1
|
Gong Y, Fu Y, Lou D. A Eu-MOF-Based Fluorescent Sensing Probe for the Detection of Tryptophan and Cu 2+ in Aqueous Solutions. J Fluoresc 2024:10.1007/s10895-024-03633-9. [PMID: 38416282 DOI: 10.1007/s10895-024-03633-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Accepted: 02/22/2024] [Indexed: 02/29/2024]
Abstract
Abnormal tryptophan (Trp) metabolism can be used as an important indicator of chronic hepatitis, paranoia, Parkinson's disease and other diseases. Deficiency or excessive accumulation of Cu2+ can cause diseases such as Wilson's disease and Alzheimer's disease. Eu-based metal-organic framework (Eu-MOF) was successfully prepared for fluorescence sensing of Trp and Cu2+ in an aqueous solution (pH = 7.4). Eu-MOF showed high selectivity and sensitivity for Trp and Cu2+ with detection limits of 0.22 µM and 0.09 µM and Ksv of 6.17 × 103 M- 1 and 2.37 × 104 M- 1 respectively. Trp and Cu2+ had overlapped UV absorption spectra with that of Eu-MOF and competed for the excitation light source. Trp also attenuated the antennae effect of organic ligands on Eu-MOF, thus quenching the red fluorescence of Eu-MOF. This study provides insights into the application of MOFs in bioanalysis and diagnostics.
Collapse
Affiliation(s)
- Yafei Gong
- Department of Analytical Chemistry, Jilin Institute of Chemical Technology, Jilin, 132022, P.R. China
| | - Yan Fu
- Department of Analytical Chemistry, Jilin Institute of Chemical Technology, Jilin, 132022, P.R. China
| | - Dawei Lou
- Department of Analytical Chemistry, Jilin Institute of Chemical Technology, Jilin, 132022, P.R. China.
| |
Collapse
|
2
|
Samel-Garloff B, Goswami S, Ghosh A, Kreth J, Koley D. Quantifying picomoles of analyte from less than 100 live bacteria: A novel method with a buffering hydrogel as an electrochemical cell. Electrochim Acta 2024; 475:143527. [PMID: 38130629 PMCID: PMC10732351 DOI: 10.1016/j.electacta.2023.143527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2023]
Abstract
Microenvironmental changes in the chemical surrounding of bacterial cells might have a profound impact on the ecology of biofilms. However, quantifying total amount of picomoles of analyte from a miniscule number of bacteria is an analytical challenge. Here we provide a novel microliter volume hydrogel based electrochemical cell platform suitable of coulometrically measuring hydrogen peroxide (H2O2) produced by less than 100 cells of Streptococcus sanguinis, a relevant member of the healthy oral microbiome. A morpholine moiety was incorporated into the polymer structure of the hydrogel to create a controlled microenvironment at biological pH. We calculated the buffering capacity of this hydrogel as 0.257 ± 0.135 m o l H N O 3 m o l M E A × Δ p H over the pH range of 7.2-6.2 by using a novel method designed for buffering hydrogels. The H2O2 sensors coated in microliter volume of buffering hydrogel showed no change in sensitivity within the pH range of 7.0-3.0, allowing for H2O2 measurements of S. sanguinis independent of any acid they produce. The novel platform was able to measure down to 22.7 ± 3.5 pmol H2O2 produced by less than 100 bacterial cells, which would otherwise not be attainable in large solution-based assays. These findings indicate that this is a suitable platform for quantifying metabolites from sub-milligram biological samples and may even be suitable for direct analysis of raw biofilms samples with little to no sample pretreatment.
Collapse
Affiliation(s)
| | - Subir Goswami
- Department of Chemistry, Oregon State University, Corvallis OR
| | - Ankan Ghosh
- Department of Chemistry, Oregon State University, Corvallis OR
| | - Jens Kreth
- Division of Biomaterials and Biomedical Sciences, Oregon Health & Science University, Portland, OR
| | - Dipankar Koley
- Department of Chemistry, Oregon State University, Corvallis OR
| |
Collapse
|
3
|
Wu Y, Huang H, Jing F, Wang Y, Chen S, Wang L, Li Y, Hou S. A fluorescent probe based on the ESIPT (excited state intramolecular proton transfer) mechanism for rapid detection of endogenous and exogenous H 2O 2 (hydrogen peroxide) in cells. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 304:123394. [PMID: 37714104 DOI: 10.1016/j.saa.2023.123394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 09/07/2023] [Accepted: 09/08/2023] [Indexed: 09/17/2023]
Abstract
Hydrogen peroxide (H2O2) is one of the important reactive oxygen species in the body and can be used as a marker of some diseases such as cancer and neurodegenerative diseases. Therefore, it is of great significance to develop fluorescent probes that can detect H2O2 in living organisms for early diagnosis of diseases. However, slow response time and low fluorescence quantum yield limit the application of many probes. In this study, using 2-(2-hydroxyphenyl) benzothiazole (HBT) as the fluorophore, the introduction of weakly absorbing bromine atoms can accelerate the speed of electron transfer during the recognition process. Three ESIPT (excited state intramolecular proton transfer) fluorescent probes JLO/JLM/JLP were designed and synthesized. The detection of H2O2 can be achieved with all three probes, and we screened a probe JLO with the fastest response time (30 min) and highest fluorescence quantum yield (Ф = 0.731). The probe also has a large Stokes shift, which can reduce fluorescence self-absorption and background interference, and also has a high sensitivity, which is designed to accurately detect endogenous and exogenous H2O2 in living cells, which has great potential for biological applications.
Collapse
Affiliation(s)
- Yuanyuan Wu
- College of Science, China Agricultural University, Beijing 100193, PR China
| | - Hanling Huang
- College of Science, China Agricultural University, Beijing 100193, PR China
| | - Fengyang Jing
- College of Science, China Agricultural University, Beijing 100193, PR China
| | - Yaping Wang
- College of Science, China Agricultural University, Beijing 100193, PR China
| | - Shijun Chen
- College of Science, China Agricultural University, Beijing 100193, PR China
| | - Lin Wang
- College of Science, China Agricultural University, Beijing 100193, PR China
| | - Yiyi Li
- College of Science, China Agricultural University, Beijing 100193, PR China
| | - Shicong Hou
- College of Science, China Agricultural University, Beijing 100193, PR China.
| |
Collapse
|
4
|
Chen J, Ding X, Zhang D. Challenges and strategies faced in the electrochemical biosensing analysis of neurochemicals in vivo: A review. Talanta 2024; 266:124933. [PMID: 37506520 DOI: 10.1016/j.talanta.2023.124933] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 07/07/2023] [Accepted: 07/10/2023] [Indexed: 07/30/2023]
Abstract
Our brain is an intricate neuromodulatory network, and various neurochemicals, including neurotransmitters, neuromodulators, gases, ions, and energy metabolites, play important roles in regulating normal brain function. Abnormal release or imbalance of these substances will lead to various diseases such as Parkinson's and Alzheimer's diseases, therefore, in situ and real-time analysis of neurochemical interactions in pathophysiological conditions is beneficial to facilitate our understanding of brain function. Implantable electrochemical biosensors are capable of monitoring neurochemical signals in real time in extracellular fluid of specific brain regions because they can provide excellent temporal and spatial resolution. However, in vivo electrochemical biosensing analysis mainly faces the following challenges: First, foreign body reactions induced by microelectrode implantation, non-specific adsorption of proteins and redox products, and aggregation of glial cells, which will cause irreversible degradation of performance such as stability and sensitivity of the microsensor and eventually lead to signal loss; Second, various neurochemicals coexist in the complex brain environment, and electroactive substances with similar formal potentials interfere with each other. Therefore, it is a great challenge to design recognition molecules and tailor functional surfaces to develop in vivo electrochemical biosensors with high selectivity. Here, we take the above challenges as a starting point and detail the basic design principles for improving in vivo stability, selectivity and sensitivity of microsensors through some specific functionalized surface strategies as case studies. At the same time, we summarize surface modification strategies for in vivo electrochemical biosensing analysis of some important neurochemicals for researchers' reference. In addition, we also focus on the electrochemical detection of low basal concentrations of neurochemicals in vivo via amperometric waveform techniques, as well as the stability and biocompatibility of reference electrodes during long-term sensing, and provide an outlook on the future direction of in vivo electrochemical neurosensing.
