1
|
Xu S, Zhu Z, Gu TJ, Wang Z, Delafield DG, Rigby MJ, Lu G, Ma M, Liu PK, Puglielli L, Li L. sn-Position-Resolved Quantification of Aminophospholipids by Isotopic N, N-Dimethyl Leucine Labeling and High-Resolution Ion Mobility Mass Spectrometry. Anal Chem 2024; 96:20098-20106. [PMID: 39630147 DOI: 10.1021/acs.analchem.4c05107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2024]
Abstract
Aminophospholipids (APLs), composed of phosphatidylethanolamines (PEs) and phosphatidylserines (PSs), are vital components of mammalian cell membranes and lipoproteins, participating in both homeostasis and cellular signaling. Their structural changes, including the permutation of fatty acid connectivity (sn-positions), due to dysfunctional metabolic processes have been linked to many diseases. However, the accurate quantification of APLs with unambiguous fatty acyl assignment through routine label-free LC-MS/MS lipidomic analysis remains a major challenge. In this study, we explore the functionalization of the free primary amine groups of APLs using amine-reactive isotopic N,N-dimethyl leucine (iDiLeu) and employ high-resolution ion mobility MS (IM-MS) to develop a novel method for sensitive discernment and accurate quantification of APL sn-isomers. With high-resolution demultiplexing (HRdm) providing IM resolving power >200, labeled sn-isomeric pairs of APLs (ΔCCS ≈ 1%) demonstrate excellent, near baseline separation. In addition to greatly enhanced sensitivity, 5-plex iDiLeu labeling enables the construction of an internal 4-point calibration curve and therefore absolute quantification of APL sn-isomers in a single run. This strategy enabled precise annotation and quantification of 239 APLs including 60 pairs of sn-isomers in the mouse cortex. Additionally, we were able to find ratio changes in multiple APL sn-isomer pairs between wild type and APP/PS1 Alzheimer's disease (AD) model mice at different ages, indicating their strong correlation to AD progression. This strategy could provide universal utility in unraveling the alteration of APL sn-isomers, which have long been considered as the "dark matter" of traditional lipidomic analyses, leading to more precise elucidation of molecular mechanisms of various diseases.
Collapse
Affiliation(s)
- Shuling Xu
- School of Pharmacy, University of Wisconsin-Madison, Madison, Wisconsin 53705, United States
| | - Zhijun Zhu
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Ting-Jia Gu
- School of Pharmacy, University of Wisconsin-Madison, Madison, Wisconsin 53705, United States
| | - Zicong Wang
- School of Pharmacy, University of Wisconsin-Madison, Madison, Wisconsin 53705, United States
| | - Daniel G Delafield
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Michael J Rigby
- Department of Medicine, University of Wisconsin-Madison, Madison, Wisconsin 53705, United States
- Waisman Center, University of Wisconsin-Madison, Madison, Wisconsin 53705, United States
- Neuroscience Training Program, University of Wisconsin-Madison, Madison, Wisconsin 53705, United States
| | - Gaoyuan Lu
- School of Pharmacy, University of Wisconsin-Madison, Madison, Wisconsin 53705, United States
| | - Min Ma
- School of Pharmacy, University of Wisconsin-Madison, Madison, Wisconsin 53705, United States
| | - Peng-Kai Liu
- Biophysics Program, University of Wisconsin-Madison, Madison, Wisconsin 53705, United States
| | - Luigi Puglielli
- Department of Medicine, University of Wisconsin-Madison, Madison, Wisconsin 53705, United States
- Waisman Center, University of Wisconsin-Madison, Madison, Wisconsin 53705, United States
- Geriatric Research Education Clinical Center, Veterans Affairs Medical Center, Madison, Wisconsin 53705, United States
| | - Lingjun Li
- School of Pharmacy, University of Wisconsin-Madison, Madison, Wisconsin 53705, United States
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
- Biophysics Program, University of Wisconsin-Madison, Madison, Wisconsin 53705, United States
- Lachman Institute for Pharmaceutical Development, School of Pharmacy, University of Wisconsin-Madison, Madison, Wisconsin 53705, United States
- Wisconsin Center for NanoBioSystems, School of Pharmacy, University of Wisconsin-Madison, Madison, Wisconsin 53705, United States
| |
Collapse
|
2
|
Zayene O, Hu J, Damond A, Roc C, Marrot J, Gaucher A, Salpin J, Prim D. Cooperative Anion-π and C-H-Cl Interactions in Multifunctional Naphthalene-Based Receptors for Chloride Recognition: Cage-Size Modulation Through Substitution Patterns. Chempluschem 2024; 89:e202400380. [PMID: 39136597 PMCID: PMC11639634 DOI: 10.1002/cplu.202400380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 07/24/2024] [Indexed: 10/22/2024]
Abstract
This study introduces a novel approach for chloride recognition utilizing multifunctional naphthalene-based receptors. By strategically modifying the substitution patterns on tetrafluoropyridines, a series of new receptors with customized cavities and enhanced binding capabilities were developed. Density functional theory (DFT) calculations and experimental studies combining NMR spectroscopy and mass spectrometry confirmed the efficacy of these receptors in capturing chloride ions. The relative chloride affinity order determined experimentally is in agreement with DFT predictions. The synergistic effect of anion-π and C-H…Cl interactions, mediated by the TFP groups, played a crucial role in achieving high binding affinity. This work provides valuable insights for designing future anion receptors with improved performance.
Collapse
Affiliation(s)
- Olfa Zayene
- Université Paris-SaclayUVSQCNRSInstitut Lavoisier de Versailles78035Versailles cedexFrance
| | - Jun Hu
- Université Paris-SaclayUVSQCNRSInstitut Lavoisier de Versailles78035Versailles cedexFrance
- Université Paris-SaclayUniv EvryCY Cergy Paris UniversitéCNRSLAMBE91025Evry-CourcouronnesFrance
| | - Aurélie Damond
- Université Paris-SaclayUVSQCNRSInstitut Lavoisier de Versailles78035Versailles cedexFrance
| | - Chantal Roc
- Université Paris-SaclayUniv EvryCY Cergy Paris UniversitéCNRSLAMBE91025Evry-CourcouronnesFrance
| | - Jérôme Marrot
- Université Paris-SaclayUVSQCNRSInstitut Lavoisier de Versailles78035Versailles cedexFrance
| | - Anne Gaucher
- Université Paris-SaclayUVSQCNRSInstitut Lavoisier de Versailles78035Versailles cedexFrance
| | - Jean‐Yves Salpin
- Université Paris-SaclayUniv EvryCY Cergy Paris UniversitéCNRSLAMBE91025Evry-CourcouronnesFrance
| | - Damien Prim
- Université Paris-SaclayUVSQCNRSInstitut Lavoisier de Versailles78035Versailles cedexFrance
| |
Collapse
|
3
|
Reardon AR, May JC, Leaptrot KL, McLean JA. High-resolution ion mobility based on traveling wave structures for lossless ion manipulation resolves hidden lipid features. Anal Bioanal Chem 2024; 416:5473-5483. [PMID: 38935144 PMCID: PMC11427608 DOI: 10.1007/s00216-024-05385-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 05/24/2024] [Accepted: 05/29/2024] [Indexed: 06/28/2024]
Abstract
High-resolution ion mobility (resolving power > 200) coupled with mass spectrometry (MS) is a powerful analytical tool for resolving isobars and isomers in complex samples. High-resolution ion mobility is capable of discerning additional structurally distinct features, which are not observed with conventional resolving power ion mobility (IM, resolving power ~ 50) techniques such as traveling wave IM and drift tube ion mobility (DTIM). DTIM in particular is considered to be the "gold standard" IM technique since collision cross section (CCS) values are directly obtained through a first-principles relationship, whereas traveling wave IM techniques require an additional calibration strategy to determine accurate CCS values. In this study, we aim to evaluate the separation capabilities of a traveling wave ion mobility structures for lossless ion manipulation platform integrated with mass spectrometry analysis (SLIM IM-MS) for both lipid isomer standards and complex lipid samples. A cross-platform investigation of seven subclass-specific lipid extracts examined by both DTIM-MS and SLIM IM-MS showed additional features were observed for all lipid extracts when examined under high resolving power IM conditions, with the number of CCS-aligned features that resolve into additional peaks from DTIM-MS to SLIM IM-MS analysis varying between 5 and 50%, depending on the specific lipid sub-class investigated. Lipid CCS values are obtained from SLIM IM (TW(SLIM)CCS) through a two-step calibration procedure to align these measurements to within 2% average bias to reference values obtained via DTIM (DTCCS). A total of 225 lipid features from seven lipid extracts are subsequently identified in the high resolving power IM analysis by a combination of accurate mass-to-charge, CCS, retention time, and linear mobility-mass correlations to curate a high-resolution IM lipid structural atlas. These results emphasize the high isomeric complexity present in lipidomic samples and underscore the need for multiple analytical stages of separation operated at high resolution.
Collapse
Affiliation(s)
- Allison R Reardon
- Center for Innovative Technology, Department of Chemistry, Vanderbilt Institute of Chemical Biology, Vanderbilt Institute for Integrative Biosystems Research and Education, Vanderbilt-Ingram Cancer Center, Vanderbilt University, Nashville, TN, 37235, USA
| | - Jody C May
- Center for Innovative Technology, Department of Chemistry, Vanderbilt Institute of Chemical Biology, Vanderbilt Institute for Integrative Biosystems Research and Education, Vanderbilt-Ingram Cancer Center, Vanderbilt University, Nashville, TN, 37235, USA
| | - Katrina L Leaptrot
- Center for Innovative Technology, Department of Chemistry, Vanderbilt Institute of Chemical Biology, Vanderbilt Institute for Integrative Biosystems Research and Education, Vanderbilt-Ingram Cancer Center, Vanderbilt University, Nashville, TN, 37235, USA
| | - John A McLean
- Center for Innovative Technology, Department of Chemistry, Vanderbilt Institute of Chemical Biology, Vanderbilt Institute for Integrative Biosystems Research and Education, Vanderbilt-Ingram Cancer Center, Vanderbilt University, Nashville, TN, 37235, USA.
| |
Collapse
|
4
|
Reifenberg P, Zimmer A. Branched-chain amino acids: physico-chemical properties, industrial synthesis and role in signaling, metabolism and energy production. Amino Acids 2024; 56:51. [PMID: 39198298 PMCID: PMC11358235 DOI: 10.1007/s00726-024-03417-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Accepted: 08/20/2024] [Indexed: 09/01/2024]
Abstract
Branched-chain amino acids (BCAAs)-leucine (Leu), isoleucine (Ile), and valine (Val)-are essential nutrients with significant roles in protein synthesis, metabolic regulation, and energy production. This review paper offers a detailed examination of the physico-chemical properties of BCAAs, their industrial synthesis, and their critical functions in various biological processes. The unique isomerism of BCAAs is presented, focusing on analytical challenges in their separation and quantification as well as their solubility characteristics, which are crucial for formulation and purification applications. The industrial synthesis of BCAAs, particularly using bacterial strains like Corynebacterium glutamicum, is explored, alongside methods such as genetic engineering aimed at enhancing production, detailing the enzymatic processes and specific precursors. The dietary uptake, distribution, and catabolism of BCAAs are reviewed as fundamental components of their physiological functions. Ultimately, their multifaceted impact on signaling pathways, immune function, and disease progression is discussed, providing insights into their profound influence on muscle protein synthesis and metabolic health. This comprehensive analysis serves as a resource for understanding both the basic and complex roles of BCAAs in biological systems and their industrial application.
Collapse
Affiliation(s)
- Philipp Reifenberg
- Merck Life Science KGaA, Upstream R&D, Frankfurter Strasse 250, 64293, Darmstadt, Germany
- Institute for Organic Chemistry and Biochemistry, Technische Universität Darmstadt, Alarich‑Weiss‑Strasse 4, 64287, Darmstadt, Germany
| | - Aline Zimmer
- Merck Life Science KGaA, Upstream R&D, Frankfurter Strasse 250, 64293, Darmstadt, Germany.
| |
Collapse
|
5
|
Blakley B, Zlibut E, Gupta RM, May JC, McLean JA. Direct Enantiomer Differentiation of Drugs and Drug-Like Compounds via Noncovalent Copper-Amino Acid Complexation and Ion Mobility-Mass Spectrometry. Anal Chem 2024; 96:12892-12900. [PMID: 39051631 PMCID: PMC11307251 DOI: 10.1021/acs.analchem.4c02710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 07/12/2024] [Accepted: 07/15/2024] [Indexed: 07/27/2024]
Abstract
Drug enantiomers can possess vastly different pharmacological properties, yet they are identical in their chemical composition and structural connectivity. Thus, resolving enantiomers poses a great challenge in the field of separation science. Enantiomer separations necessitate interaction of the analyte with a chiral environment─in mass spectrometry-based analysis, a common approach is through a three-point interaction with a chiral selector commonly introduced during sample preparation. In select cases, the structural difference imparted through noncovalent complexation results in enantiomer-specific structural differences, facilitating measurement using a structurally selective analytical technique such as ion mobility-mass spectrometry (IM-MS). In this work, we investigate the direct IM-MS differentiation of chiral drug compounds using mononuclear copper complexes incorporating an amino acid chiral selector. A panel of 20 chiral drugs and drug-like compounds were investigated for separation, and four l-amino acids (l-histidine, l-tryptophan, l-proline, and l-tyrosine) were evaluated as chiral selectors (CS) to provide the chiral environment necessary for differentiation. Enantiomer differentiation was achieved for four chiral molecule pairs (R/S-thalidomide, R/S-baclofen, R/S-metoprolol, and d/l-panthenol) with two-peak resolution (Rp-p) values ranging from 0.7 (>10% valley) to 1.5 (baseline separation). Calibration curves relating IM peak areas to enantiomeric concentrations enabled enantiomeric excess quantitation of racemic thalidomide and metoprolol with residuals of 5.7 and 2.5%, respectively. Theoretical models suggest that CuII and l-histidine complexation around the analyte chiral center is important for gas-phase stereoselectivity. This study demonstrates the potential of combining enantioselective noncovalent copper complexation with structurally selective IM-MS for differentiating chiral drugs and drug-like compounds.
