1
|
Mo Q, Zhong T, Cao B, Han Z, Hu X, Zhao S, Wei X, Yang Z, Qin J. Dihydroxanthene-based monoamine oxidase A-activated photosensitizers for photodynamic/photothermal therapy of tumors. Eur J Med Chem 2024; 272:116474. [PMID: 38735149 DOI: 10.1016/j.ejmech.2024.116474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Revised: 04/28/2024] [Accepted: 04/30/2024] [Indexed: 05/14/2024]
Abstract
Small molecule photosensitizers for combined in vivo tailored cancer diagnostics and photodynamic/photothermal therapy are desperately needed. Monoamine oxidase A (MAO-A)-activated therapeutic and diagnostic compounds provide great selectivity because MAO-A can be employed as a biomarker for associated Tumors. In order to screen photosensitizers with photodynamic therapeutic potential, we have created a range of near-infrared fluorescent molecules in this work by combining dihydroxanthene parent with various heterocyclic fluorescent dyes. The NIR fluorescent diagnostic probe, DHMQ, was created by combining the screened fluorescent dye matrices with the propylamino group, which is the recognition moiety of MAO-A, based on the oxidative deamination mechanism of the enzyme. This probe has a low toxicity level and can identify MAO-A precisely. It has the ability to use fluorescence imaging on mice and cells to track MAO-A activity in real-time. It has strong phototoxicity and can produce singlet oxygen when exposed to laser light. The temperature used in photothermal imaging can get up to 50 °C, which can harm tumor cells permanently and have a positive phototherapeutic impact on tumors grown from SH-SY5Y xenograft mice. The concept of using MAO-A effectively in diseases is expanded by the MAO-A-activated diagnostic-integrated photosensitizers, which offer a new platform for in vivo cancer diagnostics and targeted anticancer treatment.
Collapse
Affiliation(s)
- Qingyuan Mo
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, PR China; Guangxi Institute of Standards and Technology, Nanning, 530200, PR China
| | - Tiantian Zhong
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, PR China
| | - Bingying Cao
- Qiannan Medical College for Nationalities, Duyun, 558003, PR China
| | - Zhongyao Han
- Qiannan Medical College for Nationalities, Duyun, 558003, PR China
| | - Xianyun Hu
- Qiannan Medical College for Nationalities, Duyun, 558003, PR China
| | - Shulin Zhao
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, PR China
| | - Xiaoyu Wei
- China Pharmaceutical University, School of Traditional Chinese Pharmacy, Nanjing, 211100, PR China
| | - Zhengmin Yang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, PR China; Qiannan Medical College for Nationalities, Duyun, 558003, PR China
| | - Jiangke Qin
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, PR China.
| |
Collapse
|
2
|
Saleem M, Hanif M, Rafiq M, Raza H, Ja KS, Lu C. γ-Glutamyltranspeptidase (GGT) Sensitive Fluorescence Probes for Cancer Diagnosis; Brief Review. J Fluoresc 2024; 34:977-1006. [PMID: 37505365 DOI: 10.1007/s10895-023-03353-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Accepted: 07/18/2023] [Indexed: 07/29/2023]
Abstract
Millions of deaths occur each year due to the late diagnosis of abnormal cellular growth within the body. However, the devastating impact of this can be significantly reduced if cancer metastasis is detected early through the use of enzymatic biomarkers. Among several biomarkers, γ-glutamyltranspeptidase (GGT) stands out as a member of the aminopeptidase family. It is primarily found on the surface of cancer cells such as glioma, ovarian, lung, and prostate cancer, without being overexpressed in normal cells or tissues. Recent years have witnessed significant progress in the field of cancer monitoring and imaging. Fluorescence sensing techniques have been employed, utilizing organic small molecular probes with enzyme-specific recognition sites. These probes emit a fluorescent signal upon interacting with GGT, enabling the imaging, identification, and differentiation of normal and cancerous cells, tissues, and organs. This review article presents a concise overview of recent progress in fluorescent probes developed for the selective detection of GGT, focusing on their applications in cancer imaging. It highlights the observed alterations in the fluorescence and absorption spectra of the probes before and after interaction with GGT. Additionally, the study investigates the changes in the probe molecule's structure following enzyme treatment, evaluates the sensor's detection limit, and consolidated imaging studies conducted using confocal fluorescence analysis. This comprehensive survey is expected to contribute to the advancement of sensing techniques for biomarker detection and cancer imaging, providing valuable insights for refining methodologies and inspiring future developments in this field.
Collapse
Affiliation(s)
- Muhammad Saleem
- Department of Chemistry, University of Sargodha, Sargodha, Pakistan.
- Department of Chemistry, Thal University Bhakkar, Bhakkar, 30000, Pakistan.
| | - Muhammad Hanif
- Department of Chemistry, GC University Faisalabad, Sub Campus, Layyah, 31200, Pakistan
| | - Muhammad Rafiq
- Department of Physiology and Biochemistry, Cholistan University of Veterinary and Animal Sciences, Bahawalpur, 6300, Pakistan
| | - Hussain Raza
- Department of Biological Sciences, Kongu National University, Kongju Chungnam, Republic of Korea
| | - Kim Song Ja
- Department of Biological Sciences, Kongu National University, Kongju Chungnam, Republic of Korea
| | - Changrui Lu
- Key Laboratory of Science and Technology of Eco-Textiles, Ministry of Education, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai, 201620, China
| |
Collapse
|
3
|
Zhang C, Fang H, Du W, Zhang D, Qu Y, Tang F, Ding A, Huang K, Peng B, Li L, Huang W. Ultrafast Detection of Monoamine Oxidase A in Live Cells and Clinical Glioma Tissues Using an Affinity Binding-Based Two-Photon Fluorogenic Probe. Angew Chem Int Ed Engl 2023; 62:e202310134. [PMID: 37585321 DOI: 10.1002/anie.202310134] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 08/13/2023] [Accepted: 08/15/2023] [Indexed: 08/18/2023]
Abstract
Abnormal expression of monoamine oxidase A (MAO-A) has been implicated in the development of human glioma, making MAO-A a promising target for therapy. Therefore, a rapid determination of MAO-A is critical for diagnosis. Through in silico screening of two-photon fluorophores, we discovered that a derivative of N,N-dimethyl-naphthalenamine (pre-mito) can effectively fit into the entrance of the MAO-A cavity. Substitutions on the N-pyridine not only further explore the MAO-A cavity, but also enable mitochondrial targeting ability. The aminopropyl substituted molecule, CD1, showed the fastest MAO-A detection (within 20 s), high MAO-A affinity and selectivity. It was also used for in situ imaging of MAO-A in living cells, enabling a comparison of the MAO-A content in human glioma and paracancerous tissues. Our results demonstrate that optimizing the affinity binding-based fluorogenic probes significantly improves their detection rate, providing a general approach for rapid detection probe design and optimization.
Collapse
Affiliation(s)
- Congcong Zhang
- The Institute of Flexible Electronics (IFE, Future Technologies), Xiamen University, Xiamen, 361005, China
| | - Haixiao Fang
- The Institute of Flexible Electronics (IFE, Future Technologies), Xiamen University, Xiamen, 361005, China
- Future Display Institute in Xiamen, Xiamen, 361005, China
| | - Wei Du
- School of Basic Medical Sciences, Anhui Medical University, Hefei, 230032, China
| | - Duoteng Zhang
- The Institute of Flexible Electronics (IFE, Future Technologies), Xiamen University, Xiamen, 361005, China
| | - Yunwei Qu
- The Institute of Flexible Electronics (IFE, Future Technologies), Xiamen University, Xiamen, 361005, China
| | - Fang Tang
- The Institute of Flexible Electronics (IFE, Future Technologies), Xiamen University, Xiamen, 361005, China
- Future Display Institute in Xiamen, Xiamen, 361005, China
| | - Aixiang Ding
- The Institute of Flexible Electronics (IFE, Future Technologies), Xiamen University, Xiamen, 361005, China
| | - Kai Huang
- Future Display Institute in Xiamen, Xiamen, 361005, China
| | - Bo Peng
- Frontiers Science Center for Flexible Electronics, Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering, Northwestern Polytechnical University, Xi'an, 710072, China
- Wuhan National Laboratory for Optoelectronics - Advanced Biomedical Imaging Facility, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Lin Li
- The Institute of Flexible Electronics (IFE, Future Technologies), Xiamen University, Xiamen, 361005, China
- Future Display Institute in Xiamen, Xiamen, 361005, China
- Frontiers Science Center for Flexible Electronics, Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering, Northwestern Polytechnical University, Xi'an, 710072, China
| | - Wei Huang
- The Institute of Flexible Electronics (IFE, Future Technologies), Xiamen University, Xiamen, 361005, China
- Future Display Institute in Xiamen, Xiamen, 361005, China
- Frontiers Science Center for Flexible Electronics, Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering, Northwestern Polytechnical University, Xi'an, 710072, China
| |
Collapse
|
4
|
Li J, Wang L, Luo X, Xia Y, Xie Y, Liu Y, Tan W. Dual-Parameter Recognition-Directed Design of the Activatable Fluorescence Probe for Precise Imaging of Cellular Senescence. Anal Chem 2023; 95:3996-4004. [PMID: 36795559 DOI: 10.1021/acs.analchem.2c04223] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
Abstract
Specific imaging of cellular senescence emerges as a promising strategy for early diagnosis and treatment of various age-related diseases. The currently available imaging probes are routinely designed by targeting a single senescence-related marker. However, the inherently high heterogeneity of senescence makes them inaccessible to achieve specific and accurate detection of broad-spectrum cellular senescence. Here, we report the design of a dual-parameter recognition fluorescent probe for precise imaging of cellular senescence. This probe remains silent in non-senescent cells, yet produces bright fluorescence after sequential responses to two senescence-associated markers, namely, SA-β-gal and MAO-A. In-depth studies reveal that this probe allows for high-contrast imaging of senescence, independent of the cell source or stress type. More impressively, such dual-parameter recognition design further allows it to distinguish senescence-associated SA-β-gal/MAO-A from cancer-related β-gal/MAO-A, compared to commercial or previous single-marker detection probes. This study offers a valuable molecular tool for imaging cellular senescence, which is expected to significantly expand the basic studies on senescence and facilitate advances of senescence-related disease theranostics.