Collapse
Affiliation(s)
- Jiatao Chen
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an, 710061, China
| | - Xiuting Ding
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an, 710061, China
| | - Dongdong Zhang
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an, 710061, China.
| |
Collapse
|
5
|
Garcia EM, Cordero PA, Kazemeini S, Murillo-Soto A, Gonzalez KA, McClement A, Rusinek CA. Platinum and palladium nanoparticles on boron-doped diamond for the electrochemical detection of hydrogen peroxide: a comparison study. Anal Bioanal Chem 2023; 415:5781-5795. [PMID: 37498327 DOI: 10.1007/s00216-023-04859-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 07/07/2023] [Accepted: 07/10/2023] [Indexed: 07/28/2023]
Abstract
Hydrogen peroxide (H2O2) plays a role in many facets - a household item, an important industrial chemical, a biomarker in vivo, and several others. For this reason, its measurement and quantification in a variety of media are important. While spectroscopic detection is primarily used for H2O2, electrochemical methods offer advantages in versatility, cost, and sensitivity. In this work, we investigate a 2-step surface metal nanoparticle (NP) modification for platinum (Pt) and palladium (Pd) on boron-doped diamond (BDD) electrodes for the detection of H2O2. Several parameters such as the metal salt concentration and electrodeposition charge in the 2-step modification were varied to find an optimum. Using cyclic voltammetry (CV), the BDD-PdNP electrode types were found to yield a sharper, more well-resolved H2O2 oxidation peak compared to the BDD-PtNP electrodes. Both metal NP electrode types significantly improved the response compared to the bare BDD electrode; a 150-200× improvement in sensitivity was observed across all modified electrode types. Calibration experiments were completed at both low and high concentration ranges in stagnant and flow-based solutions. The lowest limit of detection (LOD) obtained was 50 nM (5E-08 M) on a BDD-PdNP electrode modified with 1.0 mM PdCl2 to 5.0 mC in the wet chemical seeding and electrodeposition steps. 0.25 mM PdCl2 to 3.23 mC and 0.25 mM HPtCl6- to 3.23 mC also yielded a sufficient response for low-level H2O2, with LODs around 100 nM (1E-07 M). Overall, this work exemplifies the wide applicability of BDD and achieves sub-μM H2O2 LODs with a non-enzymatic electrode material.
Collapse
Affiliation(s)
- Elizabeth M Garcia
- Department of Chemistry and Biochemistry, University of Nevada, Las Vegas, Las Vegas, NV, 89154, USA
| | - Paula A Cordero
- Department of Chemistry and Biochemistry, University of Nevada, Las Vegas, Las Vegas, NV, 89154, USA
| | - Sarah Kazemeini
- Department of Chemistry and Biochemistry, University of Nevada, Las Vegas, Las Vegas, NV, 89154, USA
| | - Andrea Murillo-Soto
- Department of Chemistry and Biochemistry, University of Nevada, Las Vegas, Las Vegas, NV, 89154, USA
| | - Karen A Gonzalez
- Department of Chemistry and Biochemistry, University of Nevada, Las Vegas, Las Vegas, NV, 89154, USA
| | - Alexander McClement
- Department of Chemistry and Biochemistry, University of Nevada, Las Vegas, Las Vegas, NV, 89154, USA
| | - Cory A Rusinek
- Department of Chemistry and Biochemistry, University of Nevada, Las Vegas, Las Vegas, NV, 89154, USA.
| |
Collapse
|
6
|
Wu T, Jing T, Lu Y, Zhang F, He P. In Situ Investigation of Intercellular Signal Transduction Based on Detection of Extracellular pH and ROS by Scanning Electrochemical Microscopy. Anal Chem 2023; 95:7468-7474. [PMID: 37134200 DOI: 10.1021/acs.analchem.2c04655] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Intercellular signal transduction plays an important role in the regulation of biological activities. Herein, a Transwell chamber-based two-layer device combined with scanning electrochemical microscopy (SECM) technology has been proposed for in situ investigation of intercellular signal transduction. The cells in the device were cultured on two layers: the lower layer was for signaling cells, and the upper layer was for signal-receiving cells. The extracellular pH (pHe) and ROS (reactive oxygen species, ROSe) were in situ monitored by SECM potentiometric mode and SECM-MPSW (multipotential step waveform), respectively. When the signaling cells, including MCF-7, HeLa, and HFF cells, were electrically stimulated, the ROS release of the signal-receiving cells was promoted. By detecting the pH at the cell surface, it was found that more H+ generated by the signaling cells and two cell layers at a shorter distance could both cause the signal-receiving cells to release more ROS, revealing that H+ is one of the signaling molecules of intercellular communication. This SECM-based in situ monitoring strategy provides an effective way to investigate intercellular signal transduction and explore the corresponding mechanism.
Collapse
Affiliation(s)
- Tao Wu
- School of Chemistry and Molecular Engineering, East China Normal University, 500 Dongchuan Road, Shanghai 200241, P. R. China
| | - Ting Jing
- School of Chemistry and Molecular Engineering, East China Normal University, 500 Dongchuan Road, Shanghai 200241, P. R. China
| | - Yuqi Lu
- School of Chemistry and Molecular Engineering, East China Normal University, 500 Dongchuan Road, Shanghai 200241, P. R. China
| | - Fan Zhang
- School of Chemistry and Molecular Engineering, East China Normal University, 500 Dongchuan Road, Shanghai 200241, P. R. China
| | - Pingang He
- School of Chemistry and Molecular Engineering, East China Normal University, 500 Dongchuan Road, Shanghai 200241, P. R. China
| |
Collapse
|
7
|
Liu XL, Yan M, Chen ZG, Zhang B, Yao N, Zhao S, Zhao X, Zhang T, Hai G. A dual-site multifunctional fluorescent probe for selective detection of endogenous H 2O 2 and SO 2 derivatives based on ICT process and its bioimaging application. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 286:121955. [PMID: 36228493 DOI: 10.1016/j.saa.2022.121955] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 09/26/2022] [Accepted: 10/04/2022] [Indexed: 06/16/2023]
Abstract
In this paper, we reported a coumarin-based fluorescent probe for selective detection of H2O2/SO2 derivatives via ICT process. To the best of our knowledge, it was few reported with the same probe to enable visual detection of H2O2/SO2 derivatives in vivo and in vitro. H2O2 and SO32- were selectively sensed over other analytes, and the probe displayed 20-fold and 220-fold relative fluorescence intensity respectively, as well as the good linear relationship and the excellent detection limits of 2.7 * 103 nM and 19.3 nM. Furthermore, the probe was successfully used for fluorescence imaging of the HeLa cells and the mice to monitor exogenous and endogenous H2O2 and SO32-, suggesting its potential biomedical application for investigation and detection the intermediate indicator of oxidative stress in vitro and in vivo.
Collapse
Affiliation(s)
- Xue-Liang Liu
- School of Basic Medical Sciences, Xinxiang Medical University, Jinsui Road 601, Xinxiang, Henan 453003, PR China.
| | - Mengdi Yan
- School of Pharmacy, Xinxiang Medical University, Jinsui Road 601, Xinxiang, Henan 453003, PR China
| | - Zhi-Guo Chen
- School of Basic Medical Sciences, Xinxiang Medical University, Jinsui Road 601, Xinxiang, Henan 453003, PR China
| | - Bingxin Zhang
- School of Pharmacy, Xinxiang Medical University, Jinsui Road 601, Xinxiang, Henan 453003, PR China
| | - Ningcong Yao
- School of Basic Medical Sciences, Xinxiang Medical University, Jinsui Road 601, Xinxiang, Henan 453003, PR China
| | - Shan Zhao
- School of Basic Medical Sciences, Xinxiang Medical University, Jinsui Road 601, Xinxiang, Henan 453003, PR China
| | - Xiaoxia Zhao
- School of Basic Medical Sciences, Xinxiang Medical University, Jinsui Road 601, Xinxiang, Henan 453003, PR China
| | - Tao Zhang
- School of Pharmacy, Xinxiang Medical University, Jinsui Road 601, Xinxiang, Henan 453003, PR China.
| | - Guangfan Hai
- School of Pharmacy, Xinxiang Medical University, Jinsui Road 601, Xinxiang, Henan 453003, PR China.
| |
Collapse
|
8
|
Vaneev AN, Timoshenko RV, Gorelkin PV, Klyachko NL, Korchev YE, Erofeev AS. Nano- and Microsensors for In Vivo Real-Time Electrochemical Analysis: Present and Future Perspectives. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:3736. [PMID: 36364512 PMCID: PMC9656311 DOI: 10.3390/nano12213736] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 10/16/2022] [Accepted: 10/21/2022] [Indexed: 05/14/2023]
Abstract
Electrochemical nano- and microsensors have been a useful tool for measuring different analytes because of their small size, sensitivity, and favorable electrochemical properties. Using such sensors, it is possible to study physiological mechanisms at the cellular, tissue, and organ levels and determine the state of health and diseases. In this review, we highlight recent advances in the application of electrochemical sensors for measuring neurotransmitters, oxygen, ascorbate, drugs, pH values, and other analytes in vivo. The evolution of electrochemical sensors is discussed, with a particular focus on the development of significant fabrication schemes. Finally, we highlight the extensive applications of electrochemical sensors in medicine and biological science.
