1
|
Ma RF, Zhang Q, Wang Y, Xu ZR. Visualizing mitochondrial ATP fluctuations in single cells during photodynamic therapy by In-Situ SERS three-dimensional imaging. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 323:124910. [PMID: 39128309 DOI: 10.1016/j.saa.2024.124910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 07/28/2024] [Accepted: 07/29/2024] [Indexed: 08/13/2024]
Abstract
An ultrasensitive strategy for in-situ visual monitoring of ATP in a single living tumor cell during mitochondria-targeted photodynamic therapy (PDT) process with high spatiotemporal resolution was proposed using surface-enhanced Raman scattering (SERS) 3D imaging technique. The nanostructures consisting of Au-Ag2S Janus nanoparticles functionalized with both Au nanoparticles linked by a DNA chain and a mitochondrial-targeting peptide (JMDA NPs) were deliberately employed to target mitochondria. The JMDA NPs exhibit excellent SERS activity and remarkable antitumor activity. The quantization of ATP relies on the intensity of the SERS probes bonded to the DNA, which shows a strong correlation with the generated hot spot between the Janus and the Au. Consequently, spatiotemporally controlled monitoring of ATP in the mitochondria of single living cells during the PDT process was achieved. Additionally, the JMDA NPs demonstrated remarkable capability for mitochondria-targeted PDT, providing significant antitumor effects and superior therapeutic safety both in vitro and in vivo. Our work presents an effective JMDA NPs-based SERS imaging strategy for in-situ and real-time 3D visualization of intracellular ATP in living tumor cells during the mitochondria-targeted PDT process, which enables significant information on the time point of PDT treatment and is beneficial to precious PDT applications in tumor therapy.
Collapse
Affiliation(s)
- Ruo-Fei Ma
- Northeastern University, Shenyang 110819, Liaoning, China
| | - Qi Zhang
- Northeastern University, Shenyang 110819, Liaoning, China
| | - Yue Wang
- Northeastern University, Shenyang 110819, Liaoning, China.
| | - Zhang-Run Xu
- Northeastern University, Shenyang 110819, Liaoning, China.
| |
Collapse
|
2
|
Dai Q, Zhu Y, Luo X, Li Y. Single gold nanowire-nanoparticles conjugated system: Fabrication and sensing application. Talanta 2024; 283:127134. [PMID: 39488156 DOI: 10.1016/j.talanta.2024.127134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Revised: 10/05/2024] [Accepted: 10/30/2024] [Indexed: 11/04/2024]
Abstract
Single-entity-based sensing platform has many advantages for real-time assays, such as single-molecule analysis, or targets detection in confined environment. In this contribution, a new single Au nanowire (NW) - Au@Pt/Au nanoparticles (Au@Pt/Au NPs) conjugated system was established and used for the detection of thrombin by using surface-enhanced Raman spectroscopy (SERS) technique. This method was mainly based on electrostatic attraction between the capture (thrombin aptamer) and probe molecules (crystal violet, CV) on the surface of Au NW - Au@Pt/Au NPs conjugation, reducing the adsorption of CV molecules on conjugation surface, and resulting the decrease of SERS signals. The addition of thrombin could bind with thrombin aptamer due to specific interaction, leading to the decrease of electrostatic effect from thrombin aptamer for CV diffusion to conjugation surface, and the SERS signals could be recovered. This thrombin sensing method showed high sensitivity and selectivity, and the linear range for thrombin assay was 0.01 nM-100 nM with a detection limit of 1.35 pM. This single Au NW - Au@Pt/Au NPs conjugation has more SERS hotspots and small overall size, which offers unparalleled advantages over other sensing system and can be applicable for real time analysis, especially at single molecule/cell level.
Collapse
Affiliation(s)
- Qingshan Dai
- Anhui Province Key Laboratory of Biomedical Materials and Chemical Measurement, Key Laboratory of Functional Molecular Solids, Ministry of Education, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, 241000, PR China
| | - Yanyan Zhu
- Anhui Province Key Laboratory of Biomedical Materials and Chemical Measurement, Key Laboratory of Functional Molecular Solids, Ministry of Education, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, 241000, PR China
| | - Xianzhun Luo
- Anhui Province Key Laboratory of Biomedical Materials and Chemical Measurement, Key Laboratory of Functional Molecular Solids, Ministry of Education, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, 241000, PR China
| | - Yongxin Li
- Anhui Province Key Laboratory of Biomedical Materials and Chemical Measurement, Key Laboratory of Functional Molecular Solids, Ministry of Education, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, 241000, PR China.
| |
Collapse
|
3
|
Youden B, Yang D, Carrier A, Oakes K, Servos M, Jiang R, Zhang X. Speciation Analysis of Metals and Metalloids by Surface Enhanced Raman Spectroscopy. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024. [PMID: 39250346 DOI: 10.1021/acs.est.4c06906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/11/2024]
Abstract
The presence of metalloids and heavy metals in the environment is of critical concern due to their toxicological impacts. However, not all metallic species have the same risk level. Specifically, the physical, chemical, and isotopic speciation of the metal(loids) dictate their metabolism, toxicity, and environmental fate. As such, speciation analysis is critical for environmental monitoring and risk assessment. In the past two decades, surface-enhanced Raman spectroscopy (SERS) has seen significant developments regarding trace metal(loid) sensing due to its ultrahigh sensitivity, readiness for in situ real-time applications, and cost-effectiveness. However, the speciation of metal(loid)s has not been accounted for in the design and application of SERS sensors. In this Perspective, we examine the potential of SERS for metal(loid) speciation analysis and highlight the advantages, progress, opportunities, and challenges of this application.
Collapse
Affiliation(s)
- Brian Youden
- Department of Biology, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| | - Dongchang Yang
- Department of Chemistry, Cape Breton University, Sydney, Nova Scotia B1P 6L2, Canada
| | - Andrew Carrier
- Department of Chemistry, Cape Breton University, Sydney, Nova Scotia B1P 6L2, Canada
| | - Ken Oakes
- Department of Biology, Cape Breton University, Sydney, Nova Scotia B1P 6L2, Canada
| | - Mark Servos
- Department of Biology, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| | - Runqing Jiang
- Department of Biology, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
- Department of Medical Physics, Grand River Regional Cancer Centre, Kitchener, Ontario N2G 1G3, Canada
| | - Xu Zhang
- Department of Biology, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
- Department of Chemistry, Cape Breton University, Sydney, Nova Scotia B1P 6L2, Canada
| |
Collapse
|
4
|
Li Y, Jiang G, Wan Y, Dauda SAA, Pi F. Tailoring strategies of SERS tags-based sensors for cellular molecules detection and imaging. Talanta 2024; 276:126283. [PMID: 38776777 DOI: 10.1016/j.talanta.2024.126283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Revised: 05/02/2024] [Accepted: 05/17/2024] [Indexed: 05/25/2024]
Abstract
As an emerging nanoprobe, surface enhanced Raman scattering (SERS) tags hold significant promise in sensing and bioimaging applications due to their attractive merits of anti-photobleaching ability, high sensitivity and specificity, multiplex, and low background capabilities. Recently, several reviews have proposed the application of SERS tags in different fields, however, the specific sensing strategies of SERS tags-based sensors for cellular molecules have not yet been systematically summarized. To provide beneficial and comprehensive insights into the advanced SERS tags technique at the cellular level, this review systematically elaborated on the latest advances in SERS tags-based sensors for cellular molecules detection and imaging. The general SERS tags-based sensing strategies for biomolecules and ions were first introduced according to molecular classes. Then, aiming at such molecules located in the extracellular, cellular membrane and intracellular regions, the tailored strategies by designing and manipulating SERS tags were summarized and explored through several key examples. Finally, the challenges and perspectives of developing high performance of advanced SERS tags were briefly discussed to provide effective guidance for further development and extended applications.
Collapse
Affiliation(s)
- Yu Li
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, China; Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, Jiangsu, 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Guoyong Jiang
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, China; Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, Jiangsu, 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Yuqi Wan
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, China; Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, Jiangsu, 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Sa-Adu Abiola Dauda
- School of Allied Health Sciences, University for Development Studies, P.O. Box 1883, Tamale, Ghana
| | - Fuwei Pi
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, China; Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, Jiangsu, 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, Jiangsu, 214122, China.
| |
Collapse
|
5
|
Chisanga M, Masson JF. Machine Learning-Driven SERS Nanoendoscopy and Optophysiology. ANNUAL REVIEW OF ANALYTICAL CHEMISTRY (PALO ALTO, CALIF.) 2024; 17:313-338. [PMID: 38701442 DOI: 10.1146/annurev-anchem-061622-012448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2024]
Abstract
A frontier of analytical sciences is centered on the continuous measurement of molecules in or near cells, tissues, or organs, within the biological context in situ, where the molecular-level information is indicative of health status, therapeutic efficacy, and fundamental biochemical function of the host. Following the completion of the Human Genome Project, current research aims to link genes to functions of an organism and investigate how the environment modulates functional properties of organisms. New analytical methods have been developed to detect chemical changes with high spatial and temporal resolution, including minimally invasive surface-enhanced Raman scattering (SERS) nanofibers using the principles of endoscopy (SERS nanoendoscopy) or optical physiology (SERS optophysiology). Given the large spectral data sets generated from these experiments, SERS nanoendoscopy and optophysiology benefit from advances in data science and machine learning to extract chemical information from complex vibrational spectra measured by SERS. This review highlights new opportunities for intracellular, extracellular, and in vivo chemical measurements arising from the combination of SERS nanosensing and machine learning.
Collapse
Affiliation(s)
- Malama Chisanga
- Département de Chimie, Institut Courtois, Quebec Center for Advanced Materials, Regroupement Québécois sur les Matériaux de Pointe, and Centre Interdisciplinaire de Recherche sur le Cerveau et l'Apprentissage, Université de Montréal, Montréal, Québec, Canada;
| | - Jean-Francois Masson
- Département de Chimie, Institut Courtois, Quebec Center for Advanced Materials, Regroupement Québécois sur les Matériaux de Pointe, and Centre Interdisciplinaire de Recherche sur le Cerveau et l'Apprentissage, Université de Montréal, Montréal, Québec, Canada;
| |
Collapse
|
6
|
Wang H, Tang H, Qiu X, Li Y. Solid-State Glass Nanopipettes: Functionalization and Applications. Chemistry 2024; 30:e202400281. [PMID: 38507278 DOI: 10.1002/chem.202400281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 02/28/2024] [Accepted: 03/19/2024] [Indexed: 03/22/2024]
Abstract
Solid-state glass nanopipettes provide a promising confined space that offers several advantages such as controllable size, simple preparation, low cost, good mechanical stability, and good thermal stability. These advantages make them an ideal choice for various applications such as biosensors, DNA sequencing, and drug delivery. In this review, we first delve into the functionalized nanopipettes for sensing various analytes and the methods used to develop detection means with them. Next, we provide an in-depth overview of the advanced functionalization methodologies of nanopipettes based on diversified chemical kinetics. After that, we present the latest state-of-the-art achievements and potential applications in detecting a wide range of targets, including ions, molecules, biological macromolecules, and single cells. We examine the various challenges that arise when working with these targets, as well as the innovative solutions developed to overcome them. The final section offers an in-depth overview of the current development status, newest trends, and application prospects of sensors. Overall, this review provides a comprehensive and detailed analysis of the current state-of-the-art functionalized nanopipette perception sensing and development of detection means and offers valuable insights into the prospects for this exciting field.
