a catalytic reaction, resulting in the enhancement of photocurrent intensity. The photocurrent intensity increased linearly with the logarithm of PSA concentrations ranging from 0.2 to 50 ng mL-1 with a detection limit of 71.2 pg mL-1 (S/N = 3). This system provided an effective method for the construction of portable and miniaturized PEC sensing platform for the application of point-of-care health monitoring.
Collapse
Affiliation(s)
- Qianyun Lin
- Key Laboratory for Analytical Science of Food Safety and Biology (MOE & Fujian Province), Department of Chemistry, Fuzhou University, Fuzhou, 350108, PR China
| | - Zhichao Yu
- Key Laboratory for Analytical Science of Food Safety and Biology (MOE & Fujian Province), Department of Chemistry, Fuzhou University, Fuzhou, 350108, PR China
| | - Liling Lu
- Key Laboratory for Analytical Science of Food Safety and Biology (MOE & Fujian Province), Department of Chemistry, Fuzhou University, Fuzhou, 350108, PR China
| | - Xue Huang
- Key Laboratory for Analytical Science of Food Safety and Biology (MOE & Fujian Province), Department of Chemistry, Fuzhou University, Fuzhou, 350108, PR China
| | - Qiaohua Wei
- Key Laboratory for Analytical Science of Food Safety and Biology (MOE & Fujian Province), Department of Chemistry, Fuzhou University, Fuzhou, 350108, PR China.
| | - Dianping Tang
- Key Laboratory for Analytical Science of Food Safety and Biology (MOE & Fujian Province), Department of Chemistry, Fuzhou University, Fuzhou, 350108, PR China.
| |
Collapse
|
35
|
Wang Y, Rong Y, Ma T, Li L, Li X, Zhu P, Zhou S, Yu J, Zhang Y. Photoelectrochemical sensors based on paper and their emerging applications in point-of-care testing. Biosens Bioelectron 2023; 236:115400. [PMID: 37271095 DOI: 10.1016/j.bios.2023.115400] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 05/01/2023] [Accepted: 05/14/2023] [Indexed: 06/06/2023]
Abstract
Point-of-care testing (POCT) technology is urgently required owing to the prevalence of the Internet of Things and portable electronics. In light of the attractive properties of low background and high sensitivity caused by the complete separation of excitation source and detection signal, the paper-based photoelectrochemical (PEC) sensors, featured with fast in analysis, disposable and environmental-friendly have become one of the most promising strategies in POCT. Therefore, in this review, the latest advances and principal issues in the design and fabrication of portable paper-based PEC sensors for POCT are systematically discussed. Primarily, the flexible electronic devices that can be constructed by paper and the reasons why they can be used in PEC sensors are expounded. Afterwards, the photosensitive materials involved in paper-based PEC sensor and the signal amplification strategies are emphatically introduced. Subsequently, the application of paper-based PEC sensors in medical diagnosis, environmental monitoring and food safety are further discussed. Finally, the main opportunities and challenges of paper-based PEC sensing platforms for POCT are briefly summarized. It provides a distinct perspective for researchers to construct paper-based PEC sensors with portable and cost-effective, hoping to enlighten the fast development of POCT soon after, as well as benefit human society.
Collapse
Affiliation(s)
- Yixiang Wang
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, China
| | - Yumeng Rong
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, China
| | - Tinglei Ma
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, China
| | - Lin Li
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, China
| | - Xu Li
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, China
| | - Peihua Zhu
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, China
| | - Shuang Zhou
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, China.
| | - Jinghua Yu
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, China.
| | - Yan Zhang
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, China; Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, Qingdao University of Science and Technology, Qingdao, 266042, China.
| |
Collapse
|
36
|
Guo L, Li B, Wong SW, Chen M, Xu Q, Ge L, Kwok HF. Enzyme-catalyzed high-performing reaction with in-situ amplified photocurrent on carbon-functionalized inorganic photoanode for immunosensing. Biosens Bioelectron 2023; 236:115404. [PMID: 37295131 DOI: 10.1016/j.bios.2023.115404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 05/07/2023] [Accepted: 05/15/2023] [Indexed: 06/12/2023]
Abstract
An enzyme-catalyzed high-performing reaction with in-situ amplified photocurrent was innovatively designed for the quantitative screening of carcinoembryonic antigen (CEA) in biological fluids by coupling with carbon-functionalized inorganic photoanode. A split-type photoelectrochemical (PEC) immunoassay was initially executed with horseradish peroxidase (HRP)-labeled secondary antibody on the capture antibody-coated microtiter. Then, the photocurrent of carbon-functionalized inorganic photoanode were improved through enzymatic insoluble product. Experimental results revealed that introduction of the outer carbon layer on the inorganic photoactive materials caused the amplifying photocurrent because of the improving light harvesting and separation of photo-generated e-/h+ pairs. Under optimum conditions, the split-type photoelectrochemical immunosensing platform displayed good photocurrent responses within the dynamic range of 0.01 - 80 ng mL-1 CEA, and allowed the detection of CEA as low as a concentration of 3.6 pg mL-1 at the 3Sblank level. The strong attachment of antibodies onto nano label and high-performing photoanode resulted in a good repeatability and intermediate precision down to 9.83%. No significant differences at the 0.05 significance level were encountered in the analysis of six human serum specimens between the developed PEC immunoassay and the commercially available CEA ELISA kits.
Collapse
Affiliation(s)
- Libin Guo
- Cancer Centre, Faculty of Health Sciences, University of Macau, Avenida de Universidade, Taipa, Macau; Cancer Centre, Faculty of Health Sciences, University of Macau, Avenida de Universidade, Taipa, Macau; MoE Frontiers Science Center for Precision Oncology, University of Macau, Avenida de Universidade, Taipa, Macau; Department of Biomedical Sciences, Faculty of Health Sciences, University of Macau, Avenida de Universidade, Taipa, Macau; Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Bin Li
- Cancer Centre, Faculty of Health Sciences, University of Macau, Avenida de Universidade, Taipa, Macau; Cancer Centre, Faculty of Health Sciences, University of Macau, Avenida de Universidade, Taipa, Macau; Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing, 210023, China; Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Sin Wa Wong
- Cancer Centre, Faculty of Health Sciences, University of Macau, Avenida de Universidade, Taipa, Macau; MoE Frontiers Science Center for Precision Oncology, University of Macau, Avenida de Universidade, Taipa, Macau; Department of Biomedical Sciences, Faculty of Health Sciences, University of Macau, Avenida de Universidade, Taipa, Macau
| | - Meijuan Chen
- Lab of Antitumor Mechanism Investigation of Traditional Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Qingyun Xu
- Nanjing Second Hospital, Nanjing Hospital Affiliated to Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| | - Lilin Ge
- Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing, 210023, China; Lab of Antitumor Mechanism Investigation of Traditional Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| | - Hang Fai Kwok
- Cancer Centre, Faculty of Health Sciences, University of Macau, Avenida de Universidade, Taipa, Macau; MoE Frontiers Science Center for Precision Oncology, University of Macau, Avenida de Universidade, Taipa, Macau; Department of Biomedical Sciences, Faculty of Health Sciences, University of Macau, Avenida de Universidade, Taipa, Macau.