Collapse
Affiliation(s)
- Alexander N. Vaneev
- Research Laboratory of Biophysics, National University of Science and Technology “MISiS”, 119049 Moscow, Russia
- Chemistry Department, Lomonosov Moscow State University, 119991 Moscow, Russia
| | - Roman V. Timoshenko
- Research Laboratory of Biophysics, National University of Science and Technology “MISiS”, 119049 Moscow, Russia
| | - Petr V. Gorelkin
- Research Laboratory of Biophysics, National University of Science and Technology “MISiS”, 119049 Moscow, Russia
| | - Natalia L. Klyachko
- Chemistry Department, Lomonosov Moscow State University, 119991 Moscow, Russia
| | - Yuri E. Korchev
- Department of Medicine, Imperial College London, London W12 0NN, UK
| | - Alexander S. Erofeev
- Research Laboratory of Biophysics, National University of Science and Technology “MISiS”, 119049 Moscow, Russia
- Chemistry Department, Lomonosov Moscow State University, 119991 Moscow, Russia
| |
Collapse
|
9
|
Robbins EM, Castagnola E, Cui XT. Accurate and stable chronic in vivo voltammetry enabled by a replaceable subcutaneous reference electrode. iScience 2022; 25:104845. [PMID: 35996579 PMCID: PMC9391596 DOI: 10.1016/j.isci.2022.104845] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 06/16/2022] [Accepted: 07/22/2022] [Indexed: 01/12/2023] Open
Abstract
In vivo sensing of neurotransmitters has provided valuable insight into both healthy and diseased brain. However, chronically implanted Ag/AgCl reference electrodes suffer from degradationgradation, resulting in errors in the potential at the working electrode. Here, we report a simple, effective way to protect in vivo sensing measurements from reference polarization with a replaceable subcutaneously implanted reference. We compared a brain-implanted reference and a subcutaneous reference and observed no difference in impedance or dopamine redox peak separation in an acute preparation. Chronically, peak background potential and dopamine oxidation potential shifts were eliminated for three weeks. Scanning electron microscopy shows changes in surface morphology and composition of chronically implanted Ag/AgCl electrodes, and postmortem histology reveals extensive cell death and gliosis in the surrounding tissue. As accurate reference potentials are critical to in vivo electrochemistry applications, this simple technique can improve a wide and diverse assortment of in vivo preparations.
Collapse
Affiliation(s)
- Elaine Marie Robbins
- Department of Bioengineering, University of Pittsburgh, 5057 Biomedical Science Tower 3, 3501 Fifth Avenue, Pittsburgh, PA 15260, USA
| | - Elisa Castagnola
- Department of Bioengineering, University of Pittsburgh, 5057 Biomedical Science Tower 3, 3501 Fifth Avenue, Pittsburgh, PA 15260, USA
| | - Xinyan Tracy Cui
- Department of Bioengineering, University of Pittsburgh, 5057 Biomedical Science Tower 3, 3501 Fifth Avenue, Pittsburgh, PA 15260, USA
- Center for Neural Basis of Cognition, Pittsburgh, PA, USA
- McGowan Institute for Regenerative Medicine, Pittsburgh, PA, USA
- Corresponding author
| |
Collapse
|
10
|
Chen S, Fan W, Sun Z, Zheng E, Wang L, Wu Y, Hou S, Ma X. Acetyl group assisted rapid intramolecular recognition of hydrogen peroxide: A novel promising approach for efficient hydrogen peroxide probe. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 276:121162. [PMID: 35397454 DOI: 10.1016/j.saa.2022.121162] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 03/07/2022] [Accepted: 03/11/2022] [Indexed: 06/14/2023]
Abstract
As a vital biomolecule, hydrogen peroxide (H2O2) is involved in many physiological and pathological processes. Therefore, it is important to detect H2O2 in vivo conveniently and efficiently. In this paper, we report a new method of nucleophilic addition of H2O2 to the acetyl group to promote the rapid intramolecular reaction, which can be used to develop an efficient H2O2 probe. Based on this unique auxiliary recognition part, a fluorescent probe for H2O2 detection was designed and synthesized. This probe has the advantages of high sensitivity (limits of detection 7.0 × 10-8 M or even lower.), fast response (within 3 min) and large Stokes shift (225 nm), which not only can monitor exogenous and endogenous H2O2 in cells but also successfully achieves the change of endogenous H2O2 level caused by drug sexual organ injury in zebrafish.
Collapse
Affiliation(s)
- Shijun Chen
- College of Science, China Agricultural University, Beijing 100193, PR China
| | - Wenkang Fan
- College of Science, China Agricultural University, Beijing 100193, PR China
| | - Zhen Sun
- College of Science, China Agricultural University, Beijing 100193, PR China
| | - En Zheng
- College of Science, China Agricultural University, Beijing 100193, PR China
| | - Lin Wang
- College of Science, China Agricultural University, Beijing 100193, PR China
| | - Yuanyuan Wu
- College of Science, China Agricultural University, Beijing 100193, PR China
| | - Shicong Hou
- College of Science, China Agricultural University, Beijing 100193, PR China.
| | - Xiaodong Ma
- College of Science, China Agricultural University, Beijing 100193, PR China.
| |
Collapse
|
11
|
Zhan X, Yu X, Li B, Zhou R, Fang Q, Wu Y. Quantifying H 2O 2 by ratiometric fluorescence sensor platform of N-GQDs/rhodamine B in the presence of thioglycolic acid under the catalysis of Fe 3. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 275:121191. [PMID: 35366522 DOI: 10.1016/j.saa.2022.121191] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 02/24/2022] [Accepted: 03/22/2022] [Indexed: 06/14/2023]
Abstract
In the presence of thioglycolic acid (TGA) and under the catalysis of Fe3+, a simple, rapid, sensitive, selective and effective ratiometric fluorescence sensor platform based on the mixed physically blue nitrogen-doped graphene quantum dots (N-GQDs) as probe signals and orange rhodamine B as internal standard signals has been constructed for analysis of H2O2 in human serum. TGA is the key factor for fluorescence response toward H2O2 by N-GQDs and the mechanism is H2O2 reacts speedily with TGA under the catalysis of Fe3+, and produces intermediate of superoxide anions (O2-), which accepts electrons from N-GQDs, and generates graphene oxide, causing the fluorescence quench of N-GQDs. Compared with N-GQDs probe, the sensitivity of the ratiometric fluorescence sensor platform of N-GQDs/rhodamine B for analysis of H2O2 has been improved by nearly 5-folds. Under the optimum conditions, Fλ=580nm/Fλ=440nm has a good linear relationship with the concentration of H2O2 and the detection limit of H2O2 is 0.46 μmol/L with 3.5% RSD. The established sensor platform has been successfully used for probing H2O2 in human serum with satisfactory results. The superior performance of the probe lies in its high selectivity and can be directly employed in detecting H2O2 in serum samples without any sample pretreatment procedures.
Collapse
Affiliation(s)
- Xin Zhan
- Hubei Collaborative Innovation Center for Rare Metal Chemistry, Hubei Key Laboratory of Pollutant Analysis & Reuse Technology, College of Chemistry and Chemical Engineering, Hubei Normal University, Huangshi 435002, China
| | - Xiaoxiao Yu
- Hubei Collaborative Innovation Center for Rare Metal Chemistry, Hubei Key Laboratory of Pollutant Analysis & Reuse Technology, College of Chemistry and Chemical Engineering, Hubei Normal University, Huangshi 435002, China
| | - Benmengyang Li
- Hubei Collaborative Innovation Center for Rare Metal Chemistry, Hubei Key Laboratory of Pollutant Analysis & Reuse Technology, College of Chemistry and Chemical Engineering, Hubei Normal University, Huangshi 435002, China
| | - Rui Zhou
- Hubei Collaborative Innovation Center for Rare Metal Chemistry, Hubei Key Laboratory of Pollutant Analysis & Reuse Technology, College of Chemistry and Chemical Engineering, Hubei Normal University, Huangshi 435002, China
| | - Qingyu Fang
- Hubei Collaborative Innovation Center for Rare Metal Chemistry, Hubei Key Laboratory of Pollutant Analysis & Reuse Technology, College of Chemistry and Chemical Engineering, Hubei Normal University, Huangshi 435002, China
| | - Yiwei Wu
- Hubei Collaborative Innovation Center for Rare Metal Chemistry, Hubei Key Laboratory of Pollutant Analysis & Reuse Technology, College of Chemistry and Chemical Engineering, Hubei Normal University, Huangshi 435002, China.
