1
|
Cui X, Lv L, Zhao K, Tian P, Chao X, Li Y, Zhang B. Exo Ⅲ-assisted amplification signal strategy synergized with Au@Pt NFs/CoSe 2 for sensitive detection of enrofloxacin. Bioelectrochemistry 2024; 160:108750. [PMID: 38852385 DOI: 10.1016/j.bioelechem.2024.108750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 05/20/2024] [Accepted: 05/27/2024] [Indexed: 06/11/2024]
Abstract
Overuse of enrofloxacin (ENR) has posed a potential threat to ecosystems and public health, so it is critical to sensitive and accurate determination of ENR residues. In this work, a novel ultra-sensitive and specific electrochemical aptasensor was fabricated based on the cobalt diselenide loaded gold and platinum nanoflowers (Au@Pt NFs/ CoSe2) and Exonuclease III (Exo III)-assisted cycle amplification strategy for the detection of ENR. Au@Pt NFs/ CoSe2 nanosheets as the substrate material, with large surface area, accelerate electron transfer and attach more DNA probes on the electrode substrate, have effectively enhanced the electrochemical performance of the electrode. With the existence of Enrofloxacin (ENR), the aptamer recognizes and binds to ENR, thus the signal probe cDNA was released and immobilized onto the electrode surface to hybridized with methylene blue (MB) labelled DNA (MB-DNA), thereby triggering the Exo III-assisted cycle for further signal amplification. As expected, the prepared aptasensor demonstrated excellent sensitivity and selectivity, with a wide linear range from 5.0 × 10-6 ng/mL to 1.0 × 10-2 ng/mL for ENR, a low detection limit of 1.59 × 10-6 ng/mL. Consequently, this strategy provided a promising avenue for ultrasensitive and accurate detection of ENR in milk samples.
Collapse
Affiliation(s)
- Xiaoying Cui
- School of Environmental Engineering, Henan University of Technology, Lianhua Road 100#, Zhengzhou 450001, Henan Province, People's Republic of China
| | - Lina Lv
- School of Environmental Engineering, Henan University of Technology, Lianhua Road 100#, Zhengzhou 450001, Henan Province, People's Republic of China; JIANGSU YUYUE KAILITE BIOTECHNOLOGY Co., LTD., Danyang, Baisheng Road1#, Zhenjiang 212300, Jiangsu Province, People's Republic of China
| | - Ke Zhao
- School of Environmental Engineering, Henan University of Technology, Lianhua Road 100#, Zhengzhou 450001, Henan Province, People's Republic of China
| | - Panpan Tian
- School of Environmental Engineering, Henan University of Technology, Lianhua Road 100#, Zhengzhou 450001, Henan Province, People's Republic of China; China National Chemical Huayi Engineering And Technology Group Co., Ltd, Jinhai Road 6055#, Fengxian District, 201406 Shanghai, People's Republic of China
| | - Xipeng Chao
- School of Environmental Engineering, Henan University of Technology, Lianhua Road 100#, Zhengzhou 450001, Henan Province, People's Republic of China
| | - Ying Li
- School of Environmental Engineering, Henan University of Technology, Lianhua Road 100#, Zhengzhou 450001, Henan Province, People's Republic of China
| | - Baozhong Zhang
- School of Environmental Engineering, Henan University of Technology, Lianhua Road 100#, Zhengzhou 450001, Henan Province, People's Republic of China.
| |
Collapse
|
2
|
Xu J, Luo X, Cao C, Ling G, Zheng Y, Zhang W. A portability self-powered sensor facilitates sensitive Cd 2+ detection: Dual mechanism and three quantitative mode. Food Chem 2024; 459:140380. [PMID: 39003862 DOI: 10.1016/j.foodchem.2024.140380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Revised: 06/24/2024] [Accepted: 07/05/2024] [Indexed: 07/16/2024]
Abstract
As a common heavy metal contaminant, Cd2+ has adverse effects on food safety and consumer health. It is very important for human health to realize highly sensitive Cd2+ detection methods. The self-powered sensing system based on enzyme biofuel cells (EBFCs) does not need an external power supply, which can simplify the experimental equipment and has great application value in portable detection. Thus, the biosensor is innovatively integrated into the screen-printed electrode to construct a new type of portable sensor suitable for on-site and real-time Cd2+ detection. Hybridization chain reaction (HCR) combined with the Cd2+-dependent deoxyribose (DNAzyme) signal amplification strategy is used to enhance the detection sensitivity while specifically recognizing the Cd2+. Moreover, the self-powered sensor combines with smartphones to realize quantitative Cd2+ detection without other instruments and has the characteristic of Effectively improving the hazard detection technology is essential to ensure food safety. Portability, simplicity, and speed are suitable for real-time Cd2+ detection in the field. The dual mechanism and three quantitative modes combining colorimetric and two electrical signals output modes are adopted to realize the visualization and accurate detection. A series of research results confirm that this strategy is of great significance to strengthen the development of intelligent Cd2+ technology, expand the application of self-powered sensing technology, and improve the safety detection system.
Collapse
Affiliation(s)
- Jing Xu
- College of Chemistry and Chemical Engineering, Xinyang Normal University, Xinyang 464000, China.
| | - Xinqi Luo
- College of Chemistry and Chemical Engineering, Xinyang Normal University, Xinyang 464000, China
| | - Chengyuan Cao
- College of Chemistry and Chemical Engineering, Xinyang Normal University, Xinyang 464000, China
| | - Ge Ling
- College of Chemistry and Chemical Engineering, Xinyang Normal University, Xinyang 464000, China
| | - Yue Zheng
- College of Chemistry and Chemical Engineering, Xinyang Normal University, Xinyang 464000, China
| | - Wei Zhang
- College of Life Sciences, Xinyang Normal University, Xinyang 464000, China.
| |
Collapse
|
3
|
Qi Q, Liu Z, Chen X, Yu J, Li X, Wang R, Liu Y, Chen J. Promoted electrochemical performance by MOF on MOF composite catalyst of microbial fuel cell: CuCo-MOF@ZIF-8 and the comparison between two-step hydrothermal method and dual-solution method. Biosens Bioelectron 2024; 264:116693. [PMID: 39167887 DOI: 10.1016/j.bios.2024.116693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 08/06/2024] [Accepted: 08/19/2024] [Indexed: 08/23/2024]
Abstract
The microbial fuel cell (MFC) is a device that simultaneously achieves electricity generation and sewage degradation. In this study, a novel cathode catalyst metal-organic frameworks (MOFs) have been fabricated by two-step hydrothermal and dual-solution method (CuCo-MOF@ZIF-8). The synthesized trimetal MOFs exhibited a 3D badminton-like structure morphology and porosity. The results of the characterizations showed that CuCo-MOF@ZIF-8 possesses greater surface area porosity and novel functional groups. The Trimetal MOF-on-MOF mode not only demonstrated the stability of the structure but also enhanced its mechanism. Molecular mechanism analysis revealed changes in the organic ligand and metal binding site due to the transformation of Cu2+ to Cu+, Co2+ to Co3+, and Zn-N to Zn-O organic connection. Furthermore, differences between the two fabrication methods were compared. The solid-state single preparation (CuCo-MOF@ZIF-8-1), was synthesized using the two-step hydrothermal method; the liquid mixed preparation material (CuCo-MOF@ZIF-8-2), was synthesized using the dual-solution method; they exhibited completely different chemical structures and morphologies during material testing and characterization. The maximum output power density of CuCo-MOF@ZIF-8-2-MFC was 246.38 mW/m2, about 2.49 times of ZIF-8 (98.72 mW/m2). The output voltage of CuCo-MOF@ZIF-8-1-MFC was measured at 357 mV over 10 d, while that of CuCo-MOF@ZIF-8-2-MFC reached 365 mV over 12 d.
Collapse
Affiliation(s)
- Qin Qi
- School of Life Sciences, Qufu Normal University, Qufu, 273165, PR China
| | - Zhen Liu
- School of Life Sciences, Qufu Normal University, Qufu, 273165, PR China
| | - Xiaomin Chen
- School of Life Sciences, Qufu Normal University, Qufu, 273165, PR China
| | - Jiale Yu
- School of Life Sciences, Qufu Normal University, Qufu, 273165, PR China
| | - Xin Li
- School of Life Sciences, Qufu Normal University, Qufu, 273165, PR China
| | - Renjun Wang
- School of Life Sciences, Qufu Normal University, Qufu, 273165, PR China
| | - Yanyan Liu
- School of Life Sciences, Qufu Normal University, Qufu, 273165, PR China
| | - Junfeng Chen
- School of Life Sciences, Qufu Normal University, Qufu, 273165, PR China.
| |
Collapse
|
4
|
Li P, Wei Y, Shi J, Wu J, Wu Y, Yan J, Liu S, Tan X, Huang KJ. CRISPR/Cas12a-triggered ordered concatemeric DNA probes signal-on/off multifunctional analytical sensing system for ultrasensitive detection of thalassemia. Int J Biol Macromol 2024; 276:133884. [PMID: 39013507 DOI: 10.1016/j.ijbiomac.2024.133884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 07/12/2024] [Accepted: 07/13/2024] [Indexed: 07/18/2024]
Abstract
Based on CRISPR/Cas12a triggered ordered concatemeric DNA probes, a "on/off" self-powered biosensor is developed to achieve highly sensitive detection of thalassemia gene CD142 through open-circuit potential-assisted visual signal output. The ingeniously constructed glucose oxidase (GOD)-functionalized ordered concatemeric DNA probe structure can significantly amplify signal output, while the coupled CRISPR/Cas12a system is served as a "signal switch" with excellent signal-transducing capabilities. When the ordered concatemeric DNA probe structure is anchored on electrode, the response signal of the sensing system is in the "signal on" mode. While, the presence of the target activates the non-specific cleavage activity of the CRISPR/Cas12a system, causing the sensing system to switch to the "signal off" mode. In the detection system, GOD catalyzes the oxidation of glucose to produce hydrogen peroxide, which further catalyzes the oxidation of 3,3',5,5'-tetramethylbenzidine (TMB) to form a color product, enabling visual signal of the target through naked-eye color contrast. By employing a multifunctional analytical mode combining electrochemical and visual signal outputs, accurate determination of the target is achieved, with linear ranges of 0.0001-100 pM, and detection limits of 48.1 aM (S/N = 3). This work provides a reference method for sensitive detection of thalassemia genes and holds great diagnostic potential in biomedical applications.
Collapse
Affiliation(s)
- Peiyuan Li
- Education Department of Guangxi Zhuang Autonomous Region, Laboratory of Optic-electric Chemo/Biosensing and Molecular Recognition, Guangxi Collaborative Innovation Center for Chemistry and Engineering of Forest Products, Guangxi Key Laboratory of Chemistry and Engineering of Forest Products, Key Laboratory of Chemistry and Engineering of Forest Products, State Ethnic Affairs Commission, School of Chemistry and Chemical Engineering, Guangxi Minzu University, Nanning 530006, China
| | - Yashu Wei
- The Reproductive Hospital of Guangxi Zhuang Autonomous Region, Nanning 530021, China
| | - Jinyue Shi
- Education Department of Guangxi Zhuang Autonomous Region, Laboratory of Optic-electric Chemo/Biosensing and Molecular Recognition, Guangxi Collaborative Innovation Center for Chemistry and Engineering of Forest Products, Guangxi Key Laboratory of Chemistry and Engineering of Forest Products, Key Laboratory of Chemistry and Engineering of Forest Products, State Ethnic Affairs Commission, School of Chemistry and Chemical Engineering, Guangxi Minzu University, Nanning 530006, China
| | - Jiawen Wu
- Education Department of Guangxi Zhuang Autonomous Region, Laboratory of Optic-electric Chemo/Biosensing and Molecular Recognition, Guangxi Collaborative Innovation Center for Chemistry and Engineering of Forest Products, Guangxi Key Laboratory of Chemistry and Engineering of Forest Products, Key Laboratory of Chemistry and Engineering of Forest Products, State Ethnic Affairs Commission, School of Chemistry and Chemical Engineering, Guangxi Minzu University, Nanning 530006, China
| | - Yeyu Wu
- Education Department of Guangxi Zhuang Autonomous Region, Laboratory of Optic-electric Chemo/Biosensing and Molecular Recognition, Guangxi Collaborative Innovation Center for Chemistry and Engineering of Forest Products, Guangxi Key Laboratory of Chemistry and Engineering of Forest Products, Key Laboratory of Chemistry and Engineering of Forest Products, State Ethnic Affairs Commission, School of Chemistry and Chemical Engineering, Guangxi Minzu University, Nanning 530006, China
| | - Jun Yan
- Education Department of Guangxi Zhuang Autonomous Region, Laboratory of Optic-electric Chemo/Biosensing and Molecular Recognition, Guangxi Collaborative Innovation Center for Chemistry and Engineering of Forest Products, Guangxi Key Laboratory of Chemistry and Engineering of Forest Products, Key Laboratory of Chemistry and Engineering of Forest Products, State Ethnic Affairs Commission, School of Chemistry and Chemical Engineering, Guangxi Minzu University, Nanning 530006, China
| | - Shaogang Liu
- Education Department of Guangxi Zhuang Autonomous Region, Laboratory of Optic-electric Chemo/Biosensing and Molecular Recognition, Guangxi Collaborative Innovation Center for Chemistry and Engineering of Forest Products, Guangxi Key Laboratory of Chemistry and Engineering of Forest Products, Key Laboratory of Chemistry and Engineering of Forest Products, State Ethnic Affairs Commission, School of Chemistry and Chemical Engineering, Guangxi Minzu University, Nanning 530006, China
| | - Xuecai Tan
- Education Department of Guangxi Zhuang Autonomous Region, Laboratory of Optic-electric Chemo/Biosensing and Molecular Recognition, Guangxi Collaborative Innovation Center for Chemistry and Engineering of Forest Products, Guangxi Key Laboratory of Chemistry and Engineering of Forest Products, Key Laboratory of Chemistry and Engineering of Forest Products, State Ethnic Affairs Commission, School of Chemistry and Chemical Engineering, Guangxi Minzu University, Nanning 530006, China.