| |
Collapse
|
37
|
Yu L, Tang Z, Sun Y, Yi H, Tang Y, Zhong Y, Dian D, Cong Y, Wang H, Xie Z, He S, Chen Z. A polyethylene glycol enhanced ligation-triggered self-priming isothermal amplification for the detection of SARS-CoV-2 D614G mutation. Talanta 2023; 262:124711. [PMID: 37244245 DOI: 10.1016/j.talanta.2023.124711] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 05/09/2023] [Accepted: 05/22/2023] [Indexed: 05/29/2023]
Abstract
We presented a polyethylene glycol (PEG) enhanced ligation-triggered self-priming isothermal amplification (PEG-LSPA) for the detection D614G mutation in S-glycoprotein of SARS-CoV-2. PEG was employed to improve the ligation efficiency of this assay by constructing a molecular crowding environment. Two hairpin probes (H1 and H2) were designed to contain 18 nt and 20 nt target binding site at their 3' end and 5' end, respectively. In presence of target sequence, it complemented with H1 and H2 to trigger ligation by ligase under molecular crowding condition to form ligated H1-H2 duplex. Then 3' terminus of the H2 would be extended by DNA polymerase under isothermal conditions to form a longer extended hairpin (EHP1). 5' terminus of EHP1 with phosphorothioate (PS) modification could form hairpin structure due to the lower Tm value. The resulting 3' end overhang would also fold back as a new primer to initiate the next round of polymerization, resulting in the formation of a longer extended hairpin (EHP2) containing two target sequence domains. In the circle of LSPA, long extended hairpin (EHPx) containing numerous target sequence domains was produced. The resulting DNA products can be monitored in real-time fluorescence signaling. Our proposed assay owns an excellent linear range from 10 fM to 10 nM with a detection limit down to 4 fM. Thus, this work provides a potential isothermal amplification method for monitoring mutations in SARS-CoV-2 variants.
Collapse
Affiliation(s)
- Luxin Yu
- The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, 523808, China; School of Medical Technology, Guangdong Medical University, Dongguan, 523808, China
| | - Zibin Tang
- The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, 523808, China; School of Medical Technology, Guangdong Medical University, Dongguan, 523808, China
| | - Yuanzhong Sun
- The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, 523808, China; School of Medical Technology, Guangdong Medical University, Dongguan, 523808, China
| | - Hai Yi
- The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, 523808, China; School of Medical Technology, Guangdong Medical University, Dongguan, 523808, China
| | - Yuebiao Tang
- The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, 523808, China; School of Medical Technology, Guangdong Medical University, Dongguan, 523808, China
| | - Yangqing Zhong
- The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, 523808, China
| | - Dongchun Dian
- The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, 523808, China
| | - Yanguang Cong
- The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, 523808, China
| | - Houqi Wang
- School of Medical Technology, Guangdong Medical University, Dongguan, 523808, China
| | - Zhaoyang Xie
- The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, 523808, China; School of Medical Technology, Guangdong Medical University, Dongguan, 523808, China.
| | - Suhui He
- The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, 523808, China; School of Medical Technology, Guangdong Medical University, Dongguan, 523808, China.
| | - Zhangquan Chen
- The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, 523808, China; School of Medical Technology, Guangdong Medical University, Dongguan, 523808, China.
| |
Collapse
|
38
|
Juneja S, Zhang B, Wang AX. Limit-Defying μ-Total Analysis System: Achieving Part-Per-Quadrillion Sensitivity on a Hierarchical Optofluidic SERS Sensor. ACS OMEGA 2023; 8:17151-17158. [PMID: 37214736 PMCID: PMC10193394 DOI: 10.1021/acsomega.3c01519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 04/19/2023] [Indexed: 05/24/2023]
Abstract
Optofluidic sensors have accelerated the growth of smart sensor platforms with improved sensitivity, reliability, and innovation. In this article, we report the integration of a surface-enhanced Raman scattering (SERS) material consisting of silver nanoparticle-decorated diatomaceous earth (AgNPs-DE) with a flow-through microfluidic device, building up a hierarchical structured micro-total analysis system (μ-TAS) capable of achieving part-per-quadrillion (ppq)-level sensitivity. By the synergic integration of millimeter-scale microfluidic devices and porous laboratory filter paper with a micrometer-sized crosslinked cellulosic network that carries SERS-active AgNPs-DE, which possesses submicron to nanometer regimes of photonic crystals and plasmonic nanostructures, we achieved enhanced mass-transfer efficiency and unprecedented detection sensitivity. In our experiment, fentanyl as the testing analyte at different concentrations was measured using a portable Raman spectrometer. The limit of detection (LOD) was estimated to be 10 ppq from a small detection volume of 10 mL with an ultrafast time of sensing (TOS) of 3 min. To attain comparable signals, the traditional soaking method took more than 90 min to detect 10 part-per-trillion fentanyl from a 10 mL sample. Compared with existing SERS sensing results of fentanyl, the limit-defying μ-TAS reduced the LOD-TOS product by almost 4 orders of magnitude, which represents a new stage of ultrafast sensing of extremely low concentration analytes.
