1
|
Ullah A, Afzal A, Lim HJ. Real-time monitoring of aqueous total N-nitrosamines by UV photolysis and chemiluminescence. ENVIRONMENTAL MONITORING AND ASSESSMENT 2024; 196:1162. [PMID: 39496861 DOI: 10.1007/s10661-024-13328-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 10/25/2024] [Indexed: 11/06/2024]
Abstract
N-nitrosamines such as N-nitrosodimethylamine (NDMA), N-nitrosodiethylamine (NDEA), N-nitrosopiperidine (NPIP), and N-nitrosopyrrolidine (NPYR) have been established as potent carcinogens that can induce diverse types of cancer. Several studies have extensively investigated the accurate quantification of total N-nitrosamines (TONO) and the intricate nature of the matrix in which they are detected. The potential for the formation of N-nitrosamines in post-combustion CO2 capture (PCCC) and water treatment has raised concerns. This study outlines a unique method for the quantification of TONO in aqueous matrices using UV photolysis and the subsequent detection of NO by chemiluminescence. This method offers benefits such as operation in the continuous mode and handling of high sample flow rates to achieve a low limit of detection (LOD) and a low limit of quantification (LOQ). The observed LODs for the individual N-nitrosamines of NDMA, N-nitrosomorpholine (NMOR), N-nitrosodibutylamine (NDBA), and NPIP range between 0.06 and 0.2 µM at a sample flow rate of 0.25 mL/min, while the LOD range is reduced to between 0.02 and 0.06 µM at 0.75 mL/min. Linear responses for the NO produced from specific N-nitrosamines are observed between 0.5 and 10 µM. The developed method is resistant to interfering chemicals (i.e., nitrite, amines, and carbonyls) and exhibits high specificity.
Collapse
Affiliation(s)
- Atta Ullah
- Department of Environmental Engineering, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - Aqeel Afzal
- Department of Environmental Engineering, Kyungpook National University, Daegu, 41566, Republic of Korea
- Institute of Energy and Environmental Engineering, University of the Punjab, Lahore, 54590, Pakistan
| | - Ho-Jin Lim
- Department of Environmental Engineering, Kyungpook National University, Daegu, 41566, Republic of Korea.
| |
Collapse
|
2
|
Beard JC, Wang CH, Sridharan A, Croy RG, Essigmann JM, Swager TM. Colorimetric Detection of Aqueous N-Nitrosodimethylamine via Photonitrosation of a Naphtholsulfonate Indicator. ACS Sens 2024; 9:4655-4661. [PMID: 39167159 DOI: 10.1021/acssensors.4c00927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/23/2024]
Abstract
N-Nitrosamines are contaminants found throughout the environment, including in drinking water, and many nitrosamines are likely potent carcinogens. Correspondingly, there is a need for rapid and cost-effective in-field detection methods that can provide timely information about their contamination levels in water. This study details a colorimetric assay for detecting aqueous N-nitrosodimethylamine (NDMA) by photochemical nitrosation of a commercial naphtholsulfonate, to offer an attractive alternative to traditional laboratory-based analysis. The resulting naphthoquinone-oxime coordinates to aqueous iron(II) ions to form a green complex, allowing for direct visual detection. Characterization via Mössbauer and electron paramagnetic resonance (EPR) spectroscopy, alongside single-crystal structure determination, provides comprehensive structure information on the iron indicator complex. Optimization of detection conditions, including UV irradiation and response times, led to an improved colorimetric detection method with a limit of detection of 0.66 ppm for NDMA. The practical applicability and selectivity of this colorimetric detection scheme make it a promising candidate for the development of field-deployable sensors for NDMA in environmental water samples.
Collapse
Affiliation(s)
- Jessica C Beard
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Chi-Hsien Wang
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Arun Sridharan
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Robert G Croy
- Department of Biological Engineering and Center for Environmental Health Sciences, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - John M Essigmann
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
- Department of Biological Engineering and Center for Environmental Health Sciences, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Timothy M Swager
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
3
|
Pu C, Cavarra BR, Zeng T. Combining High-Resolution Mass Spectrometry and Chemiluminescence Analysis to Characterize the Composition and Fate of Total N-Nitrosamines in Wastewater Treatment Plants. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024. [PMID: 39254226 PMCID: PMC11428135 DOI: 10.1021/acs.est.4c06555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/11/2024]
Abstract
Monitoring the prevalence and persistence of N-nitrosamines and their precursors in wastewater treatment plants (WWTPs) and effluent-receiving aquatic compartments is a priority for utilities practicing wastewater recycling or exploiting wastewater-impacted source waters. In this work, we developed an analytical framework that combines liquid chromatography-high-resolution mass spectrometry (LC-HRMS) with acidic triiodide-chemiluminescence analysis to characterize the composition and fate of total N-nitrosamines (TONO) and their precursors along the treatment trains of eight WWTPs in New York. Through the parallel application of LC-HRMS and chemiluminescence methods, the TONO scores for 41 N-nitrosamines containing structurally diverse substituents on their amine nitrogen were derived based on their solid-phase extraction recoveries and conversion efficiencies to nitric oxide. Correcting the compositional analysis of TONO using the TONO scores of target N-nitrosamines refined the assessment of the reduction or accumulation of TONO and their precursors across treatment steps in WWTPs. Nontargeted analysis prioritized seven additional N-nitrosamines for confirmation by reference standards, including three previously uncharacterized species: N-nitroso-tert-butylphenylamine, N-nitroso-2-pyrrolidinmethanol, and N-nitrosodesloratadine, although they only served as minor components of TONO. Overall, our study establishes an adaptable methodological framework for advancing the quantitative and qualitative analysis of specific and unknown components of TONO across water treatment and reuse scenarios.
