1
|
Meng H, Wei Y, Feng L. A microchip gas chromatography column assembly with a 3D metal printing micro column oven and a flexible stainless-steel column. J Chromatogr A 2024; 1729:465036. [PMID: 38843573 DOI: 10.1016/j.chroma.2024.465036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Revised: 05/25/2024] [Accepted: 05/29/2024] [Indexed: 06/17/2024]
Abstract
In this work, a microchip gas chromatography (GC) column assembly utilizing a three-dimensional (3D) printed micro oven and a flexible stainless steel capillary column was developed. The assembly's performance and separation capabilities were characterized. The key components include a 3D printed aluminum plate (7.50 × 7.50 × 0.16 cm) with a 3-meter-long circular spiral channel, serving as the oven, and the column coiled on the channel with an inner diameter of 320 μm and a stationary phase of OV-1. A heating ceramic plate was affixed on the opposite side of the plate. The assembly weighed 40.3 g. The design allows for easy disassembly, or stacking of heating devices and columns, enabling flexibility in adjusting column length. When using n-C13 as the test analyte at 140 °C, a retention factor (k) was 8.5, and 7797 plates (2599 plates/m) were obtained. The assembly, employing resistance heating, demonstrated effective separation performance for samples containing alkanes, aromatics, alcohols and ketones, with good reproducibility. The reduction in theoretical plates compared to oven heating was only 2.95 %. In the boiling point range of C6 to C18, rapid temperature programming (120 °C/min) was achieved with a power consumption of 119.512 W. The assembly was successfully employed to separate benzene series compounds, gasoline and volatile organic compounds (VOCs), demonstrating excellent separation performance. This innovative design addresses the challenges of the complexity and low repeatability of the fabrication process and the high cost associated with microchip columns. Furthermore, its versatility makes it suitable for outdoor analysis applications.
Collapse
Affiliation(s)
- Hu Meng
- Department of Instrumentation and Analytical Chemistry, CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences (CAS), Dalian 116023, PR China
| | - Yuyu Wei
- Department of Instrumentation and Analytical Chemistry, CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences (CAS), Dalian 116023, PR China
| | - Liang Feng
- Department of Instrumentation and Analytical Chemistry, CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences (CAS), Dalian 116023, PR China; Technology Innovation Center of Food Safety Technique of Inspection for State Market Regulation (Rapid Screening and Traceability for Edible Agricultural Product Safety), PR China.
| |
Collapse
|
2
|
Kaya K, Ebeoğlu MA. Development of a Neural Network for Target Gas Detection in Interdigitated Electrode Sensor-Based E-Nose Systems. SENSORS (BASEL, SWITZERLAND) 2024; 24:5315. [PMID: 39205009 PMCID: PMC11359916 DOI: 10.3390/s24165315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 08/10/2024] [Accepted: 08/14/2024] [Indexed: 09/04/2024]
Abstract
In this study, a neural network was developed for the detection of acetone, ethanol, chloroform, and air pollutant NO2 gases using an Interdigitated Electrode (IDE) sensor-based e-nose system. A bioimpedance spectroscopy (BIS)-based interface circuit was used to measure sensor responses in the e-nose system. The sensor was fed with a sinusoidal voltage at 10 MHz frequency and 0.707 V amplitude. Sensor responses were sampled at 100 Hz frequency and converted to digital data with 16-bit resolution. The highest change in impedance magnitude obtained in the e-nose system against chloroform gas was recorded as 24.86 Ω over a concentration range of 0-11,720 ppm. The highest gas detection sensitivity of the e-nose system was calculated as 0.7825 Ω/ppm against 6.7 ppm NO2 gas. Before training with the neural network, data were filtered from noise using Kalman filtering. Principal Component Analysis (PCA) was applied to the improved signal data for dimensionality reduction, separating them from noise and outliers with low variance and non-informative characteristics. The neural network model created is multi-layered and employs the backpropagation algorithm. The Xavier initialization method was used for determining the initial weights of neurons. The neural network successfully classified NO2 (6.7 ppm), acetone (1820 ppm), ethanol (1820 ppm), and chloroform (1465 ppm) gases with a test accuracy of 87.16%. The neural network achieved this test accuracy in a training time of 239.54 milliseconds. As sensor sensitivity increases, the detection capability of the neural network also improves.
Collapse
Affiliation(s)
- Kadir Kaya
- Department of Electrical-Electronics Engineering, Dumlupınar University, Kutahya 43100, Turkey;
| | | |
Collapse
|
3
|
Creydt M, Fischer M. Food profiling goes green: Sustainable analysis strategies for food authentication. Electrophoresis 2024. [PMID: 39140227 DOI: 10.1002/elps.202400098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Revised: 08/04/2024] [Accepted: 08/04/2024] [Indexed: 08/15/2024]
Abstract
Omics technologies, such as genomics, proteomics, metabolomics, isotopolomics, and metallomics, are important tools for analytical verification of food authenticity. However, in many cases, their application requires the use of high-resolution technological platforms as well as careful consideration of sample collection, storage, preparation and, in particular, extraction. In this overview, the individual steps and disciplines are explained against the background of the term "Green Chemistry," and the various instrumental procedures for the respective omics disciplines are discussed. Furthermore, new approaches and developments are presented on how such analyses can be made sustainable in the future.
Collapse
Affiliation(s)
- Marina Creydt
- Hamburg School of Food Science-Institute of Food Chemistry, University of Hamburg, Hamburg, Germany
- Cluster of Excellence, Understanding Written Artefacts, University of Hamburg, Hamburg, Germany
| | - Markus Fischer
- Hamburg School of Food Science-Institute of Food Chemistry, University of Hamburg, Hamburg, Germany
- Cluster of Excellence, Understanding Written Artefacts, University of Hamburg, Hamburg, Germany
| |
Collapse
|
4
|
Xian RP, Brunet J, Huang Y, Wagner WL, Lee PD, Tafforeau P, Walsh CL. A closer look at high-energy X-ray-induced bubble formation during soft tissue imaging. JOURNAL OF SYNCHROTRON RADIATION 2024; 31:566-577. [PMID: 38682274 DOI: 10.1107/s160057752400290x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 04/02/2024] [Indexed: 05/01/2024]
Abstract
Improving the scalability of tissue imaging throughput with bright, coherent X-rays requires identifying and mitigating artifacts resulting from the interactions between X-rays and matter. At synchrotron sources, long-term imaging of soft tissues in solution can result in gas bubble formation or cavitation, which dramatically compromises image quality and integrity of the samples. By combining in-line phase-contrast imaging with gas chromatography in real time, we were able to track the onset and evolution of high-energy X-ray-induced gas bubbles in ethanol-embedded soft tissue samples for tens of minutes (two to three times the typical scan times). We demonstrate quantitatively that vacuum degassing of the sample during preparation can significantly delay bubble formation, offering up to a twofold improvement in dose tolerance, depending on the tissue type. However, once nucleated, bubble growth is faster in degassed than undegassed samples, indicating their distinct metastable states at bubble onset. Gas chromatography analysis shows increased solvent vaporization concurrent with bubble formation, yet the quantities of dissolved gasses remain unchanged. By coupling features extracted from the radiographs with computational analysis of bubble characteristics, we uncover dose-controlled kinetics and nucleation site-specific growth. These hallmark signatures provide quantitative constraints on the driving mechanisms of bubble formation and growth. Overall, the observations highlight bubble formation as a critical yet often overlooked hurdle in upscaling X-ray imaging for biological tissues and soft materials and we offer an empirical foundation for their understanding and imaging protocol optimization. More importantly, our approaches establish a top-down scheme to decipher the complex, multiscale radiation-matter interactions in these applications.
Collapse
Affiliation(s)
- R Patrick Xian
- Department of Mechanical Engineering, University College London, London, United Kingdom
| | - Joseph Brunet
- Department of Mechanical Engineering, University College London, London, United Kingdom
| | - Yuze Huang
- Department of Mechanical Engineering, University College London, London, United Kingdom
| | - Willi L Wagner
- Department of Diagnostic and Interventional Radiology, University Hospital Heidelberg, Heidelberg, Germany
| | - Peter D Lee
- Department of Mechanical Engineering, University College London, London, United Kingdom
| | - Paul Tafforeau
- European Synchrotron Radiation Facility, Grenoble, France
| | - Claire L Walsh
- Department of Mechanical Engineering, University College London, London, United Kingdom
| |
Collapse
|
5
|
Mao J, Atwa Y, Wu Z, McNeill D, Shakeel H. Identification of Different Classes of VOCs Based on Optical Emission Spectra Using a Dielectric Barrier Helium Plasma Coupled with a Mini Spectrometer. ACS MEASUREMENT SCIENCE AU 2024; 4:201-212. [PMID: 38645576 PMCID: PMC11027204 DOI: 10.1021/acsmeasuresciau.3c00066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 12/21/2023] [Accepted: 12/21/2023] [Indexed: 04/23/2024]
Abstract
In this study, a micro helium dielectric barrier discharge (μHDBD) plasma device fabricated using 3D printing and molding techniques was coupled with a mini spectrometer to detect and identify different classes of volatile organic compounds (VOCs) using optical emission spectrometry (OES). We tested 11 VOCs belonging to three different classes (straight-chain alkanes, aromatics, and polar organic compounds). Our results clearly demonstrate that the optical emission spectra of different classes of VOCs show clear differences, and therefore, can be used for identification. Additionally, the emission spectra of VOCs with a similar structure (such as n-pentane, n-hexane, n-heptane, n-octane, and n-nonane) have similar optical emission spectrum shape. Acetone and ethanol also have similar emission wavelengths, but they show different line intensities for the same concentrations. We also found that the side-chain group of aromatics will also affect the emission spectra even though they have a similar structure (all have a benzene ring). Moreover, our μHDBD-OES system can also identify multiple compounds in VOC mixtures. Our work also demonstrates the possibility of identifying different classes of VOCs by the OES shape.
Collapse
Affiliation(s)
- Jingqin Mao
- School
of Electronics, Electrical Engineering and Computer Science, Queen’s University Belfast, Belfast BT7 1NN, United Kingdom
| | - Yahya Atwa
- School
of Electronics, Electrical Engineering and Computer Science, Queen’s University Belfast, Belfast BT7 1NN, United Kingdom
| | - Zhenxun Wu
- Queen’s
Business School, Queen’s University
Belfast, Belfast BT7 1NN, United Kingdom
| | - David McNeill
- School
of Electronics, Electrical Engineering and Computer Science, Queen’s University Belfast, Belfast BT7 1NN, United Kingdom
| | - Hamza Shakeel
- School
of Electronics, Electrical Engineering and Computer Science, Queen’s University Belfast, Belfast BT7 1NN, United Kingdom
| |
Collapse
|
6
|
Rachkidi M, Michel A, Raffin G, Barattin R, Colinet E, Randon J. Characterization of semi-packed columns with different cross section in high-pressure gas chromatography. J Chromatogr A 2024; 1722:464869. [PMID: 38604057 DOI: 10.1016/j.chroma.2024.464869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 04/01/2024] [Accepted: 04/02/2024] [Indexed: 04/13/2024]
Abstract
Hydrodynamics, efficiency, and loading capacity of two semi-packed columns with different cross sections (NANO 315 µm x 18 µm; CAP 1000 µm x 28 µm) and similar pillar diameter and pillar-pillar distance (respectively 5 µm and 2.5 µm) have been compared in high-pressure gas chromatography. A flow prediction tool has been first designed to determine pressure variations and hold-up time across the chromatographic system taking into account the rectangular geometry of the ducts into the semi-packed columns. Intrinsic values of Height Equivalent to Theoretical Plate were determined for NANO and CAP columns using helium as carrier gas and similar values have been obtained (30 µm) for the two columns. Loading capacity of semi-packed columns were determined for decane at 70 °C using helium, and the highest value was obtained from CAP column (larger cross section and stationary phase content). Finally, significant HETP improvement (down to 15 µm) and peak shape were observed when carbon dioxide was used as carrier gas, suggesting mobile phase adsorption on stationary phase in high pressure conditions.
