1
|
Wu Y, Li M, Liu R, Li J, Guo Y, Yang D, Xu W, Hou K. Photothermal Desorption and Reagent-Assisted Low-Temperature Plasma Ionization Miniature IT-MS/MS for On-Site Analysis of Illicit Drugs in Saliva and Urine. Anal Chem 2025. [PMID: 39874602 DOI: 10.1021/acs.analchem.4c05146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2025]
Abstract
Globally, drug-impaired driving fatalities now exceed those from drunk driving, urging the need for on-site and roadside detection methods. In this study, a photothermal desorption and reagent-assisted low-temperature plasma ionization miniature ion trap mass spectrometer (PDRA-LTP-ITMS) was developed for on-site detection of drug-impaired driving. The pseudomultiple reaction monitoring (MRM) in PDRA-LTP-ITMS enables continuous ion selection during ion introduction and improved sensitivity to nearly 3-fold compared with the conventional full scan mode. The PDRA-LTP integrated the ionization source and photothermal desorption region into the LTP tube with a volume of 0.05 mL. Photoionization and Penning ionization from LTP discharging facilitate proton transfer reactions with the dopant and produce characteristic [M + H]+ for drugs. Dopants of butanol and acetone were separately employed to enhance the thermal desorption and ionization efficiency, resulting in a 2.6-fold sensitivity increase. Saliva and urine samples were collected with a medical swab, and only 10 μL of sample is required for each analysis. The sample is rapidly heated to 250 °C using a halogen lamp and analyzed within 5 s. With these designs, a 4-fold and 10-fold increase in sensitivity was achieved compared to APPI and nano-ESI, respectively. The limits of detection (S/N = 3) of illicit drugs, including MDMA, MDA, methamphetamine, amphetamine, ketamine, and cocaine, in saliva ranged from 4.5 pg μL -1 to 20 pg μL-1 and met the threshold values of GA1333-2017. The performance of the PDRA-LTP-ITMS was even comparable to that of LTQ-Orbitrap Velos Pro ETD MS, providing a novel method of rapid on-site drug-impaired driving analysis.
Collapse
Affiliation(s)
- Yun Wu
- Environment Research Institute, Shandong University, Qingdao 266237, China
| | - Mei Li
- Environment Research Institute, Shandong University, Qingdao 266237, China
| | - Ruidong Liu
- Environment Research Institute, Shandong University, Qingdao 266237, China
| | - Jing Li
- Environment Research Institute, Shandong University, Qingdao 266237, China
| | - Yingzhe Guo
- Environment Research Institute, Shandong University, Qingdao 266237, China
| | - Dong Yang
- Environment Research Institute, Shandong University, Qingdao 266237, China
| | - Wei Xu
- School of Medical Technology, Beijing Institute of Technology, Beijing 100081, China
| | - Keyong Hou
- Environment Research Institute, Shandong University, Qingdao 266237, China
| |
Collapse
|
2
|
Markina NE, Markin AV. Determination of multiple analytes in urine using label-free SERS coupled with simple sample pretreatments. Anal Chim Acta 2024; 1332:343383. [PMID: 39580184 DOI: 10.1016/j.aca.2024.343383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 10/23/2024] [Accepted: 10/30/2024] [Indexed: 11/25/2024]
Abstract
BACKGROUND A key restriction of label-free surface-enhanced Raman spectroscopy (SERS) in analysis of objects with complex composition (including with several target analytes) is the competition of mixture components for interaction with SERS-active surface. This leads to poor selectivity of the analysis of such mixtures (e.g., body fluids) and the need to use advanced sample pretreatment procedures such as HPLC or TLC. Therefore, this work aims to develop a set of simple and fast pretreatment steps (dilution, pH correction, etc.) to increase the sorption of the target analyte, reduce the sorption of admixtures, and prevent suppression of the target analyte SERS signal. RESULTS We have developed label-free SERS assay suitable for the determination of three analytes (methotrexate, cephalosporin antibiotic, and creatinine) in one real urine sample as a model matrix with complex and deviating composition. The choice of drugs is justified by the need to monitor their concentration in urine during joint drug treatment of cancer patients with concomitant bacterial infection, while monitoring creatinine concentration helps to evaluate kidney function of the patients. Additionally, three cephalosporin representatives were used in the study to maximize versatility of the assay. As a results, the optimized pretreatment steps enable to eliminate the negative influence of excess of interferences (including other analytes) and achieve precise (≤12 % RSD) and accurate (88-111 % recovery) determination of several analytes in the therapeutically relevant ranges: 300-3000 μg mL-1 for creatinine, 20-200 μg mL-1 for methotrexate and cephalosporins. SIGNIFICANCE Therefore, in addition to reporting a new SERS assay for the analysis of body fluids, this study clearly demonstrates the importance of taking into account competitive adsorption processes on the SERS substrate surface. We suggest making this practice mandatory when developing any label-free SERS assay because it enables to maximize the selectivity and accuracy of the analysis as well as to simplify the analysis procedure.
Collapse
Affiliation(s)
- Natalia E Markina
- Institute of Chemistry, Saratov State University, Astrakhanskaya 83, 410012, Saratov, Russia
| | - Alexey V Markin
- Institute of Chemistry, Saratov State University, Astrakhanskaya 83, 410012, Saratov, Russia.
| |
Collapse
|
3
|
Lee S, Dang H, Moon JI, Kim K, Joung Y, Park S, Yu Q, Chen J, Lu M, Chen L, Joo SW, Choo J. SERS-based microdevices for use as in vitro diagnostic biosensors. Chem Soc Rev 2024; 53:5394-5427. [PMID: 38597213 DOI: 10.1039/d3cs01055d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/11/2024]
Abstract
Advances in surface-enhanced Raman scattering (SERS) detection have helped to overcome the limitations of traditional in vitro diagnostic methods, such as fluorescence and chemiluminescence, owing to its high sensitivity and multiplex detection capability. However, for the implementation of SERS detection technology in disease diagnosis, a SERS-based assay platform capable of analyzing clinical samples is essential. Moreover, infectious diseases like COVID-19 require the development of point-of-care (POC) diagnostic technologies that can rapidly and accurately determine infection status. As an effective assay platform, SERS-based bioassays utilize SERS nanotags labeled with protein or DNA receptors on Au or Ag nanoparticles, serving as highly sensitive optical probes. Additionally, a microdevice is necessary as an interface between the target biomolecules and SERS nanotags. This review aims to introduce various microdevices developed for SERS detection, available for POC diagnostics, including LFA strips, microfluidic chips, and microarray chips. Furthermore, the article presents research findings reported in the last 20 years for the SERS-based bioassay of various diseases, such as cancer, cardiovascular diseases, and infectious diseases. Finally, the prospects of SERS bioassays are discussed concerning the integration of SERS-based microdevices and portable Raman readers into POC systems, along with the utilization of artificial intelligence technology.
Collapse
Affiliation(s)
- Sungwoon Lee
- Department of Chemistry, Chung-Ang University, Seoul 06974, South Korea.
| | - Hajun Dang
- Department of Chemistry, Chung-Ang University, Seoul 06974, South Korea.
| | - Joung-Il Moon
- Department of Chemistry, Chung-Ang University, Seoul 06974, South Korea.
| | - Kihyun Kim
- Department of Chemistry, Chung-Ang University, Seoul 06974, South Korea.
| | - Younju Joung
- Department of Chemistry, Chung-Ang University, Seoul 06974, South Korea.
| | - Sohyun Park
- Department of Chemistry, Chung-Ang University, Seoul 06974, South Korea.
| | - Qian Yu
- Department of Chemistry, Chung-Ang University, Seoul 06974, South Korea.
| | - Jiadong Chen
- Department of Chemistry, Chung-Ang University, Seoul 06974, South Korea.
| | - Mengdan Lu
- Department of Chemistry, Chung-Ang University, Seoul 06974, South Korea.
| | - Lingxin Chen
- School of Pharmacy, Binzhou Medical University, Yantai, 264003, China
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Yantai 264003, China.
| | - Sang-Woo Joo
- Department of Information Communication, Materials, and Chemistry Convergence Technology, Soongsil University, Seoul 06978, South Korea.
| | - Jaebum Choo
- Department of Chemistry, Chung-Ang University, Seoul 06974, South Korea.
| |
Collapse
|
4
|
Zhao Y, Gan Y, Chen J, Zheng H, Chang Y, Lin C. Recent reports on the sensing strategy and the On-site detection of illegal drugs. RSC Adv 2024; 14:6917-6929. [PMID: 38410368 PMCID: PMC10895702 DOI: 10.1039/d3ra06931a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 12/13/2023] [Indexed: 02/28/2024] Open
Abstract
In this review, works on the on-site detection of illegal drugs in recent years are summarised and discussed, most of which were published within the past five years. The detection methods are categorised as colourimetric, fluorescence, Raman spectrometry, ion mobility spectrometry, electrochemistry, and mass spectrometry. Also, strategies that are possibly suitable for on-site detection and the actual instrumentation to be used in the field are listed.
Collapse
Affiliation(s)
- Yang Zhao
- Key Laboratory of Drug Monitoring and Control, Drug Intelligence and Forensic Center, Ministry of Public Security P.R.C. No. 18 Dongbeiwang West Road, Haidian District 100193 Beijing China
- Institute of Forensic Science of the Ministry of Public Security No. 17 Muxidi Nanli, West City District 100038 Beijing China
| | - Yumeng Gan
- Institute for Biomimetics and Soft Matter, Fujian Provincial Key Laboratory for Soft Functional Materials Research, College of Physical Science and Technology, Xiamen University 9 Zengcuoan West Road 361005 Xiamen China
- State Key Laboratory of Physical Chemistry of Solid Surface Xiamen China
| | - Jun Chen
- Key Laboratory of Drug Monitoring and Control, Drug Intelligence and Forensic Center, Ministry of Public Security P.R.C. No. 18 Dongbeiwang West Road, Haidian District 100193 Beijing China
| | - Hui Zheng
- Key Laboratory of Drug Monitoring and Control, Drug Intelligence and Forensic Center, Ministry of Public Security P.R.C. No. 18 Dongbeiwang West Road, Haidian District 100193 Beijing China
| | - Ying Chang
- Institute of Forensic Science of the Ministry of Public Security No. 17 Muxidi Nanli, West City District 100038 Beijing China
| | - Changxu Lin
- Institute for Biomimetics and Soft Matter, Fujian Provincial Key Laboratory for Soft Functional Materials Research, College of Physical Science and Technology, Xiamen University 9 Zengcuoan West Road 361005 Xiamen China
- State Key Laboratory of Physical Chemistry of Solid Surface Xiamen China
| |
Collapse
|
5
|
Zhu Y, Tian J, Li M, Zhao L, Shi J, Liu W, Liu S, Liang D, Zhao G, Xu L, Yang S. Construction of Graphene@Ag-MLF composite structure SERS platform and its differentiating performance for different foodborne bacterial spores. Mikrochim Acta 2023; 190:472. [PMID: 37987841 DOI: 10.1007/s00604-023-06031-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 10/03/2023] [Indexed: 11/22/2023]
Abstract
A new surface-enhanced Raman spectroscopy (SERS) biosensor of Graphene@Ag-MLF composite structure has been fabricated by loading AgNPs on graphene films. The response of the biosensor is based on plasmonic sensing. The results showed that the enhancement factor of three different spores reached 107 based on the Graphene@Ag-MLF substrate. In addition, the SERS performance was stable, with good reproducibility (RSD<3%). Multivariate statistical analysis and chemometrics were used to distinguish different spores. The accumulated variance contribution rate was up to 96.35% for the top three PCs, while HCA results revealed that the spectra were differentiated completely. Based on optimal principal components, chemometrics of KNN and LS-SVM were applied to construct a model for rapid qualitative identification of different spores, of which the prediction set and training set of LS-SVM achieved 100%. Finally, based on the Graphene@Ag-MLF substrate, the LOD of three different spores was lower than 102 CFU/mL. Hence, this novel Graphene@Ag-MLF SERS substrate sensor was rapid, sensitive, and stable in detecting spores, providing strong technical support for the application of SERS technology in food safety.
Collapse
Affiliation(s)
- Yaodi Zhu
- College of Food Science and Technology, Henan Agricultural University, Zhengzhou, 450002, People's Republic of China
- International Joint Laboratory of Meat Processing and Safety in Henan province, Henan Agricultural University, Zhengzhou, 450002, People's Republic of China
- Henan Jiuyuquan Food Co., Ltd. Postdoctoral innovation base, Yuanyang county, Jiuquan, Henan province, 45300, People's Republic of China
| | - Jiaqi Tian
- College of Food Science and Technology, Henan Agricultural University, Zhengzhou, 450002, People's Republic of China
- International Joint Laboratory of Meat Processing and Safety in Henan province, Henan Agricultural University, Zhengzhou, 450002, People's Republic of China
| | - Miaoyun Li
- College of Food Science and Technology, Henan Agricultural University, Zhengzhou, 450002, People's Republic of China.