Collapse
Affiliation(s)
- Hao Wang
- Key Laboratory of Green and Precise Synthetic Chemistry and Applications, Ministry of Education, School of Chemistry and Materials Science, Huaibei Normal University, Huaibei, 235000, Anhui, P.R. China
| | - Haoran Tang
- Key Laboratory of Green and Precise Synthetic Chemistry and Applications, Ministry of Education, School of Chemistry and Materials Science, Huaibei Normal University, Huaibei, 235000, Anhui, P.R. China
| | - Xia Qiu
- Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Key Laboratory of Chemo/Biosensing College of Chemistry and Materials Science, Anhui Normal University, Wuhu, 241000, P.R. China
| | - Yongxin Li
- Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Key Laboratory of Chemo/Biosensing College of Chemistry and Materials Science, Anhui Normal University, Wuhu, 241000, P.R. China
| |
Collapse
|
7
|
Liang Y, Li H, Xu N, Zhu J, Wu X, Wang Y. Preparation of arsenic(III) monoclonal antibodies and preliminary evaluation of a novel silver-coated gold nanorod SERS immunoassay strip construction. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2023; 15:5823-5836. [PMID: 37870766 DOI: 10.1039/d3ay01205k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/24/2023]
Abstract
Heavy metal pollution has become a growing concern in industrial, agricultural, and manufacturing processes, posing a significant threat to human health. Among these heavy metals, arsenic (As) is highly toxic and shares similar chemical properties and environmental behavior with other heavy metals. As(III) is particularly toxic compared to other forms of arsenic. Therefore, it is essential to develop a real-time, rapid, and sensitive method for the determination of As(III). In this study, we employed a unique bifunctional chelator, 1-(4-isothiocyanobenzyl)-ethylenediamine N,N,N',N'-tetraacetic acid (ITCBE), to prepare a complete antigen. Through a series of tests including balb/c mouse immunization, cell fusion (mouse L2041 spleen cells with mouse myeloma cells SP2/0), and subcloning, we generated four monoclonal cell lines (1C1, 2C2, 3A9, and 4A11). These cell lines demonstrated high purity, high affinity, and IC50 values of less than 50 μg mL-1. Monoclonal antibody 4A11, which exhibited a strong Raman signal, was selected as the probe, and Au@Ag 200 was utilized as the surface-enhanced Raman scattering (SERS) substrate for the preliminary establishment of SERS immunochromatographic test strips. The sensitivity of the SERS immunochromatographic test strips, measured through Raman signal detection, showed a significant improvement compared to the SERS immunochromatographic test strips analyzed by colorimetry (LOD = 49.43 μg mL-1 and LDR = 5.32-81.31 μg mL-1). The SERS immunochromatographic test strips achieved a LOD of 7.62 μg mL-1 and an LDR of 12.66-71.84 μg mL-1. This study presents innovative methodologies for the rapid detection of As(III) using SERS immunochromatographic test strips.
Collapse
Affiliation(s)
- Yi Liang
- Institute of Engineering Food, College of Life Sciences, Shanghai Normal University, Shanghai 200234, China.
| | - Hao Li
- Institute of Engineering Food, College of Life Sciences, Shanghai Normal University, Shanghai 200234, China.
| | - Naifeng Xu
- Institute of Engineering Food, College of Life Sciences, Shanghai Normal University, Shanghai 200234, China.
| | - Jiangxiong Zhu
- Institute of Engineering Food, College of Life Sciences, Shanghai Normal University, Shanghai 200234, China.
| | - Xiaobin Wu
- Institute of Engineering Food, College of Life Sciences, Shanghai Normal University, Shanghai 200234, China.
| | - Yuanfeng Wang
- Institute of Engineering Food, College of Life Sciences, Shanghai Normal University, Shanghai 200234, China.
| |
Collapse
|
8
|
Wang XY, Lv J, Wu X, Hong Q, Qian RC. The Modification and Applications of Nanopipettes in Electrochemical Analysis. Chempluschem 2023; 88:e202300100. [PMID: 37442793 DOI: 10.1002/cplu.202300100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 05/31/2023] [Indexed: 07/15/2023]
Abstract
Nanopipette, which is fabricated by glasses and possesses a nanoscale pore in the tip, has been proven to be immensely useful in electrochemical analysis. Numerous nanopipette-based sensors have emerged with improved sensitivity, selectivity, ease of use, and miniaturization. In this minireview, we provide an overview of the recent developments of nanopipette-based electrochemical sensors based on different types of nanopipettes, including single-nanopipettes, self-referenced nanopipettes, dual-nanopipettes, and double-barrel nanopipettes. Several important modification materials for nanopipette functionalization are highlighted, such as conductive materials, macromolecular materials, and functional molecules. These materials can improve the sensing performance and targeting specificities of nanopipettes. We also discuss examples of related applications and the future development of nanopipette-based strategies.
Collapse
Affiliation(s)
- Xiao-Yuan Wang
- Key Laboratory for Advanced Materials &, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 200237, Shanghai, P. R. China
| | - Jian Lv
- Key Laboratory for Advanced Materials &, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 200237, Shanghai, P. R. China
| | - Xue Wu
- Key Laboratory for Advanced Materials &, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 200237, Shanghai, P. R. China
| | - Qin Hong
- Key Laboratory for Advanced Materials &, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 200237, Shanghai, P. R. China
| | - Ruo-Can Qian
- Key Laboratory for Advanced Materials &, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 200237, Shanghai, P. R. China
| |
Collapse
|
9
|
Han L, Zhou Y, Tan Z, Zhu H, Hu Y, Ma X, Zheng F, Feng F, Wang C, Liu W. Confined Target-Triggered Hot Spots for In Situ SERS Analysis of Intranuclear Genotoxic Markers. Anal Chem 2023; 95:6312-6322. [PMID: 37000898 DOI: 10.1021/acs.analchem.2c05147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2023]
Abstract
The γH2AX is a type of confined target in nuclei which is highly expressed around the damaged DNA during genotoxicity and has therefore been identified as a marker of genotoxicity. Convenient and intuitive in situ real-time detection of γH2AX is crucial for an accurate assessment of genotoxicity. Selective and nondestructive surface-enhanced Raman spectroscopy (SERS) is suitable to achieve this goal. However, the detection of substances in the nucleus by SERS is still limited due to the contradiction of probes between the nuclei entry efficiency and signal enhancement. This study utilized the characteristics of γH2AX as a confined target and constructed a γH2AX immunosensor based on gold nanoprobes with a small size (15 nm), which was modified with the TAT nuclear targeting peptide to ensure high nuclei entry efficiency. Once DNA damage was induced, the local overexpression of γH2AX further recruited the probe through immune recognition, so that hot spots could be assembled in situ to generate strong Raman signals, which were applied to evaluate the genotoxicity of drug impurities. This study proposed a novel SERS detection strategy, characterized by confined target-induced size conversion and hot spot formation, for in situ real-time analysis of intranuclear targets at the single-living-cell level, which intelligently simplified the structure of SERS probes and the operation process.
Collapse
|
10
|
Tan Z, Wang J, Xu L, Zheng Q, Han L, Wang C, Liao X. Simultaneous Sensing of Multiplex Volatile Organic Compounds by Adsorption and Plasmon Dual-Induced Raman Enhancement Technique. ACS Sens 2023; 8:867-874. [PMID: 36726333 DOI: 10.1021/acssensors.2c02572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Developing highly efficient gas sensors with excellent performance for rapid and sensitive detection of volatile organic compounds (VOCs) is of critical importance for the protection of human health, ecological environment, and other factors. Here, a robust gas sensor based on Raman technology was constructed by an in situ grown 2D covalent organic framework (COF) on Au nanoparticles' surface in the microchannel. Dual enhancement effects are included for the as-prepared microfluidic sensor. First, acting as a gas confinement chamber, the 2D COF could effectively capture gas molecules with high adsorption capacity and fast adsorption kinetics, resulting in VOCs' preconcentration at a high level in the COF layer. At the same time, after being stacked in the microchannel, abundant hot spots were generated among the nanogaps of Au@COF NPs. The local surface plasmon resonance effect could effectively enhance the Raman intensity. Both factors contribute to the improved detection sensitivity of VOCs. As a demonstration, several representative VOCs with different functional groups were tested. The resultant Raman spectra were subjected to the statistical principal component analysis. Varied VOCs can be successfully detected with a detection limit as low as ppb level and distinguished with 95% confidence interval. The present microfluidic platform provides a simple, sensitive, and fast method for VOCs' sensing and distinguishing, which is expected to hold potential applications in the fields of health, agricultural, and environmental research.
Collapse
Affiliation(s)
- Zheng Tan
- College of Chemistry and Materials Science and Analytical & Testing Center, Nanjing Normal University, Nanjing 210023, China.,Department of Pharmaceutical Analysis, China Pharmaceutical University, Nanjing 211198, China
| | - Jin Wang
- College of Chemistry and Materials Science and Analytical & Testing Center, Nanjing Normal University, Nanjing 210023, China
| | - Li Xu
- College of Chemistry and Materials Science and Analytical & Testing Center, Nanjing Normal University, Nanjing 210023, China
| | - Qijun Zheng
- College of Chemistry and Materials Science and Analytical & Testing Center, Nanjing Normal University, Nanjing 210023, China
| | - Lingfei Han
- Department of Pharmaceutical Analysis, China Pharmaceutical University, Nanjing 211198, China
| | - Chen Wang
- College of Chemistry and Materials Science and Analytical & Testing Center, Nanjing Normal University, Nanjing 210023, China.,State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Xuewei Liao
- College of Chemistry and Materials Science and Analytical & Testing Center, Nanjing Normal University, Nanjing 210023, China
| |
Collapse
|
11
|
Woessner ZJ, Lewis GR, Bueno SLA, Ringe E, Skrabalak SE. Asymmetric seed passivation for regioselective overgrowth and formation of plasmonic nanobowls. NANOSCALE 2022; 14:16918-16928. [PMID: 36345669 DOI: 10.1039/d2nr05182f] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Plasmonic nanoparticles (NPs) have garnered excitement over the past several decades stemming from their unique optoelectronic properties, leading to their use in various sensing applications and theranostics. Symmetry dictates the properties of many nanomaterials, and nanostructures with low, but still defined symmetries, often display markedly different properties compared to their higher symmetry counterparts. While numerous methods are available to manipulate symmetry, surface protecting groups such as polymers are finding use due to their ability to achieve regioselective modification of NP seeds, which can be removed after overgrowth as shown here. Specifically, poly(styrene-b-polyacrylic acid) (PSPAA) is used to asymmetrically passivate cubic Au seeds through competition with hexadecyltrimethylammonium bromide (CTAB) ligands. The asymmetric passivation via collapsed PSPAA causes only select vertices and faces of the Au cubes to be available for deposition of new material (i.e., Au, Au-Ag alloy, and Au-Pd alloy) during seeded overgrowth. At low metal precursor concentrations, deposition follows observations from unpassivated seeds but with new material growing from only the exposed seed portions. At high metal precursor concentrations, nanobowl-like structures form from interaction between the depositing phase and the passivating PSPAA. Through experiment and simulation, the optoelectronic properties of these nanobowls were probed, finding that the interiors and exteriors of the nanobowls can be functionalized selectively as revealed by surface enhanced Raman spectroscopy (SERS).
