1
|
Alyamni N, Abot JL, Zestos AG. Voltammetric detection of Neuropeptide Y using a modified sawhorse waveform. Anal Bioanal Chem 2024; 416:4807-4818. [PMID: 38914733 PMCID: PMC11315718 DOI: 10.1007/s00216-024-05373-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 05/23/2024] [Accepted: 05/29/2024] [Indexed: 06/26/2024]
Abstract
The hormone Neuropeptide Y (NPY) plays critical roles in feeding, satiety, obesity, and weight control. However, its complex peptide structure has hindered the development of fast and biocompatible detection methods. Previous studies utilizing electrochemical techniques with carbon fiber microelectrodes (CFMEs) have targeted the oxidation of amino acid residues like tyrosine to measure peptides. Here, we employ the modified sawhorse waveform (MSW) to enable voltammetric identification of NPY through tyrosine oxidation. Use of MSW improves NPY detection sensitivity and selectivity by reducing interference from catecholamines like dopamine, serotonin, and others compared to the traditional triangle waveform. The technique utilizes a holding potential of -0.2 V and a switching potential of 1.2 V that effectively etches and renews the CFME surface to simultaneously detect NPY and other monoamines with a sensitivity of 5.8 ± 0.94 nA/µM (n = 5). Furthermore, we observed adsorption-controlled, subsecond NPY measurements with CFMEs and MSW. The effective identification of exogenously applied NPY in biological fluids demonstrates the feasibility of this methodology for in vivo and ex vivo studies. These results highlight the potential of MSW voltammetry to enable fast, biocompatible NPY quantification to further elucidate its physiological roles.
Collapse
Affiliation(s)
- Nadiah Alyamni
- Department of Biomedical Engineering, The Catholic University of America, Washington, D.C., 20064, USA
- Department of Chemistry, American University, Washington, D.C., 20016, USA
| | - Jandro L Abot
- Department of Mechanical Engineering, The Catholic University of America, Washington, D.C., 20064, USA
| | - Alexander G Zestos
- Department of Chemistry, American University, Washington, D.C., 20016, USA.
| |
Collapse
|
2
|
Ostertag BJ, Syeed AJ, Brooke AK, Lapsley KD, Porshinsky EJ, Ross AE. Waste Coffee Ground-Derived Porous Carbon for Neurochemical Detection. ACS Sens 2024; 9:1372-1381. [PMID: 38380643 PMCID: PMC11209848 DOI: 10.1021/acssensors.3c02383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2024]
Abstract
We present an optimized synthetic method for repurposing coffee waste to create controllable, uniform porous carbon frameworks for biosensor applications to enhance neurotransmitter detection with fast-scan cyclic voltammetry. Harnessing porous carbon structures from biowastes is a common practice for low-cost energy storage applications; however, repurposing biowastes for biosensing applications has not been explored. Waste coffee ground-derived porous carbon was synthesized by chemical activation to form multivoid, hierarchical porous carbon, and this synthesis was specifically optimized for porous uniformity and electrochemical detection. These materials, when modified on carbon-fiber microelectrodes, exhibited high surface roughness and pore distribution, which contributed to significant improvements in electrochemical reversibility and oxidative current for dopamine (3.5 ± 0.4-fold) and other neurochemicals. Capacitive current increases were small, showing evidence of small increases in electroactive surface area. Local trapping of dopamine within the pores led to improved electrochemical reversibility and frequency-independent behavior. Overall, we demonstrate an optimized biowaste-derived porous carbon synthesis for neurotransmitter detection for the first time and show material utility for viable neurotransmitter detection within a tissue matrix. This work supports the notion that controlled surface nanogeometries play a key role in electrochemical detection.
Collapse
Affiliation(s)
- Blaise J. Ostertag
- University of Cincinnati, Department of Chemistry, 312 College Dr., 404 Crosley Tower, Cincinnati, OH 45221-0172, USA
| | - Ayah J. Syeed
- University of Cincinnati, Department of Chemistry, 312 College Dr., 404 Crosley Tower, Cincinnati, OH 45221-0172, USA
| | - Alexandra K. Brooke
- University of Cincinnati, Department of Chemistry, 312 College Dr., 404 Crosley Tower, Cincinnati, OH 45221-0172, USA
| | - Kamya D. Lapsley
- University of Cincinnati, Department of Chemistry, 312 College Dr., 404 Crosley Tower, Cincinnati, OH 45221-0172, USA
| | - Evan J. Porshinsky
- University of Cincinnati, Department of Chemistry, 312 College Dr., 404 Crosley Tower, Cincinnati, OH 45221-0172, USA
| | - Ashley E. Ross
- University of Cincinnati, Department of Chemistry, 312 College Dr., 404 Crosley Tower, Cincinnati, OH 45221-0172, USA
| |
Collapse
|
3
|
Hanser SM, Shao Z, Zhao H, Venton BJ. Electrochemical treatment in KOH improves carbon nanomaterial performance to multiple neurochemicals. Analyst 2024; 149:457-466. [PMID: 38087947 PMCID: PMC10788926 DOI: 10.1039/d3an01710a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 11/22/2023] [Indexed: 01/16/2024]
Abstract
Carbon-fiber microelectrodes (CFMEs) are primarily used to detect neurotransmitters in vivo with fast-scan cyclic voltammetry (FSCV) but other carbon nanomaterial electrodes are being developed. CFME sensitivity to dopamine is improved by applying a constant 1.5 V vs. Ag/AgCl for 3 minutes while dipped in 1 M KOH, which etches the surface and adds oxygen functional groups. However, KOH etching of other carbon nanomaterials and applications to other neurochemicals have not been investigated. Here, we explored KOH etching of CFMEs and carbon nanotube yarn microelectrodes (CNTYMEs) to characterize sensitivity to dopamine, epinephrine, norepinephrine, serotonin, and 3,4-dihydroxyphenylacetic acid (DOPAC). With CNTYMEs, the potential was applied in KOH for 1 minute because the electrode surface cracked with the longer time. KOH treatment increased electrode sensitivity to each cationic neurotransmitter roughly 2-fold for CFMEs, and 2- to 4-fold for CNTYMEs. KOH treatment decreased the background current of the CFMEs by etching the surface carbon; however, KOH-treatment increased the CNTYME background current because the potential separates individual nanotubes. For DOPAC, the current increase was smaller at CNTYMEs because it is anionic and was repelled by the negative holding potential and did not access the crevices. XPS and Raman spectroscopy showed that KOH treatment changed the CNTYME surface chemistry by increasing defect sites and adding oxide functional groups. KOH-treated CNTYMEs had less fouling to serotonin than normal CNTYMEs. Therefore, KOH treatment activates both CFMEs and CNTYMEs and could be used in biological measurements to increase the sensitivity and decrease fouling for neurochemical measurements.
Collapse
Affiliation(s)
- Samuel M Hanser
- Department of Chemistry, University of Virginia, Charlottesville, VA 22904, USA.
| | - Zijun Shao
- Department of Chemistry, University of Virginia, Charlottesville, VA 22904, USA.
| | - He Zhao
- Department of Chemistry, University of Virginia, Charlottesville, VA 22904, USA.
| | - B Jill Venton
- Department of Chemistry, University of Virginia, Charlottesville, VA 22904, USA.
| |
Collapse
|
4
|
Manring N, Strini M, Smeltz JL, Pathirathna P. Simultaneous detection of neurotransmitters and Cu 2+ using double-bore carbon fiber microelectrodes via fast-scan cyclic voltammetry. RSC Adv 2023; 13:33844-33851. [PMID: 38020012 PMCID: PMC10658548 DOI: 10.1039/d3ra06218j] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 11/14/2023] [Indexed: 12/01/2023] Open
Abstract
There is a great demand to broaden our understanding of the multifactorial complex etiology of neurodegenerative diseases to aid the development of more efficient therapeutics and slow down the progression of neuronal cell death. The role of co-transmission and the effect of environmental factors on such diseases have yet to be explored adequately, mainly due to the lack of a proper analytical tool that can perform simultaneous multi-analyte detection in real time with excellent analytical parameters. In this study, we report a simple fabrication protocol of a double-bore carbon-fiber microelectrode (CFM) capable of performing rapid simultaneous detection of neurotransmitters and Cu2+via fast-scan cyclic voltammetry (FSCV) in Tris buffer. After imaging our CFMs via optical microscopy and scanning electron microscopy to ensure the intact nature of the two electrodes in our electrode composite, we performed a detailed analysis of the performance characteristics of our double-bore CFM in five different analyte mixtures, Cu2+-5HT, Cu2+-DA, Cu2+-AA, 5-HT-DA, and 5-HT-AA in Tris buffer, by applying different analyte-specific FSCV waveforms simultaneously. Calibration curves for each analyte in each mixture were plotted while extracting the analytical parameters such as the limit of detection (LOD), linear range, and sensitivity. We also carried out a control experiment series for the same mixtures with single-bore CFMs by applying one waveform at a time to compare the capabilities of our double-bore CFMs. Interestingly, except for the Cu2+-DA solution, all other combinations showed improved LOD, linear ranges, and sensitivity when detecting simultaneously with double-bore CFMs compared to single-bore CFMs, an excellent finding for developing this sensor for future in vivo applications.
Collapse
Affiliation(s)
- Noel Manring
- Department of Chemistry and Chemical Engineering, Florida Institute of Technology Melbourne FL USA
| | - Miriam Strini
- Department of Chemistry and Chemical Engineering, Florida Institute of Technology Melbourne FL USA
| | - Jessica L Smeltz
- Department of Chemistry and Chemical Engineering, Florida Institute of Technology Melbourne FL USA
| | - Pavithra Pathirathna
- Department of Chemistry and Chemical Engineering, Florida Institute of Technology Melbourne FL USA
| |
Collapse
|
5
|
Zhao H, Shrestha K, Hensley DK, Venton BJ. Carbon nanospikes have improved sensitivity and antifouling properties for adenosine, hydrogen peroxide, and histamine. Anal Bioanal Chem 2023; 415:6039-6050. [PMID: 37505236 PMCID: PMC10867945 DOI: 10.1007/s00216-023-04875-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 07/11/2023] [Accepted: 07/18/2023] [Indexed: 07/29/2023]
Abstract
Carbon nanospikes (CNSs) are a new nanomaterial that has enhanced surface roughness and surface oxide concentration, increasing the sensitivity for dopamine detection. However, CNS-modified electrodes (CNSMEs) have not been characterized for other neurochemicals, particularly those with higher oxidation potentials. The purpose of this study was to evaluate CNSMEs for the detection of adenosine, hydrogen peroxide (H2O2), and histamine. The sensitivity increased with CNSs, and signals at CNSMEs were about 3.3 times higher than CFMEs. Normalizing for surface area differences using background currents, CNSMEs show an increased signal of 4.8 times for adenosine, 1.5 times for H2O2, and 2 times for histamine. CNSMEs promoted the formation of secondary products for adenosine and histamine, which enables differentiation from other analytes with similar oxidation potentials. CNSs also selectively enhance the sensitivity for adenosine and histamine compared to H2O2. A scan rate test reveals that adenosine is more adsorption-controlled at CNS electrodes than CFMEs. CNSMEs are antifouling for histamine, with less fouling because the polymers formed after histamine electrooxidation do not adsorb due to an elevated number of edge planes. CNSMEs were useful for detecting each analyte applied in brain slices. Because of the hydrophilic surface compared to CFMEs, CNSMEs also have reduced biofouling when used in tissue. Therefore, CNSMEs are useful for tissue measurements of adenosine, hydrogen peroxide, and histamine with high selectivity and low fouling.