Collapse
Affiliation(s)
- Benjamin
K. Blakley
- Department of Chemistry, Center for
Innovative Technology, Vanderbilt Institute of Chemical Biology, Vanderbilt-Ingram
Cancer Center, and Vanderbilt Institute for Integrated Biosystems
Research and Education, Vanderbilt University, Nashville, Tennessee 37235-1822, United
States
| | | | - Rashi M. Gupta
- Department of Chemistry, Center for
Innovative Technology, Vanderbilt Institute of Chemical Biology, Vanderbilt-Ingram
Cancer Center, and Vanderbilt Institute for Integrated Biosystems
Research and Education, Vanderbilt University, Nashville, Tennessee 37235-1822, United
States
| | - Jody C. May
- Department of Chemistry, Center for
Innovative Technology, Vanderbilt Institute of Chemical Biology, Vanderbilt-Ingram
Cancer Center, and Vanderbilt Institute for Integrated Biosystems
Research and Education, Vanderbilt University, Nashville, Tennessee 37235-1822, United
States
| | - John A. McLean
- Department of Chemistry, Center for
Innovative Technology, Vanderbilt Institute of Chemical Biology, Vanderbilt-Ingram
Cancer Center, and Vanderbilt Institute for Integrated Biosystems
Research and Education, Vanderbilt University, Nashville, Tennessee 37235-1822, United
States
| |
Collapse
|
6
|
Chalet C, Rathahao-Paris E, Alves S. Single ion mobility monitoring (SIM 2) stitching method for high-throughput and high ion mobility resolution chiral analysis. Anal Bioanal Chem 2024; 416:4581-4589. [PMID: 38935145 PMCID: PMC11294385 DOI: 10.1007/s00216-024-05399-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 05/30/2024] [Accepted: 06/06/2024] [Indexed: 06/28/2024]
Abstract
Chiral analysis is of high interest in many fields such as chemistry, pharmaceuticals and metabolomics. Mass spectrometry and ion mobility spectrometry are useful analytical tools, although they cannot be used as stand-alone methods. Here, we propose an efficient strategy for the enantiomer characterization of amino acids (AAs) using non-covalent copper complexes. A single ion mobility monitoring (SIM2) method was applied on a TIMS-ToF mass spectrometer to maximize the detection and mobility separation of isomers. Almost all of the 19 pairs of proteinogenic AA enantiomers could be separated with at least one combination with the chiral references L-Phe and L-Pro. Furthermore, we extended the targeted SIM2 method by stitching several mobility ranges, in order to be able to analyze complex mixtures in a single acquisition while maintaining high mobility resolution. Most of the enantiomeric pairs of AAs separated with the SIM2 method were also detected with this approach. The SIM2 stitching method thus opens the way to a more comprehensive chiral analysis with TIMS-ToF instruments.
Collapse
Affiliation(s)
- Clément Chalet
- Sorbonne Université, Faculté des Sciences et de l'Ingénierie, Institut Parisien de Chimie Moléculaire (IPCM), Paris, France
| | - Estelle Rathahao-Paris
- Sorbonne Université, Faculté des Sciences et de l'Ingénierie, Institut Parisien de Chimie Moléculaire (IPCM), Paris, France.
- Université Paris-Saclay, CEA, INRAE, Médicaments et Technologies pour la Santé (MTS), Gif-sur-Yvette, France.
| | - Sandra Alves
- Sorbonne Université, Faculté des Sciences et de l'Ingénierie, Institut Parisien de Chimie Moléculaire (IPCM), Paris, France.
| |
Collapse
|
7
|
Xu S, Zhu Z, Delafield DG, Rigby MJ, Lu G, Braun M, Puglielli L, Li L. Spatially and temporally probing distinctive glycerophospholipid alterations in Alzheimer's disease mouse brain via high-resolution ion mobility-enabled sn-position resolved lipidomics. Nat Commun 2024; 15:6252. [PMID: 39048572 PMCID: PMC11269705 DOI: 10.1038/s41467-024-50299-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 07/08/2024] [Indexed: 07/27/2024] Open
Abstract
Dysregulated glycerophospholipid (GP) metabolism in the brain is associated with the progression of neurodegenerative diseases including Alzheimer's disease (AD). Routine liquid chromatography-mass spectrometry (LC-MS)-based large-scale lipidomic methods often fail to elucidate subtle yet important structural features such as sn-position, hindering the precise interrogation of GP molecules. Leveraging high-resolution demultiplexing (HRdm) ion mobility spectrometry (IMS), we develop a four-dimensional (4D) lipidomic strategy to resolve GP sn-position isomers. We further construct a comprehensive experimental 4D GP database of 498 GPs identified from the mouse brain and an in-depth extended 4D library of 2500 GPs predicted by machine learning, enabling automated profiling of GPs with detailed acyl chain sn-position assignment. Analyzing three mouse brain regions (hippocampus, cerebellum, and cortex), we successfully identify a total of 592 GPs including 130 pairs of sn-position isomers. Further temporal GPs analysis in the three functional brain regions illustrates their metabolic alterations in AD progression.
Collapse
Affiliation(s)
- Shuling Xu
- School of Pharmacy, University of Wisconsin-Madison, Madison, WI, 53705, USA
| | - Zhijun Zhu
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Daniel G Delafield
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Michael J Rigby
- Department of Medicine, University of Wisconsin-Madison, Madison, WI, 53705, USA
- Waisman Center, University of Wisconsin-Madison, Madison, WI, 53705, USA
- Neuroscience Training Program, University of Wisconsin-Madison, Madison, WI, 53705, USA
| | - Gaoyuan Lu
- School of Pharmacy, University of Wisconsin-Madison, Madison, WI, 53705, USA
| | - Megan Braun
- Department of Medicine, University of Wisconsin-Madison, Madison, WI, 53705, USA
- Waisman Center, University of Wisconsin-Madison, Madison, WI, 53705, USA
- Neuroscience Training Program, University of Wisconsin-Madison, Madison, WI, 53705, USA
| | - Luigi Puglielli
- Department of Medicine, University of Wisconsin-Madison, Madison, WI, 53705, USA
- Waisman Center, University of Wisconsin-Madison, Madison, WI, 53705, USA
- Geriatric Research Education Clinical Center, Veterans Affairs Medical Center, Madison, WI, 53705, USA
| | - Lingjun Li
- School of Pharmacy, University of Wisconsin-Madison, Madison, WI, 53705, USA.
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI, 53706, USA.
- Lachman Institute for Pharmaceutical Development, School of Pharmacy, University of Wisconsin-Madison, Madison, WI, 53705, USA.
- Wisconsin Center for NanoBioSystems, School of Pharmacy, University of Wisconsin- Madison, Madison, WI, 53705, USA.
| |
Collapse
|
8
|
Kurilung A, Limjiasahapong S, Kaewnarin K, Wisanpitayakorn P, Jariyasopit N, Wanichthanarak K, Sartyoungkul S, Wong SCC, Sathirapongsasuti N, Kitiyakara C, Sirivatanauksorn Y, Khoomrung S. Measurement of very low-molecular weight metabolites by traveling wave ion mobility and its use in human urine samples. J Pharm Anal 2024; 14:100921. [PMID: 38799238 PMCID: PMC11127212 DOI: 10.1016/j.jpha.2023.12.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 11/17/2023] [Accepted: 12/13/2023] [Indexed: 05/29/2024] Open
Abstract
The collision cross-sections (CCS) measurement using ion mobility spectrometry (IMS) in combination with mass spectrometry (MS) offers a great opportunity to increase confidence in metabolite identification. However, owing to the lack of sensitivity and resolution, IMS has an analytical challenge in studying the CCS values of very low-molecular-weight metabolites (VLMs ≤ 250 Da). Here, we describe an analytical method using ultrahigh-performance liquid chromatography (UPLC) coupled to a traveling wave ion mobility-quadrupole-time-of-flight mass spectrometer optimized for the measurement of VLMs in human urine samples. The experimental CCS values, along with mass spectral properties, were reported for the 174 metabolites. The experimental data included the mass-to-charge ratio (m/z), retention time (RT), tandem MS (MS/MS) spectra, and CCS values. Among the studied metabolites, 263 traveling wave ion mobility spectrometry (TWIMS)-derived CCS values (TWCCSN2) were reported for the first time, and more than 70% of these were CCS values of VLMs. The TWCCSN2 values were highly repeatable, with inter-day variations of <1% relative standard deviation (RSD). The developed method revealed excellent TWCCSN2 accuracy with a CCS difference (ΔCCS) within ±2% of the reported drift tube IMS (DTIMS) and TWIMS CCS values. The complexity of the urine matrix did not affect the precision of the method, as evidenced by ΔCCS within ±1.92%. According to the Metabolomics Standards Initiative, 55 urinary metabolites were identified with a confidence level of 1. Among these 55 metabolites, 53 (96%) were VLMs. The larger number of confirmed compounds found in this study was a result of the addition of TWCCSN2 values, which clearly increased metabolite identification confidence.
Collapse
Affiliation(s)
- Alongkorn Kurilung
- Siriraj Center of Research Excellent in Metabolomics and Systems Biology (SiCORE-MSB), Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, 10700, Thailand
- Siriraj Metabolomics and Phenomics Center, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, 10700, Thailand
- Department of Biomedical Informatics, University of Arkansas for Medical Sciences, Little Rock, AR, 72205, USA
| | - Suphitcha Limjiasahapong
- Siriraj Metabolomics and Phenomics Center, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, 10700, Thailand
| | - Khwanta Kaewnarin
- Siriraj Center of Research Excellent in Metabolomics and Systems Biology (SiCORE-MSB), Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, 10700, Thailand
- Siriraj Metabolomics and Phenomics Center, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, 10700, Thailand
- SingHealth Duke-NUS Institute of Biodiversity Medicine, National Cancer Centre Singapore, 168583, Singapore
| | - Pattipong Wisanpitayakorn
- Siriraj Center of Research Excellent in Metabolomics and Systems Biology (SiCORE-MSB), Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, 10700, Thailand
- Siriraj Metabolomics and Phenomics Center, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, 10700, Thailand
| | - Narumol Jariyasopit
- Siriraj Center of Research Excellent in Metabolomics and Systems Biology (SiCORE-MSB), Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, 10700, Thailand
- Siriraj Metabolomics and Phenomics Center, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, 10700, Thailand
| | - Kwanjeera Wanichthanarak
- Siriraj Center of Research Excellent in Metabolomics and Systems Biology (SiCORE-MSB), Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, 10700, Thailand
- Siriraj Metabolomics and Phenomics Center, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, 10700, Thailand
| | - Sitanan Sartyoungkul
- Siriraj Center of Research Excellent in Metabolomics and Systems Biology (SiCORE-MSB), Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, 10700, Thailand
- Siriraj Metabolomics and Phenomics Center, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, 10700, Thailand
| | | | - Nuankanya Sathirapongsasuti
- Program in Translational Medicine, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, 10400, Thailand
- Chakri Naruebodindra Medical Institute, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Samut Prakan, 10540, Thailand
| | - Chagriya Kitiyakara
- Department of Medicine, Ramathibodi Hospital, Mahidol University, Bangkok, 10400, Thailand
| | - Yongyut Sirivatanauksorn
- Siriraj Metabolomics and Phenomics Center, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, 10700, Thailand
| | - Sakda Khoomrung
- Siriraj Center of Research Excellent in Metabolomics and Systems Biology (SiCORE-MSB), Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, 10700, Thailand
- Siriraj Metabolomics and Phenomics Center, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, 10700, Thailand
- Department of Biochemistry, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, 10700, Thailand
- Center of Excellence for Innovation in Chemistry (PERCH-CIC), Faculty of Science, Mahidol University, Bangkok, 10400, Thailand
| |
Collapse
|
9
|
Kirkwood-Donelson KI, Chappel J, Tobin E, Dodds JN, Reif DM, DeWitt JC, Baker ES. Investigating mouse hepatic lipidome dysregulation following exposure to emerging per- and polyfluoroalkyl substances (PFAS). CHEMOSPHERE 2024; 354:141654. [PMID: 38462188 PMCID: PMC10995748 DOI: 10.1016/j.chemosphere.2024.141654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 03/01/2024] [Accepted: 03/04/2024] [Indexed: 03/12/2024]
Abstract
Per- and polyfluoroalkyl substances (PFAS) are environmental pollutants that have been associated with adverse health effects including liver damage, decreased vaccine responses, cancer, developmental toxicity, thyroid dysfunction, and elevated cholesterol. The specific molecular mechanisms impacted by PFAS exposure to cause these health effects remain poorly understood, however there is some evidence of lipid dysregulation. Thus, lipidomic studies that go beyond clinical triglyceride and cholesterol tests are greatly needed to investigate these perturbations. Here, we have utilized a platform coupling liquid chromatography, ion mobility spectrometry, and mass spectrometry (LC-IMS-MS) separations to simultaneously evaluate PFAS bioaccumulation and lipid metabolism disruptions. For the study, liver samples collected from C57BL/6 mice exposed to either of the emerging PFAS hexafluoropropylene oxide dimer acid (HFPO-DA or "GenX") or Nafion byproduct 2 (NBP2) were assessed. Sex-specific differences in PFAS accumulation and liver size were observed for both PFAS, in addition to disturbed hepatic liver lipidomic profiles. Interestingly, GenX resulted in less hepatic bioaccumulation than NBP2 yet gave a higher number of significantly altered lipids when compared to the control group, implying that the accumulation of substances in the liver may not be a reliable measure of the substance's capacity to disrupt the liver's natural metabolic processes. Specifically, phosphatidylglycerols, phosphatidylinositols, and various specific fatty acyls were greatly impacted, indicating alteration of inflammation, oxidative stress, and cellular signaling processes due to emerging PFAS exposure. Overall, these results provide valuable insight into the liver bioaccumulation and molecular mechanisms of GenX- and NBP2-induced hepatotoxicity.