Collapse
Affiliation(s)
- Changcheng Pu
- Department of Civil and Environmental Engineering, Syracuse University, 151 Link Hall, Syracuse, New York 13244, United States
| | - Benjamin R Cavarra
- Department of Civil and Environmental Engineering, Syracuse University, 151 Link Hall, Syracuse, New York 13244, United States
| | - Teng Zeng
- Department of Civil and Environmental Engineering, Syracuse University, 151 Link Hall, Syracuse, New York 13244, United States
| |
Collapse
|
4
|
Aishwarya D, Nikhil P, Natesan S, Velayutham R, Peraman R. Development and validation of high-performance liquid chromatography-Orbitrap mass spectrometric method for quantification of NDMA in ranitidine drug products and evaluation of antioxidants as inhibitors of classical nitrosation reaction. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2024; 38:e9747. [PMID: 38600640 DOI: 10.1002/rcm.9747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 01/09/2024] [Accepted: 03/04/2024] [Indexed: 04/12/2024]
Abstract
RATIONALE N-Nitroso dimethylamine (NDMA) is a mutagenic impurity detected in several ranitidine products. The amino functional group of ranitidine is a risk factor for classical nitrosation-induced NDMA formation in ranitidine drug products during storage conditions. The United States Food and Drug Administration (US FDA) recommended the use of antioxidants to control NDMA in drug products. Considering the need for sensitive analytics, a liquid chromatography/high-resolution mass spectrometry (LC-HRMS) method was developed and validated to detect NDMA in this pilot study to demonstrate the antioxidants as inhibitors of nitrosation reactions. METHODS The method, utilizing an EC-C18 column and tuned to atmospheric pressure chemical ionization/selected ion monitoring (APCI/SIM) mode, separated NDMA (m/z: 75.0553; tR: 3.71 min) and ranitidine (m/z: 315.1485; tR: 8.61 min). APCI mode exhibited four times higher sensitivity to NDMA than electrospray ionization (ESI) mode. Classical nitrosation of the dimethyl amino group of ranitidine was studied with sodium nitrite in solid pellets. Antioxidants (alpha-tocopherol, ascorbic acid, and trolox) were evaluated as NDMA attenuators in ranitidine pellets under vulnerable storage conditions. The developed method quantified NDMA levels in samples, extracted with methanol through vortex shaking for 45 min. RESULTS The method achieved a limit of detection (LOD) and limit of quantitation (LOQ) of 0.01 and 0.05 ng/mL, respectively, with linearity within 1-5000 ng/mL (R1: 0.9995). It demonstrated good intra-day and inter-day precision (% RSD [relative standard deviation]: <2) and accuracy (96.83%-101.72%). Nitrosation of ranitidine induced by nitrite was significant (p < 0.001; R2 = 0.9579) at various sodium nitrite levels. All antioxidants efficiently attenuated NDMA formation during ranitidine nitrosation. Ascorbic acid exhibited the highest NDMA attenuation (96.98%), followed by trolox (90.58%). This study recommends 1% ascorbic acid and trolox as potent NDMA attenuators in ranitidine drug products. CONCLUSIONS This study compared the effectiveness of antioxidants as NDMA attenuators in ranitidine under storage conditions susceptible to NDMA generation. The study concluded that ascorbic acid and trolox are potent inhibitors of NDMA formation and nitrosation attenuators in ranitidine drug products.
Collapse
Affiliation(s)
- Dande Aishwarya
- Department of Pharmaceutical Analysis, National Institute of Pharmaceutical Education and Research (NIPER), Hajipur, Bihar, India
| | - Pallaprolu Nikhil
- Department of Pharmaceutical Analysis, National Institute of Pharmaceutical Education and Research (NIPER), Hajipur, Bihar, India
| | - Subramanian Natesan
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Kolkata, West Bengal, India
| | - Ravichandiran Velayutham
- Department of Natural Products, National Institute of Pharmaceutical Education and Research (NIPER), Kolkata, West Bengal, India
| | - Ramalingam Peraman
- Department of Pharmaceutical Analysis, National Institute of Pharmaceutical Education and Research (NIPER), Hajipur, Bihar, India
| |
Collapse
|
5
|
Pu C, Zeng T. Comparative Evaluation of Chemical and Photolytic Denitrosation Methods for Chemiluminescence Detection of Total N-Nitrosamines in Wastewater Samples. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:7526-7536. [PMID: 37140470 DOI: 10.1021/acs.est.2c09769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
N-Nitrosamines form as byproducts during oxidative water treatment and occur as impurities in consumer and industrial products. To date, two methods based on chemiluminescence (CL) detection of nitric oxide liberated from N-nitrosamines via denitrosation with acidic triiodide (HI3) treatment or ultraviolet (UV) photolysis have been developed to enable the quantification of total N-nitrosamines (TONO) in environmental water samples. In this work, we configured an integrated experimental setup to compare the performance of HI3-CL and UV-CL methods with a focus on their applicability for TONO measurements in wastewater samples. With the use of a large-volume purge vessel for chemical denitrosation, the HI3-CL method achieved signal stability and detection limits comparable to those achieved by the UV-CL method which utilized a microphotochemical reactor for photolytic denitrosation. Sixty-six structurally diverse N-nitroso compounds (NOCs) yielded a range of conversion efficiencies relative to N-nitrosodimethylamine (NDMA) regardless of the conditions applied for denitrosation. On average, TONO measured in preconcentrated raw and chloraminated wastewater samples by the HI3-CL method were 2.1 ± 1.1 times those measured by the UV-CL method, pointing to potential matrix interferences as further confirmed by spike recovery tests. Overall, our comparative assessment of the HI3-CL and UV-CL methods serves as a basis for addressing methodological gaps in TONO analysis.
Collapse
Affiliation(s)
- Changcheng Pu
- Department of Civil and Environmental Engineering, Syracuse University, 151 Link Hall, Syracuse, New York 13244, United States
| | - Teng Zeng
- Department of Civil and Environmental Engineering, Syracuse University, 151 Link Hall, Syracuse, New York 13244, United States
| |
Collapse
|
6
|
Kumar D, Mesin R, Chu CS. Optical fluorescent sensor based on perovskite QDs for nitric oxide gas detection. APPLIED OPTICS 2023; 62:3176-3181. [PMID: 37133166 DOI: 10.1364/ao.486952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
In this paper, a new, to the best of our knowledge, optical fluorescent sensor for the sensing of nitric oxide (NO) gas is developed. The optical NO sensor based on C s P b B r 3 perovskite quantum dots (PQDs) is coated on the surface of filter paper. The C s P b B r 3 PQD sensing material can be excited with a UV LED of a central wavelength at 380 nm, and the optical sensor has been tested in regard to monitoring different NO concentrations from 0-1000 ppm. The sensitivity of the optical NO sensor is represented in terms of the ratio I N2/I 1000p p m N O , where I N2 and I 1000p p m N O represent the detected fluorescence intensities in pure nitrogen and 1000 ppm NO environments, respectively. The experimental results show that the optical NO sensor has a sensitivity of 6. In addition, the response time was 26 s when switching from pure nitrogen to 1000 ppm NO and 117 s when switching from 1000 ppm NO to pure nitrogen. Finally, the optical sensor may open a new approach for the sensing of the NO concentration in the harsh reacting environmental applications.
Collapse
|
7
|
Romero V, Sant'Anna C, Lavilla I, Bendicho C. Fluorescent paper-based sensor integrated with headspace thin-film microextraction for the detection of acyclic N-nitrosamines following in situ photocatalytic decomposition. Anal Chim Acta 2023; 1239:340729. [PMID: 36628727 DOI: 10.1016/j.aca.2022.340729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 12/16/2022] [Accepted: 12/17/2022] [Indexed: 12/24/2022]
Abstract
BACKGROUND In this work, a novel analytical approach based on the photocatalytic decomposition of N-nitrosamines combined with headspace thin-film microextraction of the generated nitrogen oxides such as NO has been developed for the determination of the acyclic N-nitrosamine fraction in drinking water samples. A hydrophilic cellulose substrate modified with fluorescent silver nanoclusters (Ag NCs) was used both as extractant and sensing platform. A quenching effect of Ag NCs fluorescence occurs as the concentration of N-nitrosamines increases. Front-face fluorescence spectroscopy with a solid sample holder was employed for directly measuring the fluorescence quenching onto the cellulose substrate. RESULTS In order to achieve an optimal analytical response, different parameters involved in the photocatalytic reaction as well as those concerning the microextraction step were fully investigated. It is demonstrated that the photodegradation rate of cyclic N-nitrosamines at acidic pH is much lower than that of acyclic ones, which can be the basis for the determination of the later fraction in waters. Under optimal conditions, a detection limit for the acyclic N-nitrosamine fraction around 0.08 μg L-1 using N-nitrosodimethylamine (NDMA) as model compound for calibration was obtained. Several drinking waters were spiked with acyclic N-nitrosamines showing recoveries in the range of 98-102% with a relative standard deviation of 3-4% (N = 3). SIGNIFICANCE AND NOVELTY N-nitrosamines generated as by-products during disinfection processes applied to water cause multiple adverse effects on human health being classified as potential human carcinogens. This study highlights the suitability of a fluorescent paper-based sensor for the rapid analysis of the acyclic N-nitrosamine fraction (i.e. the most abundant fraction) as a total index in drinking water, being useful as screening tool before exhaustive chromatographic analysis, which saves costs, time and reduces waste generation.