Collapse
Affiliation(s)
- Michel Rachkidi
- APIX Analytics, 38000 Grenoble, France; Universite Claude Bernard Lyon1, ISA, UMR 5280, CNRS, 5 rue de la Doua, 69100 Villeurbanne, France.
| | - Ambroisine Michel
- APIX Analytics, 38000 Grenoble, France; Universite Claude Bernard Lyon1, ISA, UMR 5280, CNRS, 5 rue de la Doua, 69100 Villeurbanne, France
| | - Guy Raffin
- Universite Claude Bernard Lyon1, ISA, UMR 5280, CNRS, 5 rue de la Doua, 69100 Villeurbanne, France
| | | | | | - Jérôme Randon
- Universite Claude Bernard Lyon1, ISA, UMR 5280, CNRS, 5 rue de la Doua, 69100 Villeurbanne, France
| |
Collapse
|
7
|
Fan CC, Wang CC, Lu CJ. A stamped aluminium gas chromatographic column disk employing directly grown anodic aluminium oxide stationary phase for the separation of aromatic and chlorinated compounds. Analyst 2024; 149:482-489. [PMID: 38059506 DOI: 10.1039/d3an01301d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/08/2023]
Abstract
In this study, mesoporous anodic aluminium oxide (AAO) with moderate polarity was used as a GC stationary phase to demonstrate the applicability to various compound species. The fluidic channel measured 6 meters in length and had a cross-section area of 0.127 mm2. The column disk measured 6.2 cm in diameter and was fabricated through a stamping process on an aluminium substrate. The AAO stationary phase was directly grown on the aluminium substrate through an anodization process using oxalic acid as the electrolyte. The pore size of the AAO stationary phase was approximately 50-70 nm, with film thicknesses ranging from 6-20 μm. AAO based on oxalic acid exhibited significantly reduced surface polarity, making it suitable for separating polarizable and slightly polar compounds. The theoretical plate number for benzene had reached 1800 plates per meter, and for n-butane, it had reached 2500 plates per meter. A complex mixture of 16 compounds spanning alkanes, olefins, aromatics, and chlorinated hydrocarbons was effectively separated in 8 minutes with the temperature programmed to 200 °C.
Collapse
Affiliation(s)
- Chih-Chieh Fan
- Department of Chemistry, National Taiwan Normal University, 88, Sec.4, Tingzhou Rd., 11677, Taipei, Taiwan.
| | - Chih-Chia Wang
- Department of Chemical and Materials Engineering, Chung-Cheng Institute of Technology, NDU, 75, Shiyuan Rd., Daxi Dist., Taoyuan City 335, Taiwan
| | - Chia-Jung Lu
- Department of Chemistry, National Taiwan Normal University, 88, Sec.4, Tingzhou Rd., 11677, Taipei, Taiwan.
| |
Collapse
|
8
|
Zhao X, Aridi R, Hume J, Subbiah S, Wu X, Chung H, Qin Y, Gianchandani YB. Automatic peak detection algorithm based on continuous wavelet transform for complex chromatograms from multi-detector micro-scale gas chromatographs. J Chromatogr A 2024; 1714:464582. [PMID: 38157665 DOI: 10.1016/j.chroma.2023.464582] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Revised: 12/12/2023] [Accepted: 12/14/2023] [Indexed: 01/03/2024]
Abstract
Peak detection for chromatograms, including the detection of peak retention times, peak start locations, and peak end locations, is an important processing step for extracting peak information that is used for chemical recognition. Compared to benchtop gas chromatographs, the chromatograms generated by microscale gas chromatographs (µGCs) often contain higher noise levels, peak overlap, peak asymmetry, and both positive and negative chromatographic peaks, increasing the challenges for peak detection. This paper reports an automatic peak detection algorithm based on continuous wavelet transform (CWT) for chromatograms generated by multi-detector µGCs. The relationship between chemical retention time and peak width is leveraged to differentiate chromatographic peaks from noise and baseline drift. Special features in the CWT coefficients are leveraged to detect peak overlap and asymmetry. For certain detectors that may generate positive and negative chromatographic peaks, the peaks cannot be independently detected reliably, but the peak information can be well extracted using peak information generated by other in-line single-polarity detectors. The implemented algorithm provided a true positive rate of 97.2 % and false discovery rate of 7.8 % for chromatograms generated by a µGC with three integrated detectors, two capacitive and one photoionization. The chromatograms included complex scenarios with positive and negative chromatographic peaks, up to five consecutive overlapping peaks, peak asymmetry factor up to 24, and signal-to-noise ratios spanning 9-2800.
Collapse
Affiliation(s)
- Xiangyu Zhao
- Department of Electrical Engineering and Computer Science, and Center for Wireless Integrated MicroSensing and Systems (WIMS(2)), University of Michigan, Ann Arbor, MI 48109, USA
| | - Ryan Aridi
- Department of Electrical Engineering and Computer Science, and Center for Wireless Integrated MicroSensing and Systems (WIMS(2)), University of Michigan, Ann Arbor, MI 48109, USA
| | - Jacob Hume
- Department of Electrical Engineering and Computer Science, and Center for Wireless Integrated MicroSensing and Systems (WIMS(2)), University of Michigan, Ann Arbor, MI 48109, USA
| | - Swetha Subbiah
- Department of Electrical Engineering and Computer Science, and Center for Wireless Integrated MicroSensing and Systems (WIMS(2)), University of Michigan, Ann Arbor, MI 48109, USA
| | - Xingqi Wu
- Department of Electrical Engineering and Computer Science, and Center for Wireless Integrated MicroSensing and Systems (WIMS(2)), University of Michigan, Ann Arbor, MI 48109, USA
| | - Hyunwon Chung
- Department of Electrical Engineering and Computer Science, and Center for Wireless Integrated MicroSensing and Systems (WIMS(2)), University of Michigan, Ann Arbor, MI 48109, USA
| | - Yutao Qin
- Department of Electrical Engineering and Computer Science, and Center for Wireless Integrated MicroSensing and Systems (WIMS(2)), University of Michigan, Ann Arbor, MI 48109, USA.
| | - Yogesh B Gianchandani
- Department of Electrical Engineering and Computer Science, and Center for Wireless Integrated MicroSensing and Systems (WIMS(2)), University of Michigan, Ann Arbor, MI 48109, USA.
| |
Collapse
|
9
|
Xu Q, Zhao X, Qin Y, Gianchandani YB. Control Software Design for a Multisensing Multicellular Microscale Gas Chromatography System. MICROMACHINES 2023; 15:95. [PMID: 38258214 PMCID: PMC10818470 DOI: 10.3390/mi15010095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 12/12/2023] [Accepted: 12/20/2023] [Indexed: 01/24/2024]
Abstract
Microscale gas chromatography (μGC) systems are miniaturized instruments that typically incorporate one or several microfabricated fluidic elements; such systems are generally well suited for the automated sampling and analysis of gas-phase chemicals. Advanced μGC systems may incorporate more than 15 elements and operate these elements in different coordinated sequences to execute complex operations. In particular, the control software must manage the sampling and analysis operations of the μGC system in a time-sensitive manner; while operating multiple control loops, it must also manage error conditions, data acquisition, and user interactions when necessary. To address these challenges, this work describes the investigation of multithreaded control software and its evaluation with a representative μGC system. The μGC system is based on a progressive cellular architecture that uses multiple μGC cells to efficiently broaden the range of chemical analytes, with each cell incorporating multiple detectors. Implemented in Python language version 3.7.3 and executed by an embedded single-board computer, the control software enables the concurrent control of heaters, pumps, and valves while also gathering data from thermistors, pressure sensors, capacitive detectors, and photoionization detectors. A graphical user interface (UI) that operates on a laptop provides visualization of control parameters in real time. In experimental evaluations, the control software provided successful operation and readout for all the components, including eight sets of thermistors and heaters that form temperature feedback loops, two sets of pressure sensors and tunable gas pumps that form pressure head feedback loops, six capacitive detectors, three photoionization detectors, six valves, and an additional fixed-flow gas pump. A typical run analyzing 18 chemicals is presented. Although the operating system does not guarantee real-time operation, the relative standard deviations of the control loop timings were <0.5%. The control software successfully supported >1000 μGC runs that analyzed various chemical mixtures.
Collapse
Affiliation(s)
- Qu Xu
- Center for Wireless Integrated MicroSensing and Systems (WIMS), University of Michigan, Ann Arbor, MI 48109, USA; (Q.X.); (X.Z.)
- Department of Integrative Systems + Design, University of Michigan, Ann Arbor, MI 48109, USA
| | - Xiangyu Zhao
- Center for Wireless Integrated MicroSensing and Systems (WIMS), University of Michigan, Ann Arbor, MI 48109, USA; (Q.X.); (X.Z.)
- Department of Electrical Engineering and Computer Science, University of Michigan, Ann Arbor, MI 48109, USA
| | - Yutao Qin
- Center for Wireless Integrated MicroSensing and Systems (WIMS), University of Michigan, Ann Arbor, MI 48109, USA; (Q.X.); (X.Z.)
- Department of Electrical Engineering and Computer Science, University of Michigan, Ann Arbor, MI 48109, USA
| | - Yogesh B. Gianchandani
- Center for Wireless Integrated MicroSensing and Systems (WIMS), University of Michigan, Ann Arbor, MI 48109, USA; (Q.X.); (X.Z.)
- Department of Electrical Engineering and Computer Science, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
10
|
Zhang D, Zhu Y, Jin Y, Chen B, Zhao B, Li L, Zhou H, Li X, Zheng D, Feng F. Micro gas chromatographic column with copper benzene-1,3,5-tricarboxylate modified by multilayer fluorinated graphene as a stationary phase. J Chromatogr A 2023; 1710:464418. [PMID: 37797421 DOI: 10.1016/j.chroma.2023.464418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Revised: 09/21/2023] [Accepted: 09/26/2023] [Indexed: 10/07/2023]
Abstract
A composite material was synthesized at room temperature by performing modification of the copper benzene-1,3,5-tricarboxylate (HKUST-1) metal-organic framework material by multilayer fluorinated graphene (FG). The FG-HKUST-1 composite was used as a stationary phase for a micro gas chromatography column (μGCC) fabricated using micro-electro-mechanical system (MEMS) technology. The separation results showed that the μGCC with the FG-HKUST-1 composite stationary phase achieved a baseline separation of C1-C4 in 8 min. The retention factors for C2-C4 were 2.13, 7.14, and 12.04, respectively. The maximum relative standard deviation (RSD) of the retention times was 0.14 %. The difference in the retention time between methane and ethane was 1.11 min, with a resolution of 9.2 for methane and ethane. The retention factor of ethane and the resolution of methane and ethane were increased by 166 % and 114 %. Therefore, this μGCC is promising for separating light hydrocarbons with widely differing concentrations.
Collapse
Affiliation(s)
- Di Zhang
- State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, China; Shanghai Institute of Technology, Shanghai 201418, China
| | - Yuchen Zhu
- State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, China; Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yan Jin
- State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, China; Shanghai Institute of Technology, Shanghai 201418, China
| | - Boxin Chen
- State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, China; Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Bin Zhao
- State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, China
| | - Lei Li
- State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, China
| | - Haimei Zhou
- State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, China
| | - Xinxin Li
- State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, China
| | - Dan Zheng
- Shanghai Institute of Technology, Shanghai 201418, China
| | - Fei Feng
- State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, China; Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
11
|
Moeini B, Pinder JW, Avval TG, Jacobsen C, Brongersma HH, Průša S, Bábík P, Vaníčková E, Argyle MD, Strohmeier BR, Jones B, Shollenberger D, Bell DS, Linford MR. Controlling the surface silanol density in capillary columns and planar silicon via the self-limiting, gas-phase deposition of tris(dimethylamino)methylsilane, and quantification of surface silanols after silanization by low energy ion scattering. J Chromatogr A 2023; 1707:464248. [PMID: 37598532 DOI: 10.1016/j.chroma.2023.464248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Revised: 07/25/2023] [Accepted: 07/27/2023] [Indexed: 08/22/2023]
Abstract
Surface silanols (Si-OH) play a vital role on fused silica surfaces in chromatography. Here, we used an atmospheric-pressure, gas-phase reactor to modify the inner surface of a gas chromatography, fused silica capillary column (0.53 mm ID) with a small, reactive silane (tris(dimethylamino)methylsilane, TDMAMS). The deposition of TDMAMS on planar witness samples around the capillary was confirmed with X-ray photoelectron spectroscopy (XPS), ex situ spectroscopic ellipsometry (SE), and wetting. The number of surface silanols on unmodified and TDMAMS-modified native oxide-terminated silicon were quantified by tagging with dimethylzinc (DMZ) via atomic layer deposition (ALD) and counting the resulting zinc atoms with high sensitivity-low energy ion scattering (HS-LEIS). A bare, clean native oxide - terminated silicon wafer has 3.66 OH/nm2, which agrees with density functional theory (DFT) calculations from the literature. After TDMAMS modification of native oxide-terminated silicon, the number of surface silanols decreases by a factor of ca. 10 (to 0.31 OH/nm2). Intermediate surface testing (IST) was used to characterize the surface activities of functionalized capillaries. It suggested a significant deactivation/passivation of the capillary with some surface silanols remaining; the modified capillary shows significant deactivation compared to the native/unmodified fused silica tubing. We believe that this methodology for determining the number of residual silanols on silanized fused silica will be enabling for chromatography.
