1
|
Cui W, Li S, Zeng J, Li C, Li Z, Wen X, Bao S, Mei Y, Meng X, Guo Q. A Double-Stranded Aptamer for Highly Sensitive Fluorescent Detection of Glutathione S-Transferases. BIOSENSORS 2024; 14:476. [PMID: 39451689 PMCID: PMC11505714 DOI: 10.3390/bios14100476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 09/21/2024] [Accepted: 09/28/2024] [Indexed: 10/26/2024]
Abstract
Aptamer-based biosensors have been widely constructed and applied to detect diverse targets. Glutathione S-transferase (GST), a pivotal phase II metabolic enzyme, plays a critical role in biotransformation in vivo, and aberrant GST expression is associated with various health risks. Herein, aptamers targeting GST were systematically selected from a randomized single-stranded DNA (ssDNA) library of 79 nucleotides (nt) using a biotinylated GST-immobilized streptavidin agarose (SA) bead SELEX technology. Following rigorous screening across eight rounds, four aptamers with strikingly similar secondary structures emerged. Among these, Seq3 exhibited the highest affinity towards GST and was selected for further optimization. A semi-rational post-SELEX truncation strategy was then employed based on base composition analysis, secondary structure analysis and affinity assessment. This strategy enabled the systematic removal of redundant nucleotides in Seq3 without compromising its affinity, ultimately yielding a truncated aptamer, Seq3-3, which retains its specificity with a compact 39nt length. Building upon Seq3-3, a double-stranded fluorescent aptamer probe was ingeniously designed for the in vitro detection of GST. The detection mechanism hinges on the competitive displacement of the complementary chain from the probe, mediated by the target protein, leading to the separation of the antisense oligonucleotide from the double-stranded complex. This process triggers the restoration of the fluorescence signal, enabling sensitive detection, and the probe exhibits excellent response within a linear range of GST activity ranging from 0 to 1500 U/L. The results show that not only an efficient strategy for screening robust and practicable aptamers but also an ultrahighly sensitive detection platform for GST was established.
Collapse
Affiliation(s)
- Wei Cui
- College of Biology, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Key Laboratory for Bio-Nanotechnology and Molecule Engineering of Hunan Province, Changsha 410082, China; (W.C.)
| | - Suping Li
- College of Biology, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Key Laboratory for Bio-Nanotechnology and Molecule Engineering of Hunan Province, Changsha 410082, China; (W.C.)
| | - Jiahao Zeng
- College of Biology, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Key Laboratory for Bio-Nanotechnology and Molecule Engineering of Hunan Province, Changsha 410082, China; (W.C.)
| | - Chen Li
- College of Biology, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Key Laboratory for Bio-Nanotechnology and Molecule Engineering of Hunan Province, Changsha 410082, China; (W.C.)
| | - Zhaofeng Li
- School of Biomedical Sciences, Hunan University, Changsha 410082, China
| | - Xiaohong Wen
- College of Biology, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Key Laboratory for Bio-Nanotechnology and Molecule Engineering of Hunan Province, Changsha 410082, China; (W.C.)
| | - Suxia Bao
- College of Biology, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Key Laboratory for Bio-Nanotechnology and Molecule Engineering of Hunan Province, Changsha 410082, China; (W.C.)
| | - Yang Mei
- School of Biomedical Sciences, Hunan University, Changsha 410082, China
| | - Xiangxian Meng
- College of Biology, Hunan University, Changsha 410082, China
| | - Qiuping Guo
- College of Biology, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Key Laboratory for Bio-Nanotechnology and Molecule Engineering of Hunan Province, Changsha 410082, China; (W.C.)
| |
Collapse
|
2
|
Li M, Xie Y, Li R, Li N, Su X. Fabrication of superior laccase-mimicking enzyme with catalytic oxidative and photothermal properties for anti-bacterial and dual-mode glutathione S-transferase monitoring. Biosens Bioelectron 2024; 261:116501. [PMID: 38905858 DOI: 10.1016/j.bios.2024.116501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 05/22/2024] [Accepted: 06/12/2024] [Indexed: 06/23/2024]
Abstract
A novel laccase mimic enzyme Cu-Mn with excellent photothermal properties was firstly prepared via a combination of hydrothermal and in situ synthesis. Cu-Mn nanozymes could catalyze the typical laccase substrate 2,4-dichlorophenol (2,4-DP) to generate the red quinone imine. Further, loading the MnO2 nanosheets with photothermal properties, Cu-Mn nanozymes possessed not only excellent laccase catalytic activity, but also high photothermal conversion efficiency. The presence of glutathione S-transferase (GST) recovered the glutathione (GSH)-induced weakness of the laccase activity and photothermal properties of Cu-Mn. Hence, a GST enzyme-regulated dual-mode sensing strategy was established based on Cu-Mn nanozymes. The detection limits of GST monitoring based on colorimetric and photothermal methods were 0.092 and 0.087 U/L with response times of 20 min and 8 min, respectively. Furthermore, the proposed method enabled the measuring of GST levels in human serum and was successfully employed in the primary evaluation of hepatitis patients. Another attraction, the impressive photothermal behavior also endowed the Cu-Mn nanozymes with promising antimicrobial properties, which exhibited significant antimicrobial effects against Escherichia coli (E.coli) and Staphylococcus aureus (S.aureus). Unsurprisingly, multifunctional Cu-Mn nanozymes certainly explore new paths in biochemical analysis and antimicrobial applications.
Collapse
Affiliation(s)
- Meini Li
- Department of Analytical Chemistry, College of Chemistry, Jilin University, Changchun, 130012, China
| | - Yunfei Xie
- Department of Analytical Chemistry, College of Chemistry, Jilin University, Changchun, 130012, China
| | - Runan Li
- Department of Analytical Chemistry, College of Chemistry, Jilin University, Changchun, 130012, China
| | - Ning Li
- Department of Respiratory, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Xingguang Su
- Department of Analytical Chemistry, College of Chemistry, Jilin University, Changchun, 130012, China.
| |
Collapse
|
3
|
El-Demerdash FM, Minjal AH, El-Sayed RA, Baghdadi HH. Hepatoprotective Effect of Ethanolic Pomegranate Peel Extract Against Levofloxacin via Suppression of Oxidative Stress, Proinflammation, and Apoptosis in Male Rats. J Med Food 2024; 27:866-878. [PMID: 39001843 DOI: 10.1089/jmf.2023.0215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/15/2024] Open
Abstract
One of the fluoroquinolone antibiotics, levofloxacin (LEV), is used to treat a variety of illnesses leading to oxidative stress and cellular damage. Peel from Punica granatum is a waste product abundant in phytochemicals with various biological activities. This study aimed to evaluate P. granatum peel extract's (PGPE) potential to mitigate oxidative stress, inflammation, apoptosis, and liver damage caused by LEV. There were four groups of rats: control, PGPE, LEV, and PGPE + LEV, respectively, and they were orally administered their daily treatments for 2 weeks. Results revealed that PGPE has a large number of phytochemical components with high antioxidant activity. PGPE intake alone enhanced the antioxidant status and decreased oxidative stress. On the other hand, pretreatment of the LEV group with PGPE restored oxidative stress, antioxidant enzymes, glutathione content, liver function biomarkers, and hematological parameters. Also, normalization of gene expressions (cyclooxygenase-2, transforming growth factor-beta1, caspase-3, heme oxygenase-1, B cell lymphoma-2, interleukin [IL]-10, and IL-1) and improvement in liver architecture, and immunohistochemical alpha-smooth muscle actin, were seen in comparison to the LEV group. Conclusively, PGPE exhibits strong anti-inflammatory, antiapoptotic, and antioxidant properties that shield rat liver from the damaging effects of LEV and offer a fresh viewpoint on the application of fruit waste products.
Collapse
Affiliation(s)
- Fatma M El-Demerdash
- Department of Environmental Studies, Institute of Graduate Studies and Research, University of Alexandria, Alexandria, Egypt
| | - Ali H Minjal
- Department of Environmental Studies, Institute of Graduate Studies and Research, University of Alexandria, Alexandria, Egypt
| | - Raghda A El-Sayed
- Department of Environmental Studies, Institute of Graduate Studies and Research, University of Alexandria, Alexandria, Egypt
| | - Hoda H Baghdadi
- Department of Environmental Studies, Institute of Graduate Studies and Research, University of Alexandria, Alexandria, Egypt
| |
Collapse
|
4
|
Lin P, Jiang S, Liu T, Yuan X, Luo K, Xie C, Zhao X, Zhou L. Activatable fluorescent probes for early diagnosis and evaluation of liver injury. Analyst 2024; 149:638-664. [PMID: 38170876 DOI: 10.1039/d3an01631e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
With the increase in people's living standards, the number of patients suffering from liver injury keeps on increasing. Traditional diagnostic methods can no longer meet the needs of early and accurate diagnosis due to their limitations in application. However, fluorescent probes based on different fluorophores and nanomaterials have been gradually lighting up medical research due to their unique properties, such as high specificity and non-invasiveness. In addition, accurate identification of the different types of liver injury biomarkers can significantly improve the level of early diagnosis. Therefore, this review reviews the fluorescent probes used in the detection of biomarkers of liver injury over recent years and briefly summarizes the corresponding biomarkers of different types of liver injury. Impressively, this review also lists the structures and the response mechanisms of the different probes, and concludes with an outlook, suggesting directions in which improvements can be made. Finally, we hope that this review will contribute to the further development of fluorescent probes for the early diagnosis and assessment of liver injury.
Collapse
Affiliation(s)
- Pengxu Lin
- College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan 410004, China.
| | - Shali Jiang
- College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan 410004, China.
| | - Ting Liu
- College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan 410004, China.
| | - Xiaomin Yuan
- College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan 410004, China.
| | - Kun Luo
- College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan 410004, China.
| | - Can Xie
- College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan 410004, China.
| | - Xiongjie Zhao
- College of Chemistry and Biological Engineering, Hunan University of Science and Engineering, Yongzhou, Hunan 425199, China
| | - Liyi Zhou
- College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan 410004, China.
| |
Collapse
|
5
|
Wang L, Liu J, Chen F, Li G, Wang J, Chan DSH, Wong CY, Wang W, Leung CH. A Switch-On Affinity-Based Iridium(III) Conjugate Probe for Imaging Mitochondrial Glutathione S-Transferase in Breast Cancer Cells. Bioconjug Chem 2023; 34:1727-1737. [PMID: 37750807 DOI: 10.1021/acs.bioconjchem.3c00267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/27/2023]
Abstract
Glutathione S-transferase is heterogeneously expressed in breast cancer cells and is therefore emerging as a potential diagnostic biomarker for studying the heterogeneity of breast cancers. However, available fluorescent probes for GSTs depend heavily on GSTs-catalyzed glutathione (GSH) nucleophilic substitution reactions, making them susceptible to interference by the high concentration of nucleophilic species in the cellular environment. Moreover, the functions of subcellular GSTs are generally overlooked due to the lack of suitable luminescence probes. Herein, we report a highly selective affinity-based luminescence probe 1 for GST in breast cancer cells through tethering a GST inhibitor, ethacrynic acid, to an iridium(III) complex. Compared to activity-based probes which require the use of GSH, this probe could image GST-pi in the mitochondria by directly adducting to GST-pi (or potentially GST-pi/GS) in living cells. Probe 1 possesses desirable photophysical properties including a lifetime of 911 ns, a Stokes shift of 343 nm, and high photostability. The "turn on" luminescence mode of the probe enables highly selective detection of the GST with a limit of detection of 1.01 μM, while its long emission lifetime allows sensitive detection in organic dye-spiked autofluorescence samples by a time-resolved mode. The probe was further applied to specifically and quantitatively visualize MDA-MB-231 cells via specific binding to mitochondrial GST, and could differentiate breast cell lines based on their expression levels of GST. To the best of our knowledge, this probe is the first affinity-based iridium(III) imaging probe for the subcellular GST. Our work provides a valuable tool for unmasking the diverse roles of a subcellular GST in living systems, as well as for studying the heterogeneity of breast cancers.