Collapse
Affiliation(s)
- Jili Li
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan 410082, China
| | - Linlin Wang
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan 410082, China
| | - Xiyuan Luo
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan 410082, China
| | - Yinghao Xia
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan 410082, China
| | - Yuqi Xie
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan 410082, China
| | - Yanlan Liu
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan 410082, China
| | - Weihong Tan
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan 410082, China.,The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China.,Institute of Molecular Medicine (IMM), Renji Hospital, Shanghai Jiao Tong University School of Medicine, and College of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
5
|
Wang P, Cheng X, Xiong J, Mao Z, Liu Z. Revealing Formaldehyde Fluxes in Alzheimer's Disease Brain by an Activity‐based Fluorescence Probe. CHINESE J CHEM 2022. [DOI: 10.1002/cjoc.202200021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Pengzhan Wang
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules & College of Chemistry and Chemical Engineering Hubei University Wuhan 430062 China
| | - Xianhua Cheng
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules & College of Chemistry and Chemical Engineering Hubei University Wuhan 430062 China
| | - Jianhua Xiong
- College of Chemistry and Molecular Sciences Wuhan University Wuhan Hubei 430072 China
| | - Zhiqiang Mao
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules & College of Chemistry and Chemical Engineering Hubei University Wuhan 430062 China
| | - Zhihong Liu
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules & College of Chemistry and Chemical Engineering Hubei University Wuhan 430062 China
- College of Chemistry and Molecular Sciences Wuhan University Wuhan Hubei 430072 China
| |
Collapse
|
6
|
Optical substrates for drug-metabolizing enzymes: Recent advances and future perspectives. Acta Pharm Sin B 2022; 12:1068-1099. [PMID: 35530147 PMCID: PMC9069481 DOI: 10.1016/j.apsb.2022.01.009] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 10/06/2021] [Accepted: 11/03/2021] [Indexed: 02/08/2023] Open
Abstract
Drug-metabolizing enzymes (DMEs), a diverse group of enzymes responsible for the metabolic elimination of drugs and other xenobiotics, have been recognized as the critical determinants to drug safety and efficacy. Deciphering and understanding the key roles of individual DMEs in drug metabolism and toxicity, as well as characterizing the interactions of central DMEs with xenobiotics require reliable, practical and highly specific tools for sensing the activities of these enzymes in biological systems. In the last few decades, the scientists have developed a variety of optical substrates for sensing human DMEs, parts of them have been successfully used for studying target enzyme(s) in tissue preparations and living systems. Herein, molecular design principals and recent advances in the development and applications of optical substrates for human DMEs have been reviewed systematically. Furthermore, the challenges and future perspectives in this field are also highlighted. The presented information offers a group of practical approaches and imaging tools for sensing DMEs activities in complex biological systems, which strongly facilitates high-throughput screening the modulators of target DMEs and studies on drug/herb‒drug interactions, as well as promotes the fundamental researches for exploring the relevance of DMEs to human diseases and drug treatment outcomes.
Collapse
|
7
|
Li X, Shi D, Song Y, Xu Y, Gao Y, Qiu W, Chen X, Li X, Huang Y, Feng Y, Li B, Guo Y, Li J. Specific tracking of monoamine oxidase A in heart failure models by a far-red fluorescent probe with an ultra large Stokes shift. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2021.08.114] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
8
|
Xiong JB, Ban DD, Zhou YJ, Li JZ, Chen SR, Liu GQ, Tian JJ, Mi LW, Li DM. A novel AIE-active imidazolium macrocyclic ratiometric fluorescence sensor for pyrophosphate anion. RSC Adv 2022; 12:6876-6880. [PMID: 35424634 PMCID: PMC8981699 DOI: 10.1039/d2ra00293k] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Accepted: 02/22/2022] [Indexed: 12/14/2022] Open
Abstract
An imidazolium bridged macrocyclophane was synthesized as a ratiometric fluorescence sensor with aggregation-induced emission (AIE) characteristic to detect pyrophosphate anion with high selectivity among various anions. In the presence of zinc ion, macrocyclophane can form aggregates through complexation with pyrophosphate anion and emit ratiometric fluorescence, resulting from an enhancement in its aggregate-state emission and a reduction in its monomer emission. This AIE-active macrocycle showed great potential as a ratiometric fluorescence receptor.
Collapse
Affiliation(s)
- Jia-Bin Xiong
- School of Material and Chemical Engineering, Center for Advanced Materials Research, Zhongyuan University of Technology Zhengzhou 450007 China .,College of Chemistry, Green Catalysis Center, International Phosphorus Laboratory, International Joint Research Laboratory for Functional Organophosphorus Materials of Henan Province, Zhengzhou University Zhengzhou 450001 People's Republic of China
| | - Ding-Ding Ban
- School of Material and Chemical Engineering, Center for Advanced Materials Research, Zhongyuan University of Technology Zhengzhou 450007 China
| | - Yong-Juan Zhou
- School of Material and Chemical Engineering, Center for Advanced Materials Research, Zhongyuan University of Technology Zhengzhou 450007 China
| | - Jin-Zhan Li
- School of Material and Chemical Engineering, Center for Advanced Materials Research, Zhongyuan University of Technology Zhengzhou 450007 China
| | - Si-Ru Chen
- School of Material and Chemical Engineering, Center for Advanced Materials Research, Zhongyuan University of Technology Zhengzhou 450007 China
| | - Guo-Qun Liu
- School of Material and Chemical Engineering, Center for Advanced Materials Research, Zhongyuan University of Technology Zhengzhou 450007 China
| | - Jing-Jing Tian
- AIE Research Center, Shaanxi Key Laboratory of Phytochemistry, College of Chemistry and Chemical Engineering, Baoji University of Arts and Sciences Baoji 721013 China
| | - Li-Wei Mi
- School of Material and Chemical Engineering, Center for Advanced Materials Research, Zhongyuan University of Technology Zhengzhou 450007 China
| | - Dong-Mi Li
- College of Chemistry and Chemical Engineering, Luoyang Normal University Luoyang Henan 471000 P. R. China
| |
Collapse
|
9
|
Yang Y, Zhai H, Yuan J, Wang K, Zhang H. Recent Advances in Fluorescent Probes for Flavinase Activity: Design and Applications. Chem Asian J 2022; 17:e202200043. [PMID: 35174973 DOI: 10.1002/asia.202200043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Revised: 02/14/2022] [Indexed: 11/11/2022]
Abstract
Flavinases, including monoamine oxidase (MAO-A/MAO-B), quinone oxidoreductase (NQO1), thioredoxin reductase (TrxR), nitroreductase (NTR) and so on, are important redox enzymes in organisms. They are considered as biomarkers of cell energy metabolism and cell vitality. Importantly, their aberrant expression is related to various disease processes. Therefore, the accurate measurement of flavinase is useful for the early diagnosis of diseases, which has aroused great concern in the scientific community. Various methods are also available for the detection of flavinases, fluorescence probes are considered to be one of the best detection methods due to their easy and accurate sensing capability. This review aims to introduce the advances in the design and application of flavinase probes in the last five years. This study focuses on analyzing the design strategies and reaction mechanisms of flavinases fluorescent probes and discusses the current challenges, which will further advance the development of diagnostic and therapeutic approaches for flavinase-related diseases.
Collapse
Affiliation(s)
- Yiting Yang
- Henan Normal University School of Chemistry and Chemical Engineering, School of Chemistry and Chemical Engineering, CHINA
| | - Hongchen Zhai
- Henan Normal University School of Chemistry and Chemical Engineering, School of Chenistry and chemical Engineering, CHINA
| | - Jie Yuan
- Henan Normal University School of Chemistry and Chemical Engineering, School of Chemistry and Chemical Engineering, CHINA
| | - Kui Wang
- Henan Normal University School of Chemistry and Chemical Engineering, School of Chemistry and Chemical Engineering, CHINA
| | - Hua Zhang
- Henan Normal University, School of Chemistry and Chemical Engineering, 46 Jianshe Road, Muye Zone,, 453007, Xinxiang, CHINA
| |
Collapse
|
10
|
Mitochondria targeting fluorescent probe for MAO-A and the application in the development of drug candidate for neuroinflammation. Anal Chim Acta 2022; 1199:339573. [DOI: 10.1016/j.aca.2022.339573] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 01/13/2022] [Accepted: 02/02/2022] [Indexed: 12/29/2022]
|
11
|
Zhao Y, Shi W, Li X, Ma H. Recent advances in fluorescent probes for lipid droplets. Chem Commun (Camb) 2022; 58:1495-1509. [PMID: 35019910 DOI: 10.1039/d1cc05717k] [Citation(s) in RCA: 55] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Lipid droplets (LDs) have been known as a non-negligible cellular organelle for lipid storage and metabolism. Fluorescent probes for imaging LDs would be paramount for depicting their functions in cells. Although commercially available Nile Red and BODIPYtm 493/503 have been widely used for labelling LDs, they exhibit unsatisfactory specificity and spectroscopic properties. This feature article reviews the recent advances in organic fluorescent probes for imaging LDs. We first introduce the key points for probe design, including regulating hydrophobicity and enhancing fluorescence quantum yield in LDs. Then, we summarize the structural features and biological applications of some representative LD probes classified by their frameworks. In addition, the current challenges and future research trends for the fluorescent probes of LDs are discussed as well.
Collapse
Affiliation(s)
- Yanyan Zhao
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China. .,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wen Shi
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China. .,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaohua Li
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.
| | - Huimin Ma
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China. .,University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
12
|
Zhuang X, Hu Y, Wang J, Hu J, Wang Q, Yu X. A colorimetric and SERS dual-readout sensor for sensitive detection of tyrosinase activity based on 4-mercaptophenyl boronic acid modified AuNPs. Anal Chim Acta 2021; 1188:339172. [PMID: 34794563 DOI: 10.1016/j.aca.2021.339172] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 09/17/2021] [Accepted: 10/12/2021] [Indexed: 10/20/2022]
Abstract
Tyrosinase (TYR) is as a well-known polyphenol oxidase and important biomarker of melanocytic lesions. Thus, developing powerful methods to determine TYR activity is of great value in the early diagnosis of skin disease. Direct surface-enhanced Raman scattering (SERS) detection of biomolecules is usually affected by non-specific interference and complicate structure of the analytes. It is a challenge to develop Raman-active molecules with specific recognition to analytes in complex media. Here, we report a novel colorimetric and surface-enhanced Raman scattering (SERS) dual-readout assay for the determination of TYR using commercially available and economical 4-mercaptophenyl boronic acid (4-MPBA) as a Raman-active and recognition molecule. 4-MPBA provides a unique interactive boronic acid group to the diol group of TYR substrate and exhibits good SERS signal. Also, the introduction of magnetic beads could promptly improve the anti-interference ability of dual-mode sensor. The TYR-incubated tyramine-modified magnetic beads could obviously change the concentration of 4-MPBA-AuNPs in the presence of O2 and ascorbic acid, where the ultraviolet visible (UV-vis) absorption and SERS intensity were directly related to the concentration of TYR added. The dual-mode sensor had a rapid response to TYR within 1 min under optimized conditions and had high selectivity for TYR with a limit of detection at 0.001 U/mL. In addition, the dual-mode strategy showed promising prospects in the determination of TYR activity in serum samples and could be used to screen TYR inhibitors.