Collapse
Affiliation(s)
- Kaylie I Kirkwood-Donelson
- Department of Chemistry, North Carolina State University, Raleigh, NC 27606, USA; Immunity, Inflammation, and Disease Laboratory, National Institute of Environmental Health Sciences, Durham, NC 27709, USA
| | - Jessie Chappel
- Bioinformatics Research Center, Department of Biological Sciences, North Carolina State University, Raleigh, NC 27606, USA
| | - Emma Tobin
- Department of Biological Sciences, North Carolina State University, Raleigh, NC 27606, USA
| | - James N Dodds
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC 27514, USA
| | - David M Reif
- Predictive Toxicology Branch, Division of Translational Toxicology, National Institute of Environmental Health Sciences, Durham, NC 27709, USA
| | - Jamie C DeWitt
- Department of Environmental and Molecular Toxicology, Oregon State University, Corvallis, OR 97331, USA
| | - Erin S Baker
- Department of Biological Sciences, North Carolina State University, Raleigh, NC 27606, USA.
| |
Collapse
|
10
|
Jaag S, Valadbeigi Y, Causon T, Gross H, Lämmerhofer M. Three-Minute Enantioselective Amino Acid Analysis by Ultra-High-Performance Liquid Chromatography Drift Tube Ion Mobility-Mass Spectrometry Using a Chiral Core-Shell Tandem Column Approach. Anal Chem 2024; 96:2666-2675. [PMID: 38297457 PMCID: PMC10867800 DOI: 10.1021/acs.analchem.3c05426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 01/17/2024] [Accepted: 01/19/2024] [Indexed: 02/02/2024]
Abstract
Fast liquid chromatography (LC) amino acid enantiomer separation of 6-aminoquinolyl-N-hydroxysuccinimidyl carbamate (AQC) derivatives using a chiral core-shell particle tandem column with weak anion exchange and zwitterionic-type quinine carbamate selectors in less than 3 min was achieved. Enantiomers of all AQC-derivatized proteinogenic amino acids and some isomeric ones (24 in total plus achiral glycine) were baseline separated (Rs > 1.5 except for glutamic acid with Rs = 1.3), while peaks of distinct amino acids and structural isomers (constitutional isomers and diastereomers of leucine and threonine) of the same configuration overlapped to various degrees. For this reason, drift tube ion mobility-mass spectrometry was added (i.e., LC-IM-MS) as an additional selectivity filter without extending run time. The IM separation dimension in combination with high-resolution demultiplexing enabled confirmation of threonine isomers (threonine, allo-threonine, homoserine), while leucine, isoleucine, and allo-isoleucine have almost identical collisional cross-section (DTCCSN2) values and added no selectivity to the partial LC separation. Density functional theory (DFT) calculations show that IM separation of threonine isomers was possible due to conformational stabilization by hydrogen bond formation between the hydroxyl side chain and the urea group. Generally, the CCSN2 of protonated ions increased uniformly with addition of the AQC label, while outliers could be explained by consideration of intramolecular interactions and additional structural analysis. Preliminary validation of the enantioselective LC-IM-MS method for quantitative analysis showed compliance of accuracy and precision with common limits in bioanalytical methods, and applicability to a natural lipopeptide and a therapeutic synthetic peptide could be demonstrated.
Collapse
Affiliation(s)
- Simon
Jonas Jaag
- Pharmaceutical
(Bio-)Analysis, Institute of Pharmaceutical Sciences, University of Tuebingen, Auf der Morgenstelle 8, 72076 Tuebingen, Germany
| | - Younes Valadbeigi
- Department
of Chemistry, Faculty of Science, Imam Khomeini
International University, Nowrouzian, 3414896818 Qazvin, Iran
| | - Tim Causon
- University
of Natural Resources and Life Sciences, Vienna Department of Chemistry, Institute of Analytical Chemistry, Muthgasse 18, 1190 Vienna, Austria
| | - Harald Gross
- Pharmaceutical
Biology, Institute of Pharmaceutical Sciences, University of Tuebingen, Auf der Morgenstelle 8, 72076 Tuebingen, Germany
| | - Michael Lämmerhofer
- Pharmaceutical
(Bio-)Analysis, Institute of Pharmaceutical Sciences, University of Tuebingen, Auf der Morgenstelle 8, 72076 Tuebingen, Germany
| |
Collapse
|
11
|
Chatterjee P, Dutta SS, Agarwal M, Dey S, Chakraborty T. UV-A-Induced Photoisomerization and Photodimerization of Curcumin: An Ion Mobility Mass Spectrometry Study. J Phys Chem A 2024; 128:548-562. [PMID: 38206070 DOI: 10.1021/acs.jpca.3c05933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2024]
Abstract
Curcumin, the bioactive compound present in spice plant turmeric, has been shown to exhibit selective phototoxic activities toward mammalian cancer cells, and it is being used extensively as a photosensitizer (PS) in photodynamic therapies (PDT). However, so far, the fate of curcumin toward photochemical transformations is not well understood. Here we report our findings of a number of novel photochemical reaction channels of curcumin in water-methanol mixture, like photoisomerization, photodimerization, and photooxidation (H2-loss). The reaction was performed by irradiating the curcumin solution with ultraviolet (UV) light of wavelength 350 nm, which is abundant in the earth's troposphere. Product identification and structure elucidation are done by employing an integrated method of drift tube ion mobility mass spectrometry (DTIMS) in combination with high-performance liquid chromatography (HPLC) and collision-induced dissociation (CID) of the mass-selected molecular ions. Two photoisomers of curcumin produced as a result of trans-cis configurational changes about C═C double bonds in the excited state have been identified, and it has been shown that they could serve as the precursors for formation of isomeric dimers via [2 + 2] cycloaddition and H2-loss products. Comparisons of the experimentally measured collision cross-section (CCS) values of the reactant and product ions obtained by the DTIMS method with those predicted by the electronic structure theory are found to be very effective for the discrimination of the produced photoisomers. The observed photochemical reaction channels are potentially significant toward uses of curcumin as a photosensitizer in photodynamic therapy.
Collapse
Affiliation(s)
- Piyali Chatterjee
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A Raja S C Mullick Road, Jadavpur, Kolkata 700032, India
| | - Subhra Sankar Dutta
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A Raja S C Mullick Road, Jadavpur, Kolkata 700032, India
| | - Megha Agarwal
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A Raja S C Mullick Road, Jadavpur, Kolkata 700032, India
| | - Supriyo Dey
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A Raja S C Mullick Road, Jadavpur, Kolkata 700032, India
| | - Tapas Chakraborty
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A Raja S C Mullick Road, Jadavpur, Kolkata 700032, India
| |
Collapse
|
12
|
Muller HB, Scholl G, Far J, De Pauw E, Eppe G. Sliding Windows in Ion Mobility (SWIM): A New Approach to Increase the Resolving Power in Trapped Ion Mobility-Mass Spectrometry Hyphenated with Chromatography. Anal Chem 2023; 95:17586-17594. [PMID: 37976440 DOI: 10.1021/acs.analchem.3c03039] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2023]
Abstract
Over the past decade, the separation efficiency achieved by linear IMS instruments has increased substantially, with state-of-the-art IM technologies, such as the trapped ion mobility (TIMS), the cyclic traveling wave ion mobility (cTWIMS), and the structure for lossless ion manipulation (SLIM) platforms commonly demonstrating resolving powers in excess of 200. However, for complex sample analysis that require front end separation, the achievement of such high resolving power in TIMS is significantly hampered, since the ion mobility range must be broad enough to analyze all the classes of compounds of interest, whereas the IM analysis time must be short enough to cope with the time scale of the preseparation technique employed. In this paper, we introduce the concept of sliding windows in ion mobility (SWIM) for chromatography hyphenated TIMS applications that bypasses the need to use a wide and fixed IM range by using instead narrow and mobile ion mobility windows that adapt to the analytes' ion mobility during chromatographic separation. GC-TIMS-MS analysis of a mixture of 174 standards from several halogenated persistent organic pollutant (POP) classes, including chlorinated and brominated dioxins, biphenyls, and PBDEs, demonstrated that the average IM resolving power could be increased up to 40% when the SWIM mode was used, thereby greatly increasing the method selectivity for the analysis of complex samples.
Collapse
Affiliation(s)
- Hugo B Muller
- Mass Spectrometry Laboratory, University of Liège, Liège 4000, Belgium
| | - Georges Scholl
- Mass Spectrometry Laboratory, University of Liège, Liège 4000, Belgium
| | - Johann Far
- Mass Spectrometry Laboratory, University of Liège, Liège 4000, Belgium
| | - Edwin De Pauw
- Mass Spectrometry Laboratory, University of Liège, Liège 4000, Belgium
| | - Gauthier Eppe
- Mass Spectrometry Laboratory, University of Liège, Liège 4000, Belgium
| |
Collapse
|
13
|
Stewart AK, Foley MH, Dougherty MK, McGill SK, Gulati AS, Gentry EC, Hagey LR, Dorrestein PC, Theriot CM, Dodds JN, Baker ES. Using Multidimensional Separations to Distinguish Isomeric Amino Acid-Bile Acid Conjugates and Assess Their Presence and Perturbations in Model Systems. Anal Chem 2023; 95:15357-15366. [PMID: 37796494 PMCID: PMC10613829 DOI: 10.1021/acs.analchem.3c03057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/06/2023]
Abstract
Bile acids play key roles in nutrient uptake, inflammation, signaling, and microbiome composition. While previous bile acid analyses have primarily focused on profiling 5 canonical primary and secondary bile acids and their glycine and taurine amino acid-bile acid (AA-BA) conjugates, recent studies suggest that many other microbial conjugated bile acids (or MCBAs) exist. MCBAs are produced by the gut microbiota and serve as biomarkers, providing information about early disease onset and gut health. Here we analyzed 8 core bile acids synthetically conjugated with 22 proteinogenic and nonproteogenic amino acids totaling 176 MCBAs. Since many of the conjugates were isomeric and only 42 different m/z values resulted from the 176 MCBAs, a platform coupling liquid chromatography, ion mobility spectrometry, and mass spectrometry (LC-IMS-MS) was used for their separation. Their molecular characteristics were then used to create an in-house extended bile acid library for a combined total of 182 unique compounds. Additionally, ∼250 rare bile acid extracts were also assessed to provide additional resources for bile acid profiling and identification. This library was then applied to healthy mice dosed with antibiotics and humans having fecal microbiota transplantation (FMT) to assess the MCBA presence and changes in the gut before and after each perturbation.
Collapse
Affiliation(s)
- Allison K Stewart
- Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27695, United States
| | - Matthew H Foley
- Department of Pathobiology and Population Health, College of Veterinary Medicine, North Carolina State University, Raleigh, North Carolina 27607, United States
- Department of Food, Bioprocessing and Nutrition Sciences, North Carolina State University, Raleigh, North Carolina 27606, United States
| | - Michael K Dougherty
- Department of Medicine, Division of Gastroenterology and Hepatology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, 27599, United States
| | - Sarah K McGill
- Department of Medicine, Division of Gastroenterology and Hepatology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, 27599, United States
| | - Ajay S Gulati
- Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
- Department of Pediatrics, Division of Gastroenterology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Emily C Gentry
- Department of Chemistry, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Lee R Hagey
- Division of Gastroenterology, Department of Medicine, School of Medicine, University of California at San Diego, La Jolla, California 92093, United States
| | - Pieter C Dorrestein
- Skaggs School of Pharmacy and Pharmaceutical Sciences, Departments of Pharmacology and Pediatrics, University of California at San Diego, La Jolla, California 92093, United States
| | - Casey M Theriot
- Department of Pathobiology and Population Health, College of Veterinary Medicine, North Carolina State University, Raleigh, North Carolina 27607, United States
| | - James N Dodds
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27607, United States
| | - Erin S Baker
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27607, United States
| |
Collapse
|
14
|
Li X, Wang H, Jiang M, Ding M, Xu X, Xu B, Zou Y, Yu Y, Yang W. Collision Cross Section Prediction Based on Machine Learning. Molecules 2023; 28:molecules28104050. [PMID: 37241791 DOI: 10.3390/molecules28104050] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 05/10/2023] [Accepted: 05/10/2023] [Indexed: 05/28/2023] Open
Abstract
Ion mobility-mass spectrometry (IM-MS) is a powerful separation technique providing an additional dimension of separation to support the enhanced separation and characterization of complex components from the tissue metabolome and medicinal herbs. The integration of machine learning (ML) with IM-MS can overcome the barrier to the lack of reference standards, promoting the creation of a large number of proprietary collision cross section (CCS) databases, which help to achieve the rapid, comprehensive, and accurate characterization of the contained chemical components. In this review, advances in CCS prediction using ML in the past 2 decades are summarized. The advantages of ion mobility-mass spectrometers and the commercially available ion mobility technologies with different principles (e.g., time dispersive, confinement and selective release, and space dispersive) are introduced and compared. The general procedures involved in CCS prediction based on ML (acquisition and optimization of the independent and dependent variables, model construction and evaluation, etc.) are highlighted. In addition, quantum chemistry, molecular dynamics, and CCS theoretical calculations are also described. Finally, the applications of CCS prediction in metabolomics, natural products, foods, and the other research fields are reflected.
Collapse
Affiliation(s)
- Xiaohang Li
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Tianjin 301617, China
- Haihe Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Tianjin 301617, China
| | - Hongda Wang
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Tianjin 301617, China
- Haihe Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Tianjin 301617, China
| | - Meiting Jiang
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Tianjin 301617, China
- Haihe Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Tianjin 301617, China
| | - Mengxiang Ding
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Tianjin 301617, China
- Haihe Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Tianjin 301617, China
| | - Xiaoyan Xu
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Tianjin 301617, China
- Haihe Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Tianjin 301617, China
| | - Bei Xu
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Tianjin 301617, China
- Haihe Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Tianjin 301617, China
| | - Yadan Zou
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Tianjin 301617, China
- Haihe Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Tianjin 301617, China
| | - Yuetong Yu
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Tianjin 301617, China
| | - Wenzhi Yang
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Tianjin 301617, China
- Haihe Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Tianjin 301617, China
| |
Collapse
|
15
|
Luo M, Yin Y, Zhou Z, Zhang H, Chen X, Wang H, Zhu ZJ. A mass spectrum-oriented computational method for ion mobility-resolved untargeted metabolomics. Nat Commun 2023; 14:1813. [PMID: 37002244 PMCID: PMC10066191 DOI: 10.1038/s41467-023-37539-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Accepted: 03/17/2023] [Indexed: 04/03/2023] Open
Abstract
Ion mobility (IM) adds a new dimension to liquid chromatography-mass spectrometry-based untargeted metabolomics which significantly enhances coverage, sensitivity, and resolving power for analyzing the metabolome, particularly metabolite isomers. However, the high dimensionality of IM-resolved metabolomics data presents a great challenge to data processing, restricting its widespread applications. Here, we develop a mass spectrum-oriented bottom-up assembly algorithm for IM-resolved metabolomics that utilizes mass spectra to assemble four-dimensional peaks in a reverse order of multidimensional separation. We further develop the end-to-end computational framework Met4DX for peak detection, quantification and identification of metabolites in IM-resolved metabolomics. Benchmarking and validation of Met4DX demonstrates superior performance compared to existing tools with regard to coverage, sensitivity, peak fidelity and quantification precision. Importantly, Met4DX successfully detects and differentiates co-eluted metabolite isomers with small differences in the chromatographic and IM dimensions. Together, Met4DX advances metabolite discovery in biological organisms by deciphering the complex 4D metabolomics data.