| |
Collapse
|
12
|
Luo Y, Lin R, Zuo Y, Zhang Z, Zhuo Y, Lu M, Chen S, Gu H. Efficient Electrochemical Microsensor for In Vivo Monitoring of H 2O 2 in PD Mouse Brain: Rational Design and Synthesis of Recognition Molecules. Anal Chem 2022; 94:9130-9139. [PMID: 35694821 DOI: 10.1021/acs.analchem.2c01570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Hydrogen peroxide (H2O2), one of the most stable and abundant reactive oxygen species (ROS), acting as a modulator of dopaminergic signaling, has been intimately implicated in Parkinson's disease, creating a critical need for the selective quantification of H2O2 in the living brain. Current natural or nanomimic enzyme-based electrochemical methods employed for the determination of H2O2 suffer from inadequate selectivity and stability, due to which the in vivo measurement of H2O2 in the living brain remains a challenge. Herein, a series of 5-(1,2-dithiolan-3-yl)-N-(4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)phenyl)pentanamide (DBP) derivatives were designed by tuning the substitute groups and sites of a boric acid ester, which served as probes to specifically react with H2O2. Consequently, the reaction products, 5-(1,2-dithiolan-3-yl)-N-(4-hydroxyphen-yl)pentanamide (DHP) derivatives, converted the electrochemical signal from inactive into active. After systematically evaluating their performances, 5-(1,2-dithiolan-3-yl)-N-(3-chloro-4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)phenyl)pentanamide (o-Cl-DBP) was finally identified as the optimized probe for H2O2 detection as it revealed the fastest reaction time, the largest current density, and the most negative potential. In addition, electrochemically oxidized graphene oxide (EOGO) was utilized to produce a stable inner reference. The designed electrochemical microsensor provided a ratiometric strategy for real-time tracking of H2O2 in a linear range of 0.5-600 μM with high selectivity and accuracy. Eventually, the efficient electrochemical microsensor was successfully applied to the measurement of H2O2 in Parkinson's disease (PD) mouse brain. The average levels of H2O2 in the cortex, striatum, and hippocampus in the normal mouse and PD mouse were systematically compared for the first time.
Collapse
Affiliation(s)
- Yu Luo
- A Key Laboratory of Theoretical Organic Chemistry and Functional Molecule of Ministry of Education, School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan, Hunan 411201, P. R. China
| | - Ruizhi Lin
- A Key Laboratory of Theoretical Organic Chemistry and Functional Molecule of Ministry of Education, School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan, Hunan 411201, P. R. China
| | - Yimei Zuo
- A Key Laboratory of Theoretical Organic Chemistry and Functional Molecule of Ministry of Education, School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan, Hunan 411201, P. R. China
| | - Ziyi Zhang
- A Key Laboratory of Theoretical Organic Chemistry and Functional Molecule of Ministry of Education, School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan, Hunan 411201, P. R. China
| | - Yi Zhuo
- The National & Local Joint Engineering Laboratory of Animal Peptide Drug Development, Hunan Provincial Key Laboratory of Neurorestoratology, College of Life Sciences, Hunan Normal University, Changsha, Hunan 410006, P. R. China
| | - Ming Lu
- The National & Local Joint Engineering Laboratory of Animal Peptide Drug Development, Hunan Provincial Key Laboratory of Neurorestoratology, College of Life Sciences, Hunan Normal University, Changsha, Hunan 410006, P. R. China
| | - Shu Chen
- A Key Laboratory of Theoretical Organic Chemistry and Functional Molecule of Ministry of Education, School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan, Hunan 411201, P. R. China
| | - Hui Gu
- A Key Laboratory of Theoretical Organic Chemistry and Functional Molecule of Ministry of Education, School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan, Hunan 411201, P. R. China
| |
Collapse
|
13
|
Riaz MA, Chen Y. Electrodes and electrocatalysts for electrochemical hydrogen peroxide sensors: a review of design strategies. NANOSCALE HORIZONS 2022; 7:463-479. [PMID: 35289828 DOI: 10.1039/d2nh00006g] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
H2O2 sensing is required in various biological and industrial applications, for which electrochemical sensing is a promising choice among various sensing technologies. Electrodes and electrocatalysts strongly influence the performance of electrochemical H2O2 sensors. Significant efforts have been devoted to electrode nanostructural designs and nanomaterial-based electrocatalysts. Here, we review the design strategies for electrodes and electrocatalysts used in electrochemical H2O2 sensors. We first summarize electrodes in different structures, including rotation disc electrodes, freestanding electrodes, all-in-one electrodes, and representative commercial H2O2 probes. Next, we discuss the design strategies used in recent studies to increase the number of active sites and intrinsic activities of electrocatalysts for H2O2 redox reactions, including nanoscale pore structuring, conductive supports, reducing the catalyst size, alloying, doping, and tuning the crystal facets. Finally, we provide our perspectives on the future research directions in creating nanoscale structures and nanomaterials to enable advanced electrochemical H2O2 sensors in practical applications.
Collapse
Affiliation(s)
- Muhammad Adil Riaz
- School of Chemical and Biomolecular Engineering, The University of Sydney, Darlington, NSW, 2006, Australia.
| | - Yuan Chen
- School of Chemical and Biomolecular Engineering, The University of Sydney, Darlington, NSW, 2006, Australia.
| |
Collapse
|
14
|
Deng Z, Zhao L, Zhou H, Xu X, Zheng W. Recent advances in electrochemical analysis of hydrogen peroxide towards in vivo detection. Process Biochem 2022. [DOI: 10.1016/j.procbio.2022.01.025] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
15
|
In situ monitoring reactive oxygen species released by single cells using scanning electrochemical microscopy with A Specifically designed multi-potential step waveform. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2021.139638] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
16
|
Tan C, Kushwah N, Cui XT. Electrically Controlled Neurochemical Delivery from Microelectrodes for Focal and Transient Modulation of Cellular Behavior. BIOSENSORS-BASEL 2021; 11:bios11090348. [PMID: 34562938 PMCID: PMC8467485 DOI: 10.3390/bios11090348] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Revised: 09/13/2021] [Accepted: 09/15/2021] [Indexed: 11/17/2022]
Abstract
Electrically controlled drug delivery of neurochemicals and biomolecules from conducting polymer microelectrode coatings hold great potentials in dissecting neural circuit or treating neurological disorders with high spatial and temporal resolution. The direct doping of a drug into a conducting polymer often results in low loading capacity, and the type of molecule that can be released is limited. Poly(3,4-ethylenedioxythiophene) (PEDOT) doped with sulfonated silica nanoparticles (SNP) has been developed as a more versatile platform for drug delivery. In this work, we demonstrate that neurochemicals with different surface charge, e.g., glutamate (GLU), gamma-Aminobutyric acid (GABA), dopamine (DA), 6,7-Dinitroquinoxaline- 2,3-dione (DNQX) and bicuculline, can be, respectively, incorporated into the SNP and electrically triggered to release repeatedly. The drug loaded SNPs were incorporated in PEDOT via electrochemical deposition on platinum microelectrodes. After PEDOT/SNP(drug) coating, the charge storage capacity (CSC) increased 10-fold to 55 ± 3 mC/cm2, and the impedance at 1 kHz was also reduced approximately 6-fold. With the aid of a porous SNP, the loading capacity and number of releases of GLU was increased >4-fold and 66-fold, respectively, in comparison to the direct doping of PEDOT with GLU (PEDOT/GLU). The focal release of GLU and GABA from a PEDOT/SNP (drug) coated microelectrode were tested in cultured neurons using Ca imaging. The change in fluo-4 fluorescence intensity after electrically triggered GLU (+6.7 ± 2.9%) or GABA (−6.8 ± 1.6%) release indicated the successful modulation of neural activities by neurotransmitter release. In addition to activating neural activities, glutamate can also act on endothelial cells to stimulate nitric oxide (NO) release. A dual functional device with two adjacent sensing and releasing electrodes was constructed and we tested this mechanism in endothelial cell cultures. In endothelial cells, approximately 7.6 ± 0.6 nM NO was detected in the vicinity of the NO sensor within 6.2 ± 0.5 s of GLU release. The rise time of NO signal, T0–100, was 14.5 ± 2.2 s. In summary, our work has demonstrated (1) a platform that is capable of loading and releasing drugs with different charges; (2) proof of concept demonstrations of how focal release of drugs can be used as a pharmacological manipulation to study neural circuitry or NO’s effect on endothelial cells.
Collapse
Affiliation(s)
- Chao Tan
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA 15261, USA; (C.T.); (N.K.)
| | - Neetu Kushwah
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA 15261, USA; (C.T.); (N.K.)
| | - Xinyan Tracy Cui
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA 15261, USA; (C.T.); (N.K.)
