1
|
Gong H, Xu L, Li Y, Pang T, Chen C, Chen F, Cai C. Self-service aptamer-free molecularly imprinted paper-based sensor for high-sensitivity visual detection of influenza H5N1. Analyst 2025. [PMID: 39774556 DOI: 10.1039/d4an01233j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2025]
Abstract
Developing low-cost self-service portable sensors to detect viruses is an important step in combating the spread of viral outbreaks. Here, we describe the development of an aptamer-free paper-based molecularly imprinted sensor for the instrument-free detection of influenza virus A (H5N1). In this sensor, Whatman paper loaded with Fe3O4 nanoparticles (WP@Fe3O4) was prepared as a substrate upon which silicon imprinting occurred in the presence of the template virus H5N1. After removal of the template virus, Fe3O4 which exposed in the imprinted cavities was able to catalyze the oxidation of colorless 3,3',5,5'-tetramethylbenzidine (TMB) by hydrogen peroxide to form blue TMB + ions. Therefore, the concentration of virus can be semi-quantified by the color change of the solution after the catalytic reaction in the absence of any instruments. The color reaction can be clearly observed within 20 min. In addition, the remaining TMB could be quantified fluorometrically, with a limit of detection of 1.16 fM and an imprinting factor of 4.7. As far as we know, this sensor detects the target with the highest sensitivity that has yet been achieved in aptamer-free molecular imprinting sensors. Importantly, the cost of materials used for each sensor was as low as 4 cents (0.23 Yuan) per sensor. This sensitive self-service sensor, which is relatively easy and inexpensive to produce, will provide an effective new avenue for the rapid detection of viruses.
Collapse
Affiliation(s)
- Hang Gong
- Yunnan Key Laboratory of Modern Separation Analysis and Substance Transformation, College of Chemistry and Chemical Engineering, Yunnan Normal University, Kunming, 650500, China.
- The key Laboratory for Green Organic Synthesis and Application of Hunan Province, College of Chemistry, Xiangtan University, Xiangtan, 411105, China.
| | - Luru Xu
- The key Laboratory for Green Organic Synthesis and Application of Hunan Province, College of Chemistry, Xiangtan University, Xiangtan, 411105, China.
| | - Yong Li
- Yunnan Academy of Tobacco Agricultural Science, Kunming, 650021, China.
| | - Tao Pang
- Yunnan Academy of Tobacco Agricultural Science, Kunming, 650021, China.
| | - Chunyan Chen
- The key Laboratory for Green Organic Synthesis and Application of Hunan Province, College of Chemistry, Xiangtan University, Xiangtan, 411105, China.
| | - Feng Chen
- The key Laboratory for Green Organic Synthesis and Application of Hunan Province, College of Chemistry, Xiangtan University, Xiangtan, 411105, China.
| | - Changqun Cai
- The key Laboratory for Green Organic Synthesis and Application of Hunan Province, College of Chemistry, Xiangtan University, Xiangtan, 411105, China.
| |
Collapse
|
2
|
Mollarasouli F, Bahrani S, Amrollahimiyandeh Y, Paimard G. Nanomaterials-based immunosensors for avian influenza virus detection. Talanta 2024; 279:126591. [PMID: 39059066 DOI: 10.1016/j.talanta.2024.126591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 07/01/2024] [Accepted: 07/18/2024] [Indexed: 07/28/2024]
Abstract
Avian influenza viruses (AIV) are capable of infecting a considerable proportion of the world's population each year, leading to severe epidemics with high rates of morbidity and mortality. The methods now used to diagnose influenza virus A include the Western blot test (WB), hemagglutination inhibition (HI), and enzyme-linked immunosorbent assays (ELISAs). But because of their labor-intensiveness, lengthy procedures, need for costly equipment, and inexperienced staff, these approaches are considered inappropriate. The present review elucidates the recent advancements in the field of avian influenza detection through the utilization of nanomaterials-based immunosensors between 2014 and 2024. The classification of detection techniques has been taken into account to provide a comprehensive overview of the literature. The review encompasses a detailed illustration of the commonly employed detection mechanisms in immunosensors, namely, colorimetry, fluorescence assay, surface plasmon resonance (SPR), surface-enhanced Raman spectroscopy (SERS), electrochemical detection, quartz crystal microbalance (QCM) piezoelectric, and field-effect transistor (FET). Furthermore, the challenges and future prospects for the immunosensors have been deliberated upon. The present review aims to enhance the understanding of immunosensors-based sensing platforms for virus detection and to stimulate the development of novel immunosensors by providing novel ideas and inspirations. Therefore, the aim of this paper is to provide an updated information about biosensors, as a recent detection technique of influenza with its details regarding the various types of biosensors, which can be used for this review.
Collapse
Affiliation(s)
| | - Sonia Bahrani
- Borjobaru Fars Company, Nanotechnology Department, Fars Science and Technology Park, Shiraz, 7197687811, Iran; Department of Medical Nanotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Yousef Amrollahimiyandeh
- Borjobaru Fars Company, Nanotechnology Department, Fars Science and Technology Park, Shiraz, 7197687811, Iran
| | - Giti Paimard
- Laboratory of Nanoscale Biosensing and Bioimaging (NBAB), School of Ophthalmology and Optometry, School of Biomedical Engineering, State Key Laboratory of Ophthalmology Optometry, and Vision Science, Wenzhou Medical University, Wenzhou, Zhejiang, 325027, China
| |
Collapse
|
3
|
Mao T, Nan L, Shum HC. Digital Quantification and Ultrasensitive Detection of Single Influenza Virus Using Microgel-in-Droplet Enzyme-Linked Immunosorbent Assay. Anal Chem 2024; 96:16134-16144. [PMID: 39360754 DOI: 10.1021/acs.analchem.4c02429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2024]
Abstract
Detection and quantification of viral particles (VPs) facilitate both diagnostics of pathogenic viruses and quality control testing of virus-based products. However, existing technologies fail to afford concurrent ultrasensitive detection and large-scale absolute quantification of VPs. Here, we propose a digital Microgel-in-Droplet enzyme-linked immunosorbent assay (ELISA) system that enables the processing and monitoring of millions of ELISA reactions at the single-VP level by incorporating droplet microfluidics with sandwich ELISA. Upon validating the microfluidic workflow and optimizing ELISA parameters, we demonstrate ultrasensitive VP detection at a limit of detection of 56 PFU/test. Leveraging a fluorescence-based screening platform, we further realize high-throughput digital counting of VPs with a linear detection range of 500-64 000 PFU/test. The precision is comparable to that of the gold standard, the plaque assay, across a wide range of virus concentrations. We anticipate that our system will provide a novel paradigm for the absolute enumeration of various types of viral particles.
Collapse
Affiliation(s)
- Tianjiao Mao
- Department of Mechanical Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| | - Lang Nan
- Advanced Biomedical Instrumentation Centre, Hong Kong Science Park, Shatin, New Territories, Hong Kong, China
| | - Ho Cheung Shum
- Department of Mechanical Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong, China
- Advanced Biomedical Instrumentation Centre, Hong Kong Science Park, Shatin, New Territories, Hong Kong, China
| |
Collapse
|
4
|
Wei-Wen Hsiao W, Fadhilah G, Lee CC, Endo R, Lin YJ, Angela S, Ku CC, Chang HC, Chiang WH. Nanomaterial-based biosensors for avian influenza virus: A new way forward. Talanta 2023; 265:124892. [PMID: 37451119 DOI: 10.1016/j.talanta.2023.124892] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Revised: 06/23/2023] [Accepted: 06/30/2023] [Indexed: 07/18/2023]
Abstract
Avian influenza virus (AIV) is a zoonotic virus that can be transmitted from animals to humans. Although human infections are rare, the virus has a high mortality rate when contracted. Appropriate detection methods are thus crucial for combatting this pathogen. There is a growing demand for rapid, selective, and accurate methods of identifying the virus. Numerous biosensors have been designed and commercialized to detect AIV. However, they all have considerable shortcomings. Nanotechnology offers a new way forward. Nanomaterials produce more eco-friendly, rapid, and portable diagnostic systems. They also exhibit high sensitivity and selectivity while achieving a low detection limit (LOD). This paper reviews state-of-the-art nanomaterial-based biosensors for AIV detection, such as those composed of quantum dots, gold, silver, carbon, silica, nanodiamond, and other nanoparticles. It also offers insight into potential trial protocols for creating more effective methods of identifying AIV and discusses key issues associated with developing nanomaterial-based biosensors.
Collapse
Affiliation(s)
- Wesley Wei-Wen Hsiao
- Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei, 10607, Taiwan.
| | - Gianna Fadhilah
- Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei, 10607, Taiwan
| | - Cheng-Chung Lee
- The Ph.D. Program for Translational Medicine, College of Medical Science and Technology, Taipei Medical University, Taipei, 11031, Taiwan
| | - Ryu Endo
- Department of Biomedical Engineering, The Ohio State University, 43210, USA
| | - Yu-Jou Lin
- Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei, 10607, Taiwan
| | - Stefanny Angela
- Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei, 10607, Taiwan
| | - Chia-Chi Ku
- Graduate Institute of Immunology, College of Medicine, National Taiwan University, Taipei, 10051, Taiwan
| | - Huan-Cheng Chang
- Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei, 10607, Taiwan; Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei, 106319, Taiwan
| | - Wei-Hung Chiang
- Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei, 10607, Taiwan.
| |
Collapse
|
5
|
Guliy OI, Evstigneeva SS, Khanadeev VA, Dykman LA. Antibody Phage Display Technology for Sensor-Based Virus Detection: Current Status and Future Prospects. BIOSENSORS 2023; 13:640. [PMID: 37367005 DOI: 10.3390/bios13060640] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 05/31/2023] [Accepted: 06/08/2023] [Indexed: 06/28/2023]
Abstract
Viruses are widespread in the environment, and many of them are major pathogens of serious plant, animal, and human diseases. The risk of pathogenicity, together with the capacity for constant mutation, emphasizes the need for measures to rapidly detect viruses. The need for highly sensitive bioanalytical methods to diagnose and monitor socially significant viral diseases has increased in the past few years. This is due, on the one hand, to the increased incidence of viral diseases in general (including the unprecedented spread of a new coronavirus infection, SARS-CoV-2), and, on the other hand, to the need to overcome the limitations of modern biomedical diagnostic methods. Phage display technology antibodies as nano-bio-engineered macromolecules can be used for sensor-based virus detection. This review analyzes the commonly used virus detection methods and approaches and shows the prospects for the use of antibodies prepared by phage display technology as sensing elements for sensor-based virus detection.
Collapse
Affiliation(s)
- Olga I Guliy
- Institute of Biochemistry and Physiology of Plants and Microorganisms, Subdivision of the Federal State Budgetary Research Institution Saratov Federal Scientific Centre of the Russian Academy of Sciences (IBPPM RAS), 13 Prospect Entuziastov, Saratov 410049, Russia
| | - Stella S Evstigneeva
- Institute of Biochemistry and Physiology of Plants and Microorganisms, Subdivision of the Federal State Budgetary Research Institution Saratov Federal Scientific Centre of the Russian Academy of Sciences (IBPPM RAS), 13 Prospect Entuziastov, Saratov 410049, Russia
| | - Vitaly A Khanadeev
- Institute of Biochemistry and Physiology of Plants and Microorganisms, Subdivision of the Federal State Budgetary Research Institution Saratov Federal Scientific Centre of the Russian Academy of Sciences (IBPPM RAS), 13 Prospect Entuziastov, Saratov 410049, Russia
| | - Lev A Dykman
- Institute of Biochemistry and Physiology of Plants and Microorganisms, Subdivision of the Federal State Budgetary Research Institution Saratov Federal Scientific Centre of the Russian Academy of Sciences (IBPPM RAS), 13 Prospect Entuziastov, Saratov 410049, Russia
| |
Collapse
|
6
|
Malla P, Liu CH, Wu WC, Kabinsing P, Sreearunothai P. Synthesis and characterization of Au-decorated graphene oxide nanocomposite for magneto-electrochemical detection of SARS-CoV-2 nucleocapsid gene. Talanta 2023; 262:124701. [PMID: 37235956 DOI: 10.1016/j.talanta.2023.124701] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 05/17/2023] [Accepted: 05/22/2023] [Indexed: 05/28/2023]
Abstract
Fast and effective diagnosis is the first step in monitoring the current coronavirus 2 (CoV-2) pandemic. Herein, we establish a simple and sensitive electrochemical assay using magnetic nanocomposite and DNA sandwich probes to rapidly quantify the CoV-2 nucleocapsid (N) gene down to the 0.37 fM level. This assay uses a pair of specific DNA probes. The capture probe is covalently conjugated to Au-decorated magnetic reduced graphene oxide (AMrGO) nanocomposite for efficiently capturing target RNA. In contrast, the detection probe is linked to peroxidase for signal amplification. The probes target the COV-2 gene, allowing for specific magnetic separation, enzymatic signal amplification, and subsequent generation of voltammetric current with a total assay time of 45 min. The developed biosensor has high selectivity and can discriminate non-specific gene sequences. Synthetic COV-2 N-gene can be detected efficiently in serum and saliva, while 1-bp mismatch gene yielded a low response. The performance of the genosensor was good in an extensive linear range of 5 aM-50 pM. For synthetic N-gene, we achieved the detection limit of 0.37, 0.33, and 0.19 fM in human saliva, urine, and serum. This simple, selective, and sensitive genosensor could have various genetics-based biosensing and diagnostic applications.