Collapse
Affiliation(s)
- Ling Wang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, 999078, China
| | - Jingqi Liu
- Institute of Medical Research, Northwestern Polytechnical University, 127 West Youyi Road, Xi'an, Shaanxi 710072, China
- Northwestern Polytechnical University Chongqing Technology Innovation Center, Chongqing 400000, China
| | - Feng Chen
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, 999078, China
| | - Guodong Li
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, 999078, China
| | - Jing Wang
- Institute of Medical Research, Northwestern Polytechnical University, 127 West Youyi Road, Xi'an, Shaanxi 710072, China
- Northwestern Polytechnical University Chongqing Technology Innovation Center, Chongqing 400000, China
| | | | - Chun-Yuen Wong
- Department of Chemistry, City University of Hong Kong, Hong Kong, 999077, China
| | - Wanhe Wang
- Institute of Medical Research, Northwestern Polytechnical University, 127 West Youyi Road, Xi'an, Shaanxi 710072, China
- Northwestern Polytechnical University Chongqing Technology Innovation Center, Chongqing 400000, China
| | - Chung-Hang Leung
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, 999078, China
- Department of Biomedical Sciences, Faculty of Health Sciences, University of Macau, Macao, 999078, China
- Macau Centre for Research and Development in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, 999078, China
- MoE Frontiers Science Center for Precision Oncology, University of Macau, Macao, 999078, China
| |
Collapse
|
6
|
You Q, Sun X, Chen J, Yu J, Wei Y. Ameliorative effect of mussel-derived ACE inhibitory peptides on spontaneous hypertension rats. Eur J Nutr 2023; 62:3097-3111. [PMID: 37505286 DOI: 10.1007/s00394-023-03222-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Accepted: 07/21/2023] [Indexed: 07/29/2023]
Abstract
PURPOSE The purpose of this study was to prepare the novel mussel-derived ACE inhibitory peptides (MEPs) by enzymatic hydrolysis of Mytilus edulis and investigate their antihypertensive effects in vivo. METHODS After assessing the stability of MEPs in vitro, we investigated the effect of MEPs on hypertension using spontaneously hypertensive rats (SHRs). Subsequently, MEPs were purified and identified by ultrafiltration, gel filtration chromatography and liquid chromatography-tandem mass spectrometry (LC-MS/MS). RESULTS Our study demonstrated that MEPs could keep stable ACE inhibitory activity after treatment with heat, acid, alkali, metal ions and simulated gastrointestinal digestive fluid. Additionally, the animal experiments showed that both short-term and long-term treatment with MEPs resulted in a significant reduction in systolic and diastolic blood pressure in SHRs. Mechanistically, the results suggested that MEPs could reduce vascular remodeling, regulate renin-angiotensin system (RAS), and inhibit kidney and myocardial fibrosis. Finally, we isolated and identified five peptides from MEPs, with the peptide Ile-Leu-Thr-Glu-Arg showed the highest ACE inhibition rate. CONCLUSION Our findings demonstrate the potential use of MEPs as active components in functional foods designed to lower blood pressure.
Collapse
Affiliation(s)
- Qiaoni You
- College of Life Sciences, Qingdao University, 308 Ningxia Road, Qingdao, 266071, China
| | - Xiaopeng Sun
- College of Life Sciences, Qingdao University, 308 Ningxia Road, Qingdao, 266071, China
| | - Jinli Chen
- Chenland Nutritionals, Incorporated, Invine, CA, USA
| | - Jia Yu
- College of Life Sciences, Qingdao University, 308 Ningxia Road, Qingdao, 266071, China.
| | - Yuxi Wei
- College of Life Sciences, Qingdao University, 308 Ningxia Road, Qingdao, 266071, China.
| |
Collapse
|
7
|
Hu ZY, Chen XY, Yang X, Li T, Yang YS, Wang SJ, Wang K, Hu ZG. Imaging and detection of sulfite in acute liver injury with a novel quinoxaline-based fluorescent probe. Anal Chim Acta 2023; 1261:341177. [PMID: 37147051 DOI: 10.1016/j.aca.2023.341177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2023] [Revised: 03/23/2023] [Accepted: 04/04/2023] [Indexed: 05/07/2023]
Abstract
Herein, a novel fluorescent probe HZY was developed for monitoring the sulfite (SO32-) dynamics. For the first time, the SO32- triggered implement was applied in the acute liver injury (ALI) model. The levulinate was selected to achieve the specific and relatively steady recognition reaction. With the addition of SO32-, the fluorescence response of HZY exhibited a large Stokes shift of 110 nm under the 380 nm excitation. The merits included high selectivity under various pH conditions. Compared with the reported fluorescent probes for sulfite, HZY indicated above-moderate performances including remarkable and rapid response (40 folds, within 15 min), and high sensitivity (limit of detection = 0.21 μM). Further, HZY could visualize the exogenous and endogenous SO32- level in living cells. Moreover, HZY could gauge the changing levels of SO32- in three types (induced by CCl4, APAP, and alcohol) of ALI models. Both in vivo imaging and depth-of-penetration fluorescence imaging demonstrated that HZY could characterize the developmental and therapeutic status during the liver injury process by measuring the dynamic of SO32-. The successful implementation of this project would promote the accurate in-situ detection of SO32- in liver injury, which was expected to guide the pre-clinical diagnosis and clinical practice.
Collapse
Affiliation(s)
- Ze-Yang Hu
- Department of Immunology, Institute of Laboratory Medicine, Jiangsu Key Laboratory for Laboratory Medicine, Jiangsu University School of Medicine, Zhenjiang, 212013, China
| | - Xu-Yang Chen
- Department of Medical Laboratory, Affiliated Children's Hospital of Jiangnan University, Qingyang Road 299, Wuxi, 214023, China
| | - Xue Yang
- Department of Medical Laboratory, Affiliated Children's Hospital of Jiangnan University, Qingyang Road 299, Wuxi, 214023, China
| | - Ting Li
- Department of Medical Laboratory, Affiliated Children's Hospital of Jiangnan University, Qingyang Road 299, Wuxi, 214023, China
| | - Yu-Shun Yang
- Jinhua Advanced Research Institute, Jinhua, 321019, China
| | - Sheng-Jun Wang
- Department of Immunology, Institute of Laboratory Medicine, Jiangsu Key Laboratory for Laboratory Medicine, Jiangsu University School of Medicine, Zhenjiang, 212013, China.
| | - Kai Wang
- Department of Medical Laboratory, Affiliated Children's Hospital of Jiangnan University, Qingyang Road 299, Wuxi, 214023, China.
| | - Zhi-Gang Hu
- Department of Medical Laboratory, Affiliated Children's Hospital of Jiangnan University, Qingyang Road 299, Wuxi, 214023, China.
| |
Collapse
|
8
|
Wang N, Zhang L, Li Z, Zhou C, Lv Y, Su X. A sensing platform for on-site detection of glutathione S-transferase using oxidized Pi@Ce-doped Zr-based metal-organic frameworks(MOFs). Talanta 2023; 259:124537. [PMID: 37054620 DOI: 10.1016/j.talanta.2023.124537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Revised: 04/05/2023] [Accepted: 04/07/2023] [Indexed: 04/15/2023]
Abstract
The development of point-of-care testing (POCT) for glutathione S-transferase (GST) is an effective way to establish the mechanism of targeted monitoring of cancer chemotherapy drug metabolism. Assays for GST with high sensitivity as well as on-site screening have been urgently required to monitor this process. Herein, we synthesized oxidized Pi@Ce-doped Zr-based metal-organic frameworks (MOFs) by electrostatic self-assembly between phosphate and oxidized Ce-doped Zr-based MOFs. It was found that the oxidase-like activity of oxidized Pi@Ce-doped Zr-based MOFs was substantially increased after phosphate ion (Pi) assembly. And a stimulus-responsive hydrogel-based kit was constructed by embedding oxidized Pi@Ce-doped Zr-based MOFs into a PVA (polyvinyl alcohol) hydrogel system, we integrated a portable hydrogel kit with a smartphone for real-time monitoring of GST for quantitative and accurate analysis. The color reaction was triggered based on oxidized Pi@Ce-doped Zr-based MOFs with 3,3',5,5'-tetramethylbenzidine (TMB). However, in the presence of glutathione (GSH), the above color reaction was hindered due to the reducibility of GSH. Catalyzed by GST, GSH can react with 1-chloro-2,4-dinitrobenzo (CDNB) to form an adduct, which caused the color reaction to occur again, resulting in the color response of the kit. In combination with ImageJ software, the kit image information acquired by smartphone could be converted into hue intensity, providing a direct quantitative tool for the detection of GST with a detection limit of 0.19mU·L-1. Based on the advantages of simple operation and cost-effectiveness, the introduction of the POCT miniaturized biosensor platform will meet the requirements of on-site quantitative analysis of GST.