Collapse
Affiliation(s)
- Behnam Moeini
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT 84602, USA
| | - Joshua W Pinder
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT 84602, USA
| | - Tahereh G Avval
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT 84602, USA
| | - Collin Jacobsen
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT 84602, USA
| | - Hidde H Brongersma
- Department of Applied Physics, Eindhoven University of Technology, 5600 MB Eindhoven, the Netherlands
| | - Stanislav Průša
- Institute of Physical Engineering, Brno University of Technology, Technická 2, Brno 616 69, Czech Republic; CEITEC BUT, Brno University of Technology, Purkyňova 123, 612 00 Brno, Czech Republic
| | - Pavel Bábík
- Institute of Physical Engineering, Brno University of Technology, Technická 2, Brno 616 69, Czech Republic; CEITEC BUT, Brno University of Technology, Purkyňova 123, 612 00 Brno, Czech Republic
| | - Elena Vaníčková
- Institute of Physical Engineering, Brno University of Technology, Technická 2, Brno 616 69, Czech Republic; CEITEC BUT, Brno University of Technology, Purkyňova 123, 612 00 Brno, Czech Republic
| | - Morris D Argyle
- Department of Chemical Engineering, Brigham Young University, Provo, UT 84602, USA
| | - Brian R Strohmeier
- Materials Group, Avery Dennison Corp., 8080 Norton Parkway, Mentor, OH 44060, USA
| | - Brian Jones
- Restek Corporation, 110 Benner Circle, Bellefonte, PA 16823, USA
| | | | - David S Bell
- Restek Corporation, 110 Benner Circle, Bellefonte, PA 16823, USA
| | - Matthew R Linford
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT 84602, USA.
| |
Collapse
|
12
|
Thamatam N, Ahn J, Chowdhury M, Sharma A, Gupta P, Marr LC, Nazhandali L, Agah M. A MEMS-enabled portable gas chromatography injection system for trace analysis. Anal Chim Acta 2023; 1261:341209. [PMID: 37147055 DOI: 10.1016/j.aca.2023.341209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 03/18/2023] [Accepted: 04/10/2023] [Indexed: 05/07/2023]
Abstract
Growing concerns about environmental conditions, public health, and disease diagnostics have led to the rapid development of portable sampling techniques to characterize trace-level volatile organic compounds (VOCs) from various sources. A MEMS-based micropreconcentrator (μPC) is one such approach that drastically reduces the size, weight, and power constraints offering greater sampling flexibility in many applications. However, the adoption of μPCs on a commercial scale is hindered by a lack of thermal desorption units (TDUs) that easily integrate μPCs with gas chromatography (GC) systems equipped with a flame ionization detector (FID) or a mass spectrometer (MS). Here, we report a highly versatile μPC-based, single-stage autosampler-injection unit for traditional, portable, and micro-GCs. The system uses μPCs packaged in 3D-printed swappable cartridges and is based on a highly modular interfacing architecture that allows easy-to-remove, gas-tight fluidic, and detachable electrical connections (FEMI). This study describes the FEMI architecture and demonstrates the FEMI-Autosampler (FEMI-AS) prototype (9.5 cm × 10 cm x 20 cm, ≈500 gms). The system was integrated with GC-FID, and the performance was investigated using synthetic gas samples and ambient air. The results were contrasted with the sorbent tube sampling technique using TD-GC-MS. FEMI-AS could generate sharp injection plugs (≈240 ms) and detect analytes with concentrations <15 ppb within 20 s and <100 ppt within 20 min of sampling time. With more than 30 detected trace-level compounds from ambient air, the demonstrated FEMI-AS, and the FEMI architecture significantly accelerate the adoption of μPCs on a broader scale.
Collapse
Affiliation(s)
- Nipun Thamatam
- VT MEMS Lab, The Bradley Department of Electrical and Computer Engineering, Virginia Polytechnic Institute and State University, Blacksburg, VA, 24061, United States
| | - Jeonghyeon Ahn
- VT MEMS Lab, The Bradley Department of Electrical and Computer Engineering, Virginia Polytechnic Institute and State University, Blacksburg, VA, 24061, United States; Department of Civil and Environmental Engineering, Virginia Polytechnic Institute and State University, Blacksburg, VA, 24061, United States
| | - Mustahsin Chowdhury
- VT MEMS Lab, The Bradley Department of Electrical and Computer Engineering, Virginia Polytechnic Institute and State University, Blacksburg, VA, 24061, United States
| | - Arjun Sharma
- CESCA, The Bradley Department of Electrical and Computer Engineering, Virginia Polytechnic Institute and State University, Blacksburg, VA, 24061, United States
| | - Poonam Gupta
- CESCA, The Bradley Department of Electrical and Computer Engineering, Virginia Polytechnic Institute and State University, Blacksburg, VA, 24061, United States
| | - Linsey C Marr
- Department of Civil and Environmental Engineering, Virginia Polytechnic Institute and State University, Blacksburg, VA, 24061, United States
| | - Leyla Nazhandali
- CESCA, The Bradley Department of Electrical and Computer Engineering, Virginia Polytechnic Institute and State University, Blacksburg, VA, 24061, United States
| | - Masoud Agah
- VT MEMS Lab, The Bradley Department of Electrical and Computer Engineering, Virginia Polytechnic Institute and State University, Blacksburg, VA, 24061, United States.
| |
Collapse
|
13
|
Rachkidi M, Alonso-Sobrado L, Raffin G, Colinet E, Randon J. Dual detection chromatographic method for fast characterization of nano-gravimetric detector. Talanta 2023; 257:124359. [PMID: 36801761 DOI: 10.1016/j.talanta.2023.124359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 02/08/2023] [Accepted: 02/11/2023] [Indexed: 02/17/2023]
Abstract
Nano-gravimetric detector (NGD) has been recently introduced as miniaturized gas chromatography detector. The NGD response is based on an adsorption-desorption mechanism of compounds between the gaseous phase and the NGD porous oxide layer. The NGD response was characterized by hyphenating NGD in-line with FID detector and a chromatographic column. Such method led to the full adsorption-desorption isotherms of several compounds in a single run. Langmuir model was used to describe the experimental isotherms, and the initial slope of the isotherm (Mm.KT) obtained at low gas concentration was used to compare the NGD response for different compounds (good repeatability was demonstrated with a relative standard deviation lower than 3%). The column-NGD-FID hyphenated method was validated using alkane compounds according to the number of carbon atoms in the alkyl chain and to the NGD temperature (all results agreed with thermodynamic relations associated to partition coefficient). Furthermore, relative response factor to alkanes, for ketones, alkylbenzenes, and fatty acid methyl esters have been obtained. These relative response index values led to easier calibration of NGD. The established methodology can be used for any sensor characterization based on adsorption mechanism.
Collapse
Affiliation(s)
- Michel Rachkidi
- APIX Analytics, 38000, Grenoble, France; Université de Lyon, CNRS, Université Claude Bernard Lyon 1, Institut des Sciences Analytiques, UMR 5280, F-69100, Villeurbanne, France.
| | | | - Guy Raffin
- Université de Lyon, CNRS, Université Claude Bernard Lyon 1, Institut des Sciences Analytiques, UMR 5280, F-69100, Villeurbanne, France
| | | | - Jérôme Randon
- Université de Lyon, CNRS, Université Claude Bernard Lyon 1, Institut des Sciences Analytiques, UMR 5280, F-69100, Villeurbanne, France
| |
Collapse
|
14
|
Gozdzialski L, Wallace B, Hore D. Point-of-care community drug checking technologies: an insider look at the scientific principles and practical considerations. Harm Reduct J 2023; 20:39. [PMID: 36966319 PMCID: PMC10039693 DOI: 10.1186/s12954-023-00764-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Accepted: 03/07/2023] [Indexed: 03/27/2023] Open
Abstract
Drug checking is increasingly being explored outside of festivals and events to be an ongoing service within communities, frequently integrated within responses to illicit drug overdose. The choice of instrumentation is a common question, and the demands on these chemical analytical instruments can be challenging as illicit substances may be more complex and include highly potent ingredients at trace levels. The answer remains nuanced as the instruments themselves are not directly comparable nor are the local demands on the service, meaning implementation factors heavily influence the assessment and effectiveness of instruments. In this perspective, we provide a technical but accessible introduction to the background of a few common drug checking methods aimed at current and potential drug checking service providers. We discuss the following tools that have been used as part of the Vancouver Island Drug Checking Project in Victoria, Canada: immunoassay test strips, attenuated total reflection IR-absorption spectroscopy, Raman spectroscopy from powder samples, surface-enhanced Raman scattering in a solution of colloidal gold nanoparticles, and gas chromatography-mass spectrometry. Using four different drug mixtures received and tested at the service, we illustrate the strengths, limitations, and capabilities of such instruments, and expose the scientific theory to give further insight into their analytical results. Each case study provides a walk-through-style analysis for a practical comparison between data from several different instruments acquired on the same sample. Ideally, a single instrument would be able to achieve all of the objectives of drug checking. However, there is no clear instrument that ticks every box; low cost, portable, rapid, easy-to-use and provides highly sensitive identification and accurate quantification. Multi-instrument approaches to drug checking may be required to effectively respond to increasingly complex and highly potent substances demanding trace level detection and the potential for quantification.
Collapse
Affiliation(s)
- Lea Gozdzialski
- Department of Chemistry, University of Victoria, Victoria, V8W 3V6, Canada
| | - Bruce Wallace
- School of Social Work, University of Victoria, Victoria, V8W 2Y2, Canada
- Canadian Institute for Substance Use Research, University of Victoria, Victoria, V8W 2Y2, Canada
| | - Dennis Hore
- Department of Chemistry, University of Victoria, Victoria, V8W 3V6, Canada.
- Canadian Institute for Substance Use Research, University of Victoria, Victoria, V8W 2Y2, Canada.
- Department of Computer Science, University of Victoria, Victoria, V8W 3P6, Canada.
| |
Collapse
|
15
|
Epping R, Koch M. On-Site Detection of Volatile Organic Compounds (VOCs). Molecules 2023; 28:1598. [PMID: 36838585 PMCID: PMC9966347 DOI: 10.3390/molecules28041598] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 02/03/2023] [Accepted: 02/05/2023] [Indexed: 02/11/2023] Open
Abstract
Volatile organic compounds (VOCs) are of interest in many different fields. Among them are food and fragrance analysis, environmental and atmospheric research, industrial applications, security or medical and life science. In the past, the characterization of these compounds was mostly performed via sample collection and off-site analysis with gas chromatography coupled to mass spectrometry (GC-MS) as the gold standard. While powerful, this method also has several drawbacks such as being slow, expensive, and demanding on the user. For decades, intense research has been dedicated to find methods for fast VOC analysis on-site with time and spatial resolution. We present the working principles of the most important, utilized, and researched technologies for this purpose and highlight important publications from the last five years. In this overview, non-selective gas sensors, electronic noses, spectroscopic methods, miniaturized gas chromatography, ion mobility spectrometry and direct injection mass spectrometry are covered. The advantages and limitations of the different methods are compared. Finally, we give our outlook into the future progression of this field of research.
