1
|
Santa C, Rodrigues JE, Martinho A, Mendes VM, Madeira N, Coroa M, Santos V, Morais S, Bajouco M, Costa H, Anjo SI, Baldeiras I, Macedo A, Manadas B. Proteomic analysis of peripheral blood mononuclear cells in first episode psychosis - Protein and peptide-centered approaches to elucidate potential diagnostic biomarkers. J Proteomics 2024; 309:105296. [PMID: 39218299 DOI: 10.1016/j.jprot.2024.105296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 08/19/2024] [Accepted: 08/26/2024] [Indexed: 09/04/2024]
Abstract
Diagnosing patients suffering from psychotic disorders is far from being achieved with molecular support, despite all the efforts to study these disorders from different perspectives. Characterizing the proteome of easily obtainable blood specimens, such as the peripheral blood mononuclear cells (PBMCs), has particular interest in biomarker discovery and generating pathophysiological knowledge. This approach has been explored in psychiatry, and while generating valuable information, it has not translated into meaningful biomarker discovery. In this project, we report the proof-of-concept of a methodology that aims to explore further information obtained with classical proteomics approaches that is easily overlooked. PBMC samples from first-episode psychosis and control subjects were subjected to a SWATH-MS approach, and the classical protein relative quantification was performed, where 389 proteins were found to be important to distinguish the two groups. Individual analysis of the quantified peptides was also performed, highlighting peptides of unchanged proteins that were significantly altered. With the combination of protein- and peptide-centered proteomics approaches, it is possible to highlight that information about proteoforms, namely regulation at the peptide level possibly due to post-translational modifications, is routinely overlooked and that its diagnostic potential should be further explored. SIGNIFICANCE: Our exploratory findings highlight the potential of MS-based proteomics strategies, combining protein- and peptide-centered approaches, to aid clinical decision-making in first-episode psychosis, helping to establish early biomarkers for schizophrenia and other psychotic disorders. Particularly, the less popular peptide-centered approach allows the identification/measurement of overlooked modulated peptides that may have potential biomarker characteristics. The application in parallel of protein- and peptide-centered strategies is transversal to research of other diseases, potentially allowing a more comprehensive characterization of the metabolic/pathophysiological alterations related to a specific disease.
Collapse
Affiliation(s)
- Catia Santa
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal; CIBB - Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal
| | - João E Rodrigues
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal; CIBB - Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal
| | - Ana Martinho
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal; CIBB - Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal
| | - Vera M Mendes
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal; CIBB - Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal
| | - Nuno Madeira
- Faculty of Medicine of the University of Coimbra, University of Coimbra, Portugal; Psychiatry Department, Centro Hospitalar e Universitário de Coimbra, Portugal; CIBIT - Coimbra Institute for Biomedical Imaging and Translational Research, University of Coimbra, Portugal
| | - Manuel Coroa
- CIBB - Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal; Faculty of Medicine of the University of Coimbra, University of Coimbra, Portugal; Psychiatry Department, Centro Hospitalar e Universitário de Coimbra, Portugal
| | - Vítor Santos
- CIBB - Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal; Faculty of Medicine of the University of Coimbra, University of Coimbra, Portugal; Psychiatry Department, Centro Hospitalar e Universitário de Coimbra, Portugal
| | - Sofia Morais
- Faculty of Medicine of the University of Coimbra, University of Coimbra, Portugal; Psychiatry Department, Centro Hospitalar e Universitário de Coimbra, Portugal; CIBIT - Coimbra Institute for Biomedical Imaging and Translational Research, University of Coimbra, Portugal
| | - Miguel Bajouco
- Faculty of Medicine of the University of Coimbra, University of Coimbra, Portugal; Psychiatry Department, Centro Hospitalar e Universitário de Coimbra, Portugal; CIBIT - Coimbra Institute for Biomedical Imaging and Translational Research, University of Coimbra, Portugal
| | - Hélder Costa
- Psychiatry Department, Centro Hospitalar e Universitário de Coimbra, Portugal
| | - Sandra I Anjo
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal; CIBB - Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal
| | - Inês Baldeiras
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal; CIBB - Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal; Faculty of Medicine of the University of Coimbra, University of Coimbra, Portugal
| | - Antonio Macedo
- Faculty of Medicine of the University of Coimbra, University of Coimbra, Portugal; Psychiatry Department, Centro Hospitalar e Universitário de Coimbra, Portugal; CIBIT - Coimbra Institute for Biomedical Imaging and Translational Research, University of Coimbra, Portugal.