Collapse
Affiliation(s)
- He Zhao
- Department of Chemistry, University of Virginia, Charlottesville, VA, 22901, USA
| | - Kailash Shrestha
- Department of Chemistry, University of Virginia, Charlottesville, VA, 22901, USA
| | - Dale K Hensley
- Center for Nanophase Materials Sciences, Oak Ridge National Lab, Oak Ridge, TN, 37831, USA
| | - B Jill Venton
- Department of Chemistry, University of Virginia, Charlottesville, VA, 22901, USA.
| |
Collapse
|
6
|
He J, Spanolios E, Froehlich CE, Wouters CL, Haynes CL. Recent Advances in the Development and Characterization of Electrochemical and Electrical Biosensors for Small Molecule Neurotransmitters. ACS Sens 2023; 8:1391-1403. [PMID: 36940263 DOI: 10.1021/acssensors.3c00082] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/22/2023]
Abstract
Neurotransmitters act as chemical messengers, determining human physiological and psychological function, and abnormal levels of neurotransmitters are related to conditions such as Parkinson's and Alzheimer's disease. Biologically and clinically relevant concentrations of neurotransmitters are usually very low (nM), so electrochemical and electronic sensors for neurotransmitter detection play an important role in achieving sensitive and selective detection. Additionally, these sensors have the distinct advantage to potentially be wireless, miniaturized, and multichannel, providing remarkable opportunities for implantable, long-term sensing capabilities unachievable by spectroscopic or chromatographic detection methods. In this article, we will focus on advances in the development and characterization of electrochemical and electronic sensors for neurotransmitters during the last five years, identifying how the field is progressing as well as critical knowledge gaps for sensor researchers.
Collapse
|
7
|
Wang S, Liu Y, Zhu A, Tian Y. In Vivo Electrochemical Biosensors: Recent Advances in Molecular Design, Electrode Materials, and Electrochemical Devices. Anal Chem 2023; 95:388-406. [PMID: 36625112 DOI: 10.1021/acs.analchem.2c04541] [Citation(s) in RCA: 25] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Electrochemical biosensors provide powerful tools for dissecting the dynamically changing neurochemical signals in the living brain, which contribute to the insight into the physiological and pathological processes of the brain, due to their high spatial and temporal resolutions. Recent advances in the integration of in vivo electrochemical sensors with cross-disciplinary advances have reinvigorated the development of in vivo sensors with even better performance. In this Review, we summarize the recent advances in molecular design, electrode materials, and electrochemical devices for in vivo electrochemical sensors from molecular to macroscopic dimensions, highlighting the methods to obtain high performance for fulfilling the requirements for determination in the complex brain through flexible and smart design of molecules, materials, and devices. Also, we look forward to the development of next-generation in vivo electrochemical biosensors.
Collapse
Affiliation(s)
- Shidi Wang
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, Department of Chemistry, School of Chemistry and Molecular Engineering, East China Normal University, Dongchuan Road 500, Shanghai 200241, China
| | - Yuandong Liu
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, Department of Chemistry, School of Chemistry and Molecular Engineering, East China Normal University, Dongchuan Road 500, Shanghai 200241, China
| | - Anwei Zhu
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, Department of Chemistry, School of Chemistry and Molecular Engineering, East China Normal University, Dongchuan Road 500, Shanghai 200241, China
| | - Yang Tian
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, Department of Chemistry, School of Chemistry and Molecular Engineering, East China Normal University, Dongchuan Road 500, Shanghai 200241, China
| |
Collapse
|
8
|
Shao Z, Wilson L, Chang Y, Venton BJ. MPCVD-Grown Nanodiamond Microelectrodes with Oxygen Plasma Activation for Neurochemical Applications. ACS Sens 2022; 7:3192-3200. [PMID: 36223478 PMCID: PMC9855027 DOI: 10.1021/acssensors.2c01803] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Nanodiamonds (NDs) are a carbon nanomaterial that has a diamond core with heteroatoms and defects at the surface. The large surface area, defect sites, and functional groups on NDs make them a promising material for electrochemical sensing. Previously, we dip-coated ND onto carbon-fiber microelectrodes (CFMEs) and found increases in sensitivity, but the coating was sparse. Here, we directly grew thin films of ND on niobium wires using microwave plasma chemical vapor deposition (MP-CVD) to provide full surface coverage. ND microelectrodes show a reliable performance in neurotransmitter detection with good antifouling properties. To improve sensitivity, we oxygen plasma etched ND films to activate the surface and intentionally add defects and oxygen surface functional groups. For fast-scan cyclic voltammetry detection of dopamine, oxygen plasma-etching increases the sensitivity from 21 nA/μM to 90 nA/μM after treatment. Fouling was tested by repeated injections of serotonin or tyramine, and both ND and plasma oxidized nanodiamond (NDO) microelectrodes maintain their currents better compared to CFMEs and therefore are more antifouling. A biofouling test in brain slices shows that ND microelectrodes barely have any current drop, while the more hydrophilic NDO microelectrodes decrease more, but still not as much as CFMEs. Overall, grown ND microelectrodes are promising in neurotransmitter detection with excellent fouling resistance, whereas oxygen plasma etching slightly lowers the fouling resistance but dramatically increases sensitivity.
Collapse
Affiliation(s)
- Zijun Shao
- Dept. of Chemistry, University of Virginia, Charlottesville, VA 22904-4319
| | - Leslie Wilson
- Center for Nanophase Material Science, Oak Ridge National Lab, Oak Ridge, TN, 37831, USA
| | - Yuanyu Chang
- Dept. of Chemistry, University of Virginia, Charlottesville, VA 22904-4319
| | - B. Jill Venton
- Dept. of Chemistry, University of Virginia, Charlottesville, VA 22904-4319
| |
Collapse
|
9
|
Shao Z, Chang Y, Venton BJ. Carbon microelectrodes with customized shapes for neurotransmitter detection: A review. Anal Chim Acta 2022; 1223:340165. [PMID: 35998998 PMCID: PMC9867599 DOI: 10.1016/j.aca.2022.340165] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 07/08/2022] [Accepted: 07/09/2022] [Indexed: 01/26/2023]
Abstract
Carbon is a popular electrode material for neurotransmitter detection due to its good electrochemical properties, high biocompatibility, and inert chemistry. Traditional carbon electrodes, such as carbon fibers, have smooth surfaces and fixed shapes. However, newer studies customize the shape and nanostructure the surface to enhance electrochemistry for different applications. In this review, we show how changing the structure of carbon electrodes with methods such as chemical vapor deposition (CVD), wet-etching, direct laser writing (DLW), and 3D printing leads to different electrochemical properties. The customized shapes include nanotips, complex 3D structures, porous structures, arrays, and flexible sensors with patterns. Nanostructuring enhances sensitivity and selectivity, depending on the carbon nanomaterial used. Carbon nanoparticle modifications enhance electron transfer kinetics and prevent fouling for neurochemicals that are easily polymerized. Porous electrodes trap analyte momentarily on the scale of an electrochemistry experiment, leading to thin layer electrochemical behavior that enhances secondary peaks from chemical reactions. Similar thin layer cell behavior is observed at cavity carbon nanopipette electrodes. Nanotip electrodes facilitate implantation closer to the synapse with reduced tissue damage. Carbon electrode arrays are used to measure from multiple neurotransmitter release sites simultaneously. Custom-shaped carbon electrodes are enabling new applications in neuroscience, such as distinguishing different catecholamines by secondary peaks, detection of vesicular release in single cells, and multi-region measurements in vivo.
Collapse
Affiliation(s)
- Zijun Shao
- Dept. of Chemistry, University of Virginia, Charlottesville, VA, 22904-4319, USA
| | - Yuanyu Chang
- Dept. of Chemistry, University of Virginia, Charlottesville, VA, 22904-4319, USA
| | - B Jill Venton
- Dept. of Chemistry, University of Virginia, Charlottesville, VA, 22904-4319, USA.
| |
Collapse
|
10
|
Swinya D, Martín-Yerga D, Walker M, Unwin PR. Surface Nanostructure Effects on Dopamine Adsorption and Electrochemistry on Glassy Carbon Electrodes. THE JOURNAL OF PHYSICAL CHEMISTRY. C, NANOMATERIALS AND INTERFACES 2022; 126:13399-13408. [PMID: 35983313 PMCID: PMC9377355 DOI: 10.1021/acs.jpcc.2c02801] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 07/12/2022] [Indexed: 06/15/2023]
Abstract
Dopamine (DA) adsorption and electron-transfer kinetics are strongly sensitive to the structure and composition of carbon electrodes. Activation of carbon surfaces is a popular method to improve DA detection, but the role of carbon structural features on DA behavior remains uncertain. Herein, we use scanning electrochemical cell microscopy (SECCM) for local anodization of glassy carbon (GC) electrodes in acid media followed by electrochemical imaging of DA adsorption and electrochemistry covering both unmodified and anodized GC regions of the same electrode. Electrochemical measurements of adsorbed DA involve the delivery of DA from the SECCM meniscus (30 μM) for 1 s periods followed by voltammetric analysis at a reasonable sweep rate (47 V s-1). This general approach reduces effects from interelectrode variability and allows for considerable numbers of measurements and statistical analysis of electrochemical data sets. Localized electrode activity is correlated to surface structure and chemistry by a range of characterization techniques. Anodization enhances DA electron-transfer kinetics and provides more sites for adsorption (higher specific surface area). A consequence is that adsorption takes longer to approach completion on the anodized surface. In fact, normalizing DA surface coverage by the electrochemical surface area (ECSA) reveals that adsorption is less extensive on anodized surfaces compared to as-prepared GC on the same time scale. Thus, ECSA, which has often been overlooked when calculating DA surface coverage on carbon electrodes, even where different activation methods would be expected to result in different surface roughness and nanostructure, is an important consideration. Lower graphitic and higher oxygen content on anodized GC also suggest that oxygen-containing functional groups do not necessarily enhance DA adsorption and may have the opposite effect. This work further demonstrates SECCM as a powerful technique for revealing surface structure-function relationships and correlations at heterogeneous electrodes.