Collapse
Affiliation(s)
- Ruben Epping
- Division of Organic Trace and Food Analysis, Bundesanstalt für Materialforschung und -Prüfung, 12489 Berlin, Germany
| | - Matthias Koch
- Division of Organic Trace and Food Analysis, Bundesanstalt für Materialforschung und -Prüfung, 12489 Berlin, Germany
| |
Collapse
|
16
|
Liao W, Winship D, Lara-Ibeas I, Zhao X, Xu Q, Lu HT, Qian T, Gordenker R, Qin Y, Gianchandani YB. Highly Integrated μGC Based on a Multisensing Progressive Cellular Architecture with a Valveless Sample Inlet. Anal Chem 2023; 95:2157-2167. [PMID: 36637876 DOI: 10.1021/acs.analchem.2c01818] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Microscale gas chromatographs (μGCs) promise in-field analysis of volatile organic compounds (VOCs) in environmental and industrial monitoring, healthcare, and homeland security applications. As a step toward addressing challenges with performance and manufacturability, this study reports a highly integrated monolithic chip implementing a multisensing progressive cellular architecture. This architecture incorporates three μGC cells that are customized for different ranges of analyte volatility; each cell includes a preconcentrator and separation column, two complementary capacitive detectors, and a photoionization detector (PID). An on-chip carrier gas filter scrubs ambient air for the analysis. The monolithic chip, with all 16 components, is 40.3 × 55.7 mm2 in footprint. To accommodate surface adsorptive and low-volatility analytes, the architecture eliminates the commonly used inlet valve, eliminating the need for chemically inactive surfaces in the valves and pumps, allowing the use of standard parts. Representative analysis is demonstrated from a nonpolar 14-analyte mixture, a polar 12-analyte mixture, and a 3-phosphonate ester mixture, covering a wide vapor pressure range (0.005-68.5 kPa) and dielectric constant range (1.8-23.2). The three types of detectors show highly complementary responses. Quantitative analysis is shown in the tens to hundreds ppb range. With 200 mL samples, the projected detection limits reach 0.12-4.7 ppb. Limited tests performed at 80% humidity showed that the analytes with vapor pressures <12 kPa were unaffected. A typical full run takes 28 min and consumes 2.3 kJ energy for the fluidic elements (excluding electronics). By eliminating chip-to-chip fluidic interconnections and requiring just one custom-fabricated element, this work presents a path toward high-performance and highly manufacturable μGCs.
Collapse
Affiliation(s)
- Weilin Liao
- Department of Electrical Engineering and Computer Science, Center for Wireless Integrated MicroSensing and Systems (WIMS2), University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Declan Winship
- Department of Electrical Engineering and Computer Science, Center for Wireless Integrated MicroSensing and Systems (WIMS2), University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Irene Lara-Ibeas
- Department of Electrical Engineering and Computer Science, Center for Wireless Integrated MicroSensing and Systems (WIMS2), University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Xiangyu Zhao
- Department of Electrical Engineering and Computer Science, Center for Wireless Integrated MicroSensing and Systems (WIMS2), University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Qu Xu
- Department of Integrative Systems + Design, Center for Wireless Integrated MicroSensing and Systems (WIMS2), University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Hsueh-Tsung Lu
- Department of Mechanical Engineering, Center for Wireless Integrated MicroSensing and Systems (WIMS2), University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Tao Qian
- Department of Electrical Engineering and Computer Science, Center for Wireless Integrated MicroSensing and Systems (WIMS2), University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Robert Gordenker
- Department of Electrical Engineering and Computer Science, Center for Wireless Integrated MicroSensing and Systems (WIMS2), University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Yutao Qin
- Department of Electrical Engineering and Computer Science, Center for Wireless Integrated MicroSensing and Systems (WIMS2), University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Yogesh B Gianchandani
- Department of Mechanical Engineering, Center for Wireless Integrated MicroSensing and Systems (WIMS2), University of Michigan, Ann Arbor, Michigan 48109, United States.,Department of Electrical Engineering and Computer Science, University of Michigan, Ann Arbor, Michigan 48109, United States
| |
Collapse
|
17
|
Wang J, Pursell ME, DeVor A, Awoyemi O, Valentine SJ, Li P. Portable mass spectrometry system: instrumentation, applications, and path to 'omics analysis. Proteomics 2022; 22:e2200112. [PMID: 36349734 PMCID: PMC10278091 DOI: 10.1002/pmic.202200112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 10/27/2022] [Accepted: 10/28/2022] [Indexed: 11/11/2022]
Abstract
Mass spectrometry (MS) is an information rich analytical technique and plays a key role in various 'omics studies. Standard mass spectrometers are bulky and operate at high vacuum, which hinder their adoption by the broader community and utility in field applications. Developing portable mass spectrometers can significantly expand the application scope and user groups of MS analysis. This review discusses the basics and recent advancements in the development of key components of portable mass spectrometers including ionization source, mass analyzer, detector, and vacuum system. Further, major areas where portable mass spectrometers are applied are also discussed. Finally, a perspective on the further development of portable mass spectrometers including the potential benefits for 'omics analysis is provided.
Collapse
Affiliation(s)
- Jing Wang
- C. Eugene Bennett Department of Chemistry, West Virginia University, Morgantown, WV, USA
| | - Madison E. Pursell
- C. Eugene Bennett Department of Chemistry, West Virginia University, Morgantown, WV, USA
| | - Amanda DeVor
- C. Eugene Bennett Department of Chemistry, West Virginia University, Morgantown, WV, USA
| | - Olanrewaju Awoyemi
- C. Eugene Bennett Department of Chemistry, West Virginia University, Morgantown, WV, USA
| | - Stephen J. Valentine
- C. Eugene Bennett Department of Chemistry, West Virginia University, Morgantown, WV, USA
| | - Peng Li
- C. Eugene Bennett Department of Chemistry, West Virginia University, Morgantown, WV, USA
| |
Collapse
|
18
|
Crucello J, de Oliveira AM, Sampaio NMFM, Hantao LW. Miniaturized systems for gas chromatography: Developments in sample preparation and instrumentation. J Chromatogr A 2022; 1685:463603. [DOI: 10.1016/j.chroma.2022.463603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 10/07/2022] [Accepted: 10/23/2022] [Indexed: 11/07/2022]
|
19
|
Huang X, Li MWH, Zang W, Huang X, Sivakumar AD, Sharma R, Fan X. Portable comprehensive two-dimensional micro-gas chromatography using an integrated flow-restricted pneumatic modulator. MICROSYSTEMS & NANOENGINEERING 2022; 8:115. [PMID: 36329696 PMCID: PMC9622416 DOI: 10.1038/s41378-022-00452-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 08/09/2022] [Accepted: 09/06/2022] [Indexed: 06/07/2023]
Abstract
Two-dimensional (2D) gas chromatography (GC) provides enhanced vapor separation capabilities in contrast to conventional one-dimensional GC and is useful for the analysis of highly complex chemical samples. We developed a microfabricated flow-restricted pneumatic modulator (FRPM) for portable comprehensive 2D micro-GC (μGC), which enables rapid 2D injection and separation without compromising the 1D separation speed and eluent peak profiles. 2D injection characteristics such as injection peak width and peak height were fully characterized by using flow-through micro-photoionization detectors (μPIDs) at the FRPM inlet and outlet. A 2D injection peak width of ~25 ms could be achieved with a 2D/1D flow rate ratio over 10. The FRPM was further integrated with a 0.5-m long 2D μcolumn on the same chip, and its performance was characterized. Finally, we developed an automated portable comprehensive 2D μGC consisting of a 10 m OV-1 1D μcolumn, an integrated FRPM with a built-in 0.5 m polyethylene glycol 2D μcolumn, and two μPIDs. Rapid separation of 40 volatile organic compounds in ~5 min was demonstrated. A hybrid 2D contour plot was constructed by using both 1D and 2D chromatograms obtained with the two μPIDs at the end of the 1D and 2D μcolumns, which was enabled by the presence of the flow resistor in the FRPM.
Collapse
Affiliation(s)
- Xiaheng Huang
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109 USA
- Department of Electrical Engineering and Computer Science, University of Michigan, Ann Arbor, MI 48109 USA
- Center for Wireless Integrated MicroSensing and Systems (WIMS2), University of Michigan, Ann Arbor, MI 48109 USA
- Max Harry Weil Institute for Critical Care Research and InnovationUniversity of Michigan, Ann Arbor, MI 48109 USA
| | - Maxwell Wei-hao Li
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109 USA
- Department of Electrical Engineering and Computer Science, University of Michigan, Ann Arbor, MI 48109 USA
- Center for Wireless Integrated MicroSensing and Systems (WIMS2), University of Michigan, Ann Arbor, MI 48109 USA
- Max Harry Weil Institute for Critical Care Research and InnovationUniversity of Michigan, Ann Arbor, MI 48109 USA
| | - Wenzhe Zang
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109 USA
- Center for Wireless Integrated MicroSensing and Systems (WIMS2), University of Michigan, Ann Arbor, MI 48109 USA
| | - Xiaolu Huang
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109 USA
- Center for Wireless Integrated MicroSensing and Systems (WIMS2), University of Michigan, Ann Arbor, MI 48109 USA
- Max Harry Weil Institute for Critical Care Research and InnovationUniversity of Michigan, Ann Arbor, MI 48109 USA
| | - Anjali Devi Sivakumar
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109 USA
- Department of Electrical Engineering and Computer Science, University of Michigan, Ann Arbor, MI 48109 USA
- Center for Wireless Integrated MicroSensing and Systems (WIMS2), University of Michigan, Ann Arbor, MI 48109 USA
- Max Harry Weil Institute for Critical Care Research and InnovationUniversity of Michigan, Ann Arbor, MI 48109 USA
| | - Ruchi Sharma
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109 USA
- Center for Wireless Integrated MicroSensing and Systems (WIMS2), University of Michigan, Ann Arbor, MI 48109 USA
- Max Harry Weil Institute for Critical Care Research and InnovationUniversity of Michigan, Ann Arbor, MI 48109 USA
| | - Xudong Fan
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109 USA
- Center for Wireless Integrated MicroSensing and Systems (WIMS2), University of Michigan, Ann Arbor, MI 48109 USA
- Max Harry Weil Institute for Critical Care Research and InnovationUniversity of Michigan, Ann Arbor, MI 48109 USA
| |
Collapse
|
20
|
Sun X, Hu J, Yan X, Li T, Chang Y, Qu H, Pang W, Duan X. On-Chip Monolithic Integrated Multimode Carbon Nanotube Sensor for a Gas Chromatography Detector. ACS Sens 2022; 7:3049-3056. [PMID: 36227068 DOI: 10.1021/acssensors.2c01359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Carbon nanotube (CNT)-based chemiresistors are promising gas detectors for gas chromatography (GC) due to their intrinsic nanoscale porosity and excellent electrical conductivity. However, fabrication reproducibility, long desorption time, limited sensitivity, and low dynamic range limit their usage in real applications. This paper reports a novel on-chip monolithic integrated multimode CNT sensor, where a micro-electro-mechanical system-based bulk acoustic wave (BAW) resonator is embedded underneath a CNT chemiresistor. The device fabrication repeatability was improved by on-site monitoring of CNT deposition using BAW. We found that the acoustic stimulation can accelerate the gas desorption rate from the CNT surface, which solves the slow desorption issue. Due to the different sensing mechanisms, the multimode CNT sensor provides complementary responses to targets with improved sensitivity and dynamic range compared to a single mode detector. A prototype of a chromatographic system using the multimode CNT sensor was prepared by dedicated design of the connection between the device and the separation column. Such a GC system is used for the quantitative identification of a gas mixture at different GC conditions, which proves the feasibility of the multimode CNT detector for chromatographic analysis. The as-developed CMOS compatible multimode CNT sensor offers high sensing performance, miniaturized size, and low power consumption, which are critical for developing portable GC.
Collapse
Affiliation(s)
- Xueyou Sun
- State Key Laboratory of Precision Measuring Technology and Instruments, Tianjin University, Tianjin300072, China
| | - Jizhou Hu
- State Key Laboratory of Precision Measuring Technology and Instruments, Tianjin University, Tianjin300072, China
| | - Xu Yan
- State Key Laboratory of Precision Measuring Technology and Instruments, Tianjin University, Tianjin300072, China
| | - Tiechuan Li
- State Key Laboratory of Precision Measuring Technology and Instruments, Tianjin University, Tianjin300072, China
| | - Ye Chang
- State Key Laboratory of Precision Measuring Technology and Instruments, Tianjin University, Tianjin300072, China
| | - Hemi Qu
- State Key Laboratory of Precision Measuring Technology and Instruments, Tianjin University, Tianjin300072, China
| | - Wei Pang
- College of Precision Instrument and Opto-electronics Engineering, Tianjin University, Tianjin300072, China
| | - Xuexin Duan
- State Key Laboratory of Precision Measuring Technology and Instruments, Tianjin University, Tianjin300072, China
| |
Collapse
|
21
|
Fan CC, Liu YH, Lu CJ. Separation of C1–C15 Alkanes with a Disk-Shaped Aluminum Column Employing Mesoporous AAO as the Stationary Phase. Anal Chem 2022; 94:15570-15577. [DOI: 10.1021/acs.analchem.1c05479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Chih-Chieh Fan
- Department of Chemistry, National Taiwan Normal University, Taipei 11677, Taiwan
| | - Yi-Hsin Liu
- Department of Chemistry, National Taiwan Normal University, Taipei 11677, Taiwan
| | - Chia-Jung Lu
- Department of Chemistry, National Taiwan Normal University, Taipei 11677, Taiwan
| |
Collapse
|
22
|
Meng SS, Han T, Gu YH, Zeng C, Tang WQ, Xu M, Gu ZY. Enhancing Separation Abilities of "Low-Performance" Metal-Organic Framework Stationary Phases through Size Control. Anal Chem 2022; 94:14251-14256. [PMID: 36194134 DOI: 10.1021/acs.analchem.2c02575] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Peak broadening and peak tailing are common but rebarbative phenomena that always occur when using metal-organic frameworks (MOFs) as stationary phases. These phenomena result in diverse "low-performance" MOF stationary phases. Here, by adjusting the particle size of MOF stationary phases from microscale to nanoscale, we successfully enhance the separation abilities of these "low-performance" MOFs. Three zirconium-based MOFs (NU-1000, PCN-608, and PCN-222) with different organic ligands were synthesized with sizes of tens of micrometers and hundreds of nanometers, respectively. All the nanoscale MOFs exhibited exceedingly higher separation abilities than the respective microscale MOFs. The mechanism investigation proved that reducing the particle size can reduce the mass transfer resistance, thus enhancing the column efficiency by controlling the separation kinetics. Modulating the particle size of MOFs is an efficient way to enhance the separation capability of "low-performance" MOFs and to design high-performance MOF stationary phases.