Collapse
Affiliation(s)
- Nan Wang
- Department of Analytical Chemistry, College of Chemistry, Jilin University, Changchun, 130012, China
| | - Lijun Zhang
- State Key Lab of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, PR China
| | - Zhengxuan Li
- State Key Lab of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, PR China
| | - Chenyu Zhou
- Department of Analytical Chemistry, College of Chemistry, Jilin University, Changchun, 130012, China
| | - Yuntai Lv
- Department of Analytical Chemistry, College of Chemistry, Jilin University, Changchun, 130012, China
| | - Xingguang Su
- Department of Analytical Chemistry, College of Chemistry, Jilin University, Changchun, 130012, China.
| |
Collapse
|
9
|
Fujikawa Y, Terakado K, Nezu S, Noritsugu K, Maemoto Y, Ito A, Inoue H. Improving reactivity of naphthalimide-based GST probe by imparting TPP cation: Development and application for live cell imaging. Bioorg Med Chem Lett 2023; 80:129109. [PMID: 36549395 DOI: 10.1016/j.bmcl.2022.129109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 12/06/2022] [Accepted: 12/15/2022] [Indexed: 12/23/2022]
Abstract
Glutathione S-transferases (GSTs) are a superfamily of multifunctional enzymes comprising multiple classes and subtypes. This paper describes the synthesis and characterization of TPPBN-1, a naphthalimide derivative conjugated with a triphenylphosphonium (TPP) cation. When 4-bromonaphthalimide (BrNaph), a previously characterized GST substrate, was conjugated to a TPP cation, the conjugate showed increased reactivity towards most alpha- and mu-class GSTs, particularly the GSTA2 subtype, compared to the parent compound, but hardly towards Pi-class GSTs. Using this probe with enhanced reactivity, the enzymatic activity of endogenous GSTA1/2 in HepG2 cells was visualized by confocal fluorescence microscopy. The results demonstrated that modification with TPP cations, which are often used as tags for targeting mitochondria, can be used to enhance the reactivity of probes for specific GST subtypes.
Collapse
Affiliation(s)
- Yuuta Fujikawa
- Laboratory of Molecular and Chemical Biology, School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo 192-0392, Japan.
| | - Kenta Terakado
- Laboratory of Molecular and Chemical Biology, School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo 192-0392, Japan
| | - Sayaka Nezu
- Laboratory of Molecular and Chemical Biology, School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo 192-0392, Japan
| | - Kota Noritsugu
- Laboratory of Cell Signaling, School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo 192-0392, Japan
| | - Yuki Maemoto
- Laboratory of Cell Signaling, School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo 192-0392, Japan
| | - Akihiro Ito
- Laboratory of Cell Signaling, School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo 192-0392, Japan
| | - Hideshi Inoue
- Laboratory of Molecular and Chemical Biology, School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo 192-0392, Japan
| |
Collapse
|
10
|
Chen L, Zhen X, Jiang X. Activatable Optical Probes for Fluorescence and Photoacoustic Imaging of Drug‐Induced Liver Injury. ADVANCED NANOBIOMED RESEARCH 2022. [DOI: 10.1002/anbr.202200097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Affiliation(s)
- Linrong Chen
- MOE Key Laboratory of High Performance Polymer Materials and Technology and Department of Polymer Science & Engineering School of Chemistry & Chemical Engineering Nanjing University Nanjing 210093 P.R. China
| | - Xu Zhen
- MOE Key Laboratory of High Performance Polymer Materials and Technology and Department of Polymer Science & Engineering School of Chemistry & Chemical Engineering Nanjing University Nanjing 210093 P.R. China
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development School of Chemistry and Molecular Engineering East China Normal University Shanghai 200062 P.R. China
| | - Xiqun Jiang
- MOE Key Laboratory of High Performance Polymer Materials and Technology and Department of Polymer Science & Engineering School of Chemistry & Chemical Engineering Nanjing University Nanjing 210093 P.R. China
| |
Collapse
|
11
|
Recent advance of fluorescent probes for detection of drug-induced liver injury markers. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2021.12.043] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
12
|
Fujikawa Y, Mori M, Tsukada M, Miyahara S, Sato-Fukushima H, Watanabe E, Murakami-Tonami Y, Inoue H. Pi-class Glutathione S-transferase (GSTP1)-selective fluorescent probes for multicolour imaging with various cancer-associated enzymes. Chembiochem 2022; 23:e202200443. [PMID: 36062403 DOI: 10.1002/cbic.202200443] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 09/03/2022] [Indexed: 11/09/2022]
Abstract
Pi-class glutathione S-transferase (GSTP1) is highly expressed in a wide variety of human cancer tissues compared to the corresponding normal counterpart. Therefore, GSTP1 is a potential target enzyme for overcoming resistance to chemotherapeutic agents or visualizing specific lesions such as cancer. Here, we present orange and red fluorescence-emitting probes selective for GSTP1. Carbofluorescein and TokyoMagenta fluorophores were modified with a previously described GSTP1-selective chromogenic compound to generate orange and red fluorescence probes, respectively. Of these probes, Ps-CF , the orange fluorescence-emitting probe, was confirmed to be highly specific for detecting GSTP1 exogenously or endogenously expressed in various cancer cells. Additionally, it was demonstrated that Ps-CF is applicable for the simultaneous detection of GSTP1 and another cancer-associated enzymes by using a green fluorescence emitting γ-glutamyl transpeptidase (GGT) probe. In conclusion, the fluorescent probes developed in this study enable the simultaneous detection of multiple tumour markers such as GSTP1 with other cancer-associated enzymes by the concurrent use of spectrally distinguished fluorescent probes, potentially broadening the scope of cancer detection.
Collapse
Affiliation(s)
- Yuuta Fujikawa
- Tokyo University of Pharmacy and Life Sciences, School of Life Sciences, 1432-1 Horinouchi, 192-0392, Tokyo, JAPAN
| | - Masaya Mori
- Tokyo University of Pharmacy and Life Science: Tokyo Yakka Daigaku, School of Life Sciences, JAPAN
| | - Minami Tsukada
- Tokyo University of Pharmacy and Life Science: Tokyo Yakka Daigaku, School of Life Sciences, JAPAN
| | - Seiya Miyahara
- Tokyo University of Pharmacy and Life Science: Tokyo Yakka Daigaku, School of Life Sciences, JAPAN
| | - Honoka Sato-Fukushima
- Tokyo University of Pharmacy and Life Science: Tokyo Yakka Daigaku, School of Life Sciences, JAPAN
| | - Eita Watanabe
- Tokyo University of Pharmacy and Life Science: Tokyo Yakka Daigaku, School of Life Sciences, JAPAN
| | - Yuko Murakami-Tonami
- Tokyo University of Technology: Tokyo Koka Daigaku, School of Bioscience and Biotechnology, JAPAN
| | - Hideshi Inoue
- Tokyo University of Pharmacy and Life Science: Tokyo Yakka Daigaku, School of Life Sciences, JAPAN
| |
Collapse
|
13
|
Wang L, Zhang J, Shen W, Zeng X, Lee HK, Tang S. Can Direct-Immersion Aqueous–Aqueous Microextraction Be Achieved When Using a Single-Drop System? Anal Chem 2022; 94:12538-12545. [DOI: 10.1021/acs.analchem.2c03017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Lina Wang
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003, Jiangsu Province, PR China
| | - Jinghui Zhang
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003, Jiangsu Province, PR China
| | - Wei Shen
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003, Jiangsu Province, PR China
| | - Xuemin Zeng
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003, Jiangsu Province, PR China
| | - Hian Kee Lee
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003, Jiangsu Province, PR China
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117543, Singapore
| | - Sheng Tang
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003, Jiangsu Province, PR China
| |
Collapse
|
14
|
Yuan D, Pan K, Xu S, Wang L. Dual-Channel Recognition of Human Serum Albumin and Glutathione by Fluorescent Probes with Site-Dependent Responsive Features. Anal Chem 2022; 94:12391-12397. [PMID: 36048720 DOI: 10.1021/acs.analchem.2c02025] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Design of chemical probes with high specificity and responses are particularly intriguing. In this work, a fluorescent probe (M-OH-SO3) with dual-channel spectral responses toward human serum albumin (HSA) is presented. By employing dinitrobenzenesulfonate as a recognition site as well as a fluorescence quencher, probe M-OH-SO3 displayed weak fluorescence, which, nevertheless, exhibits extensive yellow (575 nm) and red (660 nm) fluorescence emissions toward HSA under excitations at 400 and 500 nm, respectively. Interestingly, M-OH-SO3 displayed the best performance toward HSA with distinctly higher selectivity than that of its counterparts M-SO3, M-H-SO3, and M-F-SO3, which were prepared simply by modulating the functional group at the ortho position of the dicyanoisophorone core. Molecular docking results revealed that M-OH-SO3 possesses the lowest binding energy among the tested derivatives and accordingly the strongest binding affinity. Probe M-OH-SO3 showed a good linear relationship toward HSA in a range of 0.5-18 μM with a limit of detection of 35 nM. Cell imaging results demonstrated that probe M-OH-SO3 could visualize the variation HSA levels in hepatocarcinoma cells. In addition, probe M-OH-SO3 could also be employed for the recognition of glutathione through the cleavage of the dinitrobenzenesulfonate group along with an enhancement of emission at 575 nm. The site-dependent properties inspired a novel paradigm for design of fluorescent probes with optimized selectivity and responses.
Collapse
Affiliation(s)
- Di Yuan
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| | - Kexin Pan
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| | - Suying Xu
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| | - Leyu Wang
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| |
Collapse
|
15
|
Watanabe K, Fujikawa Y, Murakami-Tonami Y, Mori M, Sakata M, Inoue H. Design and synthesis of versatile GSTP1-specific fluorogenic substrates for the highly sensitive detection of GSTP1 activity in living cells. Talanta 2022; 251:123796. [DOI: 10.1016/j.talanta.2022.123796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 07/25/2022] [Accepted: 07/26/2022] [Indexed: 10/15/2022]
|
16
|
Han X, Wang Y, Huang Y, Wang X, Choo J, Chen L. Fluorescent probes for biomolecule detection under environmental stress. JOURNAL OF HAZARDOUS MATERIALS 2022; 431:128527. [PMID: 35231812 DOI: 10.1016/j.jhazmat.2022.128527] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 02/16/2022] [Accepted: 02/18/2022] [Indexed: 06/14/2023]
Abstract
The use of fluorescent probes in visible detection has been developed over the last several decades. Biomolecules are essential in the biological processes of organisms, and their distribution and concentration are largely influenced by environmental factors. Significant advances have occurred in the applications of fluorescent probes for the detection of the dynamic localization and quantity of biomolecules during various environmental stress-induced physiological and pathological processes. Herein, we summarize representative examples of small molecule-based fluorescent probes that provide bimolecular information when the organism is under environmental stress. The discussion includes strategies for the design of smart small-molecule fluorescent probes, in addition to their applications in biomolecule imaging under environmental stresses, such as hypoxia, ischemia-reperfusion, hyperthermia/hypothermia, organic/inorganic chemical exposure, oxidative/reductive stress, high glucose stimulation, and drug treatment-induced toxicity. We believe that comprehensive insight into the beneficial applications of fluorescent probes in biomolecule detection under environmental stress should enable the further development and effective application of fluorescent probes in the biochemical and biomedical fields.