| | - Ke-Jing Huang
- Education Department of Guangxi Zhuang Autonomous Region, Laboratory of Optic-electric Chemo/Biosensing and Molecular Recognition, Guangxi Collaborative Innovation Center for Chemistry and Engineering of Forest Products, Guangxi Key Laboratory of Chemistry and Engineering of Forest Products, Key Laboratory of Chemistry and Engineering of Forest Products, State Ethnic Affairs Commission, School of Chemistry and Chemical Engineering, Guangxi Minzu University, Nanning 530006, China.
| |
Collapse
|
5
|
Qiu S, Yang L, Zhang X, Zhu L, Xiong X, Xiao T, Zhu L. Catalytic hairpin assembly-driven DNA walker to develop a label-free electrochemical aptasensor for antibiotic detection. Mikrochim Acta 2024; 191:569. [PMID: 39212834 DOI: 10.1007/s00604-024-06627-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Accepted: 07/31/2024] [Indexed: 09/04/2024]
Abstract
An electrochemical aptasensor was developed by utilizing a DNA walker driven by catalytic hairpin assembly (CHA) with kanamycin as the model analyte. Kanamycin bound to the aptamer, causes the release of DNA walker, triggers the CHA reaction, leads to the cyclic movement of the walker's long arm, and results in cascade amplification of the signal. The guanine-rich sequences of the double-stranded products produced by CHA were folded to form G-quadruplex structures, with electrochemical active molecules Hemin embedded, forms G-quadruplex/Hemin complexes in situ on the electrode surface, thereby achieving sensitive, efficient, and label-free detection of kanamycin with a limit of detection (LOD) of 0.27 pM (S/N = 3). Meaningfully, the aptasensor demonstrated high sensitivity and reliability in the detection of kanamycin in milk and livestock wastewater samples, suggesting that it has great potential for application in detecting antibiotics in food products and water samples from the environment.
Collapse
Affiliation(s)
- Shan Qiu
- Key Laboratory of the Evaluation and Monitoring of Southwest Land Resources (Ministry of Education), Sichuan Normal University, Chengdu, 610066, China
- Sichuan Provincial Engineering Laboratory of Livestock Manure Treatment and Recycling, Sichuan Normal University, Chengdu, 610066, China
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu, 610066, China
| | - Li Yang
- Key Laboratory of the Evaluation and Monitoring of Southwest Land Resources (Ministry of Education), Sichuan Normal University, Chengdu, 610066, China
- Sichuan Provincial Engineering Laboratory of Livestock Manure Treatment and Recycling, Sichuan Normal University, Chengdu, 610066, China
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu, 610066, China
| | - Xuemei Zhang
- Key Laboratory of the Evaluation and Monitoring of Southwest Land Resources (Ministry of Education), Sichuan Normal University, Chengdu, 610066, China
- Sichuan Provincial Engineering Laboratory of Livestock Manure Treatment and Recycling, Sichuan Normal University, Chengdu, 610066, China
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu, 610066, China
| | - Li Zhu
- Key Laboratory of the Evaluation and Monitoring of Southwest Land Resources (Ministry of Education), Sichuan Normal University, Chengdu, 610066, China
- Sichuan Provincial Engineering Laboratory of Livestock Manure Treatment and Recycling, Sichuan Normal University, Chengdu, 610066, China
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu, 610066, China
| | - Xiaoli Xiong
- Key Laboratory of the Evaluation and Monitoring of Southwest Land Resources (Ministry of Education), Sichuan Normal University, Chengdu, 610066, China
- Sichuan Provincial Engineering Laboratory of Livestock Manure Treatment and Recycling, Sichuan Normal University, Chengdu, 610066, China
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu, 610066, China
| | - Ting Xiao
- Key Laboratory of the Evaluation and Monitoring of Southwest Land Resources (Ministry of Education), Sichuan Normal University, Chengdu, 610066, China.
- Sichuan Provincial Engineering Laboratory of Livestock Manure Treatment and Recycling, Sichuan Normal University, Chengdu, 610066, China.
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu, 610066, China.
| | - Liping Zhu
- Key Laboratory of the Evaluation and Monitoring of Southwest Land Resources (Ministry of Education), Sichuan Normal University, Chengdu, 610066, China.
- Sichuan Provincial Engineering Laboratory of Livestock Manure Treatment and Recycling, Sichuan Normal University, Chengdu, 610066, China.
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu, 610066, China.
| |
Collapse
|
6
|
Dong H, Wang H, Guo Z, Huang J, Zhang P, Guo Y, Sun X. Combination of Capture-SELEX and Post-SELEX for procymidone-specific aptamer selection and broad-specificity aptamer discovery, and development of aptamer-based lateral flow assay. Anal Chim Acta 2024; 1318:342922. [PMID: 39067914 DOI: 10.1016/j.aca.2024.342922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 06/25/2024] [Accepted: 06/27/2024] [Indexed: 07/30/2024]
Abstract
BACKGROUND Due to its wide application, procymidone has become one of the pesticides with high detection rates in supervision and sampling. Therefore, it is necessary to establish a rapid and efficient method for the detection of procymidone. However, an important bottleneck restricting the development of rapid detection methods of procymidone is that its specific recognition elements are rarely reported. In this work, Capture-SELEX and post-SELEX were used in aptamer screening, and the obtained aptamers were used to construct an aptamer-based lateral flow assay (LFA). RESULTS Firstly, a specific aptamer Seq15 was obtained for procymidone by Capture-SELEX, and its dissociation constant (Kd) was 24.22 nM. Secondly, post-SELEX was used to analyze and modify Seq15 to improve its performance, and the Kd of the truncated sequence Seq15-2 was 21.28 nM. In addition to this, the broad-specificity aptamer Seq17-1 was obtained via post-SELEX. Seq17-1 could broadly recognize dicarboximide fungicides (procymidone, iprodione, chlozolinate, dimethachlon and vinclozolin) and their metabolic derivative (3,5-dichloroaniline). Finally, the specific aptamer-based LFA of procymidone was constructed, and the limit of detection (LOD) was 0.79 ng/mL. Meanwhile, the LODs of dicarboximide fungicides and their metabolic derivative were 0.62, 0.64, 0.71, 0.69, 0.64 and 0.66 ng/mL, respectively. The above LFAs were highly specific and stable, and had been successfully used for the detection of vegetable samples. SIGNIFICANCE Under the combination of Capture-SELEX and Post-SELEX, this study not only provides specific recognition elements for rapid detection of procymidone, but also provides new ideas for the discovery of broad-specificity aptamers. Combining broad-specificity primary detection and single-specificity quantification, a composite aptamer-based LFA detection platform has been developed, which significantly improves detection efficiency.
Collapse
Affiliation(s)
- Haowei Dong
- College of Agricultural Engineering and Food Science, Shandong University of Technology, No. 266 Xincun Xilu, Zibo, Shandong 255049, China; Shandong Provincial Engineering Research Center of Vegetable Safety and Quality Traceability, No. 266 Xincun Xilu, Zibo, Shandong 255049, China; Zibo City Key Laboratory of Agricultural Product Safety Traceability, No. 266 Xincun Xilu, Zibo, Shandong 255049, China
| | - Haifang Wang
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing 100700, China
| | - Zhen Guo
- College of Agricultural Engineering and Food Science, Shandong University of Technology, No. 266 Xincun Xilu, Zibo, Shandong 255049, China; Shandong Provincial Engineering Research Center of Vegetable Safety and Quality Traceability, No. 266 Xincun Xilu, Zibo, Shandong 255049, China; Zibo City Key Laboratory of Agricultural Product Safety Traceability, No. 266 Xincun Xilu, Zibo, Shandong 255049, China
| | - Jingcheng Huang
- College of Agricultural Engineering and Food Science, Shandong University of Technology, No. 266 Xincun Xilu, Zibo, Shandong 255049, China; Shandong Provincial Engineering Research Center of Vegetable Safety and Quality Traceability, No. 266 Xincun Xilu, Zibo, Shandong 255049, China; Zibo City Key Laboratory of Agricultural Product Safety Traceability, No. 266 Xincun Xilu, Zibo, Shandong 255049, China
| | - Pengwei Zhang
- College of Agricultural Engineering and Food Science, Shandong University of Technology, No. 266 Xincun Xilu, Zibo, Shandong 255049, China; Shandong Provincial Engineering Research Center of Vegetable Safety and Quality Traceability, No. 266 Xincun Xilu, Zibo, Shandong 255049, China; Zibo City Key Laboratory of Agricultural Product Safety Traceability, No. 266 Xincun Xilu, Zibo, Shandong 255049, China
| | - Yemin Guo
- College of Agricultural Engineering and Food Science, Shandong University of Technology, No. 266 Xincun Xilu, Zibo, Shandong 255049, China; Shandong Provincial Engineering Research Center of Vegetable Safety and Quality Traceability, No. 266 Xincun Xilu, Zibo, Shandong 255049, China; Zibo City Key Laboratory of Agricultural Product Safety Traceability, No. 266 Xincun Xilu, Zibo, Shandong 255049, China.
| | - Xia Sun
- College of Agricultural Engineering and Food Science, Shandong University of Technology, No. 266 Xincun Xilu, Zibo, Shandong 255049, China; Shandong Provincial Engineering Research Center of Vegetable Safety and Quality Traceability, No. 266 Xincun Xilu, Zibo, Shandong 255049, China; Zibo City Key Laboratory of Agricultural Product Safety Traceability, No. 266 Xincun Xilu, Zibo, Shandong 255049, China.
| |
Collapse
|
7
|
Luo D, Yi J, Wu Y, Luo Y, Zhang Y, Men X, Wang H, Yang W, Pang P. Biofuel cell-based self-powered immunosensor for detection of 17β-estradiol by integrating the target-induced biofuel release and biogate immunoassay. Mikrochim Acta 2024; 191:477. [PMID: 39039391 DOI: 10.1007/s00604-024-06553-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Accepted: 07/07/2024] [Indexed: 07/24/2024]
Abstract
A novel biofuel cell (BFC)-based self-powered electrochemical immunosensing platform was developed by integrating the target-induced biofuel release and biogate immunoassay for ultrasensitive 17β-estradiol (E2) detection. The carbon nanocages/gold nanoparticle composite was employed in the BFCs device as the electrode material, through which bilirubin oxidase and glucose oxidase were wired to form the biocathode and bioanode, respectively. Positively charged mesoporous silica nanoparticles (PMSN) were encapsulated with glucose molecules as biofuel and subsequently coated by the negatively charged AuNPs-labelled anti-E2 antibody (AuNPs-Ab) serving as a biogate. The biogate could be opened efficiently and the trapped glucose released once the target E2 was recognized and captured by AuNPs-Ab due to the decreased adhesion between the antigen-antibody complex and PMSN. Then, glucose oxidase oxidized the glucose to produce a large number of electrons, resulting in significantly increased open-circuit voltage (EOCV). Promisingly, the proposed BFC-based self-powered immunosensor demonstrated exceptional sensitivity for the detection of E2 in the concentration range from 1.0 pg mL-1 to 10.0 ng mL -1, with a detection limit of 0.32 pg mL-1 (S/N = 3). Furthermore, the prepared BFC-based self-powered homogeneous immunosensor showed significant potential for implementation as a viable prototype for a mobile and an on-site bioassay system in food and environmental safety applications.