Collapse
Affiliation(s)
- Xiumei Zhuang
- MOE Key Laboratory of Laser Life Science, Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, 510631, China; Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, 510631, China; Guangzhou Key Laboratory of Spectral Analysis and Functional Probes, College of Biophotonics, South China Normal University, Guangzhou, 510631, China
| | - Yongjun Hu
- MOE Key Laboratory of Laser Life Science, Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, 510631, China; Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, 510631, China; Guangzhou Key Laboratory of Spectral Analysis and Functional Probes, College of Biophotonics, South China Normal University, Guangzhou, 510631, China.
| | - Junjie Wang
- MOE Key Laboratory of Laser Life Science, Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, 510631, China; Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, 510631, China; Guangzhou Key Laboratory of Spectral Analysis and Functional Probes, College of Biophotonics, South China Normal University, Guangzhou, 510631, China
| | - Jieyu Hu
- MOE Key Laboratory of Laser Life Science, Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, 510631, China; Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, 510631, China; Guangzhou Key Laboratory of Spectral Analysis and Functional Probes, College of Biophotonics, South China Normal University, Guangzhou, 510631, China
| | - Qi Wang
- MOE Key Laboratory of Laser Life Science, Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, 510631, China; Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, 510631, China; Guangzhou Key Laboratory of Spectral Analysis and Functional Probes, College of Biophotonics, South China Normal University, Guangzhou, 510631, China
| | - Xingxing Yu
- MOE Key Laboratory of Laser Life Science, Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, 510631, China; Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, 510631, China; Guangzhou Key Laboratory of Spectral Analysis and Functional Probes, College of Biophotonics, South China Normal University, Guangzhou, 510631, China
| |
Collapse
|
13
|
Zhu H, Liu C, Su M, Rong X, Zhang Y, Wang X, Wang K, Li X, Yu Y, Zhang X, Zhu B. Recent advances in 4-hydroxy-1,8-naphthalimide-based small-molecule fluorescent probes. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2021.214153] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
14
|
Zhang C, Tang C, Mei Y, Zhang L, Zhu A, Tian Y. A ratiometric electrochemical sensor for selectively monitoring monoamine oxidase A in the live brain. Chem Commun (Camb) 2021; 57:6487-6490. [PMID: 34100043 DOI: 10.1039/d1cc00787d] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Herein, an electrochemical method for selectively sensing and accurately quantifying monoamine oxidase A (MAO-A) in the cortex and thalamus of a live mouse brain was reported. Using this tool, it was found that MAO-A increased Ca2+ entry into neurons via the TPRM2 channel in the live mouse brain of an AD model.
Collapse
Affiliation(s)
- Chuanping Zhang
- School of Chemistry and Molecular Engineering, Shanghai Key Laboratory of Green Chemistry and Chemical Processes, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China.
| | | | | | | | | | | |
Collapse
|
15
|
Sidhu JS, Kaur N, Singh N. Trends in small organic fluorescent scaffolds for detection of oxidoreductase. Biosens Bioelectron 2021; 191:113441. [PMID: 34167075 DOI: 10.1016/j.bios.2021.113441] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 05/23/2021] [Accepted: 06/11/2021] [Indexed: 12/18/2022]
Abstract
Oxidoreductases are diverse class of enzymes engaged in modulating the redox homeostasis and cellular signaling cascades. Abnormal expression of oxidoreductases including thioredoxin reductase, azoreductase, cytochrome oxidoreductase, tyrosinase and monoamine oxidase leads to the initiation of numerous disorders. Thus, enzymes are the promising biomarkers of the diseased cells and their accurate detection has utmost significance for clinical diagnosis. The detection method must be extremely selective, sensitive easy to use, long self-life, mass manufacturable and disposable. Fluorescence assay approach has been developed potential substitute to conventional techniques used in enzyme's quantification. The fluorescent probes possess excellent stability, high spatiotemporal ratio and reproducibility represent applications in real sample analysis. Therefore, the enzymatic transformations have been monitored by small activatable organic fluorescent probes. These probes are generally integrated with enzyme's substrate/inhibitors to improve their binding affinity toward the enzyme's catalytic site. As the recognition unit bio catalyzed, the signaling unit produces the readout signals and provides novel insights to understand the biochemical reactions for diagnosis and development of point of care devices. Several structural modifications are required in fluorogenic scaffolds to tune the selectivity for a particular enzyme. Hence, the fluorescent probes with their structural features and enzymatic reaction mechanism of oxidoreductase are the key points discussed in this review. The basic strategies to detect each enzyme are discussed. The selectivity, sensitivity and real-time applications are critically compared. The kinetic parameters and futuristic opportunities are present, which would be enormous benefits for chemists and biologists to understand the facts to design and develop unique fluorophore molecules for clinical applications.
Collapse
Affiliation(s)
- Jagpreet Singh Sidhu
- Department of Chemistry, Indian Institute of Technology Ropar, Rupnagar, Punjab, 140001, India; Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab, Bathinda, India
| | - Navneet Kaur
- Department of Chemistry, Panjab University, Chandigarh, 160014, India
| | - Narinder Singh
- Department of Chemistry, Indian Institute of Technology Ropar, Rupnagar, Punjab, 140001, India.
| |
Collapse
|
16
|
|
17
|
Rajapaksha AA, Fu YX, Guo WY, Liu SY, Li ZW, Xiong CQ, Yang WC, Yang GF. Review on the recent progress in the development of fluorescent probes targeting enzymes. Methods Appl Fluoresc 2021; 9. [PMID: 33873170 DOI: 10.1088/2050-6120/abf988] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Accepted: 04/19/2021] [Indexed: 02/07/2023]
Abstract
Enzymes are very important for biological processes in a living being, performing similar or multiple tasks in and out of cells, tissues and other organisms at a particular location. The abnormal activity of particular enzyme usually caused serious diseases such as Alzheimer's disease, Parkinson's disease, cancers, diabetes, cardiovascular diseases, arthritis etc. Hence, nondestructive and real-time visualization for certain enzyme is very important for understanding the biological issues, as well as the drug administration and drug metabolism. Fluorescent cellular probe-based enzyme detectionin vitroandin vivohas become broad interest for human disease diagnostics and therapeutics. This review highlights the recent findings and designs of highly sensitive and selective fluorescent cellular probes targeting enzymes for quantitative analysis and bioimaging.
Collapse
Affiliation(s)
- Asanka Amith Rajapaksha
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensor Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, People's Republic of China.,Department of Nano Science Technology, Faculty of Technology, Wayamba University of Sri Lanka, Kuliyapitiya, Sri Lanka
| | - Yi-Xuan Fu
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensor Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, People's Republic of China
| | - Wu Yingzheng Guo
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensor Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, People's Republic of China
| | - Shi-Yu Liu
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensor Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, People's Republic of China
| | - Zhi-Wen Li
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensor Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, People's Republic of China
| | - Cui-Qin Xiong
- Department of Interventional Medicine, Wuhan Third Hospital-Tongren Hospital of Wuhan University, Wuhan 430070, People's Republic of China
| | - Wen-Chao Yang
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensor Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, People's Republic of China
| | - Guang-Fu Yang
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensor Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, People's Republic of China
| |
Collapse
|
18
|
Gardner SH, Reinhardt CJ, Chan J. Advances in Activity-Based Sensing Probes for Isoform-Selective Imaging of Enzymatic Activity. Angew Chem Int Ed Engl 2021; 60:5000-5009. [PMID: 32274846 PMCID: PMC7544620 DOI: 10.1002/anie.202003687] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Indexed: 12/12/2022]
Abstract
Until recently, there were no generalizable methods for assessing the effects of post-translational regulation on enzymatic activity. Activity-based sensing (ABS) has emerged as a powerful approach for monitoring small-molecule and enzyme activities within living systems. Initial examples of ABS were applied for measuring general enzymatic activity; however, a recent focus has been placed on increasing the selectivity to monitor a single enzyme or isoform. The highest degree of selectivity is required for differentiating between isoforms, where the targets display significant structural similarities as a result of a gene duplication or alternative splicing. This Minireview highlights key examples of small-molecule isoform-selective probes with a focus on the relevance of isoform differentiation, design strategies to achieve selectivity, and applications in basic biology or in the clinic.
Collapse
Affiliation(s)
- Sarah H Gardner
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Christopher J Reinhardt
- Department of Chemistry, Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Jefferson Chan
- Department of Chemistry, Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| |
Collapse
|
19
|
Shang J, Shi W, Li X, Ma H. Water-Soluble Near-Infrared Fluorescent Probes for Specific Detection of Monoamine Oxidase A in Living Biosystems. Anal Chem 2021; 93:4285-4290. [DOI: 10.1021/acs.analchem.0c05283] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Jizhen Shang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wen Shi
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Xiaohua Li
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Huimin Ma
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
20
|
Fang H, Wu M, Ji W, Wang L, Chen Y, Chen D, Yang N, Wu Q, Yu C, Liu J, Liu J, Bai H, Peng B, Huang X, Yu HD, Li L. Simultaneously Detecting Monoamine Oxidase A and B in Disease Cell/Tissue Samples Using Paper-Based Devices. ACS APPLIED BIO MATERIALS 2021; 4:1395-1402. [PMID: 35014490 DOI: 10.1021/acsabm.0c01288] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
As enzymes in the outer membrane of the mitochondrion, monoamine oxidases (MAOs) can catalyze the oxidative deamination of monoamines in the human body. According to different substrates, MAOs can be divided into MAO-A and MAO-B. The imbalance of the MAO-A is associated with neurological degeneration, while excess MAO-B activity is closely connected with Parkinson's disease (PD) and Alzheimer's disease (AD); therefore, detection of MAOs is of great significance for the diagnosis and treatment of these diseases. This work reports the multiplexed detection of MAO-A and MAO-B using paper-based devices based on chemiluminescence (CL). The detection limits were 5.01 pg/mL for MAO-A and 8.50 pg/mL for MAO-B in human serum. In addition, we used paper-based devices to detect MAOs in human cells and tissue samples and found that the results of paper-based detection and Western blotting (WB) showed the same trend. While only one antibody can be incubated on the same membrane by WB, multiple antibodies incubated on the same paper enabled simultaneous detection of MAO-A and MAO-B by paper-based devices. The paper-based assay could be used for preliminary early screening of clinical samples for MAOs and can be extended as an alternative to WB for multiplexed detection of various proteins in disease cell or tissue samples.