Collapse
Affiliation(s)
- Vanesa Romero
- Centro de Investigación Mariña, Universidade de Vigo, Departamento de Química Analítica y Alimentaria, Grupo QA2, 36310, Vigo, Spain.
| | - Carolina Sant'Anna
- Centro de Investigación Mariña, Universidade de Vigo, Departamento de Química Analítica y Alimentaria, Grupo QA2, 36310, Vigo, Spain
| | - Isela Lavilla
- Centro de Investigación Mariña, Universidade de Vigo, Departamento de Química Analítica y Alimentaria, Grupo QA2, 36310, Vigo, Spain
| | - Carlos Bendicho
- Centro de Investigación Mariña, Universidade de Vigo, Departamento de Química Analítica y Alimentaria, Grupo QA2, 36310, Vigo, Spain.
| |
Collapse
|
8
|
Trampuž M, Žnidarič M, Gallou F, Časar Z. Does the Red Shift in UV-Vis Spectra Really Provide a Sensing Option for Detection of N-Nitrosamines Using Metalloporphyrins? ACS OMEGA 2023; 8:1154-1167. [PMID: 36643536 PMCID: PMC9835193 DOI: 10.1021/acsomega.2c06615] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Accepted: 12/08/2022] [Indexed: 06/17/2023]
Abstract
N-nitrosamines are widespread cancerogenic compounds in human environment, including water, tobacco products, food, and medicinal products. Their presence in pharmaceuticals has recently led to several recalls of important medicines from the market, and strict controls and tight limits of N-nitrosamines are now required. Analytical determination of N-nitrosamines is expensive, laborious, and time-inefficient making development of simpler and faster techniques for their detection crucial. Several reports published in the previous decade have demonstrated that cobalt porphyrin-based chemosensors selectively bind N-nitrosamines, which produces a red shift of characteristic Soret band in UV-Vis spectra. In this study, a thorough re-evaluation of metalloporphyrin/N-nitrosamine adducts was performed using various characterization methods. Herein, we demonstrate that while N-nitrosamines can interact directly with cobalt-based porphyrin complexes, the red shift in UV-Vis spectra is not selectively assured and might also result from the interaction between impurities in N-nitrosamines and porphyrin skeleton or interaction of other functional groups within the N-nitrosamine structure and the metal ion within the porphyrin. We show that pyridine nitrogen is the interacting atom in tobacco-specific N-nitrosamines (TSNAs), as pyridine itself is an active ligand and not the N-nitrosamine moiety. When using Co(II) porphyrins as chemosensors, acidic and basic impurities in dialkyl N-nitrosamines (e.g., formic acid, dimethylamine) are also UV-Vis spectra red shift-producing species. Treatment of these N-nitrosamines with K2CO3 prevents the observed UV-Vis phenomena. These results imply that cobalt-based metalloporphyrins cannot be considered as selective chemosensors for UV-Vis detection of N-nitrosamine moiety-containing species. Therefore, special caution in interpretation of UV-Vis red shift for chemical sensors is suggested.
Collapse
Affiliation(s)
- Marko Trampuž
- Lek
Pharmaceuticals d.d., Sandoz Development
Center Slovenia, Kolodvorska
27, 1234 Mengeš, Slovenia
| | - Mateja Žnidarič
- Lek
Pharmaceuticals d.d., Sandoz Development
Center Slovenia, Kolodvorska
27, 1234 Mengeš, Slovenia
| | - Fabrice Gallou
- Chemical
and Analytical Development, Novartis Pharma
AG, Basel 4056, Switzerland
| | - Zdenko Časar
- Lek
Pharmaceuticals d.d., Sandoz Development
Center Slovenia, Kolodvorska
27, 1234 Mengeš, Slovenia
- Chair
of Medicinal Chemistry, Faculty of Pharmacy, University of Ljubljana, Aškerčeva cesta 7, 1000 Ljubljana, Slovenia
| |
Collapse
|
9
|
Studies on a novel method for the determination of nitrosamines in food by HPLC-UV-FLD coupling with terbium-doped carbon dots. Food Chem 2022. [DOI: 10.1016/j.foodchem.2022.134894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
10
|
Liu JKY, Feng E, Fu Y, Li W, Ma X, Sheng H, Kong J, Liu Y, Hicks M, Xiang B, Liu Z, Pennington J, Kenttämaa HI. A Diagnostic Nitrosamine Detection Approach for Pharmaceuticals by Using Tandem Mass Spectrometry Based on Diagnostic Gas-Phase Ion-Molecule Reactions. Anal Chem 2022; 94:13795-13803. [PMID: 36154017 DOI: 10.1021/acs.analchem.2c02282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
N-Nitrosamines are strictly regulated in pharmaceutical products due to their carcinogenic nature. Therefore, the ability to rapidly and reliably identify the N-nitroso functionality is urgently needed. Unfortunately, not all ionized N-nitroso compounds produce diagnostic fragment ions and hence tandem mass spectrometry based on collision-activated dissociation (CAD) cannot be used to consistently identify the N-nitroso functionality. Therefore, a more reliable method was developed based on diagnostic functional-group selective ion-molecule reactions in a linear quadrupole ion trap mass spectrometer. 2-Methoxypropene (MOP) was identified as a reagent that reacts with protonated N-nitrosamines in a diagnostic manner by forming an adduct followed by the elimination of 2-propenol (CH3C(OH)═CH2]). From 18 protonated N-nitrosamine model compounds studied, 15 formed the diagnostic product ion. The lack of the diagnostic reaction for three of the N-nitrosamine model compounds was rationalized based on the presence of a pyridine ring that gets preferentially protonated instead of the N-nitroso functionality. These N-nitrosamines can be identified by subjecting a stable adduct formed upon ion-molecule reactions with MOP to CAD. Further, the ability to use ion-molecule reactions followed by CAD to differentiate protonated O-nitroso compounds with a pyridine ring from analogous N-nitrosamines was demonstrated This methodology is considered to be robust for the identification of the N-nitroso functionality in unknown analytes. Lastly, HPLC/MS2 experiments were performed to determine the detection limit for five FDA regulated N-nitrosamines.