Collapse
Affiliation(s)
- Dan Luo
- Functional Nanomaterial-Based Chemical and Biological Sensing Technology Innovation Team of Department of Education of Yunnan Province, Yunnan Minzu University, Kunming, 650504, People's Republic of China
| | - Jinfei Yi
- Functional Nanomaterial-Based Chemical and Biological Sensing Technology Innovation Team of Department of Education of Yunnan Province, Yunnan Minzu University, Kunming, 650504, People's Republic of China
| | - Yongju Wu
- Functional Nanomaterial-Based Chemical and Biological Sensing Technology Innovation Team of Department of Education of Yunnan Province, Yunnan Minzu University, Kunming, 650504, People's Republic of China
| | - Yan Luo
- Functional Nanomaterial-Based Chemical and Biological Sensing Technology Innovation Team of Department of Education of Yunnan Province, Yunnan Minzu University, Kunming, 650504, People's Republic of China
| | - Yanli Zhang
- Functional Nanomaterial-Based Chemical and Biological Sensing Technology Innovation Team of Department of Education of Yunnan Province, Yunnan Minzu University, Kunming, 650504, People's Republic of China.
| | - Xue Men
- Functional Nanomaterial-Based Chemical and Biological Sensing Technology Innovation Team of Department of Education of Yunnan Province, Yunnan Minzu University, Kunming, 650504, People's Republic of China
| | - Hongbin Wang
- Functional Nanomaterial-Based Chemical and Biological Sensing Technology Innovation Team of Department of Education of Yunnan Province, Yunnan Minzu University, Kunming, 650504, People's Republic of China
| | - Wenrong Yang
- School of Life and Environmental Sciences, Deakin University, Geelong, VIC, 3217, Australia
| | - Pengfei Pang
- Functional Nanomaterial-Based Chemical and Biological Sensing Technology Innovation Team of Department of Education of Yunnan Province, Yunnan Minzu University, Kunming, 650504, People's Republic of China.
| |
Collapse
|
8
|
Zhang X, Zhu L, Yang L, Liu G, Qiu S, Xiong X, Huang K, Xiao T, Zhu L. A sensitive and versatile electrochemical sensor based on hybridization chain reaction and CRISPR/Cas12a system for antibiotic detection. Anal Chim Acta 2024; 1304:342562. [PMID: 38637031 DOI: 10.1016/j.aca.2024.342562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 03/27/2024] [Accepted: 03/29/2024] [Indexed: 04/20/2024]
Abstract
A sensitive electrochemical platform was constructed with NH2-Cu-MOF as electrochemical probe to detect antibiotics using CRISPR/Cas12a system triggered by hybridization chain reaction (HCR). The sensing system consists of two HCR systems. HCR1 occurred on the electrode surface independent of the target, generating long dsDNA to connect signal probes and producing a strong electrochemical signal. HCR2 was triggered by target, and the resulting dsDNA products activated the CRISPR/Cas12a, thereby resulting in effective and rapid cleavage of the trigger of HCR1, hindering the occurrence of HCR1, and reducing the number of NH2-Cu-MOF on the electrode surface. Eventually, significant signal change depended on the target was obtained. On this basis and with the help of the programmability of DNA, kanamycin and ampicillin were sensitively detected with detection limits of 60 fM and 10 fM (S/N = 3), respectively. Furthermore, the sensing platform showed good detection performance in milk and livestock wastewater samples, demonstrating its great application prospects in the detection of antibiotics in food and environmental water samples.
Collapse
Affiliation(s)
- Xuemei Zhang
- Key Laboratory of the Evaluation and Monitoring of Southwest Land Resources (Ministry of Education), Sichuan Normal University, Chengdu, 610066, China; Sichuan Provincial Engineering Laboratory of Livestock Manure Treatment and Recycling (Sichuan Normal University), Chengdu, 610066, China; College of Chemistry and Materials Science, Sichuan Normal University, Chengdu, 610066, China
| | - Li Zhu
- Key Laboratory of the Evaluation and Monitoring of Southwest Land Resources (Ministry of Education), Sichuan Normal University, Chengdu, 610066, China; Sichuan Provincial Engineering Laboratory of Livestock Manure Treatment and Recycling (Sichuan Normal University), Chengdu, 610066, China; College of Chemistry and Materials Science, Sichuan Normal University, Chengdu, 610066, China
| | - Li Yang
- Key Laboratory of the Evaluation and Monitoring of Southwest Land Resources (Ministry of Education), Sichuan Normal University, Chengdu, 610066, China; Sichuan Provincial Engineering Laboratory of Livestock Manure Treatment and Recycling (Sichuan Normal University), Chengdu, 610066, China; College of Chemistry and Materials Science, Sichuan Normal University, Chengdu, 610066, China
| | - Guoyu Liu
- Key Laboratory of the Evaluation and Monitoring of Southwest Land Resources (Ministry of Education), Sichuan Normal University, Chengdu, 610066, China; Sichuan Provincial Engineering Laboratory of Livestock Manure Treatment and Recycling (Sichuan Normal University), Chengdu, 610066, China; College of Chemistry and Materials Science, Sichuan Normal University, Chengdu, 610066, China
| | - Shan Qiu
- Key Laboratory of the Evaluation and Monitoring of Southwest Land Resources (Ministry of Education), Sichuan Normal University, Chengdu, 610066, China; Sichuan Provincial Engineering Laboratory of Livestock Manure Treatment and Recycling (Sichuan Normal University), Chengdu, 610066, China; College of Chemistry and Materials Science, Sichuan Normal University, Chengdu, 610066, China
| | - Xiaoli Xiong
- Key Laboratory of the Evaluation and Monitoring of Southwest Land Resources (Ministry of Education), Sichuan Normal University, Chengdu, 610066, China; Sichuan Provincial Engineering Laboratory of Livestock Manure Treatment and Recycling (Sichuan Normal University), Chengdu, 610066, China; College of Chemistry and Materials Science, Sichuan Normal University, Chengdu, 610066, China
| | - Ke Huang
- Key Laboratory of the Evaluation and Monitoring of Southwest Land Resources (Ministry of Education), Sichuan Normal University, Chengdu, 610066, China; Sichuan Provincial Engineering Laboratory of Livestock Manure Treatment and Recycling (Sichuan Normal University), Chengdu, 610066, China; College of Chemistry and Materials Science, Sichuan Normal University, Chengdu, 610066, China
| | - Ting Xiao
- Key Laboratory of the Evaluation and Monitoring of Southwest Land Resources (Ministry of Education), Sichuan Normal University, Chengdu, 610066, China; Sichuan Provincial Engineering Laboratory of Livestock Manure Treatment and Recycling (Sichuan Normal University), Chengdu, 610066, China; College of Chemistry and Materials Science, Sichuan Normal University, Chengdu, 610066, China.
| | - Liping Zhu
- Key Laboratory of the Evaluation and Monitoring of Southwest Land Resources (Ministry of Education), Sichuan Normal University, Chengdu, 610066, China; Sichuan Provincial Engineering Laboratory of Livestock Manure Treatment and Recycling (Sichuan Normal University), Chengdu, 610066, China; College of Chemistry and Materials Science, Sichuan Normal University, Chengdu, 610066, China.
| |
Collapse
|
9
|
Sun S, Su M, Xiao H, Yin X, Liu Y, Yang W, Chen Y. Self-powered biosensing platform for Highly sensitive detection of soluble CD44 protein. Talanta 2024; 272:125824. [PMID: 38422906 DOI: 10.1016/j.talanta.2024.125824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 02/05/2024] [Accepted: 02/21/2024] [Indexed: 03/02/2024]
Abstract
In this study, a self-powered biosensor based on an enzymatic biofuel cell was proposed for the first time for the ultrasensitive detection of soluble CD44 protein. The as-prepared biosensor was composed of the co-exist aptamer and glucose oxidase bioanode and bilirubin oxidase modified biocathode. Initially, the electron transfer from bioanode to biocathode was hindered due to the presence of the aptamer with high insulation, generating a low open-circuit voltage (EOCV). Once the target CD44 protein was present, it was recognized and captured by the aptamer at the bioanode, thus the interaction between the target CD44 protein and the immobilized aptamer caused the structural change at the surface of the electrode, which facilitated the transfer of electrons. The EOCV showed a good linear relationship with the logarithm of the CD44 protein concentrations in the range of 0.5-1000 ng mL-1 and the detection limit was 0.052 ng mL-1 (S/N = 3). The sensing platform showed excellent anti-interference performance and outstanding stability that maintained over 97% of original EOCV after 15 days. In addition, the relative standard deviation (1.40-1.96%) and recovery (100.23-101.31%) obtained from detecting CD44 protein in real-life blood samples without special pre-treatment indicated that the constructed biosensor had great potential for early cancer diagnosis.
Collapse
Affiliation(s)
- Shanshan Sun
- School of Chemistry and Molecular Engineering, Nanjing Tech University, No. 30 Puzhu Road (S), Nanjing 211816, China
| | - Meng Su
- School of Chemistry and Molecular Engineering, Nanjing Tech University, No. 30 Puzhu Road (S), Nanjing 211816, China
| | - Han Xiao
- School of Chemistry and Molecular Engineering, Nanjing Tech University, No. 30 Puzhu Road (S), Nanjing 211816, China
| | - Xiaoshuang Yin
- School of Chemistry and Molecular Engineering, Nanjing Tech University, No. 30 Puzhu Road (S), Nanjing 211816, China
| | - Ying Liu
- School of Chemistry and Molecular Engineering, Nanjing Tech University, No. 30 Puzhu Road (S), Nanjing 211816, China
| | - Wenzhong Yang
- School of Chemistry and Molecular Engineering, Nanjing Tech University, No. 30 Puzhu Road (S), Nanjing 211816, China
| | - Yun Chen
- School of Chemistry and Molecular Engineering, Nanjing Tech University, No. 30 Puzhu Road (S), Nanjing 211816, China.
| |
Collapse
|
10
|
Wu Y, Luo D, Yi J, Li R, Yang D, Pang P, Wang H, Yang W, Zhang Y. A self-powered electrochemical aptasensor for the detection of 17β-estradiol based on carbon nanocages/gold nanoparticles and DNA bioconjugate mediated biofuel cells. Analyst 2024; 149:2621-2628. [PMID: 38546096 DOI: 10.1039/d4an00085d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/30/2024]
Abstract
17β-Estradiol (E2) is an important endogenous estrogen, which disturbs the endocrine system and poses a threat to human health because of its accumulation in the human body. Herein, a biofuel cell (BFC)-based self-powered electrochemical aptasensor was developed for E2 detection. Porous carbon nanocage/gold nanoparticle composite modified indium tin oxide (CNC/AuNP/ITO) and glucose oxidase modified CNC/AuNP/ITO were used as the biocathode and bioanode of BFCs, respectively. [Fe(CN)6]3- was selected as an electroactive probe, which was entrapped in the pores of positively charged magnetic Fe3O4 nanoparticles (PMNPs) and then capped with a negatively charged E2 aptamer to form a DNA bioconjugate. The presence of the target E2 triggered the entrapped [Fe(CN)6]3- probe release due to the removal of the aptamer via specific recognition, which resulted in the transfer of electrons produced by glucose oxidation at the bioanode to the biocathode and produced a high open-circuit voltage (EOCV). Consequently, a "signal-on" homogeneous self-powered aptasensor for E2 assay was realized. Promisingly, the BFC-based self-powered aptasensor has particularly high sensitivity for E2 detection in the concentration range of 0.5 pg mL-1 to 15 ng mL-1 with a detection limit of 0.16 pg mL-1 (S/N = 3). Therefore, the proposed BFC-based self-powered electrochemical aptasensor has great promise to be applied as a successful prototype of a portable and on-site bioassay in the field of environment monitoring and food safety.
Collapse
Affiliation(s)
- Yongju Wu
- Functional Nanomaterial-based Chemical and Biological Sensing Technology Innovation Team of Department of Education of Yunnan Province, Yunnan Minzu University, Kunming 650504, P. R. China.
| | - Dan Luo
- Functional Nanomaterial-based Chemical and Biological Sensing Technology Innovation Team of Department of Education of Yunnan Province, Yunnan Minzu University, Kunming 650504, P. R. China.
| | - Jinfei Yi
- Functional Nanomaterial-based Chemical and Biological Sensing Technology Innovation Team of Department of Education of Yunnan Province, Yunnan Minzu University, Kunming 650504, P. R. China.
| | - Rong Li
- Functional Nanomaterial-based Chemical and Biological Sensing Technology Innovation Team of Department of Education of Yunnan Province, Yunnan Minzu University, Kunming 650504, P. R. China.
| | - Dan Yang
- Functional Nanomaterial-based Chemical and Biological Sensing Technology Innovation Team of Department of Education of Yunnan Province, Yunnan Minzu University, Kunming 650504, P. R. China.
| | - Pengfei Pang
- Functional Nanomaterial-based Chemical and Biological Sensing Technology Innovation Team of Department of Education of Yunnan Province, Yunnan Minzu University, Kunming 650504, P. R. China.
| | - Hongbin Wang
- Functional Nanomaterial-based Chemical and Biological Sensing Technology Innovation Team of Department of Education of Yunnan Province, Yunnan Minzu University, Kunming 650504, P. R. China.
| | - Wenrong Yang
- School of Life and Environmental Sciences, Deakin University, Geelong, VIC 3217, Australia
| | - Yanli Zhang
- Functional Nanomaterial-based Chemical and Biological Sensing Technology Innovation Team of Department of Education of Yunnan Province, Yunnan Minzu University, Kunming 650504, P. R. China.
| |
Collapse
|
11
|
Ding H, Zhang M, Wang X, He S, Wang X, Chen L. Colorimetric and fluorescent independent dual "signal on" biosensor for accurate detection of ochratoxin A based on aptamer-triggered biocatalytic reactions. Anal Chim Acta 2024; 1299:342440. [PMID: 38499428 DOI: 10.1016/j.aca.2024.342440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Revised: 02/26/2024] [Accepted: 02/29/2024] [Indexed: 03/20/2024]
Abstract
Ochratoxin A (OTA) is a hazardous food contaminant with significant health risks. Dual-channel OTA detection is noted for its cross-reference capability and high accuracy. Still, challenges in addressing in-system corrections and "signal off" related false positives and limited signal gains remain. Herein, we developed a dual-channel "signal on" aptasensor with one recognition process and two independent signal outputs for OTA analysis. The OTA aptamer binds to magnetic beads (MBs) and partially hybridizes with a complementary-trigger (cDNA-Trigger) sequence. Adding OTA disrupts the duplex sequence, leading to G-quadruplex (G4) formation and enrichment on the MBs, which then interacts with hemin to catalyze a color signal. Concurrently, the freed cDNA-Trigger catalyzes an enzyme-free DNA circuit, producing a fluorescence signal. The magnetic enrichment and signal amplification strategies make the proposed assay demonstrate excellent sensitivity toward OTA, with limits of detection (LOD) of 0.017 pM in the fluorescence channel and 48.1 pM in the colorimetric channel. Both channels have effectively detected OTA in grape juice and baijiu, demonstrating their applicability and reliability. Moreover, given the widespread use of smartphones globally, a mini-program with a self-correction function was designed to facilitate on-site colorimetric channel monitoring, making OTA detection more accessible and user-friendly.