- Center for Neural Basis of Cognition, Pittsburgh, PA 15213, USA
- McGowan Institute for Regenerative Medicine, Pittsburgh, PA 15219, USA
- Correspondence:
| |
Collapse
|
17
|
Rafi H, Zestos AG. Review-Recent Advances in FSCV Detection of Neurochemicals via Waveform and Carbon Microelectrode Modification. JOURNAL OF THE ELECTROCHEMICAL SOCIETY 2021; 168:057520. [PMID: 34108735 PMCID: PMC8186302 DOI: 10.1149/1945-7111/ac0064] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Fast scan cyclic voltammetry (FSCV) is an analytical technique that was first developed over 30 years ago. Since then, it has been extensively used to detect dopamine using carbon fiber microelectrodes (CFMEs). More recently, electrode modifications and waveform refinement have enabled the detection of a wider variety of neurochemicals including nucleosides such as adenosine and guanosine, neurotransmitter metabolites of dopamine, and neuropeptides such as enkephalin. These alterations have facilitated the selectivity of certain biomolecules over others to enhance the measurement of the analyte of interest while excluding interferants. In this review, we detail these modifications and how specializing CFME sensors allows neuro-analytical researchers to develop tools to understand the neurochemistry of the brain in disease states and provide groundwork for translational work in clinical settings.
Collapse
Affiliation(s)
- Harmain Rafi
- Department of Chemistry, American University, Washington, DC 20016, United States of America
- Center for Neuroscience and Behavior, American University, Washington, DC 20016, United States of America
| | - Alexander G. Zestos
- Department of Chemistry, American University, Washington, DC 20016, United States of America
- Center for Neuroscience and Behavior, American University, Washington, DC 20016, United States of America
| |
Collapse
|
18
|
Tan C, Robbins EM, Wu B, Cui XT. Recent Advances in In Vivo Neurochemical Monitoring. MICROMACHINES 2021; 12:208. [PMID: 33670703 PMCID: PMC7922317 DOI: 10.3390/mi12020208] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 02/11/2021] [Accepted: 02/14/2021] [Indexed: 12/20/2022]
Abstract
The brain is a complex network that accounts for only 5% of human mass but consumes 20% of our energy. Uncovering the mysteries of the brain's functions in motion, memory, learning, behavior, and mental health remains a hot but challenging topic. Neurochemicals in the brain, such as neurotransmitters, neuromodulators, gliotransmitters, hormones, and metabolism substrates and products, play vital roles in mediating and modulating normal brain function, and their abnormal release or imbalanced concentrations can cause various diseases, such as epilepsy, Alzheimer's disease, and Parkinson's disease. A wide range of techniques have been used to probe the concentrations of neurochemicals under normal, stimulated, diseased, and drug-induced conditions in order to understand the neurochemistry of drug mechanisms and develop diagnostic tools or therapies. Recent advancements in detection methods, device fabrication, and new materials have resulted in the development of neurochemical sensors with improved performance. However, direct in vivo measurements require a robust sensor that is highly sensitive and selective with minimal fouling and reduced inflammatory foreign body responses. Here, we review recent advances in neurochemical sensor development for in vivo studies, with a focus on electrochemical and optical probes. Other alternative methods are also compared. We discuss in detail the in vivo challenges for these methods and provide an outlook for future directions.
Collapse
Affiliation(s)
- Chao Tan
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA 15261, USA; (C.T.); (E.M.R.); (B.W.)
| | - Elaine M. Robbins
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA 15261, USA; (C.T.); (E.M.R.); (B.W.)
- Department of Chemistry, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Bingchen Wu
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA 15261, USA; (C.T.); (E.M.R.); (B.W.)
- Center for Neural Basis of Cognition, Pittsburgh, PA 15213, USA
| | - Xinyan Tracy Cui
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA 15261, USA; (C.T.); (E.M.R.); (B.W.)
- Center for Neural Basis of Cognition, Pittsburgh, PA 15213, USA
- McGowan Institute for Regenerative Medicine, Pittsburgh, PA 15219, USA
| |
Collapse
|
19
|
Purcell EK, Becker MF, Guo Y, Hara SA, Ludwig KA, McKinney CJ, Monroe EM, Rechenberg R, Rusinek CA, Saxena A, Siegenthaler JR, Sortwell CE, Thompson CH, Trevathan JK, Witt S, Li W. Next-Generation Diamond Electrodes for Neurochemical Sensing: Challenges and Opportunities. MICROMACHINES 2021; 12:128. [PMID: 33530395 PMCID: PMC7911340 DOI: 10.3390/mi12020128] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 01/19/2021] [Accepted: 01/19/2021] [Indexed: 12/12/2022]
Abstract
Carbon-based electrodes combined with fast-scan cyclic voltammetry (FSCV) enable neurochemical sensing with high spatiotemporal resolution and sensitivity. While their attractive electrochemical and conductive properties have established a long history of use in the detection of neurotransmitters both in vitro and in vivo, carbon fiber microelectrodes (CFMEs) also have limitations in their fabrication, flexibility, and chronic stability. Diamond is a form of carbon with a more rigid bonding structure (sp3-hybridized) which can become conductive when boron-doped. Boron-doped diamond (BDD) is characterized by an extremely wide potential window, low background current, and good biocompatibility. Additionally, methods for processing and patterning diamond allow for high-throughput batch fabrication and customization of electrode arrays with unique architectures. While tradeoffs in sensitivity can undermine the advantages of BDD as a neurochemical sensor, there are numerous untapped opportunities to further improve performance, including anodic pretreatment, or optimization of the FSCV waveform, instrumentation, sp2/sp3 character, doping, surface characteristics, and signal processing. Here, we review the state-of-the-art in diamond electrodes for neurochemical sensing and discuss potential opportunities for future advancements of the technology. We highlight our team's progress with the development of an all-diamond fiber ultramicroelectrode as a novel approach to advance the performance and applications of diamond-based neurochemical sensors.
Collapse
Affiliation(s)
- Erin K. Purcell
- Department of Electrical and Computer Engineering, Michigan State University, East Lansing, MI 48824, USA; (Y.G.); (A.S.); (W.L.)
- Department of Biomedical Engineering, Michigan State University, East Lansing, MI 48824, USA;
- Neuroscience Program, Michigan State University, East Lansing, MI 48824, USA;
- Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, MI 48824, USA
| | - Michael F. Becker
- Fraunhofer USA Center Midwest, East Lansing, MI 48824, USA; (M.F.B.); (R.R.); (J.R.S.); (S.W.)
| | - Yue Guo
- Department of Electrical and Computer Engineering, Michigan State University, East Lansing, MI 48824, USA; (Y.G.); (A.S.); (W.L.)
| | - Seth A. Hara
- Division of Engineering, Mayo Clinic, Rochester, MN 55905, USA;
| | - Kip A. Ludwig
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI 53706, USA; (K.A.L.); (J.K.T.)
- Department of Neurosurgery, University of Wisconsin-Madison, Madison, WI 53792, USA
| | - Collin J. McKinney
- Department of Chemistry, Electronics Core Facility, University of North Carolina at Chapel Hill, Chapel Hill, NC 27514, USA;
| | - Elizabeth M. Monroe
- Department of Chemistry and Biochemistry, University of Nevada, Las Vegas, NV 89154, USA; (E.M.M.); (C.A.R.)
| | - Robert Rechenberg
- Fraunhofer USA Center Midwest, East Lansing, MI 48824, USA; (M.F.B.); (R.R.); (J.R.S.); (S.W.)
| | - Cory A. Rusinek
- Department of Chemistry and Biochemistry, University of Nevada, Las Vegas, NV 89154, USA; (E.M.M.); (C.A.R.)
| | - Akash Saxena
- Department of Electrical and Computer Engineering, Michigan State University, East Lansing, MI 48824, USA; (Y.G.); (A.S.); (W.L.)
- Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, MI 48824, USA
| | - James R. Siegenthaler
- Fraunhofer USA Center Midwest, East Lansing, MI 48824, USA; (M.F.B.); (R.R.); (J.R.S.); (S.W.)
| | - Caryl E. Sortwell
- Neuroscience Program, Michigan State University, East Lansing, MI 48824, USA;
- Department of Translational Neuroscience, College of Human Medicine, Michigan State University, Grand Rapids, MI 49503, USA
| | - Cort H. Thompson
- Department of Biomedical Engineering, Michigan State University, East Lansing, MI 48824, USA;
- Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, MI 48824, USA
| | - James K. Trevathan
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI 53706, USA; (K.A.L.); (J.K.T.)