Collapse
Affiliation(s)
- Judy Kuan-Yu Liu
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| | - Erlu Feng
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| | - Yue Fu
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| | - Wanru Li
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| | - Xin Ma
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| | - Huaming Sheng
- Department of Analytical Research & Development, Merck & Co., Inc., Rahway, New Jersey 07065, United States
| | - John Kong
- Department of Analytical Research & Development, Merck & Co., Inc., Rahway, New Jersey 07065, United States
| | - Yong Liu
- Department of Analytical Research & Development, Merck & Co., Inc., Rahway, New Jersey 07065, United States
| | - Michael Hicks
- Department of Analytical Research & Development, Merck & Co., Inc., Rahway, New Jersey 07065, United States
| | - Bangping Xiang
- Department of Analytical Research & Development, Merck & Co., Inc., Rahway, New Jersey 07065, United States
| | - Zhijian Liu
- Department of Analytical Research & Development, Merck & Co., Inc., Rahway, New Jersey 07065, United States
| | - Justin Pennington
- Department of Analytical Research & Development, Merck & Co., Inc., Rahway, New Jersey 07065, United States
| | - Hilkka I Kenttämaa
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| |
Collapse
|
11
|
Wang Q, Liu Z, Liu Y, Chen H. Absolute Quantitation of N-Nitrosamines by Coulometric Mass Spectrometry without Using Standards. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2022; 33:875-884. [PMID: 35446584 PMCID: PMC9119692 DOI: 10.1021/jasms.2c00064] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Carcinogenic N-nitrosamines were recently found in the sartan family of drugs and caused many drug recalls. Both of their detection and quantification are therefore important. Methods reported for N-nitrosamine quantitation rely on the use of standards and are just applicable to simple N-nitrosamines. There is an urgent need to quantify N-nitrosamines derived from drugs with a complicated structure that lack standards. To tackle the issue, this study describes a novel absolute quantitation strategy for N-nitrosamines using coulometric mass spectrometry (CMS) without standards. In our approach, N-nitrosamine is first converted into electrochemically active hydrazine via zinc reduction under acidic condition and the resulting hydrazine can then be easily quantified using CMS. To validate our method, six simple N-nitrosamines, N-nitrosodiethylamine (NDEA), N-nitroso-4-phenylpiperidine (NPhPIP), N-nitrosodiphenylamine (NDPhA), N-nitrosodibutylamine (NDBA), N-nitrosodipropylamine (NDPA), and N-nitrosopiperidine (NPIP), were chosen as test samples, and they all were quantified with excellent measurement accuracy (quantitation error ≤1.1%). Taking this one step further, as a demonstration of the method utility, a drug-like N-nitrosamine, (R)-N-(2-(6-chloro-5-methyl-1'-nitroso-2,3-dihydrospiro[indene-1,4'-piperidin]-3-yl)propan-2-yl)acetamide (VII), was also synthesized and successfully quantified using our method at 15 ppb level in a complex formulation matrix, following solvent extraction, N-nitrosamine isolation, and reductive conversion. Because of the feature of requiring no standards, CMS provides a simple and powerful approach for N-nitrosamine absolute quantitation and has great potential for analysis of other drug impurities or metabolites.
Collapse
Affiliation(s)
- Qi Wang
- Department of Chemistry and Environmental Science, New Jersey Institute of Technology, Newark, New Jersey 07102, United States
| | - Zhijian Liu
- Department of Process Research and Development, Merck Research Laboratories, Merck & Co., Inc., Rahway, New Jersey 07065, United States
| | - Yong Liu
- Analytical Research and Development, Merck Research Laboratories, Merck & Co., Inc., Rahway, New Jersey 07065, United States
| | - Hao Chen
- Department of Chemistry and Environmental Science, New Jersey Institute of Technology, Newark, New Jersey 07102, United States
| |
Collapse
|
12
|
Boetzel R, Schlingemann J, Hickert S, Korn C, Kocks G, Luck B, Blom G, Harrison M, François M, Allain L, Wu Y, Bousraf Y. A Nitrite Excipient Database: A Useful Tool to Support N-Nitrosamine Risk Assessments for Drug Products. J Pharm Sci 2022; 112:1615-1624. [PMID: 35500671 DOI: 10.1016/j.xphs.2022.04.016] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 04/25/2022] [Accepted: 04/25/2022] [Indexed: 10/18/2022]
Abstract
N-Nitrosamine risk assessment and control have become an integral part of pharmaceutical drug product development and quality evaluation. Initial reports of nitrosamine contamination were linked with the drug substance and its manufacturing process. Subsequently, the drug product and aspects of the formulation process have shown to be relevant. Regarding specific formulation contributions to nitrosamine content in a product, one risk lies in possible interactions between nitrosating agents, derived from nitrite in excipients, and vulnerable amines, either present as moieties of the active molecule or as impurities / degradants. However, the limited validated information on nitrite levels in excipients available until now, has been an obstacle for scientists to assess the risk of nitrosamine formation in pharmaceutical products. This has driven the creation of a database to store and share such validated information. The database, maintained by Lhasa Limited, constitutes a central platform to hold the data donated by the pharmaceutical company members on the nitrite concentrations in common excipients measured with validated analytical procedures. The goal of this data sharing initiative is to provide a common framework to contextualize and estimate the risk posed by presence of nitrites to contribute to the formation of nitrosamines in drug products. The major findings from the database analyses are: (1) average nitrite content and batch to batch variance differ among excipients, (2) for solid dosage forms, the nitrite contribution is dominated by the highest formula % excipients, e.g., the fillers (diluents), which are typically used in larger proportion, and are characterized by low nitrite levels and low variability, leading to an average value of 1 µg/g nitrite in a typical formulation, (3) substantial differences in average nitrite content in batches from different excipient vendors potentially reflecting differences in source materials or processing methods for excipient manufacturing. That final point suggests that future selection of raw materials or processing by excipient manufacturers may help reduce nitrite levels in finished drug product formulations, and thus the overall risk of nitrosamine formation in cases where the product contains vulnerable amines.
Collapse
|
13
|
Jiang Y, Du S, Xu M, Yu T, Zhou B, Yu F, Jiang H, Yang L, Su M, Liu H. Tracking structural changes of protein residues by two-dimensional correlation surface-enhanced Raman spectroscopy. Food Chem 2022; 382:132237. [PMID: 35144188 DOI: 10.1016/j.foodchem.2022.132237] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 12/17/2021] [Accepted: 01/21/2022] [Indexed: 12/13/2022]
Abstract
In-situ tracking structural changes of protein residues was developed by two-dimensional correlation surface-enhanced Raman spectroscopy (2DC-SERS). The change order of SERS fingerprints during artificial nitrification of edible bird's nest (EBN) was interpreted as the structural changes of amino acid residues. It inherently realizes reliable recognition of natural EBN and artificially dyed fakes. Both this direct structural tracking of protein residues and the indirect azo dye testing of nitrites/nitrosamines could be used as indicators for discriminating different EBN before and after the artificial dyeing. Limit of detection (LOD) for nitrite and NDMA is about 40.6 ppb and 88.1 ppb, respectively. A conceptual logical circuit of the OR gate was constructed by considering the protein structural indicator (INPUT1) and the nitrite indicator (INPUT2) as two independent inputs for automatic recognition of different EBN samples. A data-driven analog soft independent modeling (DD-SIMCA) model could quickly distinguish normal EBN from A-EBN with 98% specificity.