Collapse
Affiliation(s)
- Mingdu Luo
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, 200032, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Yandong Yin
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, 200032, P. R. China
| | - Zhiwei Zhou
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, 200032, P. R. China
| | - Haosong Zhang
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, 200032, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Xi Chen
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, 200032, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Hongmiao Wang
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, 200032, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Zheng-Jiang Zhu
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, 200032, P. R. China.
- Shanghai Key Laboratory of Aging Studies, Shanghai, 201210, P. R. China.
| |
Collapse
|
16
|
Asef CK, Rainey MA, Garcia BM, Gouveia GJ, Shaver AO, Leach FE, Morse AM, Edison AS, McIntyre LM, Fernández FM. Unknown Metabolite Identification Using Machine Learning Collision Cross-Section Prediction and Tandem Mass Spectrometry. Anal Chem 2023; 95:1047-1056. [PMID: 36595469 PMCID: PMC10440795 DOI: 10.1021/acs.analchem.2c03749] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Ion mobility (IM) spectrometry provides semiorthogonal data to mass spectrometry (MS), showing promise for identifying unknown metabolites in complex non-targeted metabolomics data sets. While current literature has showcased IM-MS for identifying unknowns under near ideal circumstances, less work has been conducted to evaluate the performance of this approach in metabolomics studies involving highly complex samples with difficult matrices. Here, we present a workflow incorporating de novo molecular formula annotation and MS/MS structure elucidation using SIRIUS 4 with experimental IM collision cross-section (CCS) measurements and machine learning CCS predictions to identify differential unknown metabolites in mutant strains of Caenorhabditis elegans. For many of those ion features, this workflow enabled the successful filtering of candidate structures generated by in silico MS/MS predictions, though in some cases, annotations were challenged by significant hurdles in instrumentation performance and data analysis. While for 37% of differential features we were able to successfully collect both MS/MS and CCS data, fewer than half of these features benefited from a reduction in the number of possible candidate structures using CCS filtering due to poor matching of the machine learning training sets, limited accuracy of experimental and predicted CCS values, and lack of candidate structures resulting from the MS/MS data. When using a CCS error cutoff of ±3%, on average, 28% of candidate structures could be successfully filtered. Herein, we identify and describe the bottlenecks and limitations associated with the identification of unknowns in non-targeted metabolomics using IM-MS to focus and provide insights into areas requiring further improvement.
Collapse
Affiliation(s)
- Carter K Asef
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia30332, United States
| | - Markace A Rainey
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia30332, United States
| | - Brianna M Garcia
- Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia30602, United States
- Department of Chemistry, University of Georgia, Athens, Georgia30602, United States
| | - Goncalo J Gouveia
- Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia30602, United States
- Department of Biochemistry, University of Georgia, Athens, Georgia30602, United States
| | - Amanda O Shaver
- Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia30602, United States
- Department of Genetics, University of Georgia, Athens, Georgia30602, United States
| | - Franklin E Leach
- Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia30602, United States
- Department of Environment Health Science, University of Georgia, Athens, Georgia30602, United States
| | - Alison M Morse
- Department of Molecular Genetics and Microbiology, University of Florida, Gainesville, Florida32611, United States
| | - Arthur S Edison
- Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia30602, United States
- Department of Chemistry, University of Georgia, Athens, Georgia30602, United States
- Department of Biochemistry, University of Georgia, Athens, Georgia30602, United States
| | - Lauren M McIntyre
- Department of Molecular Genetics and Microbiology, University of Florida, Gainesville, Florida32611, United States
| | - Facundo M Fernández
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia30332, United States
- Petit Institute of Bioengineering and Biotechnology, Georgia Institute of Technology, Atlanta, Georgia30332, United States
| |
Collapse
|
17
|
Liu L, Wang Z, Zhang Q, Mei Y, Li L, Liu H, Wang Z, Yang L. Ion Mobility Mass Spectrometry for the Separation and Characterization of Small Molecules. Anal Chem 2023; 95:134-151. [PMID: 36625109 DOI: 10.1021/acs.analchem.2c02866] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Affiliation(s)
- Longchan Liu
- The MOE Key Laboratory of Standardization of Chinese Medicines, The SATCM Key Laboratory of New Resources and Quality Evaluation of Chinese Medicines, The Shanghai Key Laboratory for Compound Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai201203, China
| | - Ziying Wang
- The MOE Key Laboratory of Standardization of Chinese Medicines, The SATCM Key Laboratory of New Resources and Quality Evaluation of Chinese Medicines, The Shanghai Key Laboratory for Compound Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai201203, China
| | - Qian Zhang
- The MOE Key Laboratory of Standardization of Chinese Medicines, The SATCM Key Laboratory of New Resources and Quality Evaluation of Chinese Medicines, The Shanghai Key Laboratory for Compound Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai201203, China
| | - Yuqi Mei
- The MOE Key Laboratory of Standardization of Chinese Medicines, The SATCM Key Laboratory of New Resources and Quality Evaluation of Chinese Medicines, The Shanghai Key Laboratory for Compound Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai201203, China
| | - Linnan Li
- The MOE Key Laboratory of Standardization of Chinese Medicines, The SATCM Key Laboratory of New Resources and Quality Evaluation of Chinese Medicines, The Shanghai Key Laboratory for Compound Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai201203, China
| | - Huwei Liu
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing100871, China
| | - Zhengtao Wang
- The MOE Key Laboratory of Standardization of Chinese Medicines, The SATCM Key Laboratory of New Resources and Quality Evaluation of Chinese Medicines, The Shanghai Key Laboratory for Compound Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai201203, China
| | - Li Yang
- The MOE Key Laboratory of Standardization of Chinese Medicines, The SATCM Key Laboratory of New Resources and Quality Evaluation of Chinese Medicines, The Shanghai Key Laboratory for Compound Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai201203, China.,Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai201203, China
| |
Collapse
|
18
|
Naylor CN, Schaefer C, Kirk AT, Zimmermann S. The origin of isomerization of aniline revealed by high kinetic energy ion mobility spectrometry (HiKE-IMS). Phys Chem Chem Phys 2023; 25:1139-1152. [PMID: 36515135 DOI: 10.1039/d2cp01994a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Although aniline is a relatively simple small molecule, the origin of its two peaks observed in ion mobility spectrometry (IMS) has remained under debate for at least 30 years. First hypothesized as a difference in protonation site (amine vs. benzene ring), each ion mobility peak differs by one Dalton when coupled with mass spectrometry where the faster mobility peak is the molecular ion peak, and the slower mobility peak is protonated. To complicate the deconvolution of structures, some previous literature shows the peaks as unresolved and thus proposes these species exist in equilibrium. In this work, we show that when measured with high kinetic energy ion mobility spectrometry (HiKE-IMS), the two peaks observed in spectra of both aniline and all n-fluoroanilines are fully separated (chromatographic resolution from 2-7, Rp > 110) and therefore not in equilibrium. The HiKE-IMS is capable of changing ionization conditions independently of drift region conditions, and our results agree with previous literature showing that ionization source settings (including possible fragmentation at this stage) are the only influence determining the speciation of the two aniline peaks. Finally, when the drift and reactant gas are changed to nitrogen, a third peak appears at high E/N for 2-fluoroaniline and 4-fluoroaniline for the first time in reported literature. As observed by HiKE-IMS-MS, the new third peak is also protonated showing that the para-protonated aniline and resulting fragment ion, molecular ion aniline, can be fully separated in the mobility domain for the first time. The appearance of the third peak is only possible due to the increased separation of the other two peaks within the HiKE-IMS.
Collapse
Affiliation(s)
- Cameron N Naylor
- Leibniz University Hannover, Institute of Electrical Engineering and Measurement Technology, Department of Sensors and Measurement Technology, 30167 Hannover, Germany.
| | - Christoph Schaefer
- Leibniz University Hannover, Institute of Electrical Engineering and Measurement Technology, Department of Sensors and Measurement Technology, 30167 Hannover, Germany.
| | - Ansgar T Kirk
- Leibniz University Hannover, Institute of Electrical Engineering and Measurement Technology, Department of Sensors and Measurement Technology, 30167 Hannover, Germany.
| | - Stefan Zimmermann
- Leibniz University Hannover, Institute of Electrical Engineering and Measurement Technology, Department of Sensors and Measurement Technology, 30167 Hannover, Germany.
| |
Collapse
|
19
|
May JC, McLean JA. Integrating ion mobility into comprehensive multidimensional metabolomics workflows: critical considerations. Metabolomics 2022; 18:104. [PMID: 36472678 DOI: 10.1007/s11306-022-01961-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Accepted: 11/18/2022] [Indexed: 12/12/2022]
Abstract
BACKGROUND Ion mobility (IM) separation capabilities are now widely available to researchers through several commercial vendors and are now being adopted into many metabolomics workflows. The added peak capacity that ion mobility offers with minimal compromise to other analytical figures-of-merit has provided real benefits to sensitivity and structural selectivity and have allowed more specific metabolite annotations to be assigned in untargeted workflows. One of the greatest promises of contemporary IM-enabled instrumentation is the capability of operating multiple analytical dimensions inline with minimal sample volumes, which has the potential to address many grand challenges currently faced in the omics fields. However, comprehensive operation of multidimensional mass spectrometry comes with its own inherent challenges that, beyond operational complexity, may not be immediately obvious to practitioners of these techniques. AIM OF REVIEW In this review, we outline the strengths and considerations for incorporating IM analysis in metabolomics workflows and provide a critical but forward-looking perspective on the contemporary challenges and prospects associated with interpreting IM data into chemical knowledge. KEY SCIENTIFIC CONCEPTS OF REVIEW We outline a strategy for unifying IM-derived collision cross section (CCS) measurements obtained from different IM techniques and discuss the emerging field of high resolution ion mobility (HRIM) that is poised to address many of the contemporary challenges associated with ion mobility metabolomics. Whereas the LC step limits the throughput of comprehensive LC-IM-MS, the higher peak capacity of HRIM can allow fast LC gradients or rapid sample cleanup via solid-phase extraction (SPE) to be utilized, significantly improving the sample throughput.
Collapse
Affiliation(s)
- Jody C May
- Center for Innovative Technology, Department of Chemistry, Vanderbilt University, Nashville, TN, USA
| | - John A McLean
- Center for Innovative Technology, Department of Chemistry, Vanderbilt University, Nashville, TN, USA.
| |
Collapse
|
20
|
Rose B, May JC, Reardon AR, McLean JA. Collision Cross-Section Calibration Strategy for Lipid Measurements in SLIM-Based High-Resolution Ion Mobility. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2022; 33:1229-1237. [PMID: 35653638 PMCID: PMC9516683 DOI: 10.1021/jasms.2c00067] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Structures for lossless ion manipulation-based high-resolution ion mobility (HRIM) interfaced with mass spectrometry has emerged as a powerful tool for the separation and analysis of many isomeric systems. IM-derived collision cross section (CCS) is increasingly used as a molecular descriptor for structural analysis and feature annotation, but there are few studies on the calibration of CCS from HRIM measurements. Here, we examine the accuracy, reproducibility, and practical applicability of CCS calibration strategies for a broad range of lipid subclasses and develop a straightforward and generalizable framework for obtaining high-resolution CCS values. We explore the utility of using structurally similar custom calibrant sets as well as lipid subclass-specific empirically derived correction factors. While the lipid calibrant sets lowered overall bias of reference CCS values from ∼2-3% to ∼0.5%, application of the subclass-specific correction to values calibrated with a broadly available general calibrant set resulted in biases <0.4%. Using this method, we generated a high-resolution CCS database containing over 90 lipid values with HRIM. To test the applicability of this method to a broader class range typical of lipidomics experiments, a standard lipid mix was analyzed. The results highlight the importance of both class and arrival time range when correcting or scaling CCS values and provide guidance for implementation of the method for more general applications.
Collapse
|
21
|
Zlibut E, May JC, McLean JA. Enantiomer Differentiation of Amino Acid Stereoisomers by Structural Mass Spectrometry Using Noncovalent Trinuclear Copper Complexes. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2022; 33:996-1002. [PMID: 35580025 DOI: 10.1021/jasms.2c00059] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Previous work has demonstrated that copper complexation strategies can be used with tandem MS (MS/MS) and, more recently, ion mobility-mass spectrometry (IM-MS) to differentiate chiral isomers based upon enantiomeric-specific binding. In this study, we investigate the separation of chiral amino acids (AAs) forming trinuclear complexes that can be directly resolved by IM-MS analyses. Twenty standard AAs of both d- and l-chirality were investigated. Specific AAs including d/l-histidine, d/l-proline, d/l-glutamine, d/l-tyrosine, and d/l-tryptophan were evaluated as "chiral selectors" that, when combined with copper, were found to promote selective complexation with specific AA enantiomers. Significant enantiomer differentiation was observed in the IM spectra for hydrophobic AAs acids with peak-to-peak resolutions ranging from 0.63 to 1.15. Among the chiral selectors investigated, histidine provided the best enantioselectivity, followed by tryptophan, suggesting the aromatic structure plays an important role in forming chiral-specific ion complexes. Unlike MS/MS methods where chiral selectors with l-stereochemistry enhance the differentiation, the chirality of the selector was found to have no significant effect on observed IM separation with both d- and l-selectors providing similar resolutions but with inverted IM arrival time ordering. To investigate the structural differences between resolvable chiral complexes, a combination of MS/MS, collision cross-section (CCS) measurements, and molecular mechanics techniques was used. Candidate trinuclear structures of the stoichiometry [(Cu2+)3(d/lIle)3(lHis)2 - 5H]+ were constructed with guidance from empirical MS/MS results. Of the 48 theoretical structures generated, one enantiomeric cluster pair yielded close correlation (<1%) with experimental CCS measurements, suggesting the most enantioselective ion complexes observed in this work are bridged by three coppers.