Collapse
Affiliation(s)
- Sha-Sha Meng
- Jiangsu Key Laboratory of Biofunctional Materials, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of New Power Batteries, College of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| | - Ting Han
- Jiangsu Key Laboratory of Biofunctional Materials, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of New Power Batteries, College of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| | - Yu-Hao Gu
- Jiangsu Key Laboratory of Biofunctional Materials, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of New Power Batteries, College of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| | - Chu Zeng
- Jiangsu Key Laboratory of Biofunctional Materials, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of New Power Batteries, College of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| | - Wen-Qi Tang
- Jiangsu Key Laboratory of Biofunctional Materials, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of New Power Batteries, College of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| | - Ming Xu
- Jiangsu Key Laboratory of Biofunctional Materials, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of New Power Batteries, College of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| | - Zhi-Yuan Gu
- Jiangsu Key Laboratory of Biofunctional Materials, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of New Power Batteries, College of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| |
Collapse
|
23
|
Parittothok P, Poolwech C, Tanteng T, Wongwiwat J. Performance Improvement of Glass Microfiber Based Thermal Transpiration Pump Using TPMS. MICROMACHINES 2022; 13:1632. [PMID: 36295985 PMCID: PMC9608049 DOI: 10.3390/mi13101632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 09/11/2022] [Accepted: 09/12/2022] [Indexed: 06/16/2023]
Abstract
The Knudsen pump, known as a thermal transpiration membrane, is an air inducer that has been mostly studied for small-scale power generation devices. It is a porous medium that does not require any mechanically moving component, but rather uses the temperature gradient across two surfaces of the membrane to induce air from the colder side to the hotter side. If the temperature on the colder side of the membrane is reduced by a thermal guard, the pumping performance of the membrane seems to be improved. Therefore, the membrane integrating with TPMS structures as thermal guards for both experiment and simulation were conducted in this study. The results of flow rate and temperature distribution on the membrane surface were compared. Three characteristic parameters of the membrane, i.e., area factor, pore radius and permeability, were found and can be used in an equation to estimate the air flow rate through the membrane. Diamond was found to be the highest flow improvement while Primitive was the lowest flow improvement. The simulation results with varying %RD also supported that the contact area between the TPMS structure and the membrane inlet surface made Diamond conduct more heat out from the membrane surface than other TPMS structures.
Collapse
|
24
|
Lis H, Paszkiewicz M, Godlewska K, Maculewicz J, Kowalska D, Stepnowski P, Caban M. Ionic liquid-based functionalized materials for analytical chemistry. J Chromatogr A 2022; 1681:463460. [DOI: 10.1016/j.chroma.2022.463460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 08/26/2022] [Accepted: 08/29/2022] [Indexed: 11/25/2022]
|
25
|
The Application of In Situ Methods to Monitor VOC Concentrations in Urban Areas—A Bibliometric Analysis and Measuring Solution Review. SUSTAINABILITY 2022. [DOI: 10.3390/su14148815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Urbanisation development affects urban vegetation both directly and indirectly. Since this process usually involves a dramatic change in land use, it is seen as likely to cause ecological pressure on local ecosystems. All forms of human activity, including urbanisation of areas close to residential buildings, significantly impact air quality. This study aims to identify and characterise different measurement solutions of VOCs, allowing the quantification of total and selective compounds in a direct at source (in situ) manner. Portable devices for direct testing can generally be divided into detectors, chromatographs, and electronic noses. They differ in parameters such as operating principle, sensitivity, measurement range, response time, and selectivity. Direct research allows us to obtain measurement results in a short time, which is essential from the point of view of immediate reaction in the case of high concentrations of tested compounds and the possibility of ensuring the well-being of people. The paper also attempts to compare solutions and devices available on the market and assess their application.
Collapse
|
26
|
Wu X, Wang D, Shi L, Wang H, Wang J, Sun J, Li C, Tian X. A compact gas chromatography platform for detection of multicomponent volatile organic compounds biomarkers. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2022; 93:065003. [PMID: 35778009 DOI: 10.1063/5.0086618] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 05/21/2022] [Indexed: 06/15/2023]
Abstract
Some human exhaled volatile organic compounds (VOCs) can be employed to diagnose related human endogenous diseases as characteristic biomarkers, which is expected to be applied to rapid screening and grading because of their non-invasive and cost-effective advantages. In this study, we developed a compact gas chromatography (GC) platform mainly composed of an integrated silicon-based micro-column chip using micro-electromechanical system techniques and a miniaturized metal oxide semiconductor gas detector. In addition, the sampling/switching valve with related components and embedded microcontrollers was used for airflow control. The fabricated system selectively detected the five VOCs (pentane, acetone, toluene, octane, and decane) considered the typical endogenous disease biomarkers. In the experiments, the functional parameters of the system were investigated, and the optimum temperature conditions of the system for separation were determined. The results show that the system can successfully test the studied five VOCs as low as 1 ppm. In addition, the influence of interfering gas (carbon dioxide and ammonia) on the system for the VOC mixture is also investigated. Moreover, to prove the possibility of breath analysis of the fabricated system, the detection performance of isoprene and acetone at the ppb level is studied. Then, the concentration changes of the isoprene at the ppb concentration for human breath are successfully detected in the system. Therefore, we believe that the prepared compact GC system has potential applications in the human endogenous disease diagnosis for the VOC biomarkers.
Collapse
Affiliation(s)
- Xinyu Wu
- School of Mechanical Engineering, Xi'an Jiaotong University, Xi'an 710049, Shaanxi, China
| | - Dazuo Wang
- School of Mechanical Engineering, Xi'an Jiaotong University, Xi'an 710049, Shaanxi, China
| | - Lujia Shi
- School of Mechanical Engineering, Xi'an Jiaotong University, Xi'an 710049, Shaanxi, China
| | - Hairong Wang
- School of Mechanical Engineering, Xi'an Jiaotong University, Xi'an 710049, Shaanxi, China
| | - Jiuhong Wang
- School of Mechanical Engineering, Xi'an Jiaotong University, Xi'an 710049, Shaanxi, China
| | - Jianhai Sun
- State Key Laboratory of Transducer Technology, Institute of Electronics, Chinese Academy of Sciences, Beijing 100190, China
| | - Changqing Li
- School of Mechanical Engineering, Xi'an Jiaotong University, Xi'an 710049, Shaanxi, China
| | - Xin Tian
- School of Mechanical Engineering, Xi'an Jiaotong University, Xi'an 710049, Shaanxi, China
| |
Collapse
|
27
|
Duan C, Li J, Zhang Y, Ding K, Geng X, Guan Y. Portable instruments for on-site analysis of environmental samples. Trends Analyt Chem 2022. [DOI: 10.1016/j.trac.2022.116653] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
28
|
Dhaka V, Singh S, Anil AG, Sunil Kumar Naik TS, Garg S, Samuel J, Kumar M, Ramamurthy PC, Singh J. Occurrence, toxicity and remediation of polyethylene terephthalate plastics. A review. ENVIRONMENTAL CHEMISTRY LETTERS 2022; 20:1777-1800. [PMID: 35039752 PMCID: PMC8755403 DOI: 10.1007/s10311-021-01384-8] [Citation(s) in RCA: 55] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Accepted: 12/29/2021] [Indexed: 05/31/2023]
Abstract
Polyethylene terephthalate is a common plastic in many products such as viscose rayon for clothing, and packaging material in the food and beverage industries. Polyethylene terephthalate has beneficial properties such as light weight, high tensile strength, transparency and gas barrier. Nonetheless, there is actually increasing concern about plastic pollution and toxicity. Here we review the properties, occurrence, toxicity, remediation and analysis of polyethylene terephthalate as macroplastic, mesoplastic, microplastic and nanoplastic. Polyethylene terephthalate occurs in groundwater, drinking water, soils and sediments. Plastic uptake by humans induces diseases such as reducing migration and proliferation of human mesenchymal stem cells of bone marrow and endothelial progenitor cells. Polyethylene terephthalate can be degraded by physical, chemical and biological methods.
Collapse
Affiliation(s)
- Vaishali Dhaka
- Department of Microbiology, Lovely Professional University, Phagwara, Punjab 144411 India
| | - Simranjeet Singh
- Interdisciplinary Centre for Water Research (ICWaR), Indian Institute of Science, Bangalore, 560012 India
| | - Amith G. Anil
- Department of Material Engineering, Indian Institute of Science, Bangalore, 560012 India
| | - T. S. Sunil Kumar Naik
- Interdisciplinary Centre for Water Research (ICWaR), Indian Institute of Science, Bangalore, 560012 India
| | - Shashank Garg
- Department of Microbiology, Lovely Professional University, Phagwara, Punjab 144411 India
| | - Jastin Samuel
- Waste Valorization Research Lab, Lovely Professional University, Phagwara, Punjab 144411 India
| | - Manoj Kumar
- Department of Life Sciences, Central University Jharkhand, Brambe, Ranchi, Jharkhand 835205 India
| | - Praveen C. Ramamurthy
- Interdisciplinary Centre for Water Research (ICWaR), Indian Institute of Science, Bangalore, 560012 India
| | - Joginder Singh
- Department of Microbiology, Lovely Professional University, Phagwara, Punjab 144411 India
| |
Collapse
|
29
|
Yan X, Qu H, Chang Y, Duan X. Application of Metal-Organic Frameworks in Gas Pre-concentration, Pre-separation and Detection. ACTA CHIMICA SINICA 2022. [DOI: 10.6023/a22030134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
30
|
Barik P, Pradhan M. Selectivity in trace gas sensing: recent developments, challenges, and future perspectives. Analyst 2022; 147:1024-1054. [DOI: 10.1039/d1an02070f] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Selectivity is one of the most crucial figures of merit in trace gas sensing, and thus a comprehensive assessment is necessary to have a clear picture of sensitivity, selectivity, and their interrelations in terms of quantitative and qualitative views.
Collapse
Affiliation(s)
- Puspendu Barik
- Technical Research Centre, S. N. Bose National Centre for Basic Sciences, JD Block, Sector-III, Salt Lake City, Kolkata – 700106, India
| | - Manik Pradhan
- Technical Research Centre, S. N. Bose National Centre for Basic Sciences, JD Block, Sector-III, Salt Lake City, Kolkata – 700106, India
- Department of Chemical, Biological and Macromolecular Sciences, S. N. Bose National Centre for Basic Sciences, JD Block, Sector-III, Salt Lake City, Kolkata – 700106, India
| |
Collapse
|
31
|
Cagliero C, Bicchi C, Marengo A, Rubiolo P, Sgorbini B. Gas chromatography of essential oil: State-of-the-art, recent advances, and perspectives. J Sep Sci 2021; 45:94-112. [PMID: 34897986 DOI: 10.1002/jssc.202100681] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 10/02/2021] [Accepted: 10/03/2021] [Indexed: 11/10/2022]
Abstract
This review is an overview of the recent advances of gas chromatography in essential oil analysis; in particular, it focuses on both the new stationary phases and the advanced analytical methods and instrumentations. A paragraph is dedicated to ionic liquids as gas chromatography stationary phases, showing that, thanks to their peculiar selectivity, they can offer a complementary contribution to conventional stationary phases for the analysis of complex essential oils and the separation of critical pairs of components. Strategies to speed-up the analysis time, thus answering to the ever increasing request for routine essential oils quality control, are also discussed. Last but not least, a paragraph is dedicated to recent developments in column miniaturization in particular that based on microelectromechanical-system technology in a perspective of developing micro-gas chromatographic systems to optimize the energy consumption as well as the instrumentation dimensions. A number of applications in the essential oil field is also included.