Collapse
Affiliation(s)
- Hao Ding
- Shandong Provincial Key Laboratory of Biochemical Engineering, College of Marine Science and Biological Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China
| | - Mingdi Zhang
- Shandong Provincial Key Laboratory of Biochemical Engineering, College of Marine Science and Biological Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China
| | - Xiaochun Wang
- Shandong Provincial Key Laboratory of Biochemical Engineering, College of Marine Science and Biological Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China
| | - Shuai He
- School of Mechanical and Manufacturing Engineering, University of New South Wales, Sydney, 2052, Australia
| | - Xiaokun Wang
- Shandong Provincial Key Laboratory of Biochemical Engineering, College of Marine Science and Biological Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China.
| | - Lingxin Chen
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Research Centre for Coastal Environmental Engineering and Technology, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, China; School of Pharmacy, Binzhou Medical University, Yantai, 264003, China; College of Chemistry and Chemical Engineering, Shaoxing University, Shaoxing, 312000, China
| |
Collapse
|
12
|
Esmaelpourfarkhani M, Ramezani M, Alibolandi M, Abnous K, Taghdisi SM. Signal-off nanozyme-based colorimetric aptasensor for sensitive detection of ampicillin using MnO 2 nanoflowers and gold nanoparticles. Anal Biochem 2024; 687:115459. [PMID: 38182031 DOI: 10.1016/j.ab.2024.115459] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 12/25/2023] [Accepted: 01/03/2024] [Indexed: 01/07/2024]
Abstract
The combination of nanomaterials possessing distinct characteristics and the precision of aptamers facilitates the creation of biosensors that exhibit exceptional selectivity and sensitivity. In this manuscript, we present a highly sensitive aptasensor that utilizes the distinctive characteristics of MnO2 nanoflowers and gold nanoparticles to selectively detect ampicillin (AMP). In this aptasensor, the mechanism of signal change is attributed to the difference in the oxidase-mimicking activity of MnO2 nanoflowers in the presence of a free sequence. The inclusion of AMP hindered the creation of a double-stranded DNA configuration through its binding to the aptamer, resulting in an observable alteration in absorbance. The relative absorbance varied linearly with the concentration of AMP in the range of 70 pM to 10 nM with a detection limit of 21.7 pM. In general, the colorimetric aptasensor that has been developed exhibits exceptional selectivity and remarkable stability. It also demonstrates favorable performance in human serum, making it a highly reliable diagnostic tool. Additionally, its versatility is noteworthy as it holds great potential for detecting various antibiotics present in complex samples by merely replacing the utilized sequences with new ones.
Collapse
Affiliation(s)
- Masoomeh Esmaelpourfarkhani
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Medicinal Chemistry, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohammad Ramezani
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mona Alibolandi
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Khalil Abnous
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Medicinal Chemistry, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Seyed Mohammad Taghdisi
- Targeted Drug Delivery Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Pharmaceutical Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
13
|
Si Q, Li Y, Huang Z, Liu C, Jiao T, Chen Q, Chen X, Chen Q, Wei J. Isothermal Reciprocal Catalytic DNA Circuit for Sensitive Analysis of Kanamycin. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:6754-6761. [PMID: 38470333 DOI: 10.1021/acs.jafc.4c00261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/13/2024]
Abstract
Inappropriate use of veterinary drugs can result in the presence of antibiotic residues in animal-derived foods, which is a threat to human health. A simple yet efficient antibiotic-sensing method is highly desirable. Programmable DNA amplification circuits have supplemented robust toolkits for food contaminants monitoring. However, they currently face limitations in terms of their intricate design and low signal gain. Herein, we have engineered a robust reciprocal catalytic DNA (RCD) circuit for highly efficient bioanalysis. The trigger initiates the cascade hybridization reaction (CHR) to yield plenty of repeated initiators for activating the rolling circle amplification (RCA) circuit. Then the RCA-generated numerous reconstituted triggers can reversely stimulate the CHR circuit. This results in a self-sufficient supply of numerous initiators and triggers for the successive cross-invasion of CHR and RCA amplifiers, thus leading to exponential signal amplification for the highly efficient detection of analytes. With its flexible programmability and modular features, the RCD amplifier can serve as a universal toolbox for the high-performance and accurate sensing of kanamycin in buffer and food samples including milk, honey, and fish, highlighting its enormous promise for low-abundance contaminant analysis in foodstuffs.
Collapse
Affiliation(s)
- Qingyang Si
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, China
| | - Yumeng Li
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, China
| | - Ziling Huang
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, China
| | - Chuanyi Liu
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, China
| | - Tianhui Jiao
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, China
| | - Qingmin Chen
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, China
| | - Xiaomei Chen
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, China
| | - Quansheng Chen
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, China
| | - Jie Wei
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, China
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| |
Collapse
|
14
|
Cao L, Chen J, Pang J, Qu H, Liu J, Gao J. Research Progress in Enzyme Biofuel Cells Modified Using Nanomaterials and Their Implementation as Self-Powered Sensors. Molecules 2024; 29:257. [PMID: 38202838 PMCID: PMC10780655 DOI: 10.3390/molecules29010257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 12/26/2023] [Accepted: 12/28/2023] [Indexed: 01/12/2024] Open
Abstract
Enzyme biofuel cells (EBFCs) can convert chemical or biochemical energy in fuel into electrical energy, and therefore have received widespread attention. EBFCs have advantages that traditional fuel cells cannot match, such as a wide range of fuel sources, environmental friendliness, and mild reaction conditions. At present, research on EBFCs mainly focuses on two aspects: one is the use of nanomaterials with excellent properties to construct high-performance EBFCs, and the other is self-powered sensors based on EBFCs. This article reviews the applied nanomaterials based on the working principle of EBFCs, analyzes the design ideas of self-powered sensors based on enzyme biofuel cells, and looks forward to their future research directions and application prospects. This article also points out the key properties of nanomaterials in EBFCs, such as electronic conductivity, biocompatibility, and catalytic activity. And the research on EBFCs is classified according to different research goals, such as improving battery efficiency, expanding the fuel range, and achieving self-powered sensors.
Collapse
Affiliation(s)
- Lili Cao
- College of Science, Heilongjiang Bayi Agricultural University, Daqing 163319, China; (J.C.); (J.P.); (H.Q.); (J.L.); (J.G.)
| | | | | | | | | | | |
Collapse
|
15
|
Sailapu SK, Liébana S, Merino-Jimenez I, Esquivel JP, Sabaté N. Towards a REASSURED reality: A less-is-more electronic design strategy for self-powered glucose test. Biosens Bioelectron 2024; 243:115708. [PMID: 37862757 DOI: 10.1016/j.bios.2023.115708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 09/19/2023] [Accepted: 09/21/2023] [Indexed: 10/22/2023]
Abstract
Sensing strategies adopting minimal electronic systems help in realizing REASSURED diagnostic tests. However, the challenge in developing such strategies escalates with demand in power and electronics during pursuit of reliable and accurate sensing. Herein, we present an electronic design strategy using a smart strip, operating with power generated from 3.5 μL of serum sample, to reveal glucose concentration through a response preserved in a capacitor. Further, by integrating an NFC tag alongside the strip, we devised a self-powered glucose measuring card, mobile-glucocard (or mGlucocard) for retrieving this stored digital response using smartphone, enabling 'connected mobile-health diagnostics'. The response from our device relates linearly to glucose concentration offering a sensitivity of 11.3 mV/mM and good correlation (R = 0.974) with colorimetric reference method. Interestingly, the design strategy uses only four components - two resistors, diode, and capacitor - of simple architecture likely transferable to printed technologies to deliver advanced self-powered sustainable devices.
Collapse
Affiliation(s)
- Sunil Kumar Sailapu
- Instituto de Microelectrónica de Barcelona, IMB-CNM (CSIC), C/ Del Til⋅lers, Campus UAB, Bellaterra, 08193, Barcelona, Spain.
| | - Susana Liébana
- Instituto de Microelectrónica de Barcelona, IMB-CNM (CSIC), C/ Del Til⋅lers, Campus UAB, Bellaterra, 08193, Barcelona, Spain
| | - Irene Merino-Jimenez
- Instituto de Microelectrónica de Barcelona, IMB-CNM (CSIC), C/ Del Til⋅lers, Campus UAB, Bellaterra, 08193, Barcelona, Spain
| | - Juan Pablo Esquivel
- Instituto de Microelectrónica de Barcelona, IMB-CNM (CSIC), C/ Del Til⋅lers, Campus UAB, Bellaterra, 08193, Barcelona, Spain; BCMaterials, Basque Centre for Materials, Applications and Nanostructures, UPV/EHU Science Park, 48940, Leioa, Spain; IKERBASQUE, Basque Foundation for Science, 48009, Bilbao, Spain
| | - Neus Sabaté
- Instituto de Microelectrónica de Barcelona, IMB-CNM (CSIC), C/ Del Til⋅lers, Campus UAB, Bellaterra, 08193, Barcelona, Spain; Catalan Institution for Research and Advanced Studies (ICREA), P.L. Companys 23, 08010, Barcelona, Spain.
| |
Collapse
|
16
|
Kan A, Ding S, Ouyang A, Zhang N, Jiang W. Magnetic separation-assisted cluster-amplified versatile fluorescent aptasensors for the sensitive detection of target biomolecules. Analyst 2023; 148:5972-5979. [PMID: 37869770 DOI: 10.1039/d3an01535a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2023]
Abstract
A sensitive and versatile platform for detecting diverse target biomolecules was developed by combining a magnetic separation module and a fluorescence amplification module in a plug-and-play manner. The magnetic separation module was constructed using magnetic beads (MBs), whose surfaces were modified with aptamer-blocked captor DNAs. The fluorescence amplification module was constructed by loading the fluorescent dye rhodamine 6G (Rh6G) into the pores of mesoporous silica nanoparticles (MSNs). The MSN surfaces were modified with prey DNAs, of which the MSN-near ends hybridized with complementary DNAs (sealing DNAs) to form duplexes to seal the pores, and the free ends were designed to be single-stranded that were complementary to the captor DNAs. Upon binding of targets to their aptamers, the captor DNAs were unblocked and thus were able to hybridize with the prey DNAs, to capture Rh6G-laden MSNs, forming MB-MSN clusters. The clusters were isolated by magnetic separation and heated to dissociate the DNA duplexes, to unseal the MSN pores and release the inner Rh6G; thus a target was converted into a cluster of Rh6G dyes. By simply changing the target aptamers and related DNA connectors, this strategy detected ATP, thrombin, and platelet-derived growth factor BB with detection limits of 2.1 nM, 4.1 pM, and 2.4 pM, respectively. A wide range of targets, high amplification efficiency and universal functional modules endow the aptasensors with good potential as versatile platforms for detecting target molecules in vitro and in medical research.
Collapse
Affiliation(s)
- Ailing Kan
- School of Chemistry and Chemical Engineering, Shandong University, 250100 Jinan, P. R. China.
- Research Center of Basic Medicine, Breast Center, Central Hospital Affiliated to Shandong First Medical University, Jinan, 250013, P. R. China.
| | - Shengyong Ding
- School of Chemistry and Chemical Engineering, Shandong University, 250100 Jinan, P. R. China.
| | - Aimei Ouyang
- Department of Radiology, Central Hospital Affiliated to Shandong First Medical University, 250013 Jinan, P. R. China
| | - Nan Zhang
- Research Center of Basic Medicine, Breast Center, Central Hospital Affiliated to Shandong First Medical University, Jinan, 250013, P. R. China.
| | - Wei Jiang
- School of Chemistry and Chemical Engineering, Shandong University, 250100 Jinan, P. R. China.
| |
Collapse
|
17
|
Ma Y, Shi J, Lin Y, Wu Y, Luo H, Yan J, Huang KJ, Tan X. Smart enzyme-free amplification dual-mode self-powered platform designed on two-dimensional networked graphdiyne and DNA nanorods for ultra-sensitive detection of breast cancer biomarkers. Anal Chim Acta 2023; 1280:341876. [PMID: 37858559 DOI: 10.1016/j.aca.2023.341876] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 09/18/2023] [Accepted: 10/04/2023] [Indexed: 10/21/2023]
Abstract
Research has shown that microRNAs exhibit regular dysregulation in cancers, making them potential biomarkers for cancer diagnosis. However, achieving specific and sensitive detection of microRNAs has been a challenging task. To address this issue, two-dimensional networked graphdiyne is used to fabricate a self-powered biosensor and establish a new approach for ultra-responsive dual-mode detection of miRNA-141, a breast cancer biomarker. This method detects miRNA-141 using both electrochemical and colorimetric modes by measuring the output electrical signal of an enzyme-based biofuel cell and the RGB blue value of the electrolyte solution. Tetrahedral DNA and DNA nanorods also are immobilized on the electrode as a biocathode and methylene blue is used as the electron acceptor, which is fixed in the DNA phosphate backbone through electrostatic adsorption. The bioanode catalyzes the oxidation of glucose to produce electrons, which reduces methylene blue to its reduced form, resulting in a high open-circuit voltage (EOCV) and a highger RGB Blue value, enabling dual-mode detection. A reliable linear correlation is observed between EOCV values and miRNA-141 concentrations ranging from 0.0001 to 100 pM, with a detection limit of 21.9 aM (S/N = 3). Additionally, the colorimetric mode also demonstrates a reliable linear correlation with a concentration range of 0.0001-10000 pM, and this method can detect a concentration of 22.2 aM (S/N = 3). This innovative research realizes sensitive and accurate determination of miRNA-141 and provides an important new method for cancer diagnosis.