Collapse
Affiliation(s)
- Pravanjan Malla
- Department of Chemical and Materials Engineering, Chang Gung University, 259, Wen-Hwa First Road, Tao-Yuan, Taiwan
| | - Chi-Hsien Liu
- Department of Chemical and Materials Engineering, Chang Gung University, 259, Wen-Hwa First Road, Tao-Yuan, Taiwan; Research Center for Chinese Herbal Medicine and Research Center for Food and Cosmetic Safety, College of Human Ecology, Chang Gung University of Science and Technology, 261, Wen-Hwa First Road, Taoyuan, Taiwan; Department of Ophthalmology, Chang Gung Memorial Hospital, Linkou, 5, Fu-Hsing Street, Taoyuan, Taiwan.
| | - Wei-Chi Wu
- Department of Ophthalmology, Chang Gung Memorial Hospital, Linkou, 5, Fu-Hsing Street, Taoyuan, Taiwan; College of Medicine, Chang Gung University, 259, Wen-Hwa First Road, Taoyuan, Taiwan
| | - Pinpinut Kabinsing
- Department of Chemical and Materials Engineering, Chang Gung University, 259, Wen-Hwa First Road, Tao-Yuan, Taiwan
| | - Paiboon Sreearunothai
- Sirindhorn International Institute of Technology, Thammasat University, Pathum Thani, Thailand.
| |
Collapse
|
7
|
Hou F, Sun S, Abdullah SW, Tang Y, Li X, Guo H. The application of nanoparticles in point-of-care testing (POCT) immunoassays. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2023; 15:2154-2180. [PMID: 37114768 DOI: 10.1039/d3ay00182b] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
The Covid-19 pandemic has led to greater recognition of the importance of the fast and timely detection of pathogens. Recent advances in point-of-care testing (POCT) technology have shown promising results for rapid diagnosis. Immunoassays are among the most extensive POCT assays, in which specific labels are used to indicate and amplify the immune signal. Nanoparticles (NPs) are above the rest because of their versatile properties. Much work has been devoted to NPs to find more efficient immunoassays. Herein, we comprehensively describe NP-based immunoassays with a focus on particle species and their specific applications. This review describes immunoassays along with key concepts surrounding their preparation and bioconjugation to show their defining role in immunosensors. The specific mechanisms, microfluidic immunoassays, electrochemical immunoassays (ELCAs), immunochromatographic assays (ICAs), enzyme-linked immunosorbent assays (ELISA), and microarrays are covered herein. For each mechanism, a working explanation of the appropriate background theory and formalism is articulated before examining the biosensing and related point-of-care (POC) utility. Given their maturity, some specific applications using different nanomaterials are discussed in more detail. Finally, we outline future challenges and perspectives to give a brief guideline for the development of appropriate platforms.
Collapse
Affiliation(s)
- Fengping Hou
- State Key Laboratory of Veterinary Etiological Biology, OIE/China National Foot-and-Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Xujiaping 1, Lanzhou 730046, Gansu, P. R. China.
- Lanzhou Institute of Biological Products Co., Ltd (LIBP), Subsidiary Company of China National Biotec Group Company Limited (CNBG), 730046 Lanzhou, China.
| | - Shiqi Sun
- State Key Laboratory of Veterinary Etiological Biology, OIE/China National Foot-and-Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Xujiaping 1, Lanzhou 730046, Gansu, P. R. China.
| | - Sahibzada Waheed Abdullah
- State Key Laboratory of Veterinary Etiological Biology, OIE/China National Foot-and-Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Xujiaping 1, Lanzhou 730046, Gansu, P. R. China.
| | - Yu Tang
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, Gansu, P. R. China
| | - Xiongxiong Li
- Lanzhou Institute of Biological Products Co., Ltd (LIBP), Subsidiary Company of China National Biotec Group Company Limited (CNBG), 730046 Lanzhou, China.
| | - Huichen Guo
- State Key Laboratory of Veterinary Etiological Biology, OIE/China National Foot-and-Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Xujiaping 1, Lanzhou 730046, Gansu, P. R. China.
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730000, P. R. China
| |
Collapse
|
8
|
GhaderiShekhiAbadi P, Irani M, Noorisepehr M, Maleki A. Magnetic biosensors for identification of SARS-CoV-2, Influenza, HIV, and Ebola viruses: a review. NANOTECHNOLOGY 2023; 34:272001. [PMID: 36996779 DOI: 10.1088/1361-6528/acc8da] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 03/29/2023] [Indexed: 06/19/2023]
Abstract
Infectious diseases such as novel coronavirus (SARS-CoV-2), Influenza, HIV, Ebola, etc kill many people around the world every year (SARS-CoV-2 in 2019, Ebola in 2013, HIV in 1980, Influenza in 1918). For example, SARS-CoV-2 has plagued higher than 317 000 000 people around the world from December 2019 to January 13, 2022. Some infectious diseases do not yet have not a proper vaccine, drug, therapeutic, and/or detection method, which makes rapid identification and definitive treatments the main challenges. Different device techniques have been used to detect infectious diseases. However, in recent years, magnetic materials have emerged as active sensors/biosensors for detecting viral, bacterial, and plasmids agents. In this review, the recent applications of magnetic materials in biosensors for infectious viruses detection have been discussed. Also, this work addresses the future trends and perspectives of magnetic biosensors.
Collapse
Affiliation(s)
| | - Mohammad Irani
- Department of Pharmaceutics, Faculty of Pharmacy, Alborz University of Medical Sciences, Karaj, Iran
| | - Mohammad Noorisepehr
- Environmental Health Engineering Research Center, Alborz University of Medical Sciences, Karaj, Iran
| | - Ali Maleki
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran 16846-13114, Iran
| |
Collapse
|
9
|
Narayanan M, Devarajan N, Salmen SH, Alharbi SA, Lavarti R, Lan Chi NT, Brindhadevi K. Characterization of NiONPs synthesized by aqueous extract of orange fruit waste and assessed their antimicrobial and antioxidant potential. ENVIRONMENTAL RESEARCH 2023; 216:114734. [PMID: 36343715 DOI: 10.1016/j.envres.2022.114734] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 10/30/2022] [Accepted: 11/02/2022] [Indexed: 06/16/2023]
Abstract
This research was performed to evaluate the nickel oxide nanoparticles (NiONPs) fabricating potential of orange fruit waste (OFW) aqueous extract. Moreover characterize the synthesized OFW-NiONPs through standard techniques such as UV-vis. spectrophotometer, Fourier-transform infrared spectroscopy (FTIR), dynamic light scattering (DLS) and Scanning Electron Microscope (SEM) analyses. Furthermore, the antimicrobial and antioxidant potential of OFW-NiONPs were studied against most common microbial pathogens (Staphylococcus aureus, Bacillus subtilis, Escherichia coli, Klebsiella pneumoniae, and Aspergillus niger) and free radicals (2,2-diphenyl-1-picrylhydrazyl (DPPH), H2O2, OH, and FRAP). A sharp absorbance peak was obtained at 324 nm under UV-vis spectrum analysis that confirmed that the synthesis of OFW-NiONPs and it has been capped and stabilized by numbers of active functional groups studied through FTIR analysis. SEM and DLS analyses revealed that the cubic and triangle shaped OFW-NiONPs with the size intensity distribution was ranging from 21 nm to 130 nm. Interestingly, the OFW-NiONPs showed remarkable antimicrobial activity against the common microbial pathogens in the order of E. coli > A. niger > K. pneumoniae > B. subtilis > S. aureus at increased concentration of 200 μg mL-1. Similarly, the synthesized OFW-NiONPs also possess significant free radicals scavenging activity against DPPH, OH, and FRAP. These results conclude that this OFW-NiONPs can be considered for some biomedical applications after the investigations of some in-vivo research.
Collapse
Affiliation(s)
- Mathiyazhagan Narayanan
- Division of Research and Innovation, Department of Biotechnology, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Science, Chennai, 602105, Tamil Nadu, India
| | | | - Saleh H Salmen
- Department of Botany and Microbiology, College of Science, King Saud University, PO Box -2455, Riyadh, 11451, Saudi Arabia
| | - Sulaiman Ali Alharbi
- Department of Botany and Microbiology, College of Science, King Saud University, PO Box -2455, Riyadh, 11451, Saudi Arabia
| | - Rupa Lavarti
- Pharmacology and Toxicology Department, Augusta University, USA
| | - Nguyen Thuy Lan Chi
- School of Engineering and Technology, Van Lang University, Ho Chi Minh City, Vietnam
| | - Kathirvel Brindhadevi
- Computational Engineering and Design Research Group, School of Engineering and Technology, Van Lang University, Ho Chi Minh City, Vietnam.
| |
Collapse
|
10
|
Oktaviyanti IK, Ali DS, Awadh SA, Opulencia MJC, Yusupov S, Dias R, Alsaikhan F, Mohammed MM, Sharma H, Mustafa YF, Saleh MM. RETRACTED ARTICLE: Recent advances on applications of immunosensing systems based on nanomaterials for CA15-3 breast cancer biomarker detection. Anal Bioanal Chem 2023; 415:367. [PMID: 35641643 DOI: 10.1007/s00216-022-04150-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 05/17/2022] [Accepted: 05/24/2022] [Indexed: 01/11/2023]
Affiliation(s)
- Ika Kustiyah Oktaviyanti
- Department of Pathology & Anatomy, Faculty of Medicine, Lambung Mangkurat University, Banjarmasin, South Kalimantan, Indonesia
| | - Diyar Salahuddin Ali
- Chemistry Department, College of Science, Salahaddin University, Erbil, 44002, Iraq
| | - Sura A Awadh
- Department of Anesthesia, Al-Mustaqbal University, Babylon, Iraq
| | | | - Shukhrat Yusupov
- Department of Pediatric Surgical Diseases, Samarkand State Medical Institute, Samarkand, Uzbekistan
- Department of Scientific Affairs, Tashkent State Dental Institute, Makhtumkuli Street 103, Tashkent, Uzbekistan
| | - Rui Dias
- School of Business and Administration, Polytechnic Institute of Setúbal, Portugal and CEFAGE-UE, IIFA, University of Évora, Évora, Portugal
| | - Fahad Alsaikhan
- Department of Clinical Pharmacy, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj, Saudi Arabia
| | - Mais Mahmood Mohammed
- Department of Medical Laboratory Techniques, Medical Technology College, Al-Farahidi University, Baghdad, Iraq
| | - Himanshu Sharma
- Department of Computer Engineering and Applications, GLA University, Mathura, India
| | - Yasser Fakri Mustafa
- Department of Pharmaceutical Chemistry, College of Pharmacy, University of Mosul, Mosul, 41001, Iraq
| | - Marwan Mahmood Saleh
- Department of Biophysics, College of Applied Sciences, University of Anbar, Al anbar, Iraq.
| |
Collapse
|
11
|
Nasiri H, Baghban H, Teimuri-Mofrad R, Mokhtarzadeh A. Graphitic carbon nitride/magnetic chitosan composite for rapid electrochemical detection of lactose. Int Dairy J 2023. [DOI: 10.1016/j.idairyj.2022.105489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
12
|
Huang J, Xie Z, Li M, Luo S, Deng X, Xie L, Fan Q, Zeng T, Zhang Y, Zhang M, Wang S, Xie Z, Li D. An Enzyme-Free Sandwich Amperometry-Type Immunosensor Based on Au/Pt Nanoparticle-Functionalized Graphene for the Rapid Detection of Avian Influenza Virus H9 Subtype. NANOSCALE RESEARCH LETTERS 2022; 17:110. [PMID: 36404373 PMCID: PMC9676155 DOI: 10.1186/s11671-022-03747-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 11/14/2022] [Indexed: 06/16/2023]
Abstract
Avian influenza virus H9 subtype (AIV H9) has contributed to enormous economic losses. Effective diagnosis is key to controlling the spread of AIV H9. In this study, a nonenzymatic highly electrocatalytic material was prepared using chitosan (Chi)-modified graphene sheet (GS)-functionalized Au/Pt nanoparticles (GS-Chi-Au/Pt), followed by the construction of a novel enzyme-free sandwich electrochemical immunosensor for the detection of AIV H9 using GS-Chi-Au/Pt and graphene-chitosan (GS-Chi) nanocomposites as a nonenzymatic highly electrocatalytic material and a substrate material to immobilize capture antibodies (avian influenza virus H9-monoclonal antibody, AIV H9/MAb), respectively. GS, which has a large specific surface area and many accessible active sites, permitted multiple Au/Pt nanoparticles to be attached to its surface, resulting in substantially improved conductivity and catalytic ability. Au/Pt nanoparticles can provide modified active sites for avian influenza virus H9-polyclonal antibody (AIV H9/PAb) immobilization as signal labels. Upon establishing the electrocatalytic activity of Au/Pt nanoparticles on graphene towards hydrogen peroxide (H2O2) reduction for signal amplification and optimizing the experimental parameters, we developed an AIV H9 electrochemical immunosensor, which showed a wide linear range from 101.37 EID50 mL-1 to 106.37 EID50 mL-1 and a detection limit of 100.82 EID50 mL-1. This sandwich electrochemical immunosensor also exhibited high selectivity, reproducibility and stability.