| | - Bruno Manadas
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal; CIBB - Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal; III Institute for Interdisciplinary Research, University of Coimbra (IIIUC), Portugal.
| |
Collapse
|
2
|
Sun Z, Ning Z, Figeys D. The Landscape and Perspectives of the Human Gut Metaproteomics. Mol Cell Proteomics 2024; 23:100763. [PMID: 38608842 PMCID: PMC11098955 DOI: 10.1016/j.mcpro.2024.100763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 02/26/2024] [Accepted: 04/09/2024] [Indexed: 04/14/2024] Open
Abstract
The human gut microbiome is closely associated with human health and diseases. Metaproteomics has emerged as a valuable tool for studying the functionality of the gut microbiome by analyzing the entire proteins present in microbial communities. Recent advancements in liquid chromatography and tandem mass spectrometry (LC-MS/MS) techniques have expanded the detection range of metaproteomics. However, the overall coverage of the proteome in metaproteomics is still limited. While metagenomics studies have revealed substantial microbial diversity and functional potential of the human gut microbiome, few studies have summarized and studied the human gut microbiome landscape revealed with metaproteomics. In this article, we present the current landscape of human gut metaproteomics studies by re-analyzing the identification results from 15 published studies. We quantified the limited proteome coverage in metaproteomics and revealed a high proportion of annotation coverage of metaproteomics-identified proteins. We conducted a preliminary comparison between the metaproteomics view and the metagenomics view of the human gut microbiome, identifying key areas of consistency and divergence. Based on the current landscape of human gut metaproteomics, we discuss the feasibility of using metaproteomics to study functionally unknown proteins and propose a whole workflow peptide-centric analysis. Additionally, we suggest enhancing metaproteomics analysis by refining taxonomic classification and calculating confidence scores, as well as developing tools for analyzing the interaction between taxonomy and function.
Collapse
Affiliation(s)
- Zhongzhi Sun
- School of Pharmaceutical Sciences, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada; Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - Zhibin Ning
- School of Pharmaceutical Sciences, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - Daniel Figeys
- School of Pharmaceutical Sciences, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada; Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada.
| |
Collapse
|
3
|
Ferreira R, Amado F, Vitorino R. Empowering peptidomics: utilizing computational tools and approaches. Bioanalysis 2023; 15:1315-1325. [PMID: 37737150 DOI: 10.4155/bio-2023-0102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/23/2023] Open
Abstract
Bioinformatics plays a critical role in the advancement of peptidomics by providing powerful tools for data analysis, interpretation and integration. Peptidomics is concerned with the study of peptides, short chains of amino acids with diverse biological functions. This area includes peptide identification and characterization, database construction, de novo sequencing, functional annotation, omics data integration and systems biology. Artificial intelligence techniques, such as machine learning and natural language processing, aid in the interpretation of peptide sequence data and the generation of biological insights. By using bioinformatics approaches, peptidomics researchers can accelerate peptide discovery, understand their functions and gain insights into complex molecular interactions.