Collapse
Affiliation(s)
- Yunzhi Ma
- Education Department of Guangxi Zhuang Autonomous Region, Key Laboratory of Applied Analytical Chemistry, Guangxi Collaborative Innovation Center for Chemistry and Engineering of Forest Products, Guangxi Key Laboratory of Chemistry and Engineering of Forest Products, Key Laboratory of Chemistry and Engineering of Forest Products, State Ethnic Affairs Commission, School of Chemistry and Chemical Engineering, Guangxi Minzu University, Nanning, 530006, China
| | - Jinyue Shi
- Education Department of Guangxi Zhuang Autonomous Region, Key Laboratory of Applied Analytical Chemistry, Guangxi Collaborative Innovation Center for Chemistry and Engineering of Forest Products, Guangxi Key Laboratory of Chemistry and Engineering of Forest Products, Key Laboratory of Chemistry and Engineering of Forest Products, State Ethnic Affairs Commission, School of Chemistry and Chemical Engineering, Guangxi Minzu University, Nanning, 530006, China
| | - Yu Lin
- Education Department of Guangxi Zhuang Autonomous Region, Key Laboratory of Applied Analytical Chemistry, Guangxi Collaborative Innovation Center for Chemistry and Engineering of Forest Products, Guangxi Key Laboratory of Chemistry and Engineering of Forest Products, Key Laboratory of Chemistry and Engineering of Forest Products, State Ethnic Affairs Commission, School of Chemistry and Chemical Engineering, Guangxi Minzu University, Nanning, 530006, China
| | - Yeyu Wu
- Education Department of Guangxi Zhuang Autonomous Region, Key Laboratory of Applied Analytical Chemistry, Guangxi Collaborative Innovation Center for Chemistry and Engineering of Forest Products, Guangxi Key Laboratory of Chemistry and Engineering of Forest Products, Key Laboratory of Chemistry and Engineering of Forest Products, State Ethnic Affairs Commission, School of Chemistry and Chemical Engineering, Guangxi Minzu University, Nanning, 530006, China
| | - Hu Luo
- Education Department of Guangxi Zhuang Autonomous Region, Key Laboratory of Applied Analytical Chemistry, Guangxi Collaborative Innovation Center for Chemistry and Engineering of Forest Products, Guangxi Key Laboratory of Chemistry and Engineering of Forest Products, Key Laboratory of Chemistry and Engineering of Forest Products, State Ethnic Affairs Commission, School of Chemistry and Chemical Engineering, Guangxi Minzu University, Nanning, 530006, China
| | - Jun Yan
- Education Department of Guangxi Zhuang Autonomous Region, Key Laboratory of Applied Analytical Chemistry, Guangxi Collaborative Innovation Center for Chemistry and Engineering of Forest Products, Guangxi Key Laboratory of Chemistry and Engineering of Forest Products, Key Laboratory of Chemistry and Engineering of Forest Products, State Ethnic Affairs Commission, School of Chemistry and Chemical Engineering, Guangxi Minzu University, Nanning, 530006, China
| | - Ke-Jing Huang
- Education Department of Guangxi Zhuang Autonomous Region, Key Laboratory of Applied Analytical Chemistry, Guangxi Collaborative Innovation Center for Chemistry and Engineering of Forest Products, Guangxi Key Laboratory of Chemistry and Engineering of Forest Products, Key Laboratory of Chemistry and Engineering of Forest Products, State Ethnic Affairs Commission, School of Chemistry and Chemical Engineering, Guangxi Minzu University, Nanning, 530006, China.
| | - Xuecai Tan
- Education Department of Guangxi Zhuang Autonomous Region, Key Laboratory of Applied Analytical Chemistry, Guangxi Collaborative Innovation Center for Chemistry and Engineering of Forest Products, Guangxi Key Laboratory of Chemistry and Engineering of Forest Products, Key Laboratory of Chemistry and Engineering of Forest Products, State Ethnic Affairs Commission, School of Chemistry and Chemical Engineering, Guangxi Minzu University, Nanning, 530006, China.
| |
Collapse
|
18
|
Yadav A, Patil R, Dutta S. Advanced Self-Powered Biofuel Cells with Capacitor and Nanogenerator for Biomarker Sensing. ACS APPLIED BIO MATERIALS 2023; 6:4060-4080. [PMID: 37787456 DOI: 10.1021/acsabm.3c00640] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/04/2023]
Abstract
Self-powered biofuel cells (BFCs) have evolved for highly sensitive detection of biomarkers such as noncodon micro ribonucleic acids (miRNAs) in the presence of interfering substrates. Self-charging supercapacitive BFCs for in vivo and in vitro cellular microenvironments represent the most prevalent sensing mechanism for diagnosis. Therefore, self-powered biosensing (SPB) with a capacitor and contact separation with a triboelectric nanogenerator (TENG) offers electrochemical and colorimetric dual-mode detection via improved electrical signal intensity. In this review, we discuss three major components: stretchable self-powered BFC design, miRNA sensing, and impedance spectroscopy. A specific focus is given to 1) assembling of sensors for biomarkers, 2) electrical output signal intensification, and 3) role of supercapacitors and nanogenerators in SPBs. We outline the key features of stretchable SPBs and the sequence of miRNA sensing by SPBs. We have emphasized the need of a supercapacitor and nanogenerator for SPBs in the context of advanced assembly of the sensing unit. Finally, we outline the role of impedance spectroscopy in the detection and estimation of biomarkers. We highlight key challenges in SPBs for biomarker sensing, which needs improved sensing accuracy, integration strategies of electrochemical biosensing for in vitro and in vivo microenvironments, and the impact of miRNA sensing on cancer diagnostics. This article attempts a specific focus on the accuracy and limitations of sensing unit for miRNA biomarkers and associated tool for boosting electrical signal intensity for a potential big step further.
Collapse
Affiliation(s)
- Anubha Yadav
- Electrochemical Energy & Sensor Research Laboratory Amity Institute of Click Chemistry Research & Studies, Amity University, Sector 125, Noida 201301, Uttar Pradesh, India
| | - Rahul Patil
- Electrochemical Energy & Sensor Research Laboratory Amity Institute of Click Chemistry Research & Studies, Amity University, Sector 125, Noida 201301, Uttar Pradesh, India
| | - Saikat Dutta
- Electrochemical Energy & Sensor Research Laboratory Amity Institute of Click Chemistry Research & Studies, Amity University, Sector 125, Noida 201301, Uttar Pradesh, India
| |
Collapse
|
19
|
Wu J, Wei W, Ahmad W, Li S, Ouyang Q, Chen Q. Enhanced detection of endocrine disrupting chemicals in on-chip microfluidic biosensors using aptamer-mediated bridging flocculation and upconversion luminescence. JOURNAL OF HAZARDOUS MATERIALS 2023; 458:132025. [PMID: 37453351 DOI: 10.1016/j.jhazmat.2023.132025] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 07/07/2023] [Accepted: 07/08/2023] [Indexed: 07/18/2023]
Abstract
Exposure to endocrine-disrupting chemicals (EDCs) can lead to detrimental impacts on human health, making their detection a critical issue. A novel approach utilizing on-chip microfluidic biosensors was developed for the simultaneous detection of two EDCs, namely, bisphenol A (BPA) and diethylstilbestrol (DES), based on upconversion nanoparticles doped with thulium (Tm) and erbium (Er), respectively. From the perspective of single nanoparticles, the construction of an active core-inert shell structure enhanced the luminescence of nanoparticles by 2.28-fold (Tm) and 1.72-fold (Er). From the perspective of the nanoparticle population, the study exploited an aptamer-mediated bridging flocculation mechanism and effectively enhanced the upconversion luminescence of biosensors by 8.94-fold (Tm) and 7.10-fold (Er). A chip with 138 tangential semicircles or quarter-circles was designed and simulated to facilitate adequate mixing, reaction, magnetic separation, and detection conditions. The on-chip microfluidic biosensor demonstrated exceptional capabilities for the simultaneous detection of BPA and DES with ultrasensitive detection limits of 0.0076 µg L-1, and 0.0131 µg L-1, respectively. The first reported aptamer-mediated upconversion nanoparticle bridging flocculation provided enhanced luminescence and detection sensitivity for biosensors, as well as offering a new perspective to address the instability of nanobiosensors.
Collapse
Affiliation(s)
- Jizhong Wu
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Wenya Wei
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Waqas Ahmad
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Shuhua Li
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, PR China
| | - Qin Ouyang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, PR China.
| | - Quansheng Chen
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, PR China; College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, PR China.
| |
Collapse
|
20
|
Liu J, Wang M, Tao Z, He L, Guo C, Liu B, Zhang Z. Photo-assisted Zn-air battery-driven self-powered aptasensor based on the 2D/2D Schottky heterojunction of cadmium-doped molybdenum disulfide and Ti 3C 2T x nanosheets for the sensitive detection of penicillin G. Anal Chim Acta 2023; 1270:341396. [PMID: 37311607 DOI: 10.1016/j.aca.2023.341396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 05/13/2023] [Accepted: 05/17/2023] [Indexed: 06/15/2023]
Abstract
A novel photocatalyzed Zn-air battery-driven (ZAB)-based aptasensor has been manufactured using the two dimensional (2D)/2D Schottky heterojunction as photocathode and Zn plate as photoanode. It was then employed to sensitively and selectively detect penicillin G (PG) in the complex environment. The 2D/2D Schottky heterojunction was established by the in situ growth of cadmium-doped molybdenum disulfide nanosheets (Cd-MoS2 NSs) around Ti3C2Tx NSs (denoted as Cd-MoS2@Ti3C2Tx) by using phosphomolybdic acid (PMo12) as precursor, thioacetamide as sulfur source, and Cd(NO3)2 as a doping agent through the hydrothermal method. The gained Cd-MoS2@Ti3C2Tx heterojunction possessed contact interface, hierarchical structure, and plenty of sulfur and oxygen vacancies, thus showing the enhanced separation ability of photocarriers and electron transfer. Due to the enhanced UV-vis light adsorption ability, high photoelectric conversion efficiency, and exposed catalytic active sites, the constructed photocatalyzed ZAB displayed a boosted output voltage of 1.43 V under UV-vis light irradiation. The developed ZAB-driven self-powered aptasensor demonstrated an ultralow detection limit of 0.06 fg mL-1 within a PG concentration ranged from 1.0 fg mL-1 to 0.1 ng mL-1, as deduced from the power density-current curves, along with high specificity, good stability and promising reproducibility, as well as excellent regeneration ability and wide applicability. The present work provided an alternative analysis method for the sensitive analysis of antibiotics based on the portable photocatalyzed ZAB-driven self-powered aptasensor.
Collapse
Affiliation(s)
- Jiameng Liu
- College of Chemistry and Chemical Engineering, Henan Polytechnic University, 2001 Century Avenue, Jiaozuo, 454000, PR China
| | - Mengfei Wang
- College of Material and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou, 450001, PR China
| | - Zheng Tao
- College of Material and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou, 450001, PR China
| | - Linghao He
- College of Material and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou, 450001, PR China
| | - Chuanpan Guo
- College of Material and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou, 450001, PR China
| | - Baozhong Liu
- College of Chemistry and Chemical Engineering, Henan Polytechnic University, 2001 Century Avenue, Jiaozuo, 454000, PR China.
| | - Zhihong Zhang
- College of Material and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou, 450001, PR China.
| |
Collapse
|
21
|
Hao M, Li Z, Huang X, Wang Y, Wei X, Zou X, Shi J, Huang Z, Yin L, Gao L, Li Y, Holmes M, Elrasheid Tahir H. A cell-based electrochemical taste sensor for detection of Hydroxy-α-sanshool. Food Chem 2023; 418:135941. [PMID: 36989650 DOI: 10.1016/j.foodchem.2023.135941] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 03/08/2023] [Accepted: 03/10/2023] [Indexed: 03/29/2023]
Abstract
The Transient Receptor Potential Vanilloid 1 (TRPV1) has been identified as a suitable candidate for a spicy taste (Zanthoxylum plant) sensor. In this study, we investigated the response of TRPV1 expressed on human HepG2 cell membranes following stimulation with Hydroxy-α-sanshool. A three-dimensional (3D) cell-based electrochemical sensor was fabricated by layering cells expressing hTRPV1. l-cysteine/AuNFs electrodes were functionalized on indium tin oxide-coated glass (ITO) to enhance the sensor's selectivity and sensitivity. HepG2 cells were encapsulated in sodium alginate/gelatin hydrogel to create a 3D cell cultivation system, which was immobilized on the l-cysteine/AuNFs/ITO to serve as biorecognition elements. Using differential pulse voltammetry (DPV), the developed biosensor was utilized to detect Hydroxy-α-sanshool, a representative substance in Zanthoxylum bungeanum Maxim. The result obtained from DPV was linear with Hydroxy-α-sanshool concentrations ranging from 0 to 70 μmol/L, with a detection limit of 2.23 μmol/L. This biosensor provides a sensitive and novel macroscopic approach for TRPV1 detection.