Collapse
Affiliation(s)
- Emanuel Zlibut
- Center for Innovative Technology, Department of Chemistry, Institute of Chemical Biology, Institute for Integrative Biosystems Research and Education, Vanderbilt-Ingram Cancer Center, Vanderbilt University, Nashville, Tennessee 37235 United States
| | - Jody C May
- Center for Innovative Technology, Department of Chemistry, Institute of Chemical Biology, Institute for Integrative Biosystems Research and Education, Vanderbilt-Ingram Cancer Center, Vanderbilt University, Nashville, Tennessee 37235 United States
| | - John A McLean
- Center for Innovative Technology, Department of Chemistry, Institute of Chemical Biology, Institute for Integrative Biosystems Research and Education, Vanderbilt-Ingram Cancer Center, Vanderbilt University, Nashville, Tennessee 37235 United States
| |
Collapse
|
22
|
Abstract
Native mass spectrometry (MS) is aimed at preserving and determining the native structure, composition, and stoichiometry of biomolecules and their complexes from solution after they are transferred into the gas phase. Major improvements in native MS instrumentation and experimental methods over the past few decades have led to a concomitant increase in the complexity and heterogeneity of samples that can be analyzed, including protein-ligand complexes, protein complexes with multiple coexisting stoichiometries, and membrane protein-lipid assemblies. Heterogeneous features of these biomolecular samples can be important for understanding structure and function. However, sample heterogeneity can make assignment of ion mass, charge, composition, and structure very challenging due to the overlap of tens or even hundreds of peaks in the mass spectrum. In this review, we cover data analysis, experimental, and instrumental advances and strategies aimed at solving this problem, with an in-depth discussion of theoretical and practical aspects of the use of available deconvolution algorithms and tools. We also reflect upon current challenges and provide a view of the future of this exciting field.
Collapse
Affiliation(s)
- Amber D. Rolland
- Department of Chemistry and Biochemistry, 1253 University of Oregon, Eugene, OR, USA 97403-1253
| | - James S. Prell
- Department of Chemistry and Biochemistry, 1253 University of Oregon, Eugene, OR, USA 97403-1253
- Materials Science Institute, 1252 University of Oregon, Eugene, OR, USA 97403-1252
| |
Collapse
|
23
|
Enhanced ion mobility resolution of Abeta isomers from human brain using high-resolution demultiplexing software. Anal Bioanal Chem 2022; 414:5683-5693. [DOI: 10.1007/s00216-022-04055-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 03/16/2022] [Accepted: 03/31/2022] [Indexed: 01/03/2023]
|
24
|
Pičmanová M, Moses T, Cortada-Garcia J, Barrett G, Florance H, Pandor S, Burgess K. Rapid HILIC-Z ion mobility mass spectrometry (RHIMMS) method for untargeted metabolomics of complex biological samples. Metabolomics 2022; 18:16. [PMID: 35229219 PMCID: PMC8885480 DOI: 10.1007/s11306-022-01871-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Accepted: 01/19/2022] [Indexed: 11/03/2022]
Abstract
INTRODUCTION Recent advances in high-throughput methodologies in the 'omics' and synthetic biology fields call for rapid and sensitive workflows in the metabolic phenotyping of complex biological samples. OBJECTIVE The objective of this research was to evaluate a straightforward to implement LC-MS metabolomics method using a commercially available chromatography column that provides increased throughput. Reducing run time can potentially impact chromatography and therefore the effects of ion mobility spectrometry to expand peak capacity were also evaluated. Additional confidence provided via collision cross section measurements for detected features was also explored. METHODS A rapid untargeted metabolomics workflow was developed with broad metabolome coverage, combining zwitterionic-phase hydrophilic interaction chromatography (HILIC-Z) with drift tube ion mobility-quadrupole time-of-flight (DTIM-qTOF) mass spectrometry. The analytical performance of our method was explored using extracts from complex biological samples, including a reproducibility study on chicken serum and a simple comparative study on a bacterial metabolome. RESULTS The method is acronymised RHIMMS for rapid HILIC-Z ion mobility mass spectrometry. We present the RHIMMS workflow starting with data acquisition, followed by data processing and analysis. RHIMMS demonstrates improved chromatographic separation for a selection of metabolites with wide physicochemical properties while maintaining reproducibility at better than 20% over 200 injections at 3.5 min per sample for the selected metabolites, and a mean of 13.9% for the top 50 metabolites by intensity. Additionally, the combination of rapid chromatographic separation with ion mobility allows improved annotation and the ability to distinguish isobaric compounds. CONCLUSION Our results demonstrate RHIMMS to be a rapid, reproducible, sensitive and high-resolution analytical platform that is highly applicable to the untargeted metabolomics analysis of complex samples.
Collapse
Affiliation(s)
- Martina Pičmanová
- Institute of Quantitative Biology, Biochemistry and Biotechnology, University of Edinburgh, Max Born Crescent, Edinburgh, EH9 3BF, UK
| | - Tessa Moses
- EdinOmics, University of Edinburgh, Max Born Crescent, Edinburgh, EH9 3BF, UK
| | - Joan Cortada-Garcia
- Institute of Quantitative Biology, Biochemistry and Biotechnology, University of Edinburgh, Max Born Crescent, Edinburgh, EH9 3BF, UK
| | - Georgina Barrett
- Institute of Quantitative Biology, Biochemistry and Biotechnology, University of Edinburgh, Max Born Crescent, Edinburgh, EH9 3BF, UK
| | - Hannah Florance
- Agilent Technologies UK Limited, Cheadle Royal Business Park Stockport, Cheshire, SK8 3GR, UK
| | - Sufyan Pandor
- Agilent Technologies UK Limited, Cheadle Royal Business Park Stockport, Cheshire, SK8 3GR, UK
| | - Karl Burgess
- Institute of Quantitative Biology, Biochemistry and Biotechnology, University of Edinburgh, Max Born Crescent, Edinburgh, EH9 3BF, UK.
- EdinOmics, University of Edinburgh, Max Born Crescent, Edinburgh, EH9 3BF, UK.
| |
Collapse
|
25
|
Dodds JN, Wang L, Patti GJ, Baker ES. Combining Isotopologue Workflows and Simultaneous Multidimensional Separations to Detect, Identify, and Validate Metabolites in Untargeted Analyses. Anal Chem 2022; 94:2527-2535. [PMID: 35089687 PMCID: PMC8934380 DOI: 10.1021/acs.analchem.1c04430] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
While the combination of liquid chromatography and tandem mass spectrometry (LC-MS/MS) is commonly used for feature annotation in untargeted omics experiments, ensuring these prioritized features originate from endogenous metabolism remains challenging. Isotopologue workflows, such as isotopic ratio outlier analysis (IROA), mass isotopomer ratio analysis of U-13C labeled extracts (MIRACLE), and credentialing incorporate isotopic labels directly into metabolic precursors, guaranteeing that all features of interest are unequivocal byproducts of cellular metabolism. Furthermore, comprehensive separation and annotation of small molecules continue to challenge the metabolomics field, particularly for isomeric systems. In this paper, we evaluate the analytical utility of incorporating ion mobility spectrometry (IMS) as an additional separation mechanism into standard LC-MS/MS isotopologue workflows. Since isotopically labeled molecules codrift in the IMS dimension with their 12C versions, LC-IMS-CID-MS provides four dimensions (LC, IMS, MS, and MS/MS) to directly investigate the metabolic activity of prioritized untargeted features. Here, we demonstrate this additional selectivity by showcasing how a preliminary data set of 30 endogeneous metabolites are putatively annotated from isotopically labeled Escherichia coli cultures when analyzed by LC-IMS-CID-MS. Metabolite annotations were based on several molecular descriptors, including accurate mass measurement, carbon number, annotated fragmentation spectra, and collision cross section (CCS), collectively illustrating the importance of incorporating IMS into isotopologue workflows. Overall, our results highlight the enhanced separation space and increased annotation confidence afforded by IMS for metabolic characterization and provide a unique perspective for future developments in isotopically labeled MS experiments.
Collapse
Affiliation(s)
| | | | - Gary J. Patti
- Departments of Chemistry and Medicine, Siteman Cancer Center, Center for Metabolomics and Isotope Tracing, Washington University, St. Louis, Missouri 63130, United States
| | - Erin S. Baker
- Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27695, United States
| |
Collapse
|
26
|
Demelenne A, Nys G, Nix C, Fjeldsted JC, Crommen J, Fillet M. Separation of phosphorothioated oligonucleotide diastereomers using multiplexed drift tube ion mobility mass spectrometry. Anal Chim Acta 2022; 1191:339297. [PMID: 35033277 DOI: 10.1016/j.aca.2021.339297] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 11/11/2021] [Accepted: 11/16/2021] [Indexed: 11/17/2022]
Abstract
Hydrophilic interaction liquid chromatography (HILIC) coupled to drift tube ion mobility spectrometry (DTIMS) was used to separate diastereomers of five-unit oligonucleotides containing 0, 1, 2 or 3 phosphorothioate (PS) linkages. Multiplexed DTIMS (where ions are pulsed into the drift tube according to a pre-encoded sequence) and post-acquisition processing using an innovative demultiplexing tool were investigated. The electric field inside the drift tube was optimized to achieve the highest resolving power. The entrance voltage providing the best two-peak resolution was -1000V with 3-bit multiplexing. Under optimized conditions, the eight diastereomers of an oligonucleotide with three PS linkages (5'-TC∗G∗T∗G-3') could be separated unambiguously. Indeed, those diastereomers differed in their collision cross section (CCS) values. The minimal CCS values difference between two adjacent diastereomers was 0.9% with maximal RSD on CCS values of 0.3%. The use of multiplexed ion mobility and the novel high-resolution demultiplexing tool represents a real breakthrough for resolution enhancement of diastereomers in linear DTIMS.
Collapse
Affiliation(s)
- Alice Demelenne
- Laboratory for the Analysis of Medicines, Center for Interdisciplinary Research on Medicines (CIRM), University of Liege, Quartier Hôpital, Avenue Hippocrate 15, 4000, Liege, Belgium
| | - Gwenael Nys
- Laboratory for the Analysis of Medicines, Center for Interdisciplinary Research on Medicines (CIRM), University of Liege, Quartier Hôpital, Avenue Hippocrate 15, 4000, Liege, Belgium
| | - Cindy Nix
- Laboratory for the Analysis of Medicines, Center for Interdisciplinary Research on Medicines (CIRM), University of Liege, Quartier Hôpital, Avenue Hippocrate 15, 4000, Liege, Belgium
| | | | - Jacques Crommen
- Laboratory for the Analysis of Medicines, Center for Interdisciplinary Research on Medicines (CIRM), University of Liege, Quartier Hôpital, Avenue Hippocrate 15, 4000, Liege, Belgium
| | - Marianne Fillet
- Laboratory for the Analysis of Medicines, Center for Interdisciplinary Research on Medicines (CIRM), University of Liege, Quartier Hôpital, Avenue Hippocrate 15, 4000, Liege, Belgium.
| |
Collapse
|
27
|
Dodds JN, Baker ES. Improving the Speed and Selectivity of Newborn Screening Using Ion Mobility Spectrometry-Mass Spectrometry. Anal Chem 2021; 93:17094-17102. [PMID: 34851605 PMCID: PMC8730783 DOI: 10.1021/acs.analchem.1c04267] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Detection and diagnosis of congenital disorders is the principal aim of newborn screening (NBS) programs worldwide. Mass spectrometry (MS) has become the preferred primary testing method for high-throughput NBS sampling because of its speed and selectivity. However, the ever-increasing list of NBS biomarkers included in expanding panels creates unique analytical challenges for multiplexed MS assays due to isobaric/isomeric overlap and chimeric fragmentation spectra. Since isobaric and isomeric systems limit the diagnostic power of current methods and require costly follow-up exams due to many false-positive results, here, we explore the utility of ion mobility spectrometry (IMS) to enhance the accuracy of MS assays for primary (tier 1) screening. Our results suggest that ∼400 IMS resolving power would be required to confidently assess most NBS biomarkers of interest in dried blood spots (DBSs) that currently require follow-up testing. While this level of selectivity is unobtainable with most commercially available platforms, the separations detailed here for a commercially available drift tube IMS (Agilent 6560 with high-resolution demultiplexing, HRdm) illustrate the unique capabilities of IMS to separate many diagnostic NBS biomarkers from interferences. Furthermore, to address the need for increased speed of NBS analyses, we utilized an automated solid-phase extraction (SPE) system for ∼10 s sampling of simulated NBS samples prior to IMS-MS. This proof-of-concept work demonstrates the unique capabilities of SPE-IMS-MS for high-throughput sample introduction and enhanced separation capacity conducive for increasing speed and accuracy for NBS.
Collapse
Affiliation(s)
- James N Dodds
- Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27695, United States
| | - Erin S Baker
- Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27695, United States
| |
Collapse
|
28
|
Tomczyk N, Giles K, Richardson K, Ujma J, Palmer M, Nielsen PK, Haselmann KF. Mapping Isomeric Peptides Derived from Biopharmaceuticals Using High-Resolution Ion Mobility Mass Spectrometry. Anal Chem 2021; 93:16379-16384. [PMID: 34842410 DOI: 10.1021/acs.analchem.1c02834] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The identification and localization of isomeric peptide modifications is a critical requirement of the biopharmaceutical industry. Despite the ability of liquid chromatography-mass spectrometry to identify many of the common post translational modifications, the identification of isobaric or racemized peptides is confounded by modern mass spectrometry-based techniques. Here, we present a novel approach combining liquid chromatography with a high-resolution ion mobility mass spectrometry system to differentiate peptide and peptide fragments based upon their mobility and mass.