Collapse
Affiliation(s)
- Cecilia Cagliero
- Dipartimento di Scienza e Tecnologia del Farmaco, Università degli Studi di Torino, Torino, Italy
| | - Carlo Bicchi
- Dipartimento di Scienza e Tecnologia del Farmaco, Università degli Studi di Torino, Torino, Italy
| | - Arianna Marengo
- Dipartimento di Scienza e Tecnologia del Farmaco, Università degli Studi di Torino, Torino, Italy
| | - Patrizia Rubiolo
- Dipartimento di Scienza e Tecnologia del Farmaco, Università degli Studi di Torino, Torino, Italy
| | - Barbara Sgorbini
- Dipartimento di Scienza e Tecnologia del Farmaco, Università degli Studi di Torino, Torino, Italy
| |
Collapse
|
32
|
A semi-packed gas chromatography column with high-density elliptic cylindrical posts. J Chromatogr A 2021; 1662:462725. [PMID: 34922282 DOI: 10.1016/j.chroma.2021.462725] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 11/20/2021] [Accepted: 11/29/2021] [Indexed: 11/22/2022]
Abstract
Semi-packed columns are microfabricated gas chromatography columns which have a large surface area and high aspect ratio. In this paper, a new semi-packed column with high-density elliptic cylindrical posts (SCHECP) made by a micro-electro-mechanical system (MEMS) technique was reported. Compared to a semi-packed column with cylindrical posts (SCCP) under the same effective width, the surface area and aspect ratio of SCHECP were improved by 71.19% and 76.47%, respectively. To compare the performance of these two semi-packed columns, SCHECP and SCCP were fabricated. A 10-nm thick alumina film was deposited as the stationary phase by atomic layer deposition technique to ensure the uniformity and repeatability of the stationary-phase film. A contrast experiment was conducted, and the results showed that compared with SCCP, better separation performance was realized in SCHECP due to the increase in surface area and aspect ratio. The number of theoretical plates of nonane was increased by 541.84%, and the tailing factor was decreased by 54.31%.
Collapse
|
33
|
Abiotic and Biotic Damage of Microalgae Generate Different Volatile Organic Compounds (VOCs) for Early Diagnosis of Algal Cultures for Biofuel Production. Metabolites 2021; 11:metabo11100707. [PMID: 34677422 PMCID: PMC8541270 DOI: 10.3390/metabo11100707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Revised: 09/30/2021] [Accepted: 10/13/2021] [Indexed: 11/18/2022] Open
Abstract
Open microalgal ponds used in industrial biomass production are susceptible to a number of biotic and abiotic environmental stressors (e.g., grazers, pathogens, pH, temperature, etc.) resulting in pond crashes with high economic costs. Identification of signature chemicals to aid in rapid, non-invasive, and accurate identification of the stressors would facilitate targeted and effective treatment to save the algal crop from a catastrophic crash. Specifically, we were interested in identifying volatile organic compounds (VOCs) that can be used to as an early diagnostic for algal crop damage. Cultures of Microchloropsis gaditana were subjected to two forms of algal crop damage: (1) active grazing by the marine rotifer, Brachionus plicatilis, or (2) repeated freeze–thaw cycles. VOCs emitted above the headspace of these algal cultures were collected using fieldable solid phase microextraction (SPME) fibers. An untargeted analysis and identification of VOCs was conducted using gas chromatography-mass spectrometry (GC-MS). Diagnostic VOCs unique to each algal crop damage mechanism were identified. Active rotifer grazing of M. gaditana was characterized by the appearance of carotenoid degradation products, including β-cyclocitral and various alkenes. Freeze–thaw algae produced a different set of VOCs, including palmitoleic acid. Both rotifer grazing and freeze–thawed algae produced β-ionone as a VOC, possibly suggesting a common stress-induced cellular mechanism. Importantly, these identified VOCs were all absent from healthy algal cultures of M. gaditana. Early detection of biotic or abiotic environmental stressors will facilitate early diagnosis and application of targeted treatments to prevent algal pond crashes. Thus, our work further supports the use of VOCs for monitoring the health of algal ponds to ultimately enhance algal crop yields for production of biofuel.
Collapse
|
34
|
Biswas P, Zhang C, Chen Y, Liu Z, Vaziri S, Zhou W, Sun Y. A Portable Micro-Gas Chromatography with Integrated Photonic Crystal Slab Sensors on Chip. BIOSENSORS-BASEL 2021; 11:bios11090326. [PMID: 34562916 PMCID: PMC8468690 DOI: 10.3390/bios11090326] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 09/05/2021] [Accepted: 09/07/2021] [Indexed: 11/24/2022]
Abstract
The miniaturization of gas chromatography (GC) systems has made it possible to utilize the analytical technique in various on-site applications to rapidly analyze complex gas samples. Various types of miniaturized sensors have been developed for micro-gas chromatography (µGC). However, the integration of an appropriate detector in µGC systems still faces a significant challenge. We present a solution to the problem through integration of µGC with photonic crystal slab (PCS) sensors using transfer printing technology. This integration offers an opportunity to utilize the advantages of optical sensors, such as high sensitivity and rapid response time, and at the same time, compensate for the lack of detection specificity from which label-free optical sensors suffer. We transfer printed a 2D defect free PCS on a borofloat glass, bonded it to a silicon microfluidic gas cell or directly to a microfabricated GC column, and then coated it with a gas responsive polymer. Realtime spectral shift in Fano resonance of the PCS sensor was used to quantitatively detect analytes over a mass range of three orders. The integrated µGC–PCS system was used to demonstrate separation and detection of a complex mixture of 10 chemicals. Fast separation and detection (4 min) and a low detection limit (ng) was demonstrated.
Collapse
|
35
|
Casanova-Chafer J, Umek P, Acosta S, Bittencourt C, Llobet E. Graphene Loading with Polypyrrole Nanoparticles for Trace-Level Detection of Ammonia at Room Temperature. ACS APPLIED MATERIALS & INTERFACES 2021; 13:40909-40921. [PMID: 34410097 PMCID: PMC8576760 DOI: 10.1021/acsami.1c10559] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Accepted: 08/11/2021] [Indexed: 06/13/2023]
Abstract
The outstanding versatility of graphene for surface functionalization has been exploited by its decoration with synthesized polypyrrole (PPy) nanoparticles (NPs). A green, facile, and easily scalable for mass production nanocomposite development was proposed, and the resulting PPy@Graphene was implemented in chemoresistive gas sensors able to detect trace levels of ammonia (NH3) under room-temperature conditions. Gas exposure for 5 min revealed that the presence of nanoparticles decorating graphene entail greater sensitivity (13-fold) in comparison to the bare graphene performance. Noteworthy, excellent repeatability (0.7% of relative error) and a low limit of detection of 491 ppb were obtained, together with excellent long-term stability. Besides, an extensive material characterization was conducted, and vibration bands obtained via Raman spectroscopy confirmed the formation of PPy NPs, while X-ray spectroscopy (XPS) revealed the relative abundance of the different species, as polarons and bipolarons. Additionally, XPS analyses were conducted before and after NH3 exposure to assess the PPy aging and the changes induced in their physicochemical and electronic properties. Specifically, the gas sensor was tested during a 5-month period, demonstrating significant stability over time, since just a slight decrease (11%) in the responses was registered. In summary, the present work reports for the first time the use of PPy NPs decorating graphene for gas-sensing purposes, revealing promising properties for the development of unattended gas-sensing networks for monitoring air quality.
Collapse
Affiliation(s)
- Juan Casanova-Chafer
- Microsystems
Nanotechnologies for Chemical Analysis (MINOS), Universitat Rovira i Virgili, 43007 Tarragona, Spain
| | - Polona Umek
- Jožef
Stefan Institute, 10000 Ljubljana, Slovenia
| | - Selene Acosta
- Chimie
des Interactions Plasma−Surface (ChIPS), Research Institute
for Materials Science and Engineering, Université
de Mons, 7000 Mons, Belgium
| | - Carla Bittencourt
- Chimie
des Interactions Plasma−Surface (ChIPS), Research Institute
for Materials Science and Engineering, Université
de Mons, 7000 Mons, Belgium
| | - Eduard Llobet
- Microsystems
Nanotechnologies for Chemical Analysis (MINOS), Universitat Rovira i Virgili, 43007 Tarragona, Spain
| |
Collapse
|
36
|
Liao W, Zhao X, Lu HT, Byambadorj T, Qin Y, Gianchandani YB. Progressive Cellular Architecture in Microscale Gas Chromatography for Broad Chemical Analyses. SENSORS (BASEL, SWITZERLAND) 2021; 21:3089. [PMID: 33946637 PMCID: PMC8124901 DOI: 10.3390/s21093089] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 04/20/2021] [Accepted: 04/24/2021] [Indexed: 11/20/2022]
Abstract
Gas chromatography is widely used to identify and quantify volatile organic compounds for applications ranging from environmental monitoring to homeland security. We investigate a new architecture for microfabricated gas chromatography systems that can significantly improve the range, speed, and efficiency of such systems. By using a cellular approach, it performs a partial separation of analytes even as the sampling is being performed. The subsequent separation step is then rapidly performed within each cell. The cells, each of which contains a preconcentrator and separation column, are arranged in progression of retentiveness. While accommodating a wide range of analytes, this progressive cellular architecture (PCA) also provides a pathway to improving energy efficiency and lifetime by reducing the need for heating the separation columns. As a proof of concept, a three-cell subsystem (PCA3mv) has been built; it incorporates a number of microfabricated components, including preconcentrators, separation columns, valves, connectors, and a carrier gas filter. The preconcentrator and separation column of each cell are monolithically implemented as a single chip that has a footprint of 1.8 × 5.2 cm2. This subsystem also incorporates two manifold arrays of microfabricated valves, each of which has a footprint of 1.3 × 1.4 cm2. Operated together with a commercial flame ionization detector, the subsystem has been tested against polar and nonpolar analytes (including alkanes, alcohols, aromatics, and phosphonate esters) over a molecular weight range of 32-212 g/mol and a vapor pressure range of 0.005-231 mmHg. The separations require an average column temperature of 63-68 °C within a duration of 12 min, and provide separation resolutions >2 for any two homologues that differ by one methyl group.
Collapse
Affiliation(s)
- Weilin Liao
- Center for Wireless Integrated MicroSensing and Systems (WIMS2), University of Michigan, Ann Arbor, MI 48109, USA; (W.L.); (X.Z.); (H.-T.L.); (T.B.); (Y.Q.)
- Department of Electrical Engineering and Computer Science, University of Michigan, Ann Arbor, MI 48109, USA
| | - Xiangyu Zhao
- Center for Wireless Integrated MicroSensing and Systems (WIMS2), University of Michigan, Ann Arbor, MI 48109, USA; (W.L.); (X.Z.); (H.-T.L.); (T.B.); (Y.Q.)
- Department of Electrical Engineering and Computer Science, University of Michigan, Ann Arbor, MI 48109, USA
| | - Hsueh-Tsung Lu
- Center for Wireless Integrated MicroSensing and Systems (WIMS2), University of Michigan, Ann Arbor, MI 48109, USA; (W.L.); (X.Z.); (H.-T.L.); (T.B.); (Y.Q.)
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI 48109, USA
| | - Tsenguun Byambadorj
- Center for Wireless Integrated MicroSensing and Systems (WIMS2), University of Michigan, Ann Arbor, MI 48109, USA; (W.L.); (X.Z.); (H.-T.L.); (T.B.); (Y.Q.)
- Department of Electrical Engineering and Computer Science, University of Michigan, Ann Arbor, MI 48109, USA
| | - Yutao Qin
- Center for Wireless Integrated MicroSensing and Systems (WIMS2), University of Michigan, Ann Arbor, MI 48109, USA; (W.L.); (X.Z.); (H.-T.L.); (T.B.); (Y.Q.)
- Department of Electrical Engineering and Computer Science, University of Michigan, Ann Arbor, MI 48109, USA
| | - Yogesh B. Gianchandani
- Center for Wireless Integrated MicroSensing and Systems (WIMS2), University of Michigan, Ann Arbor, MI 48109, USA; (W.L.); (X.Z.); (H.-T.L.); (T.B.); (Y.Q.)