- International Joint Laboratory of Meat Processing and Safety in Henan province, Henan Agricultural University, Zhengzhou, 450002, People's Republic of China.
| | - Lijun Zhao
- College of Food Science and Technology, Henan Agricultural University, Zhengzhou, 450002, People's Republic of China
- International Joint Laboratory of Meat Processing and Safety in Henan province, Henan Agricultural University, Zhengzhou, 450002, People's Republic of China
| | - Jiyong Shi
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, 212000, People's Republic of China
| | - Weijia Liu
- College of Food Science and Technology, Henan Agricultural University, Zhengzhou, 450002, People's Republic of China
- International Joint Laboratory of Meat Processing and Safety in Henan province, Henan Agricultural University, Zhengzhou, 450002, People's Republic of China
| | - Shijie Liu
- College of Food Science and Technology, Henan Agricultural University, Zhengzhou, 450002, People's Republic of China
- International Joint Laboratory of Meat Processing and Safety in Henan province, Henan Agricultural University, Zhengzhou, 450002, People's Republic of China
| | - Dong Liang
- College of Food Science and Technology, Henan Agricultural University, Zhengzhou, 450002, People's Republic of China
- International Joint Laboratory of Meat Processing and Safety in Henan province, Henan Agricultural University, Zhengzhou, 450002, People's Republic of China
- Henan Jiuyuquan Food Co., Ltd. Postdoctoral innovation base, Yuanyang county, Jiuquan, Henan province, 45300, People's Republic of China
| | - Gaiming Zhao
- College of Food Science and Technology, Henan Agricultural University, Zhengzhou, 450002, People's Republic of China
- International Joint Laboratory of Meat Processing and Safety in Henan province, Henan Agricultural University, Zhengzhou, 450002, People's Republic of China
| | - Lina Xu
- College of Food Science and Technology, Henan Agricultural University, Zhengzhou, 450002, People's Republic of China
- International Joint Laboratory of Meat Processing and Safety in Henan province, Henan Agricultural University, Zhengzhou, 450002, People's Republic of China
| | - Shufeng Yang
- Henan Jiuyuquan Food Co., Ltd. Postdoctoral innovation base, Yuanyang county, Jiuquan, Henan province, 45300, People's Republic of China
| |
Collapse
|
6
|
Barbillon G, Cheap-Charpentier H. Advances in Surface-Enhanced Raman Scattering Sensors of Pollutants in Water Treatment. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:2417. [PMID: 37686925 PMCID: PMC10489740 DOI: 10.3390/nano13172417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 08/22/2023] [Accepted: 08/23/2023] [Indexed: 09/10/2023]
Abstract
Water scarcity is a world issue, and a solution to address it is the use of treated wastewater. Indeed, in these wastewaters, pollutants such as pharmaceuticals, pesticides, herbicides, and heavy ions can be present at high concentrations. Thus, several analytical techniques were initiated throughout recent years for the detection and quantification of pollutants in different types of water. Among them, the surface-enhanced Raman scattering (SERS) technique was examined due to its high sensitivity and its ability to provide details on the molecular structure. Herein, we summarize the most recent advances (2021-2023) on SERS sensors of pollutants in water treatment. In this context, we present the results obtained with the SERS sensors in terms of detection limits serving as assessment of SERS performances of these sensors for the detection of various pollutants.
Collapse
Affiliation(s)
- Grégory Barbillon
- EPF-Ecole d’Ingénieurs, 55 Avenue du Président Wilson, 94230 Cachan, France;
| | - Hélène Cheap-Charpentier
- EPF-Ecole d’Ingénieurs, 55 Avenue du Président Wilson, 94230 Cachan, France;
- Laboratoire Interfaces et Systèmes Electrochimiques, Sorbonne Université, CNRS, UMR 8235, LISE, 4 Place Jussieu, 75005 Paris, France
| |
Collapse
|
7
|
Ye Z, Yao H, Zhang Y, Su A, Sun D, Ye Y, Zhou J, Xu S. Pretreatment-free, on-site separation and sensitive identification of methamphetamine in biological specimens by SERS-active hydrogel microbeads. Anal Chim Acta 2023; 1263:341285. [PMID: 37225337 DOI: 10.1016/j.aca.2023.341285] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 04/21/2023] [Accepted: 04/25/2023] [Indexed: 05/26/2023]
Abstract
The worldwide abuse of illicit drugs led to severe consequences for human health, and society environment. Therefore, urgently required are effective and efficient on-site detection methods for illicit drugs of interest in various matrices, e.g., police samples, biofluids, and hairs. Although surface-enhanced Raman spectroscopy (SERS) shows power in many analytical fields, the cumbersome pretreatment of various matrices restricts its use in the easy-to-operate and on-site detection of illicit drugs. To address this problem, we adopted pore-size selectivity SERS-active hydrogel microbeads, whose meshes are adjustable to allow small molecules to access and to exclude large molecules. Meanwhile, Ag nanoparticles were uniformly dispersed and wrapped in the hydrogel matrix, providing excellent SERS performances with high sensitivity, reproducibility, and stability. By using these SERS hydrogel microbeads, one of the illicit drugs, methamphetamine (MAMP), can be rapidly and reliably detected in various biological specimens (blood, saliva, and hair) without sample pretreatment. The minimum detectable concentration is 0.1 ppm for MAMP in three biological specimens with a linear range of 0.1-100 ppm, which is lower than the maximum allowable level of 0.5 ppm set by the department of the health and human service. The SERS detection results were consistent with the gas chromatographic (GC) data. Thanks to its operational simplicity, fast response, high throughput and low cost, our established SERS hydrogel microbeads can be used as a sensing platform for facile analysis of illicit drugs through simultaneous separation, preconcentration, and optical detection, which shall be provided practically for front-line narcotics squad and resistance to the overwhelmed drug abuses.
Collapse
Affiliation(s)
- Zelin Ye
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials & Ministry-of-Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules & College of Chemistry and Chemical Engineering, Hubei University, Wuhan, 430062, PR China
| | - Huifang Yao
- Hubei Key Laboratory of the Forensic Science, Hubei University of Police, Wuhan, 430035, PR China
| | - Yue Zhang
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials & Ministry-of-Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules & College of Chemistry and Chemical Engineering, Hubei University, Wuhan, 430062, PR China
| | - Ailing Su
- State Key Laboratory of Supramolecular Structure and Materials, Jilin University, Changchun, 130012, PR China
| | - Dan Sun
- State Key Laboratory of Supramolecular Structure and Materials, Jilin University, Changchun, 130012, PR China
| | - Yong Ye
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials & Ministry-of-Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules & College of Chemistry and Chemical Engineering, Hubei University, Wuhan, 430062, PR China.
| | - Ji Zhou
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials & Ministry-of-Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules & College of Chemistry and Chemical Engineering, Hubei University, Wuhan, 430062, PR China.
| | - Shuping Xu
- State Key Laboratory of Supramolecular Structure and Materials, Jilin University, Changchun, 130012, PR China.
| |
Collapse
|
8
|
Chen S, Ge M, Weng S, Li J, Huang Y, Li P, Yang L. Development of a MoS 2/Ag NP Nanopocket to Trap Target Molecules for Surface-Enhanced Raman Scattering Detection with Long-Term Stability and High Sensitivity. Anal Chem 2023. [PMID: 37329306 DOI: 10.1021/acs.analchem.3c00665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Surface-enhanced Raman scattering (SERS) substrates mostly achieve highly sensitive detection by designing various hot spots; however, how to guide molecules to hot spots and prevent them from leaving has not been thoroughly considered and studied. Here, a composite MoS2/Ag NP nanopocket detector composed of MoS2 covered with a Ag NP film was fabricated to develop a general SERS method for actively capturing target molecules into hotspots. A finite element method (FEM) simulation of the multiphysics model was used to analyze the distributions of electric field enhancements and hydrodynamic processes in solution and air of the MoS2/Ag NP nanopocket. The results revealed that covering MoS2 slowed the evaporation of the solution, extended the window period for SERS detection, and enhanced the electric field in comparison with the monolayer Ag NP film. Therefore, in the process of dynamic detection, the MoS2/Ag NP nanopocket can provide an efficient and stable signal within 8 min, increasing the high sensitivity and long-term stability of the SERS method. Furthermore, a MoS2/Ag NP nanopocket detector was applied to detect antitumor drugs and monitor hypoxanthine structural changes in serum, which demonstrated long-term stability and high sensitivity for SERS analysis. This MoS2/Ag NP nanopocket detector paves the way for developing the SERS method in various fields.
Collapse
Affiliation(s)
- Siyu Chen
- Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
- University of Science & Technology of China, Anhui, Hefei 230026, China
| | - Meihong Ge
- Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
- University of Science & Technology of China, Anhui, Hefei 230026, China
| | - Shirui Weng
- Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
- Department of Pharmacy, Hefei Cancer Hospital, Chinese Academy of Sciences, Hefei 230031, Anhui, China
| | - Junxiang Li
- Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
- University of Science & Technology of China, Anhui, Hefei 230026, China
| | - Yanheng Huang
- School of First Clinical Medicine, Anhui Medical University, Hefei, Anhui 230032, China
| | - Pan Li
- Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
- Department of Pharmacy, Hefei Cancer Hospital, Chinese Academy of Sciences, Hefei 230031, Anhui, China
| | - Liangbao Yang
- Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
- Department of Pharmacy, Hefei Cancer Hospital, Chinese Academy of Sciences, Hefei 230031, Anhui, China
| |
Collapse
|
9
|
Ding Z, Wang C, Song X, Li N, Zheng X, Wang C, Su M, Liu H. Strong π-Metal Interaction Enables Liquid Interfacial Nanoarray-Molecule Co-assembly for Raman Sensing of Ultratrace Fentanyl Doped in Heroin, Ketamine, Morphine, and Real Urine. ACS APPLIED MATERIALS & INTERFACES 2023; 15:12570-12579. [PMID: 36808908 DOI: 10.1021/acsami.2c22607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Toward the challenge on reliable determination of trace fentanyl to avoid opioid overdose death in drug crisis, here we realize rapid and direct detection of trace fentanyl in real human urine without pretreatment by a portable surface enhanced Raman spectroscopy (SERS) strategy on liquid/liquid interfacial (LLI) plasmonic arrays. It was observed that fentanyl could interact with the gold nanoparticles (GNPs) surface, facilitate the LLI self-assembly, and consequently amplify the detection sensitivity with a limit of detection (LOD) as low as 1 ng/mL in aqueous solution and 50 ng/mL spiked in urine. Furthermore, we achieve multiplex blind sample recognition and classification of ultratrace fentanyl doped in other illegal drugs, which has extremely low LODs at mass concentrations of 0.02% (2 ng in 10 μg of heroin), 0.02% (2 ng in 10 μg of ketamine), and 0.1% (10 ng in 10 μg of morphine). A logic circuit of the AND gate was constructed for automatic recognition of illegal drugs with or without fentanyl doping. The data-driven analog soft independent modeling model could quickly distinguish fentanyl-doped samples from illegal drugs with 100% specificity. Molecular dynamics (MD) simulation elucidates the underlying molecular mechanism of nanoarray-molecule co-assembly through strong π-metal interactions and the differences in the SERS signal of various drug molecules. It paves a rapid identification, quantification, and classification strategy for trace fentanyl analysis, indicating broad application prospects in response to the opioid epidemic crisis.
Collapse
Affiliation(s)
- Zhongxiang Ding
- China Light Industry Key Laboratory of Meat Microbial Control and Utilization, School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China
| | - Chao Wang
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei 230027, China
| | - Xin Song
- Hefei Public Security Bureau, Hefei 230009, China
| | - Ning Li
- China Light Industry Key Laboratory of Meat Microbial Control and Utilization, School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China
| | | | - Chenxue Wang
- Hefei Public Security Bureau, Hefei 230009, China
| | - Mengke Su
- China Light Industry Key Laboratory of Meat Microbial Control and Utilization, School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China
| | - Honglin Liu
- China Light Industry Key Laboratory of Meat Microbial Control and Utilization, School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China
| |
Collapse
|
10
|
Rafalskiy VV, Zyubin AY, Moiseeva EM, Kupriyanova GS, Mershiev IG, Kryukova NO, Kon II, Samusev IG, Belousova YD, Doktorova SA. Application of vibrational spectroscopy and nuclear magnetic resonance methods for drugs pharmacokinetics research. Drug Metab Pers Ther 2023; 38:3-13. [PMID: 36169571 DOI: 10.1515/dmpt-2022-0109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Accepted: 06/21/2022] [Indexed: 11/15/2022]
Abstract
OBJECTIVES The development of new methods for determining the concentration of drugs is an actual topic today. The article contains a detailed review on vibrational spectroscopy and nuclear magnetic resonance methods using for pharmacokinetic research. This study is devoted to the possibility of using vibrational spectroscopy and 1H nuclear magnetic resonance spectroscopy to determine the concentration of drugs and the use of these groups of techniques for therapeutic drug monitoring. CONTENT The study was conducted by using scientific libraries (Scopus, Web of Science Core Collection, Medline, GoogleScholar, eLIBRARY, PubMed) and reference literature. A search was conducted for the period from 2011 to 2021 in Russian and English, by combinations of words: 1H nuclear magnetic resonance (1H NMR), vibrational spectroscopy, Surface-Enhanced Raman spectroscopy, drug concentration, therapeutic drug monitoring. These methods have a number of advantages and are devoid of some of the disadvantages of classical therapeutic drug monitoring (TDM) methods - high performance liquid chromatography and mass spectrometry. This review considers the possibility of using the methods of surface-enhanced Raman scattering (SERS) and 1H NMR-spectroscopy to assess the concentration of drugs in various biological media (blood, urine), as well as to study intracellular metabolism and the metabolism of ophthalmic drugs. 1Н NMR-spectroscopy can be chosen as a TDM method, since it allows analyzing the structure and identifying metabolites of various drugs. 1Н NMR-based metabolomics can provide information on the side effects of drugs, predict response to treatment, and provide key information on the mechanisms of action of known and new drug compounds. SUMMARY AND OUTLOOK SERS and 1Н NMR-spectroscopy have great potential for further study and the possibility of introducing them into clinical practice, including for evaluating the efficacy and safety of drugs.