Collapse
Affiliation(s)
- Nick Tomczyk
- Waters Corporation, Stamford Avenue, Wilmslow SK9 4AX, U.K
| | - Kevin Giles
- Waters Corporation, Stamford Avenue, Wilmslow SK9 4AX, U.K
| | | | - Jakub Ujma
- Waters Corporation, Stamford Avenue, Wilmslow SK9 4AX, U.K
| | - Martin Palmer
- Waters Corporation, Stamford Avenue, Wilmslow SK9 4AX, U.K
| | - Peter Kresten Nielsen
- Novo Nordisk A/S, Global Research Technologies, Novo Nordisk Park, Maaloev DK-2760, Denmark
| | - Kim F Haselmann
- Novo Nordisk A/S, Global Research Technologies, Novo Nordisk Park, Maaloev DK-2760, Denmark
| |
Collapse
|
29
|
Hu H, Hu C, Peng J, Ghosh AK, Khan A, Sun D, Luyten W. Bioassay-Guided Interpretation of Antimicrobial Compounds in Kumu, a TCM Preparation From Picrasma quassioides' Stem via UHPLC-Orbitrap-Ion Trap Mass Spectrometry Combined With Fragmentation and Retention Time Calculation. Front Pharmacol 2021; 12:761751. [PMID: 34776978 PMCID: PMC8581800 DOI: 10.3389/fphar.2021.761751] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Accepted: 09/16/2021] [Indexed: 12/03/2022] Open
Abstract
The stem of Picrasma quassioides (PQ) was recorded as a prominent traditional Chinese medicine, Kumu, which was effective for microbial infection, inflammation, fever, and dysentery, etc. At present, Kumu is widely used in China to develop different medicines, even as injection (Kumu zhusheye), for combating infections. However, the chemical basis of its antimicrobial activity has still not been elucidated. To examine the active chemicals, its stem was extracted to perform bioassay-guided purification against Staphylococcus aureus and Escherichia coli. In this study, two types of columns (normal and reverse-phase) were used for speedy bioassay-guided isolation from Kumu, and the active peaks were collected and identified via an UHPLC-Orbitrap-Ion Trap Mass Spectrometer, combined with MS Fragmenter and ChromGenius. For identification, the COCONUT Database (largest database of natural products) and a manually built PQ database were used, in combination with prediction and calculation of mass fragmentation and retention time to better infer their structures, especially for isomers. Moreover, three standards were analyzed under different conditions for developing and validating the MS method. A total of 25 active compounds were identified, including 24 alkaloids and 1 triterpenoid against S. aureus, whereas only β-carboline-1-carboxylic acid and picrasidine S were active against E. coli. Here, the good antimicrobial activity of 18 chemicals was reported for the first time. Furthermore, the spectrum of three abundant β-carbolines was assessed via their IC50 and MBC against various human pathogens. All of them exhibited strong antimicrobial activities with good potential to be developed as antibiotics. This study clearly showed the antimicrobial chemical basis of Kumu, and the results demonstrated that HRMS coupled with MS Fragmenter and ChromGenius was a powerful tool for compound analysis, which can be used for other complex samples. Beta-carbolines reported here are important lead compounds in antibiotic discovery.
Collapse
Affiliation(s)
- Haibo Hu
- Department of Biology, Animal Physiology and Neurobiology Section, KU Leuven, Leuven, Belgium.,National Engineering Research Center for Modernization of Traditional Chinese Medicine - Hakka Medical Resources Branch, School of Pharmacy, Gannan Medical University, Ganzhou, China
| | - Changling Hu
- Laboratory for Functional Foods and Human Health, Center for Excellence in Postharvest Technologies, North Carolina Agricultural and Technical State University, North Carolina Research Campus, Kannapolis, NC, United States
| | - Jinnian Peng
- National Engineering Research Center for Modernization of Traditional Chinese Medicine - Hakka Medical Resources Branch, School of Pharmacy, Gannan Medical University, Ganzhou, China
| | - Alokesh Kumar Ghosh
- Department of Biology, Animal Physiology and Neurobiology Section, KU Leuven, Leuven, Belgium
| | - Ajmal Khan
- Department of Biology, Animal Physiology and Neurobiology Section, KU Leuven, Leuven, Belgium
| | - Dan Sun
- Department of Biology, Animal Physiology and Neurobiology Section, KU Leuven, Leuven, Belgium.,College of Life Sciences, NanKai University, Tianjin, China
| | - Walter Luyten
- Department of Biology, Animal Physiology and Neurobiology Section, KU Leuven, Leuven, Belgium
| |
Collapse
|
30
|
Davis DE, Leaptrot KL, Koomen DC, May JC, Cavalcanti GDA, Padilha MC, Pereira HMG, McLean JA. Multidimensional Separations of Intact Phase II Steroid Metabolites Utilizing LC-Ion Mobility-HRMS. Anal Chem 2021; 93:10990-10998. [PMID: 34319704 DOI: 10.1021/acs.analchem.1c02163] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The detection and unambiguous identification of anabolic-androgenic steroid metabolites are essential in clinical, forensic, and antidoping analyses. Recently, sulfate phase II steroid metabolites have received increased attention in steroid metabolism and drug testing. In large part, this is because phase II steroid metabolites are excreted for an extended time, making them a potential long-term chemical marker of choice for tracking steroid misuse in sports. Comprehensive analytical methods, such as liquid chromatography-tandem mass spectrometry (LC-MS/MS), have been used to detect and identify glucuronide and sulfate steroids in human urine with high sensitivity and reliability. However, LC-MS/MS identification strategies can be hindered by the fact that phase II steroid metabolites generate nonselective ion fragments across the different metabolite markers, limiting the confidence in metabolite identifications that rely on exact mass measurement and MS/MS information. Additionally, liquid chromatography-high-resolution mass spectrometry (LC-HRMS) is sometimes insufficient at fully resolving the analyte peaks from the sample matrix (commonly urine) chemical noise, further complicating accurate identification efforts. Therefore, we developed a liquid chromatography-ion mobility-high resolution mass spectrometry (LC-IM-HRMS) method to increase the peak capacity and utilize the IM-derived collision cross section (CCS) values as an additional molecular descriptor for increased selectivity and to improve identifications of intact steroid analyses at low concentrations.
Collapse
Affiliation(s)
- Don E Davis
- Department of Chemistry, Center for Innovative Technology, Institute of Chemical Biology, Institute for Integrative Biosystems Research and Education, Vanderbilt-Ingram Cancer Center, Vanderbilt University, Nashville, Tennessee 37235, United States
| | - Katrina L Leaptrot
- Department of Chemistry, Center for Innovative Technology, Institute of Chemical Biology, Institute for Integrative Biosystems Research and Education, Vanderbilt-Ingram Cancer Center, Vanderbilt University, Nashville, Tennessee 37235, United States
| | - David C Koomen
- Department of Chemistry, Center for Innovative Technology, Institute of Chemical Biology, Institute for Integrative Biosystems Research and Education, Vanderbilt-Ingram Cancer Center, Vanderbilt University, Nashville, Tennessee 37235, United States
| | - Jody C May
- Department of Chemistry, Center for Innovative Technology, Institute of Chemical Biology, Institute for Integrative Biosystems Research and Education, Vanderbilt-Ingram Cancer Center, Vanderbilt University, Nashville, Tennessee 37235, United States
| | - Gustavo de A Cavalcanti
- Brazilian Doping Control Laboratory (LBCD), Chemistry Institute, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, RJ 21941-598, Brazil
| | - Monica C Padilha
- Brazilian Doping Control Laboratory (LBCD), Chemistry Institute, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, RJ 21941-598, Brazil
| | - Henrique M G Pereira
- Brazilian Doping Control Laboratory (LBCD), Chemistry Institute, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, RJ 21941-598, Brazil
| | - John A McLean
- Department of Chemistry, Center for Innovative Technology, Institute of Chemical Biology, Institute for Integrative Biosystems Research and Education, Vanderbilt-Ingram Cancer Center, Vanderbilt University, Nashville, Tennessee 37235, United States
| |
Collapse
|
31
|
Gu L, Yang S, Wu F, Xu F, Yu S, Zhou M, Chu Y, Ding CF. Enantio-separation of pregabalin by ternary complexation using trapped ion mobility spectrometry. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2021; 35:e9052. [PMID: 33470461 DOI: 10.1002/rcm.9052] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 01/19/2021] [Accepted: 01/19/2021] [Indexed: 06/12/2023]
Abstract
UNLABELLED Rationale The rapid identification of small-molecule chiral drugs is challenging due to subtle structural differences. Different enantiomers of chiral drugs may produce inverse biological effects through their different pharmacokinetics. Therefore, it is highly desirable to distinguish the chirality of drug molecules. METHODS The chirality of pregabalin was distinguished by studying the ion mobility spectra of the ternary non-covalent complexes formed with cyclodextrins (CDs), pregabalin, and alkali-earth cations using trapped ion mobility spectrometry (TIMS). The ternary non-covalent complex ions were determined by electrospray ionization of mixed solutions. The analyzed sample was simply mixed, without derivatization or sample pretreatment. The relative contents of pregabalin enantiomers were derived using a calibration curve method. RESULTS The ion mobility spectra of several ternary non-covalent complexes formed with α-, β-, and γ-CD, pregabalin, and alkali-earth cations were obtained. We compared their ability to distinguish the chirality of pregabalin. The best peak-to-peak resolution (Rp-p ) was estimated to be 2.20 for [2β-CD + pregabalin + Sr]2+ , which can be ascribed as baseline separation. The derived relative contents for S-pregabalin were in agreement with the actual contents. CONCLUSIONS A novel and convenient method for discriminating the chirality of the pregabalin molecule by TIMS was developed and optimized. The chirality of pregabalin was recognized by studying the ion mobility spectra of the ternary non-covalent complexes, such as [2β-CD + pregabalin + Sr]2+ . This TIMS method could also be used to quantify the relative contents of pregabalin enantiomers.
Collapse
Affiliation(s)
- Liancheng Gu
- Department of Chemistry, Laser Chemistry Institute, Fudan University, Shanghai, 200438, China
| | - Shutong Yang
- Department of Chemistry, Laser Chemistry Institute, Fudan University, Shanghai, 200438, China
| | - Fangling Wu
- Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis of Zhejiang Provincial, Institute of Mass Spectrometry, School of Material Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang, 315211, China
| | - Fuxing Xu
- Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis of Zhejiang Provincial, Institute of Mass Spectrometry, School of Material Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang, 315211, China
| | - Shaoning Yu
- Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis of Zhejiang Provincial, Institute of Mass Spectrometry, School of Material Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang, 315211, China
| | - Mingfei Zhou
- Department of Chemistry, Laser Chemistry Institute, Fudan University, Shanghai, 200438, China
| | - Yanqiu Chu
- Department of Chemistry, Laser Chemistry Institute, Fudan University, Shanghai, 200438, China
| | - Chuan-Fan Ding
- Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis of Zhejiang Provincial, Institute of Mass Spectrometry, School of Material Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang, 315211, China
| |
Collapse
|
32
|
Naylor CN, Clowers BH. Reevaluating the Role of Polarizability in Ion Mobility Spectrometry. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2021; 32:618-627. [PMID: 33533630 DOI: 10.1021/jasms.0c00338] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
With the expanding commercial availability of gas-phase separation systems that incorporate gas-phase mobility, there is a concurrent rise in efforts to cast the gas-phase mobility coefficient in terms of an ion-neutral collision cross-section (CCS). The motivating factors for this trend are varied, but many aim to complement experimental results with computationally generated CCS values from in silico structural approximations. Unfortunately, the current paradigm for relating experimental mobility results to computationally derived structures relies upon empirical approaches, including a myriad of variables that do not realistically bound the comparison. In this Critical Insight, we advocate for the development of a self-consistent experimental and computational framework that uses laboratory results to constrain the scope of the modeling effort. This paper aims to prompt discussion, challenge assumptions, and promote the development of more efficient, accurate computational techniques within the gas-phase ion measurement community. Specifically, we postulate whether experimental deviations from Langevin's polarization limit (Kpol) are suitable to estimate the relative contributions of hard-sphere collisions and long-range interactions within CCS values. Not surprisingly, different molecule classes exhibit different trends in the K/Kpol ratio when normalized for reduced mass, and the most common IMS calibrants (e.g., tune mix, polyalanine, tetraalkylammonium salts) follow different polarizability trends than many of the analytes probed in the literature. Succinctly, if gas-phase ion structure is largely invariant based upon the colliding neutral and newly developed experimental efforts can quantitatively capture ion polarizability, then modeling efforts describing a target analyte must be self-consistent as the collision neutral is changed in silico.
Collapse
Affiliation(s)
- Cameron N Naylor
- Department of Chemistry, Washington State University, Pullman, Washington 99164, United States
| | - Brian H Clowers
- Department of Chemistry, Washington State University, Pullman, Washington 99164, United States
| |
Collapse
|
33
|
Data processing strategies for non-targeted analysis of foods using liquid chromatography/high-resolution mass spectrometry. Trends Analyt Chem 2021. [DOI: 10.1016/j.trac.2021.116188] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
34
|
Masike K, Stander MA, de Villiers A. Recent applications of ion mobility spectrometry in natural product research. J Pharm Biomed Anal 2021; 195:113846. [PMID: 33422832 DOI: 10.1016/j.jpba.2020.113846] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 12/08/2020] [Accepted: 12/08/2020] [Indexed: 12/15/2022]
Abstract
Ion mobility spectrometry (IMS) is a rapid separation technique capable of extracting complementary structural information to chromatography and mass spectrometry (MS). IMS, especially in combination with MS, has experienced inordinate growth in recent years as an analytical technique, and elicited intense interest in many research fields. In natural product analysis, IMS shows promise as an additional tool to enhance the performance of analytical methods used to identify promising drug candidates. Potential benefits of the incorporation of IMS into analytical workflows currently used in natural product analysis include the discrimination of structurally similar secondary metabolites, improving the quality of mass spectral data, and the use of mobility-derived collision cross-section (CCS) values as an additional identification criterion in targeted and untargeted analyses. This review aims to provide an overview of the application of IMS to natural product analysis over the last six years. Instrumental aspects and the fundamental background of IMS will be briefly covered, and recent applications of the technique for natural product analysis will be discussed to demonstrate the utility of the technique in this field.
Collapse
Affiliation(s)
- Keabetswe Masike
- Department of Biochemistry, Stellenbosch University, Private Bag X1, Matieland, 7602, South Africa
| | - Maria A Stander
- Department of Biochemistry, Stellenbosch University, Private Bag X1, Matieland, 7602, South Africa; Central Analytical Facility, Stellenbosch University, Private Bag X1, Matieland, 7602, South Africa
| | - André de Villiers
- Department of Chemistry and Polymer Science, Stellenbosch University, Private Bag X1, Matieland, 7602, South Africa.
| |
Collapse
|
35
|
Li L, Yu J, Xie C, Wang C, Guan P, Hu JJ, Tang K. A TIMS-TOF mass spectrometry study of disaccharides from in situ ESI derivatization with 3-pyridinylboronate. Analyst 2021; 146:75-84. [DOI: 10.1039/d0an01677b] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Mobilograms of in situ ESI 3-pyridinylboronic acid tagging of isomaltose in the positive or negative mode.