- Grainger Institute for Engineering, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Suzanne Witt
- Fraunhofer USA Center Midwest, East Lansing, MI 48824, USA; (M.F.B.); (R.R.); (J.R.S.); (S.W.)
| | - Wen Li
- Department of Electrical and Computer Engineering, Michigan State University, East Lansing, MI 48824, USA; (Y.G.); (A.S.); (W.L.)
- Department of Biomedical Engineering, Michigan State University, East Lansing, MI 48824, USA;
- Neuroscience Program, Michigan State University, East Lansing, MI 48824, USA;
- Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, MI 48824, USA
| |
Collapse
|
20
|
Doughty PT, Hossain I, Gong C, Ponder KA, Pati S, Arumugam PU, Murray TA. Novel microwire-based biosensor probe for simultaneous real-time measurement of glutamate and GABA dynamics in vitro and in vivo. Sci Rep 2020; 10:12777. [PMID: 32728074 PMCID: PMC7392771 DOI: 10.1038/s41598-020-69636-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Accepted: 07/07/2020] [Indexed: 12/21/2022] Open
Abstract
Glutamate (GLU) and γ-aminobutyric acid (GABA) are the major excitatory (E) and inhibitory (I) neurotransmitters in the brain, respectively. Dysregulation of the E/I ratio is associated with numerous neurological disorders. Enzyme-based microelectrode array biosensors present the potential for improved biocompatibility, localized sample volumes, and much faster sampling rates over existing measurement methods. However, enzymes degrade over time. To overcome the time limitation of permanently implanted microbiosensors, we created a microwire-based biosensor that can be periodically inserted into a permanently implanted cannula. Biosensor coatings were based on our previously developed GLU and reagent-free GABA shank-type biosensor. In addition, the microwire biosensors were in the same geometric plane for the improved acquisition of signals in planar tissue including rodent brain slices, cultured cells, and brain regions with laminar structure. We measured real-time dynamics of GLU and GABA in rat hippocampal slices and observed a significant, nonlinear shift in the E/I ratio from excitatory to inhibitory dominance as electrical stimulation frequency increased from 10 to 140 Hz, suggesting that GABA release is a component of a homeostatic mechanism in the hippocampus to prevent excitotoxic damage. Additionally, we recorded from a freely moving rat over fourteen weeks, inserting fresh biosensors each time, thus demonstrating that the microwire biosensor overcomes the time limitation of permanently implanted biosensors and that the biosensors detect relevant changes in GLU and GABA levels that are consistent with various behaviors.
Collapse
Affiliation(s)
- P Timothy Doughty
- Center for Biomedical Engineering and Rehabilitation Sciences, Louisiana Tech University, Ruston, LA, USA
| | - Imran Hossain
- Institute for Micromanufacturing, Louisiana Tech University, Ruston, LA, USA
| | - Chenggong Gong
- Institute for Micromanufacturing, Louisiana Tech University, Ruston, LA, USA
| | - Kayla A Ponder
- Center for Biomedical Engineering and Rehabilitation Sciences, Louisiana Tech University, Ruston, LA, USA
| | - Sandipan Pati
- UAB Epilepsy Center/Department of Neurology, The University of Alabama at Birmingham, Birmingham, AL, USA
| | - Prabhu U Arumugam
- Center for Biomedical Engineering and Rehabilitation Sciences, Louisiana Tech University, Ruston, LA, USA. .,Institute for Micromanufacturing, Louisiana Tech University, Ruston, LA, USA.
| | - Teresa A Murray
- Center for Biomedical Engineering and Rehabilitation Sciences, Louisiana Tech University, Ruston, LA, USA.
| |
Collapse
|
21
|
Transition‐Metal Phosphide/Sulfide Nanocomposites for Effective Electrochemical Non‐Enzymatic Detection of Hydrogen Peroxide. ChemElectroChem 2020. [DOI: 10.1002/celc.202000867] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
22
|
Chang Y, Venton BJ. Optimization of graphene oxide-modified carbon-fiber microelectrode for dopamine detection. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2020; 12:2893-2902. [PMID: 32617123 PMCID: PMC7331934 DOI: 10.1039/d0ay00310g] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Graphene oxide (GO) is a carbon-based material that is easily obtained from graphite or graphite oxide. GO has been used broadly for electrochemistry applications and our hypothesis is that GO coating a carbon-fiber microelectrode (CFME) will increase the sensitivity for dopamine by providing more adsorption sites due to the enhancement of oxygen functional groups. Here, we compared drop casting, dip coating, and electrodeposition methods to directly coat commercial GO on CFME surfaces. Dip coating did not result in much GO coating and drop casting resulted in large agglomerations that produced noisy signals and slow rise times. Electrodeposition method with cyclic voltammetry increase the current for dopamine and this method was the most reproducible and had the least noise compared to the other two coating methods. The optimized method used a triangular waveform scanned from -1.2 V to 1.5 V at 100 mV/s for 5 cycles in 0.2 mg/mL GO in water. With fast-scan cyclic voltammetry (FSCV), the optimized GO/CFME enhanced the dopamine oxidation peak two-fold. The sensitivity of the modified electrode is 41±2 nA/μM with a linear range from 25 nM to 1 μM, and a limit of detection of 11 nM. The optimized electrodes were used to detect electrically-stimulated dopamine in brain slices to demonstrate their performance in tissue. Thus, GO can be used to enhance the sensitivity of electrodes for dopamine and improve biological measurements.
Collapse
Affiliation(s)
- Yuanyu Chang
- Department of Chemistry, University of Virginia, Charlottesville, VA 22904, United States
| | - B Jill Venton
- Department of Chemistry, University of Virginia, Charlottesville, VA 22904, United States
| |
Collapse
|
23
|
Abstract
Fast-scan cyclic voltammetry (FSCV) at carbon-fiber microelectrodes (CFMEs) is a versatile electrochemical technique to probe neurochemical dynamics in vivo. Progress in FSCV methodology continues to address analytical challenges arising from biological needs to measure low concentrations of neurotransmitters at specific sites. This review summarizes recent advances in FSCV method development in three areas: (1) waveform optimization, (2) electrode development, and (3) data analysis. First, FSCV waveform parameters such as holding potential, switching potential, and scan rate have been optimized to monitor new neurochemicals. The new waveform shapes introduce better selectivity toward specific molecules such as serotonin, histamine, hydrogen peroxide, octopamine, adenosine, guanosine, and neuropeptides. Second, CFMEs have been modified with nanomaterials such as carbon nanotubes or replaced with conducting polymers to enhance sensitivity, selectivity, and antifouling properties. Different geometries can be obtained by 3D-printing, manufacturing arrays, or fabricating carbon nanopipettes. Third, data analysis is important to sort through the thousands of CVs obtained. Recent developments in data analysis include preprocessing by digital filtering, principal components analysis for distinguishing analytes, and developing automated algorithms to detect peaks. Future challenges include multisite measurements, machine learning, and integration with other techniques. Advances in FSCV will accelerate research in neurochemistry to answer new biological questions about dynamics of signaling in the brain.
Collapse
Affiliation(s)
- Pumidech Puthongkham
- Department of Chemistry, University of Virginia, Charlottesville, VA 22904, USA.
| | | |
Collapse
|
24
|
Sung C, Jeon W, Nam KS, Kim Y, Butt H, Park S. Multimaterial and multifunctional neural interfaces: from surface-type and implantable electrodes to fiber-based devices. J Mater Chem B 2020; 8:6624-6666. [DOI: 10.1039/d0tb00872a] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Development of neural interfaces from surface electrodes to fibers with various type, functionality, and materials.
Collapse
Affiliation(s)
- Changhoon Sung
- Department of Bio and Brain Engineering
- Korea Advanced Institute of Science and Technology (KAIST)
- Daejeon 34141
- Republic of Korea
| | - Woojin Jeon
- Department of Bio and Brain Engineering
- Korea Advanced Institute of Science and Technology (KAIST)
- Daejeon 34141
- Republic of Korea
| | - Kum Seok Nam
- School of Electrical Engineering
- Korea Advanced Institute of Science and Technology (KAIST)
- Daejeon 34141
- Republic of Korea
| | - Yeji Kim
- Department of Bio and Brain Engineering
- Korea Advanced Institute of Science and Technology (KAIST)
- Daejeon 34141
- Republic of Korea
| | - Haider Butt
- Department of Mechanical Engineering
- Khalifa University
- Abu Dhabi 127788
- United Arab Emirates
| | - Seongjun Park
- Department of Bio and Brain Engineering
- Korea Advanced Institute of Science and Technology (KAIST)
- Daejeon 34141
- Republic of Korea
- KAIST Institute for Health Science and Technology (KIHST)
| |
Collapse
|
25
|
Abstract
In vivo electrochemical sensing based on implantable microelectrodes is a strong driving force of analytical neurochemistry in brain. The complex and dynamic neurochemical network sets stringent standards of in vivo electrochemical sensors including high spatiotemporal resolution, selectivity, sensitivity, and minimized disturbance on brain function. Although advanced materials and novel technologies have promoted the development of in vivo electrochemical sensors drastically, gaps with the goals still exist. This Review mainly focuses on recent attempts on the key issues of in vivo electrochemical sensors including selectivity, tissue response and sensing reliability, and compatibility with electrophysiological techniques. In vivo electrochemical methods with bare carbon fiber electrodes, of which the selectivity is achieved either with electrochemical techniques such as fast-scan cyclic voltammetry and differential pulse voltammetry or based on the physiological nature will not be reviewed. Following the elaboration of each issue involved in in vivo electrochemical sensors, possible solutions supported by the latest methodological progress will be discussed, aiming to provide inspiring and practical instructions for future research.