Collapse
Affiliation(s)
- Dalia
L. Swinya
- Department
of Chemistry, University of Warwick, Coventry CV4 7AL, United Kingdom
| | - Daniel Martín-Yerga
- Department
of Chemistry, University of Warwick, Coventry CV4 7AL, United Kingdom
| | - Marc Walker
- Department
of Physics, University of Warwick, Coventry CV4 7AL, United Kingdom
| | - Patrick R. Unwin
- Department
of Chemistry, University of Warwick, Coventry CV4 7AL, United Kingdom
| |
Collapse
|
11
|
Syeed AJ, Li Y, Ostertag BJ, Brown JW, Ross AE. Nanostructured carbon-fiber surfaces for improved neurochemical detection. Faraday Discuss 2022; 233:336-353. [PMID: 34935021 PMCID: PMC9125946 DOI: 10.1039/d1fd00049g] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Fundamental insight into the extent to which the nanostructured surface and geometry impacts neurochemical interactions at electrode surfaces could provide significant advances in our ability to design and fabricate ultrasensitive neurochemical detection probes. Here, we investigate the extent to which the nanostructure of the carbon-fiber surface impacts detection of catecholamines and purines with fast-scan cyclic voltammetry (FSCV). Carbon-fibers were treated with argon (Ar) plasma to induce variations in the nano- and micro-structure without changing the functionalization of the surface. We tested variations in topology by measuring the extent to which the flow rate, RF power, and treatment time affect the surface roughness. Flow rates from 50-100 sccm, plasma power from 20-100 W, and treatment times from 30 s to 5 min were compared. Two Ar-treatments were chosen from the optimization studies for comparison, and the surface roughness was evaluated using atomic force microscopy (AFM). To ensure no changes in chemical composition, fibers were analyzed with X-ray photoelectron spectroscopy (XPS). On average, at the optimized Ar-plasma treatment procedure, oxidative current for adenosine and ATP increased by 3.5 ± 1.4-fold and 3.2 ± 0.6-fold, and guanosine and GTP by 1.7 ± 0.3-fold and 1.8 ± 0.3-fold, respectively (n = 9). Dopamine increased by 1.7 ± 0.3-fold. The extent to which changes in the electrode structure impact adsorption, sensitivity, and electron transfer rates were measured. A COMSOL Multiphysics simulation was developed to enable the modeling of mass transport of electroactive species at varying electrode geometries. Overall, this study provides critical insight into the extent to which the nanostructure of the surface impacts the electrochemical detection of neurochemicals.
Collapse
Affiliation(s)
- Ayah J Syeed
- University of Cincinnati, Department of Chemistry, 312 College Dr 404 Crosley Tower, Cincinnati, OH 45221-0172, USA.
| | - Yuxin Li
- University of Cincinnati, Department of Chemistry, 312 College Dr 404 Crosley Tower, Cincinnati, OH 45221-0172, USA.
| | - Blaise J Ostertag
- University of Cincinnati, Department of Chemistry, 312 College Dr 404 Crosley Tower, Cincinnati, OH 45221-0172, USA.
| | - Jared W Brown
- University of Cincinnati, Department of Chemistry, 312 College Dr 404 Crosley Tower, Cincinnati, OH 45221-0172, USA.
| | - Ashley E Ross
- University of Cincinnati, Department of Chemistry, 312 College Dr 404 Crosley Tower, Cincinnati, OH 45221-0172, USA.
| |
Collapse
|
12
|
Pankratova G, Pan JY, Keller SS. Impact of plasma-induced surface chemistry on electrochemical properties of microfabricated pyrolytic carbon electrodes. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2022.139987] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
13
|
Li Y, Jarosova R, Weese-Myers ME, Ross AE. Graphene-Fiber Microelectrodes for Ultrasensitive Neurochemical Detection. Anal Chem 2022; 94:4803-4812. [PMID: 35274933 DOI: 10.1021/acs.analchem.1c05637] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Here, we have synthesized and characterized graphene-fiber microelectrodes (GFME's) for subsecond detection of neurochemicals with fast-scan cyclic voltammetry (FSCV) for the first time. GFME's exhibited extraordinary properties including faster electron transfer kinetics, significantly improved sensitivity, and ease of tunability that we anticipate will have major impacts on neurochemical detection for years to come. GF's have been used in the literature for various applications; however, scaling their size down to microelectrodes and implementing them as neurochemical microsensors is significantly less developed. The GF's developed in this paper were on average 20-30 μm in diameter and both graphene oxide (GO) and reduced graphene oxide (rGO) fibers were characterized with FSCV. Neat GF's were synthesized using a one-step dimension-confined hydrothermal strategy. FSCV detection has traditionally used carbon-fiber microelectrodes (CFME's) and more recently carbon nanotube fiber electrodes; however, uniform functionalization and direct control of the 3D surface structure of these materials remain limited. The expansion to GFME's will certainly open new avenues for fine-tuning the electrode surface for specific electrochemical detection. When comparing to traditional CFME's, our GFME's exhibited significant increases in electron transfer, redox cycling, fouling resistance, higher sensitivity, and frequency independent behavior which demonstrates their incredible utility as biological sensors.
Collapse
Affiliation(s)
- Yuxin Li
- Department of Chemistry, University of Cincinnati, 312 College Drive 404 Crosley Tower, Cincinnati, Ohio 45221-0172, United States
| | - Romana Jarosova
- Department of Chemistry, University of Cincinnati, 312 College Drive 404 Crosley Tower, Cincinnati, Ohio 45221-0172, United States
| | - Moriah E Weese-Myers
- Department of Chemistry, University of Cincinnati, 312 College Drive 404 Crosley Tower, Cincinnati, Ohio 45221-0172, United States
| | - Ashley E Ross
- Department of Chemistry, University of Cincinnati, 312 College Drive 404 Crosley Tower, Cincinnati, Ohio 45221-0172, United States
| |
Collapse
|
14
|
Ostertag BJ, Cryan MT, Serrano JM, Liu G, Ross AE. Porous Carbon Nanofiber-Modified Carbon Fiber Microelectrodes for Dopamine Detection. ACS APPLIED NANO MATERIALS 2022; 5:2241-2249. [PMID: 36203493 PMCID: PMC9531868 DOI: 10.1021/acsanm.1c03933] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
We present a method to modify carbon-fiber microelectrodes (CFME) with porous carbon nanofibers (PCFs) to improve detection and to investigate the impact of porous geometry for dopamine detection with fast-scan cyclic voltammetry (FSCV). PCFs were fabricated by electrospinning, carbonizing, and pyrolyzing poly(acrylonitrile)-b-poly(methyl methacrylate) (PAN-b-PMMA) block copolymer nanofiber frameworks. Commonly, porous nanofibers are used for energy storage applications, but we present an application of these materials for biosensing which has not been previously studied. This modification impacted the topology and enhanced redox cycling at the surface. PCF modifications increased the oxidative current for dopamine 2.0 ± 0.1-fold (n = 33) with significant increases in detection sensitivity. PCF are known to have more edge plane sites which we speculate lead to the two-fold increase in electroactive surface area. Capacitive current changes were negligible providing evidence that improvements in detection are due to faradaic processes at the electrode. The ΔEp for dopamine decreased significantly at modified CFMEs. Only a 2.2 ± 2.2 % change in dopamine current was observed after repeated measurements and only 10.5 ± 2.8% after 4 hours demonstrating the stability of the modification over time. We show significant improvements in norepinephrine, ascorbic acid, adenosine, serotonin, and hydrogen peroxide detection. Lastly, we demonstrate that the modified electrodes can detect endogenous, unstimulated release of dopamine in living slices of rat striatum. Overall, we provide evidence that porous nanostructures significantly improve neurochemical detection with FSCV and echo the necessity for investigating the extent to which geometry impacts electrochemical detection.
Collapse
Affiliation(s)
- Blaise J. Ostertag
- University of Cincinnati, Department of Chemistry, 312 College Dr., 404 Crosley Tower, Cincinnati, OH 45221-0172, USA
| | - Michael T. Cryan
- University of Cincinnati, Department of Chemistry, 312 College Dr., 404 Crosley Tower, Cincinnati, OH 45221-0172, USA
| | - Joel M. Serrano
- Virginia Polytechnic Institute and State University, Department of Chemistry, Macromolecules Innovation Institute, Division of Nanoscience, Academy of Integrated Science, 800 West Campus Dr., Blacksburg, VA, 2406, USA
| | - Guoliang Liu
- Virginia Polytechnic Institute and State University, Department of Chemistry, Macromolecules Innovation Institute, Division of Nanoscience, Academy of Integrated Science, 800 West Campus Dr., Blacksburg, VA, 2406, USA
| | - Ashley E. Ross
- University of Cincinnati, Department of Chemistry, 312 College Dr., 404 Crosley Tower, Cincinnati, OH 45221-0172, USA
- Corresponding author: Office Phone#: 513-556-9314,
| |
Collapse
|
15
|
Shao Z, Venton BJ. Different Electrochemical Behavior of Cationic Dopamine from Anionic Ascorbic Acid and DOPAC at CNT Yarn Microelectrodes. JOURNAL OF THE ELECTROCHEMICAL SOCIETY 2022; 169:026506. [PMID: 35221350 PMCID: PMC8871592 DOI: 10.1149/1945-7111/ac4d67] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Carbon nanotube yarn microelectrodes (CNTYMEs) have micron-scale surface crevices that momentarily trap molecules. CNTYMEs improve selectivity among cationic catecholamines because secondary reactions are enhanced, but no anions have been studied. Here, we compared fast-scan cyclic voltammetry (FSCV) of dopamine and anionic interferents 3,4 dihydroxyphenylacetic acid (DOPAC) and L-ascorbic acid (AA) at CNTYMEs and carbon fiber microelectrodes (CFMEs). At CFMEs, dopamine current decreases with increasing FSCV repetition frequency at pH 7.4, whereas DOPAC and AA have increasing currents with increasing frequency, because of less repulsion at the negative holding potential. Both DOPAC and AA have side reactions after being oxidized, which are enhanced by trapping. At pH 4, the current increases for DOPAC and AA because they are not repelled. In addition, AA has a different oxidation pathway at pH 4, and an extra peak in the CV is enhanced by trapping effects at CNTYMEs. At pH 8.5, co-detection of dopamine in the presence of DOPAC and AA is enhanced at 100 Hz frequency because of differences in secondary peaks. Thus, the trapping effects at CNTYMEs affects anions differently than cations and secondary peaks can be used to identify dopamine in mixture of AA and DOPAC with FSCV.