Collapse
Affiliation(s)
- Jiaoling Huang
- Guangxi Key Laboratory of Veterinary Biotechnology, Key Laboratory of China (Guangxi)-ASEAN Cross-Border Animal Disease Prevention and Control, Ministry of Agriculture and Rural Affairs of China, Guangxi Veterinary Research Institute, 51 You Ai North Road, Nanning, 530001, Guangxi, China
| | - Zhixun Xie
- Guangxi Key Laboratory of Veterinary Biotechnology, Key Laboratory of China (Guangxi)-ASEAN Cross-Border Animal Disease Prevention and Control, Ministry of Agriculture and Rural Affairs of China, Guangxi Veterinary Research Institute, 51 You Ai North Road, Nanning, 530001, Guangxi, China.
| | - Meng Li
- Guangxi Key Laboratory of Veterinary Biotechnology, Key Laboratory of China (Guangxi)-ASEAN Cross-Border Animal Disease Prevention and Control, Ministry of Agriculture and Rural Affairs of China, Guangxi Veterinary Research Institute, 51 You Ai North Road, Nanning, 530001, Guangxi, China
| | - Sisi Luo
- Guangxi Key Laboratory of Veterinary Biotechnology, Key Laboratory of China (Guangxi)-ASEAN Cross-Border Animal Disease Prevention and Control, Ministry of Agriculture and Rural Affairs of China, Guangxi Veterinary Research Institute, 51 You Ai North Road, Nanning, 530001, Guangxi, China
| | - Xianwen Deng
- Guangxi Key Laboratory of Veterinary Biotechnology, Key Laboratory of China (Guangxi)-ASEAN Cross-Border Animal Disease Prevention and Control, Ministry of Agriculture and Rural Affairs of China, Guangxi Veterinary Research Institute, 51 You Ai North Road, Nanning, 530001, Guangxi, China
| | - Liji Xie
- Guangxi Key Laboratory of Veterinary Biotechnology, Key Laboratory of China (Guangxi)-ASEAN Cross-Border Animal Disease Prevention and Control, Ministry of Agriculture and Rural Affairs of China, Guangxi Veterinary Research Institute, 51 You Ai North Road, Nanning, 530001, Guangxi, China
| | - Qing Fan
- Guangxi Key Laboratory of Veterinary Biotechnology, Key Laboratory of China (Guangxi)-ASEAN Cross-Border Animal Disease Prevention and Control, Ministry of Agriculture and Rural Affairs of China, Guangxi Veterinary Research Institute, 51 You Ai North Road, Nanning, 530001, Guangxi, China
| | - Tingting Zeng
- Guangxi Key Laboratory of Veterinary Biotechnology, Key Laboratory of China (Guangxi)-ASEAN Cross-Border Animal Disease Prevention and Control, Ministry of Agriculture and Rural Affairs of China, Guangxi Veterinary Research Institute, 51 You Ai North Road, Nanning, 530001, Guangxi, China
| | - Yanfang Zhang
- Guangxi Key Laboratory of Veterinary Biotechnology, Key Laboratory of China (Guangxi)-ASEAN Cross-Border Animal Disease Prevention and Control, Ministry of Agriculture and Rural Affairs of China, Guangxi Veterinary Research Institute, 51 You Ai North Road, Nanning, 530001, Guangxi, China
| | - Minxiu Zhang
- Guangxi Key Laboratory of Veterinary Biotechnology, Key Laboratory of China (Guangxi)-ASEAN Cross-Border Animal Disease Prevention and Control, Ministry of Agriculture and Rural Affairs of China, Guangxi Veterinary Research Institute, 51 You Ai North Road, Nanning, 530001, Guangxi, China
| | - Sheng Wang
- Guangxi Key Laboratory of Veterinary Biotechnology, Key Laboratory of China (Guangxi)-ASEAN Cross-Border Animal Disease Prevention and Control, Ministry of Agriculture and Rural Affairs of China, Guangxi Veterinary Research Institute, 51 You Ai North Road, Nanning, 530001, Guangxi, China
| | - Zhiqin Xie
- Guangxi Key Laboratory of Veterinary Biotechnology, Key Laboratory of China (Guangxi)-ASEAN Cross-Border Animal Disease Prevention and Control, Ministry of Agriculture and Rural Affairs of China, Guangxi Veterinary Research Institute, 51 You Ai North Road, Nanning, 530001, Guangxi, China
| | - Dan Li
- Guangxi Key Laboratory of Veterinary Biotechnology, Key Laboratory of China (Guangxi)-ASEAN Cross-Border Animal Disease Prevention and Control, Ministry of Agriculture and Rural Affairs of China, Guangxi Veterinary Research Institute, 51 You Ai North Road, Nanning, 530001, Guangxi, China
| |
Collapse
|
13
|
Chang Y, Wang Y, Zhang J, Xing Y, Li G, Deng D, Liu L. Overview on the Design of Magnetically Assisted Electrochemical Biosensors. BIOSENSORS 2022; 12:bios12110954. [PMID: 36354462 PMCID: PMC9687741 DOI: 10.3390/bios12110954] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Revised: 10/27/2022] [Accepted: 10/29/2022] [Indexed: 06/12/2023]
Abstract
Electrochemical biosensors generally require the immobilization of recognition elements or capture probes on the electrode surface. This may limit their practical applications due to the complex operation procedure and low repeatability and stability. Magnetically assisted biosensors show remarkable advantages in separation and pre-concentration of targets from complex biological samples. More importantly, magnetically assisted sensing systems show high throughput since the magnetic materials can be produced and preserved on a large scale. In this work, we summarized the design of electrochemical biosensors involving magnetic materials as the platforms for recognition reaction and target conversion. The recognition reactions usually include antigen-antibody, DNA hybridization, and aptamer-target interactions. By conjugating an electroactive probe to biomolecules attached to magnetic materials, the complexes can be accumulated near to an electrode surface with the aid of external magnet field, producing an easily measurable redox current. The redox current can be further enhanced by enzymes, nanomaterials, DNA assemblies, and thermal-cycle or isothermal amplification. In magnetically assisted assays, the magnetic substrates are removed by a magnet after the target conversion, and the signal can be monitored through stimuli-response release of signal reporters, enzymatic production of electroactive species, or target-induced generation of messenger DNA.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Lin Liu
- Correspondence: (D.D.); (L.L.)
| |
Collapse
|
14
|
Banakar M, Hamidi M, Khurshid Z, Zafar MS, Sapkota J, Azizian R, Rokaya D. Electrochemical Biosensors for Pathogen Detection: An Updated Review. BIOSENSORS 2022; 12:bios12110927. [PMID: 36354437 PMCID: PMC9688024 DOI: 10.3390/bios12110927] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Revised: 10/18/2022] [Accepted: 10/22/2022] [Indexed: 05/30/2023]
Abstract
Electrochemical biosensors are a family of biosensors that use an electrochemical transducer to perform their functions. In recent decades, many electrochemical biosensors have been created for pathogen detection. These biosensors for detecting infections have been comprehensively studied in terms of transduction elements, biorecognition components, and electrochemical methods. This review discusses the biorecognition components that may be used to identify pathogens. These include antibodies and aptamers. The integration of transducers and electrode changes in biosensor design is a major discussion topic. Pathogen detection methods can be categorized by sample preparation and secondary binding processes. Diagnostics in medicine, environmental monitoring, and biothreat detection can benefit from electrochemical biosensors to ensure food and water safety. Disposable and reusable biosensors for process monitoring, as well as multiplexed and conformal pathogen detection, are all included in this review. It is now possible to identify a wide range of diseases using biosensors that may be applied to food, bodily fluids, and even objects' surfaces. The sensitivity of optical techniques may be superior to electrochemical approaches, but optical methods are prohibitively expensive and challenging for most end users to utilize. On the other hand, electrochemical approaches are simpler to use, but their efficacy in identifying infections is still far from satisfactory.
Collapse
Affiliation(s)
- Morteza Banakar
- Dental Research Center, Dentistry Research Institute, Tehran University of Medical Sciences, Tehran 14176-14411, Iran
- Health Policy Research Center, Institute of Health, Shiraz University of Medical Sciences, Shiraz 71348-45794, Iran
| | - Masoud Hamidi
- Department of Medical Biotechnology, Faculty of Paramedicine, Guilan University of Medical Sciences, Rasht 41887-94755, Iran
| | - Zohaib Khurshid
- Department of Prosthodontics and Implantology, College of Dentistry, King Faisal University, Al-Hofuf, Al Ahsa 31982, Saudi Arabia
- Center of Excellence for Regenerative Dentistry, Department of Anatomy, Faculty of Dentistry, Chulalongkorn University, Bangkok 10330, Thailand
| | - Muhammad Sohail Zafar
- Department of Restorative Dentistry, College of Dentistry, Taibah University, Al Madinah, Al Munawwarah 41311, Saudi Arabia
- Department of Dental Materials, Islamic International Dental College, Riphah International University, Islamabad 44000, Pakistan
| | - Janak Sapkota
- Research Center of Applied Sciences and Technology, Kritipur 44600, Nepal
| | - Reza Azizian
- Pediatric Infectious Diseases Research Center (PIDRC), Tehran University of Medical Sciences, Tehran 14197-33151, Iran
- Biomedical Innovation & Start-Up Association (Biomino), Tehran University of Medical Sciences, Tehran 14166-34793, Iran
| | - Dinesh Rokaya
- Department of Clinical Dentistry, Walailak University International College of Dentistry, Walailak University, Bangkok 10400, Thailand
| |
Collapse
|
15
|
Chen S, Cai G, Gong X, Wang L, Cai C, Gong H. Non-autofluorescence Detection of H5N1 Virus Using Photochemical Aptamer Sensors Based on Persistent Luminescent Nanoparticles. ACS APPLIED MATERIALS & INTERFACES 2022; 14:46964-46971. [PMID: 36198085 DOI: 10.1021/acsami.2c12088] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Fluorescence sensing is limited in practical applications owing to multiple autofluorescent substances in complex biological samples such as serum. In this paper, the luminescence decay effect of persistent luminescent nanoparticles (PLNPs) was used to avoid the interference of autofluorescence in complex biological samples, and a non-autofluorescence molecularly imprinted polymer aptamer sensor (MIP-aptasensor) was designed to detect H5N1 virus. The proposed MIP-aptasensor consists of a magnetic MIP and aptamer-functionalized persistent luminescent nanoparticle Zn2GeO4:Mn2+-H5N1 aptamer (ZGO-H5N1 Apt). Upon simultaneous recognition of H5N1 virus, strong persistent luminescent signal changes were produced. Using the unique luminescent characteristics of PLNPs and the high selectivity of imprinted polymers and aptamers, the designed MIP-aptasensor effectively eliminates the autofluorescence background interference of serum samples and realizes the non-autofluorescence detection of H5N1 virus with high sensitivity (a limit of detection of 0.0128 HAU mL-1, 1.16 fM) and selectivity (the imprinting factor for the target H5N1 virus was 6.72). This tool provides a strategy for the design of sensors and their application in complex biological samples.
Collapse
Affiliation(s)
- Siyu Chen
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan 411105, China
| | - Ganping Cai
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan 411105, China
| | - Xiaoyu Gong
- NO.1 Middle School of Xiangtan County, Xiangtan 411228, China
| | - Lingyun Wang
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan 411105, China
| | - Changqun Cai
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan 411105, China
| | - Hang Gong
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan 411105, China
| |
Collapse
|
16
|
Naikoo GA, Arshad F, Hassan IU, Awan T, Salim H, Pedram MZ, Ahmed W, Patel V, Karakoti AS, Vinu A. Nanomaterials-based sensors for the detection of COVID-19: A review. Bioeng Transl Med 2022; 7:e10305. [PMID: 35599642 PMCID: PMC9110902 DOI: 10.1002/btm2.10305] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Revised: 02/07/2022] [Accepted: 02/08/2022] [Indexed: 12/13/2022] Open
Abstract
With the threat of increasing SARS-CoV-2 cases looming in front of us and no effective and safest vaccine available to curb this pandemic disease due to its sprouting variants, many countries have undergone a lockdown 2.0 or planning a lockdown 3.0. This has upstretched an unprecedented demand to develop rapid, sensitive, and highly selective diagnostic devices that can quickly detect coronavirus (COVID-19). Traditional techniques like polymerase chain reaction have proven to be time-inefficient, expensive, labor intensive, and impracticable in remote settings. This shifts the attention to alternative biosensing devices that can be successfully used to sense the COVID-19 infection and curb the spread of coronavirus cases. Among these, nanomaterial-based biosensors hold immense potential for rapid coronavirus detection because of their noninvasive and susceptible, as well as selective properties that have the potential to give real-time results at an economical cost. These diagnostic devices can be used for mass COVID-19 detection to understand the rapid progression of the infection and give better-suited therapies. This review provides an overview of existing and potential nanomaterial-based biosensors that can be used for rapid SARS-CoV-2 diagnostics. Novel biosensors employing different detection mechanisms are also highlighted in different sections of this review. Practical tools and techniques required to develop such biosensors to make them reliable and portable have also been discussed in the article. Finally, the review is concluded by presenting the current challenges and future perspectives of nanomaterial-based biosensors in SARS-CoV-2 diagnostics.