Collapse
Affiliation(s)
- Lei Li
- Zhejiang Provincial Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis
- Institute of Mass Spectrometry
- Ningbo University
- Ningbo 315211
- P. R. China
| | - Jiancheng Yu
- Zhejiang Provincial Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis
- Institute of Mass Spectrometry
- Ningbo University
- Ningbo 315211
- P. R. China
| | - Chengyi Xie
- Zhejiang Provincial Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis
- Institute of Mass Spectrometry
- Ningbo University
- Ningbo 315211
- P. R. China
| | - Chenlu Wang
- Zhejiang Provincial Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis
- Institute of Mass Spectrometry
- Ningbo University
- Ningbo 315211
- P. R. China
| | - Pengfei Guan
- Zhejiang Provincial Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis
- Institute of Mass Spectrometry
- Ningbo University
- Ningbo 315211
- P. R. China
| | - Jun Jack Hu
- Zhejiang Provincial Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis
- Institute of Mass Spectrometry
- Ningbo University
- Ningbo 315211
- P. R. China
| | - Keqi Tang
- Zhejiang Provincial Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis
- Institute of Mass Spectrometry
- Ningbo University
- Ningbo 315211
- P. R. China
| |
Collapse
|
36
|
Rose BS, Leaptrot KL, Harris RA, Sherrod SD, May JC, McLean JA. High Confidence Shotgun Lipidomics Using Structurally Selective Ion Mobility-Mass Spectrometry. Methods Mol Biol 2021; 2306:11-37. [PMID: 33954937 PMCID: PMC10127451 DOI: 10.1007/978-1-0716-1410-5_2] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Ion mobility (IM) is a gas phase separation strategy that can either supplement or serve as a high-throughput alternative to liquid chromatography (LC) in shotgun lipidomics. Incorporating the IM dimension in untargeted lipidomics workflows can help resolve isomeric lipids, and the collision cross section (CCS) values obtained from the IM measurements can provide an additional molecular descriptor to increase lipid identification confidence. This chapter provides a broad overview of an untargeted ion mobility-mass spectrometry (IM-MS) workflow using a commercial drift tube ion mobility-quadrupole-time-of-flight mass spectrometer (IM-QTOF) for high confidence lipidomics.
Collapse
Affiliation(s)
- Bailey S Rose
- Center for Innovative Technology, Department of Chemistry, Vanderbilt Institute of Chemical Biology, Vanderbilt Institute for Integrative Biosystems Research and Education, Vanderbilt-Ingram Cancer Center, Vanderbilt University, Nashville, TN, USA
| | - Katrina L Leaptrot
- Center for Innovative Technology, Department of Chemistry, Vanderbilt Institute of Chemical Biology, Vanderbilt Institute for Integrative Biosystems Research and Education, Vanderbilt-Ingram Cancer Center, Vanderbilt University, Nashville, TN, USA
| | - Rachel A Harris
- Center for Innovative Technology, Department of Chemistry, Vanderbilt Institute of Chemical Biology, Vanderbilt Institute for Integrative Biosystems Research and Education, Vanderbilt-Ingram Cancer Center, Vanderbilt University, Nashville, TN, USA
| | - Stacy D Sherrod
- Center for Innovative Technology, Department of Chemistry, Vanderbilt Institute of Chemical Biology, Vanderbilt Institute for Integrative Biosystems Research and Education, Vanderbilt-Ingram Cancer Center, Vanderbilt University, Nashville, TN, USA
| | - Jody C May
- Center for Innovative Technology, Department of Chemistry, Vanderbilt Institute of Chemical Biology, Vanderbilt Institute for Integrative Biosystems Research and Education, Vanderbilt-Ingram Cancer Center, Vanderbilt University, Nashville, TN, USA
| | - John A McLean
- Center for Innovative Technology, Department of Chemistry, Vanderbilt Institute of Chemical Biology, Vanderbilt Institute for Integrative Biosystems Research and Education, Vanderbilt-Ingram Cancer Center, Vanderbilt University, Nashville, TN, USA.
- Department of Chemistry, Vanderbilt University, Nashville, TN, USA.
| |
Collapse
|
37
|
Davis DE, Sherrod SD, Gant-Branum RL, Colby JM, McLean JA. Targeted Strategy to Analyze Antiepileptic Drugs in Human Serum by LC-MS/MS and LC-Ion Mobility-MS. Anal Chem 2020; 92:14648-14656. [PMID: 33047601 PMCID: PMC10103591 DOI: 10.1021/acs.analchem.0c03172] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Routine small-molecule analysis is challenging owing to the need for high selectivity and/or low limits of quantification. This work reports a liquid chromatography-tandem mass spectrometry (LC-MS/MS) method to quantify 14 antiepileptic drugs (AEDs) in human serum. For the optimized LC-MS/MS method described herein, we applied the guidelines outlined in the Clinical and Laboratory Standards Institute (CLSI) LC-MS C62-A document and the U.S. Food and Drug Administration (FDA) Bioanalytical Method Validation Guidance for Industry to evaluate the quality of the assay. In these studies, AED linearity, analyte recovery, matrix effects, precision, and accuracy were assessed. Using liquid chromatography-drift tube ion mobility-mass spectrometry (LC-DTIM-MS), a qualitative method was also used to increase confidence in AED identification using accurate mass and collision cross section (CCS) measurements. The LC-DTIM-MS method was also used to assess the ability of drift tube CCS measurements to aid in the separation and identification of AED structural isomers and other AEDs. These data show that another dimension of information, namely CCS measurements, provides an orthogonal dimension of structural information needed for AED analysis. Multiplexed AED measurements using LC-MS/MS and LC-DTIM-MS have the potential to enable better optimization of dosing owing to the high precision capabilities available in these types of analytical studies. Taken together, these data also show the ability to increase confidence in small-molecule identification and quantification using these analytical technologies.
Collapse
Affiliation(s)
- Don E Davis
- Center for Innovative Technology, Department of Chemistry, Institute of Chemical Biology, Institute for Integrative Biosystems Research and Education, Vanderbilt-Ingram Cancer Center, Vanderbilt University, Nashville, Tennessee 37235, United States
| | - Stacy D Sherrod
- Center for Innovative Technology, Department of Chemistry, Institute of Chemical Biology, Institute for Integrative Biosystems Research and Education, Vanderbilt-Ingram Cancer Center, Vanderbilt University, Nashville, Tennessee 37235, United States
| | - Randi L Gant-Branum
- Center for Innovative Technology, Department of Chemistry, Institute of Chemical Biology, Institute for Integrative Biosystems Research and Education, Vanderbilt-Ingram Cancer Center, Vanderbilt University, Nashville, Tennessee 37235, United States
| | - Jennifer M Colby
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee 37235, United States
| | - John A McLean
- Center for Innovative Technology, Department of Chemistry, Institute of Chemical Biology, Institute for Integrative Biosystems Research and Education, Vanderbilt-Ingram Cancer Center, Vanderbilt University, Nashville, Tennessee 37235, United States
| |
Collapse
|
38
|
The use of UHPLC, IMS, and HRMS in multiresidue analytical methods: A critical review. J Chromatogr B Analyt Technol Biomed Life Sci 2020; 1158:122369. [PMID: 33091675 DOI: 10.1016/j.jchromb.2020.122369] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 08/31/2020] [Accepted: 09/02/2020] [Indexed: 12/12/2022]
Abstract
Residue chemists who analyse pesticides in vegetables or veterinary drugs in animal-based food are currently facing a situation where there is a requirement to detect more and more compounds at lower and lower concentrations. Conventional tandem quadrupole instruments provide sufficient sensitivity, but speed and selectivity appear as future limitations. This will become an even larger issue when there is a need to not only detect active compounds but also their degradation products and metabolites. This will likely lead to a situation in which the conventional targeted approach must be expanded or augmented by a certain non-targeted strategy. High-resolution mass spectrometry provides such capabilities, but it frequently requires an additional degree of selectivity for the unequivocal confirmation of analytes present at trace levels in highly complex and variable food matrices. The hyphenation of ultrahigh performance liquid chromatography with ion mobility and high-resolution mass spectrometry provides analytical chemists with a new tool for performing such a demanding multiresidue analysis. The objective of this paper is to investigate the benefits of the added ion mobility dimension as well as to critically discuss the current limitations of this commercially available technology.
Collapse
|
39
|
Determination of leucine and isoleucine/allo-isoleucine by electrospray ionization-tandem mass spectrometry and partial least square regression: Application to saliva samples. Talanta 2020; 216:120811. [PMID: 32456934 DOI: 10.1016/j.talanta.2020.120811] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 02/03/2020] [Accepted: 02/05/2020] [Indexed: 11/21/2022]
Abstract
Herein we propose, for the first time, a rapid method based on flow injection analysis, electrospray ionization-tandem mass spectrometry (FIA-ESI-MS/MS) and multivariate calibration for the determination of l-leucine, l-isoleucine and L-allo-isoleucine in saliva. As far as we know, multivariate calibration has never been applied to the data from this non-separative approach. The possibilities of its use were explored and the results obtained were compared with the corresponding ones when using univariate calibration. Partial least square regression (PLS1) multivariate calibration models were built for each analyte by analyzing different saliva samples, and were subsequently applied to the analysis of another set of samples which had not been used in any calibration step. For Leu, the model worked satisfactorily with root mean square errors in the prediction step of 17%. This error can be considered acceptable and is common in methodologies that do not include a separation step. Results were compared with those obtained when univariate calibration was used, using the m/z transition 132.1 → 43.0 as the quantitation variable. In this case, the obtained results were not acceptable, with RMSEP of 236%, due to the fact that saliva samples contained another compound, different to the target analytes, which also shared the same transition. Ile and aIle have the same fragmentation patterns, so quantification of the sum of both compounds was performed, with RMSEP of 14% using a PLS1 model. Similar results were obtained when a univariate calibration model using the m/z transition 132.1 → 69.0 was employed. However, the use of this transition should be carefully examined when other compounds present in the matrix contribute to the analytical signal. The method increases sample throughput more than one order of magnitude compared to the corresponding LC-ESI-MS/MS method and is especially suitable as screening. When abnormally high or low concentrations of the analytes studied are obtained, the use of the method that includes separation is recommended to confirm the results.
Collapse
|
40
|
Li MN, Wang HY, Wang R, Li CR, Shen BQ, Gao W, Li P, Yang H. A modified data filtering strategy for targeted characterization of polymers in complex matrixes using drift tube ion mobility-mass spectrometry: Application to analysis of procyanidins in the grape seed extracts. Food Chem 2020; 321:126693. [DOI: 10.1016/j.foodchem.2020.126693] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 03/24/2020] [Accepted: 03/24/2020] [Indexed: 12/25/2022]
|
41
|
May JC, Knochenmuss R, Fjeldsted JC, McLean JA. Resolution of Isomeric Mixtures in Ion Mobility Using a Combined Demultiplexing and Peak Deconvolution Technique. Anal Chem 2020; 92:9482-9492. [DOI: 10.1021/acs.analchem.9b05718] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Jody C. May
- Department of Chemistry, Vanderbilt University, Nashville, Tennessee 37235, United States
| | | | | | - John A. McLean
- Department of Chemistry, Vanderbilt University, Nashville, Tennessee 37235, United States
| |
Collapse
|
42
|
Chatterjee P, Dutta SS, Chakraborty T. Isomers and Rotamers of DCM in Methanol and in Gas Phase Probed by Ion Mobility Mass Spectrometry in Combination with High Performance Liquid Chromatography. J Phys Chem B 2020; 124:4498-4511. [PMID: 32380830 DOI: 10.1021/acs.jpcb.0c00097] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
An integrated method of ion mobility mass spectrometry and high-performance liquid chromatography (HPLC) has been used to investigate the isomeric distribution of a popular fluorescent dye DCM (4-(dicyanomethylene)-2-methyl-6-(4-dimethylaminostyryl)-4H-pyran) in methanol solution. Chromatographic separation of DCM isomers in methanol has been performed by probing the molecular mass (DCMH+), and two distinctly separated peaks are observed at retention times 3.73 (peak-I) and 3.87 (peak-II) min, where the latter one appears nearly twice as intense as the former. However, peak-I appears much weaker compared to peak-II if the chromatogram is recorded by optical probing at the absorption maximum of this dye (467 nm). The ion mobility (IM) spectra of DCMH+ ions corresponding to each of the LC-separated factions show three common peaks A, B, and C, with collision cross-section (CCS) values of 174, 185, and 197 Å2, respectively, but their relative intensities in the two IM spectra appear in opposite sequences. The three IM peaks have been assigned by considering the theoretically calculated CCS values of 13 possible isomers of DCMH+ ions. The IM spectral features also reveal that isomeric interconversions occur during the ESI process. Electronic structure calculations have been used to optimize the geometries of the four isomers of solvated DCM and the corresponding protomeric structures of DCMH+. The isomerization pathways and associated energy barriers have also been calculated. The gas-phase protomers are found to follow a completely different sequence of stability as compared to the neutral isomers. The analysis reveals that peak-I corresponds to one of the cis isomers, whereas peak-II arises due to cumulative contributions of the other three isomers. The absorption spectrum of DCM in methanol is simulated from the computed spectral profiles of the isomers which indicates a distribution of trans1, trans2, cis1, and cis2 isomers as 33.5, 61.5, 2.0, and 3.0%, respectively. The fragmentation behavior of DCMH+ ions in a collision-induced dissociation experiment has been found to be isomer dependent.
Collapse
Affiliation(s)
- Piyali Chatterjee
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A Raja S C Mullick Road, Jadavpur, Kolkata 700032, India
| | - Subhra Sankar Dutta
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A Raja S C Mullick Road, Jadavpur, Kolkata 700032, India
| | - Tapas Chakraborty
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A Raja S C Mullick Road, Jadavpur, Kolkata 700032, India
| |
Collapse
|
43
|
Luo MD, Zhou ZW, Zhu ZJ. The Application of Ion Mobility-Mass Spectrometry in Untargeted Metabolomics: from Separation to Identification. JOURNAL OF ANALYSIS AND TESTING 2020. [DOI: 10.1007/s41664-020-00133-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
44
|
Hernández-Mesa M, D'Atri V, Barknowitz G, Fanuel M, Pezzatti J, Dreolin N, Ropartz D, Monteau F, Vigneau E, Rudaz S, Stead S, Rogniaux H, Guillarme D, Dervilly G, Le Bizec B. Interlaboratory and Interplatform Study of Steroids Collision Cross Section by Traveling Wave Ion Mobility Spectrometry. Anal Chem 2020; 92:5013-5022. [PMID: 32167758 DOI: 10.1021/acs.analchem.9b05247] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Collision cross section (CCS) databases based on single-laboratory measurements must be cross-validated to extend their use in peak annotation. This work addresses the validation of the first comprehensive TWCCSN2 database for steroids. First, its long-term robustness was evaluated (i.e., a year and a half after database generation; Synapt G2-S instrument; bias within ±1.0% for 157 ions, 95.7% of the total ions). It was further cross-validated by three external laboratories, including two different TWIMS platforms (i.e., Synapt G2-Si and two Vion IMS QToF; bias within the threshold of ±2.0% for 98.8, 79.9, and 94.0% of the total ions detected by each instrument, respectively). Finally, a cross-laboratory TWCCSN2 database was built for 87 steroids (142 ions). The cross-laboratory database consists of average TWCCSN2 values obtained by the four TWIMS instruments in triplicate measurements. In general, lower deviations were observed between TWCCSN2 measurements and reference values when the cross-laboratory database was applied as a reference instead of the single-laboratory database. Relative standard deviations below 1.5% were observed for interlaboratory measurements (<1.0% for 85.2% of ions) and bias between average values and TWCCSN2 measurements was within the range of ±1.5% for 96.8% of all cases. In the context of this interlaboratory study, this threshold was also suitable for TWCCSN2 measurements of steroid metabolites in calf urine. Greater deviations were observed for steroid sulfates in complex urine samples of adult bovines, showing a slight matrix effect. The implementation of a scoring system for the application of the CCS descriptor in peak annotation is also discussed.