Collapse
Affiliation(s)
- Rita Ferreira
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Francisco Amado
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Rui Vitorino
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
- Unidade de Investigação Cardiovascular, Departamento de Cirurgia e Fisiologia, Universidade do Porto, Porto, Portugal
- iBiMED, Department of Medical Sciences, University of Aveiro, Aveiro, Portugal
| |
Collapse
|
4
|
Boekweg H, Payne SH. Challenges and Opportunities for Single-cell Computational Proteomics. Mol Cell Proteomics 2023; 22:100518. [PMID: 36828128 PMCID: PMC10060113 DOI: 10.1016/j.mcpro.2023.100518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 02/15/2023] [Accepted: 02/17/2023] [Indexed: 02/25/2023] Open
Abstract
Single-cell proteomics is growing rapidly and has made several technological advancements. As most research has been focused on improving instrumentation and sample preparation methods, very little attention has been given to algorithms responsible for identifying and quantifying proteins. Given the inherent difference between bulk data and single-cell data, it is necessary to realize that current algorithms being employed on single-cell data were designed for bulk data and have underlying assumptions that may not hold true for single-cell data. In order to develop and optimize algorithms for single-cell data, we need to characterize the differences between single-cell data and bulk data and assess how current algorithms perform on single-cell data. Here, we present a review of algorithms responsible for identifying and quantifying peptides and proteins. We will give a review of how each type of algorithm works, assumptions it relies on, how it performs on single-cell data, and possible optimizations and solutions that could be used to address the differences in single-cell data.
Collapse
Affiliation(s)
- Hannah Boekweg
- Biology Department, Brigham Young University, Provo, Utah, USA
| | - Samuel H Payne
- Biology Department, Brigham Young University, Provo, Utah, USA.
| |
Collapse
|
5
|
A peptide-centric approach to analyse quantitative proteomics data- an application to prostate cancer biomarker discovery. J Proteomics 2023; 272:104774. [PMID: 36427804 DOI: 10.1016/j.jprot.2022.104774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 09/23/2022] [Accepted: 11/01/2022] [Indexed: 11/25/2022]
Abstract
Bottom-up proteomics is a popular approach in molecular biomarker research. However, protein analysts have realized the limitations of protein-based approaches for identifying and quantifying proteins in complex samples, such as the identification of peptides sequences shared by multiple proteins and the difficulty in identifying modified peptides. Thus, there are many exciting opportunities to improve analysis methods. Here, an alternative method focused on peptide analysis is proposed as a complement to the conventional proteomics data analysis. To investigate this hypothesis, a peptide-centric approach was applied to reanalyse a urine proteome dataset of samples from prostate cancer patients and controls. The results were compared with the conventional protein-centric approach. The relevant proteins/peptides to discriminate the groups were detected based on two approaches, p-value and VIP values obtained by a PLS-DA model. A comparison of the two strategies revealed high inconsistency between protein and peptide information and greater involvement of peptides in key PCa processes. This peptide analysis unveiled discriminative features that are lost when proteins are analyzed as homogeneous entities. This type of analysis is innovative in PCa and integrated with the widely used protein-centric approach might provide a more comprehensive view of this disease and revolutionize biomarker discovery. SIGNIFICANCE: In this study, the application of a protein and peptide-centric approaches to reanalyse a urine proteome dataset from prostate cancer (PCa) patients and controls showed that many relevant proteins/peptides are missed by the conservative nature of p-value in statistical tests, therefore, the inclusion of variable selection methods in the analysis of the dataset reported in this work is fruitful. Comparison of protein- and peptide-based approaches revealed a high inconsistency between protein and peptide information and a greater involvement of peptides in key PCa processes. These results provide a new perspective to analyse proteomics data and detect relevant targets based on the integration of peptide and protein information. This data integration allows to unravel discriminative features that normally go unnoticed, to have a more comprehensive view of the disease pathophysiology and to open new avenues for the discovery of biomarkers.
Collapse
|
6
|
Aggarwal S, Raj A, Kumar D, Dash D, Yadav AK. False discovery rate: the Achilles' heel of proteogenomics. Brief Bioinform 2022; 23:6582880. [PMID: 35534181 DOI: 10.1093/bib/bbac163] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 03/14/2022] [Accepted: 04/12/2022] [Indexed: 12/25/2022] Open
Abstract
Proteogenomics refers to the integrated analysis of the genome and proteome that leverages mass-spectrometry (MS)-based proteomics data to improve genome annotations, understand gene expression control through proteoforms and find sequence variants to develop novel insights for disease classification and therapeutic strategies. However, proteogenomic studies often suffer from reduced sensitivity and specificity due to inflated database size. To control the error rates, proteogenomics depends on the target-decoy search strategy, the de-facto method for false discovery rate (FDR) estimation in proteomics. The proteogenomic databases constructed from three- or six-frame nucleotide database translation not only increase the search space and compute-time but also violate the equivalence of target and decoy databases. These searches result in poorer separation between target and decoy scores, leading to stringent FDR thresholds. Understanding these factors and applying modified strategies such as two-pass database search or peptide-class-specific FDR can result in a better interpretation of MS data without introducing additional statistical biases. Based on these considerations, a user can interpret the proteogenomics results appropriately and control false positives and negatives in a more informed manner. In this review, first, we briefly discuss the proteogenomic workflows and limitations in database construction, followed by various considerations that can influence potential novel discoveries in a proteogenomic study. We conclude with suggestions to counter these challenges for better proteogenomic data interpretation.