Collapse
Affiliation(s)
- Cong Xu
- Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, The Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Fei Wu
- Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, The Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ping Yu
- Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, The Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lanqun Mao
- Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, The Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
26
|
Peng Q, Yan X, Shi X, Ou S, Gu H, Yin X, Shi G, Yu Y. In vivo monitoring of superoxide anion from Alzheimer's rat brains with functionalized ionic liquid polymer decorated microsensor. Biosens Bioelectron 2019; 144:111665. [DOI: 10.1016/j.bios.2019.111665] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Revised: 08/27/2019] [Accepted: 08/29/2019] [Indexed: 02/06/2023]
|
27
|
Frank JA, Antonini MJ, Anikeeva P. Next-generation interfaces for studying neural function. Nat Biotechnol 2019; 37:1013-1023. [PMID: 31406326 PMCID: PMC7243676 DOI: 10.1038/s41587-019-0198-8] [Citation(s) in RCA: 118] [Impact Index Per Article: 23.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Accepted: 06/26/2019] [Indexed: 01/06/2023]
Abstract
Monitoring and modulating the diversity of signals used by neurons and glia in a closed-loop fashion is necessary to establish causative links between biochemical processes within the nervous system and observed behaviors. As developments in neural-interface hardware strive to keep pace with rapid progress in genetically encoded and synthetic reporters and modulators of neural activity, the integration of multiple functional features becomes a key requirement and a pressing challenge in the field of neural engineering. Electrical, optical and chemical approaches have been used to manipulate and record neuronal activity in vivo, with a recent focus on technologies that both integrate multiple modes of interaction with neurons into a single device and enable bidirectional communication with neural circuits with enhanced spatiotemporal precision. These technologies not only are facilitating a greater understanding of the brain, spinal cord and peripheral circuits in the context of health and disease, but also are informing the development of future closed-loop therapies for neurological, neuro-immune and neuroendocrine conditions.
Collapse
Affiliation(s)
- James A Frank
- Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, MA, USA
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Marc-Joseph Antonini
- Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, MA, USA
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Harvard/MIT Health Science & Technology Graduate Program, Cambridge, MA, USA
| | - Polina Anikeeva
- Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, MA, USA.
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA, USA.
- Department of Material Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA.
| |
Collapse
|
28
|
Calhoun SE, Meunier CJ, Lee CA, McCarty GS, Sombers LA. Characterization of a Multiple-Scan-Rate Voltammetric Waveform for Real-Time Detection of Met-Enkephalin. ACS Chem Neurosci 2019; 10:2022-2032. [PMID: 30571911 PMCID: PMC6473485 DOI: 10.1021/acschemneuro.8b00351] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2018] [Accepted: 12/20/2018] [Indexed: 02/07/2023] Open
Abstract
Opioid peptides are critically involved in a variety of physiological functions necessary for adaptation and survival, and as such, understanding the precise actions of endogenous opioid peptides will aid in identification of potential therapeutic strategies to treat a variety of disorders. However, few analytical tools are currently available that offer both the sensitivity and spatial resolution required to monitor peptidergic concentration fluctuations in situ on a time scale commensurate with that of neuronal communication. Our group has developed a multiple-scan-rate waveform to enable real-time voltammetric detection of tyrosine containing neuropeptides. Herein, we have evaluated the waveform parameters to increase sensitivity to methionine-enkephalin (M-ENK), an endogenous opioid neuropeptide implicated in pain, stress, and reward circuits. M-ENK dynamics were monitored in adrenal gland tissue, as well as in the dorsal striatum of anesthetized and freely behaving animals. The data reveal cofluctuations of catecholamine and M-ENK in both locations and provide measurements of M-ENK dynamics in the brain with subsecond temporal resolution. Importantly, this work also demonstrates how voltammetric waveforms can be customized to enhance detection of specific target analytes, broadly speaking.
Collapse
Affiliation(s)
- S. E. Calhoun
- Department of Chemistry, North
Carolina State University, Raleigh, North Carolina 27695, United States
| | - C. J. Meunier
- Department of Chemistry, North
Carolina State University, Raleigh, North Carolina 27695, United States
| | - C. A. Lee
- Department of Chemistry, North
Carolina State University, Raleigh, North Carolina 27695, United States
| | - G. S. McCarty
- Department of Chemistry, North
Carolina State University, Raleigh, North Carolina 27695, United States
| | - L. A. Sombers
- Department of Chemistry, North
Carolina State University, Raleigh, North Carolina 27695, United States
| |
Collapse
|
29
|
Gómez-A A, Shnitko TA, Barefoot HM, Brightbill EL, Sombers LA, Nicola SM, Robinson DL. Local μ-Opioid Receptor Antagonism Blunts Evoked Phasic Dopamine Release in the Nucleus Accumbens of Rats. ACS Chem Neurosci 2019; 10:1935-1940. [PMID: 30388365 DOI: 10.1021/acschemneuro.8b00437] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
μ-opioid receptors (MORs) in the nucleus accumbens (NAc) can regulate reward-related behaviors that are dependent on mesolimbic dopamine, but the precise mechanism of this MOR regulation is unknown. We hypothesized that MORs within the NAc core regulate dopamine release. Specifically, we infused the MOR antagonist CTAP (d-Phe-Cys-Tyr-d-Trp-Arg-Thr-Pen-Thr-NH2) into the NAc core while dopamine release was evoked by electrical stimulation of the ventral tegmental area and measured by fast-scan cyclic voltammetry. We report that CTAP dose-dependently inhibited evoked dopamine release, with full blockade achieved with the 8 μg infusion. In contrast, evoked dopamine release increased after nomifensine infusion and was unchanged after vehicle infusion. These findings demonstrate profound local control of dopamine release by MORs within the NAc core, which has implications for regulation of reward processing.
Collapse
Affiliation(s)
| | | | | | | | - Leslie A. Sombers
- Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27607, United States
| | - Saleem M. Nicola
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, New York 10461, United States
| | | |
Collapse
|
30
|
Raju D, Mendoza A, Wonnenberg P, Mohanaraj S, Sarbanes M, Truong C, Zestos AG. Polymer Modified Carbon Fiber-Microelectrodes and Waveform Modifications Enhance Neurotransmitter Metabolite Detection. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2019; 11:1620-1630. [PMID: 34079589 PMCID: PMC8168831 DOI: 10.1039/c8ay02737d] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Carbon-fiber microelectrodes (CFMEs) have been used for several years for the detection of neurotransmitters such as dopamine. Dopamine is a fundamentally important neurotransmitter and is also metabolized at a subsecond timescale. Recently, several metabolites of dopamine have been shown to be physiologically important such as 3-methoxytyramine (3-MT), 3,4-dihydroxyphenylacetic acid (DOPAC), and homovanillic acid (HVA). Many of these neurotransmitter metabolites are currently only detected with microdialysis coupled with liquid chromatography with relatively low temporal and spatial resolution. Current electrochemical methods such as the dopamine waveform (scanning from -0.4 to 1.3 V at 400 V/sec) are utilized to electrostatically repel anions such as DOPAC and promote dopamine adsorption to the surface of the electrode. Moreover, polymer coatings such as Nafion have been shown to electrostatically repel anions such as 5-hydroxyindoleacetic acid (5-HIAA). In this study, we develop novel polymer and waveform modifications for enhanced DOPAC detection. Applying the DOPAC waveform (scanning from 0 to 1.3 V at 400 V/sec) enhances DOPAC detection significantly because it does not include the negative holding potential of the dopamine waveform. Moreover, positively charged cationic polymers such as polyethyleneimine (PEI) allow for the preconcentration of DOPAC to the surface of the carbon fiber through an electrostatic attraction. The limit of detection for DOPAC for PEI coated CFMEs with the DOPAC waveform applied is 58.2 ± 2 nM as opposed to 291 ± 10 nM for unmodified electrodes applying the dopamine waveform (n = 4). This work offers promise for the development of novel electrode materials and waveforms for the specific detection of several important biomolecules such as dopamine metabolite neurotransmitters.