Collapse
Affiliation(s)
| | - Valentina D'Atri
- Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, CMU-Rue Michel Servet 1, 1211 Geneva 4, Switzerland
| | - Gitte Barknowitz
- Waters Corporation, Stamford Avenue, Altrincham Road, Wilmslow SK9 4AX, U.K
| | - Mathieu Fanuel
- INRAE, UR1268 Biopolymers Interactions Assemblies (BIA), Rue de la Géraudière B.P. 71627, F-44316 Nantes, France
| | - Julian Pezzatti
- Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, CMU-Rue Michel Servet 1, 1211 Geneva 4, Switzerland
| | - Nicola Dreolin
- Waters Corporation, Stamford Avenue, Altrincham Road, Wilmslow SK9 4AX, U.K
| | - David Ropartz
- INRAE, UR1268 Biopolymers Interactions Assemblies (BIA), Rue de la Géraudière B.P. 71627, F-44316 Nantes, France
| | | | | | - Serge Rudaz
- Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, CMU-Rue Michel Servet 1, 1211 Geneva 4, Switzerland
| | - Sara Stead
- Waters Corporation, Stamford Avenue, Altrincham Road, Wilmslow SK9 4AX, U.K
| | - Hélène Rogniaux
- INRAE, UR1268 Biopolymers Interactions Assemblies (BIA), Rue de la Géraudière B.P. 71627, F-44316 Nantes, France
| | - Davy Guillarme
- Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, CMU-Rue Michel Servet 1, 1211 Geneva 4, Switzerland
| | | | | |
Collapse
|
45
|
Dodds JN, Hopkins ZR, Knappe DRU, Baker ES. Rapid Characterization of Per- and Polyfluoroalkyl Substances (PFAS) by Ion Mobility Spectrometry-Mass Spectrometry (IMS-MS). Anal Chem 2020; 92:4427-4435. [PMID: 32011866 DOI: 10.1021/acs.analchem.9b05364] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Per- and polyfluoroalkyl substances (PFAS) are an ensemble of persistent organic pollutants of global interest because of their associations with adverse health outcomes. Currently, environmental PFAS pollution is prolific as a result of the widespread manufacturing of these compounds and their chemical persistence. In this work, we demonstrate the advantages of adding ion mobility spectrometry (IMS) separation to existing LC-MS workflows for PFAS analysis. Using a commercially available drift tube IMS-MS, we characterized PFAS species and isomeric content in both analytical standards and environmental water samples. Molecular trendlines based on intrinsic mass and structural relationships were also explored for individual PFAS subclasses (e.g. PFSA, PFCA, etc.). Results from rapid IMS-MS analyses provided a link between mass and collision cross sections (CCS) for specific PFAS families and are linked to compositional differences in molecular structure. In addition, CCS values provide additional confidence of annotating prioritized features in untargeted screening studies for potential environmental pollutants. Results from this study show that the IMS separation provides novel information to support traditional LC-MS PFAS analyses and will greatly benefit the evaluation of unknown pollutants in future environmental studies.
Collapse
Affiliation(s)
- James N Dodds
- Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27695, United States
| | - Zachary R Hopkins
- Department of Civil, Construction, and Environmental Engineering, North Carolina State University, Raleigh, North Carolina 27696, United States
| | - Detlef R U Knappe
- Department of Civil, Construction, and Environmental Engineering, North Carolina State University, Raleigh, North Carolina 27696, United States
| | - Erin S Baker
- Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27695, United States
| |
Collapse
|
46
|
Milyushkin AL, Matyushin DD, Buryak AK. A peculiar chromatographic selectivity of porous graphitic carbon during the separation of dileucine isomers. J Chromatogr A 2020; 1613:460724. [PMID: 31787264 DOI: 10.1016/j.chroma.2019.460724] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Revised: 10/31/2019] [Accepted: 11/17/2019] [Indexed: 11/15/2022]
Abstract
Porous graphitic carbon is a versatile stationary phase for high-performance liquid chromatography which performs especially well for isomeric separations. Shape-sensitivity of the stationary phase is caused by a steric effect when a molecule interacts with a flat carbon surface. It follows that branched, non-flat molecules are eluted much earlier than flat or linear molecules. In this short communication we show that if a molecule has a highly ionizable group, the "shape" of a molecule part which is farther from the ionizable group affects retention much more than the "shape" of a molecule part which is closer to the ionizable group. Dipeptides which consist of tert-leucine and norleucine were used as an example. Basic and acidic eluents were used. Retention strongly depends on whether a norleucine or tert-leucine residual is located near the non-ionized side in an eluent for both basic and acidic eluents. A residual located on the opposite side is less important. To investigate the possible causes of this peculiar retention behavior we compared the retention behavior of these dipeptides for porous graphitic carbon with the behavior for other types of stationary phases and with the calculated physicochemical properties. Strong and complex dependence of elution order on a mobile phase composition is demonstrated. The separation of other dileucine isomers is also considered. The applicability of porous graphitic carbon for the separation of complex mixtures of isomeric peptides is discussed.
Collapse
Affiliation(s)
- Aleksey L Milyushkin
- A.N. Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, 31 Leninsky Prospect, GSP-1, Moscow 119071, Russia.
| | - Dmitriy D Matyushin
- A.N. Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, 31 Leninsky Prospect, GSP-1, Moscow 119071, Russia
| | - Aleksey K Buryak
- A.N. Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, 31 Leninsky Prospect, GSP-1, Moscow 119071, Russia
| |
Collapse
|
47
|
Morris CB, Poland JC, May JC, McLean JA. Fundamentals of Ion Mobility-Mass Spectrometry for the Analysis of Biomolecules. Methods Mol Biol 2020; 2084:1-31. [PMID: 31729651 DOI: 10.1007/978-1-0716-0030-6_1] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Ion mobility-mass spectrometry (IM-MS) combines complementary size- and mass-selective separations into a single analytical platform. This chapter provides context for both the instrumental arrangements and key application areas that are commonly encountered in bioanalytical settings. New advances in these high-throughput strategies are described with description of complementary informatics tools to effectively utilize these data-intensive measurements. Rapid separations such as these are especially important in systems, synthetic, and chemical biology in which many small molecules are transient and correspond to various biological classes for integrated omics measurements. This chapter highlights the fundamentals of IM-MS and its applications toward biomolecular separations and discusses methods currently being used in the fields of proteomics, lipidomics, and metabolomics.
Collapse
Affiliation(s)
- Caleb B Morris
- Department of Chemistry, Center for Innovative Technology, Institute of Chemical Biology, Vanderbilt University, Nashville, TN, USA.,Vanderbilt-Ingram Cancer Center, Institute for Integrative Biosystems Research and Education, Vanderbilt University, Nashville, TN, USA
| | - James C Poland
- Department of Chemistry, Center for Innovative Technology, Institute of Chemical Biology, Vanderbilt University, Nashville, TN, USA.,Vanderbilt-Ingram Cancer Center, Institute for Integrative Biosystems Research and Education, Vanderbilt University, Nashville, TN, USA
| | - Jody C May
- Department of Chemistry, Center for Innovative Technology, Institute of Chemical Biology, Vanderbilt University, Nashville, TN, USA.,Vanderbilt-Ingram Cancer Center, Institute for Integrative Biosystems Research and Education, Vanderbilt University, Nashville, TN, USA
| | - John A McLean
- Department of Chemistry, Center for Innovative Technology, Institute of Chemical Biology, Vanderbilt University, Nashville, TN, USA. .,Vanderbilt-Ingram Cancer Center, Institute for Integrative Biosystems Research and Education, Vanderbilt University, Nashville, TN, USA.
| |
Collapse
|
48
|
Abstract
This chapter describes the developments in drift-tube ion mobility-mass spectrometry (DTIM-MS) that have driven application development in 'omics analyses. Harnessing the additional, orthogonal separation that DTIM provides increased confidence in compound identifications as the mass spectral complexity can be reduced and mobility-derived parameters (most prominently the collision cross section, CCS) used to support identity confirmation goals for a variety of 'omics application areas. Presented within this contribution is a methodology for improving the transmission and maintaining accurate determination of drift time-derived CCS (DTCCS) for low molecular weight compounds for a typical nontargeted 'omics (metabolomics) workflow using liquid chromatography in combination with DTIM-MS.
Collapse
Affiliation(s)
- Tim J Causon
- Institute of Analytical Chemistry, University of Natural Resources and Life Sciences (BOKU), Vienna, Austria.
| | | | - Stephan Hann
- Institute of Analytical Chemistry, University of Natural Resources and Life Sciences (BOKU), Vienna, Austria
| |
Collapse
|
49
|
Dodds JN, Baker ES. Ion Mobility Spectrometry: Fundamental Concepts, Instrumentation, Applications, and the Road Ahead. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2019; 30:2185-2195. [PMID: 31493234 PMCID: PMC6832852 DOI: 10.1007/s13361-019-02288-2] [Citation(s) in RCA: 261] [Impact Index Per Article: 52.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Revised: 07/08/2019] [Accepted: 07/15/2019] [Indexed: 05/07/2023]
Abstract
Ion mobility spectrometry (IMS) is a rapid separation technique that has experienced exponential growth as a field of study. Interfacing IMS with mass spectrometry (IMS-MS) provides additional analytical power as complementary separations from each technique enable multidimensional characterization of detected analytes. IMS separations occur on a millisecond timescale, and therefore can be readily nested into traditional GC and LC/MS workflows. However, the continual development of novel IMS methods has generated some level of confusion regarding the advantages and disadvantages of each. In this critical insight, we aim to clarify some common misconceptions for new users in the community pertaining to the fundamental concepts of the various IMS instrumental platforms (i.e., DTIMS, TWIMS, TIMS, FAIMS, and DMA), while addressing the strengths and shortcomings associated with each. Common IMS-MS applications are also discussed in this review, such as separating isomeric species, performing signal filtering for MS, and incorporating collision cross-section (CCS) values into both targeted and untargeted omics-based workflows as additional ion descriptors for chemical annotation. Although many challenges must be addressed by the IMS community before mobility information is collected in a routine fashion, the future is bright with possibilities.
Collapse
Affiliation(s)
- James N Dodds
- Department of Chemistry, North Carolina State University, Raleigh, NC, 27695, USA
| | - Erin S Baker
- Department of Chemistry, North Carolina State University, Raleigh, NC, 27695, USA.
| |
Collapse
|
50
|
Poland JC, Schrimpe-Rutledge AC, Sherrod SD, Flynn CR, McLean JA. Utilizing Untargeted Ion Mobility-Mass Spectrometry To Profile Changes in the Gut Metabolome Following Biliary Diversion Surgery. Anal Chem 2019; 91:14417-14423. [PMID: 31573190 DOI: 10.1021/acs.analchem.9b02924] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Obesity and obesity-related disorders are a global epidemic affecting over 10% of the world's population. Treatment of these diseases has become increasingly challenging and expensive. The most effective and durable treatment for Class III obesity (body mass index ≥35 kg/m2) is bariatric surgery, namely, Roux-en-Y gastric bypass (RYGB) and vertical sleeve gastrectomy. These procedures are associated with increased circulating bile acids, molecules that not only facilitate intestinal fat absorption but are also potent hormones regulating numerous metabolic pathways. We recently reported on a novel surgical procedure in mice, termed distal gallbladder bile diversion to the ileum (GB-ILdist), that emulates the altered bile flow after RYGB without other manipulations of gastrointestinal anatomy. GB-ILdist improves oral glucose tolerance in mice made obese with high-fat diet. This is accompanied by fat malabsorption and weight loss, which complicates studying the role of elevated circulating bile acids in metabolic control. A less aggressive surgery in which the gallbladder bile is diverted to the proximal ileum, termed GB-ILprox, also improves glucose control but is not accompanied by fat malabsorption. To better understand the differential effects achieved by these bile diversion procedures, an untargeted ultraperformance liquid chromatography-ion mobility-mass spectrometry (UPLC-IM-MS) method was optimized for fecal samples derived from mice that have undergone bile diversion surgery. Utilizing the UPLC-IM-MS method, we were able to identify dysregulation of bile acids, short-chain fatty acids, and cholesterol derivatives that contribute to the differential metabolism resulting from these surgeries.
Collapse
Affiliation(s)
- James C Poland
- Center for Innovative Technology, Department of Chemistry, Institute of Chemical Biology, Institute for Integrative Biosystems Research and Education, Vanderbilt-Ingram Cancer Center , Vanderbilt University , Nashville , Tennessee 37235 , United States
| | - Alexandra C Schrimpe-Rutledge
- Center for Innovative Technology, Department of Chemistry, Institute of Chemical Biology, Institute for Integrative Biosystems Research and Education, Vanderbilt-Ingram Cancer Center , Vanderbilt University , Nashville , Tennessee 37235 , United States
| | - Stacy D Sherrod
- Center for Innovative Technology, Department of Chemistry, Institute of Chemical Biology, Institute for Integrative Biosystems Research and Education, Vanderbilt-Ingram Cancer Center , Vanderbilt University , Nashville , Tennessee 37235 , United States
| | - Charles Robb Flynn
- Department of Surgery , Vanderbilt University Medical Center , Nashville , Tennessee 37235 , United States
| | - John A McLean
- Center for Innovative Technology, Department of Chemistry, Institute of Chemical Biology, Institute for Integrative Biosystems Research and Education, Vanderbilt-Ingram Cancer Center , Vanderbilt University , Nashville , Tennessee 37235 , United States
| |
Collapse
|