Collapse
Affiliation(s)
- Yifan Jiang
- China Light Industry Key Laboratory of Meat Microbial Control and Utilization, School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China
| | - Shanshan Du
- China Light Industry Key Laboratory of Meat Microbial Control and Utilization, School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China
| | - Min Xu
- China Light Industry Key Laboratory of Meat Microbial Control and Utilization, School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China
| | - Ting Yu
- China Light Industry Key Laboratory of Meat Microbial Control and Utilization, School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China
| | - Baomei Zhou
- China Light Industry Key Laboratory of Meat Microbial Control and Utilization, School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China
| | - Fanfan Yu
- China Light Industry Key Laboratory of Meat Microbial Control and Utilization, School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China
| | - Hao Jiang
- China Light Industry Key Laboratory of Meat Microbial Control and Utilization, School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China
| | - Lina Yang
- China Light Industry Key Laboratory of Meat Microbial Control and Utilization, School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China; Key Laboratory of Metabolism and Regulation for Major Diseases of Anhui Higher Education Institutes, Hefei University of Technology, Hefei 230009, China
| | - Mengke Su
- China Light Industry Key Laboratory of Meat Microbial Control and Utilization, School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China; Key Laboratory of Metabolism and Regulation for Major Diseases of Anhui Higher Education Institutes, Hefei University of Technology, Hefei 230009, China.
| | - Honglin Liu
- China Light Industry Key Laboratory of Meat Microbial Control and Utilization, School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China; Key Laboratory of Metabolism and Regulation for Major Diseases of Anhui Higher Education Institutes, Hefei University of Technology, Hefei 230009, China.
| |
Collapse
|
14
|
Zhao ZX, Chen SZ, Xia ZL, Bin Xu Y, Zhang LL, Tian SM, Fan Q. High level nitrosamines in rat faeces with colorectal cancer determined by a sensitive GC-MS method. J Pharm Biomed Anal 2022; 210:114576. [PMID: 34998074 DOI: 10.1016/j.jpba.2021.114576] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 12/19/2021] [Accepted: 12/30/2021] [Indexed: 12/19/2022]
Abstract
N-nitrosamines (NAs) are common toxic substances that have a strong correlation with many human diseases, such as liver damage and cancer. However, there is a lack of studies on methods involving the detection of NAs in biological samples, possibly owing to the interference of complex biological matrices and the influence of endogenous NAs. In this work, solid-phase extraction with mixed solid phases and adsorption sedimentation were used to successfully establish a gas chromatography-mass spectrometry (GC-MS) method for detecting eight NAs in rat faeces. Chromatographic separation of analytes was performed with Agilent VF-WAXms (30 m × 0.25 mm, 0.25 µm) GC columns. The LLOQs of eight NAs were set to the concentration of 0.5 ng/g and the obtained standard curves were linear, and correlation coefficients (r) were ≥ 0.99 for samples with concentration ranges of 0.5-500 ng/g. The inter and intra-assay precisions were< 15% for all analytes in the quality control samples, and the accuracies ranged from 88.67% to 108.33%. The extraction recoveries were above 78.56% for seven NAs, and a significant matrix effect was not observed. The application of this method revealed that the levels of NAS in the faeces of rats with colorectal cancer were higher than those of normal rats. Additionally, the effect of a high nitrite diet on NAs in faeces was analysed; the results confirmed that a high nitrite diet might contribute to an abnormal increase in NAs. Our work provides an analytical method for further in vivo study of NAs. Furthermore, a pilot study on the relationship between NAs and colorectal cancer was completed.
Collapse
Affiliation(s)
- Zhen Xiong Zhao
- Taizhou Central Hospital (Taizhou University Hospital), Taizhou, Zhejiang 317700, PR China
| | - Sai Zhen Chen
- Taizhou Central Hospital (Taizhou University Hospital), Taizhou, Zhejiang 317700, PR China
| | - Zhe Lin Xia
- Taizhou Central Hospital (Taizhou University Hospital), Taizhou, Zhejiang 317700, PR China
| | - Yu Bin Xu
- Taizhou Central Hospital (Taizhou University Hospital), Taizhou, Zhejiang 317700, PR China
| | - Ling Ling Zhang
- Taizhou Central Hospital (Taizhou University Hospital), Taizhou, Zhejiang 317700, PR China
| | - Shan Ming Tian
- Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong 250117, PR China
| | - Qing Fan
- Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong 250117, PR China.
| |
Collapse
|
15
|
Moradi S, Shariatifar N, Akbari-adergani B, Molaee Aghaee E, Arbameri M. Analysis and health risk assessment of nitrosamines in meat products collected from markets, Iran: with the approach of chemometric. JOURNAL OF ENVIRONMENTAL HEALTH SCIENCE & ENGINEERING 2021; 19:1361-1371. [PMID: 34900272 PMCID: PMC8617244 DOI: 10.1007/s40201-021-00692-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Accepted: 06/09/2021] [Indexed: 05/05/2023]
Abstract
The aim of study was evaluate of the concentration and health risk of nitrosamines in 150 meat products samples by using gas chromatography coupled with mass spectrometry (GC/MS), with the chemometric approach. Among the identified nitrosamines, the levels of N-nitrosopyrrolidine (NPYR), N-nitrosopiperidine (NPIP), and total nitrosamines in meat sausages samples were significantly higher than chicken sausages (p < 0.05). Principal component analysis and heat map visualization confirmed meat percentage and sausages type (meat or chicken) which had significant effects on nitrosamines content. The NPIP and NPYR intake was 1.17E-07 and 2.12E-07 mg/kg bw/day, respectively. The Monte Carlo simulation results indicated that the 95th percentile from NPIP and NPYR based on ILCR index were 9.07E-07 and 4.72E-07, respectively. In conclusion, the carcinogenic risk of nitrosamines was considerably lower than the safe risk limit (CR > 1E-4) recommended by United States Environmental Protection Agency for Iranian population.
Collapse
Affiliation(s)
- Samin Moradi
- Department of Environmental Health, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Nabi Shariatifar
- Department of Environmental Health, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Behrouz Akbari-adergani
- Food and Drug Laboratory Research Center, Food and Drug Administration, Ministry of Health and Medical Education, Tehran, Iran
| | - Ebrahim Molaee Aghaee
- Department of Environmental Health, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Majid Arbameri
- Food Safety Research Center (salt), Semnan University of Medical Sciences, Semnan, Iran
| |
Collapse
|
16
|
Liu Z, Sun C, Wang H, Wu T, Qiu B, Xiong X, Liu L. A far-red-emitting fluorescence probe for selective and sensitive detection of no in live cells and in C. elegans. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2021; 261:120030. [PMID: 34118523 DOI: 10.1016/j.saa.2021.120030] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 05/07/2021] [Accepted: 05/25/2021] [Indexed: 06/12/2023]
Abstract
Nitric oxide (NO), a ubiquitous intracellular and intercellular messenger molecule, plays vital roles in many physiological processes and is closely related to many diseases. Although a lot of fluorescent probes have been developed for real-time detection of NO successfully, the probes still suffer from poor tissue permeability and limited selectivity. In this study, a novel far-red fluorescent probe ZJL-3 based on rhodamine fluorescent dye was designed, synthesized, and used for NO determination. The probe contains a rhodamine as fluorophore and o-phenylenediamino as recognition unit. Upon addition of NO, the probe ZJL-3 showed an obvious far-red emission at 637 nm. The results of fluorescence spectrum experiments indicated that probe ZJL-3 exhibited desirable selectivity to NO. Furthermore, probe ZJL-3 has low cytotoxicity and was applied for the detection of exogenous and endogenous NO in RAW264.7 cells and C. elegans with satisfactory results.