Collapse
Affiliation(s)
- Zachary J Woessner
- Department of Chemistry, Indiana University - Bloomington, 800 E. Kirkwood Ave., Bloomington, Indiana 47405, USA.
| | - George R Lewis
- Department of Materials Science & Metallurgy, University of Cambridge, 27 Charles Babbage Road, Cambridge, UK, CB3 0FS.
| | - Sandra L A Bueno
- Department of Chemistry, Indiana University - Bloomington, 800 E. Kirkwood Ave., Bloomington, Indiana 47405, USA.
| | - Emilie Ringe
- Department of Materials Science & Metallurgy, University of Cambridge, 27 Charles Babbage Road, Cambridge, UK, CB3 0FS.
- Department of Earth Sciences, University of Cambridge, Downing Street, Cambridge, UK, CB2 3EQ
| | - Sara E Skrabalak
- Department of Chemistry, Indiana University - Bloomington, 800 E. Kirkwood Ave., Bloomington, Indiana 47405, USA.
| |
Collapse
|
12
|
Pan XT, Yang XY, Mao TQ, Liu K, Chen ZZ, Ji LN, Jiang DC, Wang K, Gu ZZ, Xia XH. Super-Long SERS Active Single Silver Nanowires for Molecular Imaging in 2D and 3D Cell Culture Models. BIOSENSORS 2022; 12:bios12100875. [PMID: 36291012 PMCID: PMC9599576 DOI: 10.3390/bios12100875] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 10/06/2022] [Accepted: 10/14/2022] [Indexed: 05/21/2023]
Abstract
Establishing a systematic molecular information analysis strategy for cell culture models is of great significance for drug development and tissue engineering technologies. Here, we fabricated single silver nanowires with high surface-enhanced Raman scattering activity to extract SERS spectra in situ from two-dimensional (2D) and three-dimensional (3D) cell culture models. The silver nanowires were super long, flexible and thin enough to penetrate through multiple cells. A single silver nanowire was used in combination with a four-dimensional microcontroller as a cell endoscope for spectrally analyzing the components in cell culture models. Then, we adopted a machine learning algorithm to analyze the obtained spectra. Our results show that the abundance of proteins differs significantly between the 2D and 3D models, and that nucleic acid-rich and protein-rich regions can be distinguished with satisfactory accuracy.
Collapse
Affiliation(s)
- Xiao-Tong Pan
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Xuan-Ye Yang
- Institute of Theoretical and Computational Chemistry, Key Laboratory of Mesoscopic Chemistry of the Ministry of Education (MOE), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Tian-Qi Mao
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Kang Liu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Zao-Zao Chen
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| | - Li-Na Ji
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, China
- Correspondence: (L.-N.J.); (D.-C.J.); (K.W.)
| | - De-Chen Jiang
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
- Correspondence: (L.-N.J.); (D.-C.J.); (K.W.)
| | - Kang Wang
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
- Correspondence: (L.-N.J.); (D.-C.J.); (K.W.)
| | - Zhong-Ze Gu
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| | - Xing-Hua Xia
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| |
Collapse
|
13
|
Guselnikova O, Nugraha AS, Na J, Postnikov P, Kim HJ, Plotnikov E, Yamauchi Y. Surface Filtration in Mesoporous Au Films Decorated by Ag Nanoparticles for Solving SERS Sensing Small Molecules in Living Cells. ACS APPLIED MATERIALS & INTERFACES 2022; 14:41629-41639. [PMID: 36043945 DOI: 10.1021/acsami.2c12804] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
For surface-enhanced Raman spectroscopy (SERS) sensing of small molecules in the presence of living cells, biofouling and blocking of plasmonic centers are key challenges. Here, we have developed a mesoporous Au (AuM) film coated with a Ag nanoparticles (NPs) as a plasmonic sensor (AuM@Ag) to analyze aromatic thiols, which is an example of a small molecule, in the presence of a living cell strain (e.g., MDA-MB-231) as a model living system. The resulting AuM@Ag provides 0.1 nM sensitivity and high reproducibility for thiols sensing. Simultaneously, the AuM@Ag film filters large biomolecules, preventing Raman signals from overlapping produced by large biomolecules. After analysis, the AuM@Ag film undergoes recycling by the full dissolution of the Ag-thiol layer and removal of thiols from AuM. Furthermore, fresh AgNPs are formed for further SERS analysis, which circumvents the Ag oxidation issue. The ease of the AgNPs deposition allows up to 12 cycles of on-demand recycling and sensing even after utilization as a sensor in multicomponent media without enhancement and sensitivity loss. The reported mesoporous film with surface filtering ability and prominent recycling procedure promises to offer a new strategy for the detection of various small molecules in the presence of living cells.
Collapse
Affiliation(s)
- Olga Guselnikova
- Research School of Chemistry and Applied Biomedical Sciences, Tomsk Polytechnic University, Tomsk 6340034, Russian Federation
- JST-ERATO Yamauchi Materials Space-Tectonics Project and International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan
| | - Asep Sugih Nugraha
- Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, QLD 4072, Australia
| | - Jongbeom Na
- Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, QLD 4072, Australia
- Research and Development (R&D) Division, Green Energy Institute, Mokpo, Jeollanamdo 58656, Republic of Korea
- Materials Architecturing Research Center, Korea Institute of Science and Technology (KIST), 5 Hwarang-ro 14-gil, Seongbuk-gu, Seoul 02792, Republic of Korea
| | - Pavel Postnikov
- Research School of Chemistry and Applied Biomedical Sciences, Tomsk Polytechnic University, Tomsk 6340034, Russian Federation
| | - Hyun-Jong Kim
- Surface Technology Group, Korea Institute of Industrial Technology (KITECH), Incheon 21999, Republic of Korea
| | - Evgenii Plotnikov
- Research School of Chemistry and Applied Biomedical Sciences, Tomsk Polytechnic University, Tomsk 6340034, Russian Federation
| | - Yusuke Yamauchi
- Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, QLD 4072, Australia
- JST-ERATO Yamauchi Materials Space-Tectonics Project and International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan
| |
Collapse
|
14
|
Zhong Q, Huang X, Zhang R, Zhang K, Liu B. Optical Sensing Strategies for Probing Single-Cell Secretion. ACS Sens 2022; 7:1779-1790. [PMID: 35709496 DOI: 10.1021/acssensors.2c00474] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Measuring cell secretion events is crucial to understand the fundamental cell biology that underlies cell-cell communication, migration, proliferation, and differentiation. Although strategies targeting cell populations have provided significant information about live cell secretion, they yield ensemble profiles that obscure intrinsic cell-to-cell variations. Innovation in single-cell analysis has made breakthroughs allowing accurate sensing of a wide variety of secretions and their release dynamics with high spatiotemporal resolution. This perspective focuses on the power of single-cell protocols to revolutionize cell-secretion analysis by allowing real-time and real-space measurements on single live cell resolution. We begin by discussing recent progress on single-cell bioanalytical techniques, specifically optical sensing strategies such as fluorescence-, surface plasmon resonance-, and surface-enhanced Raman scattering-based strategies, capable of in situ real-time monitoring of single-cell released ions, metabolites, proteins, and vesicles. Single-cell sensing platforms which allow for high-throughput high-resolution analysis with enough accuracy are highlighted. Furthermore, we discuss remaining challenges that should be addressed to get a more comprehensive understanding of secretion biology. Finally, future opportunities and potential breakthroughs in secretome analysis that will arise as a result of further development of single-cell sensing approaches are discussed.
Collapse
Affiliation(s)
- Qingmei Zhong
- Department of Chemistry, Shanghai Stomatological Hospital, State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai 200433, China
| | - Xuedong Huang
- Department of Chemistry, Shanghai Stomatological Hospital, State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai 200433, China
| | - Rongrong Zhang
- Department of Chemistry, Shanghai Stomatological Hospital, State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai 200433, China
| | - Kun Zhang
- Shanghai Institute for Pediatric Research, Shanghai Key Laboratory of Pediatric Gastroenterology and Nutrition, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
| | - Baohong Liu
- Department of Chemistry, Shanghai Stomatological Hospital, State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai 200433, China
| |
Collapse
|
15
|
Zhou J, Guo J, Mebel AM, Ghimire G, Liang F, Chang S, He J. Probing the Intermediates of Catalyzed Dehydration Reactions of Primary Amide to Nitrile in Plasmonic Junctions. ACS Catal 2022. [DOI: 10.1021/acscatal.2c01793] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Jianghao Zhou
- The State Key Laboratory of Refractories and Metallurgy, School of Materials and Metallurgy, Improve-WUST Joint Laboratory of Advanced Technology for Point-of-Care Testing and Precision Medicine, Wuhan University of Science and Technology, Wuhan 430081, China
- Department of Physics, Florida International University, Miami, Florida 33199, United States
| | - Jing Guo
- Department of Physics, Florida International University, Miami, Florida 33199, United States
| | - Alexander Moiseevich Mebel
- Department of Chemistry and Biochemistry, Florida International University, Miami, Florida 33199, United States
| | - Govinda Ghimire
- Department of Physics, Florida International University, Miami, Florida 33199, United States
| | - Feng Liang
- The State Key Laboratory of Refractories and Metallurgy, School of Materials and Metallurgy, Improve-WUST Joint Laboratory of Advanced Technology for Point-of-Care Testing and Precision Medicine, Wuhan University of Science and Technology, Wuhan 430081, China
| | - Shuai Chang
- The State Key Laboratory of Refractories and Metallurgy, School of Materials and Metallurgy, Improve-WUST Joint Laboratory of Advanced Technology for Point-of-Care Testing and Precision Medicine, Wuhan University of Science and Technology, Wuhan 430081, China
| | - Jin He
- Department of Physics, Florida International University, Miami, Florida 33199, United States
- Biomolecular Science Institute, Florida International University, Miami, Florida 33199, United States
| |
Collapse
|
16
|
Adhikari A, Mukherjee S, Chakraborty AK, Biswas S, Basu A, Chakraborty M, Chattopadhyay S, Das D, Chattopadhyay D. Lac-extract doped Polyaniline Nano-Ribbons as Fluorescence Sensor and Molecular Switch for Detection of Aqueous AsO43- and Fe3+ contaminants. J Photochem Photobiol A Chem 2022. [DOI: 10.1016/j.jphotochem.2022.114000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
17
|
|
18
|
Zhu D, Li A, Di Y, Wang Z, Shi J, Ni X, Wang Y. Interference-free SERS nanoprobes for labeling and imaging of MT1-MMP in breast cancer cells. NANOTECHNOLOGY 2021; 33:115702. [PMID: 34874311 DOI: 10.1088/1361-6528/ac4065] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 12/06/2021] [Indexed: 06/13/2023]
Abstract
The expression of membrane type-1 matrix metalloproteinase (MT1-MMP) in cancer cells is critical for understanding the development, invasion and metastasis of cancers. In this study, we devised an interference-free surface-enhanced Raman scattering (SERS) nanoprobe with high selectivity and specificity for MT1-MMP. The nanoprobe was comprised of silver core-silica shell nanoparticle with a Raman reporter tag (4-mercaptobenzonitrile) embedded in the interface. Moreover, the nitrile group in 4-mercaptobenzonitrile shows a unique characteristic peak in the Raman-silent region (1800-2800 cm-1), which eliminates spectral overlapping or background interference in the Raman fingerprint region (500-1800 cm-1). After surface modification with a targeting peptide, the nanoprobe allowed visualization and evaluation of MT1-MMP in breast cancer cells via SERS spectrometry. This interference-free, peptide-functionalized SERS nanoprobe is supposed to be conducive to early diagnosis and invasive assessment of cancer in clinical settings.