Collapse
Affiliation(s)
- Xiaoyue Han
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China; Present: Ludwig Institute for Cancer Research, Nuffield Department of Clinical Medicine, University of Oxford, UK; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yue Wang
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yan Huang
- School of Pharmacy, Binzhou Medical University, Yantai 264003, China
| | - Xiaoyan Wang
- School of Pharmacy, Binzhou Medical University, Yantai 264003, China
| | - Jaebum Choo
- Department of Chemistry, Chung-Ang University, Seoul 06974, South Korea.
| | - Lingxin Chen
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China; School of Pharmacy, Binzhou Medical University, Yantai 264003, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China.
| |
Collapse
|
17
|
Chemical Probes and Activity-Based Protein Profiling for Cancer Research. Int J Mol Sci 2022; 23:ijms23115936. [PMID: 35682614 PMCID: PMC9180054 DOI: 10.3390/ijms23115936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 05/10/2022] [Accepted: 05/23/2022] [Indexed: 11/16/2022] Open
Abstract
Chemical probes can be used to understand the complex biological nature of diseases. Due to the diversity of cancer types and dynamic regulatory pathways involved in the disease, there is a need to identify signaling pathways and associated proteins or enzymes that are traceable or detectable in tests for cancer diagnosis and treatment. Currently, fluorogenic chemical probes are widely used to detect cancer-associated proteins and their binding partners. These probes are also applicable in photodynamic therapy to determine drug efficacy and monitor regulating factors. In this review, we discuss the synthesis of chemical probes for different cancer types from 2016 to the present time and their application in monitoring the activity of transferases, hydrolases, deacetylases, oxidoreductases, and immune cells. Moreover, we elaborate on their potential roles in photodynamic therapy.
Collapse
|
18
|
Wang J, Zhang L, Su Y, Qu Y, Cao Y, Qin W, Liu Y. A Novel Fluorescent Probe Strategy Activated by β-Glucuronidase for Assisting Surgical Resection of Liver Cancer. Anal Chem 2022; 94:7012-7020. [PMID: 35506678 DOI: 10.1021/acs.analchem.1c05635] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Liver cancer is a primary malignant tumor with a very high fatality rate, which has seriously threatened human health and life. In normal hepatocellular lesions, β-glucuronidase (GLU) activity in liver cancer tissues is significantly increased. Therefore, GLU has become one of the important biomarkers of primary liver cancer. Here, a series of fluorescent probes (DCDH, DCDCH3, DCDOCH3, and DCDNO2) for early diagnosis of liver cancer and auxiliary surgical resection were successfully synthesized. Since the electron-withdrawing group -NO2 connected to the probe DCDNO2 accelerates the rapid cleavage of the glycosidic bond, DCDNO2 exhibits superior fluorescence properties that are more sensitive and rapid than the other three probes DCDH, DCDCH3, and DCDOCH3 when detecting GLU. DCDNO2 has been well-applied in real-time fluorescent visualization imaging for the detection of GLU activity in liver cancer cells and tumor tissues. In addition, DCDNO2 has also been successfully used in the early diagnosis of liver cancer and real-time imaging to guide the surgical resection of liver cancer tumors. Therefore, DCDNO2 has great potential for development in bioclinical medicine for the early detection and treatment of liver cancer.
Collapse
Affiliation(s)
- Jiemin Wang
- Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, State Key Laboratory of Applied Organic Chemistry and Key Laboratory of Special Function Materials and Structure Design (MOE), College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, People's Republic of China
| | - Liang Zhang
- Department of Radiology, Xinqiao Hospital, Army Medical University, Chongqing, 400037, People's Republic of China
| | - Yaling Su
- Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, State Key Laboratory of Applied Organic Chemistry and Key Laboratory of Special Function Materials and Structure Design (MOE), College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, People's Republic of China
| | - Yi Qu
- Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, State Key Laboratory of Applied Organic Chemistry and Key Laboratory of Special Function Materials and Structure Design (MOE), College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, People's Republic of China
| | - Yuping Cao
- Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, State Key Laboratory of Applied Organic Chemistry and Key Laboratory of Special Function Materials and Structure Design (MOE), College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, People's Republic of China
| | - Wenwu Qin
- Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, State Key Laboratory of Applied Organic Chemistry and Key Laboratory of Special Function Materials and Structure Design (MOE), College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, People's Republic of China
| | - Yun Liu
- Department of Radiology, Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, People's Republic of China
| |
Collapse
|
19
|
Biocompatible BSA-AuNP@ZnCo2O4 nanosheets with oxidase-like activity: Colorimetric biosensing and antitumor activity. Microchem J 2022. [DOI: 10.1016/j.microc.2022.107208] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
20
|
A naphthimide fluorescent probe for the detection of selenols in selenium-enriched Tan sheep. Food Chem 2022; 373:131647. [PMID: 34838402 DOI: 10.1016/j.foodchem.2021.131647] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 11/15/2021] [Accepted: 11/16/2021] [Indexed: 12/29/2022]
Abstract
An "off-on" fluorescent probe, Nap-DNB, which is based on naphthimide, was designed and developed for the detection of biological selenols in vitro. We have adopted a combination of a low-pH detection environment and reaction sites that are more difficult to destroy to avoid the interference of a large number of biological thiols in biological samples. Nap-DNB can completely respond to selenocysteine within 15 mins, with a detection limit of 92 nM. Nap-DNB was successfully used for the detection of selenols in the serum, liver, and longissimus dorsi of selenium-enriched Tan sheep. Through comparison, we found that the detection of selenols by the Nap-DNB is similar to that by thioredoxin reductase and glutathione peroxidase in a commercial kit method. Nap-DNB can be used for the detection of selenols in selenium-enriched Tan sheep.
Collapse
|
21
|
Optical substrates for drug-metabolizing enzymes: Recent advances and future perspectives. Acta Pharm Sin B 2022; 12:1068-1099. [PMID: 35530147 PMCID: PMC9069481 DOI: 10.1016/j.apsb.2022.01.009] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 10/06/2021] [Accepted: 11/03/2021] [Indexed: 02/08/2023] Open
Abstract
Drug-metabolizing enzymes (DMEs), a diverse group of enzymes responsible for the metabolic elimination of drugs and other xenobiotics, have been recognized as the critical determinants to drug safety and efficacy. Deciphering and understanding the key roles of individual DMEs in drug metabolism and toxicity, as well as characterizing the interactions of central DMEs with xenobiotics require reliable, practical and highly specific tools for sensing the activities of these enzymes in biological systems. In the last few decades, the scientists have developed a variety of optical substrates for sensing human DMEs, parts of them have been successfully used for studying target enzyme(s) in tissue preparations and living systems. Herein, molecular design principals and recent advances in the development and applications of optical substrates for human DMEs have been reviewed systematically. Furthermore, the challenges and future perspectives in this field are also highlighted. The presented information offers a group of practical approaches and imaging tools for sensing DMEs activities in complex biological systems, which strongly facilitates high-throughput screening the modulators of target DMEs and studies on drug/herb‒drug interactions, as well as promotes the fundamental researches for exploring the relevance of DMEs to human diseases and drug treatment outcomes.
Collapse
|
22
|
A novel precipitating-fluorochrome-based fluorescent probe for monitoring carbon monoxide during drug-induced liver injury. Talanta 2022; 243:123398. [DOI: 10.1016/j.talanta.2022.123398] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2021] [Revised: 03/02/2022] [Accepted: 03/17/2022] [Indexed: 01/30/2023]
|
23
|
Zhong Y, Yang L, Zhou Y, Peng J. Biomarker-responsive Fluorescent Probes for In Vivo Imaging of Liver Injury. Chem Asian J 2022; 17:e202200038. [PMID: 35182452 DOI: 10.1002/asia.202200038] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Revised: 02/16/2022] [Indexed: 11/08/2022]
Abstract
Liver injury-related diseases have aroused widespread concern due to its extreme unpredictability, acute onset, and severe consequences. Nowadays, the clinical prediction and assessment of liver injury mainly focus on histopathological and serological approaches, which undergoes a tedious process and sometimes requires invasive biopsy. Over the past decades, fluorescence imaging technique have emerged as a rising star for the diagnosis of diseases owing to its noninvasiveness, high fidelity and ease of operation. On regard to liver injury, the fluorescent probes have been delicately designed to response a variety of endogenous biomolecules to precisely offer comprehensive information about the lesion site. Herein, we make a brief summary and discussion about the design strategies and applications of the recently reported fluorescent biosensors responsive to a series of biomarkers involved in the liver injury. The potential prospects and remaining challenges are also discussed to promote the progression in this field.
Collapse
Affiliation(s)
- Yang Zhong
- China Pharmaceutical University, State Key Laboratory of Natural Medicines, CHINA
| | - Lulu Yang
- China Pharmaceutical University, School of Basic Medicine and Clinical Pharmacy, CHINA
| | - Yunyun Zhou
- China Pharmaceutical University, State Key Laboratory of Natural Medicines, CHINA
| | - Juanjuan Peng
- China Pharmaceutical University, #24 Tong Jia Xiang, Nanjing, CHINA
| |
Collapse
|
24
|
Pengpeng X, Jiangtai C, Gaofan S, Mengmeng Z, Wanchen Y, Xiangde L, Dongdong Z. Research Progress of Naphthalimide Derivatives Optical Probes for Monitoring Physical and Chemical Properties of Microenvironment and Active Sulfur Substances. CHINESE J ORG CHEM 2022. [DOI: 10.6023/cjoc202205009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
25
|
Wei X, Li J, Yang X, Dong B, Geng B, Li Z, Hu X, Ding B, Zhang J, Yan M. An enzyme-activated two-photon ratiometric fluorescent probe with lysosome targetability for imaging β-glucuronidase in colon cancer cells and tissue. Anal Chim Acta 2021; 1192:339354. [DOI: 10.1016/j.aca.2021.339354] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 11/30/2021] [Accepted: 12/01/2021] [Indexed: 01/22/2023]
|
26
|
Zhu W, Yu H, Qian X, Lu K, Zhao C, Zhang Y, Wang HY, Liu Y. Near-infrared frequency upconversion probe for revealing the relationship between glutathione S-transferase and drug-resistance. Anal Chim Acta 2021; 1181:338920. [PMID: 34556207 DOI: 10.1016/j.aca.2021.338920] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 08/03/2021] [Accepted: 08/04/2021] [Indexed: 12/14/2022]
Abstract
Drug resistance poses an enormous challenge for successful chemotherapy. Glutathione S-transferase (GST) has been confirmed to be involved in the progression of drug resistance to some anticancer drugs, thus revealing that the role of GST in anticancer drug resistance is necessary. Herein, by taking advantage of frequency upconversion luminescence (FUCL) technology, we reported an FUCL probe (NRh-NDs) that can detect GST based on a rhodamine derivative structure decorated with a 2,4-dinitrobenzenesulfonyl group (NDs). The NRh-NDs showed excellent sensitivity and high selectivity for GST and released the emissive dye NRh-NH2, which showed emission and excitation wavelengths in vitro of 820 nm and 850 nm, respectively. The NRh-NDs probe successfully tested endogenic GST in U87, MCF-7 and A549 cells. The cell data showed that the increased levels of GST were positively related to cisplatin resistance but not to 5-fluorouracil resistance. These results suggested that the probe could be used as a visual tool to reveal the cause of drug resistance for cisplatin resistance in cancer treatment. Furthermore, it may serve as an effective tool to confirm the mechanism of antitumor drug resistance.