Collapse
Affiliation(s)
- Gowhar A. Naikoo
- Department of Mathematics and SciencesCollege of Arts and Applied Sciences, Dhofar UniversitySalalahSultanate of Oman
| | - Fareeha Arshad
- Department of Mathematics and SciencesCollege of Arts and Applied Sciences, Dhofar UniversitySalalahSultanate of Oman
| | - Israr U. Hassan
- College of Engineering, Dhofar UniversitySalalahSultanate of Oman
| | - Tasbiha Awan
- Department of Mathematics and SciencesCollege of Arts and Applied Sciences, Dhofar UniversitySalalahSultanate of Oman
| | - Hiba Salim
- Department of Mathematics and SciencesCollege of Arts and Applied Sciences, Dhofar UniversitySalalahSultanate of Oman
| | - Mona Z. Pedram
- Faculty of Mechanical Engineering‐Energy DivisionK.N. Toosi University of TechnologyTehranIran
| | - Waqar Ahmed
- School of Mathematics and Physics, College of ScienceUniversity of LincolnLincolnUK
| | - Vaishwik Patel
- Global Innovative Center for Advanced NanomaterialsCollege of Engineering, Science and Environment, The University of NewcastleCallaghanAustralia
| | - Ajay S. Karakoti
- Global Innovative Center for Advanced NanomaterialsCollege of Engineering, Science and Environment, The University of NewcastleCallaghanAustralia
| | - Ajayan Vinu
- Global Innovative Center for Advanced NanomaterialsCollege of Engineering, Science and Environment, The University of NewcastleCallaghanAustralia
| |
Collapse
|
17
|
Huang L, Zha S, Yu H, He Y, Li Y, Shen Y, Peng Y, Liu G, Fu Y. Chemical and electrochemical conversion of magnetic nanoparticles to Prussian blue for label-free and refreshment-enhanced electrochemical biosensing of enrofloxacin. Anal Chim Acta 2022; 1221:340123. [DOI: 10.1016/j.aca.2022.340123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 06/08/2022] [Accepted: 06/22/2022] [Indexed: 11/01/2022]
|
18
|
Kwizera EA, Stewart S, Mahmud MM, He X. Magnetic Nanoparticle-Mediated Heating for Biomedical Applications. JOURNAL OF HEAT TRANSFER 2022; 144:030801. [PMID: 35125512 PMCID: PMC8813031 DOI: 10.1115/1.4053007] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 11/03/2021] [Indexed: 05/17/2023]
Abstract
Magnetic nanoparticles, especially superparamagnetic nanoparticles (SPIONs), have attracted tremendous attention for various biomedical applications. Facile synthesis and functionalization together with easy control of the size and shape of SPIONS to customize their unique properties, have made it possible to develop different types of SPIONs tailored for diverse functions/applications. More recently, considerable attention has been paid to the thermal effect of SPIONs for the treatment of diseases like cancer and for nanowarming of cryopreserved/banked cells, tissues, and organs. In this mini-review, recent advances on the magnetic heating effect of SPIONs for magnetothermal therapy and enhancement of cryopreservation of cells, tissues, and organs, are discussed, together with the non-magnetic heating effect (i.e., high Intensity focused ultrasound or HIFU-activated heating) of SPIONs for cancer therapy. Furthermore, challenges facing the use of magnetic nanoparticles in these biomedical applications are presented.
Collapse
Affiliation(s)
- Elyahb Allie Kwizera
- Fischell Department of Bioengineering, University of Maryland, 8278 Paint Branch Drive, College Park, MD 20742
| | - Samantha Stewart
- Fischell Department of Bioengineering, University of Maryland, 8278 Paint Branch Drive, College Park, MD 20742
| | - Md Musavvir Mahmud
- Fischell Department of Bioengineering, University of Maryland, 8278 Paint Branch Drive, College Park, MD 20742
| | - Xiaoming He
- Fischell Department of Bioengineering, University of Maryland, 8278 Paint Branch Drive, College Park, MD 20742; Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland, Baltimore, MD 21201
| |
Collapse
|
19
|
Lee D, Bhardwaj J, Jang J. Paper-based electrochemical immunosensor for label-free detection of multiple avian influenza virus antigens using flexible screen-printed carbon nanotube-polydimethylsiloxane electrodes. Sci Rep 2022; 12:2311. [PMID: 35145121 PMCID: PMC8831593 DOI: 10.1038/s41598-022-06101-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 01/17/2022] [Indexed: 12/19/2022] Open
Abstract
Many studies have been conducted on measuring avian influenza viruses and their hemagglutinin (HA) antigens via electrochemical principles; most of these studies have used gold electrodes on ceramic, glass, or silicon substrates, and/or labeling for signal enhancement. Herein, we present a paper-based immunosensor for label-free measurement of multiple avian influenza virus (H5N1, H7N9, and H9N2) antigens using flexible screen-printed carbon nanotube-polydimethylsiloxane electrodes. These flexible electrodes on a paper substrate can complement the physical weakness of the paper-based sensors when wetted, without affecting flexibility. The relative standard deviation of the peak currents was 1.88% when the electrodes were repeatedly bent and unfolded twenty times with deionized water provided each cycle, showing the stability of the electrodes. For the detection of HA antigens, approximately 10-μl samples (concentration: 100 pg/ml–100 ng/ml) were needed to form the antigen–antibody complexes during 20–30 min incubation, and the immune responses were measured via differential pulse voltammetry. The limits of detections were 55.7 pg/ml (0.95 pM) for H5N1 HA, 99.6 pg/ml (1.69 pM) for H7N9 HA, and 54.0 pg/ml (0.72 pM) for H9N2 HA antigens in phosphate buffered saline, and the sensors showed good selectivity and reproducibility. Such paper-based sensors are economical, flexible, robust, and easy-to-manufacture, with the ability to detect several avian influenza viruses.
Collapse
Affiliation(s)
- Daesoon Lee
- Sensors and Aerosols Laboratory, Department of Mechanical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea
| | - Jyoti Bhardwaj
- Sensors and Aerosols Laboratory, Department of Mechanical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea
| | - Jaesung Jang
- Sensors and Aerosols Laboratory, Department of Mechanical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea. .,Department of Biomedical Engineering, UNIST, Ulsan, 44919, Republic of Korea. .,Department of Urban and Environmental Engineering, UNIST, Ulsan, 44919, Republic of Korea.
| |
Collapse
|
20
|
Zhang Z, Ma P, Ahmed R, Wang J, Akin D, Soto F, Liu BF, Li P, Demirci U. Advanced Point-of-Care Testing Technologies for Human Acute Respiratory Virus Detection. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2103646. [PMID: 34623709 DOI: 10.1002/adma.202103646] [Citation(s) in RCA: 76] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 08/25/2021] [Indexed: 04/14/2023]
Abstract
The ever-growing global threats to human life caused by the human acute respiratory virus (RV) infections have cost billions of lives, created a significant economic burden, and shaped society for centuries. The timely response to emerging RVs could save human lives and reduce the medical care burden. The development of RV detection technologies is essential for potentially preventing RV pandemic and epidemics. However, commonly used detection technologies lack sensitivity, specificity, and speed, thus often failing to provide the rapid turnaround times. To address this problem, new technologies are devised to address the performance inadequacies of the traditional methods. These emerging technologies offer improvements in convenience, speed, flexibility, and portability of point-of-care test (POCT). Herein, recent developments in POCT are comprehensively reviewed for eight typical acute respiratory viruses. This review discusses the challenges and opportunities of various recognition and detection strategies and discusses these according to their detection principles, including nucleic acid amplification, optical POCT, electrochemistry, lateral flow assays, microfluidics, enzyme-linked immunosorbent assays, and microarrays. The importance of limits of detection, throughput, portability, and specificity when testing clinical samples in resource-limited settings is emphasized. Finally, the evaluation of commercial POCT kits for both essential RV diagnosis and clinical-oriented practices is included.
Collapse
Affiliation(s)
- Zhaowei Zhang
- Oil Crops Research Institute of Chinese Academy of Agricultural Sciences, National Reference Laboratory for Agricultural Testing (Biotoxin), Key Laboratory of Biology and Genetic Improvement of Oil Crops, Key Laboratory of Detection for Mycotoxins, Ministry of Agriculture and Rural Affairs, Wuhan, 430062, P. R. China
- Bio-Acoustic MEMS in Medicine (BAMM) Laboratory, Canary Center at Stanford for Cancer Early Detection, Department of Radiology, Stanford School of Medicine, Palo Alto, CA, 94304, USA
| | - Peng Ma
- Bio-Acoustic MEMS in Medicine (BAMM) Laboratory, Canary Center at Stanford for Cancer Early Detection, Department of Radiology, Stanford School of Medicine, Palo Alto, CA, 94304, USA
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics - Hubei Bioinformatics & Molecular Imaging Key Laboratory Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - Rajib Ahmed
- Bio-Acoustic MEMS in Medicine (BAMM) Laboratory, Canary Center at Stanford for Cancer Early Detection, Department of Radiology, Stanford School of Medicine, Palo Alto, CA, 94304, USA
| | - Jie Wang
- Bio-Acoustic MEMS in Medicine (BAMM) Laboratory, Canary Center at Stanford for Cancer Early Detection, Department of Radiology, Stanford School of Medicine, Palo Alto, CA, 94304, USA
| | - Demir Akin
- Bio-Acoustic MEMS in Medicine (BAMM) Laboratory, Canary Center at Stanford for Cancer Early Detection, Department of Radiology, Stanford School of Medicine, Palo Alto, CA, 94304, USA
| | - Fernando Soto
- Bio-Acoustic MEMS in Medicine (BAMM) Laboratory, Canary Center at Stanford for Cancer Early Detection, Department of Radiology, Stanford School of Medicine, Palo Alto, CA, 94304, USA
| | - Bi-Feng Liu
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics - Hubei Bioinformatics & Molecular Imaging Key Laboratory Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - Peiwu Li
- Oil Crops Research Institute of Chinese Academy of Agricultural Sciences, National Reference Laboratory for Agricultural Testing (Biotoxin), Key Laboratory of Biology and Genetic Improvement of Oil Crops, Key Laboratory of Detection for Mycotoxins, Ministry of Agriculture and Rural Affairs, Wuhan, 430062, P. R. China
| | - Utkan Demirci
- Bio-Acoustic MEMS in Medicine (BAMM) Laboratory, Canary Center at Stanford for Cancer Early Detection, Department of Radiology, Stanford School of Medicine, Palo Alto, CA, 94304, USA
| |
Collapse
|
21
|
Pan R, Li G, Liu S, Zhang X, Liu J, Su Z, Wu Y. Emerging nanolabels-based immunoassays: Principle and applications in food safety. Trends Analyt Chem 2021. [DOI: 10.1016/j.trac.2021.116462] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
22
|
Bao T, Fu R, Jiang Y, Wen W, Zhang X, Wang S. Metal-Mediated Polydopamine Nanoparticles-DNA Nanomachine Coupling Electrochemical Conversion of Metal-Organic Frameworks for Ultrasensitive MicroRNA Sensing. Anal Chem 2021; 93:13475-13484. [PMID: 34586792 DOI: 10.1021/acs.analchem.1c02125] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The development of a robust sensing platform with an efficient probe assembly, and ingenious signal conversion is of great significance for bioanalytical application. In this work, a multipedal polydopamine nanoparticles-DNA (PDANs-DNA) nanomachine coupling electrochemical-driven metal-organic frameworks (MOFs) conversion-enabled biosensing platform was constructed. The PDANs-DNA nanomachine was designed based on Ca2+-mediated DNA adsorption and target-triggered catalytic hairpin assembly on PDANs, which not only maintained the DNA immobilization simplicity but also possessed a high walking efficiency. PDANs-DNA nanomachine could walk fast on the electrode via multiple legs under exonuclease III driving, resulting in the formation of DNA dendrimers through two hairpins assembly. The MOFs (Fe-MIL-88-NH2) probe was decorated on the DNA dendrimers to act as a porous metal precursor and converted into electroactive Prussian Blue by a controlled electrochemical approach, which was a facile, simple, and room-temperature approach compared with the commonly employed MOFs conversion methods. Using microRNA-21 (miRNA-21) as the model target, the proposed biosensor achieved miRNA-21 detection ranging from 10 aM to 10 pM with the detection limit of 5.8 aM. The proposed strategy presented a highly efficient walking platform with the ingenious electrochemical conversion of MOFs, providing more options for the design of an electrochemical platform and holding potential applications in clinical analysis and disease diagnosis.
Collapse
Affiliation(s)
- Ting Bao
- Collaborative Innovation Center for Advanced Organic Chemical Materials Co-Constructed by the Province and Ministry, Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, P. R. China
| | - Ruobing Fu
- Collaborative Innovation Center for Advanced Organic Chemical Materials Co-Constructed by the Province and Ministry, Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, P. R. China
| | - Yuying Jiang
- Collaborative Innovation Center for Advanced Organic Chemical Materials Co-Constructed by the Province and Ministry, Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, P. R. China
| | - Wei Wen
- Collaborative Innovation Center for Advanced Organic Chemical Materials Co-Constructed by the Province and Ministry, Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, P. R. China
| | - Xiuhua Zhang
- Collaborative Innovation Center for Advanced Organic Chemical Materials Co-Constructed by the Province and Ministry, Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, P. R. China
| | - Shengfu Wang
- Collaborative Innovation Center for Advanced Organic Chemical Materials Co-Constructed by the Province and Ministry, Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, P. R. China
| |
Collapse
|
23
|
Zhang J, Zhang L, Li Z, Zhang Q, Li Y, Ying Y, Fu Y. Nanoconfinement Effect for Signal Amplification in Electrochemical Analysis and Sensing. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2101665. [PMID: 34278716 DOI: 10.1002/smll.202101665] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Revised: 06/07/2021] [Indexed: 06/13/2023]
Abstract
Owing to the urgent need for electrochemical analysis and sensing of trace target molecules in various fields such as medical diagnosis, agriculture and food safety, and environmental monitoring, signal amplification is key to promoting analysis and sensing performance. The nanoconfinement effect, derived from nanoconfined spaces and interfaces with sizes approaching those of target molecules, has witnessed rapid development for ultra-sensitive analyzing and sensing. In this review, the two main types of nanoconfinement systems - confined nanochannels and planes - are assessed and recent progress is highlighted. The merits of each nanoconfinement system, the nanoconfinement effect mechanisms, and applications for electrochemical analysis and sensing are summarized and discussed. This review aims to help deepen the understanding of nanoconfinement devices and their effects in order to develop new analysis and sensing applications for researchers in various fields.