Collapse
Affiliation(s)
- Vladimir V Rafalskiy
- Department of Therapy of the Medical Institute of the IKBFU, Kaliningrad, Russia
| | - Andrey Yu Zyubin
- REC "Fundamental and Applied Photonics, Nanophotonics", IKBFU, Kaliningrad, Russia
| | | | | | | | - Nadezhda O Kryukova
- Department of Fundamental Medicine of the Medical Institute of the IKBFU, Kaliningrad, Russia
| | - Igor I Kon
- REC "Fundamental and Applied Photonics, Nanophotonics", Kaliningrad, Russia
| | - Ilya G Samusev
- REC "Fundamental and Applied Photonics, Nanophotonics", Kaliningrad, Russia
| | | | - Svetlana A Doktorova
- Medical Institute of the IKBFU, Kaliningrad, Russia
- Immanuel Kant Baltic Federal University Institute of Medicine - Clinical Trial Center of IKBFUA, Kaliningrad, Russia
| |
Collapse
|
11
|
Sha KC, Shah MB, Solanki SJ, Makwana VD, Sureja DK, Gajjar AK, Bodiwala KB, Dhameliya TM. Recent Advancements and Applications of Raman Spectroscopy in Pharmaceutical Analysis. J Mol Struct 2023. [DOI: 10.1016/j.molstruc.2023.134914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
12
|
Wattanavichean N, Nimittrakoolchai OU, Nuntawong N, Horprathum M, Eiamchai P, Limwichean S, Somboonsaksri P, Sreta D, Meesuwan S. A novel portable Raman scattering platform for antibiotic screening in pig urine. Vet World 2023; 16:204-214. [PMID: 36855369 PMCID: PMC9967727 DOI: 10.14202/vetworld.2023.204-214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Accepted: 12/27/2022] [Indexed: 01/30/2023] Open
Abstract
Background and Aim Public health and food safety are gaining attention globally. Consumer health can be protected from chemical residues in meat by early detection or screening for antibiotic residues before selling the meat commercially. However, conventional practices are normally applied after slaughtering, which leads to massive business losses. This study aimed to use portable surface-enhanced Raman spectroscopy (SERS) equipped with multivariate curve resolution-alternation least squares (MCR-ALS) to determine the concentrations of enrofloxacin, oxytetracycline, and neomycin concentrations. This approach can overcome the problems of business loss, costs, and time-consumption, and limit of detection (LOD). Materials and Methods Aqueous solutions of three standard antibiotics (enrofloxacin, oxytetracycline, and neomycin) with different concentrations were prepared, and the LOD for each antibiotic solution was determined using SERS. Extracted pig urine was spiked with enrofloxacin at concentrations of 10, 20, 50, 100, and 10,000 ppm. These solutions were investigated using SERS and MCR-ALS analysis. Urine samples from pigs at 1 and 7 days after enrofloxacin administration were collected and investigated using SERS and MCR-ALS to differentiate the urinary enrofloxacin concentrations. Results The LOD of enrofloxacin, oxytetracycline, and neomycin in aqueous solutions were 0.5, 2.0, and 100 ppm, respectively. Analysis of enrofloxacin spiking in pig urine samples demonstrated the different concentrations of enrofloxacin at 10, 20, 50, 100, and 10,000 ppm. The LOD of spiking enrofloxacin was 10 ppm, which was 10 times lower than the regulated value. This technique was validated for the first time using urine collected on days 1 and 7 after enrofloxacin administration. The results revealed a higher concentration of enrofloxacin on day 7 than on day 1 due to consecutive administrations. The observed concentration of enrofloxacin was closely correlated with its circulation time and metabolism in pigs. Conclusion A combination of SERS sensing platform and MCR-ALS is a promising technique for on-farming screening. This platform can increase the efficiency of antibiotic detection in pig urine at lower costs and time. Expansion and fine adjustments of the Raman dataset may be required for individual farms to achieve higher sensitivity.
Collapse
Affiliation(s)
- Nungnit Wattanavichean
- School of Materials Science and Innovation, Faculty of Science, Mahidol University, Phutthamonthon, Nakhon Pathom, Thailand
| | - On-uma Nimittrakoolchai
- School of Materials Science and Innovation, Faculty of Science, Mahidol University, Phutthamonthon, Nakhon Pathom, Thailand,SCI Innovatech Co., Ltd., Bangkhasor, Amphur Mueang, Nonthaburi, Thailand
| | - Noppadon Nuntawong
- National Electronics and Computer Technology Center, National Science and Technology Development Agency, Khlong Luang, Pathum Thani, Thailand
| | - Mati Horprathum
- National Electronics and Computer Technology Center, National Science and Technology Development Agency, Khlong Luang, Pathum Thani, Thailand
| | - Pitak Eiamchai
- National Electronics and Computer Technology Center, National Science and Technology Development Agency, Khlong Luang, Pathum Thani, Thailand
| | - Saksorn Limwichean
- National Electronics and Computer Technology Center, National Science and Technology Development Agency, Khlong Luang, Pathum Thani, Thailand
| | - Pacharamon Somboonsaksri
- National Electronics and Computer Technology Center, National Science and Technology Development Agency, Khlong Luang, Pathum Thani, Thailand
| | - Donruethai Sreta
- Faculty of Veterinary Medicine, Rajamangala University of Technology Tawan-ok, Sriracha, Chonburi, Thailand
| | - Sirilak Meesuwan
- Faculty of Veterinary Medicine, Rajamangala University of Technology Tawan-ok, Sriracha, Chonburi, Thailand,Corresponding author: Sirilak Meesuwan, e-mail: Co-authors: NW: , ON: , NN: , MH: , PE: , SL: , PS: , DS:
| |
Collapse
|
13
|
Vigo F, Tozzi A, Disler M, Gisi A, Kavvadias V, Kavvadias T. Vibrational Spectroscopy in Urine Samples as a Medical Tool: Review and Overview on the Current State-of-the-Art. Diagnostics (Basel) 2022; 13:diagnostics13010027. [PMID: 36611319 PMCID: PMC9818072 DOI: 10.3390/diagnostics13010027] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 12/12/2022] [Accepted: 12/19/2022] [Indexed: 12/24/2022] Open
Abstract
Although known since the first half of the twentieth century, the evolution of spectroscopic techniques has undergone a strong acceleration after the 2000s, driven by the successful development of new computer technologies suitable for analyzing the large amount of data obtained. Today's applications are no longer limited to analytical chemistry, but are becoming useful instruments in the medical field. Their versatility, rapidity, the volume of information obtained, especially when applied to biological fluids that are easy to collect, such as urine, could provide a novel diagnostic tool with great potential in the early detection of different diseases. This review aims to summarize the existing literature regarding spectroscopy analyses of urine samples, providing insight into potential future applications.
Collapse
Affiliation(s)
- Francesco Vigo
- Department of Biomedicine, University of Basel, Hebelstrasse 20, CH-4031 Basel, Switzerland
- Correspondence:
| | - Alessandra Tozzi
- Department of Gynecology and Obstetrics, University Hospital of Basel Petersgraben 4, CH-4031 Basel, Switzerland
| | - Muriel Disler
- Department of Biomedicine, University of Basel, Hebelstrasse 20, CH-4031 Basel, Switzerland
| | - Alessia Gisi
- Faculty of Medicine, University of Basel, Petersplatz 1, CH-4001 Basel, Switzerland
| | | | - Tilemachos Kavvadias
- Department of Gynecology and Obstetrics, University Hospital of Basel Petersgraben 4, CH-4031 Basel, Switzerland
| |
Collapse
|
14
|
Peng W, Zong XQ, Xie TT, Zhou JW, Yue MF, Wen BY, Wang YH, Chen J, Zhang YJ, Li JF. Ultrafast and field-based detection of methamphetamine in hair with Au nanocake-enhanced Raman spectroscopy. Anal Chim Acta 2022; 1235:340531. [DOI: 10.1016/j.aca.2022.340531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 10/08/2022] [Accepted: 10/14/2022] [Indexed: 11/17/2022]
|
15
|
Methamphetamine detection using nanoparticle-based biosensors: A comprehensive review. SENSING AND BIO-SENSING RESEARCH 2022. [DOI: 10.1016/j.sbsr.2022.100538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
|
16
|
Yilmaz H, Yilmaz D, Taskin IC, Culha M. Pharmaceutical applications of a nanospectroscopic technique: Surface-enhanced Raman spectroscopy. Adv Drug Deliv Rev 2022; 184:114184. [PMID: 35306126 DOI: 10.1016/j.addr.2022.114184] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Revised: 02/12/2022] [Accepted: 03/06/2022] [Indexed: 12/13/2022]
Abstract
Surface-enhanced Raman spectroscopy (SERS) is a very sensitive technique offering unique opportunities for detection and identification of molecules and molecular structures at extremely low concentrations even in complex sample matrixes. Since a nanostructured noble metal surface is required for the enhancement of Raman scattering, the acquired spectral information naturally originates from nanometer size domains making it a nanospectroscopic technique by breaking the diffraction limit of light. In this review, first Raman spectroscopy, its comparison to other related techniques, its modes and instrumentation are briefly introduced. Then, the SERS mechanism, substrates and the parameters influencing a SERS experiment are discussed. Finally, its applications in pharmaceuticals including drug discovery, drug metabolism, multifunctional chemo-photothermal-therapy-delivery-release-imaging, drug stability and drug/metabolite detection in complex biological samples are summarized and elaborated.
Collapse
|
17
|
Moldovan R, Toma V, Iacob BC, Știufiuc RI, Bodoki E. Off-Resonance Gold Nanobone Films at Liquid Interface for SERS Applications. SENSORS (BASEL, SWITZERLAND) 2021; 22:236. [PMID: 35009779 PMCID: PMC8749543 DOI: 10.3390/s22010236] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 12/20/2021] [Accepted: 12/23/2021] [Indexed: 06/14/2023]
Abstract
Extensive effort and research are currently channeled towards the implementation of SERS (Surface Enhanced Raman Spectroscopy) as a standard analytical tool as it has undisputedly demonstrated a great potential for trace detection of various analytes. Novel and improved substrates are continuously reported in this regard. It is generally believed that plasmonic nanostructures with plasmon resonances close to the excitation wavelength (on-resonance) generate stronger SERS enhancements, but this finding is still under debate. In the current paper, we compared off-resonance gold nanobones (GNBs) with on-resonance GNBs and gold nanorods (GNRs) in both colloidal dispersion and as close-packed films self-assembled at liquid-liquid interface. Rhodamine 6G (R6G) was used as a Raman reporter in order to evaluate SERS performances. A 17-, 18-, and 55-fold increase in the Raman signal was observed for nanostructures (off-resonance GNBs, on-resonance GNBs, and on-resonance GNRs, respectively) assembled at liquid-liquid interface compared to the same nanostructures in colloidal dispersion. SERS performances of off-resonance GNBs were superior to on-resonance nanostructures in both cases. Furthermore, when off-resonance GNBs were assembled at the liquid interface, a relative standard deviation of 4.56% of the recorded signal intensity and a limit of detection (LOD) of 5 × 10-9 M could be obtained for R6G, rendering this substrate suitable for analytical applications.
Collapse
Affiliation(s)
- Rebeca Moldovan
- Analytical Chemistry Department, Faculty of Pharmacy, Iuliu Hațieganu University of Medicine and Pharmacy, 400349 Cluj-Napoca, Romania; (R.M.); (B.-C.I.)
| | - Valentin Toma
- MedFuture Research Center for Advanced Medicine, Iuliu Hațieganu University of Medicine and Pharmacy, 400349 Cluj-Napoca, Romania; (V.T.); (R.I.Ș.)
| | - Bogdan-Cezar Iacob
- Analytical Chemistry Department, Faculty of Pharmacy, Iuliu Hațieganu University of Medicine and Pharmacy, 400349 Cluj-Napoca, Romania; (R.M.); (B.-C.I.)
| | - Rareș Ionuț Știufiuc
- MedFuture Research Center for Advanced Medicine, Iuliu Hațieganu University of Medicine and Pharmacy, 400349 Cluj-Napoca, Romania; (V.T.); (R.I.Ș.)
- Pharmaceutical-Biophysics Department, Faculty of Pharmacy, Iuliu Hațieganu University of Medicine and Pharmacy, 400349 Cluj-Napoca, Romania
| | - Ede Bodoki
- Analytical Chemistry Department, Faculty of Pharmacy, Iuliu Hațieganu University of Medicine and Pharmacy, 400349 Cluj-Napoca, Romania; (R.M.); (B.-C.I.)
| |
Collapse
|
18
|
Wang K, Li J. Reliable SERS detection of pesticides with a large-scale self-assembled Au@4-MBA@Ag nanoparticle array. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2021; 263:120218. [PMID: 34332241 DOI: 10.1016/j.saa.2021.120218] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 07/16/2021] [Accepted: 07/18/2021] [Indexed: 06/13/2023]
Abstract
The fabrication of sensitive and reliable interfacial plasmonic platform for measuring chemical contaminants in various phases is an exciting topic in the food industry and for environment monitoring. In this study, a high-performance surface-enhanced Raman spectroscopy (SERS) analytic platform was developed through self-assembly of the gold@4-mercaptobenzoic acid@silver nanoparticles (Au@4-MBA@Ag NPs) at the cyclohexane/water interface. By addition of the inducer ethanol, the Au@4-MBA@Ag NPs in aqueous phase was effectively migrated to the biphasic interface, forming a large-scale close-packed nanoparticle array. The average gap between adjacent nanoparticles was smaller than 3 nm, where intensive SERS "hot spots" were created for high-sensitive detection. Furthermore, using the sandwiched 4-MBA molecule as the internal standard to correct the Raman signal fluctuations, the point-to-point and batch-to-batch reproducibility of Au@4-MBA@Ag array were improved with lower relative standard deviation (RSD) values of 8.84% and 14.97%, respectively, and pesticides (thiram and thiabendazole) analysis in both aqueous and organic phases were achieved with higher accuracy (R2 of 0.986 and 0.990) as compared with those without 4-MBA correction (R2 of 0.867 and 0.974). The high-throughput fabrication of the self-assembled nanoparticle array is a promising approach for development of a sensitive and reliable SERS platform for chemical contaminants monitoring in multiphase.