Collapse
Affiliation(s)
- Zijun Shao
- Department of Chemistry, University of Virginia, Charlottesville, Virginia 22904-4319, USA
| | - B. Jill Venton
- Department of Chemistry, University of Virginia, Charlottesville, Virginia 22904-4319, USA
| |
Collapse
|
16
|
Durable superhydrophobic and oleophobic cotton fabric based on the grafting of fluorinated POSS through silane coupling and thiol-ene click reaction. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2021.127566] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
17
|
Integrated hand-held electrochemical sensor for multicomponent detection in urine. Biosens Bioelectron 2021; 193:113534. [PMID: 34343935 DOI: 10.1016/j.bios.2021.113534] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Revised: 07/15/2021] [Accepted: 07/23/2021] [Indexed: 01/18/2023]
Abstract
Electrochemical sensors have shown great advantage and application potential in point-of-care testing (POCT) related scenarios. However, some fatal problems plague its widespread utilization, which include the susceptibility of sensors to interference in real samples (e.g. pH), the contradiction between the limited objects detectable for most sensors and the requirement of multi-target analysis in most cases, and the complicated procedures in sensor preparation as well as in routine use. This paper contributed a tip-like electrochemical sensor prototype. By integrated with a commercial pipettor, it fulfilled semi-automatic assay procedure of sampling, detection and rinsing, thus saving operational time and manual work. The tip sensor owns the property of simple fabrication and is free from any modification of extra bio/chem materials. Moreover, built on multiple electrochemical signal outputs including open circuit potential, peak current and potential of specific electrochemical reaction, this work established a novel multi-component sensing strategy, wherein detection of uric acid (UA), urea and pH in urine samples was realized by using one single working electrode. The detection range for the above targets is 5.0~600 μM for UA, 4.0~8.0 for pH and 0.5~7.0 mM for urea with the detection limits (S/N = 3) of 0.05 μM for UA and 5.4 μM for urea, and the sensitivity of pH assay is 73 mV/pH. Notably, as variation of sample pH has impact on electrochemical analysis, the pH-related parameter was introduced for calibration to diminish such interference. The developed tip sensor and the novel sensing strategy may open a new window for electrochemical technology and broaden its application in POCT.
Collapse
|
18
|
Cao Q, Shao Z, Hensley DK, Lavrik NV, Venton BJ. Influence of Geometry on Thin Layer and Diffusion Processes at Carbon Electrodes. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:2667-2676. [PMID: 33591763 PMCID: PMC7937503 DOI: 10.1021/acs.langmuir.0c03315] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
The geometric structure of carbon electrodes affects their electrochemical behavior, and large-scale surface roughness leads to thin layer electrochemistry when analyte is trapped in pores. However, the current response is always a mixture of both thin layer and diffusion processes. Here, we systematically explore the effects of thin layer electrochemistry and diffusion at carbon fiber (CF), carbon nanospike (CNS), and carbon nanotube yarn (CNTY) electrodes. The cyclic voltammetry (CV) response to the surface-insensitive redox couple Ru(NH3)63+/2+ is tested, so the geometric structure is the only factor. At CFs, the reaction is diffusion-controlled because the surface is smooth. CNTY electrodes have gaps between nanotubes that are about 10 μm deep, comparable with the diffusion layer thickness. CNTY electrodes show clear thin layer behavior due to trapping effects, with more symmetrical peaks and ΔEp closer to zero. CNS electrodes have submicrometer scale roughness, so their CV shape is mostly due to diffusion, not thin layer effects. However, even the 10% contribution of thin layer behavior reduces the peak separation by 30 mV, indicating ΔEp is influenced not only by electron transfer kinetics but also by surface geometry. A new simulation model is developed to quantitate the thin layer and diffusion contributions that explains the CV shape and peak separation for CNS and CNTY electrodes, providing insight on the impact of scan rate and surface structure size. Thus, this study provides key understanding of thin layer and diffusion processes at different surface structures and will enable rational design of electrodes with thin layer electrochemistry.
Collapse
Affiliation(s)
- Qun Cao
- Department of Chemistry, University of Virginia, Charlottesville, Virginia 22904, United States
| | - Zijun Shao
- Department of Chemistry, University of Virginia, Charlottesville, Virginia 22904, United States
| | - Dale K. Hensley
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Nickolay V. Lavrik
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - B. Jill Venton
- Department of Chemistry, University of Virginia, Charlottesville, Virginia 22904, United States
- Corresponding Author: B. Jill Venton,
| |
Collapse
|
19
|
Yu P, Wei H, Zhong P, Xue Y, Wu F, Liu Y, Fei J, Mao L. Single‐Carbon‐Fiber‐Powered Microsensor for In Vivo Neurochemical Sensing with High Neuronal Compatibility. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202010195] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Ping Yu
- Beijing National Laboratory for Molecular Science Key Laboratory of Analytical Chemistry for Living Biosystems Institute of Chemistry Chinese Academy of Sciences (CAS) Beijing 100190 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Huan Wei
- Beijing National Laboratory for Molecular Science Key Laboratory of Analytical Chemistry for Living Biosystems Institute of Chemistry Chinese Academy of Sciences (CAS) Beijing 100190 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Peipei Zhong
- Key Laboratory of Environmentally Friendly Chemistry and Applications of the Ministry of Education College of Chemistry Xiangtan University Xiangtan Hunan 411105 China
| | - Yifei Xue
- Beijing National Laboratory for Molecular Science Key Laboratory of Analytical Chemistry for Living Biosystems Institute of Chemistry Chinese Academy of Sciences (CAS) Beijing 100190 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Fei Wu
- Beijing National Laboratory for Molecular Science Key Laboratory of Analytical Chemistry for Living Biosystems Institute of Chemistry Chinese Academy of Sciences (CAS) Beijing 100190 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Yang Liu
- Beijing National Laboratory for Molecular Science Key Laboratory of Analytical Chemistry for Living Biosystems Institute of Chemistry Chinese Academy of Sciences (CAS) Beijing 100190 China
| | - Junjie Fei
- Key Laboratory of Environmentally Friendly Chemistry and Applications of the Ministry of Education College of Chemistry Xiangtan University Xiangtan Hunan 411105 China
| | - Lanqun Mao
- Beijing National Laboratory for Molecular Science Key Laboratory of Analytical Chemistry for Living Biosystems Institute of Chemistry Chinese Academy of Sciences (CAS) Beijing 100190 China
- University of Chinese Academy of Sciences Beijing 100049 China
| |
Collapse
|
20
|
Shao Z, Puthongkham P, Hu K, Jia R, Mirkin MV, Venton BJ. Thin layer cell behavior of CNT yarn and cavity carbon nanopipette electrodes: Effect on catecholamine detection. Electrochim Acta 2020; 361. [PMID: 32981947 DOI: 10.1016/j.electacta.2020.137032] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Carbon nanotube yarn microelectrodes (CNTYMEs) are an alternative to carbon-fiber microelectrodes (CFMEs) with interesting electrochemical properties because analyte is momentarily trapped in cavities between the CNTs. Here, we compare fast-scan cyclic voltammetry (FSCV) detection of catecholamines, including dopamine, norepinephrine, and epinephrine, at CNTYMEs, CFMEs, as well as cavity carbon nanopipette electrodes (CNPEs). At CFMEs, current decreases dramatically at high FSCV repetition frequencies. At CNTYMEs, current is almost independent of FSCV repetition frequency because the analytes are trapped in the crevices between CNTs, and thus the electrode acts like a thin-layer cell. At CFMEs, small cyclization product peaks are observed due to an intramolecular cyclization reaction to form leucocatecholamine, which is electroactive, and these peaks are largest for the secondary amine epinephrine. At CNTYMEs, more of the leucocatecholamine cyclization product is detected for all catecholamines because of the enhanced trapping effects, particularly at higher repetition rates where the reaction occurs more frequently and more product is accumulated. For epinephrine, the secondary peaks have larger currents than the primary oxidation peaks at 100 Hz, and similar trends are observed with faster scan rates and 500 Hz repetition frequencies. Finally, we examined CNPEs, which also momentarily trap neurotransmitters. Similar to CNTYMEs, at CNPEs, catecholamines have robust cyclization peaks, particularly at high repetition rates. Thus, CNTYMEs and CNPEs have thin layer cell behavior that facilitates high temporal resolution measurements, but catecholamines CVs are complicated by cyclization reactions. However, those additional peaks could be useful in discriminating the analytes, particularly epinephrine and norepinephrine.
Collapse
Affiliation(s)
- Zijun Shao
- Dept. of Chemistry, University of Virginia, Charlottesville, VA 22901
| | | | - KeKe Hu
- Department of Chemistry and Biochemistry, Queens College-CUNY, Flushing, New York 11367 and Graduate Center of CUNY, New York, NY 10016, USA
| | - Rui Jia
- Department of Chemistry and Biochemistry, Queens College-CUNY, Flushing, New York 11367 and Graduate Center of CUNY, New York, NY 10016, USA
| | - Michael V Mirkin
- Department of Chemistry and Biochemistry, Queens College-CUNY, Flushing, New York 11367 and Graduate Center of CUNY, New York, NY 10016, USA
| | - B Jill Venton
- Dept. of Chemistry, University of Virginia, Charlottesville, VA 22901
| |
Collapse
|
21
|
Li Y, Ross AE. Plasma-treated carbon-fiber microelectrodes for improved purine detection with fast-scan cyclic voltammetry. Analyst 2020; 145:805-815. [PMID: 31820742 DOI: 10.1039/c9an01636h] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Here, we developed N2 and O2 plasma-treated carbon-fiber microelectrodes (CFME) for improved purine detection with fast-scan cyclic voltammetry (FSCV). Plasma treatment affects the topology and functionality of carbon which impacts the electrode-analyte interaction. CFME's are less sensitive to purines compared to catecholamines. Knowledge of how the electrode surface drives purine-electrode interaction would provide insight into methods to improve purine detection. Here, plasma-treated CFME's with N2 and O2 plasma was used to investigate the extent to which the surface functionality and topology affects purine detection and to improve purine sensing with FSCV. On average, O2 plasma increased the oxidative current for adenosine and ATP by 6.0 ± 1.2-fold and 6.4 ± 1.6-fold, and guanosine and GTP by 2.8 ± 0.47-fold and 5.8 ± 1.4-fold, respectively (n = 9). The O2 plasma increased the surface roughness and oxygen functionality. N2 plasma increased the oxidative current for adenosine and ATP by 1.5 ± 0.15-fold and 1.9 ± 0.23-fold, and guanosine and GTP by 1.4 ± 0.20-fold and 1.5 ± 0.20-fold, respectively (n = 11). N2 plasma increased the nitrogen functionality with minimal increases in roughness. Both plasma treatments impacted purines more than dopamine. Langmuir isotherms revealed that both plasma gases impact the theoretical surface coverage and adsorption strength of purines at the electrode. Overall, we show that purine detection is improved at surfaces with increased surface roughness, and oxygen and amine functionality. Plasma-treated CFMEs could be used in the future to study the analyte-electrode interaction of other neurochemicals.
Collapse
Affiliation(s)
- Yuxin Li
- University of Cincinnati, Department of Chemistry, 312 College Dr., 404 Crosley Tower, Cincinnati, OH 45221-0172, USA.
| | | |
Collapse
|
22
|
Chang Y, Wang Y, Venton BJ. A 1 and A 2A Receptors Modulate Spontaneous Adenosine but Not Mechanically Stimulated Adenosine in the Caudate. ACS Chem Neurosci 2020; 11:3377-3385. [PMID: 32976713 DOI: 10.1021/acschemneuro.0c00510] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Adenosine is a neuromodulator, and rapid increases in adenosine in the brain occur spontaneously or after mechanical stimulation. However, the regulation of rapid adenosine by adenosine receptors is unclear, and understanding it would allow better manipulation of neuromodulation. The two main adenosine receptors in the brain are A1 receptors, which are inhibitory, and A2A receptors, which are excitatory. Here, we investigated the regulation of spontaneous adenosine and mechanically stimulated adenosine by adenosine receptors, using global A1 or A2A knockout mice. Results were compared in vivo and in brain slices' models. A1 KO mice have increased frequency of spontaneous adenosine events, but no change in the average concentration of an event, while A2A KO mice had no change in frequency but increased average event concentration. Thus, both A1 and A2A self-regulate spontaneous adenosine release; however, A1 acts on the frequency of events, while A2A receptors regulate concentration. The trends are similar both in vivo and slices, so brain slices are a good model system to study spontaneous adenosine release. For mechanically stimulated adenosine, there was no effect of A1 or A2A KO in vivo, but in brain slices, there was a significant increase in concentration evoked in A1KO mice. Mechanically stimulated release was largely unregulated by A1 and A2A receptors, likely because of a different release mechanism than spontaneous adenosine. Thus, A1 receptors affect the frequency of spontaneous adenosine transients, and A2A receptors affect the concentration. Therefore, future studies could probe drug treatments targeting A1 and A2A receptors to increase rapid adenosine neuromodulation.