Collapse
Affiliation(s)
- Jie Zhang
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, 310058, P.R. China
| | - Lin Zhang
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, 310058, P.R. China
| | - Zhishang Li
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, 310058, P.R. China
| | - Qi Zhang
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, 310058, P.R. China
| | - Yanbin Li
- Department of Biological and Agricultural Engineering, University of Arkansas, Fayetteville, AR, 72701, USA
| | - Yibin Ying
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, 310058, P.R. China
| | - Yingchun Fu
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, 310058, P.R. China
| |
Collapse
|
24
|
Bukkitgar SD, Shetti NP, Aminabhavi TM. Electrochemical investigations for COVID-19 detection-A comparison with other viral detection methods. CHEMICAL ENGINEERING JOURNAL (LAUSANNE, SWITZERLAND : 1996) 2021; 420:127575. [PMID: 33162783 PMCID: PMC7605744 DOI: 10.1016/j.cej.2020.127575] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2020] [Revised: 10/07/2020] [Accepted: 10/26/2020] [Indexed: 05/02/2023]
Abstract
Virus-induced infection such as SARS-CoV-2 is a serious threat to human health and the economic setback of the world. Continued advances in the development of technologies are required before the viruses undergo mutation. The low concentration of viruses in environmental samples makes the detection extremely challenging; simple, accurate and rapid detection methods are in urgent need. Of all the analytical techniques, electrochemical methods have the established capabilities to address the issues. Particularly, the integration of nanotechnology would allow miniature devices to be made available at the point-of-care. This review outlines the capabilities of electrochemical methods in conjunction with nanotechnology for the detection of SARS-CoV-2. Future directions and challenges of the electrochemical biosensors for pathogen detection are covered including wearable and conformal biosensors, detection of plant pathogens, multiplexed detection, and reusable biosensors for on-site monitoring, thereby providing low-cost and disposable biosensors.
Collapse
Key Words
- AIV H5N1, Avian influenza
- AIV, Avian influenza virus
- ASFV, African swine fever virus
- BVDV, Bovine viral diarrhea virus
- CGV, Chikungunya viruses
- CMV, Cucumber mosaic virus
- COVID-19
- CSFV, Classic swine fever virus
- CV, Cyclic voltammetry
- DAstV-1, Duck astrovirus 1
- DAstV-2, Duck astrovirus 2
- DENV, Dengue virus
- DEV, Duck enteritis virus
- DHAV-1, Duck hepatitis A virus 1
- DHAV-3, Duck hepatitis A virus 3
- DPV, Differential pulse voltammetry
- DRV-1, Duck reovirus 1
- DRV-2, Duck reovirus 2
- Detection
- EBV, Epstein-Barr virus
- EIS, Electric impedance spectroscopy
- EPC, External positive controls
- EV, Human enterovirus
- EV71, Human enterovirus 71
- Electrochemical sensor
- FMI SMOF, Fluorescence molecularly imprinted sensor based on a metal–organic framework
- GCE, Glassy carbon electrode
- GCFaV-1, Ginger chlorotic fleck associated virus 1
- GCFaV-2, Ginger chlorotic fleck-associated virus 2
- GEV VN-96, Gastroenteritis virus VN-96
- GPV, Goose parvovirus
- HHV, Human herpes virus 6
- HIAV, Human influenza A viruses
- HPB19, Human parvovirus B19
- HSV, Herpes simplex
- IAV, influenza A virus
- IEA, Interdigitated electrode array
- IMA, Interdigitated microelectrode array
- INAA, Isothermal nucleic acid amplification-based
- JEV, Japanese encephalitis virus
- LAMP, Loop-Mediated Isothermal Amplification
- LSV, Linear sweep voltammetry
- MERS, Middle East respiratory syndrome
- MIEC, Molecularly imprinted electrochemiluminescence
- MNV, Murine norovirus
- MeV, Measles virus
- NNV, Nervous necrosis virus
- Nanotechnology
- PBoV, Porcine bocavirus
- PCNAME, Pt-coated nanostructured alumina membrane electrode
- PCR
- PCRLFS, Polymerase Chain Reaction with a lateral flow strip with a lateral flow strip
- PCV, Porcine circovirus 3
- PEDV, Porcine epidemic diarrhoea virus
- PRRSV, porcine reproductive and respiratory syndrome virus
- PSV, Pseudorabies virus
- RCA, Rolling circle amplification
- RGO, Reduced graphene oxide
- RT-LAMP-VF, RT-LAMP and a vertical flow visualization strip
- RV, Rubella virus
- SARS, Severe acute respiratory syndrome
- SIVH1N1, Swine influenza virus
- SWV, Square wave voltammetry
- TGEV, transmissible gastroenteritis coronavirus
- TMUV, Tembusu virus
- USEGFET, Ultra-sensitive electrolyte-gated field-effect transistor
- VZV, Varicella-zoster virus
- VZV, varicella-Zoster virus
- Viruses
- ZV, Zika virus
Collapse
Affiliation(s)
- Shikandar D Bukkitgar
- Centre for Electrochemical Science and Materials, Department of Chemistry, K.L.E. Institute of Technology, Gokul, Hubballi 580030, Karnataka, India
| | - Nagaraj P Shetti
- Centre for Electrochemical Science and Materials, Department of Chemistry, K.L.E. Institute of Technology, Gokul, Hubballi 580030, Karnataka, India
| | - Tejraj M Aminabhavi
- Pharmaceutical Engineering, Soniya College of Pharmacy, Dharwad 580-007, India
| |
Collapse
|
25
|
Naikoo GA, Awan T, Hassan IU, Salim H, Arshad F, Ahmed W, Asiri AM, Qurashi A. Nanomaterials-Based Sensors for Respiratory Viral Detection: A Review. IEEE SENSORS JOURNAL 2021; 21:17643-17656. [PMID: 35790098 PMCID: PMC8769020 DOI: 10.1109/jsen.2021.3085084] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Accepted: 05/13/2021] [Indexed: 06/15/2023]
Abstract
Contagious diseases are the principal cause of mortality, particularly respiratory viruses, a real menace for public health and economic development worldwide. Therefore, timely diagnosis and treatments are the only life-saving strategy to overcome any epidemic and particularly the ongoing prevailing pandemic COVID-19 caused by SARS-CoV-2. A rapid identification, point of care, portable, highly sensitive, stable, and inexpensive device is needed which is exceptionally satisfied by sensor technology. Consequently, the researchers have directed their attention to employing sensors targeting multiple analyses of pathogenic detections across the world. Nanostructured materials (nanoparticles, nanowires, nanobundles, etc.), owing to their unique characteristics such as large surface-to-volume ratio and nanoscale interactions, are widely employed to fabricate facile sensors to meet all the immediate emerging challenges and threats. This review is anticipated to foster researchers in developing advanced nanomaterials-based sensors for the increasing number of COVID-19 cases across the globe. The mechanism of respiratory viral detection by nanomaterials-based sensors has been reported. Moreover, the advantages, disadvantages, and their comparison with conventional sensors are summarized. Furthermore, we have highlighted the challenges and future potential of these sensors for achieving efficient and rapid detection.
Collapse
Affiliation(s)
- Gowhar A. Naikoo
- Department of Mathematics and SciencesCollege of Arts and Applied SciencesDhofar UniversitySalalahPC 211Oman
| | - Tasbiha Awan
- Department of Mathematics and SciencesCollege of Arts and Applied SciencesDhofar UniversitySalalahPC 211Oman
| | | | - Hiba Salim
- Department of Mathematics and SciencesCollege of Arts and Applied SciencesDhofar UniversitySalalahPC 211Oman
| | - Fareeha Arshad
- Department of BiochemistryAligarh Muslim UniversityUttar Pradesh202002India
| | - Waqar Ahmed
- School of Mathematics and Physics, College of ScienceUniversity of LincolnLincolnLN6 7TSU.K.
| | - Abdullah M. Asiri
- Department of ChemistryFaculty of ScienceKing Abdulaziz UniversityJeddahPC 21589Saudi Arabia
| | - Ahsanulhaq Qurashi
- Department of ChemistryKhalifa UniversityAbu DhabiPC 127788United Arab Emirates
| |
Collapse
|
26
|
Yin S, Wang J, Li Y, Wu T, Song L, Zhu Y, Chen Y, Cheng K, Zhang J, Ma X, Donghai L, Chen G. Macroscopically Oriented Magnetic Core‐regularized Nanomaterials for Glucose Biosensors Assisted by Self‐sacrificial Label. ELECTROANAL 2021. [DOI: 10.1002/elan.202100231] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Shiyu Yin
- College of Chemistry and Molecular Engineering Nanjing Tech University Nanjing 210009 China
| | - Jikui Wang
- College of Chemistry and Molecular Engineering Nanjing Tech University Nanjing 210009 China
| | - Yan Li
- College of Chemistry and Molecular Engineering Nanjing Tech University Nanjing 210009 China
| | - Tingxia Wu
- College of Chemistry and Molecular Engineering Nanjing Tech University Nanjing 210009 China
| | - Lingyu Song
- College of Chemistry and Molecular Engineering Nanjing Tech University Nanjing 210009 China
| | - Yongbao Zhu
- College of Chemistry and Molecular Engineering Nanjing Tech University Nanjing 210009 China
| | - Yizhe Chen
- Shanghai Engineering Research Center of Advanced Thermal Functional Materials, Research Center of Resource Recycling Science and Engineering, School of Energy and Materials Shanghai Polytechnic University Shanghai 201209 China
| | - Kai Cheng
- Zhejiang Key Laboratory of Alternative Technologies for Fine Chemicals Process Shaoxing University Shaoxing 312000 China
| | - Jun Zhang
- Food, Drug and Environmental Crime Research Center of Fujian Police College Fujian Police College Fuzhou 350007 China
| | - Xinzhou Ma
- School of Materials Science and Energy Engineering Foshan University Foshan 528000 China
| | - Lin Donghai
- Shanghai Engineering Research Center of Advanced Thermal Functional Materials, Research Center of Resource Recycling Science and Engineering, School of Energy and Materials Shanghai Polytechnic University Shanghai 201209 China
- Zhejiang Key Laboratory of Alternative Technologies for Fine Chemicals Process Shaoxing University Shaoxing 312000 China
- Food, Drug and Environmental Crime Research Center of Fujian Police College Fujian Police College Fuzhou 350007 China
| | - Guosong Chen
- College of Chemistry and Molecular Engineering Nanjing Tech University Nanjing 210009 China
| |
Collapse
|
27
|
Huang F, Zhang Y, Lin J, Liu Y. Biosensors Coupled with Signal Amplification Technology for the Detection of Pathogenic Bacteria: A Review. BIOSENSORS 2021; 11:190. [PMID: 34207580 PMCID: PMC8227973 DOI: 10.3390/bios11060190] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 06/04/2021] [Accepted: 06/06/2021] [Indexed: 12/18/2022]
Abstract
Foodborne disease caused by foodborne pathogens is a very important issue in food safety. Therefore, the rapid screening and sensitive detection of foodborne pathogens is of great significance for ensuring food safety. At present, many research works have reported the application of biosensors and signal amplification technologies to achieve the rapid and sensitive detection of pathogenic bacteria. Thus, this review summarized the use of biosensors coupled with signal amplification technology for the detection of pathogenic bacteria, including (1) the development, concept, and principle of biosensors; (2) types of biosensors, such as electrochemical biosensors, optical biosensors, microfluidic biosensors, and so on; and (3) different kinds of signal amplification technologies applied in biosensors, such as enzyme catalysis, nucleic acid chain reaction, biotin-streptavidin, click chemistry, cascade reaction, nanomaterials, and so on. In addition, the challenges and future trends for pathogenic bacteria based on biosensor and signal amplification technology were also discussed and summarized.
Collapse
Affiliation(s)
- Fengchun Huang
- Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China;
| | - Yingchao Zhang
- College of Information and Electrical Engineering, China Agricultural University, Beijing 100083, China; (Y.Z.); (J.L.)
| | - Jianhan Lin
- College of Information and Electrical Engineering, China Agricultural University, Beijing 100083, China; (Y.Z.); (J.L.)
| | - Yuanjie Liu
- College of Information and Electrical Engineering, China Agricultural University, Beijing 100083, China; (Y.Z.); (J.L.)
| |
Collapse
|
28
|
Zhao Z, Huang C, Huang Z, Lin F, He Q, Tao D, Jaffrezic-Renault N, Guo Z. Advancements in electrochemical biosensing for respiratory virus detection: A review. Trends Analyt Chem 2021; 139:116253. [PMID: 33727755 PMCID: PMC7952277 DOI: 10.1016/j.trac.2021.116253] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Respiratory viruses are real menace for human health which result in devastating epidemic disease. Consequently, it is in urgent need of identifying and quantifying virus with a rapid, sensitive and precise approach. The study of electrochemical biosensors for respiratory virus detection has become one of the most rapidly developing scientific fields. Recent developments in electrochemical biosensors concerning respiratory virus detection are comprehensively reviewed in this paper. This review is structured along common detecting objects of respiratory viruses, electrochemical biosensors, electrochemical biosensors for respiratory virus detection and future challenges. The electrochemical biosensors for respiratory virus detection are introduced, including nucleic acids-based, immunosensors and other affinity biosensors. Lastly, for Coronavirus disease 2019 (COVID-19) diagnosis, the future challenges regarding developing electrochemical biosensor-based Point-of-Care Tests (POCTs) are summarized. This review is expected to provide a helpful guide for the researchers entering this interdisciplinary field and developing more novel electrochemical biosensors for respiratory virus detection.