Collapse
Affiliation(s)
- Kaiqiang Wang
- College of Food Science and Engineering, Ocean University of China, Qingdao, Shandong 266003, China.
| | - Jinjie Li
- Institute of Quartermaster Engineering and Technology, Academy of Military Sciences PLA China, Beijing 100010, China
| |
Collapse
|
19
|
Dragan AM, Parrilla M, Feier B, Oprean R, Cristea C, De Wael K. Analytical techniques for the detection of amphetamine-type substances in different matrices: A comprehensive review. Trends Analyt Chem 2021. [DOI: 10.1016/j.trac.2021.116447] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
20
|
Huo C, Han W, Tang W, Duan X. Stable SERS substrate based on highly reflective metal liquid-like films wrapped hydrogels for direct determination of small molecules in a high protein matrix. Talanta 2021; 234:122678. [PMID: 34364478 DOI: 10.1016/j.talanta.2021.122678] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 06/26/2021] [Accepted: 06/27/2021] [Indexed: 11/26/2022]
Abstract
The study of the interaction between small molecules and proteins is important. Surface-enhanced Raman spectroscopy (SERS) is suitable for such applications since it has the power of detecting a molecule based on its intrinsic nature and without labeling. Herein, the MeLLFs@PAAG SERS substrate supporting highly reflective metal liquid-like films (MeLLFs) with polyacrylamide hydrogels (PAAG) has high-density "hot spots" to provide excellent SERS activity. The MeLLFs@PAAG formed by AgNPs only has less than 15% SERS activity loss when stored in the air for more than three weeks. By using rhodamine 6G (R6G) as a model analyte, the AgNPs based MeLLFs@PAAG SERS substrate exhibits an enhancement factor (EF) as high as 8.0 × 106, a limit of detection (LOD) of 76.8 pM (S/N = 3). Also, the formed PAAG provided a 3D molecular network to orderly secure the assembled nanoparticles (NPs), which not only improves the stability of NPs but also shields the Raman signal of proteins as high as 45 g/L allowing the direct determination of the binding rate of human serum albumin (HSA) and doxorubicin (DOX). A binding rate of about 70% was detected, which is consistent with previous reports. Thus, proposed the MeLLFs@PAAG SERS substrate can be used as a promising candidate for SERS measurement in complex biological samples.
Collapse
Affiliation(s)
- Chengcheng Huo
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province and School of Chemistry and Chemical Engineering, Shaanxi Normal University, 620 Xi Chang'an Street, Xi'an, Shaanxi, 710119, People's Republic of China
| | - Wanying Han
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province and School of Chemistry and Chemical Engineering, Shaanxi Normal University, 620 Xi Chang'an Street, Xi'an, Shaanxi, 710119, People's Republic of China
| | - Wei Tang
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province and School of Chemistry and Chemical Engineering, Shaanxi Normal University, 620 Xi Chang'an Street, Xi'an, Shaanxi, 710119, People's Republic of China
| | - Xinrui Duan
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province and School of Chemistry and Chemical Engineering, Shaanxi Normal University, 620 Xi Chang'an Street, Xi'an, Shaanxi, 710119, People's Republic of China.
| |
Collapse
|
21
|
Dai P, Zhang Z, Hou X, Ouyang L, Zhu L. Rapid SERS inspection of carcinogenic aromatic amines in textiles by using liquid interfacial assembled Au array. Talanta 2021; 234:122651. [PMID: 34364460 DOI: 10.1016/j.talanta.2021.122651] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2021] [Revised: 06/21/2021] [Accepted: 06/22/2021] [Indexed: 11/25/2022]
Abstract
Wide uses of azo dyes produce a great risk of high residuals of carcinogenic aromatic amines, and hence it is important to rapidly analyze these carcinogenic compounds in the textile products to guarantee product safety. In the present work, a surface enhanced Raman spectroscopic (SERS) method was developed for rapid detection of carcinogenic aromatic amines in textiles. In this method, target aromatic amines are extracted from textiles, and then gold nanoparticles are added to the organic extractant, which assemble into closely packed Au array at liquid interface in situ. Finally, fingerprint SERS signals of the target aromatic amines are detected on the generated Au array on the basis of strong chemical interaction between the aromatic amines and the Au surface. The proposed method provided good reproducibility with a relative standard deviation of 3.5% for ten parallel tests of benzidine. It was applied to analyze 70 textile products. To strengthen the spectroscopic data processing, a cluster analysis model was established with 50 samples to automatically identify the spectra based on the good signal reproducibility. The other 20 samples were used as test sets to validate this model. It was found that all the positive samples were successfully identified with false positive rate of 20%. With the addition of the Artificial Intelligence step, the reliability of the discriminant results can be ensured.
Collapse
Affiliation(s)
- Pei Dai
- School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Ziyang Zhang
- School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Xianfei Hou
- School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Lei Ouyang
- School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Lihua Zhu
- School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China.
| |
Collapse
|
22
|
Ji Z, Zhang C, Ye Y, Ji J, Dong H, Forsberg E, Cheng X, He S. Magnetically Enhanced Liquid SERS for Ultrasensitive Analysis of Bacterial and SARS-CoV-2 Biomarkers. Front Bioeng Biotechnol 2021; 9:735711. [PMID: 34660557 PMCID: PMC8511622 DOI: 10.3389/fbioe.2021.735711] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2021] [Accepted: 08/17/2021] [Indexed: 01/16/2023] Open
Abstract
In this work, it is shown that surface-enhanced Raman scattering (SERS) measurements can be performed using liquid platforms to perform bioanalysis at sub-pM concentrations. Using magnetic enrichment with gold-coated magnetic nanoparticles, the high sensitivity was verified with nucleic acid and protein targets. The former was performed with a DNA fragment associated with the bacteria Staphylococcus aureus, and the latter using IgG antibody, a biomarker for COVID-19 screening. It is anticipated that this work will inspire studies on ultrasensitive SERS analyzers suitable for large-scale applications, which is particularly important for in vitro diagnostics and environmental studies.
Collapse
Affiliation(s)
- Zhang Ji
- National Engineering Research Center for Optical Instruments, College of Optical Science and Engineering, Zhejiang University, Hangzhou, China
| | - Chuan Zhang
- National Engineering Research Center for Optical Instruments, College of Optical Science and Engineering, Zhejiang University, Hangzhou, China
| | - Yang Ye
- National Engineering Research Center for Optical Instruments, College of Optical Science and Engineering, Zhejiang University, Hangzhou, China.,Ningbo Research Institute, Ningbo, China.,ZJU-TU/e Joint Research Institute of Design, Optoelectronic and Sensing, Hangzhou, China
| | - Jiali Ji
- National Engineering Research Center for Optical Instruments, College of Optical Science and Engineering, Zhejiang University, Hangzhou, China
| | - Hongguang Dong
- National Engineering Research Center for Optical Instruments, College of Optical Science and Engineering, Zhejiang University, Hangzhou, China
| | - Erik Forsberg
- National Engineering Research Center for Optical Instruments, College of Optical Science and Engineering, Zhejiang University, Hangzhou, China
| | - Xiaoyu Cheng
- National Engineering Research Center for Optical Instruments, College of Optical Science and Engineering, Zhejiang University, Hangzhou, China.,Ningbo Research Institute, Ningbo, China.,ZJU-TU/e Joint Research Institute of Design, Optoelectronic and Sensing, Hangzhou, China
| | - Sailing He
- National Engineering Research Center for Optical Instruments, College of Optical Science and Engineering, Zhejiang University, Hangzhou, China.,Ningbo Research Institute, Ningbo, China.,ZJU-TU/e Joint Research Institute of Design, Optoelectronic and Sensing, Hangzhou, China
| |
Collapse
|
23
|
Sha P, Su Q, Dong P, Wang T, Zhu C, Gao W, Wu X. Fabrication of Ag@Au (core@shell) nanorods as a SERS substrate by the oblique angle deposition process and sputtering technology. RSC Adv 2021; 11:27107-27114. [PMID: 35480685 PMCID: PMC9037617 DOI: 10.1039/d1ra04709d] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Accepted: 07/30/2021] [Indexed: 12/17/2022] Open
Abstract
Gold (Au) and silver (Ag) are the main materials exhibiting strong Surface-Enhanced Raman Scattering (SERS) effects. The Ag nano-rods (AgNRs) and Au nano-rods (AuNRs) SERS substrates prepared using the technology of the oblique angle deposition (OAD) process have received considerable attention in recent years because of their rapid preparation process and good repeatability. However, AgNR substrates are unstable due to the low chemical stability of Ag. To overcome these limitations, an Ag@Au core-shell nano-rod (NR) array SERS substrate was fabricated using the OAD process and sputtering technology. Moreover, simulation analysis was performed using finite-difference time-domain calculations to evaluate the enhancement mechanism of the Ag@Au NR array substrate. Based on the simulation results and actual process conditions, the Ag@Au core-shell NR array substrate with the Au shell thickness of 20 nm was studied. To characterize the substrate's SERS performance, 1,2-bis(4-pyridyl)ethylene (BPE) was used as the Raman probe. The limit of detection of BPE could reach 10-12 M. The Ag@Au NR array substrate demonstrated uniformity with an acceptable relative standard deviation. Despite the strong oxidation of the hydrogen peroxide (H2O2) solution, the Ag@Au NR array substrate maintains good chemical stability and SERS performance. And long-term stability of the Ag@Au NR substrate was observed over 8 months of storage time. Our results show the successful preparation of a highly sensitive, repeatable and stable substrate. Furthermore, this substrate proves great potential in the field of biochemical sensing.
Collapse
Affiliation(s)
- Pengxing Sha
- College of Intelligence Science and Technology, National University of Defense Technology Changsha 410073 People's Republic of China
| | - Qingqing Su
- College of Intelligence Science and Technology, National University of Defense Technology Changsha 410073 People's Republic of China
| | - Peitao Dong
- College of Intelligence Science and Technology, National University of Defense Technology Changsha 410073 People's Republic of China
| | - Tianran Wang
- College of Intelligence Science and Technology, National University of Defense Technology Changsha 410073 People's Republic of China
| | - Chushu Zhu
- College of Intelligence Science and Technology, National University of Defense Technology Changsha 410073 People's Republic of China
| | - Weiye Gao
- College of Intelligence Science and Technology, National University of Defense Technology Changsha 410073 People's Republic of China
| | - Xuezhong Wu
- College of Intelligence Science and Technology, National University of Defense Technology Changsha 410073 People's Republic of China
| |
Collapse
|
24
|
Chen YC, Hong SW, Wu HH, Wang YL, Chen YF. Rapid Formation of Nanoclusters for Detection of Drugs in Urine Using Surface-Enhanced Raman Spectroscopy. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:1789. [PMID: 34361175 PMCID: PMC8308440 DOI: 10.3390/nano11071789] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 07/01/2021] [Accepted: 07/07/2021] [Indexed: 02/08/2023]
Abstract
We developed a method based on surface-enhanced Raman spectroscopy (SERS) and a sample pretreatment process for rapid, sensitive, reproducible, multiplexed, and low-cost detection of illegal drugs in urine. The abuse of new psychoactive substances (NPS) has become an increasingly serious problem in many countries. However, immunoassay-based screening kits for NPS are usually not available because of the lack of corresponding antibodies. SERS has a great potential for rapid detection of NPS because it can simultaneously detect multiple kinds of drugs without the use of antibodies. To achieve highly sensitive SERS detection of drugs, sodium bromide was first employed to induce the rapid formation of Ag nanoclusters by aggregating silver nanoparticles (AgNPs) in the extracted sample solution. SERS measurements were performed immediately after the sample pretreatment without incubation. The three-dimensional SERS hot spots were believed to form significantly within the nanoclusters, providing strong SERS enhancement effects. The displacement of citrate molecules on the surfaces of the AgNPs by bromide ions helped increase the adsorption of drug molecules, increasing their areal density. We demonstrated the simultaneous detection of two kinds of NPS, methcathinone and 4-methylmethcathinone, in urine at a concentration as low as 0.01 ppm.