Collapse
Affiliation(s)
- Haixiao Fang
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing 211816, P. R. China
| | - Meirong Wu
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing 211816, P. R. China
| | - Wenhui Ji
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing 211816, P. R. China
| | - Limin Wang
- Frontiers Science Center for Flexible Electronics, Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering, Northwestern Polytechnical University, 127 West Youyi Road, Xi'an 710072, P. R. China
| | - Yipei Chen
- Frontiers Science Center for Flexible Electronics, Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering, Northwestern Polytechnical University, 127 West Youyi Road, Xi'an 710072, P. R. China
| | - Ding Chen
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing 211816, P. R. China
| | - Naidi Yang
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing 211816, P. R. China
| | - Qiong Wu
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing 211816, P. R. China
| | - Changmin Yu
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing 211816, P. R. China
| | - Jie Liu
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing 211816, P. R. China
| | - Jinhua Liu
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing 211816, P. R. China
| | - Hua Bai
- Frontiers Science Center for Flexible Electronics, Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering, Northwestern Polytechnical University, 127 West Youyi Road, Xi'an 710072, P. R. China
| | - Bo Peng
- Frontiers Science Center for Flexible Electronics, Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering, Northwestern Polytechnical University, 127 West Youyi Road, Xi'an 710072, P. R. China
| | - Xiao Huang
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing 211816, P. R. China
| | - Hai-Dong Yu
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing 211816, P. R. China.,Frontiers Science Center for Flexible Electronics, Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering, Northwestern Polytechnical University, 127 West Youyi Road, Xi'an 710072, P. R. China
| | - Lin Li
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing 211816, P. R. China
| |
Collapse
|
21
|
Yan Z, Xue J, Zhou M, Wang J, Zhang Y, Wang Y, Qiao J, He Y, Li P, Zhang S, Zhang X. Dynamic Monitoring of Phase-Separated Biomolecular Condensates by Photoluminescence Lifetime Imaging. Anal Chem 2021; 93:2988-2995. [PMID: 33512148 DOI: 10.1021/acs.analchem.0c05011] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The formation of biomolecular condensates is driven by liquid-liquid phase separation, which is prevalent in cells to govern crucial cellular functions. However, understanding the properties of phase-separated condensates remains very challenging for the lack of suitable techniques. Here, we report a photoluminescence lifetime imaging method for real-time monitoring of phase-separated condensates, both in vitro and in living cells, using a microsecond-scale photoluminescence lifetime probe based on iridium complex. The probe has a large Stokes shift, excellent cell permeability, and minimal cell autofluorescence interference. With this method, the dynamic process of phase separation of fused in sarcoma protein has been well explored, showing high spatiotemporal resolution and high throughput. Beginning with initial formation, the protein droplets get bigger and more viscous, and then a final maturation to solidified aggregates has been characterized. This study paves the path for a deeper understanding of the properties of phase-separated biomolecular condensates.
Collapse
Affiliation(s)
- Zihe Yan
- Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Jianfeng Xue
- Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Min Zhou
- Beijing Advanced Innovation Center for Structural Biology, Beijing Frontier Research Center for Biological Structure, School of Life Sciences, Tsinghua University, Beijing 100084, China.,Tsinghua-Peking Joint Center for Life Sciences, Beijing 100084, China
| | - Jinyu Wang
- Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Yanxin Zhang
- Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Yuan Wang
- Beijing Advanced Innovation Center for Structural Biology, Beijing Frontier Research Center for Biological Structure, School of Life Sciences, Tsinghua University, Beijing 100084, China.,Tsinghua-Peking Joint Center for Life Sciences, Beijing 100084, China
| | - Juan Qiao
- Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Yan He
- Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Pilong Li
- Beijing Advanced Innovation Center for Structural Biology, Beijing Frontier Research Center for Biological Structure, School of Life Sciences, Tsinghua University, Beijing 100084, China.,Tsinghua-Peking Joint Center for Life Sciences, Beijing 100084, China
| | - Sichun Zhang
- Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Xinrong Zhang
- Department of Chemistry, Tsinghua University, Beijing 100084, China
| |
Collapse
|
22
|
Gao L, Wang W, Wang X, Yang F, Xie L, Shen J, Brimble MA, Xiao Q, Yao SQ. Fluorescent probes for bioimaging of potential biomarkers in Parkinson's disease. Chem Soc Rev 2021; 50:1219-1250. [DOI: 10.1039/d0cs00115e] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
This review comprehensively summarizes various types of fluorescent probes for PD and their applications for detection of various PD biomarkers.
Collapse
Affiliation(s)
- Liqian Gao
- School of Pharmaceutical Sciences (Shenzhen)
- Sun Yat-sen University
- Shenzhen, 518107
- P. R. China
- Department of Chemistry
| | - Wei Wang
- School of Pharmaceutical Sciences (Shenzhen)
- Sun Yat-sen University
- Shenzhen, 518107
- P. R. China
- Department of Chemistry
| | - Xuan Wang
- School of Pharmaceutical Sciences (Shenzhen)
- Sun Yat-sen University
- Shenzhen, 518107
- P. R. China
| | - Fen Yang
- School of Pharmaceutical Sciences (Shenzhen)
- Sun Yat-sen University
- Shenzhen, 518107
- P. R. China
| | - Liuxing Xie
- School of Pharmaceutical Sciences (Shenzhen)
- Sun Yat-sen University
- Shenzhen, 518107
- P. R. China
| | - Jun Shen
- Department of Radiology
- Sun Yat-Sen Memorial Hospital
- Sun Yat-Sen University
- Guangzhou
- P. R. China
| | - Margaret A. Brimble
- School of Chemical Sciences
- The University of Auckland
- Auckland 1010
- New Zealand
| | - Qicai Xiao
- School of Pharmaceutical Sciences (Shenzhen)
- Sun Yat-sen University
- Shenzhen, 518107
- P. R. China
- Department of Chemistry
| | - Shao Q. Yao
- Department of Chemistry
- National University of Singapore
- Singapore
| |
Collapse
|
23
|
Shen YJ, Zhang K. A bifunctional optical probe based on ESIPT-triggered disalicylaldehyde with ratiometric detection of iron and copper ions. Polyhedron 2021. [DOI: 10.1016/j.poly.2020.114883] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
|
24
|
Ma S, Chen G, Xu J, Liu Y, Li G, Chen T, Li Y, James TD. Current strategies for the development of fluorescence-based molecular probes for visualizing the enzymes and proteins associated with Alzheimer’s disease. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2020.213553] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
25
|
Jian C, Yan J, Zhang H, Zhu J. Recent advances of small molecule fluorescent probes for distinguishing monoamine oxidase-A and monoamine oxidase-B in vitro and in vivo. Mol Cell Probes 2020; 55:101686. [PMID: 33279529 DOI: 10.1016/j.mcp.2020.101686] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2020] [Revised: 11/26/2020] [Accepted: 11/27/2020] [Indexed: 02/06/2023]
Abstract
Monoamine oxidases (MAO-A and MAO-B) are the two flavin adenine dinucleotide (FAD) enzymes that play an important role in neurotransmitter homeostasis and in protection against biogenic amines. The two MAO enzymes are related to various diseases such as neurological disorders, cancer or other systemic diseases. It is crucial to distinguish these two subtypes in order to explore the pathogenesis and pathophysiology of different diseases. In this review, the relationship between MAOs and related diseases is briefly introduced. Additionally, we summarize the recent advances in small molecule fluorescent probes for specific detection of MAO-A and MAO-B.
Collapse
Affiliation(s)
- Chang'e Jian
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University, Nanjing, 211800, China
| | - Jiaxu Yan
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University, Nanjing, 211800, China
| | - Hang Zhang
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University, Nanjing, 211800, China.
| | - Jianwei Zhu
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University, Nanjing, 211800, China; College of Pharmaceutical Sciences, Nanjing Tech University, Nanjing, 211800, China.
| |
Collapse
|
26
|
Drechsel J, Kyrousi C, Cappello S, Sieber SA. Tranylcypromine specificity for monoamine oxidase is limited by promiscuous protein labelling and lysosomal trapping. RSC Chem Biol 2020; 1:209-213. [PMID: 34458760 PMCID: PMC8341850 DOI: 10.1039/d0cb00048e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Accepted: 07/24/2020] [Indexed: 11/21/2022] Open
Abstract
Monoamine oxidases MAOA and MAOB catalyze important cellular functions such as the deamination of neurotransmitters. Correspondingly, MAO inhibitors are used for the treatment of severe neuropsychiatric disorders such as depression. A commonly prescribed drug against refractory depression is tranylcypromine, however, the side effects are poorly understood. In order to decipher putative off-targets, we synthesized two tranylcypromine probes equipped with either an alkyne moiety or an alkyne-diazirine minimal photocrosslinker for in situ proteome profiling. Surprisingly, LC–MS/MS analysis revealed low enrichment of MAOA and relatively promiscuous labeling of proteins. Photoprobe labeling paired with fluorescent imaging studies revealed lysosomal trapping which could be largely reverted by the addition of lysosomotropic drugs. Chemical proteomics and cellular imaging reveal lysosomal trapping of tranylcypromine which can be largely reverted by the addition of lysosomotropic drugs.![]()
Collapse
Affiliation(s)
- Jonas Drechsel
- Department of Chemistry, Technical University of Munich Lichtenbergstraße 4 85748 Garching Germany
| | - Christina Kyrousi
- Max Planck Institute of Psychiatry Kraepelinstraße 2 80804 Munich Germany
| | - Silvia Cappello
- Max Planck Institute of Psychiatry Kraepelinstraße 2 80804 Munich Germany
| | - Stephan A Sieber
- Department of Chemistry, Technical University of Munich Lichtenbergstraße 4 85748 Garching Germany
| |
Collapse
|
27
|
Gardner SH, Reinhardt CJ, Chan J. Fortschritte bei aktivitätsbasierten Sonden für die isoformselektive Bildgebung enzymatischer Aktivität. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202003687] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Sarah H. Gardner
- Department of Biochemistry University of Illinois at Urbana-Champaign Urbana IL 61801 USA
| | - Christopher J. Reinhardt
- Department of Chemistry Beckman Institute for Advanced Science and Technology University of Illinois at Urbana-Champaign Urbana IL 61801 USA
| | - Jefferson Chan
- Department of Chemistry Beckman Institute for Advanced Science and Technology University of Illinois at Urbana-Champaign Urbana IL 61801 USA
| |
Collapse
|
28
|
Detection of Lipase Activity in Cells by a Fluorescent Probe Based on Formation of Self-Assembled Micelles. iScience 2020; 23:101294. [PMID: 32623339 PMCID: PMC7334599 DOI: 10.1016/j.isci.2020.101294] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Revised: 05/25/2020] [Accepted: 06/15/2020] [Indexed: 01/26/2023] Open
Abstract
Reliable and sensitive detection of lipase activity is essential for the early diagnosis and monitoring of acute pancreatitis or progression of digestive diseases. However, the available fluorescent probes for detection of lipase activity are only implemented in a hexane-water two-phase system due to the nature of heterogeneous catalysis of lipase, thus limiting their applications in direct imaging of lipase activity in living cells and tissues. Here we designed and synthesized a "turn on" fluorescent probe CPP based on self-assembled micelles for hydrolysis of lipase. The CPP probe exhibits high selectivity and excellent sensitivity for the detection of lipase in such a homogeneous system and is successfully applied for monitoring lipase activity in pancreatic AR42J cells, tissues, and serums. Taken together, the fluorescent CPP probe not only provides a tool for diagnostic potential in pancreatic disease but also demonstrates an application potential for micelle self-assembly-based development of biological probes.