- Department of Electrical Engineering and Computer Science, University of Michigan, Ann Arbor, MI 48109, USA
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
37
|
Rahman MM, Lee DJ, Jo A, Yun SH, Eun JB, Im MH, Shim JH, Abd El-Aty AM. Onsite/on-field analysis of pesticide and veterinary drug residues by a state-of-art technology: A review. J Sep Sci 2021; 44:2310-2327. [PMID: 33773036 DOI: 10.1002/jssc.202001105] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 03/12/2021] [Accepted: 03/13/2021] [Indexed: 11/08/2022]
Abstract
Pesticides and veterinary drugs are generally employed to control pests and insects in crop and livestock farming. However, remaining residues are considered potentially hazardous to human health and the environment. Therefore, regular monitoring is required for assessing and legislation of pesticides and veterinary drugs. Various approaches to determining residues in various agricultural and animal food products have been reported. Most analytical methods involve sample extraction, purification (cleanup), and detection. Traditional sample preparation is time-consuming labor-intensive, expensive, and requires a large amount of toxic organic solvent, along with high probability for the decomposition of a compound before the analysis. Thus, modern sample preparation techniques, such as the quick, easy, cheap, effective, rugged, and safe method, have been widely accepted in the scientific community for its versatile application; however, it still requires a laboratory setup for the extraction and purification processes, which also involves the utilization of a toxic solvent. Therefore, it is crucial to elucidate recent technologies that are simple, portable, green, quick, and cost-effective for onsite and infield residue detections. Several technologies, such as surface-enhanced Raman spectroscopy, quantum dots, biosensing, and miniaturized gas chromatography, are now available. Further, several onsite techniques, such as ion mobility-mass spectrometry, are now being upgraded; some of them, although unable to analyze field sample directly, can analyze a large number of compounds within very short time (such as time-of-flight and Orbitrap mass spectrometry). Thus, to stay updated with scientific advances and analyze organic contaminants effectively and safely, it is necessary to study all of the state-of-art technology.
Collapse
Affiliation(s)
- Md Musfiqur Rahman
- Natural Products Chemistry Laboratory, Chonnam National University, Gwangju, Republic of Korea
| | - Dong Ju Lee
- Natural Products Chemistry Laboratory, Chonnam National University, Gwangju, Republic of Korea
| | - Ara Jo
- Natural Products Chemistry Laboratory, Chonnam National University, Gwangju, Republic of Korea
| | - Seung Hee Yun
- Natural Products Chemistry Laboratory, Chonnam National University, Gwangju, Republic of Korea
| | - Jong-Bang Eun
- Department of Food Science and Technology and BK 21 plus Program, Graduate School of Chonnam National University, Gwangju, Republic of Korea
| | - Moo-Hyeog Im
- Department of Food Engineering, Daegu University, Gyeongbuk, Republic of Korea
| | - Jae-Han Shim
- Natural Products Chemistry Laboratory, Chonnam National University, Gwangju, Republic of Korea
| | - A M Abd El-Aty
- Department of Pharmacology, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt.,Department of Medical Pharmacology, Medical Faculty, Ataturk University, Erzurum, Turkey
| |
Collapse
|
38
|
Numerical simulation of the sorption phenomena during the transport of VOCs inside a capillary GC column. Chem Eng Sci 2021. [DOI: 10.1016/j.ces.2021.116445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
39
|
van den Broek J, Weber IC, Güntner AT, Pratsinis SE. Highly selective gas sensing enabled by filters. MATERIALS HORIZONS 2021; 8:661-684. [PMID: 34821311 DOI: 10.1039/d0mh01453b] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Portable and inexpensive gas sensors are essential for the next generation of non-invasive medical diagnostics, smart air quality monitoring & control, human search & rescue and food quality assessment to name a few of their immediate applications. Therein, analyte selectivity in complex gas mixtures like breath or indoor air remains the major challenge. Filters are an effective and versatile, though often unrecognized, route to overcome selectivity issues by exploiting additional properties of target analytes (e.g., molecular size and surface affinity) besides reactivity with the sensing material. This review provides a tutorial for the material engineering of sorption, size-selective and catalytic filters. Of specific interest are high surface area sorbents (e.g., activated carbon, silica gels and porous polymers) with tunable properties, microporous materials (e.g., zeolites and metal-organic frameworks) and heterogeneous catalysts, respectively. Emphasis is placed on material design for targeted gas separation, portable device integration and performance. Finally, research frontiers and opportunities for low-cost gas sensing systems in emerging applications are highlighted.
Collapse
Affiliation(s)
- Jan van den Broek
- Particle Technology Laboratory, Institute of Energy & Process Engineering, Department of Mechanical and Process Engineering, ETH Zurich, CH-8092 Zurich, Switzerland.
| | | | | | | |
Collapse
|
40
|
Galassi R, Contini C, Pucci M, Gambi E, Manca G. Odorant Monitoring in Natural Gas Pipelines Using Ultraviolet-Visible Spectroscopy. APPLIED SPECTROSCOPY 2021; 75:168-177. [PMID: 32880187 DOI: 10.1177/0003702820960737] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The remote, timely and in-field detection of sulfured additives in natural gas pipelines is a challenge for environmental, commercial and safety reasons. Moreover, the constant control of the level of odorants in a pipeline is required by law to prevent explosions and accidents. Currently, the detection of the most common odorants (THT = tetrahydrothiophane; TBM = tertiary butyl mercaptan) added to natural gas streams in pipelines is made in situ by using portable gas chromatography apparatuses. In this study, we report the analysis of the ultraviolet spectra obtained by a customized ultraviolet spectrophotometer, named Spectra, for the in-field detection of thiophane and tertiary butyl mercaptan. Spectra were conceived to accomplish the remote analysis of odorants in the pipelines of the natural gas stream through the adoption of technical solutions aimed to adapt a basic bench ultraviolet spectrophotometer to the in-field analysis of gases. The remotely controlled system acquires spectra continuously, performing the quantitative determination of odorants and catching systemic or accidental variations of the gaseous mixture in different sites of the pipeline. The analysis of the experimental spectra was carried out also through theoretical quantum mechanical approaches aimed to detect and to correctly assign the nature of the intrinsic electronic transitions of the two odorants, thiophane and tertiary butyl mercaptan, that cause the ultraviolet absorptions. So far, these theoretical aspects have never been studied before. The absorption maxima of thiophane and tertiary butyl mercaptan spectra were computationally simulated through the usage of selected molecular models with satisfactory results. The good matches between the experimental and theoretical datasets corroborate the reliability of the collected data. During the tests, unexpected pollutants and accidental malfunctions have been detected and also identified by Spectra, making this instrument suitable for many purposes.
Collapse
Affiliation(s)
- Rossana Galassi
- School of Science and Technology, Chemistry Division, University of Camerino, Camerino, Italy
| | | | | | - Ennio Gambi
- Dipartimento di Ingegneria dell'Informazione, Università Politecnica delle Marche, Ancona, Italy
| | - Gabriele Manca
- Istituto di Chimica dei Composti Organo-Metallici, ICCOM-CNR, Sesto Fiorentino, Italy
| |
Collapse
|
41
|
Li W, Zhang W, Qian F, Huang D, Wang Q, Zhao C. Numerical investigation of the solute dispersion in finite-length microchannels with the interphase transport. Electrophoresis 2020; 42:257-268. [PMID: 33111983 DOI: 10.1002/elps.202000141] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2020] [Revised: 10/18/2020] [Accepted: 10/21/2020] [Indexed: 01/02/2023]
Abstract
This paper utilizes a combined approach of the convection-diffusion theory and the moment analysis to conduct a comprehensive investigation of the solute dispersion under the influence of the interphase transport in finitely long inner coated microchannels. The present work has threefold novel contributions: (1) The 2D solute concentration contours in the stationary phase are calculated for the first time to facilitate the understanding the role of the interphase transport in the solute dispersion in the mobile phase. (2) The skewness of the elution curves is investigated to guide the control of solute band shape at the channel outlet. (3) The 2D diffusion-convection theory and zero-dimensional (0D) moment analysis complement each other to present a characterization of the solute dispersion behaviors more comprehensive than that by either of the two methods alone. Parametric studies are performed to clarify the effects of four major parameters related to the interphase transport (i.e., stationary phase Péclet number, interphase transport rate, partition coefficient, and stationary phase thickness) on the solute dispersion characteristics. The results from this study provide a straightforward understanding of the effects of interphase transport on the solute dispersion in finitely long microchannels and are of potential relevance to the design and operation of the microfluidics-based analytical devices.
Collapse
Affiliation(s)
- Wenbo Li
- MOE Key Laboratory of Thermo-Fluid Science and Engineering, School of Energy and Power Engineering, Xi'an Jiaotong University, Xi'an, P. R. China
| | - Wenyao Zhang
- MOE Key Laboratory of Thermo-Fluid Science and Engineering, School of Energy and Power Engineering, Xi'an Jiaotong University, Xi'an, P. R. China
| | - Fang Qian
- MOE Key Laboratory of Thermo-Fluid Science and Engineering, School of Energy and Power Engineering, Xi'an Jiaotong University, Xi'an, P. R. China
| | - Deng Huang
- MOE Key Laboratory of Thermo-Fluid Science and Engineering, School of Energy and Power Engineering, Xi'an Jiaotong University, Xi'an, P. R. China
| | - Qiuwang Wang
- MOE Key Laboratory of Thermo-Fluid Science and Engineering, School of Energy and Power Engineering, Xi'an Jiaotong University, Xi'an, P. R. China
| | - Cunlu Zhao
- MOE Key Laboratory of Thermo-Fluid Science and Engineering, School of Energy and Power Engineering, Xi'an Jiaotong University, Xi'an, P. R. China
| |
Collapse
|
42
|
Hsieh HC, Kim H. Isomer separation enabled by a micro circulatory gas chromatography system. J Chromatogr A 2020; 1629:461484. [PMID: 32889297 DOI: 10.1016/j.chroma.2020.461484] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 08/10/2020] [Accepted: 08/12/2020] [Indexed: 11/30/2022]
Abstract
Isomers, holding similar chemical and physical properties, are difficult to separate especially by utilizing a microfabricated gas chromatography system due to limited column lengths mainly imposed by low-pressure (<20 kPa) micropump capability. In this paper, we demonstrated the separation of a pair of structural isomers, isopentane and pentane, in a micro-scale gas chromatography system with a circulatory loop of two 25-cm micro open tubular columns, while operating under a minimal pressure requirement of <10 kPa. The developed micro circulatory gas chromatography (MCGC) system achieved an effective column length of 12.5 meters by circulating the isomer gases for 25 cycles, the longest micro open tubular column length ever reported by any microfabricated GC systems yet.
Collapse
Affiliation(s)
- Hao-Chieh Hsieh
- Electrical and Computer Engineering, University of Utah, Salt Lake City, UT 84112 United States
| | - Hanseup Kim
- Electrical and Computer Engineering, University of Utah, Salt Lake City, UT 84112 United States.
| |
Collapse
|
43
|
Rebordão G, Palma SICJ, Roque ACA. Microfluidics in Gas Sensing and Artificial Olfaction. SENSORS (BASEL, SWITZERLAND) 2020; 20:E5742. [PMID: 33050311 PMCID: PMC7601286 DOI: 10.3390/s20205742] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 10/02/2020] [Accepted: 10/07/2020] [Indexed: 12/24/2022]
Abstract
Rapid, real-time, and non-invasive identification of volatile organic compounds (VOCs) and gases is an increasingly relevant field, with applications in areas such as healthcare, agriculture, or industry. Ideal characteristics of VOC and gas sensing devices used for artificial olfaction include portability and affordability, low power consumption, fast response, high selectivity, and sensitivity. Microfluidics meets all these requirements and allows for in situ operation and small sample amounts, providing many advantages compared to conventional methods using sophisticated apparatus such as gas chromatography and mass spectrometry. This review covers the work accomplished so far regarding microfluidic devices for gas sensing and artificial olfaction. Systems utilizing electrical and optical transduction, as well as several system designs engineered throughout the years are summarized, and future perspectives in the field are discussed.