Collapse
Affiliation(s)
- Wenchao Zhu
- School of Mechanical Engineering, Southeast University, Nanjing, 211189, China; School of Engineering, China Pharmaceutical University, Nanjing, 211198, China
| | - Hui Yu
- School of Engineering, China Pharmaceutical University, Nanjing, 211198, China
| | - Xiaoli Qian
- School of Engineering, China Pharmaceutical University, Nanjing, 211198, China
| | - Kai Lu
- Zhongda Hospital, Southeast University, Nanjing, 210009, China
| | - Chao Zhao
- School of Engineering, China Pharmaceutical University, Nanjing, 211198, China
| | - Yuanyuan Zhang
- School of Engineering, China Pharmaceutical University, Nanjing, 211198, China
| | - Hai-Yan Wang
- School of Mechanical Engineering, Southeast University, Nanjing, 211189, China.
| | - Yi Liu
- School of Engineering, China Pharmaceutical University, Nanjing, 211198, China.
| |
Collapse
|
27
|
Li G, Yang Y, Yang J, Suo Y, Xu H, Liu P, Wang J, Deng G, Feng T. Hepatoprotective effects of Malus hupehensis tea against isoniazid- and rifampicin-induced liver injury by regulating cytochrome P450 in mice. J Funct Foods 2021. [DOI: 10.1016/j.jff.2021.104580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
|
28
|
Bao L, Liu K, Chen Y, Yang G. Construction of a Rational-Designed Multifunctional Platform Based on a Fluorescence Resonance Energy Transfer Process for Simultaneous Detection of pH and Endogenous Peroxynitrite. Anal Chem 2021; 93:9064-9073. [PMID: 34164977 DOI: 10.1021/acs.analchem.1c00264] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Peroxynitrite (ONOO-), a kind of reactive oxygen species, plays an indispensable role in many physiological processes. The stability and reactivity of ONOO- are significantly affected by the pH of the environment. A novel fluorescent probe RN-NA that can simultaneously respond to ONOO- and pH was proposed and constructed based on a rational-designed multifunctional fluorescence resonance energy transfer (FRET) platform. The RN-NA probe exhibited a remarkably different fluorescence change in response to ONOO- and pH. The fluorescence signals at 525 and 710 nm increased about 4-fold with a pH change from 8.0 to 3.0. The changes in fluorescence at 525 nm are mainly attributed to photo-induced electron transfer, and the fluorescence enhancement at 710 nm was mainly due to acid-induced open-closed circulation. In the presence of ONOO-, the fluorescence at 525 nm increased 5-fold, while the fluorescence at 710 nm was almost completely diminished. Up to 70-fold fluorescence enhancement was observed in the ratiometric channel F525/F710. In the cell imaging experiment, the intracellular pH was adjusted using H+/K+ ionophore and nigericin, and the endogenous ONOO- was generated by lipopolysaccharide (LPS) and γ-interferon (IFN-γ). The RN-NA probe can respond to cellular pH and endogenous ONOO- with remarkable fluorescence changes in both red/green and ratiometric channels.
Collapse
Affiliation(s)
- Luo Bao
- State Key Laboratory of Biobased Material and Green Papermaking, Key Laboratory of Pulp & Paper Science and Technology of Shandong Province/Ministry of Education, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China
| | - Keyin Liu
- State Key Laboratory of Biobased Material and Green Papermaking, Key Laboratory of Pulp & Paper Science and Technology of Shandong Province/Ministry of Education, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China
| | - Yunling Chen
- State Key Laboratory of Biobased Material and Green Papermaking, Key Laboratory of Pulp & Paper Science and Technology of Shandong Province/Ministry of Education, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China
| | - Guihua Yang
- State Key Laboratory of Biobased Material and Green Papermaking, Key Laboratory of Pulp & Paper Science and Technology of Shandong Province/Ministry of Education, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China
| |
Collapse
|
29
|
|
30
|
Han C, Cui Y, Guo Y, Zhang D, Wang X, Geng Y, Shi W, Bao Y. Proteome and transcriptome analysis revealed florfenicol via affected drug metabolism and lipid metabolism induce liver injury of broilers. Poult Sci 2021; 100:101228. [PMID: 34293615 PMCID: PMC8319801 DOI: 10.1016/j.psj.2021.101228] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 03/21/2021] [Accepted: 04/15/2021] [Indexed: 11/17/2022] Open
Abstract
In order to explore the mechanism of liver injury induced by florfenicol (FFC) in broilers. Sixty broilers were randomly divided into 2 groups: control group: normal drinking water and feed were given every d; FFC group: tap water containing FFC (0.15g/L) was given every d and feed was taken freely; each group was given 5 dd of continuous medication and feed was taken freely. The results showed that compared with the control group, FFC could significantly inhibit the weight gain of broilers (P < 0.05), and significantly inhibit the expression of CYP1A1 and CYP2H1 in liver tissue (P < 0.05). It was found that the expression of genes related to the effect of cytochrome P450 on the metabolism of exogenous substances, the peroxisome proliferators-activated receptors signal pathway, peroxisome pathway and glutathione metabolic pathway in the liver of broilers. The results of qPCR of UDP glucuronosyltransferase family 2A1 (UGT2A1), glutathione S-transferase-like 2 (GSTAL2), hematopoietic prostaglandin D synthase (HPGDS), glutathione S-transferase theta 1(GSTT1), isocitrate dehydrogenase (NADP(+)) 1 (IDH1), acyl-CoA oxidase 2 (ACOX2), fatty acid binding protein 1 (FABP1), adenylosuccinate lyase (ADSL), and phosphoribosyl aminoim idazolesuccino carboxamide synthase (PAICS) genes which were randomly selected from the most significant genes were consistent with those of RNA-seq. The results showed that FFC can affect the drug metabolism and lipid synthesis in the liver of broiler, thus impairing the normal function of liver and the growth and development of broiler.
Collapse
Affiliation(s)
- Chao Han
- College of Traditional Chinese Veterinary Medicine, Agriculture University of Hebei, Baoding, 071001, China
| | - Yuqing Cui
- College of Traditional Chinese Veterinary Medicine, Agriculture University of Hebei, Baoding, 071001, China
| | - Yiwei Guo
- College of Traditional Chinese Veterinary Medicine, Agriculture University of Hebei, Baoding, 071001, China
| | - Di Zhang
- College of Traditional Chinese Veterinary Medicine, Agriculture University of Hebei, Baoding, 071001, China
| | - Xiao Wang
- College of Traditional Chinese Veterinary Medicine, Agriculture University of Hebei, Baoding, 071001, China
| | - Yumeng Geng
- College of Traditional Chinese Veterinary Medicine, Agriculture University of Hebei, Baoding, 071001, China
| | - Wanyu Shi
- College of Traditional Chinese Veterinary Medicine, Agriculture University of Hebei, Baoding, 071001, China; Hebei Veterinary Biotechnology Innovation Center, Baoding 071000, China.
| | - Yongzhan Bao
- College of Traditional Chinese Veterinary Medicine, Agriculture University of Hebei, Baoding, 071001, China; Hebei Veterinary Biotechnology Innovation Center, Baoding 071000, China
| |
Collapse
|
31
|
Rajapaksha AA, Fu YX, Guo WY, Liu SY, Li ZW, Xiong CQ, Yang WC, Yang GF. Review on the recent progress in the development of fluorescent probes targeting enzymes. Methods Appl Fluoresc 2021; 9. [PMID: 33873170 DOI: 10.1088/2050-6120/abf988] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Accepted: 04/19/2021] [Indexed: 02/07/2023]
Abstract
Enzymes are very important for biological processes in a living being, performing similar or multiple tasks in and out of cells, tissues and other organisms at a particular location. The abnormal activity of particular enzyme usually caused serious diseases such as Alzheimer's disease, Parkinson's disease, cancers, diabetes, cardiovascular diseases, arthritis etc. Hence, nondestructive and real-time visualization for certain enzyme is very important for understanding the biological issues, as well as the drug administration and drug metabolism. Fluorescent cellular probe-based enzyme detectionin vitroandin vivohas become broad interest for human disease diagnostics and therapeutics. This review highlights the recent findings and designs of highly sensitive and selective fluorescent cellular probes targeting enzymes for quantitative analysis and bioimaging.
Collapse
Affiliation(s)
- Asanka Amith Rajapaksha
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensor Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, People's Republic of China.,Department of Nano Science Technology, Faculty of Technology, Wayamba University of Sri Lanka, Kuliyapitiya, Sri Lanka
| | - Yi-Xuan Fu
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensor Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, People's Republic of China
| | - Wu Yingzheng Guo
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensor Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, People's Republic of China
| | - Shi-Yu Liu
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensor Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, People's Republic of China
| | - Zhi-Wen Li
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensor Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, People's Republic of China
| | - Cui-Qin Xiong
- Department of Interventional Medicine, Wuhan Third Hospital-Tongren Hospital of Wuhan University, Wuhan 430070, People's Republic of China
| | - Wen-Chao Yang
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensor Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, People's Republic of China
| | - Guang-Fu Yang
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensor Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, People's Republic of China
| |
Collapse
|
32
|
Chen J, Huang D, She M, Wang Z, Chen X, Liu P, Zhang S, Li J. Recent Progress in Fluorescent Sensors for Drug-Induced Liver Injury Assessment. ACS Sens 2021; 6:628-640. [PMID: 33475340 DOI: 10.1021/acssensors.0c02343] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Drug-induced liver injury (DILI) is a persistent concern in drug discovery and clinical medicine. The current clinical methods to assay DILI by analyzing the enzymes in serum are still not optimal. Recent studies showed that fluorescent sensors would be efficient tools for detecting the concentration and distribution of DILI indicators with high sensitivity and specificity, in real-time, in situ, and with low damage to biosamples, as well as diagnosing DILI. This review focuses on the assessment of DILI, introduces the current mechanisms of DILI, and summarizes the design strategies of fluorescent sensors for DILI indicators, including ions, small molecules, and related enzymes. Some challenges for developing DILI diagnostic fluorescent sensors are put forward. We believe that these design strategies and challenges to evaluate DILI will inspire chemists and give them opportunities to further develop other fluorescent sensors for accurate diagnoses and therapies for other diseases.