Collapse
Affiliation(s)
- Mengyu Hao
- Agricultural Product Processing and Storage Lab, School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Zhihua Li
- Agricultural Product Processing and Storage Lab, School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China.
| | - Xiaowei Huang
- Agricultural Product Processing and Storage Lab, School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Yuan Wang
- Agricultural Product Processing and Storage Lab, School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Xiaoou Wei
- Agricultural Product Processing and Storage Lab, School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Xiaobo Zou
- Agricultural Product Processing and Storage Lab, School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China.
| | - Jiyong Shi
- Agricultural Product Processing and Storage Lab, School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Zhangqi Huang
- Agricultural Product Processing and Storage Lab, School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Litao Yin
- Agricultural Product Processing and Storage Lab, School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Liying Gao
- Agricultural Product Processing and Storage Lab, School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Yanxiao Li
- Agricultural Product Processing and Storage Lab, School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Melvin Holmes
- School of Food Science and Nutrition, University of Leeds, Leeds LS2 9JT, UK
| | - Haroon Elrasheid Tahir
- Agricultural Product Processing and Storage Lab, School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| |
Collapse
|
22
|
Gu C, Bai L, Hou T, Zhang L, Gai P, Li F. Dual-mode colorimetric and homogeneous electrochemical detection of intracellular/extracellular H 2O 2 based on FeS x/SiO 2 nanoparticles with high peroxidase-like activity. Anal Chim Acta 2023; 1265:341332. [PMID: 37230574 DOI: 10.1016/j.aca.2023.341332] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 05/03/2023] [Accepted: 05/06/2023] [Indexed: 05/27/2023]
Abstract
Abnormal expression of hydrogen peroxide (H2O2) elucidates cell dysfunctions and might induce the occurrence and deterioration of various diseases. However, limited by its ultralow level under pathophysiological conditions, intracellular and extracellular H2O2 was difficult to be detected accurately. Herein, a colorimetric and homogeneous electrochemical dual-mode biosensing platform was constructed for intracellular/extracellular H2O2 detection based on FeSx/SiO2 nanoparticles (FeSx/SiO2 NPs) with high peroxidase-like activity. In this design, FeSx/SiO2 NPs were synthesized with excellent catalytic activity and stability compared to natural enzymes, which improved the sensitivity and stability of sensing strategy. 3,3',5,5'-Tetramethylbenzidine (TMB), as a multifunctional indicator, was oxidized in the presence of H2O2, generated color changes and realized visual analysis. In this process, the characteristic peak current of TMB decreased, which could realize the ultrasensitive detection of H2O2 by homogeneous electrochemistry. Accordingly, by integrating visual analysis ability of colorimetry and the high sensitivity of homogeneous electrochemistry, the dual-mode biosensing platform exhibited high accuracy, sensitivity and reliability. The detection limits of H2O2 were 0.2 μM (S/N = 3) for the colorimetric method and 2.5 nM (S/N = 3) for the homogeneous electrochemistry assay. Therefore, the dual-mode biosensing platform provided a new opportunity for highly accurate and sensitive detection of intracellular/extracellular H2O2.
Collapse
Affiliation(s)
- Chengcheng Gu
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao, 266109, PR China
| | - Lipeng Bai
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao, 266109, PR China
| | - Ting Hou
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao, 266109, PR China
| | - Lei Zhang
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao, 266109, PR China
| | - Panpan Gai
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao, 266109, PR China.
| | - Feng Li
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao, 266109, PR China.
| |
Collapse
|
23
|
Yang L, Guo H, Hou T, Zhang J, Li F. Metal-mediated Fe 3O 4@polydopamine-aptamer capture nanoprobe coupling multifunctional MXene@Au@Pt nanozyme for direct and portable photothermal analysis of circulating breast cancer cells. Biosens Bioelectron 2023; 234:115346. [PMID: 37148800 DOI: 10.1016/j.bios.2023.115346] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Revised: 04/11/2023] [Accepted: 04/21/2023] [Indexed: 05/08/2023]
Abstract
Breast cancer (BC) is the most common cancer in the world and circulating tumor cells (CTCs) are reliable biomarkers for early breast cancer diagnosis in a non-invasive manner. However, effective isolation and sensitive detection of BC-CTCs by portable devices in human blood samples are extremely challenging. Herein, we proposed a highly sensitive and portable photothermal cytosensor for direct capture and quantification of BC-CTCs. To achieve efficient isolation of BC-CTCs, aptamer functionalized Fe3O4@PDA nanoprobe was facilely prepared through Ca2+-mediated DNA adsorption. To further detect the captured BC-CTCs with high sensitivity, multifunctional two-dimensional Ti3C2@Au@Pt nanozyme was synthesized, which not only possessed superior photothermal effect but also exhibited high peroxidase-like activity for catalyzing 3,3',5,5'-tetramethylbenzidine (TMB) to produce TMB oxide (oxTMB) with a strong photothermal characteristic, combining with Ti3C2@Au@Pt to synergistically amplify the temperature signal. Moreover, numerous Ti3C2@Au@Pt nanocomposites would be selectively attained on the BC-CTCs surface through multi-aptamer recognition and binding strategy, which further enhanced the specificity and facilitated signal amplification. Therefore, direct separation and highly sensitive detection of BC-CTCs was successfully achieved in human blood samples. More significantly, the controlled release of the captured BC-CTCs without affecting cell viability could be straightforwardly realized by a simple strand displacement reaction. Thus, with the distinct features of portability, high sensitivity, and easy operation, the current method holds great promise for early diagnosis of breast cancer.
Collapse
Affiliation(s)
- Limin Yang
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao, 266109, People's Republic of China
| | - Heng Guo
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao, 266109, People's Republic of China
| | - Ting Hou
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao, 266109, People's Republic of China
| | - Jingang Zhang
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao, 266109, People's Republic of China
| | - Feng Li
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao, 266109, People's Republic of China.
| |
Collapse
|
24
|
Gao YP, Huang KJ, Wang FT, Hou YY, Zhao LD, Wang BY, Xu J, Shuai H, Li G. The self-powered electrochemical biosensing platform with multi-amplification strategy for ultrasensitive detection of microRNA-155. Anal Chim Acta 2023; 1239:340702. [PMID: 36628768 DOI: 10.1016/j.aca.2022.340702] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 11/30/2022] [Accepted: 12/02/2022] [Indexed: 12/13/2022]
Abstract
A self-powered biosensor (SPB) was constructed for the ultra-sensitive detection of microRNA-155 (miR-155) by combining a capacitor/enzymatic biofuel cell (EBFC), a strategy of rolling circle amplification (RCA) and a digital multimeter (DMM). The experimental results show that the sensitivity of the assembled EBFC-SPB can reach 15.85 μA/pM with the action of matching capacitor, which is 513% of that without capacitor (3.09 μA/pM). This achieves the first signal amplification. Furthermore, when the target miR-155 triggers RCA, electrons are continuous generated and flow to the biocathode through the external circuit to catalyze the reduction of oxygen and release [Ru(NH3)6]3+ electron acceptor. This achieves the second signal amplification. Finally, DMM is used to convert the signal into instantaneous current and amplify it for real-time reading. This achieves the third signal amplification. Therefore, the limit of detection (LOD) of the developed biosensor is as low as 0.17 fM (S/N = 3), and the linear range is between 0.5 fM and 10,000 fM, indicating that the EBFC-SPB has a broad application prospect for cancer marker of miR-155 with ultrasensitive detection.
Collapse
Affiliation(s)
- Yong-Ping Gao
- International Joint Research Laboratory of New Energy Materials and Devices of Henan Province, School of Physics and Electronics, Henan University, Kaifeng, 475004, PR China; School of Science and Engineering, Xinyang University, Xinyang, 464000, PR China
| | - Ke-Jing Huang
- Key Laboratory of Guangxi Colleges and Universities for Food Safety and Pharmaceutical Analytical Chemistry, School of Chemistry and Chemical and Engineering, Guangxi Minzu University, Nanning, 530008, PR China.
| | - Fu-Ting Wang
- College of Chemistry and Chemical Engineering, Xinyang Normal University, Xinyang, 464000, PR China
| | - Yang-Yang Hou
- College of Chemistry and Chemical Engineering, Xinyang Normal University, Xinyang, 464000, PR China
| | - Lu-di Zhao
- School of Science and Engineering, Xinyang University, Xinyang, 464000, PR China
| | - Bo-Ya Wang
- School of Science and Engineering, Xinyang University, Xinyang, 464000, PR China
| | - Jing Xu
- College of Chemistry and Chemical Engineering, Xinyang Normal University, Xinyang, 464000, PR China
| | - Honglei Shuai
- School of Science and Engineering, Xinyang University, Xinyang, 464000, PR China
| | - Guoqiang Li
- International Joint Research Laboratory of New Energy Materials and Devices of Henan Province, School of Physics and Electronics, Henan University, Kaifeng, 475004, PR China.
| |
Collapse
|
25
|
Zhao X, He G, Deng W, Tan Y, Xie Q. Tailoring enzymatic loading capacity on 3D macroporous gold by catalytic hairpin assembly and hybridization chain reaction: Application for ultrasensitive self-powered microRNA detection. Biosens Bioelectron 2023; 219:114813. [PMID: 36270081 DOI: 10.1016/j.bios.2022.114813] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 09/21/2022] [Accepted: 10/11/2022] [Indexed: 11/05/2022]
Abstract
It is important to develop effective strategies to construct enzymatic biofuel cell based self-powered biosensors. We report here the facile regulation of enzymatic loading capacity on the bioanode by utilizing a concatenated catalytic hairpin assembly (CHA)/hybridization chain reaction (HCR) and its application for self-powered microRNA-141 (miRNA-141) detection. To construct the bioanode, a concatenated CHA/HCR process triggered by miRNA-141 was conducted on the three-dimensional macroporous gold (3DMG) electrode to generate long double-stranded DNA nanowires for glucose oxidase immobilization. Quartz crystal microbalance study reveals that the enzymatic loading capacity on the bioanode increases at an increasing miRNA-141 concentration, leading to enhanced catalytic performance for glucose oxidation. The short-circuit currents of the assembled glucose/O2 biofuel cells increase at increasing miRNA-141 concentrations, enabling ultrasensitive detection of miRNA-141. The self-powered biosensor features a wide dynamic range for detecting miRNA-141 from 10-17 to 10-11 M, with an ultralow detection limit of 1.3 aM. This work provides a highly sensitive self-powered biosensing platform for miRNA detection.
Collapse
Affiliation(s)
- Xiao Zhao
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education of China), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha, 410081, China; State Key Laboratory of Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, School of Chemistry and Life Sciences, Nanjing University of Posts and Telecommunications, Nanjing, 210023, China
| | - Guihua He
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education of China), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha, 410081, China
| | - Wenfang Deng
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education of China), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha, 410081, China
| | - Yueming Tan
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education of China), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha, 410081, China.
| | - Qingji Xie
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education of China), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha, 410081, China
| |
Collapse
|
26
|
Shi G, Yan C, Chen J. Ultrasensitive Aptasensor for Microcystin-LR Detection in Food Samples Based on Target-Activated Assembly of Y-Shaped Hairpin Probes. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:16446-16452. [PMID: 36524375 DOI: 10.1021/acs.jafc.2c07661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
As a kind of algal toxin, microcystin-LR (MC-LR) causes a tremendous treat to food safety and the detection of trace levels of MC-LR is highly desirable. Herein, we developed an ultrasensitive aptasensor for MC-LR detection based on target-activated assembly of Y-shaped hairpins. The aptamer-target recognition initiates the assembly step between two Y-shaped hairpin probes through toehold-mediated DNA replacement. One of the hairpins was modified with FAM and BHQ. Through cyclic assembly reactions, a high fluorescence signal can be observed in the product. The detection limit is 0.2 pM for MC-LR detection. In addition, the biosensor is robust and has been successfully explored to assess the MC-LR concentrations in real fish and water samples with satisfactory recovery rates and good accuracy. The signal amplification can be gained through the cyclic Y-shaped hairpin assembly, which offers a simple, ultrasensitive, and reliable method for MC-LR monitoring in food samples.
Collapse
Affiliation(s)
- Gu Shi
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
| | - Chong Yan
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
| | - Junhua Chen
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
| |
Collapse
|
27
|
Shi J, Xie WZ, Wang LR, Song YL, Lin Y, Wu Y, Luo H, Huang KJ, Tan X. All-carbon sandwich-type self-powered biosensor for ultrasensitive detection of femtomolar miRNA-141. Anal Chim Acta 2022; 1236:340589. [DOI: 10.1016/j.aca.2022.340589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 10/29/2022] [Accepted: 11/02/2022] [Indexed: 11/06/2022]
|
28
|
Sailapu SK, Menon C. Engineering Self-Powered Electrochemical Sensors Using Analyzed Liquid Sample as the Sole Energy Source. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2203690. [PMID: 35981885 PMCID: PMC9561779 DOI: 10.1002/advs.202203690] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Indexed: 06/15/2023]
Abstract
Many healthcare and environmental monitoring devices use electrochemical techniques to detect and quantify analytes. With sensors progressively becoming smaller-particularly in point-of-care (POC) devices and wearable platforms-it creates the opportunity to operate them using less energy than their predecessors. In fact, they may require so little power that can be extracted from the analyzed fluids themselves, for example, blood or sweat in case of physiological sensors and sources like river water in the case of environmental monitoring. Self-powered electrochemical sensors (SPES) can generate a response by utilizing the available chemical species in the analyzed liquid sample. Though SPESs generate relatively low power, capable devices can be engineered by combining suitable reactions, miniaturized cell designs, and effective sensing approaches for deciphering analyte information. This review details various such sensing and engineering approaches adopted in different categories of SPES systems that solely use the power available in liquid sample for their operation. Specifically, the categories discussed in this review cover enzyme-based systems, battery-based systems, and ion-selective electrode-based systems. The review details the benefits and drawbacks with these approaches, as well as prospects of and challenges to accomplishing them.