Collapse
Affiliation(s)
- Yun-Chu Chen
- Institute of Biophotonics, National Yang Ming Chiao Tung University, Taipei 112, Taiwan; (Y.-C.C.); (S.-W.H.); (H.-H.W.)
| | - Shang-Wen Hong
- Institute of Biophotonics, National Yang Ming Chiao Tung University, Taipei 112, Taiwan; (Y.-C.C.); (S.-W.H.); (H.-H.W.)
| | - Huang-Hesin Wu
- Institute of Biophotonics, National Yang Ming Chiao Tung University, Taipei 112, Taiwan; (Y.-C.C.); (S.-W.H.); (H.-H.W.)
| | - Yuh-Lin Wang
- Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei 106, Taiwan;
| | - Yih-Fan Chen
- Institute of Biophotonics, National Yang Ming Chiao Tung University, Taipei 112, Taiwan; (Y.-C.C.); (S.-W.H.); (H.-H.W.)
| |
Collapse
|
25
|
Ge M, Li P, Zhou G, Chen S, Han W, Qin F, Nie Y, Wang Y, Qin M, Huang G, Li S, Wang Y, Yang L, Tian Z. General Surface-Enhanced Raman Spectroscopy Method for Actively Capturing Target Molecules in Small Gaps. J Am Chem Soc 2021; 143:7769-7776. [PMID: 33988987 DOI: 10.1021/jacs.1c02169] [Citation(s) in RCA: 72] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Over the past decade, many efforts have been devoted to designing and fabricating substrates for surface-enhanced Raman spectroscopy (SERS) with abundant hot spots to improve the sensitivity of detection. However, there have been many difficulties involved in causing molecules to enter hot spots actively or effectively. Here, we report a general SERS method for actively capturing target molecules in small gaps (hot spots) by constructing a nanocapillary pumping model. The ubiquity of hot spots and the inevitability of molecules entering them lights up all the hot spots and makes them effective. This general method can realize the highly sensitive detection of different types of molecules, including organic pollutants, drugs, poisons, toxins, pesticide residues, dyes, antibiotics, amino acids, antitumor drugs, explosives, and plasticizers. Additionally, in the dynamic detection process, an efficient and stable signal can be maintained for 1-2 min, which increases the practicality and operability of this method. Moreover, a dynamic detection process like this corresponds to the processes of material transformation in some organisms, so the method can be used to monitor transformation processes such as the death of a single cell caused by photothermal stimulation. Our method provides a novel pathway for generating hot spots that actively attract target molecules, and it can achieve general ultratrace detection of diverse substances and be applied to the study of cell behaviors in biological systems.
Collapse
Affiliation(s)
- Meihong Ge
- Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui 230031, P. R. China.,University of Science & Technology of China, Hefei, Anhui 230026, P. R. China
| | - Pan Li
- Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui 230031, P. R. China.,Department of Pharmacy, Hefei Cancer Hospital, Chinese Academy of Sciences, Hefei, Anhui 230031, P. R. China
| | - Guoliang Zhou
- Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui 230031, P. R. China.,University of Science & Technology of China, Hefei, Anhui 230026, P. R. China
| | - Siyu Chen
- Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui 230031, P. R. China.,University of Science & Technology of China, Hefei, Anhui 230026, P. R. China
| | - Wei Han
- Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui 230031, P. R. China.,Department of Pharmacy, Hefei Cancer Hospital, Chinese Academy of Sciences, Hefei, Anhui 230031, P. R. China
| | - Feng Qin
- Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui 230031, P. R. China.,University of Science & Technology of China, Hefei, Anhui 230026, P. R. China
| | - Yuman Nie
- Institute of Intelligent Machines, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui 230031, P. R. China
| | - Yaoxiong Wang
- Institute of Intelligent Machines, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui 230031, P. R. China
| | - Miao Qin
- Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui 230031, P. R. China.,University of Science & Technology of China, Hefei, Anhui 230026, P. R. China
| | - Guangyao Huang
- Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui 230031, P. R. China.,University of Science & Technology of China, Hefei, Anhui 230026, P. R. China
| | - Shaofei Li
- Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui 230031, P. R. China.,University of Science & Technology of China, Hefei, Anhui 230026, P. R. China
| | - Yongtao Wang
- Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui 230031, P. R. China.,University of Science & Technology of China, Hefei, Anhui 230026, P. R. China
| | - Liangbao Yang
- Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui 230031, P. R. China.,Department of Pharmacy, Hefei Cancer Hospital, Chinese Academy of Sciences, Hefei, Anhui 230031, P. R. China
| | - Zhongqun Tian
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Xiamen University, Xiamen, Fujian 361005, P. R. China
| |
Collapse
|
26
|
Ye Z, Li C, Chen Q, Xu Y, Bell SEJ. Self-assembly of colloidal nanoparticles into 2D arrays at water-oil interfaces: rational construction of stable SERS substrates with accessible enhancing surfaces and tailored plasmonic response. NANOSCALE 2021; 13:5937-5953. [PMID: 33650605 DOI: 10.1039/d0nr08803j] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Self-assembly at water-oil interfaces has been shown to be a cheap, convenient and efficient route to obtain densely packed layers of plasmonic nanoparticles which have small interparticle distances. This creates highly plasmonically active materials that can be used to give strong SERS enhancement and whose structure means that they are well suited to creating the highly stable, reproducible and uniform substrates that are needed to allow routine and accurate quantitative SERS measurements. A variety of methods have been developed to induce nanoparticle self-assembly at water-oil interfaces, fine tune the surface chemistry and adjust the position of the nanoparticles at the interface but only some of these are compatible with eventual use in SERS, where it is important that target molecules can access the active surface unimpeded. Similarly, it is useful to transform liquid plasmonic arrays into easy-to-handle free-standing solid films but these can only be used as solid SERS substrates if the process leaves the surface nanoparticles exposed. Here, we review the progress made in these research areas and discuss how these developments may lead towards achieving rational construction of tailored SERS substrates for sensitive and quantitative SERS analysis.
Collapse
Affiliation(s)
- Ziwei Ye
- School of Chemistry and Chemical Engineering, Queen's University Belfast, University Road, Belfast, BT7 1NN, UK.
| | | | | | | | | |
Collapse
|
27
|
Li R, Chen M, Yang H, Hao N, Liu Q, Peng M, Wang L, Hu Y, Chen X. Simultaneous In Situ Extraction and Self-Assembly of Plasmonic Colloidal Gold Superparticles for SERS Detection of Organochlorine Pesticides in Water. Anal Chem 2021; 93:4657-4665. [DOI: 10.1021/acs.analchem.1c00234] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Ruili Li
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China
| | - Miao Chen
- School of Life Sciences, Central South University, Changsha 410013, China
| | - Hua Yang
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China
| | - Naiying Hao
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China
| | - Qi Liu
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China
| | - Mei Peng
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China
| | - Lumin Wang
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China
| | - Yuyang Hu
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China
| | - Xiaoqing Chen
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China
- Key Laboratory of Hunan Province for Water Environment and Agriculture Product Safety, Central South University, Changsha 410083, Hunan, China
| |
Collapse
|
28
|
Jamali SB, Khaskheli MA, Abro MI, Chand R, Rekik N, Affan H, Ikram R. Confirming the SERS enhancement at large mapping area using self-assembly of silver nanocube at liquid-liquid cyclohexane/water interface. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.115365] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
29
|
Pu H, Huang Z, Xu F, Sun DW. Two-dimensional self-assembled Au-Ag core-shell nanorods nanoarray for sensitive detection of thiram in apple using surface-enhanced Raman spectroscopy. Food Chem 2020; 343:128548. [PMID: 33221103 DOI: 10.1016/j.foodchem.2020.128548] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 10/12/2020] [Accepted: 10/31/2020] [Indexed: 02/02/2023]
Abstract
The development of substrate with high sensitivity and good reproducibility for surface-enhanced Raman scattering (SERS) detection of contaminants in foods has attracted more and more attention. Herein, a stable two-dimensional (2D) Au-Ag core-shell nanorods (Au@Ag NRs) nanoarray substrate with high-performance SERS activity was developed based on interface self-assembly strategy and successfully applied to the detection of thiram in apple sample. A broad linearity range of 0.01-10 mg/L and a low limit of detection of 0.018 mg/L were achieved for thiram solution. The substrate was stable and exhibited satisfactory sensitivity after preserving at ambient temperature for 4 weeks. Furthermore, this method presented the comparable result to that acquired from high-performance liquid chromatography (HPLC) with satisfactory recoveries of 93-116%. The study indicated that the prepared Au@Ag NRs nanoarray substrate was promising for SERS detection of contaminants such as pesticides in foods.
Collapse
Affiliation(s)
- Hongbin Pu
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China; Academy of Contemporary Food Engineering, South China University of Technology, Guangzhou Higher Education Mega Center, Guangzhou 510006, China; Engineering and Technological Research Centre of Guangdong Province on Intelligent Sensing and Process Control of Cold Chain Foods, & Guangdong Province Engineering Laboratory for Intelligent Cold Chain Logistics Equipment for Agricultural Products, Guangzhou Higher Education Mega Centre, Guangzhou 510006, China
| | - Zhibin Huang
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China; Academy of Contemporary Food Engineering, South China University of Technology, Guangzhou Higher Education Mega Center, Guangzhou 510006, China; Engineering and Technological Research Centre of Guangdong Province on Intelligent Sensing and Process Control of Cold Chain Foods, & Guangdong Province Engineering Laboratory for Intelligent Cold Chain Logistics Equipment for Agricultural Products, Guangzhou Higher Education Mega Centre, Guangzhou 510006, China
| | - Fang Xu
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China; Academy of Contemporary Food Engineering, South China University of Technology, Guangzhou Higher Education Mega Center, Guangzhou 510006, China; Engineering and Technological Research Centre of Guangdong Province on Intelligent Sensing and Process Control of Cold Chain Foods, & Guangdong Province Engineering Laboratory for Intelligent Cold Chain Logistics Equipment for Agricultural Products, Guangzhou Higher Education Mega Centre, Guangzhou 510006, China
| | - Da-Wen Sun
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China; Academy of Contemporary Food Engineering, South China University of Technology, Guangzhou Higher Education Mega Center, Guangzhou 510006, China; Engineering and Technological Research Centre of Guangdong Province on Intelligent Sensing and Process Control of Cold Chain Foods, & Guangdong Province Engineering Laboratory for Intelligent Cold Chain Logistics Equipment for Agricultural Products, Guangzhou Higher Education Mega Centre, Guangzhou 510006, China; Food Refrigeration and Computerized Food Technology, University College Dublin, National University of Ireland, Agriculture and Food Science Centre, Belfield, Dublin 4, Ireland.
| |
Collapse
|
30
|
Ma Y, Sikdar D, He Q, Kho D, Kucernak AR, Kornyshev AA, Edel JB. Self-assembling two-dimensional nanophotonic arrays for reflectivity-based sensing. Chem Sci 2020; 11:9563-9570. [PMID: 34094221 PMCID: PMC8161679 DOI: 10.1039/d0sc02877k] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
We propose a nanoplasmonic platform that can be used for sensing trace levels of heavy metals in solutions via simple optical reflectivity measurements. The considered example is a lead sensor, which relies on the lead-mediated assembly of glutathione-functionalized gold nanoparticles (NPs) at a self-healing water/DCE liquid | liquid interface (LLI). Capillary forces tend to trap each NP at the LLI while the negatively charged ligands prevent the NPs settling too close to each other. In the presence of lead, due to chelation between the lead ion and glutathione ligand, the NPs assemble into a dense quasi-2D interfacial array. Such a dense assembly of plasmonic NPs can generate a remarkable broad-band reflectance signal, which is absent when NPs are adsorbed at the interface far apart from each other. The condensing effect of the LLI and the plasmonic coupling effect among the NP array gives rise to a dramatic enhancement of the reflectivity signals. Importantly, we show that our theory of the optical reflectivity from such an array of NPs works in perfect harmony with the physics and chemistry of the system with the key parameter being the interparticle distance at the interface. As a lead sensor, the system is fast, stable, and can achieve detection limits down to 14 ppb. Future alternative recognizing ligands can be used to build sister platforms for detecting other heavy metals. We propose a nanoplasmonic platform that can be used for sensing trace levels of heavy metals in solutions via simple optical reflectivity measurements at the liquid–liquid interface.![]()
Collapse
Affiliation(s)
- Ye Ma
- Department of Chemistry, Imperial College London, Molecular Science Research Hub, White City Campus 80 Wood Lane W12 0BZ UK .,School of Materials Science and Engineering, Ocean University of China Qingdao 266100 China
| | - Debabrata Sikdar
- Department of Chemistry, Imperial College London, Molecular Science Research Hub, White City Campus 80 Wood Lane W12 0BZ UK .,Department of Electronics and Electrical Engineering, Indian Institute of Technology Guwahati Guwahati-781039 India
| | - Qian He
- Key Lab of Marine Chemistry Theory & Technology, Ministry Education, Ocean University of China Qingdao 266100 China
| | - Daniel Kho
- Department of Chemistry, Imperial College London, Molecular Science Research Hub, White City Campus 80 Wood Lane W12 0BZ UK
| | - Anthony R Kucernak
- Department of Chemistry, Imperial College London, Molecular Science Research Hub, White City Campus 80 Wood Lane W12 0BZ UK
| | - Alexei A Kornyshev
- Department of Chemistry, Imperial College London, Molecular Science Research Hub, White City Campus 80 Wood Lane W12 0BZ UK
| | - Joshua B Edel
- Department of Chemistry, Imperial College London, Molecular Science Research Hub, White City Campus 80 Wood Lane W12 0BZ UK
| |
Collapse
|
31
|
Hussain N, Pu H, Hussain A, Sun DW. Rapid detection of ziram residues in apple and pear fruits by SERS based on octanethiol functionalized bimetallic core-shell nanoparticles. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2020; 236:118357. [PMID: 32375074 DOI: 10.1016/j.saa.2020.118357] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 04/03/2020] [Accepted: 04/08/2020] [Indexed: 06/11/2023]
Abstract
Existing approaches for the screening of unsafe materials in food matrices are time-consuming, tiresome and destructive in nature. Therefore, in the current study, a surface-enhanced Raman spectroscopy (SERS) method based on octanethiol-functionalized core-shell nanoparticles (Oct/Au@AgNPs) was established for rapid detection of ziram in apple and pear fruits. The morphology of substrate was evaluated using high-resolution TEM images and superimposed HAADF-STEM-EDS elemental mapping images, which confirmed that Au@AgNPs having gold (Au) core size of 28 nm in diameter and silver (Ag) shell of 5.5 nm in thickness were successfully grafted with octanethiol. The SERS method with the sensitive nanoparticles could detect ziram of up to 0.015 and 0.016 ppm in apple and pear with high coefficients of determination (R2) of 0.9987 and 0.9993, respectively. Furthermore, satisfactory recoveries (80-106%) were also accomplished for the fungicide in real samples. This work demonstrated that the functionalized silver-coated gold nanoparticles were easy to prepare and could be used as sensitive SERS platforms for monitoring of other agrochemicals in foods.