Collapse
Affiliation(s)
- Suruchi Aggarwal
- Translational Health Science and Technology Institute, NCR Biotech Science Cluster, 3rd milestone, PO Box No. 04, Faridabad-Gurgaon Expressway, Faridabad-121001, Haryana, India
| | - Anurag Raj
- GN Ramachandran Knowledge Centre for Genome Informatics, CSIR-Institute of Genomics & Integrative Biology, South Campus, Mathura Road, New Delhi 110025, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India
| | - Dhirendra Kumar
- GN Ramachandran Knowledge Centre for Genome Informatics, CSIR-Institute of Genomics & Integrative Biology, South Campus, Mathura Road, New Delhi 110025, India
| | - Debasis Dash
- GN Ramachandran Knowledge Centre for Genome Informatics, CSIR-Institute of Genomics & Integrative Biology, South Campus, Mathura Road, New Delhi 110025, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India
| | - Amit Kumar Yadav
- Translational Health Science and Technology Institute, NCR Biotech Science Cluster, 3rd milestone, PO Box No. 04, Faridabad-Gurgaon Expressway, Faridabad-121001, Haryana, India
| |
Collapse
|
7
|
Vitorino R, Guedes S, Trindade F, Correia I, Moura G, Carvalho P, Santos MAS, Amado F. De novo sequencing of proteins by mass spectrometry. Expert Rev Proteomics 2020; 17:595-607. [PMID: 33016158 DOI: 10.1080/14789450.2020.1831387] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
INTRODUCTION Proteins are crucial for every cellular activity and unraveling their sequence and structure is a crucial step to fully understand their biology. Early methods of protein sequencing were mainly based on the use of enzymatic or chemical degradation of peptide chains. With the completion of the human genome project and with the expansion of the information available for each protein, various databases containing this sequence information were formed. AREAS COVERED De novo protein sequencing, shotgun proteomics and other mass-spectrometric techniques, along with the various software are currently available for proteogenomic analysis. Emphasis is placed on the methods for de novo sequencing, together with potential and shortcomings using databases for interpretation of protein sequence data. EXPERT OPINION As mass-spectrometry sequencing performance is improving with better software and hardware optimizations, combined with user-friendly interfaces, de-novo protein sequencing becomes imperative in shotgun proteomic studies. Issues regarding unknown or mutated peptide sequences, as well as, unexpected post-translational modifications (PTMs) and their identification through false discovery rate searches using the target/decoy strategy need to be addressed. Ideally, it should become integrated in standard proteomic workflows as an add-on to conventional database search engines, which then would be able to provide improved identification.