Collapse
Affiliation(s)
- Sunil Kumar Sailapu
- Biomedical and Mobile Health Technology (BMHT) labDepartment of Health Sciences and TechnologyETH ZürichZürich8008Switzerland
| | - Carlo Menon
- Biomedical and Mobile Health Technology (BMHT) labDepartment of Health Sciences and TechnologyETH ZürichZürich8008Switzerland
| |
Collapse
|
29
|
Tang J, Hu T, Li N, Zhu Y, Li J, Zheng S, Guo J. Ag doped Co/Ni bimetallic organic framework for determination of luteolin. Microchem J 2022. [DOI: 10.1016/j.microc.2022.107461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
30
|
Wu T, Du Y, Dai L, Li J, Song X, Feng J, Wang X, Wei Q, Ju H. A Direct Z-Scheme AgBr/CuBi 2O 4 Photocathode for Ultrasensitive Detection of Ciprofloxacin and Ofloxacin by Controlling the Release of Luminol in Self-Powered Microfluidic Photoelectrochemical Aptasensors. Anal Chem 2022; 94:10651-10658. [PMID: 35857412 DOI: 10.1021/acs.analchem.2c00889] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
An innovative self-powered microfluidic photoelectrochemical (PEC) aptasensor was developed that uses photoactive AgBr/CuBi2O4 (ACO) composites as the photocathode matrix for ultrasensitive detection of ciprofloxacin (CIP) and ofloxacin (OFL). The formation of direct Z-scheme heterojunctions in ACO composites greatly aided electron/hole pair separation. Meanwhile, ZnIn2S4-decorated CdS nanorod arrays (CZIS) as the photoanode were used instead of a platinum counter electrode to provide electrons. The "signal-off" CIP detection was accomplished through the steric hindrance effect in the photoanode due to the combination of aptamer(CIP) and CIP. To increase the cathodic photocurrent intensity for OFL determination, controlled release of luminol was first used. Luminol molecules were successfully embedded in the porous structure of silicon dioxide nanospheres (PSiO2) by the electrostatic adsorption between PSiO2 and aptamer(OFL). The luminol released by specific recognition between OFL and aptamer(OFL) could not only react with •O2- but also produce chemiluminescence emission, resulting in the "signal-on" state. Because of the signal "on-off-on", the proposed aptasensor exhibited wide linear ranges for CIP (0.001-100 ng/mL) and OFL (0.0005-100 ng/mL) detection. Furthermore, the low detection limits of CIP (0.06 pg/mL) and OFL (0.022 pg/mL) could achieve the ultrasensitive analysis.
Collapse
Affiliation(s)
- Tingting Wu
- Collaborative Innovation Center for Green Chemical Manufacturing and Accurate Detection, Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, University of Jinan, Jinan, Shandong 250022, China
| | - Yu Du
- Collaborative Innovation Center for Green Chemical Manufacturing and Accurate Detection, Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, University of Jinan, Jinan, Shandong 250022, China
| | - Li Dai
- Collaborative Innovation Center for Green Chemical Manufacturing and Accurate Detection, Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, University of Jinan, Jinan, Shandong 250022, China
| | - Jingshuai Li
- Collaborative Innovation Center for Green Chemical Manufacturing and Accurate Detection, Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, University of Jinan, Jinan, Shandong 250022, China
| | - Xianzhen Song
- Collaborative Innovation Center for Green Chemical Manufacturing and Accurate Detection, Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, University of Jinan, Jinan, Shandong 250022, China
| | - Jinhui Feng
- Collaborative Innovation Center for Green Chemical Manufacturing and Accurate Detection, Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, University of Jinan, Jinan, Shandong 250022, China
| | - Xueying Wang
- Collaborative Innovation Center for Green Chemical Manufacturing and Accurate Detection, Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, University of Jinan, Jinan, Shandong 250022, China
| | - Qin Wei
- Collaborative Innovation Center for Green Chemical Manufacturing and Accurate Detection, Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, University of Jinan, Jinan, Shandong 250022, China
| | - Huangxian Ju
- Collaborative Innovation Center for Green Chemical Manufacturing and Accurate Detection, Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, University of Jinan, Jinan, Shandong 250022, China.,State Key Laboratory of Analytical Chemistry for Life Science, Department of Chemistry, Nanjing University, Nanjing 210023, China
| |
Collapse
|
31
|
Fabrication of a label-free electrochemical aptasensor to detect cytochrome c in the early stage of cell apoptosis. Mikrochim Acta 2022; 189:279. [PMID: 35829926 DOI: 10.1007/s00604-022-05373-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 06/14/2022] [Indexed: 10/17/2022]
Abstract
A label-free direct electrochemical aptasensor is presented for the identification of cytochrome c (Cyt c) at the nM concentration level. Carbon nanofibers (CNF), as a highly conductive material, were used to modify a glassy carbon electrode (GCE) and thus increase its conductivity. Moreover, to enhance the immobilization of aptamers (Apt) on the electrode surface, graphene oxide functionalized with aspartic acid (GOAsp) was added to the surface. Aspartic acid with countless carboxyl groups (-COOH) on its surface caused more aptamers to be immobilized on the electrode surface. Electrochemical impedance spectroscopy (EIS), cyclic voltammetry (CV), and differential pulse voltammetry (DPV) were used to monitor the step-by-step fabrication of the label-free direct electrochemical aptasensor. The label-free quantification of Cyt c was also done by the direct electron transfer between the Fe(III)/Fe(II)-heme redox-active sites which were selectively bound to the aptamers on the GCE and the surface of the electrode. Under optimum conditions, the peak currents of differential pulse voltammograms at 0.26 V (vs. Ag/AgCl) were used for calibration. The proposed aptasensor performs in a wide dynamic range from 10 nM to 100 µM with a low detection limit of 0.74 nM for cytochrome c. It also has high selectivity as well as acceptable stability. These advantages make the biosensor capable of detecting early-stage apoptotic cells that contribute to early cancer diagnosis.
Collapse
|
32
|
Ansari AA, Aldajani KM, AlHazaa AN, Albrithen HA. Recent progress of fluorescent materials for fingermarks detection in forensic science and anti-counterfeiting. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214523] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
33
|
Self-assembled tetrahedral DNA nanostructures-based ultrasensitive label-free detection of ampicillin. Talanta 2022; 243:123292. [DOI: 10.1016/j.talanta.2022.123292] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 02/02/2022] [Accepted: 02/04/2022] [Indexed: 12/23/2022]
|
34
|
Graphite sheets modified with poly(methylene blue) films: A cost-effective approach for the electrochemical sensing of the antibiotic nitrofurantoin. Microchem J 2022. [DOI: 10.1016/j.microc.2022.107289] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
35
|
Gawrońska M, Kowalik M, Makowski M. Recent advances in medicinal chemistry of ampicillin: Derivatives, metal complexes, and sensing approaches. Trends Analyt Chem 2022. [DOI: 10.1016/j.trac.2022.116691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
36
|
Zhao X, Deng W, Tan Y, Xie Q. A glucose/O 2 biofuel cell integrated with an exonuclease-powered DNA walker for self-powered sensing of microRNA. Chem Commun (Camb) 2022; 58:2922-2925. [PMID: 35142303 DOI: 10.1039/d1cc06732j] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
With the aid of an exonuclease-powered DNA walker, the amount of glucose oxidase immobilized on the bioanode can be facilely tailored by varying the concentration of microRNA-141, so a glucose/O2 biofuel cell is employed as a self-powered sensor for sensitive and selective detection of microRNA-141.
Collapse
Affiliation(s)
- Xiao Zhao
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education of China), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, China.
| | - Wenfang Deng
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education of China), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, China.
| | - Yueming Tan
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education of China), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, China.
| | - Qingji Xie
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education of China), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, China.
| |
Collapse
|
37
|
Electrochemical Sensors for Antibiotic Susceptibility Testing: Strategies and Applications. CHEMOSENSORS 2022. [DOI: 10.3390/chemosensors10020053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Increasing awareness of the impacts of infectious diseases has driven the development of advanced techniques for detecting pathogens in clinical and environmental settings. However, this process is hindered by the complexity and variability inherent in antibiotic-resistant species. A great deal of effort has been put into the development of antibiotic-resistance/susceptibility testing (AST) sensors and systems to administer proper drugs for patient-tailored therapy. Electrochemical sensors have garnered increasing attention due to their powerful potential to allow rapid, sensitive, and real-time monitoring, alongside the low-cost production, feasibility of minimization, and easy integration with other techniques. This review focuses on the recent advances in electrochemical sensing strategies that have been used to determine the level of antibiotic resistance/susceptibility of pathogenic bacteria. The recent examples of the current electrochemical AST sensors discussed here are classified into four categories according to what is detected and quantitated: the presence of antibiotic-resistant genes, changes in impedance caused by cell lysis, current response caused by changes in cellular membrane properties, and changes in the redox state of redox molecules. It also discusses potential strategies for the development of electrochemical AST sensors, with the goal of broadening their practical applications across various scientific and technological fields.
Collapse
|
38
|
Advances in the enzymatic biofuel cell powered sensing systems for tumor diagnosis and regulation. Trends Analyt Chem 2022. [DOI: 10.1016/j.trac.2021.116476] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
39
|
Liu D, Huang P, Wu FY. Highly Specific and Rapid Colorimetric Detection of Tetracycline in Pills and Milk Based on Aptamer-Controlled Aggregation of Silver Nanoparticles. CHEMISTRY AFRICA 2021. [DOI: 10.1007/s42250-021-00286-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
40
|
Jin Y, Luan Y, Wu Z, Wen W, Zhang X, Wang S. Photocatalytic Fuel Cell-Assisted Molecularly Imprinted Self-Powered Sensor: A Flexible and Sensitive Tool for Detecting Aflatoxin B1. Anal Chem 2021; 93:13204-13211. [PMID: 34528807 DOI: 10.1021/acs.analchem.1c02074] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The self-powered electrochemical sensor has gained big achievements in energy and devices, but it is challenging in analytical application owing to its low energy conversion efficiency and limited selectivity caused by the plentiful interference in actual samples. Herein, a new self-powered biosensor was constructed by the integration of a photocatalytic fuel cell (PFC) with a molecular imprinting polymer (MIP) to achieve sensitive and specific detection of aflatoxin B1 (AFB1). Compared with other fuel cells, the PFC owns the advantages of low cost, high energy, good stability, and friendly environment by using light as the excitation source. MoS2-Ti3C2Tx MXene (MoS2-MX) served as the photoanode material for the first time by forming a heterojunction structure, which can enhance the photocurrent by about 3-fold and greatly improve the photoelectric conversion efficiency. Aiming at the poor selectivity of the self-powered sensor, the MIP was introduced to achieve the specific capture and separation of targets without sample pretreatment. Using the MIP and PFC as recognition and signal conversion elements, respectively, the proposed self-powered biosensor showed a wide dynamic range of 0.01-1000 ng/mL with a detection limit of 0.73 pg/mL, which opened opportunities to design more novel self-powered biosensors and promoted its application in food safety and environmental monitoring.
Collapse
Affiliation(s)
- Yunxia Jin
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules & College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, PR China
| | - Yang Luan
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules & College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, PR China
| | - Zhen Wu
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules & College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, PR China
| | - Wei Wen
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules & College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, PR China
| | - Xiuhua Zhang
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules & College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, PR China
| | - Shengfu Wang
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules & College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, PR China
| |
Collapse
|
41
|
Sun W, Wang Y, Zhu Z, Wang Y, Zhang M, Jiang L, Liu S, Yu J, Huang J. Accurate and Nonpurified Identification of Extracellular Vesicles Using Dual-Binding Recognition Mode. Anal Chem 2021; 93:12383-12390. [PMID: 34449197 DOI: 10.1021/acs.analchem.1c02259] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Circulating extracellular vesicles (EVs) are promising biomarkers for the early diagnosis and prognosis of cancer in a non-invasive manner. However, the rapid and accurate identification of EVs in complex biological samples is technically challenging, which is attributed to the requirement of extensive sample purification and unsatisfactory detection accuracy due to the disturbance of interfering proteins. Herein, a simultaneous binding of double-positive EV membrane protein-based recognition mode (DRM) is proposed. By the combination of DRM-mediated toehold activation and G-quadruplex DNAZyme-catalyzed etching of Au@Ag nanorods (Au@Ag NRs), we have developed an accurate, non-purified, low-cost, and visual strategy for EV identification. The synchronous binding of double-positive proteins on EV membranes is validated by confocal laser scanning microscopy analysis. This approach exhibits excellent specificity and sensitivity toward EVs ranging from 1.0 × 105 to 1.0 × 109 particles/mL with a detection limit of 6.31 × 104 particles/mL. Moreover, we have successfully realized non-purified EV quantification in complex biological media. In addition, target-initiated catalyzed hairpin assembly (CHA) is integrated with G-quadruplex DNAZyme-catalyzed color variation of Au@Ag NRs; thus, low-background EV detection can be achieved by the naked eye. Furthermore, our strategy is easy to adapt to high-throughput formats by using an automatic microplate reader, which could be expected to meet the requirements for high-throughput detection of clinical samples. With its capacities of rapidness, portability, affordability, high throughput, non-purification, and visual detection, this strategy could provide a practical tool for accurate identification of EVs and early diagnosis of cancer.
