1
|
Maneira C, Chamas A, Lackner G. Engineering Saccharomyces cerevisiae for medical applications. Microb Cell Fact 2025; 24:12. [PMID: 39789534 PMCID: PMC11720383 DOI: 10.1186/s12934-024-02625-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Accepted: 12/17/2024] [Indexed: 01/12/2025] Open
Abstract
BACKGROUND During the last decades, the advancements in synthetic biology opened the doors for a profusion of cost-effective, fast, and ecologically friendly medical applications priorly unimaginable. Following the trend, the genetic engineering of the baker's yeast, Saccharomyces cerevisiae, propelled its status from an instrumental ally in the food industry to a therapy and prophylaxis aid. MAIN TEXT In this review, we scrutinize the main applications of engineered S. cerevisiae in the medical field focusing on its use as a cell factory for pharmaceuticals and vaccines, a biosensor for diagnostic and biomimetic assays, and as a live biotherapeutic product for the smart in situ treatment of intestinal ailments. An extensive view of these fields' academic and commercial developments as well as main hindrances is presented. CONCLUSION Although the field still faces challenges, the development of yeast-based medical applications is often considered a success story. The rapid advances in synthetic biology strongly support the case for a future where engineered yeasts play an important role in medicine.
Collapse
Affiliation(s)
- Carla Maneira
- Chair of Biochemistry of Microorganisms, Faculty of Life Sciences: Food, Nutrition and Health, University of Bayreuth, 95326, Kulmbach, Germany
| | - Alexandre Chamas
- Department of Microbial Pathogenicity Mechanisms, Leibniz Institute for Natural Product Research and Infection Biology, 07745, Jena, Germany
- Cluster of Excellence Balance of the Microverse, Friedrich Schiller University Jena, 07743, Jena, Germany
| | - Gerald Lackner
- Chair of Biochemistry of Microorganisms, Faculty of Life Sciences: Food, Nutrition and Health, University of Bayreuth, 95326, Kulmbach, Germany.
| |
Collapse
|
2
|
Li L, Jiang R, Yu JF, Li M. A Near-Infrared II Photo-Triggered Multifunctional Plasmonic Hyperthermia Immunomodulator for SERS-Guided Combination Cancer Immunotherapy. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2409154. [PMID: 39564687 DOI: 10.1002/smll.202409154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Indexed: 11/21/2024]
Abstract
Immunotherapy represents a promising therapeutic strategy for cancer treatment, but its clinical applications are currently hindered by insufficient therapeutic potency, nonspecific delivery, and adverse side effects. Herein, a novel near-infrared II (NIR-II) photo-triggered plasmonic hyperthermia immunomodulator (RP@IR-pcNS@HA nanoparticles (NPs)) for anticancer treatment of both primary and distant cancers is reported. This immunomodulator comprises an IR-1061 dye-encoded NIR-II porous cubic AuAg nanoshell (pcNS) loaded with a Toll-like receptor 7 agonist - R837 in phase change materials (PCMs), further modified with hyaluronic acid (HA). In response to NIR-II photoirradiation, the RP@IR-pcNS@HA NPs controllably deliver and release R837 to tumor sites, subsequently perform plasmonic hyperthermia therapy for direct ablation of primary tumors, and elicit robust anticancer immune responses. It is demonstrated that upon NIR-II irradiation, such a plasmonic hyperthermia immunomodulator combined with anti-programmed death 1 antibody (αPD-1) completely eradicates both primary and distant cancers. In addition, this combination treatment successfully elicits robust immune memory responses for effective suppression of recurrence and distant metastasis of cancer. With the excellent NIR-II surface-enhanced Raman scattering (SERS) detection ability, the RP@IR-pcNS@HA NPs combined with αPD-1 represent an efficient way to develop high-performance theranostic agents for SERS-guided combination cancer photoimmunotherapy.