Collapse
Affiliation(s)
- Yuanyu Chang
- Department of Chemistry, University of Virginia, Charlottesville, Virginia 22901, United States
| | - Ying Wang
- Department of Chemistry, University of Virginia, Charlottesville, Virginia 22901, United States
| | - B. Jill Venton
- Department of Chemistry, University of Virginia, Charlottesville, Virginia 22901, United States
| |
Collapse
|
23
|
Yu P, Wei H, Zhong P, Xue Y, Wu F, Liu Y, Fei J, Mao L. Single‐Carbon‐Fiber‐Powered Microsensor for In Vivo Neurochemical Sensing with High Neuronal Compatibility. Angew Chem Int Ed Engl 2020; 59:22652-22658. [DOI: 10.1002/anie.202010195] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2020] [Indexed: 02/06/2023]
Affiliation(s)
- Ping Yu
- Beijing National Laboratory for Molecular Science Key Laboratory of Analytical Chemistry for Living Biosystems Institute of Chemistry Chinese Academy of Sciences (CAS) Beijing 100190 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Huan Wei
- Beijing National Laboratory for Molecular Science Key Laboratory of Analytical Chemistry for Living Biosystems Institute of Chemistry Chinese Academy of Sciences (CAS) Beijing 100190 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Peipei Zhong
- Key Laboratory of Environmentally Friendly Chemistry and Applications of the Ministry of Education College of Chemistry Xiangtan University Xiangtan Hunan 411105 China
| | - Yifei Xue
- Beijing National Laboratory for Molecular Science Key Laboratory of Analytical Chemistry for Living Biosystems Institute of Chemistry Chinese Academy of Sciences (CAS) Beijing 100190 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Fei Wu
- Beijing National Laboratory for Molecular Science Key Laboratory of Analytical Chemistry for Living Biosystems Institute of Chemistry Chinese Academy of Sciences (CAS) Beijing 100190 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Yang Liu
- Beijing National Laboratory for Molecular Science Key Laboratory of Analytical Chemistry for Living Biosystems Institute of Chemistry Chinese Academy of Sciences (CAS) Beijing 100190 China
| | - Junjie Fei
- Key Laboratory of Environmentally Friendly Chemistry and Applications of the Ministry of Education College of Chemistry Xiangtan University Xiangtan Hunan 411105 China
| | - Lanqun Mao
- Beijing National Laboratory for Molecular Science Key Laboratory of Analytical Chemistry for Living Biosystems Institute of Chemistry Chinese Academy of Sciences (CAS) Beijing 100190 China
- University of Chinese Academy of Sciences Beijing 100049 China
| |
Collapse
|
24
|
Chang Y, Venton BJ. Optimization of graphene oxide-modified carbon-fiber microelectrode for dopamine detection. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2020; 12:2893-2902. [PMID: 32617123 PMCID: PMC7331934 DOI: 10.1039/d0ay00310g] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Graphene oxide (GO) is a carbon-based material that is easily obtained from graphite or graphite oxide. GO has been used broadly for electrochemistry applications and our hypothesis is that GO coating a carbon-fiber microelectrode (CFME) will increase the sensitivity for dopamine by providing more adsorption sites due to the enhancement of oxygen functional groups. Here, we compared drop casting, dip coating, and electrodeposition methods to directly coat commercial GO on CFME surfaces. Dip coating did not result in much GO coating and drop casting resulted in large agglomerations that produced noisy signals and slow rise times. Electrodeposition method with cyclic voltammetry increase the current for dopamine and this method was the most reproducible and had the least noise compared to the other two coating methods. The optimized method used a triangular waveform scanned from -1.2 V to 1.5 V at 100 mV/s for 5 cycles in 0.2 mg/mL GO in water. With fast-scan cyclic voltammetry (FSCV), the optimized GO/CFME enhanced the dopamine oxidation peak two-fold. The sensitivity of the modified electrode is 41±2 nA/μM with a linear range from 25 nM to 1 μM, and a limit of detection of 11 nM. The optimized electrodes were used to detect electrically-stimulated dopamine in brain slices to demonstrate their performance in tissue. Thus, GO can be used to enhance the sensitivity of electrodes for dopamine and improve biological measurements.
Collapse
Affiliation(s)
- Yuanyu Chang
- Department of Chemistry, University of Virginia, Charlottesville, VA 22904, United States
| | - B Jill Venton
- Department of Chemistry, University of Virginia, Charlottesville, VA 22904, United States
| |
Collapse
|
25
|
Nano-engineering the material structure of preferentially oriented nano-graphitic carbon for making high-performance electrochemical micro-sensors. Sci Rep 2020; 10:9444. [PMID: 32523076 PMCID: PMC7286892 DOI: 10.1038/s41598-020-66408-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Accepted: 05/11/2020] [Indexed: 12/28/2022] Open
Abstract
Direct synthesis of thin-film carbon nanomaterials on oxide-coated silicon substrates provides a viable pathway for building a dense array of miniaturized (micron-scale) electrochemical sensors with high performance. However, material synthesis generally involves many parameters, making material engineering based on trial and error highly inefficient. Here, we report a two-pronged strategy for producing engineered thin-film carbon nanomaterials that have a nano-graphitic structure. First, we introduce a variant of the metal-induced graphitization technique that generates micron-scale islands of nano-graphitic carbon materials directly on oxide-coated silicon substrates. A novel feature of our material synthesis is that, through substrate engineering, the orientation of graphitic planes within the film aligns preferentially with the silicon substrate. This feature allows us to use the Raman spectroscopy for quantifying structural properties of the sensor surface, where the electrochemical processes occur. Second, we find phenomenological models for predicting the amplitudes of the redox current and the sensor capacitance from the material structure, quantified by Raman. Our results indicate that the key to achieving high-performance micro-sensors from nano-graphitic carbon is to increase both the density of point defects and the size of the graphitic crystallites. Our study offers a viable strategy for building planar electrochemical micro-sensors with high-performance.
Collapse
|
26
|
Mendoza A, Asrat T, Liu F, Wonnenberg P, Zestos AG. Carbon Nanotube Yarn Microelectrodes Promote High Temporal Measurements of Serotonin Using Fast Scan Cyclic Voltammetry. SENSORS (BASEL, SWITZERLAND) 2020; 20:E1173. [PMID: 32093345 PMCID: PMC7070315 DOI: 10.3390/s20041173] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 02/17/2020] [Accepted: 02/18/2020] [Indexed: 12/11/2022]
Abstract
Carbon fiber-microelectrodes (CFMEs) have been the standard for neurotransmitter detection for over forty years. However, in recent years, there have been many advances of utilizing alternative nanomaterials for neurotransmitter detection with fast scan cyclic voltammetry (FSCV). Recently, carbon nanotube (CNT) yarns have been developed as the working electrode materials for neurotransmitter sensing capabilities with fast scan cyclic voltammetry. Carbon nanotubes are ideal for neurotransmitter detection because they have higher aspect ratios enabling monoamine adsorption and lower limits of detection, faster electron transfer kinetics, and a resistance to surface fouling. Several methods to modify CFMEs with CNTs have resulted in increases in sensitivity, but have also increased noise and led to irreproducible results. In this study, we utilize commercially available CNT-yarns to make microelectrodes as enhanced neurotransmitter sensors for neurotransmitters such as serotonin. CNT-yarn microelectrodes have significantly higher sensitivities (peak oxidative currents of the cyclic voltammograms) than CFMEs and faster electron transfer kinetics as measured by peak separation (ΔEP) values. Moreover, both serotonin and dopamine are adsorption controlled to the surface of the electrode as measured by scan rate and concentration experiments. CNT yarn microelectrodes also resisted surface fouling of serotonin onto the surface of the electrode over thirty minutes and had a wave application frequency independent response to sensitivity at the surface of the electrode.
Collapse
Affiliation(s)
| | | | | | | | - Alexander G. Zestos
- Department of Chemistry and Center for Behavioral Neuroscience, American University, Washington, DC 20016, USA; (A.M.); (T.A.); (F.L.); (P.W.)
| |
Collapse
|
27
|
A microfluidic electrochemical flow cell capable of rapid on-chip dilution for fast-scan cyclic voltammetry electrode calibration. Anal Bioanal Chem 2020; 412:6287-6294. [PMID: 32064570 DOI: 10.1007/s00216-020-02493-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 01/13/2020] [Accepted: 02/05/2020] [Indexed: 10/25/2022]
Abstract
Here, we developed a microfluidic electrochemical flow cell for fast-scan cyclic voltammetry which is capable of rapid on-chip dilution for efficient and cost-effective electrode calibration. Fast-scan cyclic voltammetry (FSCV) at carbon-fiber microelectrodes is a robust electroanalytical technique used to measure subsecond changes in neurotransmitter concentration over time. Traditional methods of electrode calibration for FSCV require several milliliters of a standard. Additionally, generating calibration curves can be time-consuming because separate solutions must be prepared for each concentration. Microfluidic electrochemical flow cells have been developed in the past; however, they often require incorporating the electrode in the device, making it difficult to remove for testing in biological tissues. Likewise, current microfluidic electrochemical flow cells are not capable of rapid on-chip dilution to eliminate the requirement of making multiple solutions. We designed a T-channel device, with microchannel dimensions of 100 μm × 50 μm, that delivered a standard to a 2-mm-diameter open electrode sampling well. A waste channel with the same dimensions was designed perpendicular to the well to flush and remove the standard. The dimensions of the T-microchannels and flow rates were chosen to facilitate complete mixing in the delivery channel prior to reaching the electrode. The degree of mixing was computationally modeled using COMSOL and was quantitatively assessed in the device using both colored dyes and electrochemical detection. On-chip electrode calibration for dopamine with FSCV was not significantly different than the traditional calibration method demonstrating its utility for FSCV calibration. Overall, this device improves the efficiency and ease of electrode calibration. Graphical abstract.