Collapse
Affiliation(s)
- Jiao Chen
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi’an, Shaanxi province 710127, P. R. China
| | - Dongyu Huang
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi’an, Shaanxi province 710127, P. R. China
| | - Mengyao She
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi’an, Shaanxi province 710127, P. R. China
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education; Biomedicine Key Laboratory of Shaanxi Province; Lab of Tissue Engineering, the College of Life Sciences, Faculty of Life Science & Medicine, Northwest University, Xi’an, Shaanxi province 710069, P. R. China
| | - Zesi Wang
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi’an, Shaanxi province 710127, P. R. China
| | - Xi Chen
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi’an, Shaanxi province 710127, P. R. China
| | - Ping Liu
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi’an, Shaanxi province 710127, P. R. China
| | - Shengyong Zhang
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi’an, Shaanxi province 710127, P. R. China
| | - Jianli Li
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi’an, Shaanxi province 710127, P. R. China
| |
Collapse
|
33
|
Liu Y, Yu Y, Zhao Q, Tang C, Zhang H, Qin Y, Feng X, Zhang J. Fluorescent probes based on nucleophilic aromatic substitution reactions for reactive sulfur and selenium species: Recent progress, applications, and design strategies. Coord Chem Rev 2021; 427:213601. [PMID: 33024340 PMCID: PMC7529596 DOI: 10.1016/j.ccr.2020.213601] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 09/07/2020] [Indexed: 02/06/2023]
Abstract
Reactive sulfur species (RSS) and reactive selenium species (RSeS) are important substances for the maintenance of physiological balance. Imbalance of RSS and RSeS is closely related to a series of human diseases, so it is considered to be an important biomarker in early diagnosis, treatment, and stage monitoring. Fast and accurate quantitative analysis of different RSS and RSeS in complex biological systems may promote the development of personalized diagnosis and treatment in the future. One way to explore the physiological function of various types of RSS and RSeS in vivo is to detect them at the molecular level, and one of the most effective methods for this is to use fluorescent probes. Nucleophilic aromatic substitution (SNAr) reactions are commonly exploited as a detection mechanism for RSS and RSeS in fluorescent probes. In this review, we cover recent progress in fluorescent probes for RSS and RSeS based on SNAr reactions, and discuss their response mechanisms, properties, and applications. Benzenesulfonate, phenyl-O ether, phenyl-S ether, phenyl-Se ether, 7-nitro-2,1,3-benzoxadiazole (NBD), benzoate, and selenium-nitrogen bonds are all good detection groups. Moreover, based on an integration of different reports, we propose the design and synthesis of RSS- and RSeS-selective probes based on SNAr reactions, current challenges, and future research directions, considering the selection of active sites, the effect of substituents on the benzene ring, and the introduction of other functional groups.
Collapse
Affiliation(s)
- Yuning Liu
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
- Scientific Observing and Experiment Station of Animal Genetic Resources and Nutrition in North China of Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Yanan Yu
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
- Scientific Observing and Experiment Station of Animal Genetic Resources and Nutrition in North China of Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Qingyu Zhao
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
- Scientific Observing and Experiment Station of Animal Genetic Resources and Nutrition in North China of Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Chaohua Tang
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
- Scientific Observing and Experiment Station of Animal Genetic Resources and Nutrition in North China of Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Huiyan Zhang
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
- Scientific Observing and Experiment Station of Animal Genetic Resources and Nutrition in North China of Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Yuchang Qin
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
- Scientific Observing and Experiment Station of Animal Genetic Resources and Nutrition in North China of Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Xiaohui Feng
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
- Scientific Observing and Experiment Station of Animal Genetic Resources and Nutrition in North China of Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Junmin Zhang
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
- Scientific Observing and Experiment Station of Animal Genetic Resources and Nutrition in North China of Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| |
Collapse
|
34
|
Williams RM, Harvey JD, Budhathoki-Uprety J, Heller DA. Glutathione-S-transferase Fusion Protein Nanosensor. NANO LETTERS 2020; 20:7287-7295. [PMID: 32955895 PMCID: PMC8266418 DOI: 10.1021/acs.nanolett.0c02691] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Fusion protein tags are widely used to capture and track proteins in research and industrial bioreactor processes. Quantifying fusion-tagged proteins normally requires several purification steps coupled with classical protein assays. Here, we developed a broadly applicable nanosensor platform that quantifies glutathione-S-transferase (GST) fusion proteins in real-time. We synthesized a glutathione-DNA-carbon nanotube system to investigate glutathione-GST interactions via semiconducting single-walled carbon nanotube (SWCNT) photoluminescence. We found that SWCNT fluorescence wavelength and intensity modulation occurred specifically in response to GST and GST-fusions. The sensor response was dependent on SWCNT structure, wherein mod(n - m, 3) = 1 nanotube wavelength and intensity responses correlated with nanotube diameter distinctly from mod(n - m, 3) = 2 SWCNT responses. We also found broad functionality of this sensor to diverse GST-tagged proteins. This work comprises the first label-free optical sensor for GST and has implications for the assessment of protein expression in situ, including in imaging and industrial bioreactor settings.
Collapse
Affiliation(s)
- Ryan M. Williams
- Memorial Sloan Kettering Cancer Center, New York, NY 10065
- Department of Biomedical Engineering, The City College of New York, New York, NY, 10301
| | - Jackson D. Harvey
- Memorial Sloan Kettering Cancer Center, New York, NY 10065
- Weill Cornell Medicine, New York, NY 10065
| | - Januka Budhathoki-Uprety
- Memorial Sloan Kettering Cancer Center, New York, NY 10065
- Department of Textile Engineering, Chemistry and Science, North Carolina State University, Raleigh, North Carolina, 27695
| | - Daniel A. Heller
- Memorial Sloan Kettering Cancer Center, New York, NY 10065
- Weill Cornell Medicine, New York, NY 10065
| |
Collapse
|
35
|
Zhang XX, Qi H, Liu YL, Yang SQ, Li P, Qiao Y, Zhang PY, Wen SH, Piao HL, Han KL. A fluorophore's electron-deficiency does matter in designing high-performance near-infrared fluorescent probes. Chem Sci 2020; 11:11205-11213. [PMID: 34094361 PMCID: PMC8162715 DOI: 10.1039/d0sc04411c] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
The applications of most fluorescent probes available for Glutathione S-Transferases (GSTs), including NI3 which we developed recently based on 1,8-naphthalimide (NI), are limited by their short emission wavelengths due to insufficient penetration. To realize imaging at a deeper depth, near-infrared (NIR) fluorescent probes are required. Here we report for the first time the designing of NIR fluorescent probes for GSTs by employing the NIR fluorophore HCy which possesses a higher brightness, hydrophilicity and electron-deficiency relative to NI. Intriguingly, with the same receptor unit, the HCy-based probe is always more reactive towards glutathione than the NI-based one, regardless of the specific chemical structure of the receptor unit. This was proved to result from the higher electron-deficiency of HCy instead of its higher hydrophilicity based on a comprehensive analysis. Further, with caging of the autofluorescence being crucial and more difficult to achieve via photoinduced electron transfer (PET) for a NIR probe, the quenching mechanism of HCy-based probes was proved to be PET for the first time with femtosecond transient absorption and theoretical calculations. Thus, HCy2 and HCy9, which employ receptor units less reactive than the one adopted in NI3, turned out to be the most appropriate NIR probes with high-sensitivity and little nonenzymatic background noise. They were then successfully applied to detecting GST in cells, tissues and tumor xenografts in vivo. Additionally, unlike HCy2 with a broad isoenzyme selectivity, HCy9 is specific for GSTA1-1, which is attributed to its lower reactivity and the higher effectiveness of GSTA1-1 in stabilizing the active intermediate via H-bonds based on docking simulations. An abnormal and intriguing phenomenon that the fluorophore's electron-deficiency could affect a probe's performance is now revealed for the first time.![]()
Collapse
Affiliation(s)
- Xue-Xiang Zhang
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences Dalian 116023 P. R. China
| | - Huan Qi
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences Dalian 116023 P. R. China
| | - Ya-Lan Liu
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences Dalian 116023 P. R. China
| | - Song-Qiu Yang
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences Dalian 116023 P. R. China
| | - Peng Li
- Institute of Molecular Sciences and Engineering, Shandong University Qingdao 266237 P. R. China
| | - Yan Qiao
- Department of Pathophysiology, Basic Medical College of Zhengzhou University Zhengzhou 450001 P. R. China
| | - Pei-Yu Zhang
- Shenzhen Jingtai Technology Co., Ltd Floor 4, No. 9, Hualian Industrial Zone, Dalang Street, Longhua District Shenzhen P. R. China
| | - Shu-Hao Wen
- Shenzhen Jingtai Technology Co., Ltd Floor 4, No. 9, Hualian Industrial Zone, Dalang Street, Longhua District Shenzhen P. R. China
| | - Hai-Long Piao
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences Dalian 116023 P. R. China
| | - Ke-Li Han
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences Dalian 116023 P. R. China .,Institute of Molecular Sciences and Engineering, Shandong University Qingdao 266237 P. R. China
| |
Collapse
|
36
|
Tian M, Wang C, Ma Q, Bai Y, Sun J, Ding C. A Highly Selective Fluorescent Probe for Hg 2+ Based on a 1,8-Naphthalimide Derivative. ACS OMEGA 2020; 5:18176-18184. [PMID: 32743192 PMCID: PMC7391857 DOI: 10.1021/acsomega.0c01790] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Accepted: 06/29/2020] [Indexed: 05/31/2023]
Abstract
Hg2+ has a significant hazardous impact on the environment and ecosystem. There is a great demand for new methods with high selectivity and sensitivity to determine mercury in life systems and environments. In this paper, a novel turn-on Hg2+ fluorescent probe has been reported with a naphthalimide group. The Hg2+ fluorescent probe was designed by the inspiration of the well-known specific Hg2+-triggered thioacetal deprotection reaction. A 1,2-dithioalkyl group was chosen as the specific recognition site of Hg2+. The probe showed weak fluorescence without Hg2+, and the color of the solution was light yellow. In the presence of Hg2+, the probe reacted specifically with the mercury ion to produce an aldehyde and emitted strong fluorescence, and the color of the solution also turned light green, thus realizing the monitoring of the mercury ion. The Hg2+ fluorescent probe showed outstanding sensitivity and selectivity toward Hg2+. Furthermore, the Hg2+ fluorescent probe could work in a wide pH range. The linear relationship between the fluorescence intensity at 510 nm and the concentration of Hg2+ was obtained in a range of Hg2+ concentration from 2.5 × 10-7 to 1.0 × 10-5 M. The detection limit was found to be 4.0 × 10-8 M for Hg2+. Furthermore, with little cell toxicity, the probe was successfully applied to the confocal image of Hg2+ in PC-12 cells.