Collapse
Affiliation(s)
- Zengjin Liu
- Drug Research Center of Integrated Traditional Chinese and Western Medicine, Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, China
| | - Changzhen Sun
- Drug Research Center of Integrated Traditional Chinese and Western Medicine, Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, China
| | - Hailan Wang
- Department of Dermatology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Tong Wu
- Department of Dermatology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Baoyu Qiu
- Department of Dermatology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Xia Xiong
- Department of Dermatology, The Affiliated Hospital of Southwest Medical University, Luzhou, China.
| | - Li Liu
- Department of Dermatology, The Affiliated Hospital of Southwest Medical University, Luzhou, China.
| |
Collapse
|
17
|
Bonifacie A, Aubry L, Gatellier P, Santé-Lhoutellier V, Théron L. Determination of nitroso-compounds in food products. MethodsX 2021; 8:101289. [PMID: 34434809 PMCID: PMC8374251 DOI: 10.1016/j.mex.2021.101289] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 02/21/2021] [Indexed: 11/29/2022] Open
Abstract
Nitrite and nitrate are present in many foods. Nitrate can be converted into nitrite in human body. Nitrite can react with secondary amines to form secondary amines and with thiols to form nitrosothiols. Some nitrosamines are cancers suspect. Because of their importance in terms of human health, research on these compounds is still topical and the use of a rapid and reproducible method for determination and quantification of these compounds is necessary. This article presents a method to study the chemical reactivity of nitrite in meat products through the analysis of non-volatile nitrosamines and nitrosothiols based on:A specific alkaline and heat extraction of nitro-compounds followed by deprotenization by ultrafiltration NO detection by the Griess reaction NO released from S-NO and N-NO bonds by UV light followed by a specific cleavage of S-NO bonds with HgCl2 This method, validated on cured meat products, could be developed in the same way on all products containing nitrite and nitrate and leading to the formation of nitroso-compounds. The limit of detection for these compounds are of the order of the micromole per liter.
Collapse
Affiliation(s)
- Aline Bonifacie
- Institut national de recherche pour l'agriculture, l'alimentation et l'environnement (INRAE), UR370 Qualité des Produits Animaux, Saint Genès-Champanelle F-63122 France.,IFIP - Institut du Porc, 7 Avenue du Général De Gaulle, Maisons Alfort F-94700 France
| | - Laurent Aubry
- Institut national de recherche pour l'agriculture, l'alimentation et l'environnement (INRAE), UR370 Qualité des Produits Animaux, Saint Genès-Champanelle F-63122 France
| | - Philippe Gatellier
- Institut national de recherche pour l'agriculture, l'alimentation et l'environnement (INRAE), UR370 Qualité des Produits Animaux, Saint Genès-Champanelle F-63122 France
| | - Véronique Santé-Lhoutellier
- Institut national de recherche pour l'agriculture, l'alimentation et l'environnement (INRAE), UR370 Qualité des Produits Animaux, Saint Genès-Champanelle F-63122 France
| | - Laetitia Théron
- Institut national de recherche pour l'agriculture, l'alimentation et l'environnement (INRAE), UR370 Qualité des Produits Animaux, Saint Genès-Champanelle F-63122 France
| |
Collapse
|
18
|
Beard JC, Swager TM. An Organic Chemist's Guide to N-Nitrosamines: Their Structure, Reactivity, and Role as Contaminants. J Org Chem 2021; 86:2037-2057. [PMID: 33474939 DOI: 10.1021/acs.joc.0c02774] [Citation(s) in RCA: 74] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
N-Nitrosamines are a class of compounds notorious both for the potent carcinogenicity of many of its members and for their widespread occurrence throughout the human environment, from air and water to our diets and drugs. Considerable effort has been dedicated to understanding N-nitrosamines as contaminants, and methods for their prevention, remediation, and detection are ongoing challenges. Understanding the chemistry of N-nitrosamines will be key to addressing these challenges. To facilitate such understanding, we focus in this Perspective on the structure, reactivity, and synthetic applications of N-nitrosamines with an emphasis on alkyl N-nitrosamines. The role of N-nitrosamines as water contaminants and the methods for their detection are also discussed.
Collapse
Affiliation(s)
- Jessica C Beard
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Timothy M Swager
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
19
|
Bonifacie A, Promeyrat A, Nassy G, Gatellier P, Santé-Lhoutellier V, Théron L. Chemical reactivity of nitrite and ascorbate in a cured and cooked meat model implication in nitrosation, nitrosylation and oxidation. Food Chem 2021; 348:129073. [PMID: 33524692 DOI: 10.1016/j.foodchem.2021.129073] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 12/17/2020] [Accepted: 01/06/2021] [Indexed: 02/02/2023]
Abstract
Nitrite, added to cured meat for its bacteriological and technological properties, is implicated in the formation of nitroso compounds (NOCs), such as nitrosylheme, nitrosamines and nitrosothiols, suspected to have a potential impact on human health. The mechanisms involved in NOC formation are studied in regard with the dose-response relationship of added nitrite and its interaction with ascorbate on NOC formation in a cured and cooked meat model. The impact of a second cooking stage on nitrosation was evaluated. The addition of nitrite in the cured and cooked model promoted heme iron nitrosylation and S-nitrosation but not N-nitrosation. Nitrite reduced lipid oxidation without an additional ascorbate effect. The second cooking sharply increased the nitrosamine content while the presence of ascorbate considerably lowered their levels and protected nitrosothiols from degradation. This study gives new insights on the chemical reactivity of NOCs in a cured meat model.