Collapse
|
28
|
Abstract
Fast-scan cyclic voltammetry (FSCV) is used with carbon-fiber microelectrodes for the real-time detection of neurotransmitters on the subsecond time scale. With FSCV, the potential is ramped up from a holding potential to a switching potential and back, usually at a 400 V s-1 scan rate and a frequency of 10 Hz. The plot of current vs. applied potential, the cyclic voltammogram (CV), has a very different shape for FSCV than for traditional cyclic voltammetry collected at scan rates which are 1000-fold slower. Here, we explore the theory of FSCV, with a focus on dopamine detection. First, we examine the shape of the CVs. Background currents, which are 100-fold higher than faradaic currents, are subtracted out. Peak separation is primarily due to slow electron transfer kinetics, while the symmetrical peak shape is due to exhaustive electrolysis of all the adsorbed neurotransmitters. Second, we explain the origins of the dopamine waveform, and the factors that limit the holding potential (oxygen reduction), switching potential (water oxidation), scan rate (electrode instability), and repetition rate (adsorption). Third, we discuss data analysis, from data visualization with color plots, to the automated algorithms like principal components regression that distinguish dopamine from pH changes. Finally, newer applications are discussed, including optimization of waveforms for analyte selectivity, carbon nanomaterial electrodes that trap dopamine, and basal level measurements that facilitate neurotransmitter measurements on a longer time scale. FSCV theory is complex, but understanding it enables better development of new techniques to monitor neurotransmitters in vivo.
Collapse
Affiliation(s)
- B Jill Venton
- Dept. of Chemistry, University of Virginia, PO Box 400319, Charlottesville, VA 22901, USA.
| | | |
Collapse
|
29
|
Abstract
Fast-scan cyclic voltammetry (FSCV) at carbon-fiber microelectrodes (CFMEs) is a versatile electrochemical technique to probe neurochemical dynamics in vivo. Progress in FSCV methodology continues to address analytical challenges arising from biological needs to measure low concentrations of neurotransmitters at specific sites. This review summarizes recent advances in FSCV method development in three areas: (1) waveform optimization, (2) electrode development, and (3) data analysis. First, FSCV waveform parameters such as holding potential, switching potential, and scan rate have been optimized to monitor new neurochemicals. The new waveform shapes introduce better selectivity toward specific molecules such as serotonin, histamine, hydrogen peroxide, octopamine, adenosine, guanosine, and neuropeptides. Second, CFMEs have been modified with nanomaterials such as carbon nanotubes or replaced with conducting polymers to enhance sensitivity, selectivity, and antifouling properties. Different geometries can be obtained by 3D-printing, manufacturing arrays, or fabricating carbon nanopipettes. Third, data analysis is important to sort through the thousands of CVs obtained. Recent developments in data analysis include preprocessing by digital filtering, principal components analysis for distinguishing analytes, and developing automated algorithms to detect peaks. Future challenges include multisite measurements, machine learning, and integration with other techniques. Advances in FSCV will accelerate research in neurochemistry to answer new biological questions about dynamics of signaling in the brain.
Collapse
Affiliation(s)
- Pumidech Puthongkham
- Department of Chemistry, University of Virginia, Charlottesville, VA 22904, USA.
| | | |
Collapse
|
30
|
Kamal Eddin FB, Wing Fen Y. Recent Advances in Electrochemical and Optical Sensing of Dopamine. SENSORS (BASEL, SWITZERLAND) 2020; 20:E1039. [PMID: 32075167 PMCID: PMC7071053 DOI: 10.3390/s20041039] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Revised: 12/13/2019] [Accepted: 12/13/2019] [Indexed: 12/13/2022]
Abstract
Nowadays, several neurological disorders and neurocrine tumours are associated with dopamine (DA) concentrations in various biological fluids. Highly accurate and ultrasensitive detection of DA levels in different biological samples in real-time can change and improve the quality of a patient's life in addition to reducing the treatment cost. Therefore, the design and development of diagnostic tool for in vivo and in vitro monitoring of DA is of considerable clinical and pharmacological importance. In recent decades, a large number of techniques have been established for DA detection, including chromatography coupled to mass spectrometry, spectroscopic approaches, and electrochemical (EC) methods. These methods are effective, but most of them still have some drawbacks such as consuming time, effort, and money. Added to that, sometimes they need complex procedures to obtain good sensitivity and suffer from low selectivity due to interference from other biological species such as uric acid (UA) and ascorbic acid (AA). Advanced materials can offer remarkable opportunities to overcome drawbacks in conventional DA sensors. This review aims to explain challenges related to DA detection using different techniques, and to summarize and highlight recent advancements in materials used and approaches applied for several sensor surface modification for the monitoring of DA. Also, it focuses on the analytical features of the EC and optical-based sensing techniques available.
Collapse
Affiliation(s)
- Faten Bashar Kamal Eddin
- Department of Physics, Faculty of Science, Universiti Putra Malaysia, Serdang 43400 UPM, Selangor, Malaysia;
| | - Yap Wing Fen
- Department of Physics, Faculty of Science, Universiti Putra Malaysia, Serdang 43400 UPM, Selangor, Malaysia;
- Functional Devices Laboratory, Institute of Advanced Technology, Universiti Putra Malaysia, Serdang 43400 UPM, Selangor, Malaysia
| |
Collapse
|
31
|
Jang Y, Kim SM, Spinks GM, Kim SJ. Carbon Nanotube Yarn for Fiber-Shaped Electrical Sensors, Actuators, and Energy Storage for Smart Systems. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e1902670. [PMID: 31403227 DOI: 10.1002/adma.201902670] [Citation(s) in RCA: 69] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Revised: 06/18/2019] [Indexed: 06/10/2023]
Abstract
Smart systems are those that display autonomous or collaborative functionalities, and include the ability to sense multiple inputs, to respond with appropriate operations, and to control a given situation. In certain circumstances, it is also of great interest to retain flexible, stretchable, portable, wearable, and/or implantable attributes in smart electronic systems. Among the promising candidate smart materials, carbon nanotubes (CNTs) exhibit excellent electrical and mechanical properties, and structurally fabricated CNT-based fibers and yarns with coil and twist further introduce flexible and stretchable properties. A number of notable studies have demonstrated various functions of CNT yarns, including sensors, actuators, and energy storage. In particular, CNT yarns can operate as flexible electronic sensors and electrodes to monitor strain, temperature, ionic concentration, and the concentration of target biomolecules. Moreover, a twisted CNT yarn enables strong torsional actuation, and coiled CNT yarns generate large tensile strokes as an artificial muscle. Furthermore, the reversible actuation of CNT yarns can be used as an energy harvester and, when combined with a CNT supercapacitor, has promoted the next-generation of energy storage systems. Here, progressive advances of CNT yarns in electrical sensing, actuation, and energy storage are reported, and the future challenges in smart electronic systems considered.
Collapse
Affiliation(s)
- Yongwoo Jang
- Center for Self-Powered Actuation, Department of Biomedical Engineering, Hanyang University, Seoul, 04763, South Korea
| | - Sung Min Kim
- Department of Physical Education, Department of Active Aging Industry, Hanyang University, Seoul, 04763, South Korea
| | - Geoffrey M Spinks
- Australian Institute for Innovative Materials, ARC Centre of Excellence for Electromaterials Science, University of Wollongong, Wollongong, NSW, 2522, Australia
| | - Seon Jeong Kim
- Center for Self-Powered Actuation, Department of Biomedical Engineering, Hanyang University, Seoul, 04763, South Korea
| |
Collapse
|
32
|
Ratnam KV, Manjunatha H, Janardan S, Babu Naidu KC, Ramesh S. Nonenzymatic electrochemical sensor based on metal oxide, MO (M= Cu, Ni, Zn, and Fe) nanomaterials for neurotransmitters: An abridged review. SENSORS INTERNATIONAL 2020. [DOI: 10.1016/j.sintl.2020.100047] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
|
33
|
Puthongkham P, Venton BJ. Nanodiamond Coating Improves the Sensitivity and Antifouling Properties of Carbon Fiber Microelectrodes. ACS Sens 2019; 4:2403-2411. [PMID: 31387349 PMCID: PMC6776076 DOI: 10.1021/acssensors.9b00994] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Nanodiamonds (NDs) are carbon nanomaterials with a core diamond crystalline structure and crystal defects, such as graphitic carbon and heteroatoms, on their surface. For electrochemistry, NDs are promising to increase active sites and decrease fouling, but NDs have not been studied for neurotransmitter electrochemistry. Here, we optimized ND coatings on microelectrodes and found that ND increases the sensitivity for neurotransmitters with fast-scan cyclic voltammetry detection and decreases electrochemical and biofouling. Different sizes and functionalizations of NDs were tested, and ND suspensions were drop-casted onto carbon-fiber microelectrodes (CFMEs). The 5 nm ND-H and 5 nm ND-COOH formed thick coatings, while the 15 and 60 nm ND-COOH formed more sparse coatings. With electrochemical impedance spectroscopy, 5 nm ND-H and 5 nm ND-COOH had high charge-transfer resistance, while 15 and 60 nm ND-COOH had low charge-transfer resistance. ND-COOH (15 nm) was optimal, with the best electrocatalytic properties and current for dopamine. Sensitivity was enhanced 2.1 ± 0.2 times and the limit of detection for dopamine improved to 3 ± 1 nM. ND coating increased current for other cations such as serotonin, norepinephrine, and epinephrine, but not for the anion ascorbic acid. Moreover, NDs decreased electrochemical fouling from serotonin and 5-hydroxyindoleacetic acid, and they also decreased biofouling in brain slice tissue by 50%. The current at biofouled ND-coated electrodes is similar to the signal of pristine, unfouled CFMEs. The carboxylated ND-modified CFMEs are beneficial for neurotransmitter detection because of easy fabrication, improved limit of detection, and antifouling properties.