Collapse
|
29
|
Wang M, Xie JL, Li J, Fan YY, Deng X, Duan HL, Zhang ZQ. 3-Aminophenyl Boronic Acid Functionalized Quantum-Dot-Based Ratiometric Fluorescence Sensor for the Highly Sensitive Detection of Tyrosinase Activity. ACS Sens 2020; 5:1634-1640. [PMID: 32486639 DOI: 10.1021/acssensors.0c00122] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Using the commercially available and economical 6-hydroxycoumarin (6-HC) as the substrate, a dual-emission ratiometric fluorescence sensor was developed to detect tyrosinase (TYR) activity based on 3-aminophenyl boronic acid functionalized quantum dots (APBA-QDs). TYR can catalyze 6-HC, a monohydroxy compound, to form a fluorescence-enhancing o-hydroxy compound, 6,7-dihydroxycoumarin. Owing to the special covalent binding between the o-hydroxyl and boric acid groups, APBA-QDs react with 6,7-dihydroxycoumarin to form a five-membered ring ester dual-emission fluorescence probe for TYR. With an increase in TYR activity, the fluorescence at 675 nm originating from the QDs is gradually quenched, whereas that at 465 nm owing to 6,7-dihydroxycoumarin increases. Referencing the decreasing signal of the dual-emission probe at 675 nm to measure the increasing signal at 465 nm, a ratiometric fluorescence method was established to detect the TYR activity with high sensitivity and selectivity. Under the conditions optimized via response surface methodology, a linear range of 0-0.05 U/mL was obtained for the TYR activity. The detection limit was as low as 0.003 U/mL. This sensing strategy can also be adopted for the rapid screening of the TYR inhibitors.
Collapse
Affiliation(s)
- Man Wang
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi’an 710062, China
| | - Jia-Ling Xie
- Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry (Shaanxi Normal University), Ministry of Education, Xi’an 710062, China
| | - Jun Li
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi’an 710062, China
| | - Yao-Yao Fan
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi’an 710062, China
| | - Xu Deng
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi’an 710062, China
| | - Hui-Ling Duan
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi’an 710062, China
| | - Zhi-Qi Zhang
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi’an 710062, China
- Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry (Shaanxi Normal University), Ministry of Education, Xi’an 710062, China
| |
Collapse
|
30
|
Hua W, Zhao J, Gou S. A naphthalimide derivative can release COS and form H 2S in a light-controlled manner and protect cells against ROS with real-time monitoring ability. Analyst 2020; 145:3878-3884. [PMID: 32297624 DOI: 10.1039/d0an00371a] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
As an important gasotransmitter, hydrogen sulfide having multiple biological roles cannot be easily probed in cells. In this study, a light controllable H2S donor, Nap-Sul-ONB, derived from naphthalimide was developed. Under the irradiation of 365 nm light, a readily controlled stimulus, the donor could release COS to form H2S and exhibit turn on fluorescence to indicate the release of payload and its cellular location. Besides, the ROS scavenging ability and cell protective effect of Nap-Sul-ONB against endogenous and exogenous ROS were studied. The results showed that upon 365 nm light irradiation, Nap-Sul-ONB could reduce the cellular ROS level and increase the survival rate of PMA-treated cells.
Collapse
Affiliation(s)
- Wuyang Hua
- Pharmaceutical Research Centre and School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China.
| | | | | |
Collapse
|
31
|
Rudebeck EE, Cox RP, Bell TDM, Acharya R, Feng Z, Gueven N, Ashton TD, Pfeffer FM. Mixed alkoxy/hydroxy 1,8-naphthalimides: expanded fluorescence colour palette and in vitro bioactivity. Chem Commun (Camb) 2020; 56:6866-6869. [PMID: 32432616 DOI: 10.1039/d0cc01251c] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
An efficient and functional group tolerant route to access hydroxy 1,8-naphthalimides has been used to synthesise a range of mono- and disubstituted hydroxy-1,8-naphthalimides with fluorescence emissions covering the visible spectrum. The dialkoxy substituted compounds prepared possess high quantum yields (up to 0.95) and long fluorescent lifetimes (up to 14 ns). The method has been used to generate scriptaid analogues that successfully inhibit HDAC6 in vitro with tubulin acetylation assays confirming that these compounds are more effective than tubastatin.
Collapse
Affiliation(s)
- Elley E Rudebeck
- School of Life and Environmental Sciences, Deakin University, Waurn Ponds, 3216, Australia.
| | | | | | | | | | | | | | | |
Collapse
|
32
|
Li L, Feng L, Zhang M, He X, Luan S, Wang C, James TD, Zhang H, Huang H, Ma X. Visualization of penicillin G acylase in bacteria and high-throughput screening of natural inhibitors using a ratiometric fluorescent probe. Chem Commun (Camb) 2020; 56:4640-4643. [PMID: 32270142 DOI: 10.1039/d0cc00197j] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A ratiometric fluorescent probe (PNA) was developed to sense and image endogenous bacterial penicillin G acylase (PGA). Oleanolic acid was discovered as a potential natural inhibitor of PGA using high-throughput screening techniques based on PNA.
Collapse
Affiliation(s)
- Lu Li
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou 221004, China.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Yang ZM, Mo QY, He JM, Mo DL, Li J, Chen H, Zhao SL, Qin JK. Mitochondrial-Targeted and Near-Infrared Fluorescence Probe for Bioimaging and Evaluating Monoamine Oxidase A Activity in Hepatic Fibrosis. ACS Sens 2020; 5:943-951. [PMID: 32223138 DOI: 10.1021/acssensors.9b02116] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Monoamine oxidase A (MAO-A) is a promising diagnostic marker for cancer, depression, Parkinson's disease, and liver disease. The fluorescence detection of MAO-A in living animals is of extreme importance for the early diagnosis of related diseases. However, the development of specific and mitochondrial-targeted and near-infrared (NIR) fluorescence MAO-A probes is still inadequate. Here, we designed and synthesized four NIR fluorescence probes containing a dihydroxanthene (DH) skeleton to detect MAO-A in complex biological systems. The specificity of our representative probe DHMP2 displays a 31-fold fluorescence turn-on in vitro, and it can effectively accumulate in the mitochondria and specifically detect the endogenous MAO-A concentrations in PC-3 and SH-SY5Y cell lines. Furthermore, the probe DHMP2 can be used to visualize the endogenous MAO-A activity in zebrafish and tumor-bearing mice. More importantly, it is the first time that the MAO-A activity of hepatic fibrosis tissues is detected through the probe DHMP2. The present study shows that the synthesized DHMP2 might serve as a potential tool for monitoring MAO-A activity in vivo and diagnosing related diseases.