Collapse
Affiliation(s)
- Dilpreet Raju
- Department of Chemistry, Center for Behavioral Neuroscience, American University, Washington, D.C. 20016
| | - Alexander Mendoza
- Department of Chemistry, Center for Behavioral Neuroscience, American University, Washington, D.C. 20016
| | - Pauline Wonnenberg
- Department of Chemistry, Center for Behavioral Neuroscience, American University, Washington, D.C. 20016
| | - Sanuja Mohanaraj
- Department of Chemistry, Center for Behavioral Neuroscience, American University, Washington, D.C. 20016
| | - Mulugeta Sarbanes
- Department of Chemistry, Center for Behavioral Neuroscience, American University, Washington, D.C. 20016
| | - Carly Truong
- Department of Chemistry, Center for Behavioral Neuroscience, American University, Washington, D.C. 20016
| | - Alexander G Zestos
- Department of Chemistry, Center for Behavioral Neuroscience, American University, Washington, D.C. 20016
| |
Collapse
|
31
|
Cao Q, Puthongkham P, Venton BJ. Review: New insights into optimizing chemical and 3D surface structures of carbon electrodes for neurotransmitter detection. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2019; 11:247-261. [PMID: 30740148 PMCID: PMC6366673 DOI: 10.1039/c8ay02472c] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
The carbon-fiber microelectrode has been used for decades as a neurotransmitter sensor. Recently, new strategies have been developed for making carbon electrodes, including using carbon nanomaterials or pyrolyzing photoresist etched by nanolithography or 3D printing. This review summarizes how chemical and 3D surface structures of new carbon electrodes are optimized for neurotransmitter detection. There are effects of the chemical structure that are advantageous and nanomaterials are used ranging from carbon nanotube (CNT) to graphene to nanodiamond. Functionalization of these materials promotes surface oxide groups that adsorb dopamine and dopants introduce defect sites good for electron transfer. Polymer coatings such as poly(3,4-ethylenedioxythiophene) (PEDOT) or Nafion also enhance the selectivity, particularly for dopamine over ascorbic acid. Changing the 3D surface structure of an electrode increases current by adding more surface area. If the surface structure has roughness or pores on the micron scale, the electrode also acts as a thin layer cell, momentarily trapping the analyte for redox cycling. Vertically-aligned CNTs as well as lithographically-made or 3D printed pillar arrays act as thin layer cells, producing more reversible cyclic voltammograms. A better understanding of how chemical and surface structure affects electrochemistry enables rational design of electrodes. New carbon electrodes are being tested in vivo and strategies to reduce biofouling are being developed. Future studies should test the robustness for long term implantation, explore electrochemical properties of neurotransmitters beyond dopamine, and combine optimized chemical and physical structures for real-time monitoring of neurotransmitters.
Collapse
Affiliation(s)
| | | | - B. Jill Venton
- Dept. of Chemistry, University of Virginia, Charlottesville, VA 22901
| |
Collapse
|
32
|
An enzyme-based electrochemical biosensor probe with sensitivity to detect astrocytic versus glioma uptake of glutamate in real time in vitro. Biosens Bioelectron 2018; 126:751-757. [PMID: 30553105 DOI: 10.1016/j.bios.2018.11.023] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Revised: 11/03/2018] [Accepted: 11/15/2018] [Indexed: 12/31/2022]
Abstract
Glutamate, a major excitatory neurotransmitter in the central nervous system, is essential for regulation of thought, movement, memory, and other higher functions controlled by the brain. Dysregulation of glutamate signaling is associated with severe neuropathological conditions, such as epilepsy, and glioma, a form of brain cancer. Glutamate signals are currently detected by several types of neurochemical probes ranging from microdialysis-based to enzyme-based carbon fiber microsensors. However, an important technology gap exists in the ability to measure glutamate dynamics continuously, and in real time, and from multiple locations in the brain, which limits our ability to further understand the involved spatiotemporal mechanisms of underlying neuropathologies. To overcome this limitation, we developed an enzymatic glutamate microbiosensor, in the form of a ceramic-substrate enabled platinum microelectrode array, that continuously, in real time, measures changes in glutamate concentration from multiple recording sites. In addition, the developed microbiosensor is almost four-fold more sensitive to glutamate than enzymatic sensors previously reported in the literature. Further analysis of glutamate dynamics recorded by our microbiosensor in cultured astrocytes (control condition) and glioma cells (pathological condition) clearly distinguished normal versus impaired glutamate uptake, respectively. These results confirm that the developed glutamate microbiosensor array can become a useful tool in monitoring and understanding glutamate signaling and its regulation in normal and pathological conditions. Furthermore, the developed microbiosensor can be used to measure the effects of potential therapeutic drugs to treat a range of neurological diseases.
Collapse
|
33
|
Hossain I, Tan C, Doughty PT, Dutta G, Murray TA, Siddiqui S, Iasemidis L, Arumugam PU. A Novel Microbiosensor Microarray for Continuous ex Vivo Monitoring of Gamma-Aminobutyric Acid in Real-Time. Front Neurosci 2018; 12:500. [PMID: 30131664 PMCID: PMC6090213 DOI: 10.3389/fnins.2018.00500] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2018] [Accepted: 07/03/2018] [Indexed: 12/23/2022] Open
Abstract
Gamma-aminobutyric acid (GABA) is a major inhibitory neurotransmitter that is essential for normal brain function. It is involved in multiple neuronal activities, including plasticity, information processing, and network synchronization. Abnormal GABA levels result in severe brain disorders and therefore GABA has been the target of a wide range of drug therapeutics. GABA being non-electroactive is challenging to detect in real-time. To date, GABA is detected mainly via microdialysis with a high-performance liquid chromatography (HPLC) system that employs electrochemical (EC) and spectroscopic methodology. However, these systems are bulky and unsuitable for real-time continuous monitoring. As opposed to microdialysis, biosensors are easy to miniaturize and are highly suitable for in vivo studies; they selectively oxidize GABA into a secondary electroactive product (usually hydrogen peroxide, H2O2) in the presence of enzymes, which is then detected by amperometry. Unfortunately, this method requires a rather cumbersome process with prereactors and relies on externally applied reagents. Here, we report the design and implementation of a GABA microarray probe that operates on a newly conceived principle. It consists of two microbiosensors, one for glutamate (Glu) and one for GABA detection, modified with glutamate oxidase and GABASE enzymes, respectively. By simultaneously measuring and subtracting the H2O2 oxidation currents generated from these microbiosensors, GABA and Glu can be detected continuously in real-time in vitro and ex vivo and without the addition of any externally applied reagents. The detection of GABA by this probe is based upon the in-situ generation of α-ketoglutarate from the Glu oxidation that takes place at the Glu microbiosensor. A GABA sensitivity of 36 ± 2.5 pA μM-1cm-2, which is 26-fold higher than reported in the literature, and a limit of detection of 2 ± 0.12 μM were achieved in an in vitro setting. The GABA probe was successfully tested in an adult rat brain slice preparation. These results demonstrate that the developed GABA probe constitutes a novel and powerful neuroscientific tool that could be employed in the future for in vivo longitudinal studies of the combined role of GABA and Glu (a major excitatory neurotransmitter) signaling in brain disorders, such as epilepsy and traumatic brain injury, as well as in preclinical trials of potential therapeutic agents for the treatment of these disorders.
Collapse
Affiliation(s)
- Imran Hossain
- Institute for Micromanufacturing, Louisiana Tech University, Ruston, LA, United States
| | - Chao Tan
- Institute for Micromanufacturing, Louisiana Tech University, Ruston, LA, United States.,Center for Biomedical Engineering and Rehabilitation Science, Louisiana Tech University, Ruston, LA, United States
| | - Phillip T Doughty
- Center for Biomedical Engineering and Rehabilitation Science, Louisiana Tech University, Ruston, LA, United States
| | - Gaurab Dutta
- Institute for Micromanufacturing, Louisiana Tech University, Ruston, LA, United States
| | - Teresa A Murray
- Center for Biomedical Engineering and Rehabilitation Science, Louisiana Tech University, Ruston, LA, United States
| | - Shabnam Siddiqui
- Center for Biomedical Engineering and Rehabilitation Science, Louisiana Tech University, Ruston, LA, United States
| | - Leonidas Iasemidis
- Center for Biomedical Engineering and Rehabilitation Science, Louisiana Tech University, Ruston, LA, United States
| | - Prabhu U Arumugam
- Institute for Micromanufacturing, Louisiana Tech University, Ruston, LA, United States.,Center for Biomedical Engineering and Rehabilitation Science, Louisiana Tech University, Ruston, LA, United States
| |
Collapse
|