Collapse
Affiliation(s)
- Dan Zhu
- Jiangsu Key Laboratory on Opto-electronic Technology, School of Computer and Electronic Information/School of Artificial Intelligence, Nanjing Normal University, Nanjing 210023, Jiangsu, People's Republic of China
| | - Anran Li
- Jiangsu Key Laboratory on Opto-electronic Technology, School of Computer and Electronic Information/School of Artificial Intelligence, Nanjing Normal University, Nanjing 210023, Jiangsu, People's Republic of China
| | - Yunsong Di
- Jiangsu Key Laboratory on Opto-electronic Technology, School of Computer and Electronic Information/School of Artificial Intelligence, Nanjing Normal University, Nanjing 210023, Jiangsu, People's Republic of China
| | - Zhuyuan Wang
- Advanced Photonics Center, School of Electronic Science and Engineering, Southeast University, Nanjing 210096, Jiangsu, People's Republic of China
| | - Jingzhan Shi
- Jiangsu Key Laboratory on Opto-electronic Technology, School of Computer and Electronic Information/School of Artificial Intelligence, Nanjing Normal University, Nanjing 210023, Jiangsu, People's Republic of China
| | - Xiaoqi Ni
- Jiangsu Key Laboratory on Opto-electronic Technology, School of Computer and Electronic Information/School of Artificial Intelligence, Nanjing Normal University, Nanjing 210023, Jiangsu, People's Republic of China
| | - Yiping Wang
- Jiangsu Key Laboratory on Opto-electronic Technology, School of Computer and Electronic Information/School of Artificial Intelligence, Nanjing Normal University, Nanjing 210023, Jiangsu, People's Republic of China
| |
Collapse
|
19
|
Tian Y, Tang X, Fu Y, Shang S, Dong G, Li T, Huang X, Zhu D. Simultaneous extraction and surface enhanced Raman spectroscopy detection for the rapid and reliable identification of nicotine released from snus products. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2021; 13:5608-5616. [PMID: 34806734 DOI: 10.1039/d1ay01601f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Surface enhanced Raman spectroscopy (SERS) is a highly sensitive analytical detection technique that provides unique chemical and structural information on target molecules. Here, simultaneous extraction and SERS detection of nicotine for the rapid and reliable identification of nicotine released from snus products were performed based on a nano-Au assembly hierarchy structure in the capillary. Based on this strategy, the time evolution of the concentrations of nicotine released from the snus products was measured. Through comparison of the intensities of the spectral peaks of the symmetrical breathing of the pyridine moiety of nicotine molecules, with the prolongation of time, the concentration of nicotine released decreased significantly, which is helpful for establishing a method for the rapid evaluation of the processing and selection of excipients of snus products, and provides a new idea for further study of the production of snus pouches and related tobacco products. Moreover, based on data fitting, it can be calculated that the concentration of nicotine in the extraction presented an obvious quadratic relationship with time, and the release of most of the nicotine in the snus pouch, which is held through the gums and palate, was basically completed after ∼15 min. Such destruction-free simultaneous measurements of snus products are opening up new perspectives for further research about the impact of nicotinoids on smokers' health and cessation programs.
Collapse
Affiliation(s)
- Yongfeng Tian
- Yunnan Key Laboratory of Tobacco Chemistry, Technology Center of China Tobacco Yunnan Industrial Co., Ltd, Kunming 650231, China.
| | - Xianghu Tang
- Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei 230031, China.
- University of Science and Technology of China, Hefei 230026, Anhui, China
| | - Yaning Fu
- China National Tobacco Quality Supervision and Test Center, Zhengzhou 450001, China
| | - Shanzhai Shang
- Yunnan Key Laboratory of Tobacco Chemistry, Technology Center of China Tobacco Yunnan Industrial Co., Ltd, Kunming 650231, China.
| | - Gaofeng Dong
- Yunnan Key Laboratory of Tobacco Chemistry, Technology Center of China Tobacco Yunnan Industrial Co., Ltd, Kunming 650231, China.
| | - Tinghua Li
- Yunnan Key Laboratory of Tobacco Chemistry, Technology Center of China Tobacco Yunnan Industrial Co., Ltd, Kunming 650231, China.
| | - Xingjiu Huang
- Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei 230031, China.
- University of Science and Technology of China, Hefei 230026, Anhui, China
| | - Donglai Zhu
- Yunnan Key Laboratory of Tobacco Chemistry, Technology Center of China Tobacco Yunnan Industrial Co., Ltd, Kunming 650231, China.
| |
Collapse
|
20
|
Hanif S, Muhammad P, Niu Z, Ismail M, Morsch M, Zhang X, Li M, Shi B. Nanotechnology‐Based Strategies for Early Diagnosis of Central Nervous System Disorders. ADVANCED NANOBIOMED RESEARCH 2021. [DOI: 10.1002/anbr.202100008] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Affiliation(s)
- Sumaira Hanif
- Henan-Macquarie University Joint Centre for Biomedical Innovation School of Life Sciences Henan University Kaifeng Henan 475004 China
| | - Pir Muhammad
- Henan-Macquarie University Joint Centre for Biomedical Innovation School of Life Sciences Henan University Kaifeng Henan 475004 China
| | - Zheng Niu
- Province's Key Lab of Brain Targeted Bionanomedicine School of Pharmacy Henan University Kaifeng Henan 475004 China
| | - Muhammad Ismail
- Henan-Macquarie University Joint Centre for Biomedical Innovation School of Life Sciences Henan University Kaifeng Henan 475004 China
| | - Marco Morsch
- Department of Biomedical Sciences Macquarie University Centre for Motor Neuron Disease Research Macquarie University NSW 2109 Australia
| | - Xiaoju Zhang
- Department of Respiratory and Critical Care Medicine Henan Provincial People's Hospital Zhengzhou Henan 450003 China
| | - Mingqiang Li
- Laboratory of Biomaterials and Translational Medicine The Third Affiliated Hospital Sun Yat-sen University Guangzhou Guangdong 510630 China
| | - Bingyang Shi
- Department of Biomedical Sciences Faculty of Medicine & Health & Human Sciences Macquarie University NSW 2109 Australia
| |
Collapse
|
21
|
Chen J, Wang J, Geng Y, Yue J, Shi W, Liang C, Xu W, Xu S. Single-Cell Oxidative Stress Events Revealed by a Renewable SERS Nanotip. ACS Sens 2021; 6:1663-1670. [PMID: 33784081 DOI: 10.1021/acssensors.1c00395] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
A nanotip sensitive to reactive oxygen species (ROS) and NAD+/NADH (oxidized/reduced forms of nicotinamide adenine dinucleotide) was designed and prepared to identify the redox events in a single living cell by surface-enhanced Raman scattering (SERS) spectroscopy. The nanotips were prepared by the one-step laser-induced Ag growth and deposition. A redox-reversible Raman reporter, 4-mercaptophenol (4-MP), was employed for the nanotip decoration along with the Ag deposition. 4-MP can be converted to SERS-inactive 4-mercaptocyclohexa-2,5-dienone (4-MC) by Fe3+ ions to complete signal rezeroing for multiple oxidative stress event loops. The SERS signal conversion from 4-MC to 4-MP provides a cue for the reduction process that is NADH-dependent. In contrast, by the conversion from 4-MP to 4-MC, the oxidative stress events and the signal transduction mechanism of cells stimulated by drugs (phorbol 12-myristate 13-acetate and H2O2) can be explored by SERS. This sensor is easy to fabricate and can be recycled. This tip-typed SERS nanosensor can be extendedly available for tracing other key markers in other NAD+/NADH-mediated respiratory chain and glycolysis, e.g., lactic acid, pyruvic acid, adenosine triphosphate, and antioxidants. It will be useful for investigating the diseases of abnormal oxidative stress and mitochondrial metabolism at the single-cell level.
Collapse
Affiliation(s)
- Jiamin Chen
- State Key Laboratory of Supramolecular Structure and Materials, Institute of Theoretical Chemistry, College of Chemistry, Jilin University, Changchun 130012, People’s Republic of China
| | - Jiaqi Wang
- State Key Laboratory of Supramolecular Structure and Materials, Institute of Theoretical Chemistry, College of Chemistry, Jilin University, Changchun 130012, People’s Republic of China
| | - Yijia Geng
- State Key Laboratory of Supramolecular Structure and Materials, Institute of Theoretical Chemistry, College of Chemistry, Jilin University, Changchun 130012, People’s Republic of China
| | - Jing Yue
- State Key Laboratory of Supramolecular Structure and Materials, Institute of Theoretical Chemistry, College of Chemistry, Jilin University, Changchun 130012, People’s Republic of China
| | - Wei Shi
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, Changchun 130012, People’s Republic of China
| | - Chongyang Liang
- Institute of Frontier Medical Science, Jilin University, Changchun 130021, People’s Republic of China
| | - Weiqing Xu
- State Key Laboratory of Supramolecular Structure and Materials, Institute of Theoretical Chemistry, College of Chemistry, Jilin University, Changchun 130012, People’s Republic of China
| | - Shuping Xu
- State Key Laboratory of Supramolecular Structure and Materials, Institute of Theoretical Chemistry, College of Chemistry, Jilin University, Changchun 130012, People’s Republic of China
- Department of Molecular Sciences, ARC Centre of Excellence for Nanoscale BioPhotonics (CNBP), Macquarie University, Sydney, New South Wales 2109, Australia
| |
Collapse
|
22
|
Shen Y, Yue J, Xu W, Xu S. Recent progress of surface-enhanced Raman spectroscopy for subcellular compartment analysis. Theranostics 2021; 11:4872-4893. [PMID: 33754033 PMCID: PMC7978302 DOI: 10.7150/thno.56409] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Accepted: 01/25/2021] [Indexed: 12/14/2022] Open
Abstract
Organelles are involved in many cell life activities, and their metabolic or functional disorders are closely related to apoptosis, neurodegenerative diseases, cardiovascular diseases, and the development and metastasis of cancers. The explorations of subcellular structures, microenvironments, and their abnormal conditions are conducive to a deeper understanding of many pathological mechanisms, which are expected to achieve the early diagnosis and the effective therapy of diseases. Organelles are also the targeted locations of drugs, and they play significant roles in many targeting therapeutic strategies. Surface-enhanced Raman spectroscopy (SERS) is a powerful analytical tool that can provide the molecular fingerprint information of subcellular compartments and the real-time cellular dynamics in a non-invasive and non-destructive way. This review aims to summarize the recent advances of SERS studies on subcellular compartments, including five parts. The introductions of SERS and subcellular compartments are given. SERS is promising in subcellular compartment studies due to its molecular specificity and high sensitivity, and both of which highly match the high demands of cellular/subcellular investigations. Intracellular SERS is mainly cataloged as the labeling and label-free methods. For subcellular targeted detections and therapies, how to internalize plasmonic nanoparticles or nanostructure in the target locations is a key point. The subcellular compartment SERS detections, SERS measurements of isolated organelles, investigations of therapeutic mechanisms from subcellular compartments and microenvironments, and integration of SERS diagnosis and treatment are sequentially presented. A perspective view of the subcellular SERS studies is discussed from six aspects. This review provides a comprehensive overview of SERS applications in subcellular compartment researches, which will be a useful reference for designing the SERS-involved therapeutic systems.