Collapse
Affiliation(s)
- Rui Vitorino
- QOPNA & LAQV-REQUIMTE, Departamento De Química, Institute of Biomedicine - iBiMED , Aveiro, Portugal.,iBiMED, Department of Medical Sciences, University of Aveiro , Aveiro, Portugal.,Unidade De Investigação Cardiovascular, Departamento De Cirurgia E Fisiologia, Faculdade De Medicina, Universidade Do Porto , Porto, Portugal
| | - Sofia Guedes
- QOPNA & LAQV-REQUIMTE, Departamento De Química, Institute of Biomedicine - iBiMED , Aveiro, Portugal
| | - Fabio Trindade
- Unidade De Investigação Cardiovascular, Departamento De Cirurgia E Fisiologia, Faculdade De Medicina, Universidade Do Porto , Porto, Portugal
| | - Inês Correia
- iBiMED, Department of Medical Sciences, University of Aveiro , Aveiro, Portugal
| | - Gabriela Moura
- iBiMED, Department of Medical Sciences, University of Aveiro , Aveiro, Portugal
| | - Paulo Carvalho
- Laboratory for Structural and Computational Proteomics, Carlos Chagas Institute, FIOCRUZ, Laboratory for Proteomics and Protein Engineering , Brazil
| | - Manuel A S Santos
- iBiMED, Department of Medical Sciences, University of Aveiro , Aveiro, Portugal
| | - Francisco Amado
- QOPNA & LAQV-REQUIMTE, Departamento De Química, Institute of Biomedicine - iBiMED , Aveiro, Portugal
| |
Collapse
|
8
|
Simopoulos CMA, Ning Z, Zhang X, Li L, Walker K, Lavallée-Adam M, Figeys D. pepFunk: a tool for peptide-centric functional analysis of metaproteomic human gut microbiome studies. Bioinformatics 2020; 36:4171-4179. [DOI: 10.1093/bioinformatics/btaa289] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 03/20/2020] [Accepted: 04/27/2020] [Indexed: 12/13/2022] Open
Abstract
Abstract
Motivation
Enzymatic digestion of proteins before mass spectrometry analysis is a key process in metaproteomic workflows. Canonical metaproteomic data processing pipelines typically involve matching spectra produced by the mass spectrometer to a theoretical spectra database, followed by matching the identified peptides back to parent-proteins. However, the nature of enzymatic digestion produces peptides that can be found in multiple proteins due to conservation or chance, presenting difficulties with protein and functional assignment.
Results
To combat this challenge, we developed pepFunk, a peptide-centric metaproteomic workflow focused on the analysis of human gut microbiome samples. Our workflow includes a curated peptide database annotated with Kyoto Encyclopedia of Genes and Genomes (KEGG) terms and a gene set variation analysis-inspired pathway enrichment adapted for peptide-level data. Analysis using our peptide-centric workflow is fast and highly correlated to a protein-centric analysis, and can identify more enriched KEGG pathways than analysis using protein-level data. Our workflow is open source and available as a web application or source code to be run locally.
Availability and implementation
pepFunk is available online as a web application at https://shiny.imetalab.ca/pepFunk/ with open-source code available from https://github.com/northomics/pepFunk.
Contact
dfigeys@uottawa.ca
Supplementary information
Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Caitlin M A Simopoulos
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, Ottawa Institute of Systems Biology, University of Ottawa, Ottawa, ON K1H 8M5, Canada
- Faculty of Medicine, SIMM-University of Ottawa Joint Research Center in Systems and Personalized Pharmacology, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Zhibin Ning
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, Ottawa Institute of Systems Biology, University of Ottawa, Ottawa, ON K1H 8M5, Canada
- Faculty of Medicine, SIMM-University of Ottawa Joint Research Center in Systems and Personalized Pharmacology, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Xu Zhang
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, Ottawa Institute of Systems Biology, University of Ottawa, Ottawa, ON K1H 8M5, Canada
- Faculty of Medicine, SIMM-University of Ottawa Joint Research Center in Systems and Personalized Pharmacology, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Leyuan Li
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, Ottawa Institute of Systems Biology, University of Ottawa, Ottawa, ON K1H 8M5, Canada
- Faculty of Medicine, SIMM-University of Ottawa Joint Research Center in Systems and Personalized Pharmacology, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Krystal Walker
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, Ottawa Institute of Systems Biology, University of Ottawa, Ottawa, ON K1H 8M5, Canada
- Faculty of Medicine, SIMM-University of Ottawa Joint Research Center in Systems and Personalized Pharmacology, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Mathieu Lavallée-Adam
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, Ottawa Institute of Systems Biology, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Daniel Figeys