Collapse
Affiliation(s)
- Nisar Hussain
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China; Academy of Contemporary Food Engineering, South China University of Technology, Guangzhou Higher Education Mega Center, Guangzhou 510006, China; Engineering and Technological Research Centre of Guangdong Province on Intelligent Sensing and Process Control of Cold Chain Foods, & Guangdong Province Engineering Laboratory for Intelligent Cold Chain Logistics Equipment for Agricultural Products, Guangzhou Higher Education Mega Centre, Guangzhou 510006, China
| | - Hongbin Pu
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China; Academy of Contemporary Food Engineering, South China University of Technology, Guangzhou Higher Education Mega Center, Guangzhou 510006, China; Engineering and Technological Research Centre of Guangdong Province on Intelligent Sensing and Process Control of Cold Chain Foods, & Guangdong Province Engineering Laboratory for Intelligent Cold Chain Logistics Equipment for Agricultural Products, Guangzhou Higher Education Mega Centre, Guangzhou 510006, China
| | - Abid Hussain
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China; Academy of Contemporary Food Engineering, South China University of Technology, Guangzhou Higher Education Mega Center, Guangzhou 510006, China; Engineering and Technological Research Centre of Guangdong Province on Intelligent Sensing and Process Control of Cold Chain Foods, & Guangdong Province Engineering Laboratory for Intelligent Cold Chain Logistics Equipment for Agricultural Products, Guangzhou Higher Education Mega Centre, Guangzhou 510006, China
| | - Da-Wen Sun
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China; Academy of Contemporary Food Engineering, South China University of Technology, Guangzhou Higher Education Mega Center, Guangzhou 510006, China; Engineering and Technological Research Centre of Guangdong Province on Intelligent Sensing and Process Control of Cold Chain Foods, & Guangdong Province Engineering Laboratory for Intelligent Cold Chain Logistics Equipment for Agricultural Products, Guangzhou Higher Education Mega Centre, Guangzhou 510006, China; Food Refrigeration and Computerized Food Technology, University College Dublin, National University of Ireland, Agriculture and Food Science Centre, Belfield, Dublin 4, Ireland.
| |
Collapse
|
32
|
Su M, Wang C, Wang T, Jiang Y, Xu Y, Liu H. Breaking the Affinity Limit with Dual-Phase-Accessible Hotspot for Ultrahigh Raman Scattering of Nonadsorptive Molecules. Anal Chem 2020; 92:6941-6948. [PMID: 32329602 DOI: 10.1021/acs.analchem.9b05727] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
For surface-enhanced Raman scattering (SERS) analysis, only analytes that can be absorbed spontaneously onto a noble metal surface can be detected effectively. Therefore, getting nonadsorptive molecules close enough to the surface has always been a key challenge in SERS analysis. Here absorbance measurements show that the liquid-interfacial array (LIA) does not adsorb or enrich benzopyrene (Bap) molecules, which lack effective functional groups that can interact with the noble metal surfaces. But the SERS intensity of 0.1 ppm Bap on the LIA is 10 times larger than that of 10 ppm Bap on traditional solid substrate, i.e., 3 orders of magnitude of enhancement. The LIA overcomes the restriction of affinity between Bap molecules and the metal surface, and the Bap molecules can easily enter nanogaps without steric hindrance. Furthermore, both adsorptive and nonadsorptive molecules were used to observe the SERS enhancement behavior on the LIA platforms. In multiple detection, competitive SERS signal changes could be observed between adsorptive and nonadsorptive molecules or between nonadsorptive and nonadsorptive molecules. A theoretical scheme was profiled for localized surface plasmon resonance (SPR) properties of the LIA. Finite difference-time domain (FDTD) simulation shows that the LIAs have biphasic and accessible asymmetric hotspots, and the electric field enhancement in the CHCl3 (O) phase is approximately four times larger than that of the water (W) phase. In addition, the position and relative strength of the electromagnetic field depend on the spatial position of gold nanoparticles (GNPs) relative to the liquid-liquid interface (LLI), i.e., when the GNP dimer is completely immersed in a certain phase, the electromagnetic field enhancement of the CHCl3 phase is approximately 7 times larger than that of the W phase. We speculate that dual-phase-accessible hotspots and the hydrophobic environment provided by CHCl3 are two important factors contributing to successful detection of four common polycyclic aromatic hydrocarbons (PAHs) with a detection limit of 10 ppb. Finally, the LIA platform successfully realizes simultaneous detection of multiple PAHs in both plant and animal oils with good stability. This study provides a new direction for the development of high-efficiency and practical SERS technology for nonadsorptive molecules.
Collapse
Affiliation(s)
- Mengke Su
- School of Food and Biological Engineering, Engineering Research Center of Bio-process, Ministry of Education, Hefei University of Technology, Hefei, Anhui 230009, China
| | - Chao Wang
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, Anhui 230029, China
| | - Tengfei Wang
- School of Food and Biological Engineering, Engineering Research Center of Bio-process, Ministry of Education, Hefei University of Technology, Hefei, Anhui 230009, China
| | - Yifan Jiang
- School of Food and Biological Engineering, Engineering Research Center of Bio-process, Ministry of Education, Hefei University of Technology, Hefei, Anhui 230009, China
| | - Yue Xu
- School of Food and Biological Engineering, Engineering Research Center of Bio-process, Ministry of Education, Hefei University of Technology, Hefei, Anhui 230009, China
| | - Honglin Liu
- School of Food and Biological Engineering, Engineering Research Center of Bio-process, Ministry of Education, Hefei University of Technology, Hefei, Anhui 230009, China.,Molecular Science and Biomedicine Laboratory, State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Life Sciences, and Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan 410082, China.,State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai 200050, China
| |
Collapse
|
33
|
Two-dimensional Au@Ag nanodot array for sensing dual-fungicides in fruit juices with surface-enhanced Raman spectroscopy technique. Food Chem 2020; 310:125923. [DOI: 10.1016/j.foodchem.2019.125923] [Citation(s) in RCA: 78] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Revised: 10/15/2019] [Accepted: 11/17/2019] [Indexed: 11/22/2022]
|
34
|
Wang J, Li J, Zeng C, Qu Q, Wang M, Qi W, Su R, He Z. Sandwich-Like Sensor for the Highly Specific and Reproducible Detection of Rhodamine 6G on a Surface-Enhanced Raman Scattering Platform. ACS APPLIED MATERIALS & INTERFACES 2020; 12:4699-4706. [PMID: 31903739 DOI: 10.1021/acsami.9b16773] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Nonspecificity and low reproducibility are always the main challenges in surface-enhanced Raman scattering (SERS) detection, especially for testing real samples. In this study, we developed a sandwich-like sensor (AuA-pMIP) to detect rhodamine 6G (R6G) by integrating a porous molecularly imprinted polymer (pMIP) with a well-ordered AuNP array (AuA). To form a uniformly distributed hot spot, AuA was fabricated at an oil-water interface and was subsequently fixed between pMIP and a support slide. Finite-difference time-domain simulation indicated that the enhanced electric field covered a distance of ∼2 μm above the AuA, in which the pMIP provided effective mass-transfer channels and sufficient specific binding sites for target molecules. High specificity for AuA-pMIP in R6G detection was demonstrated by comparing the SERS performance of R6G on AuA-pMIP with that of its structural analogues on the same sensor. Remarkably, the stable sandwich-like structure allowed us to achieve a recyclable SERS sensor with high reproducibility. Finally, AuA-pMIP displayed excellent specificity and sensitivity toward R6G in a test based on a real orange juice sample. This study presents a promising method to achieve real sample testing on a SERS platform.
Collapse
Affiliation(s)
- Jing Wang
- School of Chemical Engineering and Technology, State Key Laboratory of Chemical Engineering , Tianjin University , Tianjin 300350 , P. R. China
| | - Jingyi Li
- School of Chemical Engineering and Technology, State Key Laboratory of Chemical Engineering , Tianjin University , Tianjin 300350 , P. R. China
| | - Chuan Zeng
- Technical Center of Zhuhai Entry-Exit Inspection and Quarantine Bureau , Zhuhai 519000 , P. R. China
| | - Qi Qu
- School of Chemical Engineering and Technology, State Key Laboratory of Chemical Engineering , Tianjin University , Tianjin 300350 , P. R. China
| | - Mengfan Wang
- School of Chemical Engineering and Technology, State Key Laboratory of Chemical Engineering , Tianjin University , Tianjin 300350 , P. R. China
- Tianjin Key Laboratory of Membrane Science and Desalination Technology , Tianjin 300350 , P. R. China
| | - Wei Qi
- School of Chemical Engineering and Technology, State Key Laboratory of Chemical Engineering , Tianjin University , Tianjin 300350 , P. R. China
- The Co-Innovation Centre of Chemistry and Chemical Engineering of Tianjin , Tianjin 300072 , P. R. China
- Tianjin Key Laboratory of Membrane Science and Desalination Technology , Tianjin 300350 , P. R. China
| | - Rongxin Su
- School of Chemical Engineering and Technology, State Key Laboratory of Chemical Engineering , Tianjin University , Tianjin 300350 , P. R. China
- The Co-Innovation Centre of Chemistry and Chemical Engineering of Tianjin , Tianjin 300072 , P. R. China
- Tianjin Key Laboratory of Membrane Science and Desalination Technology , Tianjin 300350 , P. R. China
| | - Zhimin He
- School of Chemical Engineering and Technology, State Key Laboratory of Chemical Engineering , Tianjin University , Tianjin 300350 , P. R. China
| |
Collapse
|
35
|
The Twice-Oxidized Graphene Oxide/Gold Nanoparticles Composite SERS Substrate for Sensitive Detection of Clenbuterol Residues in Animal-Origin Food Samples. FOOD ANAL METHOD 2020. [DOI: 10.1007/s12161-020-01709-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
36
|
Fan M, Andrade GFS, Brolo AG. A review on recent advances in the applications of surface-enhanced Raman scattering in analytical chemistry. Anal Chim Acta 2019; 1097:1-29. [PMID: 31910948 DOI: 10.1016/j.aca.2019.11.049] [Citation(s) in RCA: 227] [Impact Index Per Article: 37.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Revised: 11/18/2019] [Accepted: 11/20/2019] [Indexed: 12/13/2022]
Abstract
This review is focused on recent developments of surface-enhanced Raman scattering (SERS) applications in Analytical Chemistry. The work covers advances in the fabrication methods of SERS substrates, including nanoparticles immobilization techniques and advanced nanopatterning with metallic features. Recent insights in quantitative and sampling methods for SERS implementation and the development of new SERS-based approaches for both qualitative and quantitative analysis are discussed. The advent of methods for pre-concentration and new approaches for single-molecule SERS quantification, such as the digital SERS procedure, has provided additional improvements in the analytical figures-of-merit for analysis and assays based on SERS. The use of metal nanostructures as SERS detection elements integrated in devices, such as microfluidic systems and optical fibers, provided new tools for SERS applications that expand beyond the laboratory environment, bringing new opportunities for real-time field tests and process monitoring based on SERS. Finally, selected examples of SERS applications in analytical and bioanalytical chemistry are discussed. The breadth of this work reflects the vast diversity of subjects and approaches that are inherent to the SERS field. The state of the field indicates the potential for a variety of new SERS-based methods and technologies that can be routinely applied in analytical laboratories.
Collapse
Affiliation(s)
- Meikun Fan
- Faculty of Geosciences and Environmental Engineering, Southwest Jiaotong University, Chengdu, Sichuan, 610031, China
| | - Gustavo F S Andrade
- Centro de Estudos de Materiais, Departamento de Química, Instituto de Ciências Exatas, Universidade Federal de Juiz de Fora, Campus Universitário s/n, CEP 36036-900, Juiz de Fora, Brazil
| | - Alexandre G Brolo
- Department of Chemistry, University of Victoria, PO Box 3055, Victoria, BC, V8W 3V6, Canada; Centre for Advanced Materials and Related Technology, University of Victoria, V8W 2Y2, Canada.
| |
Collapse
|
37
|
Potential analytical methods for on-site oral drug test: Recent developments and applications. Trends Analyt Chem 2019. [DOI: 10.1016/j.trac.2019.115649] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
38
|
Li S, Xu J, Wang S, Xia X, Chen L, Chen Z. Versatile metal graphitic nanocapsules for SERS bioanalysis. CHINESE CHEM LETT 2019. [DOI: 10.1016/j.cclet.2019.05.049] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
39
|
Huang L, Jin J, Wang J, Jiang C, Xu M, Wen H, Liao T, Hu J. Homogeneous and high-density gold unit implanted optical labels for robust and sensitive point-of-care drug detection. NANOSCALE 2019; 11:16026-16035. [PMID: 31432057 DOI: 10.1039/c9nr03740c] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Controllable integration of gold building blocks into mesoscopic architecture produces improved optical signals with preferable stability for biological sensing. Here, we developed novel optical labels with homogeneous and high-density implanted hydrophobic gold nanoparticles (AuNPs) throughout three-dimensional silica scaffolds. The dendritic silica supports with an extra-large pore size and highly accessible central-radial channels were employed as metal-affinity templates, for anchoring with AuNPs directly from the organic phase. The nano-assemblies exhibited a high unit loading capacity while maintaining the intrinsic optical characteristics of AuNPs. After phase transfer by the alkylsilane intermediate layer and exterior silica shell encapsulation, the nanocomposites revealed an amplified plasmonic absorption signal, excellent colloidal/optical stability and convenient surface functionalization. By integrating the silica labels into the lateral flow immunoassay strip for signal enhancement, the sensitive point-of-care detection of methamphetamine in urine was established. The limit of detection achieved 0.026 ng mL-1, with a detection range from 0.023 to 375 ng mL-1 in a 10 min assay, allows both visual and on-site quantitative analysis. Encouragingly, the potential interfering drugs in the sample matrix showed a negligible influence on the results, validating the superior specificity of the current immunoassay. The newly developed gold-implanted optical labels show prospects for point-of-care testing in a complex biological matrix with the desirable stability and signal amplification.