Collapse
Affiliation(s)
| | - Susana I. C. J. Palma
- UCIBIO, Chemistry Department, School of Science and Technology, NOVA University of Lisbon, Campus Caparica, 2829-516 Caparica, Portugal;
| | - Ana C. A. Roque
- UCIBIO, Chemistry Department, School of Science and Technology, NOVA University of Lisbon, Campus Caparica, 2829-516 Caparica, Portugal;
| |
Collapse
|
44
|
Ollé EP, Farré-Lladós J, Casals-Terré J. Advancements in Microfabricated Gas Sensors and Microanalytical Tools for the Sensitive and Selective Detection of Odors. SENSORS (BASEL, SWITZERLAND) 2020; 20:E5478. [PMID: 32987904 PMCID: PMC7583964 DOI: 10.3390/s20195478] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 09/14/2020] [Accepted: 09/21/2020] [Indexed: 12/15/2022]
Abstract
In recent years, advancements in micromachining techniques and nanomaterials have enabled the fabrication of highly sensitive devices for the detection of odorous species. Recent efforts done in the miniaturization of gas sensors have contributed to obtain increasingly compact and portable devices. Besides, the implementation of new nanomaterials in the active layer of these devices is helping to optimize their performance and increase their sensitivity close to humans' olfactory system. Nonetheless, a common concern of general-purpose gas sensors is their lack of selectivity towards multiple analytes. In recent years, advancements in microfabrication techniques and microfluidics have contributed to create new microanalytical tools, which represent a very good alternative to conventional analytical devices and sensor-array systems for the selective detection of odors. Hence, this paper presents a general overview of the recent advancements in microfabricated gas sensors and microanalytical devices for the sensitive and selective detection of volatile organic compounds (VOCs). The working principle of these devices, design requirements, implementation techniques, and the key parameters to optimize their performance are evaluated in this paper. The authors of this work intend to show the potential of combining both solutions in the creation of highly compact, low-cost, and easy-to-deploy platforms for odor monitoring.
Collapse
Affiliation(s)
- Enric Perarnau Ollé
- Department of Mechanical Engineering, Polytechnical University of Catalonia (UPC), MicroTech Lab, Colom street 11, 08222 Terrassa, Spain; (J.F.-L.); (J.C.-T.)
- SEAT S.A., R&D Department in Future Urban Mobility Concepts, A-2, Km 585, 08760 Martorell, Spain
| | - Josep Farré-Lladós
- Department of Mechanical Engineering, Polytechnical University of Catalonia (UPC), MicroTech Lab, Colom street 11, 08222 Terrassa, Spain; (J.F.-L.); (J.C.-T.)
| | - Jasmina Casals-Terré
- Department of Mechanical Engineering, Polytechnical University of Catalonia (UPC), MicroTech Lab, Colom street 11, 08222 Terrassa, Spain; (J.F.-L.); (J.C.-T.)
| |
Collapse
|
45
|
Morbioli GG, Speller NC, Stockton AM. A practical guide to rapid-prototyping of PDMS-based microfluidic devices: A tutorial. Anal Chim Acta 2020; 1135:150-174. [PMID: 33070852 DOI: 10.1016/j.aca.2020.09.013] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 08/09/2020] [Accepted: 09/07/2020] [Indexed: 12/30/2022]
Abstract
Micro total analytical systems (μTAS) are attractive to multiple fields that include chemistry, medicine and engineering due to their portability, low power usage, potential for automation, and low sample and reagent consumption, which in turn results in low waste generation. The development of fully-functional μTAS is an iterative process, based on the design, fabrication and testing of multiple prototype microdevices. Typically, microfabrication protocols require a week or more of highly-skilled personnel time in high-maintenance cleanroom facilities, which makes this iterative process cost-prohibitive in many locations worldwide. Rapid-prototyping tools, in conjunction with the use of polydimethylsiloxane (PDMS), enable rapid development of microfluidic structures at lower costs, circumventing these issues in conventional microfabrication techniques. Multiple rapid-prototyping methods to fabricate PDMS-based microfluidic devices have been demonstrated in literature since the advent of soft-lithography in 1998; each method has its unique advantages and drawbacks. Here, we present a tutorial discussing current rapid-prototyping techniques to fabricate PDMS-based microdevices, including soft-lithography, print-and-peel and scaffolding techniques, among other methods, specifically comparing resolution of the features, fabrication processes and associated costs for each technique. We also present thoughts and insights towards each step of the iterative microfabrication process, from design to testing, to improve the development of fully-functional PDMS-based microfluidic devices at faster rates and lower costs.
Collapse
Affiliation(s)
| | - Nicholas Colby Speller
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA, 30332, USA.
| | - Amanda M Stockton
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA, 30332, USA.
| |
Collapse
|
46
|
Mielczarek P, Silberring J, Smoluch M. MINIATURIZATION IN MASS SPECTROMETRY. MASS SPECTROMETRY REVIEWS 2020; 39:453-470. [PMID: 31793697 DOI: 10.1002/mas.21614] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Accepted: 11/14/2019] [Indexed: 06/10/2023]
Abstract
Expectations for continuous miniaturization in mass spectrometry are not declining for years. Portable instruments are highly welcome by the industry, science, space agencies, forensic laboratories, and many other units. All are striving for the small, cheap, and as good as possible instruments. This review describes the recent developments of miniature mass spectrometers and also provides selected applications where these devices are used. Upcoming perspectives of further development are also discussed. @ 2019 John Wiley & Sons Ltd. Mass Spec Rev.
Collapse
Affiliation(s)
- Przemyslaw Mielczarek
- Department of Biochemistry and Neurobiology, Faculty of Materials Science and Ceramics, AGH University of Science and Technology, Mickiewicza 30, 30-059, Krakow, Poland
- Laboratory of Proteomics and Mass Spectrometry, Maj Institute of Pharmacology, Polish Academy of Sciences, Smetna 12, 31-343, Krakow, Poland
| | - Jerzy Silberring
- Department of Biochemistry and Neurobiology, Faculty of Materials Science and Ceramics, AGH University of Science and Technology, Mickiewicza 30, 30-059, Krakow, Poland
- Centre of Polymer and Carbon Materials, Polish Academy of Sciences, Curie-Sklodowskiej St. 34, 41-819, Zabrze, Poland
| | - Marek Smoluch
- Department of Biochemistry and Neurobiology, Faculty of Materials Science and Ceramics, AGH University of Science and Technology, Mickiewicza 30, 30-059, Krakow, Poland
| |
Collapse
|
47
|
Gholizadeh A, Chowdhury M, Agah M. Parallel Ionic Liquid Semi-Packed Microfabricated Columns for Complex Gas Analysis. Anal Chem 2020; 92:10635-10642. [PMID: 32640785 DOI: 10.1021/acs.analchem.0c01721] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The paper presents a parallel micro gas chromatography approach using three ionic liquid semipacked columns. Switching from single column to multiple parallel columns with different selectivity enhances the power of compound identification without increasing the analysis time. The columns are fabricated using microelectromechanical systems (MEMS) technology containing an array of microfabricated pillars. The columns are 1 m-long and 240 μm-deep with four pillars per row. All columns were functionalized with ionic liquid stationary phases using a modified static coating technique and demonstrated the number of theoretical plates between 5000 and 8300 per meter. The chip performance was investigated with four different samples: (1) a mixture of C7-C30 saturated alkanes, (2) a multianalyte mixture consisting of 20 compounds ranging from 80 to 238 °C in boiling point, (3) a mixture of five organic chemicals with varying degrees of polarity, and (4) 46-compounds mixture containing all the chemicals in the first three samples. The individual columns separated 75%-100% of the first three samples but failed to distinguish all 46 compounds due to coeluting analytes; however, the parallel configuration provided more retention time information by which all the compounds in all samples were fully determined.
Collapse
Affiliation(s)
- Azam Gholizadeh
- VT MEMS Lab, Bradley Department of Electrical and Computer Engineering, Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24061, United States
| | - Mustahsin Chowdhury
- VT MEMS Lab, Bradley Department of Electrical and Computer Engineering, Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24061, United States
| | - Masoud Agah
- VT MEMS Lab, Bradley Department of Electrical and Computer Engineering, Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24061, United States
| |
Collapse
|
48
|
Li MWH, Huang X, Zhu H, Kurabayashi K, Fan X. Microfabricated ionic liquid column for separations in dry air. J Chromatogr A 2020; 1620:461002. [DOI: 10.1016/j.chroma.2020.461002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2020] [Revised: 02/25/2020] [Accepted: 02/26/2020] [Indexed: 01/09/2023]
|
49
|
Read DH, Sillerud CH, Whiting JJ, Achyuthan KE. Metal-Organic Framework Stationary Phases for One- and Two-Dimensional Micro-Gas Chromatographic Separations of Light Alkanes and Polar Toxic Industrial Chemicals. J Chromatogr Sci 2020; 58:389-400. [PMID: 32291439 DOI: 10.1093/chromsci/bmaa005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Revised: 09/06/2019] [Indexed: 11/12/2022]
Abstract
Despite promising advances with metal-organic frameworks (MOFs) as stationary phases for chromatography, the application of MOFs for one- and two-dimensional micro-gas chromatography (μGC and μGC × μGC) applications has yet to be shown. We demonstrate for the first time, μGC columns coated with two different MOFs, HKUST-1 and ZIF-8, for the rapid separation of high volatility light alkane hydrocarbons (natural gas) and determined the partition coefficients for toxic industrial chemicals, using μGC and μGC × μGC systems. Complete separation of natural gas components, methane through pentane, was completed within 1 min, with sufficient resolution to discriminate n-butane from i-butane. Layer-by-layer controlled deposition cycles of the MOFs were accomplished to establish the optimal film thickness, which was validated using GC (sorption thermodynamics), quartz-crystal microbalance gravimetric analysis and scanning electron microscopy. Complete surface coverage was not observed until after ~17 deposition cycles. Propane retention factors with HKUST-1-coated μGC and a state-of-the-art polar, porous-layer open-tubular (PLOT) stationary phase were approximately the same at ~7.5. However, with polar methanol, retention factors with these two stationary phases were 748 and 59, respectively, yielding methanol-to-propane selectivity factors of ~100 and ~8, respectively, a 13-fold increase in polarity with HKUST-1. These studies advance the applications of MOFs as μGC stationary phase.
Collapse
Affiliation(s)
- Douglas H Read
- FENG and Tube Lifecycle Engineering Department, Sandia National Laboratories, Albuquerque, NM 87185, USA
| | | | - Joshua J Whiting
- Nano and Microsensors Department, Sandia National Laboratories, Albuquerque, NM 87185, USA
| | - Komandoor E Achyuthan
- Nano and Microsensors Department, Sandia National Laboratories, Albuquerque, NM 87185, USA
| |
Collapse
|
50
|
Li MWH, She J, Zhu H, Li Z, Fan X. Microfabricated porous layer open tubular (PLOT) column. LAB ON A CHIP 2019; 19:3979-3987. [PMID: 31659362 DOI: 10.1039/c9lc00886a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Development of micro gas chromatography (μGC) is aimed at rapid and in situ analysis of volatile organic compounds (VOCs) for environmental protection, industrial monitoring, and toxicology. However, due to the lack of appropriate microcolumns and associated stationary phases, current μGC is unable to separate highly volatile chemicals such as methane, methanol, and formaldehyde, which are of great interest for their high toxicity and carcinogenicity. This inability has significantly limited μGC field applicability. To address this deficiency, this paper reports the development and characterization of a microfabricated porous layer open tubular (μPLOT) column with a divinylbenzene-based stationary phase. The separation capabilities of the μPLOT column are demonstrated by three distinct analyses of light alkanes, formaldehyde solution, and organic solvents, exhibiting its general utility for a wide range of highly volatile compounds. Further characterization shows the robust performance of the μPLOT column in the presence of high moisture and at high temperatures (up to 300 °C). The small footprint and the ability to separate highly volatile chemicals make the μPLOT column highly suitable for integration into μGC systems, thus significantly broadening μGC's applicability to rapid, field analysis of VOCs.
Collapse
Affiliation(s)
- Maxwell Wei-Hao Li
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, USA. and Center for Wireless Integrated MicroSensing and Systems (WIMS2), University of Michigan, Ann Arbor, MI 48109, USA and Department of Electrical Engineering and Computer Science, University of Michigan, Ann Arbor, MI 48109, USA
| | - Jinyan She
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, USA. and Center for Wireless Integrated MicroSensing and Systems (WIMS2), University of Michigan, Ann Arbor, MI 48109, USA
| | - Hongbo Zhu
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, USA. and Center for Wireless Integrated MicroSensing and Systems (WIMS2), University of Michigan, Ann Arbor, MI 48109, USA
| | - Ziqi Li
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, USA. and School of Precision Instruments and Opto-electronics Engineering, Tianjin University, P. R. China
| | - Xudong Fan
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, USA. and Center for Wireless Integrated MicroSensing and Systems (WIMS2), University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|