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, Ottawa Institute of Systems Biology, University of Ottawa, Ottawa, ON K1H 8M5, Canada
- Faculty of Medicine, SIMM-University of Ottawa Joint Research Center in Systems and Personalized Pharmacology, University of Ottawa, Ottawa, ON K1H 8M5, Canada
- Canadian Institute for Advanced Research, Toronto, ON M5G 1M1, Canada
| |
Collapse
|
9
|
Peshkin L, Gupta M, Ryazanova L, Wühr M. Bayesian Confidence Intervals for Multiplexed Proteomics Integrate Ion-statistics with Peptide Quantification Concordance. Mol Cell Proteomics 2019; 18:2108-2120. [PMID: 31311848 PMCID: PMC6773559 DOI: 10.1074/mcp.tir119.001317] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2019] [Revised: 06/11/2019] [Indexed: 01/28/2023] Open
Abstract
Multiplexed proteomics has emerged as a powerful tool to measure relative protein expression levels across multiple conditions. The relative protein abundances are inferred by comparing the signals generated by isobaric tags, which encode the samples' origins. Intuitively, the trust associated with a protein measurement depends on the similarity of ratios from the protein's peptides and the signal-strength of these measurements. However, typically the average peptide ratio is reported as the estimate of relative protein abundance, which is only the most likely ratio with a very naive model. Moreover, there is no sense on the confidence in these measurements. Here, we present a mathematically rigorous approach that integrates peptide signal strengths and peptide-measurement agreement into an estimation of the true protein ratio and the associated confidence (BACIQ). The main advantages of BACIQ are: (1) It removes the need to threshold reported peptide signal based on an arbitrary cut-off, thereby reporting more measurements from a given experiment; (2) Confidence can be assigned without replicates; (3) For repeated experiments BACIQ provides confidence intervals for the union, not the intersection, of quantified proteins; (4) For repeated experiments, BACIQ confidence intervals are more predictive than confidence intervals based on protein measurement agreement. To demonstrate the power of BACIQ we reanalyzed previously published data on subcellular protein movement on treatment with an Exportin-1 inhibiting drug. We detect ∼2× more highly significant movers, down to subcellular localization changes of ∼1%. Thus, our method drastically increases the value obtainable from quantitative proteomics experiments, helping researchers to interpret their data and prioritize resources. To make our approach easily accessible we distribute it via a Python/Stan package.
Collapse
Affiliation(s)
- Leonid Peshkin
- Department of Systems Biology, Harvard Medical School, Boston, MA 02115
| | - Meera Gupta
- Department of Molecular Biology & the Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08544; DOE Center for Advanced Bioenergy and Bioproducts Innovation, Princeton, NJ 08544
| | - Lillia Ryazanova
- Department of Molecular Biology & the Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08544; DOE Center for Advanced Bioenergy and Bioproducts Innovation, Princeton, NJ 08544
| | - Martin Wühr
- Department of Molecular Biology & the Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08544; DOE Center for Advanced Bioenergy and Bioproducts Innovation, Princeton, NJ 08544.
| |
Collapse
|
10
|
Peters DL, Wang W, Zhang X, Ning Z, Mayne J, Figeys D. Metaproteomic and Metabolomic Approaches for Characterizing the Gut Microbiome. Proteomics 2019; 19:e1800363. [PMID: 31321880 DOI: 10.1002/pmic.201800363] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 06/27/2019] [Indexed: 12/14/2022]
Abstract
The gut microbiome has been shown to play a significant role in human healthy and diseased states. The dynamic signaling that occurs between the host and microbiome is critical for the maintenance of host homeostasis. Analyzing the human microbiome with metaproteomics, metabolomics, and integrative multi-omics analyses can provide significant information on markers for healthy and diseased states, allowing for the eventual creation of microbiome-targeted treatments for diseases associated with dysbiosis. Metaproteomics enables functional activity information to be gained from the microbiome samples, while metabolomics provides insight into the overall metabolic states affecting/representing the host-microbiome interactions. Combining these functional -omic platforms together with microbiome composition profiling allows for a holistic overview on the functional and metabolic state of the microbiome and its influence on human health. Here the benefits of metaproteomics, metabolomics, and the integrative multi-omic approaches to investigating the gut microbiome in the context of human health and diseases are reviewed.