Collapse
Affiliation(s)
- Pumidech Puthongkham
- Department of Chemistry, University of Virginia, Charlottesville, VA 22904, United States
| | - B. Jill Venton
- Department of Chemistry, University of Virginia, Charlottesville, VA 22904, United States
| |
Collapse
|
34
|
Feng T, Ji W, Tang Q, Wei H, Zhang S, Mao J, Zhang Y, Mao L, Zhang M. Low-Fouling Nanoporous Conductive Polymer-Coated Microelectrode for In Vivo Monitoring of Dopamine in the Rat Brain. Anal Chem 2019; 91:10786-10791. [DOI: 10.1021/acs.analchem.9b02386] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Taotao Feng
- Department of Chemistry, Renmin University of China, Beijing, 100872, People’s Republic of China
| | - Wenliang Ji
- Department of Chemistry, Renmin University of China, Beijing, 100872, People’s Republic of China
| | - Qiao Tang
- Department of Chemistry, Renmin University of China, Beijing, 100872, People’s Republic of China
| | - Huan Wei
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, the Chinese Academy of Sciences (CAS), Beijing, 100190, People’s Republic of China
| | - Shuai Zhang
- Department of Chemistry, Renmin University of China, Beijing, 100872, People’s Republic of China
| | - Jinpeng Mao
- Department of Chemistry, Renmin University of China, Beijing, 100872, People’s Republic of China
| | - Yue Zhang
- Department of Chemistry, Renmin University of China, Beijing, 100872, People’s Republic of China
| | - Lanqun Mao
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, the Chinese Academy of Sciences (CAS), Beijing, 100190, People’s Republic of China
| | - Meining Zhang
- Department of Chemistry, Renmin University of China, Beijing, 100872, People’s Republic of China
| |
Collapse
|
35
|
Weese ME, Krevh RA, Li Y, Alvarez NT, Ross AE. Defect Sites Modulate Fouling Resistance on Carbon-Nanotube Fiber Electrodes. ACS Sens 2019; 4:1001-1007. [PMID: 30920207 DOI: 10.1021/acssensors.9b00161] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Carbon nanotube (CNT) fiber electrodes have become increasingly popular electrode materials for neurotransmitter detection with fast-scan cyclic voltammetry (FSCV). The unique properties of CNT fiber electrodes like increased electron transfer, sensitivity, waveform application frequency independence, and resistance to fouling make them ideal biological sensors for FSCV. In particular, their resistance to fouling has been observed for several years, but the specific physical properties which aid in fouling resistance have been debated. Here, we investigate the extent to which the presence of defect sites on the surface attenuate both chemical and biological fouling with FSCV. We compared traditional carbon-fiber microelectrodes (CFMEs) to pristine CNTs and functionalized CNTs. CFMEs and functionalized CNTs are highly disordered with a great deal of defect sites on the surface. The pristine CNTs have fewer defects compared to the purposefully functionalized CNTs and CFMEs. All electrode surfaces were characterized by a combination of scanning electron microscopy (SEM), Raman spectroscopy, and energy dispersive spectroscopy (EDS). Chemical fouling was studied using serotonin, a popular neurotransmitter notoriously known for electrode fouling. To assess biological fouling, electrodes were implanted in brain tissue for 2 h. Defect sites on the carbon were shown to resist biofouling compared to pristine CNTs but were detrimental for serotonin detection. Overall, we provide insight into the extent to which the electrode surface dictates fouling resistance with FSCV. This work provides evidence that careful considerations of the surface of the CNT material are needed when designing sensors for fouling resistance.
Collapse
Affiliation(s)
- Moriah E. Weese
- Department of Chemistry, University of Cincinnati, 404 Crosley Tower, 312 College Dr., Cincinnati, Ohio 45221-0172, United States
| | - Rachel A. Krevh
- Department of Chemistry, University of Cincinnati, 404 Crosley Tower, 312 College Dr., Cincinnati, Ohio 45221-0172, United States
| | - Yuxin Li
- Department of Chemistry, University of Cincinnati, 404 Crosley Tower, 312 College Dr., Cincinnati, Ohio 45221-0172, United States
| | - Noe T. Alvarez
- Department of Chemistry, University of Cincinnati, 404 Crosley Tower, 312 College Dr., Cincinnati, Ohio 45221-0172, United States
| | - Ashley E. Ross
- Department of Chemistry, University of Cincinnati, 404 Crosley Tower, 312 College Dr., Cincinnati, Ohio 45221-0172, United States
| |
Collapse
|
36
|
Yang C, Hu K, Wang D, Zubi Y, Lee ST, Puthongkham P, Mirkin MV, Venton BJ. Cavity Carbon-Nanopipette Electrodes for Dopamine Detection. Anal Chem 2019; 91:4618-4624. [PMID: 30810304 PMCID: PMC6526101 DOI: 10.1021/acs.analchem.8b05885] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Microelectrodes are typically used for neurotransmitter detection, but nanoelectrodes are not because there is a trade-off between spatial resolution and sensitivity that is dependent on surface area. Cavity carbon-nanopipette electrodes (CNPEs), with tip diameters of a few hundred nanometers, have been developed for nanoscale electrochemistry. Here, we characterize the electrochemical performance of CNPEs with fast-scan cyclic voltammetry (FSCV) for the first time. Dopamine detection using cavity CNPEs, with a depth equivalent to a few radii, is compared with that using open-tube CNPEs, an essentially infinite geometry. Open-tube CNPEs have very slow temporal responses that change over time as the liquid rises in the CNPE. However, a cavity CNPE has a fast temporal response to a bolus of dopamine that is not different from that of a traditional carbon-fiber microelectrode. Cavity CNPEs, with tip diameters of 200-400 nm, have high currents because the small cavity traps and increases the local dopamine concentration. The trapping also leads to an FSCV frequency-independent response and the appearance of cyclization peaks that are normally observed only with large concentrations of dopamine. CNPEs have high dopamine selectivity over ascorbic acid (AA) because of the repulsion of AA by the negative electric field at the holding potential and the irreversible redox reaction. In mouse-brain slices, cavity CNPEs detected exogenously applied dopamine, showing they do not clog in tissue. Thus, cavity CNPEs are promising neurochemical sensors that provide spatial resolution on the scale of hundreds of nanometers, which is useful for small model organisms or for locations near specific cells.
Collapse
Affiliation(s)
- Cheng Yang
- Department of Chemistry, University of Virginia, Charlottesville, VA 22904
| | - Keke Hu
- Department of Chemistry and Biochemistry, Queens College–CUNY, Flushing, New York 11367
- The Graduate Center of the City University of New York, New York, New York 10016
| | - Dengchao Wang
- Department of Chemistry and Biochemistry, Queens College–CUNY, Flushing, New York 11367
| | - Yasmine Zubi
- Department of Chemistry, University of Virginia, Charlottesville, VA 22904
| | - Scott T. Lee
- Department of Chemistry, University of Virginia, Charlottesville, VA 22904
| | | | - Michael V. Mirkin
- Department of Chemistry and Biochemistry, Queens College–CUNY, Flushing, New York 11367
- The Graduate Center of the City University of New York, New York, New York 10016
| | - B. Jill Venton
- Department of Chemistry, University of Virginia, Charlottesville, VA 22904
| |
Collapse
|
37
|
Zhou L, Hou H, Wei H, Yao L, Sun L, Yu P, Su B, Mao L. In Vivo Monitoring of Oxygen in Rat Brain by Carbon Fiber Microelectrode Modified with Antifouling Nanoporous Membrane. Anal Chem 2019; 91:3645-3651. [DOI: 10.1021/acs.analchem.8b05658] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Lin Zhou
- Institute of Analytical Chemistry, Department of Chemistry, Zhejiang University, Hangzhou 310058, China
| | - Hanfeng Hou
- Beijing National Research Center for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences (CAS), Beijing 100190, China
| | - Huan Wei
- Beijing National Research Center for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences (CAS), Beijing 100190, China
| | - Lina Yao
- Institute of Analytical Chemistry, Department of Chemistry, Zhejiang University, Hangzhou 310058, China
| | - Lei Sun
- Institute of Analytical Chemistry, Department of Chemistry, Zhejiang University, Hangzhou 310058, China
| | - Ping Yu
- Beijing National Research Center for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences (CAS), Beijing 100190, China
| | - Bin Su
- Institute of Analytical Chemistry, Department of Chemistry, Zhejiang University, Hangzhou 310058, China
| | - Lanqun Mao
- Beijing National Research Center for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences (CAS), Beijing 100190, China
| |
Collapse
|
38
|
Cao Q, Puthongkham P, Venton BJ. Review: New insights into optimizing chemical and 3D surface structures of carbon electrodes for neurotransmitter detection. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2019; 11:247-261. [PMID: 30740148 PMCID: PMC6366673 DOI: 10.1039/c8ay02472c] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
The carbon-fiber microelectrode has been used for decades as a neurotransmitter sensor. Recently, new strategies have been developed for making carbon electrodes, including using carbon nanomaterials or pyrolyzing photoresist etched by nanolithography or 3D printing. This review summarizes how chemical and 3D surface structures of new carbon electrodes are optimized for neurotransmitter detection. There are effects of the chemical structure that are advantageous and nanomaterials are used ranging from carbon nanotube (CNT) to graphene to nanodiamond. Functionalization of these materials promotes surface oxide groups that adsorb dopamine and dopants introduce defect sites good for electron transfer. Polymer coatings such as poly(3,4-ethylenedioxythiophene) (PEDOT) or Nafion also enhance the selectivity, particularly for dopamine over ascorbic acid. Changing the 3D surface structure of an electrode increases current by adding more surface area. If the surface structure has roughness or pores on the micron scale, the electrode also acts as a thin layer cell, momentarily trapping the analyte for redox cycling. Vertically-aligned CNTs as well as lithographically-made or 3D printed pillar arrays act as thin layer cells, producing more reversible cyclic voltammograms. A better understanding of how chemical and surface structure affects electrochemistry enables rational design of electrodes. New carbon electrodes are being tested in vivo and strategies to reduce biofouling are being developed. Future studies should test the robustness for long term implantation, explore electrochemical properties of neurotransmitters beyond dopamine, and combine optimized chemical and physical structures for real-time monitoring of neurotransmitters.
Collapse
Affiliation(s)
| | | | - B. Jill Venton
- Dept. of Chemistry, University of Virginia, Charlottesville, VA 22901
| |
Collapse
|
39
|
Yang C, Cao Q, Puthongkham P, Lee ST, Ganesana M, Lavrik NV, Venton BJ. 3D-Printed Carbon Electrodes for Neurotransmitter Detection. Angew Chem Int Ed Engl 2018; 57:14255-14259. [PMID: 30207021 DOI: 10.1002/anie.201809992] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Indexed: 11/10/2022]
Abstract
Implantable neural microsensors have significantly advanced neuroscience research, but the geometry of most probes is limited by the fabrication methods. Therefore, new methods are needed for batch-manufacturing with high reproducibility. Herein, a novel method is developed using two-photon nanolithography followed by pyrolysis for fabrication of free-standing microelectrodes with a carbon electroactive surface. 3D-printed spherical and conical electrodes were characterized with slow scan cyclic voltammetry (CV). With fast-scan CV, the electrodes showed low dopamine LODs of 11±1 nm (sphere) and 10±2 nm (cone), high sensitivity to multiple neurochemicals, and high reproducibility. Spherical microelectrodes were used to detect dopamine in a brain slice and in vivo, demonstrating they are robust enough for tissue implantation. This work is the first demonstration of 3D-printing of free-standing carbon electrodes; and the method is promising for batch fabrication of customized, implantable neural sensors.