Collapse
Affiliation(s)
- Yanting Shen
- State Key Laboratory of Supramolecular Structure and Materials, Institute of Theoretical Chemistry, College of Chemistry, Jilin University, Changchun 130012, People's Republic of China
- School of Pharmaceutical Sciences, Key Laboratory of Innovative Drug Development and Evaluation, Hebei Medical University, Shijiazhuang, 050017, China
| | - Jing Yue
- State Key Laboratory of Supramolecular Structure and Materials, Institute of Theoretical Chemistry, College of Chemistry, Jilin University, Changchun 130012, People's Republic of China
| | - Weiqing Xu
- State Key Laboratory of Supramolecular Structure and Materials, Institute of Theoretical Chemistry, College of Chemistry, Jilin University, Changchun 130012, People's Republic of China
| | - Shuping Xu
- State Key Laboratory of Supramolecular Structure and Materials, Institute of Theoretical Chemistry, College of Chemistry, Jilin University, Changchun 130012, People's Republic of China
- Department of Molecular Sciences, ARC Centre of Excellence for Nanoscale BioPhotonics (CNBP), Macquarie University, Sydney, New South Wales 2109, Australia
| |
Collapse
|
23
|
A review of aptamer-based SERS biosensors: Design strategies and applications. Talanta 2021; 227:122188. [PMID: 33714469 DOI: 10.1016/j.talanta.2021.122188] [Citation(s) in RCA: 65] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Revised: 01/27/2021] [Accepted: 01/30/2021] [Indexed: 02/07/2023]
Abstract
Surface-enhanced Raman spectroscopy, due to its high sensitivity, unique vibrational fingerprint identification of molecules and easy operation, has been extensively applied in different fields. Aptamers, being the unique single stranded DNA/RNA sequences that can specifically recognize and seize the target analytes, combined with Surface-enhanced Raman spectroscopy (SERS), can offer potent multiplex detection capacity with high specificity and sensitivity. In this review, we summarize and classify the general working strategies of different types of aptamer-based SERS biosensors with diversified protocols which either take aptamer conformational change as intrinsic reporter, or make use of various extrinsic Raman reporters in different sensor designs via on/off approach, sandwich-type and magnetic nanoparticles (NPs)-assisted approach, and catalytic reaction assisted approach with amplification of alternative Raman signals. The advantages, applications and perspectives of these aptamer-based SERS biosensors are also discussed.
Collapse
|
24
|
Sero JE, Stevens MM. Nanoneedle-Based Materials for Intracellular Studies. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1295:191-219. [PMID: 33543461 DOI: 10.1007/978-3-030-58174-9_9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Nanoneedles, defined as high aspect ratio structures with tip diameters of 5 to approximately 500 nm, are uniquely able to interface with the interior of living cells. Their nanoscale dimensions mean that they are able to penetrate the plasma membrane with minimal disruption of normal cellular functions, allowing researchers to probe the intracellular space and deliver or extract material from individual cells. In the last decade, a variety of strategies have been developed using nanoneedles, either singly or as arrays, to investigate the biology of cancer cells in vitro and in vivo. These include hollow nanoneedles for soluble probe delivery, nanocapillaries for single-cell biopsy, nano-AFM for direct physical measurements of cytosolic proteins, and a wide range of fluorescent and electrochemical nanosensors for analyte detection. Nanofabrication has improved to the point that nanobiosensors can detect individual vesicles inside the cytoplasm, delineate tumor margins based on intracellular enzyme activity, and measure changes in cell metabolism almost in real time. While most of these applications are currently in the proof-of-concept stage, nanoneedle technology is poised to offer cancer biologists a powerful new set of tools for probing cells with unprecedented spatial and temporal resolution.
Collapse
Affiliation(s)
- Julia E Sero
- Biology and Biochemistry Department, University of Bath, Claverton Down, Bath, UK
| | - Molly M Stevens
- Institute for Biomedical Engineering, Imperial College London, London, UK.
| |
Collapse
|
25
|
Wang Y, Zhao G, Chi H, Yang S, Niu Q, Wu D, Cao W, Li T, Ma H, Wei Q. Self-Luminescent Lanthanide Metal-Organic Frameworks as Signal Probes in Electrochemiluminescence Immunoassay. J Am Chem Soc 2020; 143:504-512. [PMID: 33370533 DOI: 10.1021/jacs.0c12449] [Citation(s) in RCA: 152] [Impact Index Per Article: 38.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The successful use of electrochemiluminescence (ECL) in immunoassay for clinical diagnosis requires development of novel ECL signal probes. Herein, we report lanthanide (Ln) metal-organic frameworks (LMOFs) as ECL signal emitters in the ECL immunoassay. The LMOFs were prepared from precursors containing Eu (III) ions and 5-boronoisophthalic acid (5-bop), which could be utilized to adjust optical properties. Investigations of ECL emission mechanisms revealed that 5-bop was excited with ultraviolet photons to generate a triplet-state, which then triggered Eu (III) ions for red emission. The electron-deficient boric acid decreased the energy-transfer efficiency from the triplet-state of 5-bop to Eu (III) ions; consequently, both were excited with high-efficiency at single excitation. In addition, by progressively tailoring the atomic ratios of Ni/Fe, NiFe composites (Ni/Fe 1:1) were synthesized with more available active sites, enhanced stability, and excellent conductivity. As a result, the self-luminescent europium LMOFs displayed excellent performance characteristics in an ECL immunoassay with a minimum detectable limit of 0.126 pg mL-1, using Cytokeratins21-1 (cyfra21-1) as the target detection model. The probability of false positive/false negative was reduced dramatically by using LMOFs as signal probes. This proposed strategy provides more possibilities for the application of lanthanide metals in analytical chemistry, especially in the detection of other disease markers.
Collapse
Affiliation(s)
- Yaoguang Wang
- Shandong Provincial Key Laboratory of Molecular Engineering, School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, People's Republic of China
| | - Guanhui Zhao
- Collaborative Innovation Center for Green Chemical Manufacturing and Accurate Detection, Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, People's Republic of China
| | - Hong Chi
- Shandong Provincial Key Laboratory of Molecular Engineering, School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, People's Republic of China
| | - Shenghong Yang
- Shandong Provincial Key Laboratory of Molecular Engineering, School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, People's Republic of China
| | - Qingfen Niu
- Shandong Provincial Key Laboratory of Molecular Engineering, School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, People's Republic of China
| | - Dan Wu
- Collaborative Innovation Center for Green Chemical Manufacturing and Accurate Detection, Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, People's Republic of China
| | - Wei Cao
- Collaborative Innovation Center for Green Chemical Manufacturing and Accurate Detection, Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, People's Republic of China
| | - Tianduo Li
- Shandong Provincial Key Laboratory of Molecular Engineering, School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, People's Republic of China
| | - Hongmin Ma
- Collaborative Innovation Center for Green Chemical Manufacturing and Accurate Detection, Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, People's Republic of China
| | - Qin Wei
- Collaborative Innovation Center for Green Chemical Manufacturing and Accurate Detection, Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, People's Republic of China
| |
Collapse
|
26
|
Zhao X, Luo X, Bazuin CG, Masson JF. In Situ Growth of AuNPs on Glass Nanofibers for SERS Sensors. ACS APPLIED MATERIALS & INTERFACES 2020; 12:55349-55361. [PMID: 33237739 DOI: 10.1021/acsami.0c15311] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
It is challenging to fabricate plasmonic nanosensors on high-curvature surfaces with high sensitivity and reproducibility at low cost. Here, we report a facile and straightforward strategy, based on an in situ growth technique, for fabricating glass nanofibers covered by asymmetric gold nanoparticles (AuNPs) with tunable morphologies and adjustable spacings, leading to much improved surface-enhanced Raman scattering (SERS) sensitivity because of hotspots generated by the AuNP surface irregularities and adjacent AuNP coupling. First, nanosensors covered with uniform and well-dispersed citrate-capped spherical AuNPs were constructed using a polystyrene-b-poly(4-vinylpyridine) (PS-P4VP, with 33 mol % P4VP content and 61 kg/mol total molecular weight) block copolymer brush-layer templating method, and then, the deposited AuNPs were grown to asymmetric AuNPs. AuNP morphologies and hence the optical characteristics of AuNP-covered glass nanofibers were easily controlled by the choice of experimental parameters, such as the growth time and growth solution composition. In particular, tunable AuNP average diameters between about 40 and 80 nm with AuNP spacings between about 50 and 1 nm were achieved within 15 min of growth. The SERS sensitivity of branched AuNP-covered nanofibers (3 min growth time) was demonstrated to be more than threefold more intense than that of the original spherical AuNP-covered nanofibers using a 633 nm laser. Finite-difference time-domain simulations were performed, showing that the electric field enhancement is highest for intermediate AuNP diameters. Furthermore, SERS applications of these nanosensors for H2O2 detection and pH sensing were demonstrated, offering appealing and promising candidates for real-time monitoring of extra/intracellular species in vitro and in vivo.
Collapse
Affiliation(s)
- Xingjuan Zhao
- Département de chimie, Centre québécois des matériaux fonctionnels (CQMF) and Regroupement québécois des matériaux de pointe (RQMP), Université de Montréal, C.P. 6128 Succ. Centre-Ville, Montréal, Quebec H3C 3J7, Canada
| | - Xiaojun Luo
- Département de chimie, Centre québécois des matériaux fonctionnels (CQMF) and Regroupement québécois des matériaux de pointe (RQMP), Université de Montréal, C.P. 6128 Succ. Centre-Ville, Montréal, Quebec H3C 3J7, Canada
- Jiangsu Key Laboratory of New Power Batteries, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, College of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210097, P.R. China
| | - C Geraldine Bazuin
- Département de chimie, Centre québécois des matériaux fonctionnels (CQMF) and Regroupement québécois des matériaux de pointe (RQMP), Université de Montréal, C.P. 6128 Succ. Centre-Ville, Montréal, Quebec H3C 3J7, Canada
| | - Jean-Francois Masson
- Département de chimie, Centre québécois des matériaux fonctionnels (CQMF) and Regroupement québécois des matériaux de pointe (RQMP), Université de Montréal, C.P. 6128 Succ. Centre-Ville, Montréal, Quebec H3C 3J7, Canada
| |
Collapse
|
27
|
Wallace GQ, Delignat-Lavaud B, Zhao X, Trudeau LÉ, Masson JF. A blueprint for performing SERS measurements in tissue with plasmonic nanofibers. J Chem Phys 2020; 153:124702. [PMID: 33003723 DOI: 10.1063/5.0024467] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Plasmonic nanostructures have found increasing utility due to the increased popularity that surface-enhanced Raman scattering (SERS) has achieved in recent years. SERS has been incorporated into an ever-growing list of applications, with bioanalytical and physiological analyses having emerged as two of the most popular. Thus far, the transition from SERS studies of cultured cells to SERS studies involving tissue has been gradual and limited. In most cases, SERS measurements in more intact tissue have involved nanoparticles distributed throughout the tissue or localized to specific regions via external functionalization. Performing highly localized measurements without the need for global nanoparticle uptake or specialized surface modifications would be advantageous to the expansion of SERS measurements in tissue. To this end, this work provides critical insight with supporting experimental evidence into performing SERS measurements with nanosensors inserted in tissues. We address two critical steps that are otherwise underappreciated when other approaches to performing SERS measurements in tissue are used. Specifically, we demonstrate two mechanical routes for controlled positioning and inserting the nanosensors into the tissue, and we discuss two means of focusing on the nanosensors both before and after they are inserted into the tissue. By examining the various combinations of these steps, we provide a blueprint for performing SERS measurements with nanosensors inserted in tissue. This blueprint could prove useful for the general development of SERS as a tool for bioanalytical and physiological studies and for more specialized techniques such as SERS-optophysiology.