Collapse
Affiliation(s)
- Subhavna Juneja
- School
of Electrical Engineering and Computer Science, Oregon State University, Corvallis, Oregon 97331, United States
- Department
of Electrical and Computer Engineering, Baylor University, Waco, Texas 76798, United States
| | - Boxin Zhang
- School
of Electrical Engineering and Computer Science, Oregon State University, Corvallis, Oregon 97331, United States
| | - Alan X. Wang
- School
of Electrical Engineering and Computer Science, Oregon State University, Corvallis, Oregon 97331, United States
- Department
of Electrical and Computer Engineering, Baylor University, Waco, Texas 76798, United States
| |
Collapse
|
39
|
Sun J, Shi Z, Wang L, Zhang X, Luo C, Hua J, Feng M, Chen Z, Wang M, Xu C. Construction of a microcavity-based microfluidic chip with simultaneous SERS quantification of dual biomarkers for early diagnosis of Alzheimer's disease. Talanta 2023; 261:124677. [PMID: 37201340 DOI: 10.1016/j.talanta.2023.124677] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 05/08/2023] [Accepted: 05/13/2023] [Indexed: 05/20/2023]
Abstract
Since there is no effective Alzheimer's disease (AD)-modifying therapy available currently, early analysis of AD core biomarkers has become one of great significance and common concern in clinical diagnosis. Herein, we designed an Au-plasmonic shell attached polystyrene (PS) microsphere in a microfluidic chip for simultaneous detection of Aβ1-42 and p-Tau181 protein. The corresponding Raman reporters were identified in femto gram level by ultrasensitive surface enhanced Raman spectroscopy (SERS). Both of Raman experimental data and finite-difference time-domain modeling demonstrates the synergetic coupling between PS microcavity with the optical confinement property and the localized surface plasmon resonance (LSPR) of AuNPs, so leading to highly amplified electromagnetic fields at the 'hot spot'. Moreover, the microfluidic system is designed with multiplex testing and control channels in which the AD-related dual proteins were detected quantitatively with a lower limit of 100 fg mL-1. Thus, the proposed microcavity-based SERS strategy initiates a new way for accurately prediction of AD in human blood samples and provides the potential application for synchronous determination of multiple analytes in general disease assays.
Collapse
Affiliation(s)
- Jianli Sun
- State Key Laboratory of Bioelectronics, School of Chemistry and Chemical Engineering, Southeast University, Nanjing 210096, China
| | - Zengliang Shi
- State Key Laboratory of Bioelectronics, School of Chemistry and Chemical Engineering, Southeast University, Nanjing 210096, China
| | - Li Wang
- State Key Laboratory of Bioelectronics, School of Chemistry and Chemical Engineering, Southeast University, Nanjing 210096, China
| | - Xinyi Zhang
- State Key Laboratory of Bioelectronics, School of Chemistry and Chemical Engineering, Southeast University, Nanjing 210096, China
| | - Chunshan Luo
- State Key Laboratory of Bioelectronics, School of Chemistry and Chemical Engineering, Southeast University, Nanjing 210096, China
| | - Jianyu Hua
- State Key Laboratory of Bioelectronics, School of Chemistry and Chemical Engineering, Southeast University, Nanjing 210096, China
| | - Muyu Feng
- State Key Laboratory of Bioelectronics, School of Chemistry and Chemical Engineering, Southeast University, Nanjing 210096, China
| | - Zaozao Chen
- State Key Laboratory of Bioelectronics, School of Chemistry and Chemical Engineering, Southeast University, Nanjing 210096, China.
| | - Mingliang Wang
- State Key Laboratory of Bioelectronics, School of Chemistry and Chemical Engineering, Southeast University, Nanjing 210096, China.
| | - Chunxiang Xu
- State Key Laboratory of Bioelectronics, School of Chemistry and Chemical Engineering, Southeast University, Nanjing 210096, China.
| |
Collapse
|
40
|
Lv J, Wu M, Fan M, Zhang Q, Chang Z, Wang X, Zhou Q, Wang L, Chong R, Zhang L. Insights into the multirole CoAl layered double hydroxide on boosting photoelectrochemical activity of hematite: Application to hydrogen peroxide sensing. Talanta 2023; 262:124681. [PMID: 37224575 DOI: 10.1016/j.talanta.2023.124681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 04/13/2023] [Accepted: 05/15/2023] [Indexed: 05/26/2023]
Abstract
As an important compound in many industrial and biological processes, hydrogen peroxide (H2O2) would cause harmfulness to human health at high concentration level. It thus is urgent to develop highly sensitive and selective sensors for practical H2O2 detection in the fields of water monitoring, food quality control, and so on. In this work, CoAl layered double hydroxide ultrathin nanosheets decorated hematite (CoAl-LDH/α-Fe2O3) photoelectrode was successfully fabricated by a facile hydrothermal process. CoAl-LDH/α-Fe2O3 displays the relatively wide linear range from 1 to 2000 μM with a high sensitivity of 132.0 μA mM-1 cm-2 and a low detection limit of 0.04 μM (S/N ≥ 3) for PEC detection of H2O2, which is superior to other similar α-Fe2O3-based sensors in literatures. The (photo)electrochemical characterizations, such as electrochemical impedance spectroscopy, Mott-Schottky plot, cyclic voltammetry, open circuit potential and intensity modulated photocurrent spectroscopy, were used to investigate the roles of CoAl-LDH on the improved PEC response of α-Fe2O3 toward H2O2. It revealed that, CoAl-LDH could not only passivate the surface states and enlarge the band bending of α-Fe2O3, but also could act as trapping centers for holes and followed by as active sites for H2O2 oxidation, thus facilitated the charge separation and transfer. The strategy for boosting PEC response would be help for the further development of semiconductor-based PEC sensors.
Collapse
Affiliation(s)
- Jiaqi Lv
- Henan Provincial Engineering Research Center of Green Anticorrosion Technology for Magnesium Alloys, Henan Engineering Research Center for Control and Remediation of Soil Heavy Pollution, College of Chemistry and Molecular Sciences, Henan University, Kaifeng, 475004, China
| | - Mingwei Wu
- Henan Provincial Engineering Research Center of Green Anticorrosion Technology for Magnesium Alloys, Henan Engineering Research Center for Control and Remediation of Soil Heavy Pollution, College of Chemistry and Molecular Sciences, Henan University, Kaifeng, 475004, China
| | - Ming Fan
- Henan Provincial Engineering Research Center of Green Anticorrosion Technology for Magnesium Alloys, Henan Engineering Research Center for Control and Remediation of Soil Heavy Pollution, College of Chemistry and Molecular Sciences, Henan University, Kaifeng, 475004, China
| | - Qinqin Zhang
- Department of Cardiology, Huaihe Hospital of Henan University, Kaifeng, Henan Province, 475000, China
| | - Zhixian Chang
- Henan Provincial Engineering Research Center of Green Anticorrosion Technology for Magnesium Alloys, Henan Engineering Research Center for Control and Remediation of Soil Heavy Pollution, College of Chemistry and Molecular Sciences, Henan University, Kaifeng, 475004, China.