Collapse
Affiliation(s)
- Danielle L Peters
- Ottawa Institute of Systems Biology and Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, 451 Smyth Road, Ottawa, ON, KIH 8M5, Canada
| | - Wenju Wang
- Ottawa Institute of Systems Biology and Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, 451 Smyth Road, Ottawa, ON, KIH 8M5, Canada
| | - Xu Zhang
- Ottawa Institute of Systems Biology and Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, 451 Smyth Road, Ottawa, ON, KIH 8M5, Canada
| | - Zhibin Ning
- Ottawa Institute of Systems Biology and Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, 451 Smyth Road, Ottawa, ON, KIH 8M5, Canada
| | - Janice Mayne
- Ottawa Institute of Systems Biology and Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, 451 Smyth Road, Ottawa, ON, KIH 8M5, Canada
| | - Daniel Figeys
- Ottawa Institute of Systems Biology and Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, 451 Smyth Road, Ottawa, ON, KIH 8M5, Canada.,Canadian Institute for Advanced Research, 661 University Ave, Toronto, ON, M5G 1M1, Canada.,The University of Ottawa and Shanghai Institute of Materia Medica Joint Research Center on Systems and Personalized Pharmacology, 451 Smyth Road, Ottawa, ON, KIH 8M5, Canada
| |
Collapse
|
11
|
Slama P, Hoopmann MR, Moritz RL, Geman D. Robust determination of differential abundance in shotgun proteomics using nonparametric statistics. Mol Omics 2018; 14:424-436. [PMID: 30259924 PMCID: PMC6490964 DOI: 10.1039/c8mo00077h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Label-free shotgun mass spectrometry enables the detection of significant changes in protein abundance between different conditions. Due to often limited cohort sizes or replication, large ratios of potential protein markers to number of samples, as well as multiple null measurements pose important technical challenges to conventional parametric models. From a statistical perspective, a scenario similar to that of unlabeled proteomics is encountered in genomics when looking for differentially expressed genes. Still, the difficulty of detecting a large fraction of the true positives without a high false discovery rate is arguably greater in proteomics due to even smaller sample sizes and peptide-to-peptide variability in detectability. These constraints argue for nonparametric (or distribution-free) tests on normalized peptide values, thus minimizing the number of free parameters, as well as for measuring significance with permutation testing. We propose such a procedure with a class-based statistic, no parametric assumptions, and no parameters to select other than a nominal false discovery rate. Our method was tested on a new dataset which is available via ProteomeXchange with identifier PXD006447. The dataset was prepared using a standard proteolytic digest of a human protein mixture at 1.5-fold to 3-fold protein concentration changes and diluted into a constant background of yeast proteins. We demonstrate its superiority relative to other approaches in terms of the realized sensitivity and realized false discovery rates determined by ground truth, and recommend it for detecting differentially abundant proteins from MS data.
Collapse
Affiliation(s)
- Patrick Slama
- Center for Imaging Science, Institute for Computational Medicine, Johns Hopkins University, USA.
- Independent Researcher, Paris, France
| | | | - Robert L. Moritz
- Institute for Systems Biology, 401 Terry Avenue N, Seattle, WA, USA 98109
| | - Donald Geman
- Center for Imaging Science, Institute for Computational Medicine, Johns Hopkins University, USA.