Collapse
Affiliation(s)
- Zhi Zhao
- Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Wuhan University of Science and Technology, Wuhan 430065, PR China
- School of Public Health, Medical College, Wuhan University of Science and Technology, Wuhan 430065, PR China
| | - Changfu Huang
- Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Wuhan University of Science and Technology, Wuhan 430065, PR China
- School of Public Health, Medical College, Wuhan University of Science and Technology, Wuhan 430065, PR China
| | - Ziyu Huang
- Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Wuhan University of Science and Technology, Wuhan 430065, PR China
- School of Public Health, Medical College, Wuhan University of Science and Technology, Wuhan 430065, PR China
| | - Fengjuan Lin
- School of Public Health, Medical College, Wuhan University of Science and Technology, Wuhan 430065, PR China
| | - Qinlin He
- School of Public Health, Medical College, Wuhan University of Science and Technology, Wuhan 430065, PR China
| | - Dan Tao
- Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Wuhan University of Science and Technology, Wuhan 430065, PR China
- School of Public Health, Medical College, Wuhan University of Science and Technology, Wuhan 430065, PR China
| | - Nicole Jaffrezic-Renault
- University of Lyon, Institute of Analytical Sciences, UMR-CNRS 5280, 5, La Doua Street, Villeurbanne 69100, France
| | - Zhenzhong Guo
- Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Wuhan University of Science and Technology, Wuhan 430065, PR China
| |
Collapse
|
29
|
Chen F, Hu X, Yan X, Feng R, Zhou M, Fan S. A microstructured catalyst made of prussian blue analogues/copper foam for effective reduction of 4-nitrophenol. J Taiwan Inst Chem Eng 2021. [DOI: 10.1016/j.jtice.2021.04.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
30
|
Brazaca LC, Dos Santos PL, de Oliveira PR, Rocha DP, Stefano JS, Kalinke C, Abarza Muñoz RA, Bonacin JA, Janegitz BC, Carrilho E. Biosensing strategies for the electrochemical detection of viruses and viral diseases - A review. Anal Chim Acta 2021; 1159:338384. [PMID: 33867035 PMCID: PMC9186435 DOI: 10.1016/j.aca.2021.338384] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 03/03/2021] [Accepted: 03/04/2021] [Indexed: 02/06/2023]
Abstract
Viruses are the causing agents for many relevant diseases, including influenza, Ebola, HIV/AIDS, and COVID-19. Its rapid replication and high transmissibility can lead to serious consequences not only to the individual but also to collective health, causing deep economic impacts. In this scenario, diagnosis tools are of significant importance, allowing the rapid, precise, and low-cost testing of a substantial number of individuals. Currently, PCR-based techniques are the gold standard for the diagnosis of viral diseases. Although these allow the diagnosis of different illnesses with high precision, they still present significant drawbacks. Their main disadvantages include long periods for obtaining results and the need for specialized professionals and equipment, requiring the tests to be performed in research centers. In this scenario, biosensors have been presented as promising alternatives for the rapid, precise, low-cost, and on-site diagnosis of viral diseases. This critical review article describes the advancements achieved in the last five years regarding electrochemical biosensors for the diagnosis of viral infections. First, genosensors and aptasensors for the detection of virus and the diagnosis of viral diseases are presented in detail regarding probe immobilization approaches, detection methods (label-free and sandwich), and amplification strategies. Following, immunosensors are highlighted, including many different construction strategies such as label-free, sandwich, competitive, and lateral-flow assays. Then, biosensors for the detection of viral-diseases-related biomarkers are presented and discussed, as well as point of care systems and their advantages when compared to traditional techniques. Last, the difficulties of commercializing electrochemical devices are critically discussed in conjunction with future trends such as lab-on-a-chip and flexible sensors.
Collapse
Affiliation(s)
- Laís Canniatti Brazaca
- Instituto de Química de São Carlos, Universidade de São Paulo, São Carlos, SP, 13566-590, Brazil; Instituto Nacional de Ciência e Tecnologia de Bioanalítica-INCTBio, Campinas, SP, 13083-970, Brazil.
| | - Pãmyla Layene Dos Santos
- Departamento de Química, Universidade Federal de Santa Catarina, Florianópolis, SC, 88040-900, Brazil
| | - Paulo Roberto de Oliveira
- Departamento de Ciências Naturais, Matemática e Educação, Universidade Federal de São Carlos, Araras, SP, 13600-970, Brazil
| | - Diego Pessoa Rocha
- Instituto de Química, Universidade Federal de Uberlândia, Uberlândia, MG, 38400-902, Brazil
| | - Jéssica Santos Stefano
- Departamento de Ciências Naturais, Matemática e Educação, Universidade Federal de São Carlos, Araras, SP, 13600-970, Brazil; Instituto de Química, Universidade Federal de Uberlândia, Uberlândia, MG, 38400-902, Brazil
| | - Cristiane Kalinke
- Instituto de Química, Universidade Estadual de Campinas, Campinas, SP, 13083-859, Brazil
| | - Rodrigo Alejandro Abarza Muñoz
- Instituto Nacional de Ciência e Tecnologia de Bioanalítica-INCTBio, Campinas, SP, 13083-970, Brazil; Instituto de Química, Universidade Federal de Uberlândia, Uberlândia, MG, 38400-902, Brazil
| | - Juliano Alves Bonacin
- Instituto de Química, Universidade Estadual de Campinas, Campinas, SP, 13083-859, Brazil
| | - Bruno Campos Janegitz
- Departamento de Ciências Naturais, Matemática e Educação, Universidade Federal de São Carlos, Araras, SP, 13600-970, Brazil.
| | - Emanuel Carrilho
- Instituto de Química de São Carlos, Universidade de São Paulo, São Carlos, SP, 13566-590, Brazil; Instituto Nacional de Ciência e Tecnologia de Bioanalítica-INCTBio, Campinas, SP, 13083-970, Brazil.
| |
Collapse
|
31
|
Alhalaili B, Popescu IN, Kamoun O, Alzubi F, Alawadhia S, Vidu R. Nanobiosensors for the Detection of Novel Coronavirus 2019-nCoV and Other Pandemic/Epidemic Respiratory Viruses: A Review. SENSORS (BASEL, SWITZERLAND) 2020; 20:E6591. [PMID: 33218097 PMCID: PMC7698809 DOI: 10.3390/s20226591] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 11/10/2020] [Accepted: 11/11/2020] [Indexed: 02/08/2023]
Abstract
The coronavirus disease 2019 (COVID-19) pandemic is considered a public health emergency of international concern. The 2019 novel coronavirus (2019-nCoV) or severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) that caused this pandemic has spread rapidly to over 200 countries, and has drastically affected public health and the economies of states at unprecedented levels. In this context, efforts around the world are focusing on solving this problem in several directions of research, by: (i) exploring the origin and evolution of the phylogeny of the SARS-CoV-2 viral genome; (ii) developing nanobiosensors that could be highly effective in detecting the new coronavirus; (iii) finding effective treatments for COVID-19; and (iv) working on vaccine development. In this paper, an overview of the progress made in the development of nanobiosensors for the detection of human coronaviruses (SARS-CoV, SARS-CoV-2, and Middle East respiratory syndrome coronavirus (MERS-CoV) is presented, along with specific techniques for modifying the surface of nanobiosensors. The newest detection methods of the influenza virus responsible for acute respiratory syndrome were compared with conventional methods, highlighting the newest trends in diagnostics, applications, and challenges of SARS-CoV-2 (COVID-19 causative virus) nanobiosensors.
Collapse
Affiliation(s)
- Badriyah Alhalaili
- Nanotechnology and Advanced Materials Program, Kuwait Institute for Scientific Research, P.O. Box 24885, Safat 13109, Kuwait; (B.A.); (F.A.); (S.A.)
| | - Ileana Nicoleta Popescu
- Faculty of Materials Engineering and Mechanics, Valahia University of Targoviste, 13 Aleea Sinaia Street, 130004 Targoviste, Romania
| | - Olfa Kamoun
- Physics of Semiconductor Devices Unit, Faculty of Sciences of Tunis, Tunis El Manar University, Tunis 1068, Tunisia;
| | - Feras Alzubi
- Nanotechnology and Advanced Materials Program, Kuwait Institute for Scientific Research, P.O. Box 24885, Safat 13109, Kuwait; (B.A.); (F.A.); (S.A.)
| | - Sami Alawadhia
- Nanotechnology and Advanced Materials Program, Kuwait Institute for Scientific Research, P.O. Box 24885, Safat 13109, Kuwait; (B.A.); (F.A.); (S.A.)
| | - Ruxandra Vidu
- Faculty of Materials Science and Engineering, University Politehnica of Bucharest, 060042 Bucharest, Romania
- Department of Electrical and Computer Engineering, University of California Davis, Davis, CA 95616, USA
| |
Collapse
|
32
|
Papavasileiou AV, Panagiotopoulos I, Prodromidis MI. All-screen-printed graphite sensors integrating permanent bonded magnets. Fabrication, characterization and analytical utility. Electrochim Acta 2020. [DOI: 10.1016/j.electacta.2020.136981] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
33
|
Xia L, Long T, Li W, Zhong F, Ding M, Long Y, Xu Z, Lei Y, Guan Y, Yuan D, Zhang Y, Jia C, Sun L, Sun Q. Highly Stable Vanadium Redox-Flow Battery Assisted by Redox-Mediated Catalysis. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2020; 16:e2003321. [PMID: 32812393 DOI: 10.1002/smll.202003321] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 07/04/2020] [Indexed: 05/21/2023]
Abstract
With good operation flexibility and scalability, vanadium redox-flow batteries (VRBs) stand out from various electrochemical energy storage (EES) technologies. However, traditional electrodes in VRBs, such as carbon and graphite felt with low electrochemical activities, impede the interfacial charge transfer processes and generate considerable overpotential loss, which significantly decrease the energy and voltage efficiencies of VRBs. Herein, by using a facile electrodeposition technique, Prussian blue/carbon felt (PB/CF) composite electrodes with high electrochemical activity for VRBs are successfully fabricated. The PB/CF electrode exhibits excellent electrochemical activity toward VO2+ /VO2 + redox couple in VRB with an average cell voltage efficiency (VE) of 90% and an energy efficiency (EE) of 88% at 100 mA cm-2 . In addition, due to the uniformly distributed PB particles that are strongly bound to the surface of carbon fibers in CF, VRBs with the PB/CF electrodes show much better long-term stabilities compared with the pristine CF-based battery due to the redox-mediated catalysis. A VRB stack consisting of three single cells (16 cm2 ) is also constructed to assess the reliability of the redox-mediated PB/CF electrodes for large-scale application. The facile technique for the high-performance electrode with redox-mediated reaction is expected to shed new light on commercial electrode design for VRBs.
Collapse
Affiliation(s)
- Lu Xia
- College of Materials Science and Engineering, Changsha University of Science & Technology, Changsha, 410114, China
- State Key Laboratory of Mechanical Transmission, School of Materials Science and Engineering, Chongqing University, Chongqing, 400044, China
| | - Ting Long
- College of Materials Science and Engineering, Changsha University of Science & Technology, Changsha, 410114, China
| | - Wenyue Li
- Department of Electrical and Computer Engineering, Nano Tech Center, Texas Tech University, Lubbock, TX, 79409, USA
| | - Fangfang Zhong
- College of Materials Science and Engineering, Changsha University of Science & Technology, Changsha, 410114, China
| | - Mei Ding
- College of Materials Science and Engineering, Changsha University of Science & Technology, Changsha, 410114, China
| | - Yong Long
- College of Materials Science and Engineering, Changsha University of Science & Technology, Changsha, 410114, China
| | - Zhizhao Xu
- College of Materials Science and Engineering, Changsha University of Science & Technology, Changsha, 410114, China
| | - Yanqiang Lei
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yong Guan
- Institute of Metal Research, Chinese Academy of Sciences, Shenyang, 110016, China
| | - Du Yuan
- Energy Research Institute, Nanyang Technological University, Singapore, 637553, Singapore
| | - Yiqiong Zhang
- College of Materials Science and Engineering, Changsha University of Science & Technology, Changsha, 410114, China
| | - Chuankun Jia
- College of Materials Science and Engineering, Changsha University of Science & Technology, Changsha, 410114, China
| | - Lidong Sun
- State Key Laboratory of Mechanical Transmission, School of Materials Science and Engineering, Chongqing University, Chongqing, 400044, China
| | - Qijun Sun
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
34
|
de Eguilaz MR, Cumba LR, Forster RJ. Electrochemical detection of viruses and antibodies: A mini review. Electrochem commun 2020; 116:106762. [PMID: 32501391 PMCID: PMC7247998 DOI: 10.1016/j.elecom.2020.106762] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 05/21/2020] [Accepted: 05/22/2020] [Indexed: 12/26/2022] Open
Abstract
Near patient detection of viral infection represents a powerful approach for the control of emerging threats to global health. Moreover, the ability to identify individuals who have contracted the disease and developed antibodies that confer immunity is central to a return to normal daily activities. This review presents some of the recent advances in electrochemical sensors for the detection of viruses and their associated antibody profiles. Given the speed, portability, sensitivity and selectivity achieved using electrochemical detection, these sensor systems hold the promise of transformative change in clinical practice.