Collapse
Affiliation(s)
- Liang Huang
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, P.R. China.
| | | | | | | | | | | | | | | |
Collapse
|
40
|
Li B, Wang T, Su Q, Wu X, Dong P. Fabrication of Au Nanorods by the Oblique Angle Deposition Process for Trace Detection of Methamphetamine with Surface-Enhanced Raman Scattering. SENSORS 2019; 19:s19173742. [PMID: 31470612 PMCID: PMC6749386 DOI: 10.3390/s19173742] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Revised: 08/14/2019] [Accepted: 08/20/2019] [Indexed: 01/12/2023]
Abstract
Oblique angle deposition (OAD) is a simple, low cost, effective, and maskless nanofabrication process. It can offer a reliable method for the mass fabrication of uniform metal nanorods which can be used as the surface-enhanced Raman scattering (SERS) substrate with an excellent enhancing performance. Up to now, Ag nanorods SERS substrates have been extensively studied. However, Ag is chemically active and easy to oxidize under atmospheric conditions. Comparatively, Au is chemically stable and has better biocompatibility than Ag. In this paper, we in detail, studied the electromechanical (EM) field distribution simulation, fabrication, and application of Au nanorods (AuNRs) on trace detection of methamphetamine. According to the finite-difference time-domain (FDTD) calculation results, the maximum EM intensity can be obtained with the length of AuNRs to be 800 nm and the tilting angle of AuNRs to be 71° respectively. The aligned Au nanorod array substrate was fabricated by the OAD process. The two key process parameters, deposition angle, and deposition rate were optimized by experiments, which were 86° and 2 Å/s, respectively. Using 1,2-bis (4-pyridyl) ethylene (BPE) as the probe molecule, the limit of detection (LOD) was characterized to be 10−11 M. The AuNRs were also used to detect methamphetamine. The LOD can be down to M (i.e., 14.92 pg/ml), which meet the requirements of the on-site rapid detection of the methamphetamine in human urine (500 ng/ml).
Collapse
Affiliation(s)
- Baini Li
- College of Intelligence Science and Technology, National University of Defense Technology, Changsha 410073, China
| | - Tianran Wang
- College of Intelligence Science and Technology, National University of Defense Technology, Changsha 410073, China
| | - Qingqing Su
- College of Intelligence Science and Technology, National University of Defense Technology, Changsha 410073, China
| | - Xuezhong Wu
- College of Intelligence Science and Technology, National University of Defense Technology, Changsha 410073, China
| | - Peitao Dong
- College of Intelligence Science and Technology, National University of Defense Technology, Changsha 410073, China.
| |
Collapse
|
41
|
Wang X, Zhai S, Liu C, Wang X, Yang Y, Tu Y. A Convenient Electrochemiluminescent Immunosensor for Detecting Methamphetamine Antibody. ANAL SCI 2019; 35:875-882. [PMID: 30982800 DOI: 10.2116/analsci.19p051] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
An antibody-based immunotherapy for methamphetamine (MA) addictive treatment is has been drawing more and more attention in recent years. However, studies about methamphetamine antibody (anti-MA) immunodetections are rare, owing to the lack of immunogenicity of small molecule MA. This study provides a simple and effective approach to develop a convenient electrochemiluminescent (ECL) immunosensor for the testing of anti-MA. In short, the synthetic holoantigen of MA is immobilized on a homemade gold nanoparticles modified electrode as the sensing host for the specific recognition and detection of anti-MA. The research suggested, under optimal experimental conditions, the ECL intensity on resultant immunosensor has a wide-linear regression toward the anti-MA quantity within the range from 0.03 to 3.07 ng with a detection limit of 2.32 pg. It responded to the dosage of anti-MA in spiked blood samples with satisfactory recovery. According to the research, the developed sensor shows promise as a portable Anti-MA fast seized device which performs quickly and offers convenience, and will be helpful for forensic identification and clinical treatment.
Collapse
Affiliation(s)
- Xia Wang
- College of Chemistry, Chemical Engineering and Materials, Dushu Lake Campus, Soochow University
| | - Suyan Zhai
- Department of Forensic Medicine, Institute of Forensic Science, Dushu Lake Campus, Soochow University
| | - Chao Liu
- Department of Forensic Medicine, Institute of Forensic Science, Dushu Lake Campus, Soochow University
| | - Xiaoshu Wang
- Department of Forensic Medicine, Institute of Forensic Science, Dushu Lake Campus, Soochow University
| | - Ya Yang
- Department of Forensic Medicine, Institute of Forensic Science, Dushu Lake Campus, Soochow University
| | - Yifeng Tu
- College of Chemistry, Chemical Engineering and Materials, Dushu Lake Campus, Soochow University
| |
Collapse
|
42
|
Du S, Su M, Jiang Y, Yu F, Xu Y, Lou X, Yu T, Liu H. Direct Discrimination of Edible Oil Type, Oxidation, and Adulteration by Liquid Interfacial Surface-Enhanced Raman Spectroscopy. ACS Sens 2019; 4:1798-1805. [PMID: 31251024 DOI: 10.1021/acssensors.9b00354] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
The quality and safety of edible oils is a momentous but formidable challenge, especially regarding identification of oil type, oxidation, and adulteration. Most conventional analytical methods have bottlenecks in sensitivity, specificity, accessibility, or reliability. Surface-enhanced Raman spectroscopy (SERS) is promising as an unlabeled and ultrasensitive technique but limited by modification of inducers or surfactants on metal surfaces for oil analysis. Here, we develop a quantitative SERS analyzer on two-liquid interfacial plasmonic arrays for direct quality classification of edible oils by a portable Raman device. The interfacial plasmonic array is self-assembled through mixing the gold nanoparticle (GNP) sols and oil sample dissolved in chloroform without any surfactants or pretreatments. Different kinds of edible oils dissolved in chloroform directly participate in self-assembly of plasmonic arrays that finally localizes onto a three-dimensional (3D) oil/water interface. The 3D plasmonic array is self-healing, shape adaptive, and can be transferred to any glass containers as a substrate-free SERS analyzer for direct Raman measurements. It produces sensitive responses of SERS on different kinds of edible oils. By virtue of principal component analysis (PCA), this analyzer is able to quickly distinguish six edible oils, oxidized oils, and adulterated oils. Moreover, the solvent chloroform generates unique and stable SERS bands that can utilized as an inherent internal standard (IIS) to calibrate SERS fluctuation and greatly improve quantitation accuracy. Compared to conventional lab methods, this analyzer avoids complex and time-consuming preprocessing and provides significant advantages in cost, speed, and utility. Our study illuminates a facile way to determine edible oil quality and promises great potential in food quality and safety analysis.
Collapse
Affiliation(s)
- Shanshan Du
- School of Food and Biological Engineering, Engineering Research Center of Bio-process, Ministry of Education, Hefei University of Technology, Hefei, Anhui 230009, China
| | - Mengke Su
- School of Food and Biological Engineering, Engineering Research Center of Bio-process, Ministry of Education, Hefei University of Technology, Hefei, Anhui 230009, China
| | - Yifan Jiang
- School of Food and Biological Engineering, Engineering Research Center of Bio-process, Ministry of Education, Hefei University of Technology, Hefei, Anhui 230009, China
| | - Fanfan Yu
- School of Food and Biological Engineering, Engineering Research Center of Bio-process, Ministry of Education, Hefei University of Technology, Hefei, Anhui 230009, China
| | - Yue Xu
- School of Food and Biological Engineering, Engineering Research Center of Bio-process, Ministry of Education, Hefei University of Technology, Hefei, Anhui 230009, China
| | - Xuefen Lou
- School of Food and Biological Engineering, Engineering Research Center of Bio-process, Ministry of Education, Hefei University of Technology, Hefei, Anhui 230009, China
| | - Ting Yu
- School of Food and Biological Engineering, Engineering Research Center of Bio-process, Ministry of Education, Hefei University of Technology, Hefei, Anhui 230009, China
| | - Honglin Liu
- School of Food and Biological Engineering, Engineering Research Center of Bio-process, Ministry of Education, Hefei University of Technology, Hefei, Anhui 230009, China
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai, 200050, China
| |
Collapse
|
43
|
Pu H, Huang Z, Sun DW, Fu H. Recent advances in the detection of 17β-estradiol in food matrices: A review. Crit Rev Food Sci Nutr 2019; 59:2144-2157. [PMID: 31084362 DOI: 10.1080/10408398.2019.1611539] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Pollution of endocrine disrupting chemicals has become a global issue. As one of the hormonally active compounds, 17β-estradiol produces the strongest estrogenic effect when it enters the organism exogenously including food intakes, bringing potential harmfulness such as malfunction of the endocrine system. Therefore, in order to assure food safety and avoid potential risks of 17β-estradiol to humans, it is of great significance to develop rapid, sensitive and selective approaches for the detection of 17β-estradiol in food matrices. In this review, the harmfulness and main sources of 17β-estradiol are firstly introduced, followed by the description of the principles and applications of different approaches for 17β-estradiol detection including high performance liquid chromatography, electrochemistry, Raman spectroscopy, fluorescence and colorimetry. Particularly, applications in detecting 17β-estradiol in food matrices over the years of 2010-2018 are discussed. Finally, advantages and limitations of these detection methods are highlighted and perspectives on future developments in the detection methods for 17β-estradiol are also proposed. Although many detection approaches can achieve trace or ultratrace detection of 17β-estradiol, further studies should be focused on the development of in-situ and real-time methods to monitor and evaluate 17β-estradiol for food safety.
Collapse
Affiliation(s)
- Hongbin Pu
- a School of Food Science and Engineering , South China University of Technology , Guangzhou , China.,b Academy of Contemporary Food Engineering , South China University of Technology, Guangzhou Higher Education Mega Center , Guangzhou , China.,c Engineering and Technological Research Centre of Guangdong Province on Intelligent Sensing and Process Control of Cold Chain Foods , Guangzhou Higher Education Mega Center , Guangzhou , China
| | - Zhibin Huang
- a School of Food Science and Engineering , South China University of Technology , Guangzhou , China.,b Academy of Contemporary Food Engineering , South China University of Technology, Guangzhou Higher Education Mega Center , Guangzhou , China.,c Engineering and Technological Research Centre of Guangdong Province on Intelligent Sensing and Process Control of Cold Chain Foods , Guangzhou Higher Education Mega Center , Guangzhou , China
| | - Da-Wen Sun
- a School of Food Science and Engineering , South China University of Technology , Guangzhou , China.,b Academy of Contemporary Food Engineering , South China University of Technology, Guangzhou Higher Education Mega Center , Guangzhou , China.,c Engineering and Technological Research Centre of Guangdong Province on Intelligent Sensing and Process Control of Cold Chain Foods , Guangzhou Higher Education Mega Center , Guangzhou , China.,d Food Refrigeration and Computerized Food Technology (FRCFT), Agriculture and Food Science Centre , University College Dublin, National University of Ireland , Belfield , Dublin 4 , Ireland
| | - Haohua Fu
- e Tang Renshen Group Co., Ltd , Zhuzhou , China
| |
Collapse
|
44
|
Hu Q, Wei Q, Zhang P, Li S, Xue L, Yang R, Wang C, Zhou L. An up-converting phosphor technology-based lateral flow assay for point-of-collection detection of morphine and methamphetamine in saliva. Analyst 2019; 143:4646-4654. [PMID: 30168551 DOI: 10.1039/c8an00651b] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Morphine (Mop) and methamphetamine (Met) are highly addictive drugs worldwide. Point-of-collection testing (POCT) for drug-of-abuse screening is important in abuse/rehabilitation clinics and law-enforcement agencies. We established an up-converting phosphor technology-based lateral flow assay (UPT-LFA) as a point-of-collection testing (POCT) method, namely Mop-UPT-LFA and Met-UPT-LFA, for the detection of morphine and methamphetamine without complicated sample pre-treatment, respectively, in saliva. The sensitivities of the Mop-UPT-LFA and the Met-UPT-LFA were 5 and 10 ng mL-1 with accurate quantitation of 5-100 ng mL-1 and 10-250 ng mL-1 for morphine and methamphetamine, respectively, for a detection time of 15 min. In reference to the detection limits of 20 and 25 ng mL-1 for morphine and methamphetamine, respectively, in the Driving Under the Influence of Drugs, Alcohol and Medicines (DRUID) program of the European Union, the percentage test/control (T/C) ratio of the UPT-LFA between 2 and 15 min reached 101% and 86%, and the UPT-LFA produced accurate qualitative results in 2 min for 100 simulated-saliva samples with the exception of a few weakly positive samples. The sample and sample treating buffer were mixed and added to the test strip, and the test was conducted 15 min later. Although we found no significant difference between the UPT-LFA quantitative test and the liquid chromatography tandem mass spectrometry (LC-MS) test, compared with the latter, the UPT-LFA was substantially faster and had higher detection efficiency. The UPT-LFA showed more accurate qualitative results than the LC-MS for 50 simulated-saliva samples. The ease of operation, high sensitivity, and accuracy of the UPT-LFA make it a valid candidate POCT method for drug-of-abuse screening.