Collapse
Affiliation(s)
- Gregory Q Wallace
- Département de Chimie, Centre Québécois des Matériaux Fonctionnels (CQMF), and Regroupement Québécois des Matériaux de Pointe (RQMP), Université de Montréal, C.P. 6128 Succ. Centre-Ville, Montréal, Quebec H3C 3J7, Canada
| | - Benoît Delignat-Lavaud
- Neuroscience Research Group (GRSNC), Département de Pharmacologie et Physiologie, Département de Neurosciences, Faculté de Médecine, Université de Montréal, C.P. 6128 Succ. Centre-ville, Montréal, Quebec H3C 3J7, Canada
| | - Xingjuan Zhao
- Département de Chimie, Centre Québécois des Matériaux Fonctionnels (CQMF), and Regroupement Québécois des Matériaux de Pointe (RQMP), Université de Montréal, C.P. 6128 Succ. Centre-Ville, Montréal, Quebec H3C 3J7, Canada
| | - Louis-Éric Trudeau
- Neuroscience Research Group (GRSNC), Département de Pharmacologie et Physiologie, Département de Neurosciences, Faculté de Médecine, Université de Montréal, C.P. 6128 Succ. Centre-ville, Montréal, Quebec H3C 3J7, Canada
| | - Jean-François Masson
- Département de Chimie, Centre Québécois des Matériaux Fonctionnels (CQMF), and Regroupement Québécois des Matériaux de Pointe (RQMP), Université de Montréal, C.P. 6128 Succ. Centre-Ville, Montréal, Quebec H3C 3J7, Canada
| |
Collapse
|
28
|
Zhao X, Campbell S, Wallace GQ, Claing A, Bazuin CG, Masson JF. Branched Au Nanoparticles on Nanofibers for Surface-Enhanced Raman Scattering Sensing of Intracellular pH and Extracellular pH Gradients. ACS Sens 2020; 5:2155-2167. [PMID: 32515184 DOI: 10.1021/acssensors.0c00784] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The development of plasmonic-active nanosensors for surface-enhanced Raman scattering (SERS) sensing is important for gaining knowledge on intracellular and extracellular chemical processes, hypoxia detection, and label-free detection of neurotransmitters and metabolites, among other applications in cell biology. The fabrication of SERS nanosensors for optophysiology measurements using substrates such as nanofibers with a uniform distribution of plasmonic nanoparticles (NPs) remains a critical hurdle. We report here on a strategy using block copolymer brush-layer templating and ligand exchange for fabricating highly reproducible and stable SERS-active nanofibers with tip diameters down to 60 nm and covered with well-dispersed and uniformly distributed branched AuNPs, which have intrinsic hotspots favoring inherently high plasmonic sensitivity. Among the SERS sensors investigated, those with Au nanostars with short branches [AuNS(S)s] exhibit the greatest SERS sensitivity, as verified also by COMSOL Multiphysics simulations. Functionalization of the AuNS(S)s with the pH-sensitive molecule, 4-mercaptobenzoic acid, led to SERS nanosensors capable of quantifying pH over a linear range of 6.5-9.5, covering the physiological range. These pH nanosensors were shown to be able to detect the intracellular pH as well as extracellular pH gradients of in vitro breast cancer cells with minimal invasiveness and improved SERS sensitivity, along with a high spatial resolution capability.
Collapse
Affiliation(s)
- Xingjuan Zhao
- Département de Chimie, Centre Québécois des Matériaux Fonctionnels (CQMF) and Regroupement Québécois des Matériaux de Pointe (RQMP), Université de Montréal, C.P. 6128 Succ. Centre-Ville, Montréal, Quebec H3C 3J7, Canada
| | - Shirley Campbell
- Département de Pharmacologie et Physiologie, Université de Montréal, C.P. 6128 Succ. Centre-Ville, Montreal, Quebec H3C 3J7, Canada
| | - Gregory Q. Wallace
- Département de Chimie, Centre Québécois des Matériaux Fonctionnels (CQMF) and Regroupement Québécois des Matériaux de Pointe (RQMP), Université de Montréal, C.P. 6128 Succ. Centre-Ville, Montréal, Quebec H3C 3J7, Canada
| | - Audrey Claing
- Département de Pharmacologie et Physiologie, Université de Montréal, C.P. 6128 Succ. Centre-Ville, Montreal, Quebec H3C 3J7, Canada
| | - C. Geraldine Bazuin
- Département de Chimie, Centre Québécois des Matériaux Fonctionnels (CQMF) and Regroupement Québécois des Matériaux de Pointe (RQMP), Université de Montréal, C.P. 6128 Succ. Centre-Ville, Montréal, Quebec H3C 3J7, Canada
| | - Jean-Francois Masson
- Département de Chimie, Centre Québécois des Matériaux Fonctionnels (CQMF) and Regroupement Québécois des Matériaux de Pointe (RQMP), Université de Montréal, C.P. 6128 Succ. Centre-Ville, Montréal, Quebec H3C 3J7, Canada
| |
Collapse
|
29
|
Cao J, Liu HL, Yang JM, Li ZQ, Yang DR, Ji LN, Wang K, Xia XH. SERS Detection of Nucleobases in Single Silver Plasmonic Nanopores. ACS Sens 2020; 5:2198-2204. [PMID: 32551563 DOI: 10.1021/acssensors.0c00844] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Conventional ion current-based nanopore techniques that identify single molecules are hampered by limitations of providing only the ionic current information. Here, we introduce a silver nanotriangle-based nanopore (diameter < 50 nm) system for detecting molecule translocation using surface-enhanced Raman scattering. Rhodamine 6G is used as a model molecule to study the effect of an electric field (-1 V) on the mass transport. The four DNA bases also show significantly different SERS signals when they are transported into the plasmonic nanopore. The observations suggest that in the electric field, analyte molecules are driven into the nanopipette through the hot spot of the silver nanopore. The plasmonic nanopore shows great potential as a highly sensitive SERS platform for detecting molecule transport and paves the way for single molecule probing.
Collapse
Affiliation(s)
- Jiao Cao
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Hai-Ling Liu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
- Department of Chemistry, Shaoxing University, Shaoxing 312000, China
| | - Jin-Mei Yang
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Zhong-Qiu Li
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Dong-Rui Yang
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Li-Na Ji
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, China
| | - Kang Wang
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Xing-Hua Xia
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| |
Collapse
|
30
|
Guo J, Sesena Rubfiaro A, Lai Y, Moscoso J, Chen F, Liu Y, Wang X, He J. Dynamic single-cell intracellular pH sensing using a SERS-active nanopipette. Analyst 2020; 145:4852-4859. [PMID: 32542257 PMCID: PMC7425357 DOI: 10.1039/d0an00838a] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Glass nanopipettes have shown promise for applications in single-cell manipulation, analysis, and imaging. In recent years, plasmonic nanopipettes have been developed to enable surface-enhanced Raman spectroscopy (SERS) measurements for single-cell analysis. In this work, we developed a SERS-active nanopipette that can be used to perform long-term and reliable intracellular analysis of single living cells with minimal damage, which is achieved by optimizing the nanopipette geometry and the surface density of the gold nanoparticle (AuNP) layer at the nanopipette tip. To demonstrate its ability in single-cell analysis, we used the nanopipette for intracellular pH sensing. Intracellular pH (pHi) is vital to cells as it influences cell function and behavior and pathological conditions. The pH sensitivity was realized by simply modifying the AuNP layer with the pH reporter molecule 4-mercaptobenzoic acid. With a response time of less than 5 seconds, the pH sensing range is from 6.0 to 8.0 and the maximum sensitivity is 0.2 pH units. We monitored the pHi change of individual HeLa and fibroblast cells, triggered by the extracellular pH (pHe) change. The HeLa cancer cells can better resist pHe change and adapt to the weak acidic environment. Plasmonic nanopipettes can be further developed to monitor other intracellular biomarkers.
Collapse
Affiliation(s)
- Jing Guo
- Department of Physics, Florida International University, 11200 SW 8th St., Miami, FL 33199, USA.
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Li D, Yao D, Li C, Luo Y, Liang A, Wen G, Jiang Z. Nanosol SERS quantitative analytical method: A review. Trends Analyt Chem 2020. [DOI: 10.1016/j.trac.2020.115885] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
32
|
Muhammad P, Hanif S, Yan J, Rehman FU, Wang J, Khan M, Chung R, Lee A, Zheng M, Wang Y, Shi B. SERS-based nanostrategy for rapid anemia diagnosis. NANOSCALE 2020; 12:1948-1957. [PMID: 31907500 DOI: 10.1039/c9nr09152a] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Iron detection is one of the critical markers to diagnose multiple blood-related disorders that correspond to various biological dysfunctions. The currently available anemia detection approach can be used only for pre-treated blood samples that interfere with the actual iron level in blood. Real-time detection approaches with higher sensitivity and specificity are certainly needed to cope with the commercial level clinical analyses. Herein, we presented a novel strategy to determine the blood iron that can be easily practiced at commercial levels. The blend of well-known iron-cyanide chemistry with nanotechnology is advantageous with ultrahigh sensitivity in whole blood analysis without any pre-treatments. This approach is a combined detection system of the conventional assay (UV-visible spectroscopy) with surface-enhanced Raman scattering (SERS). Organic cyanide modified silver nanoparticles (cAgNPs) can selectively respond to Fe3+ ions and Hb protein with a detection limit of 10 fM and 0.46 μg mL-1, respectively, without being affected by matrix interfering species in the complex biological fluid. We confirmed the clinical potential of our new cAgNPs by assessing iron-status in multiple anemia patients and normal controls. Our SERS-based iron quantitation approach is highly affordable for bulk-samples, cheap, quick, flexible, and useful for real-time clinical assays. Such a method for metal-chelation has extendable features of therapeutics molecular tracking within more complex living systems at cellular levels.