| | - Xinshou Wang
- College of Science, Henan Kaifeng College of Science Technology and Communication, Kaifeng, 475004, China
| | - Qian Zhou
- Henan Provincial Engineering Research Center of Green Anticorrosion Technology for Magnesium Alloys, Henan Engineering Research Center for Control and Remediation of Soil Heavy Pollution, College of Chemistry and Molecular Sciences, Henan University, Kaifeng, 475004, China
| | - Li Wang
- Henan Provincial Engineering Research Center of Green Anticorrosion Technology for Magnesium Alloys, Henan Engineering Research Center for Control and Remediation of Soil Heavy Pollution, College of Chemistry and Molecular Sciences, Henan University, Kaifeng, 475004, China
| | - Ruifeng Chong
- Henan Provincial Engineering Research Center of Green Anticorrosion Technology for Magnesium Alloys, Henan Engineering Research Center for Control and Remediation of Soil Heavy Pollution, College of Chemistry and Molecular Sciences, Henan University, Kaifeng, 475004, China.
| | - Ling Zhang
- Henan Provincial Engineering Research Center of Green Anticorrosion Technology for Magnesium Alloys, Henan Engineering Research Center for Control and Remediation of Soil Heavy Pollution, College of Chemistry and Molecular Sciences, Henan University, Kaifeng, 475004, China.
| |
Collapse
|
41
|
Kong L, Gan Y, Wang T, Sun X, Ma C, Wang X, Wan H, Wang P. Single-stranded DNA binding protein coupled aptasensor with carbon-gold nanoparticle amplification for marine toxins detection assisted by a miniaturized absorbance reader. JOURNAL OF HAZARDOUS MATERIALS 2023; 450:131023. [PMID: 36857823 DOI: 10.1016/j.jhazmat.2023.131023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 02/10/2023] [Accepted: 02/15/2023] [Indexed: 06/18/2023]
Abstract
Okadaic acid (OA), one of the most widely distributed marine toxins worldwide poses a severe threat to human health. Previous sensing methods for OA detection are usually based on antigen-antibody binding mechanism. However, the drawbacks of antibodies especially the enzyme-labeled antibodies, such as the harsh storage condition and high cost, lead to significant challenges to OA detection in biological samples. To overcome these limitations, a single-stranded DNA binding protein (SSB) coupled aptasensor was developed for OA detection. SSB was incubated on the microplate as a substitute for conventional OA-protein conjugations. Carbon-gold nanoparticles were synthesized and labeled with horseradish peroxidase and thiol-modified aptamers to obtain a capture probe (CGNs@HRP-Apt) instead of the enzyme-labeled antibody for signal amplification. OA and SSB competed to bind with limited aptamers on CGNs@HRP-Apt probes followed by colorimetric assay to obtain the optical signals correlated to OA concentration. To achieve on-site detection, a miniaturized and multichannel absorbance reader (Smart-plate reader) was self-designed with full automation for OA detection. Utilizing the SSB coupled aptasensor and the Smart-plate reader, our approach enables cost-effective and on-site OA sensing with a detection range of 2.5-80 ppb and an ultra-low limit of detection of 0.68 ppb. Moreover, novel OA detection kits based on the SSB coupled aptasensor were prepared which can effectively reduce the cost by 15 times lower than that of commercial ELISA kits. Therefore, the developed platform provides a favorable and promising avenue for marine toxin detection in aquaculture and food safety.
Collapse
Affiliation(s)
- Liubing Kong
- Biosensor National Special Laboratory, Key Laboratory for Biomedical Engineering of Ministry of Education, Department of Biomedical Engineering, Zhejiang University, Hangzhou 310027, China; Innovation Center for Smart Medical Technologies & Devices, Binjiang Institute of Zhejiang University, Hangzhou 310053, China
| | - Ying Gan
- School of Biomedical Engineering, Tianjin Medical University, Tianjin 300070, China
| | - Tianxing Wang
- Zhejiang, e-Linkcare Meditech co., LTD, No.30 Baita Tongjiang Road, Taizhou, Zhejiang 310011, China
| | - Xianyou Sun
- Biosensor National Special Laboratory, Key Laboratory for Biomedical Engineering of Ministry of Education, Department of Biomedical Engineering, Zhejiang University, Hangzhou 310027, China; Innovation Center for Smart Medical Technologies & Devices, Binjiang Institute of Zhejiang University, Hangzhou 310053, China
| | - Chiyu Ma
- Biosensor National Special Laboratory, Key Laboratory for Biomedical Engineering of Ministry of Education, Department of Biomedical Engineering, Zhejiang University, Hangzhou 310027, China
| | - Xinyi Wang
- Biosensor National Special Laboratory, Key Laboratory for Biomedical Engineering of Ministry of Education, Department of Biomedical Engineering, Zhejiang University, Hangzhou 310027, China
| | - Hao Wan
- Biosensor National Special Laboratory, Key Laboratory for Biomedical Engineering of Ministry of Education, Department of Biomedical Engineering, Zhejiang University, Hangzhou 310027, China; Innovation Center for Smart Medical Technologies & Devices, Binjiang Institute of Zhejiang University, Hangzhou 310053, China.
| | - Ping Wang
- Biosensor National Special Laboratory, Key Laboratory for Biomedical Engineering of Ministry of Education, Department of Biomedical Engineering, Zhejiang University, Hangzhou 310027, China; Innovation Center for Smart Medical Technologies & Devices, Binjiang Institute of Zhejiang University, Hangzhou 310053, China.
| |
Collapse
|
42
|
A sensitive label-free biosensor based on Ag 2S-sensitived Bi 2WO 6/BiOBr heterojunction for photoelectrochemical immunoassay of prostate specific antigen. Talanta 2023; 257:124343. [PMID: 36791596 DOI: 10.1016/j.talanta.2023.124343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Revised: 01/20/2023] [Accepted: 02/09/2023] [Indexed: 02/12/2023]
Abstract
Prostate cancer is one of the most common cancers in the world, and its early diagnosis can effectively reduce mortality. A new label-free photoelectrochemical (PEC) immunosensor on the basis of Bi2WO6/BiOBr nanocomposite materials has been successfully prepared for the test of prostate-specific antigen (PSA) in human serum in this work. The Ag2S-sensitized Bi2WO6/BiOBr heterojunction was used as a photosensitive material, which effectively improved the photocurrent response. On Bi2WO6/BiOBr surface, dopamine immobilized PSA antibody by self-polymerizing to form polydopamine membrane. Antigen and antibody are specifically combined to achieve quantitative detection of PSA according to the current changes at different concentrations of antigen. Under the optimal experimental conditions, the PEC immunosensor has an ideal linear relationship between 1 pg/mL - 50 ng/mL, and the detection limit is 0.084 pg/mL. In addition, the prepared immunosensor has good stability, reproducibility and selectivity, providing a new method for the detection of PSA in actual sample analysis.