- Department of Applied Mathematics and Statistics, Johns Hopkins University, 3400 N. Charles St., Baltimore MD, 21218
| |
Collapse
|
12
|
Zhang B, Pirmoradian M, Zubarev R, Käll L. Covariation of Peptide Abundances Accurately Reflects Protein Concentration Differences. Mol Cell Proteomics 2017; 16:936-948. [PMID: 28302922 PMCID: PMC5417831 DOI: 10.1074/mcp.o117.067728] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Revised: 03/13/2017] [Indexed: 12/29/2022] Open
Abstract
Most implementations of mass spectrometry-based proteomics involve enzymatic digestion of proteins, expanding the analysis to multiple proteolytic peptides for each protein. Currently, there is no consensus of how to summarize peptides' abundances to protein concentrations, and such efforts are complicated by the fact that error control normally is applied to the identification process, and do not directly control errors linking peptide abundance measures to protein concentration. Peptides resulting from suboptimal digestion or being partially modified are not representative of the protein concentration. Without a mechanism to remove such unrepresentative peptides, their abundance adversely impacts the estimation of their protein's concentration. Here, we present a relative quantification approach, Diffacto, that applies factor analysis to extract the covariation of peptides' abundances. The method enables a weighted geometrical average summarization and automatic elimination of incoherent peptides. We demonstrate, based on a set of controlled label-free experiments using standard mixtures of proteins, that the covariation structure extracted by the factor analysis accurately reflects protein concentrations. In the 1% peptide-spectrum match-level FDR data set, as many as 11% of the peptides have abundance differences incoherent with the other peptides attributed to the same protein. If not controlled, such contradicting peptide abundance have a severe impact on protein quantifications. When adding the quantities of each protein's three most abundant peptides, we note as many as 14% of the proteins being estimated as having a negative correlation with their actual concentration differences between samples. Diffacto reduced the amount of such obviously incorrectly quantified proteins to 1.6%. Furthermore, by analyzing clinical data sets from two breast cancer studies, our method revealed the persistent proteomic signatures linked to three subtypes of breast cancer. We conclude that Diffacto can facilitate the interpretation and enhance the utility of most types of proteomics data.
Collapse
Affiliation(s)
- Bo Zhang
- From the ‡Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Scheeles väg 2, SE-17177 Solna, Sweden
| | - Mohammad Pirmoradian
- From the ‡Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Scheeles väg 2, SE-17177 Solna, Sweden.,§Department of Laboratory Medicine, Karolinska University Hospital Huddinge, SE-14186 Huddinge, Sweden
| | - Roman Zubarev
- From the ‡Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Scheeles väg 2, SE-17177 Solna, Sweden;
| | - Lukas Käll
- ¶Science for Life Laboratory, School of Biotechnology, Royal Institute of Technology-KTH, SE-17165 Solna, Sweden
| |
Collapse
|
13
|
Funke S, Perumal N, Bell K, Pfeiffer N, Grus FH. The potential impact of recent insights into proteomic changes associated with glaucoma. Expert Rev Proteomics 2017; 14:311-334. [PMID: 28271721 DOI: 10.1080/14789450.2017.1298448] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
INTRODUCTION Glaucoma, a major ocular neuropathy, is still far from being understood on a molecular scale. Proteomic workflows revealed glaucoma associated alterations in different eye components. By using state-of-the-art mass spectrometric (MS) based discovery approaches large proteome datasets providing important information about glaucoma related proteins and pathways could be generated. Corresponding proteomic information could be retrieved from various ocular sample species derived from glaucoma experimental models or from original human material (e.g. optic nerve head or aqueous humor). However, particular eye tissues with the potential for understanding the disease's molecular pathomechanism remains underrepresented. Areas covered: The present review provides an overview of the analysis depth achieved for the glaucomatous eye proteome. With respect to different eye regions and biofluids, proteomics related literature was found using PubMed, Scholar and UniProtKB. Thereby, the review explores the potential of clinical proteomics for glaucoma research. Expert commentary: Proteomics will provide important contributions to understanding the molecular processes associated with glaucoma. Sensitive discovery and targeted MS approaches will assist understanding of the molecular interplay of different eye components and biofluids in glaucoma. Proteomic results will drive the comprehension of glaucoma, allowing a more stringent disease hypothesis within the coming years.
Collapse
Affiliation(s)
- Sebastian Funke
- a Experimental Ophthalmology , University Medical Center , Mainz , Germany
| | - Natarajan Perumal
- a Experimental Ophthalmology , University Medical Center , Mainz , Germany
| | - Katharina Bell
- a Experimental Ophthalmology , University Medical Center , Mainz , Germany
| | - Norbert Pfeiffer
- a Experimental Ophthalmology , University Medical Center , Mainz , Germany
| | - Franz H Grus
- a Experimental Ophthalmology , University Medical Center , Mainz , Germany
| |
Collapse
|