Collapse
Affiliation(s)
- Meiju Tian
- School
of Pharmacy, Henan University of Traditional
Chinese Medicine, Zhengzhou 450046, PR China
| | - Chunyan Wang
- School
of Pharmacy, Henan University of Traditional
Chinese Medicine, Zhengzhou 450046, PR China
| | - Qiujuan Ma
- School
of Pharmacy, Henan University of Traditional
Chinese Medicine, Zhengzhou 450046, PR China
- Zhengzhou
Key Laboratory of Chinese Medicine Quality Control and Evaluation, Zhengzhou 450046, PR China
| | - Yu Bai
- School
of Pharmacy, Henan University of Traditional
Chinese Medicine, Zhengzhou 450046, PR China
| | - Jingguo Sun
- School
of Pharmacy, Henan University of Traditional
Chinese Medicine, Zhengzhou 450046, PR China
| | - Chunfeng Ding
- Henan
Key Laboratory of Laser and Optoelectric Information Technology, School
of Information Engineering, Zhengzhou University, Zhengzhou 450001, PR China
| |
Collapse
|
37
|
Turn-on detection of glutathione S-transferase based on luminescence resonance energy transfer between near-infrared to near-infrared core-shell upconversion nanoparticles and organic dye. Anal Bioanal Chem 2020; 412:5843-5851. [PMID: 32691084 DOI: 10.1007/s00216-020-02808-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2019] [Revised: 06/24/2020] [Accepted: 07/06/2020] [Indexed: 10/23/2022]
Abstract
Glutathione S-transferase (GST) is a detoxification enzyme of the liver and kidney. Based on the toxicological effect of GST, it is of great significance to develop a rapid and sensitive detection method for GST. In this work, a new luminescence resonance energy transfer (LRET) system has been designed to detect glutathione S-transferase in the near-infrared (NIR) region by utilizing NaGdF4:Yb3+,Tm3+@NaYF4 upconversion nanoparticles (UCNPs) as the donor and NIR dye-806@Glutathione (IR806@GSH) as the acceptor. NaGdF4:Yb3+,Tm3+@NaYF4 UCNPs were synthesized by a coprecipitation method and surface modification of NOBF4. The donor (positively charged) interacted with the acceptor (negatively charged) via electrostatic interactions to bring them into close proximity; then, LRET occurred and the luminescence was quenched. In the presence of GST, GST can specifically interact with the GSH of IR806@GSH molecule, making IR806@GSH far away from the donor surface, inhibiting the LRET, and restoring the luminescence of the UCNPs. There was a good linear relationship between the luminescence recovery intensity of UCNPs and GST concentration, ranging from 0.11 to 14.19 nM, and the detection of limit was 0.06 nM. The method has been used in the detection of GST in human serum samples and is expected to have potential applications in the biological field. Graphical abstract A luminescence resonance energy transfer system was developed for determination of glutathione S-transferase in the near-infrared region by utilizing NaGdF4:Yb3+,Tm3+@NaYF4 upconversion nanoparticles as the donor and NIR dye-806@Glutathione as the acceptor.
Collapse
|
38
|
Zhang W, Wang X, Li P, Zhang W, Wang H, Tang B. Evaluating Hyperthyroidism-Induced Liver Injury Based on In Situ Fluorescence Imaging of Glutathione and Phosphate via Nano-MOFs Sensor. Anal Chem 2020; 92:8952-8958. [PMID: 32438804 DOI: 10.1021/acs.analchem.0c00925] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Hyperthyroidism-induced liver injury is quite common in clinical settings. Therefore, developing rapid and simple methods for the assessment of hyperthyroid liver injury is of great significance. Considering phosphorus metabolism is disordered because of hyperthyroidism, and the hyperthyroid liver injury is closely related to the abnormal level of glutathione (GSH). Thus, development of a new method that can simultaneously detect changes in blood phosphorus and GSH levels of serum, liver, kidney, and other organs to assess the degree of hyperthyroid liver injury is necessary for clinical medical research. Herein, a novel fluorescent metal-organic frameworks (MOFs) nanoprobe using the UiO-66(OH)2 as core and Cu-MOFs as shell was designed and synthesized. Through the specific action between Zr (IV) and phosphate, and the combine interaction of MOFs active center Cu (II) and GSH, high sensitivity and specific fluorescence detection of phosphate and GSH were achieved, respectively. Finally, the nanosensor was applied for evaluating different degrees of hyperthyroid liver injury in mice models and realized the monitoring of serum, liver, kidney, and other organs' blood phosphorus and GSH levels, and found that the levels of phosphate and GSH in serum were negatively correlated with the degree of hyperthyroid liver injury, while the changes of phosphate and GSH levels in the liver and kidney organs were positively correlated with the degree of hyperthyroid liver injury. In general, the present works provide a new way to effectively evaluate liver injury induced by hyperthyroidism in the early clinical stage.
Collapse
Affiliation(s)
- Wei Zhang
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Institute of Biomedical Sciences, Shandong Normal University, Jinan 250014, P. R. China
| | - Xue Wang
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Institute of Biomedical Sciences, Shandong Normal University, Jinan 250014, P. R. China
| | - Ping Li
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Institute of Biomedical Sciences, Shandong Normal University, Jinan 250014, P. R. China
| | - Wen Zhang
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Institute of Biomedical Sciences, Shandong Normal University, Jinan 250014, P. R. China
| | - Hui Wang
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Institute of Biomedical Sciences, Shandong Normal University, Jinan 250014, P. R. China
| | - Bo Tang
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Institute of Biomedical Sciences, Shandong Normal University, Jinan 250014, P. R. China
| |
Collapse
|
39
|
Ren A, Zhu D, Luo Y. A novel Boranil-based turn-on fluorescent probe for imaging of biothiols in living cells. J Mol Struct 2020. [DOI: 10.1016/j.molstruc.2020.127914] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
40
|
Duan J, Dong W, Xie L, Fan S, Xu Y, Li Y. Integrative proteomics-metabolomics strategy reveals the mechanism of hepatotoxicity induced by Fructus Psoraleae. J Proteomics 2020; 221:103767. [DOI: 10.1016/j.jprot.2020.103767] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 03/11/2020] [Accepted: 03/28/2020] [Indexed: 02/07/2023]
|
41
|
Song A, Shen X, Feng T, Gai S, Wei H, Li X, Chen H. Optimized Fluorescent Probe for Specific Imaging of Glutathione S-Transferases in Living Cells and Mice. Chem Asian J 2020; 15:1464-1468. [PMID: 32227593 DOI: 10.1002/asia.202000152] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Revised: 03/14/2020] [Indexed: 11/05/2022]
Abstract
GSTP1 has been considered to be a marker for malignancy in many tissues. However, the existing GST fluorescent probes are unfavorable for in vivo imaging because of the limited emission wavelength or insufficient fluorescence enhancement (six-fold). The limited fluorescence enhancement of GST fluorescent probes is mainly ascribed to the high background signals resulting from the spontaneous reaction between GSH and the probes. In this work, a highly specific GST probe with NIR emission has been successfully developed through optimization of the essential unit of the probe to repress the spontaneous reaction. The novel GST probe exhibits over 100-fold fluorescence enhancement upon incubation with GSTP1/GSH and high selectivity over other potential interference. In addition, the probe has been proved to be capable of tracking endogenous GST in A549 cells. Finally, the in vivo imaging results demonstrate that the probe can be used for effective imaging of endogenous GST activity in subcutaneous tumor mouse with high contrast.
Collapse
Affiliation(s)
- Aiguo Song
- Department of Medicinal Chemistry, School of Pharmacy, Air Force Medical University, Xi'an, 710032, P. R. China.,Institute of Medical Research, Northwestern Polytechnical University, Xi'an, 710072, P. R. China
| | - Xin Shen
- Department of Medicinal Chemistry, School of Pharmacy, Air Force Medical University, Xi'an, 710032, P. R. China
| | - Tian Feng
- Department of Medicinal Chemistry, School of Pharmacy, Air Force Medical University, Xi'an, 710032, P. R. China.,Department of Chinese Materia Medica and Natural Medicines, School of Pharmacy, Air Force Medical University, Xi'an, 710032, P. R. China
| | - Shouchang Gai
- Department of Medicinal Chemistry, School of Pharmacy, Air Force Medical University, Xi'an, 710032, P. R. China
| | - Haiqing Wei
- Institute of Medical Research, Northwestern Polytechnical University, Xi'an, 710072, P. R. China
| | - Xinxin Li
- Institute of Medical Research, Northwestern Polytechnical University, Xi'an, 710072, P. R. China
| | - Hui Chen
- Department of Medicinal Chemistry, School of Pharmacy, Air Force Medical University, Xi'an, 710032, P. R. China
| |
Collapse
|
42
|
Zhang XX, Qi H, Lu MH, Yang SQ, Li P, Piao HL, Han KL. Semi-Quantitatively Designing Two-Photon High-Performance Fluorescent Probes for Glutathione S-Transferases. RESEARCH 2020; 2020:7043124. [PMID: 32377639 PMCID: PMC7114728 DOI: 10.34133/2020/7043124] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/21/2019] [Accepted: 02/18/2020] [Indexed: 01/09/2023]
Abstract
Glutathione S-transferases (GSTs), detoxification enzymes that catalyze the addition of glutathione (GSH) to diverse electrophilic molecules, are often overexpressed in various tumor cells. While fluorescent probes for GSTs have often adopted the 2,4-dinitrobenzenesulfonyl (DNs) group as the receptor unit, they usually suffer from considerable background reaction noise with GSH due to excessive electron deficiency. However, weakening this reactivity is generally accompanied by loss of sensitivity for GSTs, and therefore, finely turning down the reactivity while maintaining certain sensitivity is critical for developing a practical probe. Here, we report a rational semiquantitative strategy for designing such a practical two-photon probe by introducing a parameter adopted from the conceptual density functional theory (CDFT), the local electrophilicity ω k , to characterize this reactivity. As expected, kinetic studies established ω k as efficient to predict the reactivity with GSH, and probe NI3 showing the best performance was successfully applied to detecting GST activities in live cells and tissue sections with high sensitivity and signal-to-noise ratio. Photoinduced electron transfer of naphthalimide-based probes, captured by femtosecond transient absorption for the first time and unraveled by theoretical calculations, also contributes to the negligible background noise.
Collapse
Affiliation(s)
- Xue-Xiang Zhang
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Huan Qi
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Mei-Heng Lu
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Song-Qiu Yang
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Peng Li
- Institute of Molecular Sciences and Engineering, Shandong University, Qingdao 266237, China
| | - Hai-Long Piao
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Ke-Li Han
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China.,Institute of Molecular Sciences and Engineering, Shandong University, Qingdao 266237, China
| |
Collapse
|
43
|
Abstract
Drug-induced liver injury (DILI) has been a long-standing concern of modern medicine, and the single most frequent reason for drug nonapprovals and postapproval restrictions or withdrawals. Chemical probes for early diagnosis of DILI has triggered a tremendous interest in the field of molecular imaging. In this review, we make a brief summary of the recently developed chemical probes and their applications in DILI imaging with special attention to the design of chemical probes, mechanism of their actions and their performances in DILI imaging.