Collapse
|
43
|
Meeseepong M, Ghosh G, Shrivastava S, Lee NE. Fluorescence-Enhanced Microfluidic Biosensor Platform Based on Magnetic Beads with Highly Stable ZnO Nanorods for Biomarker Detection. ACS APPLIED MATERIALS & INTERFACES 2023; 15:21754-21765. [PMID: 37104719 DOI: 10.1021/acsami.2c22352] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Existing affinity-based fluorescence biosensing systems for monitoring of biomarkers often utilize a fixed solid substrate immobilized with capture probes limiting their use in continuous or intermittent biomarker detection. Furthermore, there have been challenges of integrating fluorescence biosensors with a microfluidic chip and low-cost fluorescence detector. Herein, we demonstrated a highly efficient and movable fluorescence-enhanced affinity-based fluorescence biosensing platform that can overcome the current limitations by combining fluorescence enhancement and digital imaging. Fluorescence-enhanced movable magnetic beads (MBs) decorated with zinc oxide nanorods (MB-ZnO NRs) were used for digital fluorescence-imaging-based aptasensing of biomolecules with improved signal-to-noise ratio. High stability and homogeneous dispersion of photostable MB-ZnO NRs were obtained by grafting bilayered silanes onto the ZnO NRs. The ZnO NRs formed on MB significantly improved the fluorescence signal up to 2.35 times compared to the MB without ZnO NRs. Moreover, the integration of a microfluidic device for flow-based biosensing enabled continuous measurements of biomarkers in an electrolytic environment. The results showed that highly stable fluorescence-enhanced MB-ZnO NRs integrated with a microfluidic platform have significant potential for diagnostics, biological assays, and continuous or intermittent biomonitoring.
Collapse
Affiliation(s)
- Montri Meeseepong
- SKKU Advanced Institute of Nanotechnology (SAINT), Sungkyunkwan University, Suwon, Gyeonggi-do 16419, Korea
| | - Gargi Ghosh
- School of Advanced Materials Science & Engineering, Sungkyunkwan University, Suwon, Gyeonggi-do 16419, Korea
| | - Sajal Shrivastava
- Symbiosis Centre for Nanoscience and Nanotechnology, Symbiosis International University, Pune 412115, India
| | - Nae-Eung Lee
- SKKU Advanced Institute of Nanotechnology (SAINT), Sungkyunkwan University, Suwon, Gyeonggi-do 16419, Korea
- School of Advanced Materials Science & Engineering, Sungkyunkwan University, Suwon, Gyeonggi-do 16419, Korea
- Samsung Advanced Institute for Health Sciences & Technology (SAIHST), Sungkyunkwan University, Suwon, Gyeonggi-do 16419, Korea
- Institute of Quantum Biophysics (IQB), Sungkyunkwan University, Suwon, Gyeonggi-do 16419, Korea
- Biomedical Institute for Convergence at SKKU (BICS), Sungkyunkwan University, Suwon, Gyeonggi-do 16419, Korea
| |
Collapse
|
44
|
Wen L, Du X, Liu T, Meng W, Li T, Li M, Zhang M. Colorimetric Aptasensor for the Visual and Microplate Determination of Clusterin in Human Urine Based on Aggregation Characteristics of Gold Nanoparticles. ACS OMEGA 2023; 8:16000-16008. [PMID: 37179603 PMCID: PMC10173331 DOI: 10.1021/acsomega.2c08040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Accepted: 04/07/2023] [Indexed: 05/15/2023]
Abstract
Clusterin has the potential to become the biomarker of multiple diseases, but its clinical quantitative detection methods are limited, which restricts its research progress as a biomarker. A rapid and visible colorimetric sensor for clusterin detection based on sodium chloride-induced aggregation characteristic of gold nanoparticles (AuNPs) was successfully constructed. Unlike the existing methods based on antigen-antibody recognition reactions, the aptamer of clusterin was used as the sensing recognition element. The aptamer could protect AuNPs from aggregation caused by sodium chloride, but clusterin bound with aptamer detached it from AuNPs, thereby inducing aggregation again. Simultaneously, the color change from red in the dispersed state to purple gray in the aggregated state made it possible to preliminarily judge the concentration of clusterin by observation. This biosensor showed a linear range of 0.02-2 ng/mL and good sensitivity with a detection limit of 5.37 pg/mL. The test results of clusterin in spiked human urine confirmed that the recovery rate was satisfactory. The proposed strategy is helpful for the development of label-free point-of-care testing equipment for clinical testing of clusterin, which is cost-effective and feasible.