Collapse
Affiliation(s)
- Zheng-Min Yang
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, P. R. China
- Qiannan Medical College for Nationalities, Duyun 558000, P. R. China
| | - Qing-Yuan Mo
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, P. R. China
| | - Ji-Man He
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, P. R. China
| | - Dong-Liang Mo
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, P. R. China
| | - Jun Li
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, P. R. China
| | - Hua Chen
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, P. R. China
| | - Shu-Lin Zhao
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, P. R. China
| | - Jiang-Ke Qin
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, P. R. China
| |
Collapse
|
34
|
Fang H, Zhang H, Li L, Ni Y, Shi R, Li Z, Yang X, Ma B, Zhang C, Wu Q, Yu C, Yang N, Yao SQ, Huang W. Rational Design of a Two‐Photon Fluorogenic Probe for Visualizing Monoamine Oxidase A Activity in Human Glioma Tissues. Angew Chem Int Ed Engl 2020; 59:7536-7541. [DOI: 10.1002/anie.202000059] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Revised: 02/06/2020] [Indexed: 12/31/2022]
Affiliation(s)
- Haixiao Fang
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM)Nanjing Tech University (NanjingTech) 30 South Puzhu Road Nanjing 211816 P. R. China
| | - Hang Zhang
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM)Nanjing Tech University (NanjingTech) 30 South Puzhu Road Nanjing 211816 P. R. China
| | - Lin Li
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM)Nanjing Tech University (NanjingTech) 30 South Puzhu Road Nanjing 211816 P. R. China
| | - Yun Ni
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM)Nanjing Tech University (NanjingTech) 30 South Puzhu Road Nanjing 211816 P. R. China
| | - Riri Shi
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM)Nanjing Tech University (NanjingTech) 30 South Puzhu Road Nanjing 211816 P. R. China
| | - Zheng Li
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM)Nanjing Tech University (NanjingTech) 30 South Puzhu Road Nanjing 211816 P. R. China
| | - Xuekang Yang
- Department of Burns and Cutaneous SurgeryXijing HospitalThe Fourth Military Medical University Xi'an 710032 P. R. China
| | - Bo Ma
- School of Pharmaceutical SciencesNanjing Tech University Nanjing 210023 P. R. China
| | - Chengwu Zhang
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM)Nanjing Tech University (NanjingTech) 30 South Puzhu Road Nanjing 211816 P. R. China
| | - Qiong Wu
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM)Nanjing Tech University (NanjingTech) 30 South Puzhu Road Nanjing 211816 P. R. China
| | - Changmin Yu
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM)Nanjing Tech University (NanjingTech) 30 South Puzhu Road Nanjing 211816 P. R. China
| | - Naidi Yang
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM)Nanjing Tech University (NanjingTech) 30 South Puzhu Road Nanjing 211816 P. R. China
| | - Shao Q. Yao
- Department of ChemistryNational University of Singapore 3 Science Drive 3 117543 Singapore Singapore
| | - Wei Huang
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM)Nanjing Tech University (NanjingTech) 30 South Puzhu Road Nanjing 211816 P. R. China
- Shaanxi Institute of Flexible Electronics (SIFE) & Institute of Biomedical Materials & Engineering (IBME)Northwestern Polytechnical University (NPU) 127 West Youyi Road Xi'an 710072 P. R. China
| |
Collapse
|
35
|
Fang H, Zhang H, Li L, Ni Y, Shi R, Li Z, Yang X, Ma B, Zhang C, Wu Q, Yu C, Yang N, Yao SQ, Huang W. Rational Design of a Two‐Photon Fluorogenic Probe for Visualizing Monoamine Oxidase A Activity in Human Glioma Tissues. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202000059] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Haixiao Fang
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM)Nanjing Tech University (NanjingTech) 30 South Puzhu Road Nanjing 211816 P. R. China
| | - Hang Zhang
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM)Nanjing Tech University (NanjingTech) 30 South Puzhu Road Nanjing 211816 P. R. China
| | - Lin Li
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM)Nanjing Tech University (NanjingTech) 30 South Puzhu Road Nanjing 211816 P. R. China
| | - Yun Ni
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM)Nanjing Tech University (NanjingTech) 30 South Puzhu Road Nanjing 211816 P. R. China
| | - Riri Shi
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM)Nanjing Tech University (NanjingTech) 30 South Puzhu Road Nanjing 211816 P. R. China
| | - Zheng Li
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM)Nanjing Tech University (NanjingTech) 30 South Puzhu Road Nanjing 211816 P. R. China
| | - Xuekang Yang
- Department of Burns and Cutaneous SurgeryXijing HospitalThe Fourth Military Medical University Xi'an 710032 P. R. China
| | - Bo Ma
- School of Pharmaceutical SciencesNanjing Tech University Nanjing 210023 P. R. China
| | - Chengwu Zhang
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM)Nanjing Tech University (NanjingTech) 30 South Puzhu Road Nanjing 211816 P. R. China
| | - Qiong Wu
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM)Nanjing Tech University (NanjingTech) 30 South Puzhu Road Nanjing 211816 P. R. China
| | - Changmin Yu
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM)Nanjing Tech University (NanjingTech) 30 South Puzhu Road Nanjing 211816 P. R. China
| | - Naidi Yang
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM)Nanjing Tech University (NanjingTech) 30 South Puzhu Road Nanjing 211816 P. R. China
| | - Shao Q. Yao
- Department of ChemistryNational University of Singapore 3 Science Drive 3 117543 Singapore Singapore
| | - Wei Huang
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM)Nanjing Tech University (NanjingTech) 30 South Puzhu Road Nanjing 211816 P. R. China
- Shaanxi Institute of Flexible Electronics (SIFE) & Institute of Biomedical Materials & Engineering (IBME)Northwestern Polytechnical University (NPU) 127 West Youyi Road Xi'an 710072 P. R. China
| |
Collapse
|
36
|
Xu M, Deb T, Tu J, Franzini RM. Tuning Isonitrile/Tetrazine Chemistry for Accelerated Deprotection and Formation of Stable Conjugates. J Org Chem 2019; 84:15520-15529. [DOI: 10.1021/acs.joc.9b02522] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Minghao Xu
- Department of Medicinal Chemistry, University of Utah, 30 S 2000 E, Salt Lake City, Utah 84112, United States
| | - Titas Deb
- Department of Medicinal Chemistry, University of Utah, 30 S 2000 E, Salt Lake City, Utah 84112, United States
| | - Julian Tu
- Department of Medicinal Chemistry, University of Utah, 30 S 2000 E, Salt Lake City, Utah 84112, United States
| | - Raphael M. Franzini
- Department of Medicinal Chemistry, University of Utah, 30 S 2000 E, Salt Lake City, Utah 84112, United States
| |
Collapse
|
37
|
Liu Y, Teng L, Xu C, Liu HW, Xu S, Guo H, Yuan L, Zhang XB. A "Double-Locked" and enzyme-activated molecular probe for accurate bioimaging and hepatopathy differentiation. Chem Sci 2019; 10:10931-10936. [PMID: 32190249 PMCID: PMC7066674 DOI: 10.1039/c9sc03628h] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Accepted: 10/15/2019] [Indexed: 02/06/2023] Open
Abstract
Molecular probes activated by a single enzyme have been extensively used in bioimaging and disease diagnosis; however, imaging and identification in an accurate manner remains a challenge for such probes. Here, based on the specificity of enzyme recognition, we engineered a "double-locked" and enzyme-activated molecular probe (NML) for accurate bioimaging and hepatopathy differentiation. Triggered by the successive reactions with leucine aminopeptidase (LAP, first "key") and monoamine oxidase (MAO, second "key"), the emissive fluorophore (NF) was released. NML can be activated only in the presence of both LAP and MAO and can be silenced when either enzyme is inhibited. Benefiting from the "double-locked" strategy, NML showed higher accuracy for imaging of drug-induced liver injury (DILI) than the "single-locked" probe. With serum testing, NML showed significant differences in mouse models of both CCl4-induced liver cirrhosis and DILI. Significantly, NML can be applied to accurately distinguish serum samples from clinical patients with different hepatopathies. Our smart molecular probe may hold great potential for hepatopathy diagnosis and clinical transformation.
Collapse
Affiliation(s)
- Yongchao Liu
- State Key Laboratory of Chemo/Biosensing and Chemometrics , College of Chemistry and Chemical Engineering , Collaborative Innovation Center for Chemistry and Molecular Medicine , Hunan University , Changsha , 410082 , P. R. China .
| | - Lili Teng
- State Key Laboratory of Chemo/Biosensing and Chemometrics , College of Chemistry and Chemical Engineering , Collaborative Innovation Center for Chemistry and Molecular Medicine , Hunan University , Changsha , 410082 , P. R. China .
| | - Chengyan Xu
- State Key Laboratory of Chemo/Biosensing and Chemometrics , College of Chemistry and Chemical Engineering , Collaborative Innovation Center for Chemistry and Molecular Medicine , Hunan University , Changsha , 410082 , P. R. China .
| | - Hong-Wen Liu
- State Key Laboratory of Chemo/Biosensing and Chemometrics , College of Chemistry and Chemical Engineering , Collaborative Innovation Center for Chemistry and Molecular Medicine , Hunan University , Changsha , 410082 , P. R. China .
| | - Shuai Xu
- State Key Laboratory of Chemo/Biosensing and Chemometrics , College of Chemistry and Chemical Engineering , Collaborative Innovation Center for Chemistry and Molecular Medicine , Hunan University , Changsha , 410082 , P. R. China .
| | - Haowei Guo
- State Key Laboratory of Chemo/Biosensing and Chemometrics , College of Chemistry and Chemical Engineering , Collaborative Innovation Center for Chemistry and Molecular Medicine , Hunan University , Changsha , 410082 , P. R. China .
| | - Lin Yuan
- State Key Laboratory of Chemo/Biosensing and Chemometrics , College of Chemistry and Chemical Engineering , Collaborative Innovation Center for Chemistry and Molecular Medicine , Hunan University , Changsha , 410082 , P. R. China .
| | - Xiao-Bing Zhang
- State Key Laboratory of Chemo/Biosensing and Chemometrics , College of Chemistry and Chemical Engineering , Collaborative Innovation Center for Chemistry and Molecular Medicine , Hunan University , Changsha , 410082 , P. R. China .
| |
Collapse
|
38
|
Hua W, Zhao J, Wang X, Pei S, Gou S. A lysosome specific theranostic NO donor inhibits cancer cells by stimuli responsive molecular self-decomposition with an on-demand fluorescence pattern. Analyst 2019; 144:6681-6688. [PMID: 31599280 DOI: 10.1039/c9an01746a] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The anticancer mechanism of NO is difficult to study owing to its short lifetime and high reactivity. Thus, a theranostic anticancer NO donor assembled with NO on-demand release abilities, accurate lysosome location capabilities and signal feedback behavior was developed. Profiting from the theranostic properties, the specific mechanism was comprehensively studied. Spectral and cell imaging studies revealed that the as prepared NO donors could release NO in solution or within cancer cells. Fluorescence co-dyeing experiments demonstrated that Mo-Nap-NO entered lysosomes specifically and disrupted them after being triggered by light. Upon irradiation with 460 nm visible light, both the donors demonstrated considerable in vitro anticancer effects. A further mechanistic study showed that after entering the lysosome and being triggered by 460 nm irradiation, NO ruptured the lysosome, resulting in the release of cathepsin D into the cytosol, which activated the caspase3 mediated apoptosis pathway.
Collapse
Affiliation(s)
- Wuyang Hua
- Pharmaceutical Research Center and School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China.
| | - Jian Zhao
- Pharmaceutical Research Center and School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China. and Jiangsu Province Hi-Tech Key Laboratory for Bio-medical Research, Southeast University, Nanjing 211189, China
| | - Xinyi Wang
- Pharmaceutical Research Center and School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China.
| | - Sinan Pei
- Pharmaceutical Research Center and School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China.
| | - Shaohua Gou
- Pharmaceutical Research Center and School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China. and Jiangsu Province Hi-Tech Key Laboratory for Bio-medical Research, Southeast University, Nanjing 211189, China
| |
Collapse
|
39
|
Wei T, Wang F, Zhang Z, Qiang J, Lv J, Chen T, Li J, Chen X. Recent Progress in the Development of Fluorometric Chemosensors to Detect Enzymatic Activity. Curr Med Chem 2019; 26:3923-3957. [DOI: 10.2174/0929867325666180214105552] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2017] [Revised: 12/10/2017] [Accepted: 12/27/2017] [Indexed: 12/16/2022]
Abstract
Enzymes are a class of macromolecules that function as highly efficient and specific
biological catalysts requiring only mild reaction conditions. Enzymes are essential to
maintaining life activities, including promoting metabolism and homeostasis, and participating
in a variety of physiological functions. Accordingly, enzymatic levels and activity are
closely related to the health of the organism, where enzymatic dysfunctions often lead to corresponding
diseases in the host. Due to this, diagnosis of certain diseases is based on the levels
and activity of certain enzymes. Therefore, rapid real-time and accurate detection of enzymes
in situ are important for diagnosis, monitoring, clinical treatment and pathological
studies of disease. Fluorescent probes have unique advantages in terms of detecting enzymes,
including being simple to use in highly sensitive and selective real-time rapid in-situ noninvasive
and highly spatial resolution visual imaging. However, fluorescent probes are most
commonly used to detect oxidoreductases, transferases and hydrolases due to the processes
and types of enzyme reactions. This paper summarizes the application of fluorescent probes to
detect these three types of enzymes over the past five years. In addition, we introduce the
mechanisms underlying detection of these enzymes by their corresponding probes.