Collapse
Affiliation(s)
- Aline Bonifacie
- Institut national de recherche pour l'agriculture, l'alimentation et l'environnement (INRAE), UR370 Qualité des Produits Animaux, F-63122 Saint Genès-Champanelle, France; IFIP - Institut du Porc, 7 Avenue du Général De Gaulle, 94700 Maisons Alfort, France
| | - Aurélie Promeyrat
- IFIP - Institut du Porc, La motte au Vicomte, BP 35104, 35561 Le Rheu Cedex, France
| | - Gilles Nassy
- IFIP - Institut du Porc, La motte au Vicomte, BP 35104, 35561 Le Rheu Cedex, France
| | - Philippe Gatellier
- Institut national de recherche pour l'agriculture, l'alimentation et l'environnement (INRAE), UR370 Qualité des Produits Animaux, F-63122 Saint Genès-Champanelle, France
| | - Véronique Santé-Lhoutellier
- Institut national de recherche pour l'agriculture, l'alimentation et l'environnement (INRAE), UR370 Qualité des Produits Animaux, F-63122 Saint Genès-Champanelle, France
| | - Laetitia Théron
- Institut national de recherche pour l'agriculture, l'alimentation et l'environnement (INRAE), UR370 Qualité des Produits Animaux, F-63122 Saint Genès-Champanelle, France.
| |
Collapse
|
20
|
Wu W, Huang J, Ding L, Lin H, Yu S, Yuan F, Liang B. A real-time and highly sensitive fiber optic biosensor based on the carbon quantum dots for nitric oxide detection. J Photochem Photobiol A Chem 2021. [DOI: 10.1016/j.jphotochem.2020.112963] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
21
|
Kodamatani H, Sugihara K, Tanisue T, Kanzaki R, Tomiyasu T. Contamination, Decomposition, and Formation of N-Nitrosodimethylamine in Water Samples at the ng/L Level of Determination. ANAL SCI 2020; 36:1393-1399. [PMID: 32713901 DOI: 10.2116/analsci.20p162] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
An ultra-sensitive analytical system that can determine the concentration of N-nitrosamines at the ng/L level without preconcentration was used to investigate the contamination, decomposition, and formation of N-nitrosodimethylamine (NDMA) and other N-nitrosamines in water samples during general analytical procedures. A preliminary experiment was performed to estimate the NDMA concentrations in ambient air. Since the air samples contained NDMA at concentrations in the range of 2.0 - 10.7 ng/m3, ambient air was identified as the source of NDMA contamination in water samples. We directly confirmed that the concentration of aqueous 10-ng/L NDMA samples stored in clear glass bottles decreased upon exposure to sunlight. Thus, to maintain the N-nitrosamine concentration, such samples must always be protected from sunlight during sampling. The existence of N-nitrosamines in experimental reagents, such as ranitidine and sodium hypochlorite solutions, was also confirmed, as was the formation of NDMA on an activated carbon solid-phase extraction cartridge.
Collapse
Affiliation(s)
- Hitoshi Kodamatani
- Division of Earth and Environmental Science, Graduate School of Science and Engineering, Kagoshima University
| | - Kenta Sugihara
- Division of Earth and Environmental Science, Graduate School of Science and Engineering, Kagoshima University
| | - Taketo Tanisue
- Division of Earth and Environmental Science, Graduate School of Science and Engineering, Kagoshima University
| | - Ryo Kanzaki
- Division of Earth and Environmental Science, Graduate School of Science and Engineering, Kagoshima University
| | - Takashi Tomiyasu
- Division of Earth and Environmental Science, Graduate School of Science and Engineering, Kagoshima University
| |
Collapse
|
22
|
Bibliometric review of research trends on disinfection by-products in drinking water during 1975–2018. Sep Purif Technol 2020. [DOI: 10.1016/j.seppur.2020.116741] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
23
|
Yoon H, Park S, Lim M. Photorelease Dynamics of Nitric Oxide from Cysteine-Bound Roussin's Red Ester. J Phys Chem Lett 2020; 11:3198-3202. [PMID: 32250631 DOI: 10.1021/acs.jpclett.0c00739] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Nitric oxide (NO) can either boost or impede the growth of cancer cells depending on its concentration. Therefore, any anticancer treatment using NO requires precisely controlled NO administration to the target cells in terms of dosage and timing. In this context, photochemically activated NO donors were actively explored, but their detailed NO-releasing dynamics, which is crucial for their use, is not known yet. We determined detailed photoexcitation dynamics of a stable, nontoxic, and water-soluble NO precursor, cysteine-bound Roussin's Red Ester (Cys-RRE), including secondary reactions of the nascent photoproducts. The primary quantum yields of the NO dissociation from the photoexcited Cys-RRE were found to be 24-54% depending on the excitation wavelength; however, the geminate rebinding of NO with the nascent radical reduced the level of biologically available NO to as low as 12%. Such information is useful to achieve efficient NO delivery to practical chemical and biological targets.
Collapse
Affiliation(s)
- Hojeong Yoon
- Department of Chemistry and Chemistry Institute for Functional Materials, Pusan National University, Busan 46241, Korea
| | - Seongchul Park
- Department of Chemistry and Chemistry Institute for Functional Materials, Pusan National University, Busan 46241, Korea
| | - Manho Lim
- Department of Chemistry and Chemistry Institute for Functional Materials, Pusan National University, Busan 46241, Korea
| |
Collapse
|
24
|
Lin CH, Wang PH, Wang TH, Yang LJ, Wen TC. The surface-enhanced Raman scattering detection of N-nitrosodimethylamine and N-nitrosodiethylamine via gold nanorod arrays with a chemical linkage of zwitterionic copolymer. NANOSCALE 2020; 12:1075-1082. [PMID: 31845933 DOI: 10.1039/c9nr09404k] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Due to the emerging issue of the contamination of sartan medicines and drinking water with N-nitrosodimethylamine (NDMA) and/or N-nitrosodiethylamine (NDEA), the detection of NDMA/NDEA has become an important theme. In this study, we utilized the focused ion beam (FIB) technique to fabricate gold nanorods (Au NRs) and Surface-enhanced Raman Scattering (SERS) substrates and modified them with 1,2-ethanedithiol to quench the high luminescence excitation background signals derived from the high density of localized surface plasmon resonance. To improve the surface hydrophilicity, zwitterionic copolymer PGMA-r-PSBMA was grafted onto the nanosurface of Au NRs, which was confirmed by contact angle analysis and AFM. Raman spectra of the copolymer were observed to confirm the successful grafting of Au NRs, which was also corroborated by TEM and SEM. The Au NRs could easily trap the small polar NDMA and NDEA molecules in aqueous solution due to strong zwitterionic hydrophilicity. Furthermore, the self-association of the anions and cations of the polymeric chain grafted in the hot spot zone assisted in trapping the NDMA/NDEA polar molecules. The Raman scattering cross-section of NDMA/NDEA molecules could be enhanced through the chemical linkage of 1,2-ethanedithiol and the self-association behavior of the zwitterionic copolymer. Accordingly, for the first time, we detected the characteristic peaks of NDMA/NDEA through SERS with detection limit of 10-8 M for both molecules.