Collapse
Affiliation(s)
- Lina Wen
- Beijing
Key Laboratory of Urinary Cellular Molecular Diagnostics, No. 10, Tieyi Road, Yangfangdian
Street, Haidian District, Beijing 100038, China
- Department
of Clinical Nutrition, Beijing Shijitan Hospital, Capital Medical University, No. 10, Tieyi Road, Yangfangdian Street, Haidian
District, Beijing 100038, China
| | - Xiaoyu Du
- Beijing
Key Laboratory of Urinary Cellular Molecular Diagnostics, No. 10, Tieyi Road, Yangfangdian
Street, Haidian District, Beijing 100038, China
- Clinical
Laboratory Medicine, Peking University Ninth
School of Clinical Medicine, No. 10, Tieyi Road, Yangfangdian Street, Haidian District, Beijing 100038, China
| | - Tianci Liu
- Beijing
Key Laboratory of Urinary Cellular Molecular Diagnostics, No. 10, Tieyi Road, Yangfangdian
Street, Haidian District, Beijing 100038, China
- Clinical
Laboratory Medicine, Beijing Shijitan Hospital, Capital Medical University, No. 10, Tieyi Road, Yangfangdian Street, Haidian District, Beijing 100038, China
| | - Wen Meng
- Department
of Infection Prevention and Control, Peking
University People’s Hospital, No. 11, Xizhimen South Street, Xicheng District, Beijing 100044, China
| | - Tao Li
- Beijing
Key Laboratory of Urinary Cellular Molecular Diagnostics, No. 10, Tieyi Road, Yangfangdian
Street, Haidian District, Beijing 100038, China
- Clinical
Laboratory Medicine, Beijing Shijitan Hospital, Capital Medical University, No. 10, Tieyi Road, Yangfangdian Street, Haidian District, Beijing 100038, China
| | - Mengjie Li
- Beijing
Key Laboratory of Urinary Cellular Molecular Diagnostics, No. 10, Tieyi Road, Yangfangdian
Street, Haidian District, Beijing 100038, China
- Clinical
Laboratory Medicine, Peking University Ninth
School of Clinical Medicine, No. 10, Tieyi Road, Yangfangdian Street, Haidian District, Beijing 100038, China
| | - Man Zhang
- Beijing
Key Laboratory of Urinary Cellular Molecular Diagnostics, No. 10, Tieyi Road, Yangfangdian
Street, Haidian District, Beijing 100038, China
- Clinical
Laboratory Medicine, Beijing Shijitan Hospital, Capital Medical University, No. 10, Tieyi Road, Yangfangdian Street, Haidian District, Beijing 100038, China
- Clinical
Laboratory Medicine, Peking University Ninth
School of Clinical Medicine, No. 10, Tieyi Road, Yangfangdian Street, Haidian District, Beijing 100038, China
| |
Collapse
|
45
|
Li K, Wang J, Liu L, Cao H, Yang X, Liu Y, Wang J, He S, Wei H, Yu CY. Pd(II)-based coordination polymer nanosheets for ratiometric colorimetric and photothermal dual-mode assay of serum alkaline phosphatase. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 299:122802. [PMID: 37187151 DOI: 10.1016/j.saa.2023.122802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 03/30/2023] [Accepted: 04/26/2023] [Indexed: 05/17/2023]
Abstract
Fabrication of a multi-signal readout assay with high sensitivity and selectivity is highly desirable for clinical and biochemical analysis, but remains a challenge due to laborious procedures, large-scale instruments, and inadequate accuracy. Herein, a straightforward, rapid, and portable detection platform based on palladium(II) methylene blue (MB) coordination polymer nanosheets (PdMBCP NSs) was unveiled for the ratiometric dual-mode detection of alkaline phosphatase (ALP) with temperature and colorimetric signal readout properties. The sensing mechanism is the ALP-catalyzed generation of ascorbic acid for competitive binding and etching PdMBCP NSs to release free MB in a quantitive means for detection. Specifically, ALP addition led to the decrease of temperature signal readout from the decomposed PdMBCP NSs under 808 nm laser excitation, and simultaneous increase of the temperature from the generated MB with a 660 nm laser, together with the corresponding absorbance changes at both wavelengths. Notably, this ratiometric nanosensor exhibited a detection limit of 0.013 U/L (colorimetric) and 0.095 U/L (photothermal) within 10 min, respectively. The reliability and satisfactory sensing performance of the developed method were further confirmed by clinic serum samples. Therefore, this study provides a new insight for the development of dual-signal sensing platforms for convenient, universal, and accurate detection of ALP.
Collapse
Affiliation(s)
- Kailing Li
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Postdoctoral Research Station of Basic Medicine, The Affiliated Nanhua Hospital, School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang 421001, Hunan, China
| | - Jun Wang
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Postdoctoral Research Station of Basic Medicine, The Affiliated Nanhua Hospital, School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang 421001, Hunan, China
| | - Li Liu
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Postdoctoral Research Station of Basic Medicine, The Affiliated Nanhua Hospital, School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang 421001, Hunan, China
| | - Hui Cao
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Postdoctoral Research Station of Basic Medicine, The Affiliated Nanhua Hospital, School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang 421001, Hunan, China
| | - Xu Yang
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Postdoctoral Research Station of Basic Medicine, The Affiliated Nanhua Hospital, School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang 421001, Hunan, China
| | - Ying Liu
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Postdoctoral Research Station of Basic Medicine, The Affiliated Nanhua Hospital, School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang 421001, Hunan, China
| | - Jikai Wang
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Postdoctoral Research Station of Basic Medicine, The Affiliated Nanhua Hospital, School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang 421001, Hunan, China
| | - Suisui He
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Postdoctoral Research Station of Basic Medicine, The Affiliated Nanhua Hospital, School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang 421001, Hunan, China.
| | - Hua Wei
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Postdoctoral Research Station of Basic Medicine, The Affiliated Nanhua Hospital, School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang 421001, Hunan, China.
| | - Cui-Yun Yu
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Postdoctoral Research Station of Basic Medicine, The Affiliated Nanhua Hospital, School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang 421001, Hunan, China.
| |
Collapse
|
46
|
Liu N, Zhao S, Li Y, Li M, Guo Y, Luo X. Gold nanoparticles-decorated peptide hydrogel for antifouling electrochemical dopamine determination. Mikrochim Acta 2023; 190:199. [PMID: 37140766 DOI: 10.1007/s00604-023-05785-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Accepted: 04/12/2023] [Indexed: 05/05/2023]
Abstract
A reliable and brief ultralow fouling electrochemical sensing system capable of monitoring targets in complex biological media was constructed and validated based on gold nanoparticles-peptide hydrogel-modified screen-printed electrode. The self-assembled zwitterionic peptide hydrogel was prepared by a newly designed peptide sequence of Phe-Phe-Cys-Cys-(Glu-Lys)3 with the N-terminal modified with a fluorene methoxycarbonyl group. The thiol groups on cysteine of the designed peptide are able to self-assemble with AuNPs to form a three-dimensional nanonetwork structure, which showed satisfactory antifouling capability in complex biological media (human serum). The developed gold nanoparticles-peptide hydrogel-based electrochemical sensing platform displayed notably sensing properties for dopamine determination, with a wide linear range (from 0.2 nM to 1.9 μM), a low limit of detection (0.12 nM), and an excellent selectivity. This highly sensitive and ultralow fouling electrochemical sensor was fabricated via simple preparation with concise components that avoid the accumulation of layers with single functional material and complex activation processes. This ultralow fouling and highly sensitive strategy based on the gold nanoparticles-peptide hydrogel with a three-dimensional nanonetwork offers a solution to the current situation of various low-fouling sensing systems facing impaired sensitivity and provides a potential path for the practical application of electrochemical sensors.