Collapse
Affiliation(s)
- Tingwen Wei
- State Key laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University, Nanjing 210009, China
| | - Fang Wang
- State Key laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University, Nanjing 210009, China
| | - Zhijie Zhang
- State Key laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University, Nanjing 210009, China
| | - Jiang Qiang
- State Key laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University, Nanjing 210009, China
| | - Jing Lv
- State Key laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University, Nanjing 210009, China
| | - Tiantian Chen
- State Key laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University, Nanjing 210009, China
| | - Jia Li
- State Key laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University, Nanjing 210009, China
| | - Xiaoqiang Chen
- State Key laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University, Nanjing 210009, China
| |
Collapse
|
40
|
Di Paolo ML, Christodoulou MS, Calogero AM, Pinzi L, Rastelli G, Passarella D, Cappelletti G, Dalla Via L. 2-Phenyloxazole-4-carboxamide as a Scaffold for Selective Inhibition of Human Monoamine Oxidase B. ChemMedChem 2019; 14:1641-1652. [PMID: 31322823 DOI: 10.1002/cmdc.201900261] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 07/15/2019] [Indexed: 12/21/2022]
Abstract
A series of 2-phenyloxazoles bearing an amide group at position 4 were designed and synthesized for evaluation as potential inhibitors of human recombinant monoamine oxidases (hrMAOs). Results of kinetics experiments demonstrated that all compounds behave as competitive MAO inhibitors, with good selectivity toward the MAO-B isoform. The most potent and selective derivatives are characterized by inhibition constant (Ki ) values in the sub-micromolar range and a good selectivity index (Ki MAO-A /Ki MAO-B >50). Some derivatives were also found to be able to inhibit MAO activity in nerve growth factor (NGF)-differentiated PC12 cells, taken as a model of neuronal cells. In particular, 2-(2-hydroxyphenyl)-N-phenyloxazole-4-carboxamide (compound 4 a) may be a promising new scaffold, exerting the highest selectivity and inhibitory effect toward MAOs in NGF-differentiated PC12 cell lysates, without compromising cell viability. Molecular docking analysis allowed a rationalization of the experimentally observed binding affinity and selectivity.
Collapse
Affiliation(s)
- Maria L Di Paolo
- Dipartimento di Medicina Molecolare, Università degli Studi di Padova, Via G. Colombo 3, 35131, Padova, Italy
| | - Michael S Christodoulou
- DISFARM, Sezione di Chimica Generale e Organica "A. Marchesini", Università degli Studi di Milano, via Venezian 21, 20133, Milano, Italy
| | - Alessandra M Calogero
- Dipartimento di Bioscienze, Università degli Studi di Milano, via Celoria 26, 20133, Milano, Italy
| | - Luca Pinzi
- Dipartimento di Scienze della Vita, Università degli Studi di Modena e Reggio Emilia, via Campi 103, 41125, Modena, Italy
| | - Giulio Rastelli
- Dipartimento di Scienze della Vita, Università degli Studi di Modena e Reggio Emilia, via Campi 103, 41125, Modena, Italy
| | - Daniele Passarella
- Dipartimento di Chimica, Università degli Studi di Milano, via C. Golgi 19, 20133, Milano, Italy
| | - Graziella Cappelletti
- Dipartimento di Bioscienze, Università degli Studi di Milano, via Celoria 26, 20133, Milano, Italy
| | - Lisa Dalla Via
- Dipartimento di Scienze del Farmaco, Università degli Studi di Padova, Via F. Marzolo 5, 35131, Padova, Italy
| |
Collapse
|
41
|
Wu X, Shi W, Li X, Ma H. Recognition Moieties of Small Molecular Fluorescent Probes for Bioimaging of Enzymes. Acc Chem Res 2019; 52:1892-1904. [PMID: 31243972 DOI: 10.1021/acs.accounts.9b00214] [Citation(s) in RCA: 173] [Impact Index Per Article: 34.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Enzymes are a class of important substances for life, and their abnormal levels are associated with many diseases. Thus, great progress has been made in the past decade in detecting and imaging enzymes in living biosystems, and in this respect fluorescent probes combined with confocal microscopy have attracted much attention because of their high sensitivity and unrivaled spatiotemporal resolution. Fluorescent probes are usually composed of three moieties: a signal or fluorophore moiety, a recognition or labeling moiety, and an appropriate linker to connect the two aforementioned moieties. At present, however, research and reviews on enzymatic probes mostly focus on fluorophores and/or linkers, whereas those on the recognition moiety are relatively few. Moreover, current enzymatic probes with some recognition moieties have drawbacks such as poor selectivity, high background fluorescence, or/and low sensitivity and are unsatisfactory for practical applications. Thus, developing new recognition moieties with higher specificity or/and sensitivity to the enzyme of interest is very desirable but still challenging. In this Account, we introduce the recognition moieties of fluorescent probes for several enzymes, including tyrosinase, monoamine oxidase A (MAO-A), nitroreductase (NTR), and aminopeptidases. Highlights are given on how new specific recognition moieties of tyrosinase and MAO-A were designed to eliminate the interference by reactive oxygen species (ROS) and MAO-B, respectively. Here we present four recent examples in which designed fluorescent probes are employed to image enzymes in living biosystems. The first example shows that 3-hydroxyphenyl can serve as a new and more specific recognition moiety than the traditional 4-hydroxyphenyl group for tyrosinase, enabling the development of a highly selective fluorescent probe for imaging of tyrosinase without interference by ROS. The second presents a general design strategy for fluorescent probes specific for an enzyme, which involves combining the characteristic structure of an inhibitor of the target enzyme along with its traditional reactive group as a new recognition moiety, and successfully demonstrates it by selective detection of MAO-A in the presence of its isomeric MAO-B. The third mainly illustrates that 5-nitrothiophen-2-yl alcohol with a stronger electron-donating S atom is a better fluorescence quenching and recognition moiety than 5-nitrofuran-2-yl alcohol for NTR, leading to the development of a highly sensitive method for NTR assay. Lastly, on the basis of known observations, we show that besides the specific interaction with the target, another function of some recognition moieties may be responsible for tuning the fluorescence signal, which is exemplified by the linking of several aminopeptidases' recognition moieties to the free hydroxyl or amino group of different fluorophores. It is our wish that this Account will promote the appearance of more specific recognition moieties and fluorescent probes with excellent properties and that new biofunctions of the enzymes will be uncovered.
Collapse
Affiliation(s)
- Xiaofeng Wu
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Wen Shi
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Xiaohua Li
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Huimin Ma
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| |
Collapse
|
42
|
Kumari R, Sunil D, Ningthoujam RS. Naphthalimides in fluorescent imaging of tumor hypoxia - An up-to-date review. Bioorg Chem 2019; 88:102979. [PMID: 31100616 DOI: 10.1016/j.bioorg.2019.102979] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Revised: 04/14/2019] [Accepted: 05/07/2019] [Indexed: 01/17/2023]
Abstract
Hypoxia is a distinctive characteristic of advanced solid malignancies that results from a disparity between oxygen supply and its consumption. The degree of hypoxia is believed to have adverse prognostic significance. Therefore detecting cellular hypoxia can potentially offer insights into the grade of tumour as well as its evolution towards a progressive malignant phenotype, which clinically translates to greater metastatic potential and treatment resistance. Fluorescence imaging to visualize hypoxia in biological systems is a minimally-invasive method. Recently there are several reports on interdisciplinary research that aims at developing functional probes that can be efficiently used for non-invasive imaging of hypoxic tumours. Upregulated levels of nitroreductase (NTR) is detected in hypoxic solid malignancies, and this characteristic feature is increasingly utilized in the development of NTR-targeted fluorescent molecules to selectively sense hypoxia in vivo. The present review summarizes various reports published on the design concepts of nitro naphthalimide-based bio-reductive fluorescent sensors that can be applied noninvasively to image hypoxia in cancer.
Collapse
Affiliation(s)
- Rashmi Kumari
- Department of Chemistry, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal 576 104, Karnataka, India
| | - Dhanya Sunil
- Department of Chemistry, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal 576 104, Karnataka, India.
| | | |
Collapse
|
43
|
Shi R, Wu Q, Xin C, Yu H, Lim KL, Li X, Shi Z, Zhang CW, Qian L, Li L, Huang W. Structure-Based Specific Detection and Inhibition of Monoamine Oxidases and Their Applications in Central Nervous System Diseases. Chembiochem 2019; 20:1487-1497. [PMID: 30664830 DOI: 10.1002/cbic.201800813] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2018] [Indexed: 12/21/2022]
Abstract
Monoamine oxidases (MAOs) are the enzymes that catalyze the oxidation of monoamines, such as dopamine, norepinephrine, and serotonin, which serve as key neurotransmitters in the central nervous system (CNS). MAOs play important roles in maintaining the homeostasis of monoamines, and the aberrant expression or activation of MAOs underlies the pathogenesis of monoamine neurotransmitter disorders, including neuropsychiatric and neurodegenerative diseases. Clearly, detecting and inhibiting the activities of MAOs is of great value for the diagnosis and therapeutics of these diseases. Accordingly, many specific detection probes and inhibitors have been developed and substantially contributed to basic and clinical studies of these diseases. In this review, progress in the detecting and inhibiting of MAOs and their applications in mechanism exploration and treatment of neurotransmitter-related disorders is summarized. Notably, how the detection probes and inhibitors of MAOs were developed has been specifically addressed. It is hoped that this review will benefit the design of more effective and sensitive probes and inhibitors for MAOs, and eventually the treatment of monoamine neurotransmitter disorders.