Collapse
Affiliation(s)
- Wenyu Sun
- School of Biological Sciences and Technology, University of Jinan, Jinan 250022, P.R. China
| | - Yu Wang
- School of Biological Sciences and Technology, University of Jinan, Jinan 250022, P.R. China
| | - Zhixue Zhu
- School of Biological Sciences and Technology, University of Jinan, Jinan 250022, P.R. China
| | - Yeru Wang
- School of Biological Sciences and Technology, University of Jinan, Jinan 250022, P.R. China
| | - Manru Zhang
- School of Water Conservancy and Environment, University of Jinan, Jinan 250022, P.R. China
| | - Long Jiang
- School of Water Conservancy and Environment, University of Jinan, Jinan 250022, P.R. China
| | - Su Liu
- School of Water Conservancy and Environment, University of Jinan, Jinan 250022, P.R. China
| | - Jinghua Yu
- Key Laboratory of Chemical Sensing & Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, P.R. China
| | - Jiadong Huang
- School of Biological Sciences and Technology, University of Jinan, Jinan 250022, P.R. China.,Key Laboratory of Chemical Sensing & Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, P.R. China
| |
Collapse
|
42
|
Wang H, Qi Y, Wu D, Wei Q. A photoelectrochemical self-powered sensor for the detection of sarcosine based on NiO NSs/PbS/Au NPs as photocathodic material. JOURNAL OF HAZARDOUS MATERIALS 2021; 416:126201. [PMID: 34492964 DOI: 10.1016/j.jhazmat.2021.126201] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Revised: 05/14/2021] [Accepted: 05/20/2021] [Indexed: 06/13/2023]
Abstract
In this study, lead(II) sulfide (PbS) nanocrystals were modified on nickel(II)oxide nanosheets (NiO NSs) via the chemical bath method. Afterwards, Au nanoparticles (NPs) were also modified successfully. A photoelectrochemical (PEC) self-powered platform for detecting sarcosine with high PEC activity was constructed. The capacity of NiO NSs to be loaded with other sensitizing materials was mainly attributed to its porous structure and large specific surface area. Under optimum conditions, the constructed PEC self-powered cathodic sensor for detecting sarcosine exhibited a linear range in 5.0 × 10-8-5.0 × 10-2 mol/L with a detection limit (LOD) of 1.7 × 10-8 mol/L. The biosensor demonstrated good reproducibility, acceptable stability and high specificity, thus confirming its potential application in the detection of other similar substances.
Collapse
Affiliation(s)
- Hanyu Wang
- Collaborative Innovation Center for Green Chemical Manufacturing and Accurate Detection, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, PR China; Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, PR China
| | - Yanting Qi
- Collaborative Innovation Center for Green Chemical Manufacturing and Accurate Detection, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, PR China; Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, PR China
| | - Dan Wu
- Collaborative Innovation Center for Green Chemical Manufacturing and Accurate Detection, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, PR China; Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, PR China.
| | - Qin Wei
- Collaborative Innovation Center for Green Chemical Manufacturing and Accurate Detection, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, PR China; Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, PR China
| |
Collapse
|
43
|
Chen S, Liu Y, Zhai F, Jia M. Novel label-free fluorescence aptasensor for chloramphenicol detection based on a DNA four-arm junction-assisted signal amplification strategy. Food Chem 2021; 366:130648. [PMID: 34325245 DOI: 10.1016/j.foodchem.2021.130648] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 06/24/2021] [Accepted: 07/17/2021] [Indexed: 11/27/2022]
Abstract
A novel label-free fluorescence aptasensor was established for chloramphenicol (CAP) detection by DNA four-arm junction-assisted target recycling and SYBR Green I dye-aided fluorescence-signal amplification. The CAP aptamer was hybridized to its complementary strand (primer) to form a double-stranded primer/aptamer complex. In the presence of CAP, aptamers can specifically bind with CAP to dissociate primers, which can trigger the self-assembly of four hairpins to continuously generate DNA four-arm junctions. After digesting the excess hairpins using T7 exonuclease, SYBR Green I was inserted into the base pair-rich DNA four-arm junctions, which led to a significant increase in fluorescence intensity. Under optimal conditions, the developed aptasensor can detect CAP in a linear range of 1.0 pg mL-1 to 10 ng mL-1 with a detection limit of 0.72 pg mL-1. The recovery rates in milk and honey ranged from 90.3% to 106.6%. Thus, the method shows substantial potential for CAP detection in food products.
Collapse
Affiliation(s)
- Shuang Chen
- Key Laboratory of Animal Resistance Biology of Shandong Province, Institute of Biomedical Sciences, Key Laboratory of Food Nutrition and Safety of Shandong Normal University, College of Life Science, Shandong Normal University, Jinan 250014, PR China
| | - Yujie Liu
- Key Laboratory of Animal Resistance Biology of Shandong Province, Institute of Biomedical Sciences, Key Laboratory of Food Nutrition and Safety of Shandong Normal University, College of Life Science, Shandong Normal University, Jinan 250014, PR China
| | - Fei Zhai
- Key Laboratory of Animal Resistance Biology of Shandong Province, Institute of Biomedical Sciences, Key Laboratory of Food Nutrition and Safety of Shandong Normal University, College of Life Science, Shandong Normal University, Jinan 250014, PR China
| | - Min Jia
- Key Laboratory of Animal Resistance Biology of Shandong Province, Institute of Biomedical Sciences, Key Laboratory of Food Nutrition and Safety of Shandong Normal University, College of Life Science, Shandong Normal University, Jinan 250014, PR China.
| |
Collapse
|
44
|
Zhou C, Zou H, Sun C, Li Y. Recent advances in biosensors for antibiotic detection: Selectivity and signal amplification with nanomaterials. Food Chem 2021; 361:130109. [PMID: 34029899 DOI: 10.1016/j.foodchem.2021.130109] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 04/19/2021] [Accepted: 05/12/2021] [Indexed: 12/19/2022]
Abstract
Antibiotics are widely used in the prevention and treatment of infectious diseases in animals due to its bactericidal or bacteriostatic action. Residual antibiotics and their metabolites pose great threats to human and animal health, such as potential carcinogenic and mutagenic effects, and bacterial resistances. Therefore, it is necessary and urgent to accurately monitor trace amounts of antibiotics in food samples. Up to now, many analytical methods have been reported for the determination of antibiotics. Biosensors with the advantages of high sensitivity, rapid response, easy miniaturization, and low price have been widely applied to the detection of antibiotics residues in past decades. This review offered an in-depth evaluation of recognition elements for antibiotic residues in diverse food matrices. In addition, it presented a systematical and critical review on signal amplification via various materials, focusing on recently developed nanomaterials. Finally, the review provided an outlook on the future concepts to help upgrade the sensing techniques for antibiotics in food.
Collapse
Affiliation(s)
- Chen Zhou
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu 610041, China
| | - Haimin Zou
- Department of Clinical Laboratory, Sichuan Cancer Hospital and Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610041, China
| | - Chengjun Sun
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu 610041, China; Provincial Key Laboratory for Food Safety Monitoring and Risk Assessment of Sichuan, Chengdu 610041, China
| | - Yongxin Li
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu 610041, China; Provincial Key Laboratory for Food Safety Monitoring and Risk Assessment of Sichuan, Chengdu 610041, China.
| |
Collapse
|
45
|
Liu X, Li X, Jia L, Cheng G, Leong DT, Xue Q. 3-D DNA nanodevices for on-site sensitive detection of antibiotic residues in food. Chem Commun (Camb) 2021; 56:12628-12631. [PMID: 32959832 DOI: 10.1039/d0cc05411a] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Developing convenient and sensitive detection methods for antibiotic residues in food is beneficial for ensuring food quality and human health. The tough challenges that limit the development of sensitive, quantitative, portable, on-the-spot antibiotic detectors are the lack of simple and effective target recognition and signal amplification strategies, and direct digital quantification. Herein, we developed a visual digital quantitative aptasensor, based on a binding-induced 3-D DNA nanomachine signal probe, for the simple and sensitive, on-the-spot detection of antibiotics.
Collapse
Affiliation(s)
- Xiaowen Liu
- Department of Chemistry, Liaocheng University, Liaocheng, Shandong 252059, China.
| | - Xia Li
- Department of Chemistry, Liaocheng University, Liaocheng, Shandong 252059, China.
| | - Liping Jia
- Department of Chemistry, Liaocheng University, Liaocheng, Shandong 252059, China.
| | - Guigaung Cheng
- Faculty of Agriculture and Food, Kunming University of Science and Technology, Kunming, 650500, China
| | - David Tai Leong
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, 117585, Singapore.
| | - Qingwang Xue
- Department of Chemistry, Liaocheng University, Liaocheng, Shandong 252059, China.
| |
Collapse
|
46
|
Zhao Q, Zhang G, Lu D, Feng K, Shi X. Ultra-sensitive detection of ampicillin via dual-enzyme mediated cascade-signal amplified aptasensor. Microchem J 2021. [DOI: 10.1016/j.microc.2021.106082] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
47
|
Sun X, Zhang H, Huang L, Hao S, Zhai J, Dong S. A naked-eye readout self-powered electrochemical biosensor toward indoor formaldehyde: On-site detection and exposure risk warning. Biosens Bioelectron 2021; 177:112975. [DOI: 10.1016/j.bios.2021.112975] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2020] [Revised: 12/31/2020] [Accepted: 01/02/2021] [Indexed: 12/12/2022]
|
48
|
Contribution of Nanomaterials to the Development of Electrochemical Aptasensors for the Detection of Antimicrobial Residues in Food Products. CHEMOSENSORS 2021. [DOI: 10.3390/chemosensors9040069] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The detection of antimicrobial residues in food products of animal origin is of utmost importance. Indeed antimicrobial residues could be present in animal derived food products because of animal treatments for curative purposes or from illegal use. The usual screening methods to detect antimicrobial residues in food are microbiological, immunological or physico-chemical methods. The development of biosensors to propose sensitive, cheap and quick alternatives to classical methods is constantly increasing. Aptasensors are one of the major trends proposed in the literature, in parallel with the development of immunosensors based on antibodies. The characteristics of electrochemical sensors (i.e., low cost, miniaturization, and portable instrumentation) make them very good candidates to develop screening methods for antimicrobial residues in food products. This review will focus on the recent advances in the development of electrochemical aptasensors for the detection of antimicrobial residues in food products. The contribution of nanomaterials to improve the performance characteristics of electrochemical aptasensors (e.g., Sensitivity, easiness, stability) in the last ten years, as well as signal amplification techniques will be highlighted.
Collapse
|
49
|
Tang Y, Hu Y, Zhou P, Wang C, Tao H, Wu Y. Colorimetric Detection of Kanamycin Residue in Foods Based on the Aptamer-Enhanced Peroxidase-Mimicking Activity of Layered WS 2 Nanosheets. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:2884-2893. [PMID: 33646795 DOI: 10.1021/acs.jafc.1c00925] [Citation(s) in RCA: 69] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Although the colorimetric methods can easily meet the demands of point-of-care and ease-of-use for antibiotic detection, they still face many challenges in the accuracy and stability of assay. Herein, a facile and stable colorimetric aptasensor is first developed for kanamycin residue detection based on the aptamer-enhanced peroxidase-mimicking activity of layered WS2 nanosheets. The investigation confirmed that aptamer sequences can improve the affinity of nanosheets to the chromogenic substrate 3,3'',5,5''-tetramethylbenzidine, resulting in a significant increase of the peroxidase-mimicking activity. Under the optimal conditions, the limit of detection of the proposed colorimetric aptasensor for kanamycin was determined to be as low as 0.6 μM, and such an aptasensor displays excellent selectivity against other competitive antibiotics. Moreover, further studies have verified the applicability of the established colorimetric aptasensor in several actual samples, indicating that the aptasensor may have bright application prospects for kanamycin detection in livestock husbandry and agriculture samples.
Collapse
Affiliation(s)
- Yue Tang
- School of Liquor and Food Engineering; Guizhou Province Key Laboratory of Agriculture Engineering and Biology; Key Laboratory of Plant Resource Conservation and German Innovation in Mountain Region (Ministry of Education), Guizhou University, Huaxi District, Guiyang 550025, China
| | - Yang Hu
- School of Liquor and Food Engineering; Guizhou Province Key Laboratory of Agriculture Engineering and Biology; Key Laboratory of Plant Resource Conservation and German Innovation in Mountain Region (Ministry of Education), Guizhou University, Huaxi District, Guiyang 550025, China
| | - Pei Zhou
- Key Laboratory of Urban Agriculture Ministry of Agriculture, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Chunxiao Wang
- School of Liquor and Food Engineering; Guizhou Province Key Laboratory of Agriculture Engineering and Biology; Key Laboratory of Plant Resource Conservation and German Innovation in Mountain Region (Ministry of Education), Guizhou University, Huaxi District, Guiyang 550025, China
| | - Han Tao
- School of Liquor and Food Engineering; Guizhou Province Key Laboratory of Agriculture Engineering and Biology; Key Laboratory of Plant Resource Conservation and German Innovation in Mountain Region (Ministry of Education), Guizhou University, Huaxi District, Guiyang 550025, China
| | - Yuangen Wu
- School of Liquor and Food Engineering; Guizhou Province Key Laboratory of Agriculture Engineering and Biology; Key Laboratory of Plant Resource Conservation and German Innovation in Mountain Region (Ministry of Education), Guizhou University, Huaxi District, Guiyang 550025, China
| |
Collapse
|
50
|
Zhang Y, Zhu Y, Zeng Z, Zeng G, Xiao R, Wang Y, Hu Y, Tang L, Feng C. Sensors for the environmental pollutant detection: Are we already there? Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2020.213681] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|