Collapse
Affiliation(s)
- Pir Muhammad
- Henan-Macquarie University Joint Centre for Biomedical Innovation, School of Life Sciences Henan University Kaifeng, Henan 475004, China.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Zhang Q, Sun Y, Liu M, Liu Y. Selective detection of Fe 3+ ions based on fluorescence MXene quantum dots via a mechanism integrating electron transfer and inner filter effect. NANOSCALE 2020; 12:1826-1832. [PMID: 31899466 DOI: 10.1039/c9nr08794j] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
Fluorescence quantum dots (QDs) are promising functional nanomaterials in chemical biology and environmental applications, where an analyte-induced responsive system is beneficial for detecting numerous life-related molecules and pollutants. Here, fluorescent Ti3C2 MXene quantum dots (MQDs) with the size of 1.75 nm were synthesized by a simple method of hydrofluoric acid etching and dimethyl sulfoxide exfoliation to form nanosheets followed by a one-step ultrasound method. The as-synthesized MQDs showed excitation-dependent behaviour along with a fluorescence quantum yield value of 7.7%. In addition, the fluorescence of the MQDs can be significantly suppressed by Fe3+. The mechanism for the fluorescence quenching of the MQDs was systematically investigated, which was attributed to the oxidation-reduction reaction between the MQDs and Fe3+ and the inner filter effect (IFE), different from the reported Förster resonant energy transfer (FRET) mechanism for MXene nanosheets. Based on this trait, a fluorescence method for Fe3+ detection based on MQDs was demonstrated with high sensitivity and selectivity, and the limit of detection was 310 nM. The proposed method was successfully used for the sensitive detection of Fe3+ in serum and sea water. This work will not only help to understand the selectivity mechanisms of MQDs as fluorescent probes for metal ions, but also provide a smart sensing platform in biological and environmental detection.
Collapse
Affiliation(s)
- Qiuxia Zhang
- Department of Chemistry, Beijing Key Laboratory for Analytical Methods and Instrumentation, Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology of Ministry of Education, Tsinghua University, Beijing 100084, China.
| | | | | | | |
Collapse
|
34
|
Wallace GQ, Masson JF. From single cells to complex tissues in applications of surface-enhanced Raman scattering. Analyst 2020; 145:7162-7185. [DOI: 10.1039/d0an01274b] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
This tutorial review explores how three of the most common methods for introducing nanoparticles to single cells for surface-enhanced Raman scattering measurements can be adapted for experiments with complex tissues.
Collapse
Affiliation(s)
- Gregory Q. Wallace
- Département de Chimie
- Centre Québécois des Matériaux Fonctionnels (CQMF)
- and Regroupement Québécois des Matériaux de Pointe (RQMP)
- Université de Montréal
- Montréal
| | - Jean-François Masson
- Département de Chimie
- Centre Québécois des Matériaux Fonctionnels (CQMF)
- and Regroupement Québécois des Matériaux de Pointe (RQMP)
- Université de Montréal
- Montréal
| |
Collapse
|
35
|
Shen Y, Yue J, Shi W, Xu W, Xu S. Target-triggered hot spot dispersion for cellular biothiol detection via background-free surface-enhanced Raman scattering tags. Biosens Bioelectron 2019; 151:111957. [PMID: 31868606 DOI: 10.1016/j.bios.2019.111957] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 12/05/2019] [Accepted: 12/05/2019] [Indexed: 01/17/2023]
Abstract
Abnormal cellular biothiol levels are related to many abnormal physiological processes, including cancer, multidrug resistance and Alzheimer's disease, etc. In this study, the nano-aggregates of the background-free surface-enhanced Raman scattering (SERS) tags were constructed and developed for the intracellular biothiol detection via a target-triggered disaggregation process. The plasmonic nano-tags were prepared by coating gold nanoparticles with a Raman reporter (4-mercaptobenzonitrile, MBN), which exhibits a single strong peak in the cellular Raman silent region (1800-2800 cm-1) that can eliminate the background interference of cells. Interestingly, this reporter is also the host ligand for guest mercury ions. The coordination of mercury/cyano group induce the formation of the pre-aggregates of nano-tags and the formed nano-aggregates allowing strong SERS signals of reporters. Intracellular biothiols show higher affinity to mercury ions than the SERS tags do, which can break the hot spot geometry and redisperse tags by taking away mercury ions from nano-aggregates, which dramatically decreases the SERS signals of reporters previously laid on gold nanoparticles. The developed SERS "turn off" method was used for biothiol detections in normal, cancer, drug-resistant cells, and biothiol dynamics during chemotherapy. The results demonstrate that the drug-resistant cells (MCF-ADR) lie in a higher biothiol level than cancer cells (MCF-7 and HepG2), and the normal cells (LO2) give a lower biothiol concentration compared with cancer cells. Moreover, most cancer cells are more sensitive to doxorubicin compared with the normal ones. This study provides an important strategy in learning the cellular processes that are highly associated with intracellular biothiol level.
Collapse
Affiliation(s)
- Yanting Shen
- State Key Laboratory of Supramolecular Structure and Materials, Institute of Theoretical Chemistry, College of Chemistry, Jilin University, Changchun, 130012, People's Republic of China
| | - Jing Yue
- State Key Laboratory of Supramolecular Structure and Materials, Institute of Theoretical Chemistry, College of Chemistry, Jilin University, Changchun, 130012, People's Republic of China
| | - Wei Shi
- Key Lab for Molecular Enzymology & Engineering of Ministry of Education, Jilin University, Changchun, 130012, People's Republic of China
| | - Weiqing Xu
- State Key Laboratory of Supramolecular Structure and Materials, Institute of Theoretical Chemistry, College of Chemistry, Jilin University, Changchun, 130012, People's Republic of China
| | - Shuping Xu
- State Key Laboratory of Supramolecular Structure and Materials, Institute of Theoretical Chemistry, College of Chemistry, Jilin University, Changchun, 130012, People's Republic of China.
| |
Collapse
|
36
|
|
37
|
Bulbul G, Liu G, Vithalapur NR, Atilgan C, Sayers Z, Pourmand N. Employment of Iron-Binding Protein from Haemophilus influenzae in Functional Nanopipettes for Iron Monitoring. ACS Chem Neurosci 2019; 10:1970-1977. [PMID: 30346707 DOI: 10.1021/acschemneuro.8b00263] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Because of the serious neurologic consequences of iron deficiency and iron excess in the brain, interest in the iron status of the central nervous system has increased significantly in the past decade. While iron plays an important role in many physiological processes, its accumulation may lead to diseases such as Huntington's, Parkinson's, and Alzheimer's. Therefore, it is important to develop methodologies that can monitor the presence of iron in a selective and sensitive manner. In this paper, we first showed the synthesis and characterization of the iron-binding protein (FBP) from Haemophilus influenzae, specific for ferrous ions. Subsequently, we employed this protein in our nanopipette platform and utilized it in functionalized nanoprobes to monitor the presence of ferrous ions. A suite of characterization techniques: absorbance spectroscopy, dynamic light scattering, and small-angle X-ray scattering were used for FBP. The functionalized Fe-nanoprobe calibrated in ferrous chloride enabled detection from 0.05 to 10 μM, and the specificity of the modified iron probe was evaluated by using various metal ion solutions.
Collapse
Affiliation(s)
- Gonca Bulbul
- Department of Biomolecular Engineering, UC Santa Cruz, Santa Cruz, California 95064, United States
| | - Goksin Liu
- Faculty of Engineering and Natural Sciences, Sabanci University, Tuzla, 34956 Istanbul, Turkey
| | - Namrata Rao Vithalapur
- Department of Biomolecular Engineering, UC Santa Cruz, Santa Cruz, California 95064, United States
| | - Canan Atilgan
- Faculty of Engineering and Natural Sciences, Sabanci University, Tuzla, 34956 Istanbul, Turkey
| | - Zehra Sayers
- Faculty of Engineering and Natural Sciences, Sabanci University, Tuzla, 34956 Istanbul, Turkey
| | - Nader Pourmand
- Department of Biomolecular Engineering, UC Santa Cruz, Santa Cruz, California 95064, United States
| |
Collapse
|
38
|
Su CK, Zhang L, Liang JW, He X, Zhang KL. Synthesis, characterization and luminescent sensing property of a novel Zn(II)-organic coordination polymer. Polyhedron 2019. [DOI: 10.1016/j.poly.2019.01.064] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
39
|
Yu R, Ying Y, Gao R, Long Y. Confined Nanopipette Sensing: From Single Molecules, Single Nanoparticles, to Single Cells. Angew Chem Int Ed Engl 2019; 58:3706-3714. [DOI: 10.1002/anie.201803229] [Citation(s) in RCA: 129] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Revised: 05/25/2018] [Indexed: 01/09/2023]
Affiliation(s)
- Ru‐Jia Yu
- Key Laboratory for Advanced MaterialsSchool of Chemistry & Molecular EngineeringEast China University of Science and Technology Shanghai 200237 P. R. China
| | - Yi‐Lun Ying
- Key Laboratory for Advanced MaterialsSchool of Chemistry & Molecular EngineeringEast China University of Science and Technology Shanghai 200237 P. R. China
| | - Rui Gao
- Key Laboratory for Advanced MaterialsSchool of Chemistry & Molecular EngineeringEast China University of Science and Technology Shanghai 200237 P. R. China
| | - Yi‐Tao Long
- Key Laboratory for Advanced MaterialsSchool of Chemistry & Molecular EngineeringEast China University of Science and Technology Shanghai 200237 P. R. China
| |
Collapse
|
40
|
De Silva IW, Kretsch AR, Lewis HM, Bailey M, Verbeck GF. True one cell chemical analysis: a review. Analyst 2019; 144:4733-4749. [DOI: 10.1039/c9an00558g] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
The constantly growing field of True One Cell (TOC) analysis has provided important information on the direct chemical composition of various cells and cellular components.
Collapse
|
41
|
Yu R, Ying Y, Gao R, Long Y. Detektieren mit Nanopipetten im eingeschränkten Raum: von einzelnen Molekülen über Nanopartikel hin zu der Zelle. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201803229] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
- Ru‐Jia Yu
- Key Laboratory for Advanced MaterialsSchool of Chemistry & Molecular EngineeringEast China University of Science and Technology Shanghai 200237 VR China
| | - Yi‐Lun Ying
- Key Laboratory for Advanced MaterialsSchool of Chemistry & Molecular EngineeringEast China University of Science and Technology Shanghai 200237 VR China
| | - Rui Gao
- Key Laboratory for Advanced MaterialsSchool of Chemistry & Molecular EngineeringEast China University of Science and Technology Shanghai 200237 VR China
| | - Yi‐Tao Long
- Key Laboratory for Advanced MaterialsSchool of Chemistry & Molecular EngineeringEast China University of Science and Technology Shanghai 200237 VR China
| |
Collapse
|
42
|
Jia M, Li S, Zang L, Lu X, Zhang H. Analysis of Biomolecules Based on the Surface Enhanced Raman Spectroscopy. NANOMATERIALS (BASEL, SWITZERLAND) 2018; 8:E730. [PMID: 30223597 PMCID: PMC6165412 DOI: 10.3390/nano8090730] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Revised: 09/10/2018] [Accepted: 09/14/2018] [Indexed: 12/24/2022]
Abstract
Analyzing biomolecules is essential for disease diagnostics, food safety inspection, environmental monitoring and pharmaceutical development. Surface-enhanced Raman spectroscopy (SERS) is a powerful tool for detecting biomolecules due to its high sensitivity, rapidness and specificity in identifying molecular structures. This review focuses on the SERS analysis of biomolecules originated from humans, animals, plants and microorganisms, combined with nanomaterials as SERS substrates and nanotags. Recent advances in SERS detection of target molecules were summarized with different detection strategies including label-free and label-mediated types. This comprehensive and critical summary of SERS analysis of biomolecules might help researchers from different scientific backgrounds spark new ideas and proposals.