Collapse
Affiliation(s)
- Riri Shi
- Key Laboratory of Flexible Electronics (KLOFE) and, Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University, 30 South Puzhu Road, Nanjing, 211816, P.R. China
| | - Qiong Wu
- Key Laboratory of Flexible Electronics (KLOFE) and, Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University, 30 South Puzhu Road, Nanjing, 211816, P.R. China
| | - Chenqi Xin
- Key Laboratory of Flexible Electronics (KLOFE) and, Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University, 30 South Puzhu Road, Nanjing, 211816, P.R. China
| | - Houzhi Yu
- Department of Cardiology, Shandong Provincial Hospital affiliated to Shandong University, 324 Jingwu Road, Jinan, 250021, P.R. China
| | - Kah-Leong Lim
- Neuroscience Clinic, National Neuroscience Institute, 11 Jalan Tock Seng, Singapore, 308433, Singapore
| | - Xin Li
- Shaanxi Institute of Flexible Electronics (SIFE), Northwestern Polytechnical University, 127 West Youyi Road, Xi'an, 710072, P.R. China
| | - Zhenxiong Shi
- Shaanxi Institute of Flexible Electronics (SIFE), Northwestern Polytechnical University, 127 West Youyi Road, Xi'an, 710072, P.R. China
| | - Cheng-Wu Zhang
- Key Laboratory of Flexible Electronics (KLOFE) and, Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University, 30 South Puzhu Road, Nanjing, 211816, P.R. China
| | - Linghui Qian
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, P.R. China
| | - Lin Li
- Key Laboratory of Flexible Electronics (KLOFE) and, Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University, 30 South Puzhu Road, Nanjing, 211816, P.R. China
| | - Wei Huang
- Key Laboratory of Flexible Electronics (KLOFE) and, Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University, 30 South Puzhu Road, Nanjing, 211816, P.R. China.,Shaanxi Institute of Flexible Electronics (SIFE), Northwestern Polytechnical University, 127 West Youyi Road, Xi'an, 710072, P.R. China
| |
Collapse
|
44
|
Feng L, Yan Q, Zhang B, Tian X, Wang C, Yu Z, Cui J, Guo D, Ma X, James TD. Ratiometric fluorescent probe for sensing Streptococcus mutans glucosyltransferase, a key factor in the formation of dental caries. Chem Commun (Camb) 2019; 55:3548-3551. [PMID: 30843551 DOI: 10.1039/c9cc00440h] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
We report on a naphthalimide ratiometric fluorescent probe for the real-time sensing and imaging of pathogenic bacterial glucosyltransferases, which are associated with the development of dental caries. Using a high-throughput screening method, we identified that several natural polyphenols from green tea were GTFs inhibitors that could eventually lead to suitable oral treatments to prevent the development of dental caries.
Collapse
Affiliation(s)
- Lei Feng
- College of Pharmacy, Academy of Integrative Medicine, National & Local Joint Engineering Research Center for Drug Development of Neurodegenerative Disease, Dalian Medical University, Dalian 116044, China.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Recent advances in dual-emission ratiometric fluorescence probes for chemo/biosensing and bioimaging of biomarkers. Coord Chem Rev 2019. [DOI: 10.1016/j.ccr.2019.01.004] [Citation(s) in RCA: 247] [Impact Index Per Article: 49.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
46
|
Wang Z, Wu L, Wang Y, Zhang M, Zhao Z, Liu C, Duan Q, Jia P, Zhu B. A highly selective and ultrasensitive ratiometric fluorescent probe for peroxynitrite and its two-photon bioimaging applications. Anal Chim Acta 2019; 1049:219-225. [DOI: 10.1016/j.aca.2018.05.064] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Revised: 05/22/2018] [Accepted: 05/23/2018] [Indexed: 12/30/2022]
|
47
|
Liang X, Zhang L, Xu X, Qiao D, Shen T, Yin Z, Shang L. An ICT-Based Mitochondria-Targeted Fluorescent Probe for Hydrogen Peroxide with a Large Turn-On Fluorescence Signal. ChemistrySelect 2019. [DOI: 10.1002/slct.201803185] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Xiao Liang
- College of Pharmacy; State Key Laboratory of Medicinal Chemical Biology and Tianjin Key Laboratory of Molecular Drug Research; Nankai University; Tianjin, P. R. 300071
| | - Lu Zhang
- College of Pharmacy; State Key Laboratory of Medicinal Chemical Biology and Tianjin Key Laboratory of Molecular Drug Research; Nankai University; Tianjin, P. R. 300071
| | - Xiaoyi Xu
- Tianjin Medical University; Tianjin 300070 P. R. China
| | - Dan Qiao
- College of Pharmacy; State Key Laboratory of Medicinal Chemical Biology and Tianjin Key Laboratory of Molecular Drug Research; Nankai University; Tianjin, P. R. 300071
| | - Tangliang Shen
- College of Pharmacy; State Key Laboratory of Medicinal Chemical Biology and Tianjin Key Laboratory of Molecular Drug Research; Nankai University; Tianjin, P. R. 300071
| | - Zheng Yin
- College of Pharmacy; State Key Laboratory of Medicinal Chemical Biology and Tianjin Key Laboratory of Molecular Drug Research; Nankai University; Tianjin, P. R. 300071
| | - Luqing Shang
- College of Pharmacy; State Key Laboratory of Medicinal Chemical Biology and Tianjin Key Laboratory of Molecular Drug Research; Nankai University; Tianjin, P. R. 300071
| |
Collapse
|
48
|
Nandi S, Banesh S, Trivedi V, Biswas S. A dinitro-functionalized metal-organic framework featuring visual and fluorogenic sensing of H 2S in living cells, human blood plasma and environmental samples. Analyst 2019; 143:1482-1491. [PMID: 29487917 DOI: 10.1039/c7an01964e] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Here, we describe a new dinitro-functionalized Zr(iv) MOF (MOF = metal-organic framework) having a UiO-66 (UiO = University of Oslo) framework topology called UiO-66-(NO2)2 (1). It shows fluorescence turn-on behavior towards H2S in simulated biological medium (HEPES buffer, pH = 7.4). By employing solvothermal conditions, 1 was successfully synthesized by reacting ZrCl4, H2BDC-(NO2)2 [H2BDC-(NO2)2 = 2,5-dinitro-1,4-benzenedicarboxylic acid] ligand and benzoic acid with a molar ratio of 1 : 1 : 10 in DMF (DMF = N,N-dimethylformamide) at 130 °C for 24 h. The material was characterized by infrared spectroscopy, X-ray powder diffraction (XRPD) and thermogravimetric (TG) analyses. The compound not only displays highly sensitive fluorometric sensing of H2S but also exhibits a visually detectable colorimetric change towards H2S in daylight. Moreover, the high selectivity of 1' towards H2S is retained even when several other biologically intrusive species co-exist in the sensing medium. The limit of detection (LOD) of the compound is 14.14 μM which lies in the range of the H2S concentration found in biological systems. Fluorescence microscopy studies on J774A.1 cells revealed the efficacy of the probe for imaging H2S in living cells. Moreover, this material can detect H2S in human blood plasma (HBP) and monitor the sulfide concentration in real water samples. All these features clearly demonstrate that the material has huge potential for highly selective sensing of both extracellular and intracellular H2S.
Collapse
Affiliation(s)
- Soutick Nandi
- Department of Chemistry, Indian Institute of Technology Guwahati, 781039 Assam, India.
| | | | | | | |
Collapse
|
49
|
Yang Z, Li W, Chen H, Mo Q, Li J, Zhao S, Hou C, Qin J, Su G. Inhibitor structure-guided design and synthesis of near-infrared fluorescent probes for monoamine oxidase A (MAO-A) and its application in living cells and in vivo. Chem Commun (Camb) 2019; 55:2477-2480. [DOI: 10.1039/c8cc10084e] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
A series of near-infrared fluorescent probes based on inhibitor (clorgyline) structure-guided design were synthesized for the specific detection of MAO-A in cells and in vivo.
Collapse
Affiliation(s)
- Zhengmin Yang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources
- School of Chemistry and Pharmaceutical Sciences
- Guangxi Normal University
- Guilin 541004
- P. R. China
| | - Wenxiu Li
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources
- School of Chemistry and Pharmaceutical Sciences
- Guangxi Normal University
- Guilin 541004
- P. R. China
| | - Hua Chen
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources
- School of Chemistry and Pharmaceutical Sciences
- Guangxi Normal University
- Guilin 541004
- P. R. China
| | - Qingyuan Mo
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources
- School of Chemistry and Pharmaceutical Sciences
- Guangxi Normal University
- Guilin 541004
- P. R. China
| | - Jun Li
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources
- School of Chemistry and Pharmaceutical Sciences
- Guangxi Normal University
- Guilin 541004
- P. R. China
| | - Shulin Zhao
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources
- School of Chemistry and Pharmaceutical Sciences
- Guangxi Normal University
- Guilin 541004
- P. R. China
| | - Cheng Hou
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources
- School of Chemistry and Pharmaceutical Sciences
- Guangxi Normal University
- Guilin 541004
- P. R. China
| | - Jiangke Qin
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources
- School of Chemistry and Pharmaceutical Sciences
- Guangxi Normal University
- Guilin 541004
- P. R. China
| | - Guifa Su
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources
- School of Chemistry and Pharmaceutical Sciences
- Guangxi Normal University
- Guilin 541004
- P. R. China
| |
Collapse
|
50
|
Huang J, Hong D, Lang W, Liu J, Dong J, Yuan C, Luo J, Ge J, Zhu Q. Recent advances in reaction-based fluorescent probes for detecting monoamine oxidases in living systems. Analyst 2019; 144:3703-3709. [DOI: 10.1039/c9an00409b] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
This Minireview summarizes the recent advances in reaction based MAO type fluorescent probes and their imaging applications in living systems.
Collapse
Affiliation(s)
- Jintao Huang
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province
- College of Biotechnology and Bioengineering
- Zhejiang University of Technology
- Hangzhou
- P. R. China
| | - Danqi Hong
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province
- College of Biotechnology and Bioengineering
- Zhejiang University of Technology
- Hangzhou
- P. R. China
| | - Wenjie Lang
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province
- College of Biotechnology and Bioengineering
- Zhejiang University of Technology
- Hangzhou
- P. R. China
| | - Jian Liu
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province
- College of Biotechnology and Bioengineering
- Zhejiang University of Technology
- Hangzhou
- P. R. China
| | - Jia Dong
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province
- College of Biotechnology and Bioengineering
- Zhejiang University of Technology
- Hangzhou
- P. R. China
| | - Chaonan Yuan
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province
- College of Biotechnology and Bioengineering
- Zhejiang University of Technology
- Hangzhou
- P. R. China
| | - Jie Luo
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province
- College of Biotechnology and Bioengineering
- Zhejiang University of Technology
- Hangzhou
- P. R. China
| | - Jingyan Ge
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province
- College of Biotechnology and Bioengineering
- Zhejiang University of Technology
- Hangzhou
- P. R. China
| | - Qing Zhu
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province
- College of Biotechnology and Bioengineering
- Zhejiang University of Technology
- Hangzhou
- P. R. China
| |
Collapse
|