Collapse
Affiliation(s)
- Qiushi Hu
- National Key Laboratory of Biochemical Engineering, PLA Key Laboratory of Biopharmaceutical Production & Formulation Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China.
| | | | | | | | | | | | | | | |
Collapse
|
45
|
Yang N, You T, Gao Y, Lu S, Yin P. One-Step Preparation Method of Flexible Metafilms on the Water-Oil Interface: Self-Assembly Surface Plasmon Structures for Surface-Enhanced Raman Scattering Detection. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:4626-4633. [PMID: 30892046 DOI: 10.1021/acs.langmuir.8b04271] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The present study demonstrated a one-step method for the first time to fabricate self-assembled gold nanoparticle (AuNP) metafilms at the water-toluene interface by adding polystyrene-polyisoprene-polystyrene as the support layer. The thiolated polyethylene glycol and ethanol were used to tune the surface charge density on the AuNPs, constructing a balanced situation at the water-toluene interface. The flexible (AuNP) metafilm can be easily obtained after evaporation of the toluene phase and further used as a surface-enhanced Raman scattering (SERS) substrate for trace thiram detection. The SERS sensitivity was tested using standard Raman probes such as crystal violet and malachite green, both with the detect concentration reaching 1 × 10-11 M. Moreover, the excellent reproducibility and elastic properties make the metafilm promising in practical detection. Hence, the trace thiram detection on an orange pericarp was inspected with the detection limit of 0.5 ppm (1 × 10-6 M) as well as a favorable linearity relation with a correlation coefficient of 0.979, exactly matching the realistic application requirements.
Collapse
Affiliation(s)
- Nan Yang
- Key Laboratory of Bio-Inspired Smart Interfacial Science and Technology of Ministry of Education, School of Chemistry , Beihang University , No. 37 Xueyuan Road , Haidian District, Beijing 100191 , China
| | - Tingting You
- Key Laboratory of Bio-Inspired Smart Interfacial Science and Technology of Ministry of Education, School of Chemistry , Beihang University , No. 37 Xueyuan Road , Haidian District, Beijing 100191 , China
| | - Yukun Gao
- Key Laboratory of Bio-Inspired Smart Interfacial Science and Technology of Ministry of Education, School of Chemistry , Beihang University , No. 37 Xueyuan Road , Haidian District, Beijing 100191 , China
| | - Sichen Lu
- Key Laboratory of Bio-Inspired Smart Interfacial Science and Technology of Ministry of Education, School of Chemistry , Beihang University , No. 37 Xueyuan Road , Haidian District, Beijing 100191 , China
| | - Penggang Yin
- Key Laboratory of Bio-Inspired Smart Interfacial Science and Technology of Ministry of Education, School of Chemistry , Beihang University , No. 37 Xueyuan Road , Haidian District, Beijing 100191 , China
| |
Collapse
|
46
|
Surface-Enhanced Raman Spectroscopy on Self-Assembled Au Nanoparticles Arrays for Pesticides Residues Multiplex Detection under Complex Environment. NANOMATERIALS 2019; 9:nano9030426. [PMID: 30871181 PMCID: PMC6473963 DOI: 10.3390/nano9030426] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Revised: 03/08/2019] [Accepted: 03/08/2019] [Indexed: 01/21/2023]
Abstract
The high reproducibility of trace detection in complex systems is very hard but crucial to analytical technology and science. Here, we present a surface-enhanced Raman scattering (SERS) platform made by large-scale self-assembly of Au nanoparticle (NP) arrays at the cyclohexane/water interface and its use for pesticides residues trace detection. The analyte molecules spontaneously localize into the Au NPs’ nanogaps during the self-assembly process, yielding excellent Raman signal enhancement by surface effects, and possibly both by the concentration of the analytes into the array and by plasmonic hot-spot formation. Transmission electron microscopy (TEM) images demonstrate a good uniformity of interparticle distances (2–3 nm) in the Au NP arrays. SERS experiments on crystal violet (CV) molecules demonstrated that the relative standard deviations (RSD) of the band intensities at 1173, 1376, and 1618 cm−1 were 6.3%, 6.4%, and 6.9%, respectively, indicating high reproducibility of the substrate. Furthermore, we demonstrate that two pesticides dissolved in organic and aqueous phases could be simultaneously detected, suggesting an excellent selectivity and universality of this method for multiplex detection. Our SERS platform opens vast possibilities for repeatability and sensitivity detection of targets in various complex fields.
Collapse
|
47
|
Ge M, Li P, Cao C, Li S, Lin D, Yang L. A long-period and high-stability three-dimensional surface-enhanced Raman scattering hotspot matrix. Chem Commun (Camb) 2019; 55:8647-8650. [DOI: 10.1039/c9cc02980j] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
A simple and effective method to construct a long-period and high-stability 3D hotspot matrix with the assistance of glycerol.
Collapse
Affiliation(s)
- Meihong Ge
- Center of Medical Physics and Technology
- Hefei Institutes of Physical Science
- Chinese Academy of Sciences
- Hefei 230031
- China
| | - Pan Li
- Center of Medical Physics and Technology
- Hefei Institutes of Physical Science
- Chinese Academy of Sciences
- Hefei 230031
- China
| | - Chentai Cao
- Center of Medical Physics and Technology
- Hefei Institutes of Physical Science
- Chinese Academy of Sciences
- Hefei 230031
- China
| | - Shaofei Li
- Center of Medical Physics and Technology
- Hefei Institutes of Physical Science
- Chinese Academy of Sciences
- Hefei 230031
- China
| | - Dongyue Lin
- Center of Medical Physics and Technology
- Hefei Institutes of Physical Science
- Chinese Academy of Sciences
- Hefei 230031
- China
| | - Liangbao Yang
- Center of Medical Physics and Technology
- Hefei Institutes of Physical Science
- Chinese Academy of Sciences
- Hefei 230031
- China
| |
Collapse
|
48
|
Mostowtt T, Munoz J, McCord B. An evaluation of monovalent, divalent, and trivalent cations as aggregating agents for surface enhanced Raman spectroscopy (SERS) analysis of synthetic cannabinoids. Analyst 2019; 144:6404-6414. [DOI: 10.1039/c9an01309a] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Monovalent, divalent and trivalent chloride, sulfate and nitrate salts were examined to determine the critical coagulation concentration (CCC) for each salt and its corresponding effect on detection limits for SERS analysis of synthetic cannabinoids.
Collapse
Affiliation(s)
| | - Jonathan Munoz
- Department of Chemistry
- Florida International University
- Miami
- USA
| | - Bruce McCord
- Department of Chemistry
- Florida International University
- Miami
- USA
| |
Collapse
|
49
|
Tian L, Su M, Yu F, Xu Y, Li X, Li L, Liu H, Tan W. Liquid-state quantitative SERS analyzer on self-ordered metal liquid-like plasmonic arrays. Nat Commun 2018; 9:3642. [PMID: 30194348 PMCID: PMC6128918 DOI: 10.1038/s41467-018-05920-z] [Citation(s) in RCA: 108] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Accepted: 08/04/2018] [Indexed: 12/14/2022] Open
Abstract
Liquid interfacial plasmonic platform is emerging for new sensors, catalysis, and tunable optical devices, but also promises an alternative for practical applications of surface-enhanced Raman spectroscopy (SERS). Here we show that vigorous mixing of chloroform with citrate-capped gold nanorod sols triggers the rapid self-assembly of three-dimensional plasmonic arrays at the chloroform/water (O/W) interface and produces a self-healing metal liquid-like brilliant golden droplet. The O phase itself generates stable SERS fingerprints and is a good homogeneous internal standard for quantitative analysis. This platform presents reversible O/W encasing in a common cuvette determined just by surface wettability of the container. Both O-in-W and W-in-O platforms exhibit excellent SERS sensitivity and reproducibility for different analytes by the use of a portable Raman device. It paves the way toward a practical and quantitative liquid-state SERS analyzer, likened to a simple UV–Vis spectrometer, that is far superior to typical solid substrate-based or nanoparticle sol-based analysis. The design and application of a liquid interfacial plasmonic platform promises for practical applications of surface-enhanced Raman scattering (SERS). Here, the authors report a reversible chloroform/water encasing strategy to self-assemble metal liquid-like 3D gold nanorod arrays with attractive SERS capability.
Collapse
Affiliation(s)
- Li Tian
- College of Food Science and Engineering, Hefei University of Technology, Hefei, Anhui, 230009, China
| | - Mengke Su
- College of Food Science and Engineering, Hefei University of Technology, Hefei, Anhui, 230009, China
| | - Fanfan Yu
- College of Food Science and Engineering, Hefei University of Technology, Hefei, Anhui, 230009, China
| | - Yue Xu
- College of Food Science and Engineering, Hefei University of Technology, Hefei, Anhui, 230009, China.,Molecular Science and Biomedicine Laboratory, State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Life Sciences, and Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan, 410082, China
| | - Xiaoyun Li
- Shanghai Synchrotron Radiation Facility, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai, 201204, China
| | - Lei Li
- College of Food Science and Engineering, Hefei University of Technology, Hefei, Anhui, 230009, China
| | - Honglin Liu
- College of Food Science and Engineering, Hefei University of Technology, Hefei, Anhui, 230009, China. .,Molecular Science and Biomedicine Laboratory, State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Life Sciences, and Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan, 410082, China.
| | - Weihong Tan
- Molecular Science and Biomedicine Laboratory, State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Life Sciences, and Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan, 410082, China. .,Department of Chemistry and Department of Physiology and Functional Genomics, Center for Research at the Bio/Nano Interface, Health Cancer Center, UF Genetics Institute, McKnight Brain Institute, University of Florida, Gainesville, FL, 32611-7200, USA.
| |
Collapse
|
50
|
Zhang L, Liu F, Zou Y, Hu X, Huang S, Xu Y, Zhang L, Dong Q, Liu Z, Chen L, Chen Z, Tan W. Surfactant-Free Interface Suspended Gold Graphitic Surface-Enhanced Raman Spectroscopy Substrate for Simultaneous Multiphase Analysis. Anal Chem 2018; 90:11183-11187. [DOI: 10.1021/acs.analchem.8b03040] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Liang Zhang
- Molecular Sciences and Biomedicine Laboratory, State Key Laboratory for Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, and Collaborative Innovation Center for Molecular Engineering and Theranostics, Hunan University, Changsha, Hunan 410082, China
| | - Fang Liu
- Molecular Sciences and Biomedicine Laboratory, State Key Laboratory for Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, and Collaborative Innovation Center for Molecular Engineering and Theranostics, Hunan University, Changsha, Hunan 410082, China
| | - Yuxiu Zou
- Molecular Sciences and Biomedicine Laboratory, State Key Laboratory for Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, and Collaborative Innovation Center for Molecular Engineering and Theranostics, Hunan University, Changsha, Hunan 410082, China
| | - Xiaoxiao Hu
- Molecular Sciences and Biomedicine Laboratory, State Key Laboratory for Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, and Collaborative Innovation Center for Molecular Engineering and Theranostics, Hunan University, Changsha, Hunan 410082, China
| | - Siqi Huang
- Molecular Sciences and Biomedicine Laboratory, State Key Laboratory for Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, and Collaborative Innovation Center for Molecular Engineering and Theranostics, Hunan University, Changsha, Hunan 410082, China
| | - Yiting Xu
- Molecular Sciences and Biomedicine Laboratory, State Key Laboratory for Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, and Collaborative Innovation Center for Molecular Engineering and Theranostics, Hunan University, Changsha, Hunan 410082, China
| | - Lufeng Zhang
- Molecular Sciences and Biomedicine Laboratory, State Key Laboratory for Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, and Collaborative Innovation Center for Molecular Engineering and Theranostics, Hunan University, Changsha, Hunan 410082, China
| | - Qian Dong
- Molecular Sciences and Biomedicine Laboratory, State Key Laboratory for Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, and Collaborative Innovation Center for Molecular Engineering and Theranostics, Hunan University, Changsha, Hunan 410082, China
| | - Zhangkun Liu
- Molecular Sciences and Biomedicine Laboratory, State Key Laboratory for Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, and Collaborative Innovation Center for Molecular Engineering and Theranostics, Hunan University, Changsha, Hunan 410082, China
| | - Long Chen
- Faculty of Science and Technology, University of Macau, E11, Avenida da Universidade, Taipa, Macau 999078, China
| | - Zhuo Chen
- Molecular Sciences and Biomedicine Laboratory, State Key Laboratory for Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, and Collaborative Innovation Center for Molecular Engineering and Theranostics, Hunan University, Changsha, Hunan 410082, China
| | - Weihong Tan
- Molecular Sciences and Biomedicine Laboratory, State Key Laboratory for Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, and Collaborative Innovation Center for Molecular Engineering and Theranostics, Hunan University, Changsha, Hunan 410082, China
| |
Collapse
|