Collapse
Affiliation(s)
- Chen-Hsueh Lin
- Department of Chemical Engineering, National Cheng Kung University, Tainan 70101, Taiwan.
| | - Po-Hsin Wang
- Department of Chemical Engineering, National Cheng Kung University, Tainan 70101, Taiwan.
| | - Tsang-Hsien Wang
- Department of Chemical Engineering, National Cheng Kung University, Tainan 70101, Taiwan.
| | - Li-Jung Yang
- Department of Chemical Engineering, National Cheng Kung University, Tainan 70101, Taiwan.
| | - Ten-Chin Wen
- Department of Chemical Engineering, National Cheng Kung University, Tainan 70101, Taiwan. and Center of Applied Nanomedicine, National Cheng Kung University, Tainan 70101, Taiwan
| |
Collapse
|
25
|
NDMA impurity in valsartan and other pharmaceutical products: Analytical methods for the determination of N-nitrosamines. J Pharm Biomed Anal 2019; 164:536-549. [DOI: 10.1016/j.jpba.2018.11.010] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Revised: 10/27/2018] [Accepted: 11/04/2018] [Indexed: 12/18/2022]
|
26
|
Li Z, Qian Z, Hu S, Gong T, Xian Q. Molecularly imprinted solid phase extraction coupled with gas chromatography-mass spectrometry for determination of N-Nitrosodiphenylamine in water samples. CHEMOSPHERE 2018; 212:872-880. [PMID: 30195167 DOI: 10.1016/j.chemosphere.2018.08.159] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Revised: 08/25/2018] [Accepted: 08/30/2018] [Indexed: 06/08/2023]
Abstract
In this study, the molecularly imprinted polymers (MIPs) with high specific surface area and extraction efficiency of N-Nitrosodiphenylamine (NDPhA) were successfully prepared and a highly sensitive and selective method was developed for determination of NDPhA in water samples using MIPs solid-phase extraction (SPE) coupled with gas chromatography mass spectrometry (GC-MS) detection. The MIPs were successfully prepared using the method of precipitation polymerization and using methacrylic acid as the functional monomer, ethylene glycol dimethacrylate as the cross-linker, and N, N-Diphenylformamide as the template molecule. The newly synthesized MIPs were characterized and used as SPE sorbents. Under the optimized conditions, the average recoveries of NDPhA spiked in ultrapure water were higher than 94% ± 2.9% at three different concentrations and the limit of detection and limit of quantitation were 0.8 ng L-1 and 2.4 ng L-1, respectively. Moreover, the high selectivity of MIPs was attained and the satisfactory recoveries of NDPhA which were spiked in to real samples were achieved in the range of 92-107% with relative standard deviations (RSDs) within 0.3-7.9%. The low levels of NDPhA were detected in the two of twelve wastewater samples with concentrations of 5.6 ng L-1 and 3.6 ng L-1 with RSDs of 5.6% and 2.8%, respectively. The developed MIP-SPE method was proved to be practically feasible for selective extraction and enrichment of NDPhA in real water samples.
Collapse
Affiliation(s)
- Zhigang Li
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, China
| | - Zongyao Qian
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, China
| | - Shaoyang Hu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, China
| | - Tingting Gong
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, China
| | - Qiming Xian
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, China.
| |
Collapse
|
27
|
Meng F, Lu Z, Zhang R, Li G. Cataluminescence sensor for highly sensitive and selective detection of iso-butanol. Talanta 2018; 194:910-918. [PMID: 30609624 DOI: 10.1016/j.talanta.2018.11.016] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2018] [Revised: 10/26/2018] [Accepted: 11/05/2018] [Indexed: 01/12/2023]
Abstract
In this paper, a gaseous sensor was described for detection of iso-butanol on the basis of its strong cataluminescence (CTL) emission on nano-MgO surface. The sensor showed high sensitivity and specificity to iso-butanol with response time less than 1 s and recovery time less than 18 s. A good linearly relationship between CTL intensity and the concentration of iso-butanol was observed in the range of 7.6-3350 mg/m3 (r = 0.9992), the limit of detection was 2.5 mg/m3. The proposed CTL sensor exhibits good specificity to iso-butanol against other compounds including common alcohols. The possible reaction paths of iso-butanol on the MgO surface were investigated in detail. Results shows that the hydrogen atom abstraction of iso-butanol to form β-Riso following consumption via Waddington mechanism possible is a major reaction channel for CTL emission. The sensor was applied to analyze iso-butanol in spiked samples, satisfactory recoveries were obtained in the range of 96.6-112.8% and the RSDs were 5.0-10.1%, indicating that the proposed sensor is a promising candidate for rapid analysis of iso-butanol.
Collapse
Affiliation(s)
- Feifei Meng
- School of Chemistry, Sun Yat-sen University, Guangzhou 510275, China
| | - Zhenyu Lu
- School of Chemistry, Sun Yat-sen University, Guangzhou 510275, China
| | - Runkun Zhang
- School of Chemistry, Sun Yat-sen University, Guangzhou 510275, China.
| | - Gongke Li
- School of Chemistry, Sun Yat-sen University, Guangzhou 510275, China.
| |
Collapse
|
28
|
Sgroi M, Vagliasindi FGA, Snyder SA, Roccaro P. N-Nitrosodimethylamine (NDMA) and its precursors in water and wastewater: A review on formation and removal. CHEMOSPHERE 2018; 191:685-703. [PMID: 29078192 DOI: 10.1016/j.chemosphere.2017.10.089] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Revised: 10/05/2017] [Accepted: 10/14/2017] [Indexed: 06/07/2023]
Abstract
This review summarizes major findings over the last decade related to N-Nitrosodimethylamine (NDMA) in water and wastewater. In particular, the review is focused on the removal of NDMA and of its precursors by conventional and advanced water and wastewater treatment processes. New information regarding formation mechanisms and precursors are discussed as well. NDMA precursors are generally of anthropogenic origin and their main source in water have been recognized to be wastewater discharges. Chloramination is the most common process that results in formation of NDMA during water and wastewater treatment. However, ozonation of wastewater or highly contaminated surface water can also generate significant levels of NDMA. Thus, NDMA formation control and remediation has become of increasing interest, particularly during treatment of wastewater-impacted water and during potable reuse application. NDMA formation has also been associated with the use of quaternary amine-based coagulants and anion exchange resins. UV photolysis with UV fluence far higher than typical disinfection doses is generally considered the most efficient technology for NDMA mitigation. However, recent studies on the optimization of biological processes offer a potentially lower-energy solution. Options for NDMA control include attenuation of precursor materials through physical removal, biological treatment, and/or deactivation by application of oxidants. Nevertheless, NDMA precursor identification and removal can be challenging and additional research and optimization is needed. As municipal wastewater becomes increasingly used as a source water for drinking, NDMA formation and mitigation strategies will become increasingly more important. The following review provides a summary of the most recent information available.
Collapse
Affiliation(s)
- Massimiliano Sgroi
- Department of Civil Engineering and Architecture, University of Catania, Viale A. Doria 6, 95125, Catania, Italy.
| | - Federico G A Vagliasindi
- Department of Civil Engineering and Architecture, University of Catania, Viale A. Doria 6, 95125, Catania, Italy
| | - Shane A Snyder
- Department of Chemical & Environmental Engineering, University of Arizona, 1133 E. James E. Rogers Way, Tucson, AZ, 85721, USA; National University of Singapore, NUS Environmental Research Institute (NERI), 5A Engineering Drive 1; T-Lab Building, #02-01, 117411, Singapore
| | - Paolo Roccaro
- Department of Civil Engineering and Architecture, University of Catania, Viale A. Doria 6, 95125, Catania, Italy
| |
Collapse
|
29
|
Affiliation(s)
- Susan D Richardson
- Department of Chemistry and Biochemistry, University of South Carolina , Columbia, South Carolina 29205, United States
| | | |
Collapse
|