Collapse
Affiliation(s)
- Nianzu Liu
- School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, China
- Key Laboratory of Optic-Electric Sensing and Analytical Chemistry for Life Science, MOE, College of Chemistry and Molecular Engineering, Qingdao University of Science & Technology, Qingdao, 266042, China
| | - Shuju Zhao
- Key Laboratory of Optic-Electric Sensing and Analytical Chemistry for Life Science, MOE, College of Chemistry and Molecular Engineering, Qingdao University of Science & Technology, Qingdao, 266042, China
| | - Yanxin Li
- Key Laboratory of Optic-Electric Sensing and Analytical Chemistry for Life Science, MOE, College of Chemistry and Molecular Engineering, Qingdao University of Science & Technology, Qingdao, 266042, China
| | - Mingxuan Li
- Key Laboratory of Optic-Electric Sensing and Analytical Chemistry for Life Science, MOE, College of Chemistry and Molecular Engineering, Qingdao University of Science & Technology, Qingdao, 266042, China
| | - Yingshu Guo
- School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, China
| | - Xiliang Luo
- Key Laboratory of Optic-Electric Sensing and Analytical Chemistry for Life Science, MOE, College of Chemistry and Molecular Engineering, Qingdao University of Science & Technology, Qingdao, 266042, China.
| |
Collapse
|
47
|
Xiao M, Zhu M, Yuan R, Yuan Y. Dual-sensitized heterojunction PDA/ZnO@MoS 2 QDs combined with multilocus domino-like DNA cascade reaction for ultrasensitive photoelectrochemical biosensor. Biosens Bioelectron 2023; 227:115151. [PMID: 36821994 DOI: 10.1016/j.bios.2023.115151] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 02/02/2023] [Accepted: 02/12/2023] [Indexed: 02/19/2023]
Abstract
In this work, by integrating with a highly efficient multilocus domino-like cascade reaction on DNA nanonet, an ultrasensitive PEC biosensor based on dual-sensitized PDA/ZnO@MoS2 QDs photoactive material as signal probe was proposed for detection of miRNA-182-5p. The dual-sensitized PDA/ZnO@MoS2 QD composed by both of p-n and S-scheme heterojunctions on electrode generated an extremely high initial PEC signal, which however quenched by CdTe QDs decorated on DNA nanonet owing to the significant p-n quenching effect. Thereafter, the output DNA (RS) from DSN enzyme-assisted target recycling amplification triggered an ingenious multilocus domino-like DNA cascade reaction on DNA nanonet for releasing numerous CdTe QDs. Thanks to the multilocus domino-like mode that owned abundant binding sites for increasing trigger efficiency and drove cascade reaction automatically advance along four stated pathways, the target conversion rate could be improved effectively compared with that of traditional approaches, significantly enhancing the detection sensitivity. Consequently, the developed PEC biosensor exhibited a low detection limit to 0.17 fM, providing a new avenue for sensitive, fast and reliable sensing of various DNA/RNA.
Collapse
Affiliation(s)
- Mingjun Xiao
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, PR China
| | - Minghui Zhu
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, PR China
| | - Ruo Yuan
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, PR China
| | - Yali Yuan
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, PR China.
| |
Collapse
|
48
|
Huang X, Lin Q, Gong H, Lu L, Wei Q, Tang D. Bio-inspired nanozyme with ultra-thin Fe-Bi 2O 2S nanosheets for in-situ amplified photoelectrochemical immunoassay of cancer-related protein. Anal Chim Acta 2023; 1252:341058. [PMID: 36935156 DOI: 10.1016/j.aca.2023.341058] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 02/27/2023] [Accepted: 03/05/2023] [Indexed: 03/12/2023]
Abstract
A Fe-loaded Bi2O2S nanosheet photoanode serving as photoelectric biomonitoring platform for the detection of prostate-specific antigen (PSA) using biologically inspired prussian nanoparticle (PB)-catalyzed biocatalytic precipitation strategy was developed. Primarily, the signal probe PB-mAb2 obtained by electrostatic adsorption was immobilized on a microplate in the presence of target PSA, and 4-chloro-1-naphthol (4-CN) was oxidized to benzo-4-chloro-hexadienone (4-CD) with the assistance of exogenous hydrogen peroxide, which was generated by a large number of hydroxyl radicals catalyzed by PB. The generated 4-CD showed strongly low conductivity characteristics to burst the photocurrent of highly photoactive Fe-Bi2O2S photoanode. The split incubation reaction could be suitable for high volume and low-cost rapid detection. A dynamic response range of 0.1-100 ng mL-1 with a limit of detection of 34.2 pg mL-1 was achieved with the sensor based on a photoelectric sensing platform and a biomimetic catalytic precipitation reaction. Equally important, the sensor also showed good potential in the detection of real samples compared to commercially available ELISA kits. In conclusion, this work provides a fresh scheme for the development of sensitive biosensors through a bio-inspired catalytic strategy of versatility and a photoanode coupling with high photoelectric activity.
Collapse
Affiliation(s)
- Xue Huang
- Key Laboratory for Analytical Science of Food Safety and Biology (MOE & Fujian Province), Department of Chemistry, Fuzhou University, Fuzhou, 350108, PR China
| | - Qianyun Lin
- Key Laboratory for Analytical Science of Food Safety and Biology (MOE & Fujian Province), Department of Chemistry, Fuzhou University, Fuzhou, 350108, PR China
| | - Hexiang Gong
- Key Laboratory for Analytical Science of Food Safety and Biology (MOE & Fujian Province), Department of Chemistry, Fuzhou University, Fuzhou, 350108, PR China
| | - Liling Lu
- Key Laboratory for Analytical Science of Food Safety and Biology (MOE & Fujian Province), Department of Chemistry, Fuzhou University, Fuzhou, 350108, PR China
| | - Qiaohua Wei
- Key Laboratory for Analytical Science of Food Safety and Biology (MOE & Fujian Province), Department of Chemistry, Fuzhou University, Fuzhou, 350108, PR China.
| | - Dianping Tang
- Key Laboratory for Analytical Science of Food Safety and Biology (MOE & Fujian Province), Department of Chemistry, Fuzhou University, Fuzhou, 350108, PR China.