Collapse
|
44
|
Fu S, Wu D, Jiang W, Li J, Long J, Jia C, Zhou T. Molecular Biomarkers in Drug-Induced Liver Injury: Challenges and Future Perspectives. Front Pharmacol 2020; 10:1667. [PMID: 32082163 PMCID: PMC7002317 DOI: 10.3389/fphar.2019.01667] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2019] [Accepted: 12/20/2019] [Indexed: 02/05/2023] Open
Abstract
Drug-induced liver injury (DILI) is one among the common adverse drug reactions and the leading causes of drug development attritions, black box warnings, and post-marketing withdrawals. Despite having relatively low clinical incidence, its potentially severe adverse events should be considered in the individual patients due to the high risk of acute liver failure. Although traditional liver parameters have been applied to the diagnosis of DILI, the lack of specific and sensitive biomarkers poses a major limitation, and thus accurate prediction of the subsequent clinical course remains a significant challenge. These drawbacks prompt the investigation and discovery of more effective biomarkers, which could lead to early detection of DILI, and improve its diagnosis and prognosis. Novel promising biomarkers include glutamate dehydrogenase, keratin 18, sorbitol dehydrogenase, glutathione S-transferase, bile acids, cytochrome P450, osteopontin, high mobility group box-1 protein, fatty acid binding protein 1, cadherin 5, miR-122, genetic testing, and omics technologies, among others. Furthermore, several clinical scoring systems have gradually emerged for the diagnosis of DILI including the Roussel Uclaf Causality Assessment Method (RUCAM), Clinical Diagnostic Scale (CDS), and Digestive Disease Week Japan (DDW-J) systems. However, currently their predictive value is limited with certain inherent deficiencies. Thus, perhaps the greatest benefit would be achieved by simultaneously combining the scoring systems and those biomarkers. Herein, we summarized the recent research progress on molecular biomarkers for DILI to improved approaches for its diagnosis and clinical management.
Collapse
Affiliation(s)
- Siyu Fu
- Center of Infectious Diseases, West China Hospital, Sichuan University, Chengdu, China
| | - Dongbo Wu
- Center of Infectious Diseases, West China Hospital, Sichuan University, Chengdu, China
| | - Wei Jiang
- Center of Infectious Diseases, West China Hospital, Sichuan University, Chengdu, China
| | - Juan Li
- Department of Infectious Diseases, Pidu District People's Hospital, Chengdu, China
| | - Jiang Long
- The Mental Health Center and the Psychiatric Laboratory, West China Hospital, Sichuan University, Chengdu, China
| | - Chengyao Jia
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Taoyou Zhou
- Center of Infectious Diseases, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
45
|
Feng L, Ning J, Tian X, Wang C, Zhang L, Ma X, James TD. Fluorescent probes for bioactive detection and imaging of phase II metabolic enzymes. Coord Chem Rev 2019. [DOI: 10.1016/j.ccr.2019.213026] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
46
|
Chen D, Qin W, Fang H, Wang L, Peng B, Li L, Huang W. Recent progress in two-photon small molecule fluorescent probes for enzymes. CHINESE CHEM LETT 2019. [DOI: 10.1016/j.cclet.2019.08.001] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
47
|
Chen J, Wang Z, She M, Liu M, Zhao Z, Chen X, Liu P, Zhang S, Li J. Precise Synthesis of GSH-Specific Fluorescent Probe for Hepatotoxicity Assessment Guided by Theoretical Calculation. ACS APPLIED MATERIALS & INTERFACES 2019; 11:32605-32612. [PMID: 31423764 DOI: 10.1021/acsami.9b08522] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Drug-induced hepatotoxicity is the main cause of acute liver injury, and its early diagnosis is indispensable in pharmacological and pathological studies. As a hepatotoxicity indicator, the GSH distribution in the liver could reflect the damage degree in situ. In this work, we have provided a theoretical design strategy to determine the generation of photo-induced electron transfer mechanism and achieve high selectivity for the target. After that, we precisely synthesized a novel near-infrared fluorescent probe BSR1 to specifically monitor endogenous GSH and hepatotoxicity in biosystem with a moderate fluorescent quantum yield (Φ = 0.394) and low detection limit (83 nM) under this strategy. Moreover, this mapping method for imaging GSH depletion in vivo to assay hepatotoxicity may provide a powerful molecular tool for early diagnosis of some diseases and contribute to assay hepatotoxicity for the development of new drugs. Importantly, this theoretical calculation-guided design strategy may provide an effective way for the precise synthesis of the target-specific fluorescent probe and change this research area from "trial-and-error" to concrete molecular engineering.
Collapse
Affiliation(s)
- Jiao Chen
- Ministry of Education Key Laboratory of Synthetic and Natural Functional Molecule Chemistry, College of Chemistry & Materials Science , Northwest University , Xi'an , Shaanxi Province 710127 , P. R. China
| | - Zesi Wang
- Ministry of Education Key Laboratory of Synthetic and Natural Functional Molecule Chemistry, College of Chemistry & Materials Science , Northwest University , Xi'an , Shaanxi Province 710127 , P. R. China
| | - Mengyao She
- Ministry of Education Key Laboratory of Synthetic and Natural Functional Molecule Chemistry, College of Chemistry & Materials Science , Northwest University , Xi'an , Shaanxi Province 710127 , P. R. China
- Ministry of Education Key Laboratory of Resource Biology and Modern Biotechnology in Western China, The College of Life Sciences , Northwest University , Xi'an , Shaanxi Province 710069 , P. R. China
| | - Mengdi Liu
- Ministry of Education Key Laboratory of Synthetic and Natural Functional Molecule Chemistry, College of Chemistry & Materials Science , Northwest University , Xi'an , Shaanxi Province 710127 , P. R. China
| | - Zebin Zhao
- Ministry of Education Key Laboratory of Synthetic and Natural Functional Molecule Chemistry, College of Chemistry & Materials Science , Northwest University , Xi'an , Shaanxi Province 710127 , P. R. China
| | - Xi Chen
- Ministry of Education Key Laboratory of Synthetic and Natural Functional Molecule Chemistry, College of Chemistry & Materials Science , Northwest University , Xi'an , Shaanxi Province 710127 , P. R. China
| | - Ping Liu
- Ministry of Education Key Laboratory of Synthetic and Natural Functional Molecule Chemistry, College of Chemistry & Materials Science , Northwest University , Xi'an , Shaanxi Province 710127 , P. R. China
| | - Shengyong Zhang
- Ministry of Education Key Laboratory of Synthetic and Natural Functional Molecule Chemistry, College of Chemistry & Materials Science , Northwest University , Xi'an , Shaanxi Province 710127 , P. R. China
| | - Jianli Li
- Ministry of Education Key Laboratory of Synthetic and Natural Functional Molecule Chemistry, College of Chemistry & Materials Science , Northwest University , Xi'an , Shaanxi Province 710127 , P. R. China
| |
Collapse
|
48
|
Han Y, Chen T, Li Y, Chen L, Wei L, Xiao L. Single-Particle Enumeration-Based Sensitive Glutathione S-Transferase Assay with Fluorescent Conjugated Polymer Nanoparticle. Anal Chem 2019; 91:11146-11153. [DOI: 10.1021/acs.analchem.9b01849] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Yameng Han
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Biosensing and Molecular Recognition, College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Tianyu Chen
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Biosensing and Molecular Recognition, College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Yiliang Li
- Department of Rehabilitation Medicine, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, Guangdong, 518033, China
| | - Langxing Chen
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Biosensing and Molecular Recognition, College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Lin Wei
- Key Laboratory of Phytochemical R&D of Hunan Province, College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha, 410081, China
| | - Lehui Xiao
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Biosensing and Molecular Recognition, College of Chemistry, Nankai University, Tianjin, 300071, China
| |
Collapse
|
49
|
Mori M, Fujikawa Y, Kikkawa M, Shino M, Sawane M, Sato S, Inoue H. A highly selective fluorogenic substrate for imaging glutathione S-transferase P1: development and cellular applicability in epigenetic studies. Chem Commun (Camb) 2019; 55:8122-8125. [PMID: 31237279 DOI: 10.1039/c9cc03064f] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Pi-class glutathione S-transferase (GSTP1) is a molecular marker enzyme whose expression level is altered in various malignant tumour tissues. Herein, we report the first highly selective fluorogenic GSTP1 substrate, Ps-TG, and its membrane-permeable derivative Ps-TAc, for specific visualization of intracellular GSTP1 activity in cancer cells or epigenetically regulated GSTP1 expression.
Collapse
Affiliation(s)
- Masaya Mori
- School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo, 192-0392, Japan.
| | | | | | | | | | | | | |
Collapse
|
50
|
Fujikawa Y, Terakado K, Nampo T, Mori M, Inoue H. 4-Bromo-1,8-naphthalimide derivatives as fluorogenic substrates for live cell imaging of glutathione S-transferase (GST) activity. Talanta 2019; 204:633-640. [PMID: 31357346 DOI: 10.1016/j.talanta.2019.06.059] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Revised: 06/13/2019] [Accepted: 06/14/2019] [Indexed: 12/15/2022]
Abstract
Fluorogenic substrates are used to visualize the activity of cancer-associated enzymes and to interpret biological events. Certain types of glutathione S-transferase (GST), such as Pi class GST (referred to as GSTP1), are more highly expressed in a wide variety of human cancer tissues compared to their corresponding normal tissues. Pi class GST is thus a cancer cell molecular marker and potential target for overcoming resistance to chemotherapy. Here, we report that 4-bromo-1,8-naphthalimide (BrNaph) is a practical fluorogenic GST substrate. We have found that HE-BrNaph, an N-hydroxyethyl derivative, shows remarkable fluorescence enhancement upon GST-catalyzed SNAr replacement of the bromo group with a glutathionyl group. This substitution was highly selective and occurred only in the presence of GSH/GSTs; no non-enzymatic reaction was observed. We demonstrated that HE-BrNaph allows visualization of GST activity in living cells and enables to distinguish cancer cells from normal cells. Further, various N-substitutions in BrNaph retain susceptibility to enzymatic activity and isozyme selectivity, suggesting the applicability of BrNaph derivatives. Thus, BrNaph and its derivatives are GST substrates useful for fluorescence imaging and the intracellular detection of GSTP1 activity in living cells.
Collapse
Affiliation(s)
- Yuuta Fujikawa
- School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo, 192-0392, Japan.
| | - Kenta Terakado
- School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo, 192-0392, Japan
| | - Taiki Nampo
- School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo, 192-0392, Japan
| | - Masaya Mori
- School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo, 192-0392, Japan
| | - Hideshi Inoue
- School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo, 192-0392, Japan
| |
Collapse
|