Collapse
Affiliation(s)
- Min Jia
- Shandong Provincial Key Laboratory of Animal Resistance Biology, Institute of Biomedical Sciences, Key Laboratory of Food Nutrition and Safety of Shandong Normal University, College of Life Science, Shandong Normal University, Jinan 250014, China.
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University (BTBU), Beijing 100048, China.
| | - Shenmiao Li
- Food, Nutrition and Health Program, Faculty of Land and Food Systems, The University of British Columbia, Vancouver, BC V6T 1Z4, Canada.
| | - Liguo Zang
- Shandong Provincial Key Laboratory of Animal Resistance Biology, Institute of Biomedical Sciences, Key Laboratory of Food Nutrition and Safety of Shandong Normal University, College of Life Science, Shandong Normal University, Jinan 250014, China.
| | - Xiaonan Lu
- Food, Nutrition and Health Program, Faculty of Land and Food Systems, The University of British Columbia, Vancouver, BC V6T 1Z4, Canada.
| | - Hongyan Zhang
- Shandong Provincial Key Laboratory of Animal Resistance Biology, Institute of Biomedical Sciences, Key Laboratory of Food Nutrition and Safety of Shandong Normal University, College of Life Science, Shandong Normal University, Jinan 250014, China.
| |
Collapse
|
43
|
Zhang S, Li M, Su B, Shao Y. Fabrication and Use of Nanopipettes in Chemical Analysis. ANNUAL REVIEW OF ANALYTICAL CHEMISTRY (PALO ALTO, CALIF.) 2018; 11:265-286. [PMID: 29894227 DOI: 10.1146/annurev-anchem-061417-125840] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
This review summarizes progress in the fabrication, modification, characterization, and applications of nanopipettes since 2010. A brief history of nanopipettes is introduced, and the details of fabrication, modification, and characterization of nanopipettes are provided. Applications of nanopipettes in chemical analysis are the focus in several cases, including recent progress in imaging; in the study of single molecules, single nanoparticles, and single cells; in fundamental investigations of charge transfer (ion and electron) reactions at liquid/liquid interfaces; and as hyphenated techniques combined with other methods to study the mechanisms of complicated electrochemical reactions and to conduct bioanalysis.
Collapse
Affiliation(s)
- Shudong Zhang
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China;
| | - Mingzhi Li
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China;
| | - Bin Su
- Institute of Analytical Chemistry, Department of Chemistry, Zhejiang University, Hangzhou 310058, China;
| | - Yuanhua Shao
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China;
| |
Collapse
|
44
|
Huang X, Song J, Yung BC, Huang X, Xiong Y, Chen X. Ratiometric optical nanoprobes enable accurate molecular detection and imaging. Chem Soc Rev 2018; 47:2873-2920. [PMID: 29568836 PMCID: PMC5926823 DOI: 10.1039/c7cs00612h] [Citation(s) in RCA: 450] [Impact Index Per Article: 75.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Exploring and understanding biological and pathological changes are of great significance for early diagnosis and therapy of diseases. Optical sensing and imaging approaches have experienced major progress in this field. Particularly, an emergence of various functional optical nanoprobes has provided enhanced sensitivity, specificity, targeting ability, as well as multiplexing and multimodal capabilities due to improvements in their intrinsic physicochemical and optical properties. However, one of the biggest challenges of conventional optical nanoprobes is their absolute intensity-dependent signal readout, which causes inaccurate sensing and imaging results due to the presence of various analyte-independent factors that can cause fluctuations in their absolute signal intensity. Ratiometric measurements provide built-in self-calibration for signal correction, enabling more sensitive and reliable detection. Optimizing nanoprobe designs with ratiometric strategies can surmount many of the limitations encountered by traditional optical nanoprobes. This review first elaborates upon existing optical nanoprobes that exploit ratiometric measurements for improved sensing and imaging, including fluorescence, surface enhanced Raman scattering (SERS), and photoacoustic nanoprobes. Next, a thorough discussion is provided on design strategies for these nanoprobes, and their potential biomedical applications for targeting specific biomolecule populations (e.g. cancer biomarkers and small molecules with physiological relevance), for imaging the tumor microenvironment (e.g. pH, reactive oxygen species, hypoxia, enzyme and metal ions), as well as for intraoperative image guidance of tumor-resection procedures.
Collapse
Affiliation(s)
- Xiaolin Huang
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, P. R. China. and Laboratory of Molecular Imaging and Nanomedicine (LOMIN), National Institute of Biomedical Imaging and Bioengineering (NIBIB), National Institutes of Health (NIH), Bethesda, Maryland 20892, USA.
| | - Jibin Song
- Laboratory of Molecular Imaging and Nanomedicine (LOMIN), National Institute of Biomedical Imaging and Bioengineering (NIBIB), National Institutes of Health (NIH), Bethesda, Maryland 20892, USA. and MOE Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, Fuzhou University, Fuzhou 350108, P. R. China
| | - Bryant C Yung
- Laboratory of Molecular Imaging and Nanomedicine (LOMIN), National Institute of Biomedical Imaging and Bioengineering (NIBIB), National Institutes of Health (NIH), Bethesda, Maryland 20892, USA.
| | - Xiaohua Huang
- Department of Chemistry, University of Memphis, 213 Smith Chemistry Bldg., Memphis, TN 38152, USA
| | - Yonghua Xiong
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, P. R. China.
| | - Xiaoyuan Chen
- Laboratory of Molecular Imaging and Nanomedicine (LOMIN), National Institute of Biomedical Imaging and Bioengineering (NIBIB), National Institutes of Health (NIH), Bethesda, Maryland 20892, USA.
| |
Collapse
|
45
|
Affiliation(s)
- Karl J. Wallace
- The Department of Chemistry and Biochemistry, The University of Southern Mississippi, Hattiesburg, MS, USA
| | - Ashley D. G. Johnson
- The Department of Chemistry and Biochemistry, The University of Southern Mississippi, Hattiesburg, MS, USA
| | - W. Scott Jones
- The Department of Chemistry and Biochemistry, The University of Southern Mississippi, Hattiesburg, MS, USA
| | - Erendra Manandhar
- The Department of Chemistry and Biochemistry, The University of Southern Mississippi, Hattiesburg, MS, USA
| |
Collapse
|
46
|
Muhammad P, Liu J, Xing R, Wen Y, Wang Y, Liu Z. Fast probing of glucose and fructose in plant tissues via plasmonic affinity sandwich assay with molecularly-imprinted extraction microprobes. Anal Chim Acta 2017; 995:34-42. [PMID: 29126479 DOI: 10.1016/j.aca.2017.09.044] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2017] [Revised: 09/23/2017] [Accepted: 09/27/2017] [Indexed: 10/18/2022]
Abstract
Determination of specific target compounds in agriculture food and natural plant products is essential for many purposes; however, it is often challenging due to the complexity of the sample matrices. Herein we present a new approach called plasmonic affinity sandwich assay for the facile and rapid probing of glucose and fructose in plant tissues. The approach mainly relies on molecularly imprinted plasmonic extraction microprobes, which were prepared on gold-coated acupuncture needles via boronate affinity controllable oriented surface imprinting with the target monosaccharide as the template molecules. An extraction microprobe was inserted into plant tissues under investigation, which allowed for the specific extraction of glucose or fructose from the tissues. The glucose or fructose molecules extracted on the microprobe were labeled with boronic acid-functionalized Raman-active silver nanoparticles, and thus affinity sandwich complexes were formed on the microprobes. After excess Raman nanotags were washed away, the microprobe was subjected to Raman detection. Upon being irradiated with a laser beam, surface plasmon on the gold-coated microprobes was generated, which further produced plasmon-enhanced Raman scattering of the silver-based nanotags and thereby provided sensitive detection. Apple fruits, which contain abundant glucose and fructose, were used as a model of plant tissues. The approach exhibited high specificity, good sensitivity (limit of detection, 1 μg mL-1), and fast speed (the whole procedure required only 20 min). The spatial distribution profiles of glucose and fructose within an apple were investigated by the developed approach.
Collapse
Affiliation(s)
- Pir Muhammad
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Jia Liu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Rongrong Xing
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Yanrong Wen
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Yijia Wang
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Zhen Liu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China.
| |
Collapse
|
47
|
Hanif S, Liu HL, Ahmed SA, Yang JM, Zhou Y, Pang J, Ji LN, Xia XH, Wang K. Nanopipette-Based SERS Aptasensor for Subcellular Localization of Cancer Biomarker in Single Cells. Anal Chem 2017; 89:9911-9917. [PMID: 28825473 DOI: 10.1021/acs.analchem.7b02147] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Single cell analysis is essential for understanding the heterogeneity, behaviors of cells, and diversity of target analyte in different subcellular regions. Nucleolin (NCL) is a multifunctional protein that is markedly overexpressed in most of the cancer cells. The variant expression levels of NCL in subcellular regions have a marked influence on cancer proliferation and treatments. However, the specificity of available methods to identify the cancer biomarkers is limited because of the high level of subcellular matrix effect. Herein, we proposed a novel technique to increase both the molecular and spectral specificity of cancer diagnosis by using aptamers affinity based portable nanopipette with distinctive surface-enhanced Raman scattering (SERS) activities. The aptamers-functionalized gold-coated nanopipette was used to capture target, while p-mercaptobenzonitrile (MBN) and complementary DNA modified Ag nanoparticles (AgNPs) worked as Raman reporter to produce SERS signal. The SERS signal of Raman nanotag was lost upon NCL capturing via modified DNA aptamers on nanoprobe, which further helped to verify the specificity of nanoprobe. For proof of concept, NCL protein was specifically extracted from different cell lines by aptamers modified SERS active nanoprobe. The nanoprobes manifested specifically good affinity for NCL with a dissociation constant Kd of 36 nM and provided a 1000-fold higher specificity against other competing proteins. Furthermore, the Raman reporter moiety has a vibrational frequency in the spectroscopically silent region (1800-2300 cm-1) with a negligible matrix effect from cell analysis. The subcellular localization and spatial distribution of NCL were successfully achieved in various types of cells, including MCF-7A, HeLa, and MCF-10A cells. This type of probing technique for single cell analysis could lead to the development of a new perspective in cancer diagnosis and treatment at the cellular level.
Collapse
Affiliation(s)
- Sumaira Hanif
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, and ‡State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University , Nanjing 210023, China
| | - Hai-Ling Liu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, and ‡State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University , Nanjing 210023, China
| | - Saud Asif Ahmed
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, and ‡State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University , Nanjing 210023, China
| | - Jin-Mei Yang
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, and ‡State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University , Nanjing 210023, China
| | - Yue Zhou
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, and ‡State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University , Nanjing 210023, China
| | - Jie Pang
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, and ‡State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University , Nanjing 210023, China
| | - Li-Na Ji
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, and ‡State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University , Nanjing 210023, China
| | - Xing-Hua Xia
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, and ‡State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University , Nanjing 210023, China
| | - Kang Wang
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, and ‡State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University , Nanjing 210023, China
| |
Collapse
|