| |
Collapse
|
49
|
Pan HJ, Gong YC, Cao WQ, Zhang ZH, Jia LP, Zhang W, Shang L, Li XJ, Xue QW, Wang HS, Ma RN. Fascinating Immobilization-Free Electrochemical Immunosensing Strategy Based on the Cooperation of Buoyancy and Magnetism. Anal Chem 2023; 95:7336-7343. [PMID: 37129510 DOI: 10.1021/acs.analchem.3c00485] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Rapid and accurate detection of biomolecules is of vital importance for the diagnosis of disease and for performing timely treatments. The point-of-care analysis of cancer biomarkers in the blood with low cost and easy processing is still challenging. Herein, an advanced and robust strategy, which integrates the buoyant recognition probe with the magnetic reporter probe in one solution, was first proposed for immobilization-free electrochemical immunosensing. The tumor marker of alpha fetoprotein (AFP) can be captured immune-buoyantly, and then a multifunctional magnetic reporter probe in pseudo-homogeneous solution was further captured to fulfill a sandwich-type immunoreaction. The residual magnetic reporter probe can be firmly and efficiently attracted on a magnetic glassy carbon electrode to fulfill the conversion of the target AFP amount into the residual magnetic electrochemical signal indicator. As a result, the electrochemical signal of methylene blue can accurately reflect the original level of target antigen AFP concentration. By integrating buoyancy-driven quasi-homogenous biorecognition with magnetism-mediated amplification and signal output, the proposed immobilization-free electrochemical immunosensing strategy displayed a wide range of linear response (100 fg mL-1 to 10 ng mL-1), low detection limit (14.52 fg mL-1), and good reproducibility, selectivity, and stability. The designed strategy manifests remarkable advantages including assay simplicity, rapidness, and high sensitivity owing to the in-solution instead of on-electrode biorecognition that could accelerate and improve the biorecognition efficiency. To the best of our knowledge, this is the first cooperation of buoyancy-driven biorecognition with magnetism-mediated signal output in bioanalysis, which would be attractive for rapid clinic biomedical application. Thus, this work provides a fresh perspective for convenient and favorable immobilization-free electrochemical biosensing of universal biomolecules.
Collapse
Affiliation(s)
- Hui-Jing Pan
- School of Chemistry and Chemical Engineering, Shandong Provincial Key Laboratory/Collaborative Innovation Center of Chemical Energy Storage, Liaocheng University, Liaocheng, Shandong 252059, P.R. China
| | - Ying-Chao Gong
- School of Chemistry and Chemical Engineering, Shandong Provincial Key Laboratory/Collaborative Innovation Center of Chemical Energy Storage, Liaocheng University, Liaocheng, Shandong 252059, P.R. China
| | - Wen-Qi Cao
- School of Chemistry and Chemical Engineering, Shandong Provincial Key Laboratory/Collaborative Innovation Center of Chemical Energy Storage, Liaocheng University, Liaocheng, Shandong 252059, P.R. China
| | - Zhi-Heng Zhang
- Oncology Department, Hospital of Traditional Chinese Medicine of Liaocheng City, Liaocheng, Shandong 252000, P.R. China
| | - Li-Ping Jia
- School of Chemistry and Chemical Engineering, Shandong Provincial Key Laboratory/Collaborative Innovation Center of Chemical Energy Storage, Liaocheng University, Liaocheng, Shandong 252059, P.R. China
| | - Wei Zhang
- School of Chemistry and Chemical Engineering, Shandong Provincial Key Laboratory/Collaborative Innovation Center of Chemical Energy Storage, Liaocheng University, Liaocheng, Shandong 252059, P.R. China
| | - Lei Shang
- School of Chemistry and Chemical Engineering, Shandong Provincial Key Laboratory/Collaborative Innovation Center of Chemical Energy Storage, Liaocheng University, Liaocheng, Shandong 252059, P.R. China
| | - Xiao-Jian Li
- School of Chemistry and Chemical Engineering, Shandong Provincial Key Laboratory/Collaborative Innovation Center of Chemical Energy Storage, Liaocheng University, Liaocheng, Shandong 252059, P.R. China
| | - Qing-Wang Xue
- School of Chemistry and Chemical Engineering, Shandong Provincial Key Laboratory/Collaborative Innovation Center of Chemical Energy Storage, Liaocheng University, Liaocheng, Shandong 252059, P.R. China
| | - Huai-Sheng Wang
- School of Chemistry and Chemical Engineering, Shandong Provincial Key Laboratory/Collaborative Innovation Center of Chemical Energy Storage, Liaocheng University, Liaocheng, Shandong 252059, P.R. China
| | - Rong-Na Ma
- School of Chemistry and Chemical Engineering, Shandong Provincial Key Laboratory/Collaborative Innovation Center of Chemical Energy Storage, Liaocheng University, Liaocheng, Shandong 252059, P.R. China
| |
Collapse
|
50
|
Wang X, Dai X, Chen Y. Sonopiezoelectric Nanomedicine and Materdicine. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023:e2301693. [PMID: 37093550 DOI: 10.1002/smll.202301693] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Revised: 04/02/2023] [Indexed: 05/03/2023]
Abstract
Endogenous electric field is ubiquitous in a multitude of important living activities such as bone repair, cell signal transduction, and nerve regeneration, signifying that regulating the electric field in organisms is highly beneficial to maintain organism health. As an emerging and promising research direction, piezoelectric nanomedicine and materdicine precisely activated by ultrasound with synergetic advantages of deep tissue penetration, remote spatiotemporal selectivity, and mechanical-electrical energy interconversion, have been progressively utilized for disease treatment and tissue repair by participating in the modulation of endogenous electric field. This specific nanomedicine utilizing piezoelectric effect activated by ultrasound is typically regarded as "sonopiezoelectric nanomedicine". This comprehensive review summarizes and discusses the substantially employed sonopiezoelectric nanomaterials and nanotherapies to provide an insight into the internal mechanism of the corresponding biological behavior/effect of sonopiezoelectric biomaterials in versatile disease treatments. This review primarily focuses on the sonopiezoelectric biomaterials for biosensing, drug delivery, tumor therapy, tissue regeneration, antimicrobia, and further illuminates the underlying sonopiezoelectric mechanism. In addition, the challenges and developments/prospects of sonopiezoelectric nanomedicine are analyzed for promoting the further clinical translation. It is earnestly expected that this kind of nanomedicine/biomaterials-enabled sonopiezoelectric technology will provoke the comprehensive investigation and promote the clinical development of the next-generation multifunctional materdicine.
Collapse
Affiliation(s)
- Xue Wang
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai, 200444, P. R. China
| | - Xinyue Dai
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai, 200444, P. R. China
| | - Yu Chen
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai, 200444, P. R. China
- School of Medicine, Shanghai University, Shanghai, 200444, P. R. China
| |
Collapse
|