Collapse
Affiliation(s)
- Miren Ruiz de Eguilaz
- National Centre for Sensor Research, School of Chemical Sciences, Dublin City University, Glasnevin, Ireland
| | - Loanda R. Cumba
- National Centre for Sensor Research, School of Chemical Sciences, Dublin City University, Glasnevin, Ireland
| | - Robert J. Forster
- National Centre for Sensor Research, School of Chemical Sciences, Dublin City University, Glasnevin, Ireland
| |
Collapse
|
35
|
Wang L, Lin J. Recent advances on magnetic nanobead based biosensors: From separation to detection. Trends Analyt Chem 2020. [DOI: 10.1016/j.trac.2020.115915] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
36
|
Cesewski E, Johnson BN. Electrochemical biosensors for pathogen detection. Biosens Bioelectron 2020; 159:112214. [PMID: 32364936 PMCID: PMC7152911 DOI: 10.1016/j.bios.2020.112214] [Citation(s) in RCA: 392] [Impact Index Per Article: 78.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2019] [Revised: 04/09/2020] [Accepted: 04/10/2020] [Indexed: 12/19/2022]
Abstract
Recent advances in electrochemical biosensors for pathogen detection are reviewed. Electrochemical biosensors for pathogen detection are broadly reviewed in terms of transduction elements, biorecognition elements, electrochemical techniques, and biosensor performance. Transduction elements are discussed in terms of electrode material and form factor. Biorecognition elements for pathogen detection, including antibodies, aptamers, and imprinted polymers, are discussed in terms of availability, production, and immobilization approach. Emerging areas of electrochemical biosensor design are reviewed, including electrode modification and transducer integration. Measurement formats for pathogen detection are classified in terms of sample preparation and secondary binding steps. Applications of electrochemical biosensors for the detection of pathogens in food and water safety, medical diagnostics, environmental monitoring, and bio-threat applications are highlighted. Future directions and challenges of electrochemical biosensors for pathogen detection are discussed, including wearable and conformal biosensors, detection of plant pathogens, multiplexed detection, reusable biosensors for process monitoring applications, and low-cost, disposable biosensors.
Collapse
Affiliation(s)
- Ellen Cesewski
- Department of Industrial and Systems Engineering, Virginia Tech, Blacksburg, VA, 24061, USA; Department of Materials Science and Engineering, Virginia Tech, Blacksburg, VA, 24061, USA
| | - Blake N Johnson
- Department of Industrial and Systems Engineering, Virginia Tech, Blacksburg, VA, 24061, USA; Department of Materials Science and Engineering, Virginia Tech, Blacksburg, VA, 24061, USA; Department of Chemical Engineering, Virginia Tech, Blacksburg, VA, 24061, USA.
| |
Collapse
|
37
|
Zhang L, Ying Y, Li Y, Fu Y. Integration and synergy in protein-nanomaterial hybrids for biosensing: Strategies and in-field detection applications. Biosens Bioelectron 2020; 154:112036. [DOI: 10.1016/j.bios.2020.112036] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 01/12/2020] [Accepted: 01/16/2020] [Indexed: 12/12/2022]
|
38
|
Rapid and sensitive detection of Salmonella Typhimurium using nickel nanowire bridge for electrochemical impedance amplification. Talanta 2020; 211:120715. [PMID: 32070611 DOI: 10.1016/j.talanta.2020.120715] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Revised: 12/27/2019] [Accepted: 01/02/2020] [Indexed: 11/23/2022]
Abstract
Rapid detection of foodborne pathogens is crucial to prevent the outbreaks of foodborne illnesses. In this study, a sensitive electrochemical aptasensor was developed using aptamer coated gold interdigitated microelectrode for target capture and impedance measurement, and antibody modified nickel nanowires (NiNWs) for target separation and impedance amplification. First, the interdigitated microelectrode was modified with the biotinylated aptamers against Salmonella typhimurium through electrostatic absorption of streptavidin onto the microelectrode and streptavidin-biotin binding. Then, the target Salmonella cells were magnetically separated and concentrated using the NiNWs modified with the anti-Salmonella typhimurium antibodies to form the bacteria-NiNW complexes, and incubated on the microelectrode to form the aptamer-bacteria-NiNW complexes. After an external arc magnetic field was developed and applied to control the NiNWs to form conductive NiNW bridges across the microelectrode, the enhanced impedance change of the microelectrode was measured and used to determine the amount of target bacteria. This electrochemical aptasensor was able to quantitatively detect Salmonella ranging from 102 to 106 CFU/mL in 2 h with the detection limit of 80 CFU/mL. The mean recovery for the spiked chicken samples was 103.2%.
Collapse
|
39
|
Zhao C, Li X, An S, Zheng D, Pei S, Zheng X, Liu Y, Yao Q, Yang M, Dai L. Highly sensitive and selective electrochemical immunosensors by substrate-enhanced electroless deposition of metal nanoparticles onto three-dimensional graphene@Ni foams. Sci Bull (Beijing) 2019; 64:1272-1279. [PMID: 36659608 DOI: 10.1016/j.scib.2019.07.015] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Revised: 06/27/2019] [Accepted: 07/08/2019] [Indexed: 01/21/2023]
Abstract
In this study, we have for the first time preformed the facile substrate-enhanced electroless deposition (SEED) of metal nanoparticles onto monolithic graphene@Ni foams for construction of disposable three-dimensional (3D) electrochemical immunosensors. Specifically, we firstly used the SEED method to deposit gold nanoparticles (AuNPs) onto the graphene@Ni foam for immobilization of antibody (Ab1). This is followed by a second step SEED deposition to produce silver nanoparticles (AgNPs) for electrochemical stripping detection. Using α-fetoprotein antigen (AFP) as a module analyte, the newly-developed sensor showed a wide linear response, ranging from 5.0 pg/mL to 5.0 ng/mL and a low detection limit down to 2.3 pg/mL. The newly-developed 3D-immunosensor is sensitive, reliable, and easy to be fabricated, showing great potential for clinic applications.
Collapse
Affiliation(s)
- Changrong Zhao
- Institute of Advanced Materials for Nano-Bio Applications, School of Ophthalmology & Optometry, Wenzhou Medical University, Wenzhou 325027, China
| | - Xiaoli Li
- Institute of Advanced Materials for Nano-Bio Applications, School of Ophthalmology & Optometry, Wenzhou Medical University, Wenzhou 325027, China
| | - Shixia An
- Institute of Advanced Materials for Nano-Bio Applications, School of Ophthalmology & Optometry, Wenzhou Medical University, Wenzhou 325027, China
| | - Dongliang Zheng
- Institute of Advanced Materials for Nano-Bio Applications, School of Ophthalmology & Optometry, Wenzhou Medical University, Wenzhou 325027, China
| | - Shuaili Pei
- Institute of Advanced Materials for Nano-Bio Applications, School of Ophthalmology & Optometry, Wenzhou Medical University, Wenzhou 325027, China
| | - Xiao Zheng
- Institute of Advanced Materials for Nano-Bio Applications, School of Ophthalmology & Optometry, Wenzhou Medical University, Wenzhou 325027, China
| | - Yu Liu
- Institute of Advanced Materials for Nano-Bio Applications, School of Ophthalmology & Optometry, Wenzhou Medical University, Wenzhou 325027, China
| | - Qingqing Yao
- Institute of Advanced Materials for Nano-Bio Applications, School of Ophthalmology & Optometry, Wenzhou Medical University, Wenzhou 325027, China
| | - Mei Yang
- Institute of Advanced Materials for Nano-Bio Applications, School of Ophthalmology & Optometry, Wenzhou Medical University, Wenzhou 325027, China
| | - Liming Dai
- Institute of Advanced Materials for Nano-Bio Applications, School of Ophthalmology & Optometry, Wenzhou Medical University, Wenzhou 325027, China; Department of Macromolecule Science and Engineering, Case Western Reserve University, Cleveland, OH 44106, USA.
| |
Collapse
|
40
|
Li W, Fan GC, Fan X, Zhang R, Wang L, Wang W, Luo X. Low fouling and ultrasensitive electrochemical immunosensors with dual assay methods based on Fe 3O 4 magnetic nanoparticles. J Mater Chem B 2019; 7:5842-5847. [PMID: 31506652 DOI: 10.1039/c9tb01492f] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Low fouling electrochemical immunosensors with both "signal-off" and "signal-on" analytical methods were developed for the highly sensitive and efficient detection of cancer antigen 15-3 (CA 15-3) in human serum samples. The antifouling sensing interfaces were constructed by assembling multifunctional polyethylene glycol on gold electrodes, followed by covalent conjugation with CA 15-3 antibody. Pure antigens and Fe3O4@Ag will competitively bind to the immobilized antibody on the electrode. Fe3O4 magnetic nanoparticles attached to the working electrode and collected by a magnetic electrode were treated via electrochemical conversion to generate electroactive Prussian blue as a signal readout. Therefore, these two signals measured independently were complementary, and this design allowed one to choose the assay method according to real situations so as to ensure accuracy of the immunosensor. Moreover, owing to its good antifouling property, the immunosensor was capable of detecting CA 15-3 even in complex human serum samples, demonstrating potential application in quantitative analysis of real patient serum samples.
Collapse
Affiliation(s)
- Wenshi Li
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, Shandong Key Laboratory of Biochemical Analysis, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, P. R. China.
| | - Gao-Chao Fan
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, Shandong Key Laboratory of Biochemical Analysis, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, P. R. China.
| | - Xiaojian Fan
- Department of Breast Surgery, The Eighth People's Hospital of Qingdao, Qingdao 266100, P. R. China
| | - Ruiqiao Zhang
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, Shandong Key Laboratory of Biochemical Analysis, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, P. R. China. and Qingdao Academy of Agricultural Sciences, Qingdao 266100, China
| | - Lei Wang
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, Shandong Key Laboratory of Biochemical Analysis, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, P. R. China.
| | - Wei Wang
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, Shandong Key Laboratory of Biochemical Analysis, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, P. R. China.
| | - Xiliang Luo
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, Shandong Key Laboratory of Biochemical Analysis, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, P. R. China.
| |
Collapse
|
41
|
Electrical pulse-induced electrochemical biosensor for hepatitis E virus detection. Nat Commun 2019; 10:3737. [PMID: 31427581 PMCID: PMC6700141 DOI: 10.1038/s41467-019-11644-5] [Citation(s) in RCA: 111] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Accepted: 07/26/2019] [Indexed: 12/20/2022] Open
Abstract
Hepatitis E virus (HEV) is one of the leading causes of acute viral hepatitis worldwide. In this work, a pulse-triggered ultrasensitive electrochemical sensor was fabricated using graphene quantum dots and gold-embedded polyaniline nanowires, prepared via an interfacial polymerization and then self-assembly approach. Introducing an external electrical pulse during the virus accumulation step increases the sensitivity towards HEV due to the expanded surface of the virus particle as well as the antibody-conjugated polyaniline chain length, compared to other conventional electrochemical sensors. The sensor was applied to various HEV genotypes, including G1, G3, G7 and ferret HEV obtained from cell culture supernatant and in a series of fecal specimen samples collected from G7 HEV-infected monkey. The sensitivity is similar to that detected by real-time quantitative reverse transcription-polymerase chain (RT-qPCR). These results suggests that the proposed sensor can pave the way for the development of robust, high-performance sensing methodologies for HEV detection. Detection of viral biomarkers is important for disease treatment and prevention. Here, the authors report on a system that uses an electrical pulse-induced electrochemical sensor for the detection of hepatitis E virus, and demonstrate potential application of the device.
Collapse
|
42
|
Wu W, Jia M, Zhang Z, Chen X, Zhang Q, Zhang W, Li P, Chen L. Sensitive, selective and simultaneous electrochemical detection of multiple heavy metals in environment and food using a lowcost Fe 3O 4 nanoparticles/fluorinated multi-walled carbon nanotubes sensor. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2019; 175:243-250. [PMID: 30903880 DOI: 10.1016/j.ecoenv.2019.03.037] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Revised: 03/06/2019] [Accepted: 03/08/2019] [Indexed: 06/09/2023]
Abstract
Multiple heavy metals pollution in environment and food has become an ever-increasing concern and poses a serious threat towards humans and animals. To broad the multiple heavy metals detection, Fe3O4 nanoparticles, Fe3O4/multi-walled carbon nanotubes (Fe3O4/MWCNTs) and Fe3O4/fluorinated multi-walled carbon nanotubes (Fe3O4/F-MWCNTs) nanocomposites were synthesized by hydrothermal method and constructed as a simultaneous electrochemical sensor, respectively. Compared the catalytic performances of the three electrochemical sensors for the simultaneous detection of Cd2+, Pb2+, Cu2+, and Hg2+, the results showed that the Fe3O4/F-MWCNTs sensor demonstrated preponderant performance. It showed the sensitivity of 108.79, 125.91, 160.85, and 312.65 μA mM-1 cm-2 toward Cd2+, Pb2+, Cu2+, and Hg2+, respectively, which was obviously higher than that of Fe3O4/MWCNTs and Fe3O4. Additionally, the Fe3O4/F-MWCNTs sensor exhibited the wider linear detection ranges of 0.5-30.0, 0.5-30.0, 0.5-30.0, and 0.5-20.0 μM for Cd2+, Pb2+, Cu2+, and Hg2+, respectively. The limit of detections of the Fe3O4/F-MWCNTs sensor were 0.05, 0.08, 0.02, and 0.05 nM (signal to noise ratio of 3) for Cd2+, Pb2+, Cu2+, and Hg2+, respectively, fulfilling the governmental requests of the World Health Organization, China and Indian. The excellent agreement was recorded between the lowcost Fe3O4/F-MWCNTs sensor and typical methods (inductively coupled plasma mass spectrometry or atomic fluorescence spectrometry) in river water and soybean samples. Additionally, the sensor also exhibited excellent performances in selectivity, recovery, stability, and reproducibility. This proposal sensor provides a promising strategy to monitor multiple targets in the environment and food.