Collapse
Affiliation(s)
- Cheng Yang
- Dept. of Chemistry, University of Virginia, Charlottesville, VA, 22901, USA
| | - Qun Cao
- Dept. of Chemistry, University of Virginia, Charlottesville, VA, 22901, USA
| | | | - Scott T Lee
- Dept. of Chemistry, University of Virginia, Charlottesville, VA, 22901, USA
| | | | - Nickolay V Lavrik
- Center for Nanophase Material Science, Oak Ridge National Lab, Oak Ridge, TN, 37831, USA
| | - B Jill Venton
- Dept. of Chemistry, University of Virginia, Charlottesville, VA, 22901, USA
| |
Collapse
|
40
|
Yang C, Cao Q, Puthongkham P, Lee ST, Ganesana M, Lavrik NV, Venton BJ. 3D‐Printed Carbon Electrodes for Neurotransmitter Detection. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201809992] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Cheng Yang
- Dept. of Chemistry University of Virginia Charlottesville VA 22901 USA
| | - Qun Cao
- Dept. of Chemistry University of Virginia Charlottesville VA 22901 USA
| | | | - Scott T. Lee
- Dept. of Chemistry University of Virginia Charlottesville VA 22901 USA
| | | | - Nickolay V. Lavrik
- Center for Nanophase Material Science Oak Ridge National Lab Oak Ridge TN 37831 USA
| | - B. Jill Venton
- Dept. of Chemistry University of Virginia Charlottesville VA 22901 USA
| |
Collapse
|
41
|
Barlow ST, Louie M, Hao R, Defnet PA, Zhang B. Electrodeposited Gold on Carbon-Fiber Microelectrodes for Enhancing Amperometric Detection of Dopamine Release from Pheochromocytoma Cells. Anal Chem 2018; 90:10049-10055. [PMID: 30047726 PMCID: PMC10879420 DOI: 10.1021/acs.analchem.8b02750] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Exocytosis is an ultrafast cellular process which facilitates neuron-neuron communication in the brain. Microelectrode electrochemistry has been an essential tool for measuring fast exocytosis events with high temporal resolution and high sensitivity. Due to carbon fiber's irreproducible and inhomogeneous surface conditions, however, it is often desirable to develop simple and reproducible modification schemes to enhance a microelectrode's analytical performance for single-cell analysis. Here we present carbon-fiber microelectrodes (CFEs) modified with a thin film of electrodeposited gold for the detection of exocytosis from rat pheochromocytoma cells (PC12), a model cell line for neurosecretion. These new probes are made by a novel voltage-pulsing deposition procedure and demonstrate improved electron-transfer characteristics for catecholamine oxidation, and their fabrication is tractable for many different probe designs. When we applied the probes to the detection of catecholamine release, we found that they outperformed unmodified CFEs. Further, the improved performance was conserved at cells incubated with L-DOPA (l-3,4-dihydroxyphenylalanine), a precursor to dopamine that increases the quantal size of the release events. Future use of this method may allow nanoelectrodes to be modified for highly sensitive detection of exocytosis from chemical synapses.
Collapse
Affiliation(s)
- Samuel T. Barlow
- Department of Chemistry, University of Washington, Seattle, Washington 98195-1700, United States
| | - Matthew Louie
- Department of Chemistry, University of Washington, Seattle, Washington 98195-1700, United States
| | - Rui Hao
- Department of Chemistry, University of Washington, Seattle, Washington 98195-1700, United States
| | - Peter A. Defnet
- Department of Chemistry, University of Washington, Seattle, Washington 98195-1700, United States
| | - Bo Zhang
- Department of Chemistry, University of Washington, Seattle, Washington 98195-1700, United States
| |
Collapse
|
42
|
Carbon Nanoelectrodes for the Electrochemical Detection of Neurotransmitters. INTERNATIONAL JOURNAL OF ELECTROCHEMISTRY 2018; 2018. [PMID: 34306762 PMCID: PMC8301601 DOI: 10.1155/2018/3679627] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
Carbon-based electrodes have been developed for the detection of neurotransmitters over the past 30 years using voltammetry and amperometry. The traditional electrode for neurotransmitter detection is the carbon fiber microelectrode (CFME). The carbon-based electrode is suitable for in vivo neurotransmitter detection due to the fact that it is biocompatible and relatively small in surface area. The advent of nanoscale electrodes is in high demand due to smaller surface areas required to target specific brain regions that are also minimally invasive and cause relatively low tissue damage when implanted into living organisms. Carbon nanotubes (CNTs), carbon nanofibers, carbon nanospikes, and carbon nanopetals among others have all been utilized for this purpose. Novel electrode materials have also required novel insulations such as glass, epoxy, and polyimide coated fused silica capillaries for their construction and usage. Recent research developments have yielded a wide array of carbon nanoelectrodes with superior properties and performances in comparison to traditional electrode materials. These electrodes have thoroughly enhanced neurotransmitter detection allowing for the sensing of biological compounds at lower limits of detection, fast temporal resolution, and without surface fouling. This will allow for greater understanding of several neurological disease states based on the detection of neurotransmitters.
Collapse
|
43
|
Cold low pressure O 2 plasma treatment of Crocus sativus : An efficient way to eliminate toxicogenic fungi with minor effect on molecular and cellular properties of saffron. Food Chem 2018; 257:310-315. [DOI: 10.1016/j.foodchem.2018.03.031] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Revised: 01/16/2018] [Accepted: 03/08/2018] [Indexed: 11/17/2022]
|
44
|
Zestos AG, Venton BJ. Communication-Carbon Nanotube Fiber Microelectrodes for High Temporal Measurements of Dopamine. JOURNAL OF THE ELECTROCHEMICAL SOCIETY 2018; 165:G3071-G3073. [PMID: 30197450 PMCID: PMC6121781 DOI: 10.1149/2.0111812jes] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Carbon nanotube (CNT) yarn and fiber-microelectrodes were developed for neurotransmitter detection using fast scan cyclic voltammetry (FSCV). Fibers were made by suspending CNTs in acid/surfactant and extruding into acetone/polyethyleneimine (PEI) and compared to a CNT yarn. They were FSCV frequency independent for dopamine up to 100 Hz. With faster frequencies, up to 500 Hz, high currents are maintained, which allows a 2 ms sampling rate for FSCV, compared to 100 ms. CNT fibers have rough surfaces which trap dopamine and dopamine-o-quinone (DOQ), creating more reversible CVs. CNT yarns and fibers are beneficial for high sensitivity, rapid measurements of neurotransmitters.
Collapse
Affiliation(s)
| | - B Jill Venton
- Department of Chemistry, University of Virginia, Charlottesville, VA 22904,
| |
Collapse
|
45
|
Puthongkham P, Yang C, Venton BJ. Carbon Nanohorn-Modified Carbon Fiber Microelectrodes for Dopamine Detection. ELECTROANAL 2018; 30:1073-1081. [PMID: 30613128 PMCID: PMC6317378 DOI: 10.1002/elan.201700667] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Accepted: 03/13/2018] [Indexed: 12/18/2022]
Abstract
Carbon nanohorns (CNHs), closed cone-shaped cages of sp 2-hybridized carbons, are a promising nanomaterial to improve carbon-fiber microelectrode (CFME) dues to their high specific surface area and edge planes, but few studies have tested their electrochemical properties. Here, we tested the dopamine detection at electrodeposited CNHs on CFME (CNH/CFME). The optimized concentration of CNHs in the deposition solution is 0.5 mg/mL, and the optimized electrodeposition waveform is 10 cycles of triangular waveform scanned from -1.0 V and +1.0 V at 50 mV/s. Using fast-scan cyclic voltammetry, the optimized CNH/CFME enhances dopamine peak current to 2.3 ± 0.2 times that of the CFME. To further increase the current, CNH/CFMEs were oxidized in NaOH (ox-CNH/CFME), which creates more defects and surface oxide groups to adsorb dopamine. The oxidative etching further increases the peak current to 3.5 ± 0.2 times of the CFME, and ox-CNH/CFME had a limit of detection of 6 ± 2 nM. The dopamine anodic current at ox-CNH/CFME was stable for 8 h of continuous scanning. The ox-CNH/CFME enhanced the anodic peak current for other cationic neurotransmitters including epinephrine, norepinephrine, and serotonin, but less enhancement was found for ascorbic acid, showing higher selectivity for cationic molecules. CNHs also decreased tissue biofouling at CFME. Thus, electrodeposited CNHs are a promising new method for increasing the surface area and current of CFMEs for dopamine detection.
Collapse
Affiliation(s)
- Pumidech Puthongkham
- Department of Chemistry, University of Virginia, Charlottesville, VA 22904, United States
| | - Cheng Yang
- Department of Chemistry, University of Virginia, Charlottesville, VA 22904, United States
| | - B. Jill Venton
- Department of Chemistry, University of Virginia, Charlottesville, VA 22904, United States
| |
Collapse
|
46
|
Kuche K, Maheshwari R, Tambe V, Mak KK, Jogi H, Raval N, Pichika MR, Kumar Tekade R. Carbon nanotubes (CNTs) based advanced dermal therapeutics: current trends and future potential. NANOSCALE 2018; 10:8911-8937. [PMID: 29722421 DOI: 10.1039/c8nr01383g] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The search for effective and non-invasive delivery modules to transport therapeutic molecules across skin has led to the discovery of a number of nanocarriers (viz.: liposomes, ethosomes, dendrimers, etc.) in the last few decades. However, available literature suggests that these delivery modules face several issues including poor stability, low encapsulation efficiency, and scale-up hurdles. Recently, carbon nanotubes (CNTs) emerged as a versatile tool to deliver therapeutics across skin. Superior stability, high loading capacity, well-developed synthesis protocol as well as ease of scale-up are some of the reason for growing interest in CNTs. CNTs have a unique physical architecture and a large surface area with unique surface chemistry that can be tailored for vivid biomedical applications. CNTs have been thus largely engaged in the development of transdermal systems such as tuneable hydrogels, programmable nonporous membranes, electroresponsive skin modalities, protein channel mimetic platforms, reverse iontophoresis, microneedles, and dermal buckypapers. In addition, CNTs were also employed in the development of RNA interference (RNAi) based therapeutics for correcting defective dermal genes. This review expounds the state-of-art synthesis methodologies, skin penetration mechanism, drug liberation profile, loading potential, characterization techniques, and transdermal applications along with a summary on patent/regulatory status and future scope of CNT based skin therapeutics.
Collapse
Affiliation(s)
- Kaushik Kuche
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER) - Ahmedabad, Opposite Air Force Station Palaj, Gandhinagar, Gujarat 382355, India.
| | | | | | | | | | | | | | | |
Collapse
|
47
|
Abstract
Neurotransmitters are chemicals that act as messengers in the synaptic transmission process. They are essential for human health and any imbalance in their activities can cause serious mental disorders such as Parkinson’s disease, schizophrenia, and Alzheimer’s disease. Hence, monitoring the concentrations of various neurotransmitters is of great importance in studying and diagnosing such mental illnesses. Recently, many researchers have explored the use of unique materials for developing biosensors for both in vivo and ex vivo neurotransmitter detection. A combination of nanomaterials, polymers, and biomolecules were incorporated to implement such sensor devices. For in vivo detection, electrochemical sensing has been commonly applied, with fast-scan cyclic voltammetry being the most promising technique to date, due to the advantages such as easy miniaturization, simple device architecture, and high sensitivity. However, the main challenges for in vivo electrochemical neurotransmitter sensors are limited target selectivity, large background signal and noise, and device fouling and degradation over time. Therefore, achieving simultaneous detection of multiple neurotransmitters in real time with long-term stability remains the focus of research. The purpose of this review paper is to summarize the recently developed sensing techniques with the focus on neurotransmitters as the target analyte, and to discuss the outlook of simultaneous detection of multiple neurotransmitter species. This paper is organized as follows: firstly, the common materials used for developing neurotransmitter sensors are discussed. Secondly, several sensor surface modification approaches to enhance sensing performance are reviewed. Finally, we discuss recent developments in the simultaneous detection capability of multiple neurotransmitters.
Collapse
|