Collapse
Affiliation(s)
- Wenqin Wu
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, 430062, China
| | - Mingming Jia
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, 430062, China
| | - Zhaowei Zhang
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, 430062, China.
| | - Xiaomei Chen
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, 430062, China
| | - Qi Zhang
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Wuhan, 430062, China; Key Laboratory of Detection for Mycotoxins, Ministry of Agriculture, Wuhan, 430062, China
| | - Wen Zhang
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Wuhan, 430062, China; Key Laboratory of Detection for Mycotoxins, Ministry of Agriculture, Wuhan, 430062, China
| | - Peiwu Li
- Laboratory of Risk Assessment for Oilseeds Products (Wuhan), Ministry of Agriculture, Wuhan, 430062, China; National Reference Laboratory for Biotoxin Test, PR China, Wuhan, 430062, China
| | - Lin Chen
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, 430062, China
| |
Collapse
|
43
|
Wu X, Lai T, Jiang J, Ma Y, Tao G, Liu F, Li N. An on-site bacterial detection strategy based on broad-spectrum antibacterial ε-polylysine functionalized magnetic nanoparticles combined with a portable fluorometer. Mikrochim Acta 2019; 186:526. [PMID: 31292779 DOI: 10.1007/s00604-019-3632-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Accepted: 06/21/2019] [Indexed: 11/25/2022]
Abstract
A sensitive on-site bacterial detection strategy is presented that integrates the broad-spectrum capturing feature of ε-polylysine-functionalized magnetic nanoparticles with an in-house built portable fluorometer. Based on the electrostatic interaction, the functionalized magnetic nanoparticles (ε-PL-MNPs) were prepared for Gram-positive and Gram-negative bacterial separation and subsequent viable release. ε-PL-MNPs show a broad reactivity towards bacteria with the high capture efficiency from real-world sample media. They also enable controlled viable bacterial release with pH adjustment. Detection of bacteria is based on a combination of broad-spectrum capture with colorimetric and fluorimetric immunoassays. A portable fluorometer is built to enhance the applicability for sensitive on-site detection. A limit of detection of 98 CFU·mL-1 is achieved that is comparable to that of a known spectrofluorometric method for E. coli DH5α. Graphical abstract Schematic presentation of bacterial capture using cationic polymer functionalized magnetic nanoparticles and general fluorometric immunoassay with portable fluorometer. The limit of detection is 98 CFU·mL-1 for E. coli DH5α.
Collapse
Affiliation(s)
- Xi Wu
- Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, Institute of Analytical Chemistry, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| | - Tiancheng Lai
- Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, Institute of Analytical Chemistry, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| | - Jiezhang Jiang
- Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, Institute of Analytical Chemistry, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| | - Yurou Ma
- Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, Institute of Analytical Chemistry, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| | - Guangyu Tao
- Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, Institute of Analytical Chemistry, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| | - Feng Liu
- Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, Institute of Analytical Chemistry, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| | - Na Li
- Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, Institute of Analytical Chemistry, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China.
| |
Collapse
|
44
|
Li Y, Liu J, Fu Y, Xie Q, Li Y. Correction to: Magnetic-core@dual-functional-shell nanocomposites with peroxidase mimicking properties for use in colorimetric and electrochemical sensing of hydrogen peroxide. Mikrochim Acta 2019; 186:456. [PMID: 31214778 DOI: 10.1007/s00604-019-3366-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
A self-sacrificing catalytic method is described for the preparation of magnetic core/dual-functional-shell nanocomposites composed of magnetite, gold and Prussian blue (type Fe3O4@Au-PB). Two reaction pathways are integrated. The first involves chemical dissolution of Fe3O4 (the self-sacrificing step) by acid to release ferrous ions which then reacts with hexacyanoferrate(IV) to generate PB in the proximity of the magntic nanoparticles (MNPs). The second involves the reduction of tetrachloroaurate by hydroxylamine to generate gold under the catalytic effect of the MNPs. At the end, the MNP@Au-PB nanocomposite is formed. This method exploits both the chemical reactivity and catalytic effect of the MNPs in a single step. The multi-function material was applied (a) in an optical assay for H2O2; (b) in an amperometric assay for H2O2; (c) in an enzymatic choline assay using immobilized choline oxidase. The limit of electrochemical detection of H2O2 (at a potential as low as 50 mV) is 1.1 μM which is comparable or better than most analogous methods. The sensors display superior performance compared to the use of conventional core@single-shell (MNP@Au-PB) nanomaterials. Graphical abstract A self-sacrificing catalytic method is described to prepare magnetic core/dual-functional-shell nanocomposites composed of magnetic nanoparticle, gold and Prussian blue (type MNP@Au-PB). The nanocomposites worded well as candidates to develop colorimetric and electrochemical sensors of H2O2 with superior performance to analogues.
Collapse
Affiliation(s)
- Yuqing Li
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, 310058, China
| | - Jing Liu
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education of China), Hunan Normal University, Changsha, 410081, China
| | - Yingchun Fu
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, 310058, China.
| | - Qingji Xie
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education of China), Hunan Normal University, Changsha, 410081, China
| | - Yanbin Li
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, 310058, China.,Department of Biological and Agricultural Engineering, University of Arkansas, Fayetteville, AR, 72701, USA
| |
Collapse
|
45
|
Pastucha M, Farka Z, Lacina K, Mikušová Z, Skládal P. Magnetic nanoparticles for smart electrochemical immunoassays: a review on recent developments. Mikrochim Acta 2019; 186:312. [PMID: 31037494 DOI: 10.1007/s00604-019-3410-0] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Accepted: 04/03/2019] [Indexed: 02/07/2023]
Abstract
This review (with 129 refs) summarizes the progress in electrochemical immunoassays combined with magnetic particles that was made in the past 5 years. The specifity of antibodies linked to electrochemical transduction (by amperometry, voltammetry, impedimetry or electrochemiluminescence) gains further attractive features by introducing magnetic nanoparticles (MNPs). This enables fairly easy preconcentration of analytes, minimizes matrix effects, and introduces an appropriate label. Following an introduction into the fundamentals of electrochemical immunoassays and on nanomaterials for respective uses, a large chapter addresses method for magnetic capture and preconcentration of analytes. A next chapter discusses commonly used labels such as dots, enzymes, metal and metal oxide nanoparticles and combined clusters. The large field of hybrid nanomaterials for use in such immunoassays is discussed next, with a focus on MNPs composites with various kinds of graphene variants, polydopamine, noble metal nanoparticles or nanotubes. Typical applications address clinical markers (mainly blood and urine parameters), diagnosis of cancer (markers and cells), detection of pathogens (with subsections on viruses and bacteria), and environmental and food contaminants as toxic agents and pesticides. A concluding section summarizes the present status, current challenges, and highlights future trends. Graphical abstract Magnetic nanoparticles (MNP) with antibodies (Ab) capture and preconcentrate analyte from sample (a) and afterwards become magnetically (b) or immunospecifically (c) bound at an electrode. Signal either increases due to the presence of alabel (b) or decreases as the redox probe is blocked (c).
Collapse
Affiliation(s)
- Matěj Pastucha
- Department of Biochemistry, Faculty of Science, Masaryk University, Kamenice 5, 625 00, Brno, Czech Republic
- Central European Institute of Technology, Masaryk University, Kamenice 5, 625 00, Brno, Czech Republic
| | - Zdeněk Farka
- Central European Institute of Technology, Masaryk University, Kamenice 5, 625 00, Brno, Czech Republic
| | - Karel Lacina
- Central European Institute of Technology, Masaryk University, Kamenice 5, 625 00, Brno, Czech Republic
| | - Zuzana Mikušová
- Department of Biochemistry, Faculty of Science, Masaryk University, Kamenice 5, 625 00, Brno, Czech Republic
- Central European Institute of Technology, Masaryk University, Kamenice 5, 625 00, Brno, Czech Republic
| | - Petr Skládal
- Department of Biochemistry, Faculty of Science, Masaryk University, Kamenice 5, 625 00, Brno, Czech Republic.
- Central European Institute of Technology, Masaryk University, Kamenice 5, 625 00, Brno, Czech Republic.
| |
Collapse
|
46
|
Zhang H, Xue L, Huang F, Wang S, Wang L, Liu N, Lin J. A capillary biosensor for rapid detection of Salmonella using Fe-nanocluster amplification and smart phone imaging. Biosens Bioelectron 2019; 127:142-149. [DOI: 10.1016/j.bios.2018.11.042] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Revised: 11/16/2018] [Accepted: 11/28/2018] [Indexed: 10/27/2022]
|
47
|
Aptasensors for pesticide detection. Biosens Bioelectron 2019; 130:174-184. [PMID: 30738246 DOI: 10.1016/j.bios.2019.01.006] [Citation(s) in RCA: 160] [Impact Index Per Article: 26.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Revised: 01/05/2019] [Accepted: 01/12/2019] [Indexed: 12/16/2022]
Abstract
Pesticide contamination has become one of the most serious problems of public health in the world, due to their wide application in agriculture industry to guarantee the crop yield and quality. The detection of pesticide residues plays an important role in food safety management and environment protection. However, the conventional detection methodologies cannot realize highly sensitive, selective and on-site detection, which limits their applications. Aptamers are short single-stranded oligonucleotides (RNA or DNA) selected by SELEX method, which can selectively bind to their targets with high affinity. Compared with the commonly used antibodies or enzymes in designing biosensors, aptamers exhibit better stability, low molecular weight, easy modification and low cost, and were regarded as excellent candidates for developing aptasensors for pesticide detection. In this review, application of aptamers for pesticide detection was reviewed. Firstly, aptamers specifically bind to various pesticides were first summarized. Secondly, the progresses and highlights of developing aptasensors for highly-sensitive and selective detection of pesticide residues were systematically provided. Finally, the present challenges and future perspectives for developing novel highly-effective aptasensor for the detection of pesticide residues were discussed.
Collapse
|
48
|
Magnetic-core@dual-functional-shell nanocomposites with peroxidase mimicking properties for use in colorimetric and electrochemical sensing of hydrogen peroxide. Mikrochim Acta 2018; 186:20. [PMID: 30552515 DOI: 10.1007/s00604-018-3116-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Accepted: 11/25/2018] [Indexed: 10/27/2022]
Abstract
A self-sacrificing catalytic method is described for the preparation of magnetic core/dual-functional-shell nanocomposites composed of magnetite, gold and Prussian Blue (type Fe3O4@Au-PB). Two reaction pathways are integrated. The first involves chemical dissolution of Fe3O4 (the self-sacrificing step) by acid to release ferrous ions which then reacts with hexacyanoferrate(IV) to generate PB in the proximity of the magntic nanoparticles (MNPs). The second involves the reduction of tetrachloroaurate by hydroxylamine to generate gold under the catalytic effect of the MNPs. At the end, the MNPs@Au-PB nanocomposite is formed. This method exploits both the chemical reactivity and catalytic effect of the MNPs in a single step. The multi-function material was applied (a) in an optical assay for H2O2; (b) in an amperometric assay for H2O2; (c) in an enzymatic choline assay using immobilized choline oxidase. The limit of electrochemical detection of H2O2 (at a potential as low as 50 mV) is 1.1 μM which is comparable or better than most analogous methods. The sensors display superior performance compared to the use of conventional core@single-shell (MNPs@PB) nanomaterials. Graphical abstract A self-sacrificing catalytic method is described to prepare magnetic core/dual-functional-shell nanocomposites composed of magnetic nanoparticle, gold and Prussian Blue (type MNP@Au-PB). The nanocomposites work well as candidates to develop colorimetric and electrochemical sensors of H2O2 with superior performance to analogues.
Collapse
|
49
|
A robust electrochemical sensing of molecularly imprinted polymer prepared by using bifunctional monomer and its application in detection of cypermethrin. Biosens Bioelectron 2018; 127:207-214. [PMID: 30611108 DOI: 10.1016/j.bios.2018.12.002] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Revised: 12/03/2018] [Accepted: 12/03/2018] [Indexed: 12/31/2022]
Abstract
This work describes a hybrid electrochemical sensor for highly sensitive detection of pesticide cypermethrin (CYP). Firstly, Ag and N co-doped zinc oxide (Ag-N@ZnO) was produced by sol-gel method, and then Ag-N@ZnO was ultrasonically supported on activated carbon prepared from coconut husk (Ag-N@ZnO/CHAC). Finally, a layer of molecularly imprinted polymer (MIP) was in situ fabricated on glassy carbon electrode by electro-polymerization, with dopamine and resorcinol as dual functional monomers (DM), CYP acting as template (DM-MIP-Ag-N@ZnO/CHAC). Morphological features, composition information and electrochemical properties of DM-MIP-Ag-N@ZnO/CHAC were investigated in detail. It is worth to mention that for the first time response surface method was used to investigate the effect of double monomers and to optimize the ratio between template and monomers. Compared with typical one-monomer involving MIP, the MIP prepared with dual functional monomers (DMMIP) of monomers showed higher response and better selectivity. Under the optimal conditions, a calibration curve of current shift versus concentration of CYP was obtained in the range of 2 × 10-13~8 × 10-9 M, and the developed sensor gave a remarkably low detection limit (LOD) of 6.7 × 10-14 M (S/N = 3). Determination of CYP in real samples was conducted quickly and accurately with our sensor. The DMMIP-Ag-N@ZnO/CHAC electrochemical sensor proposed in this paper has great potential in food safety, drug residue determination and environmental monitoring.
Collapse
|
50
|
Cui L, Hu J, Li CC, Wang CM, Zhang CY. An electrochemical biosensor based on the enhanced quasi-reversible redox signal of prussian blue generated by self-sacrificial label of iron metal-organic framework. Biosens Bioelectron 2018; 122:168-174. [DOI: 10.1016/j.bios.2018.09.061] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Revised: 09/15/2018] [Accepted: 09/17/2018] [Indexed: 11/25/2022]
|