Collapse
Affiliation(s)
- Linhu Li
- School of Materials Science and Engineering, Central South University, Changsha, Hunan, 410083, China
| | - Renting Jiang
- School of Materials Science and Engineering, Central South University, Changsha, Hunan, 410083, China
| | - Jin-Feng Yu
- School of Materials Science and Engineering, Central South University, Changsha, Hunan, 410083, China
| | - Ming Li
- School of Materials Science and Engineering, Central South University, Changsha, Hunan, 410083, China
| |
Collapse
|
3
|
Qin Z, Liu Y, Jia X, Zhou J, Li H, Wang X, Zhang S, Chang H, Wang G. One-step synthesized multisize AuAg alloy nanoparticles with high SERS sensitivity in directly detecting SARS-CoV-2 spike protein. Anal Chim Acta 2024; 1317:342919. [PMID: 39030015 DOI: 10.1016/j.aca.2024.342919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 06/19/2024] [Accepted: 06/27/2024] [Indexed: 07/21/2024]
Abstract
The coronavirus disease 2019 (COVID-19) caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has resulted in widespread disease transmission, challenging the stability of global healthcare systems. Surface-enhanced Raman scattering (SERS) as an easy operation, fast, and low-cost technology illustrates a good potential in detecting SARS-CoV-2. In the study, one-step fabrication of gold-silver alloy nanoparticles (AuAgNPs) with adjustable metal proportions and diameters is employed as SERS substrates. The angiotensin-converting enzyme 2 (ACE2) functionalized AuAgNPs are applied as sensor surfaces to detect SARS-CoV-2 S protein. By optimizing the SERS substrates, ACE2/Au35Ag65NPs illustrate higher performance in detecting the SARS-CoV-2 S protein with a limit of detection (LOD) of 10 fg/mL in both phosphate-buffered saline (PBS) and pharyngeal swabs solution (PSS). It also provides excellent reproducibility with a relative standard deviation (RSD) of 7.7 % and 7.9 %, respectively. This easily preparable and highly reproducible SERS substrate has good potential in the practical application of detecting SARS-CoV-2.
Collapse
Affiliation(s)
- Zhenle Qin
- School of Electronic Engineering, Guangxi University of Science and Technology, No.2, Wenchang Road, Liuzhou City, 545006, Guangxi, China
| | - Yansheng Liu
- School of Electronic Engineering, Guangxi University of Science and Technology, No.2, Wenchang Road, Liuzhou City, 545006, Guangxi, China.
| | - Xiaobo Jia
- School of Electronic Engineering, Guangxi University of Science and Technology, No.2, Wenchang Road, Liuzhou City, 545006, Guangxi, China
| | - Jin Zhou
- School of Electronic Engineering, Guangxi University of Science and Technology, No.2, Wenchang Road, Liuzhou City, 545006, Guangxi, China
| | - Hongli Li
- School of Electronic Engineering, Guangxi University of Science and Technology, No.2, Wenchang Road, Liuzhou City, 545006, Guangxi, China
| | - Xiaohong Wang
- School of Electronic Engineering, Guangxi University of Science and Technology, No.2, Wenchang Road, Liuzhou City, 545006, Guangxi, China
| | - Shaohui Zhang
- School of Electronic Engineering, Guangxi University of Science and Technology, No.2, Wenchang Road, Liuzhou City, 545006, Guangxi, China
| | - Haixin Chang
- Quantum-Nano Matter and Device Lab, State Key Laboratory of Material Processing and Die and Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology Wuhan, 430074, Hubei, China
| | - Guofu Wang
- School of Electronic Engineering, Guangxi University of Science and Technology, No.2, Wenchang Road, Liuzhou City, 545006, Guangxi, China.
| |
Collapse
|
4
|
Zhang Y, Liu J, Lo TW, Kim Y, Lucien F, Dong H, Liu Y. A digital microfluidic device integrated with electrochemical sensor and 3D matrix for detecting soluble PD-L1. BIOSENSORS & BIOELECTRONICS: X 2024; 19:100490. [PMID: 39091597 PMCID: PMC11290324 DOI: 10.1016/j.biosx.2024.100490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 08/04/2024]
Abstract
PD1/PD-L1 checkpoint inhibitors are at the forefront of cancer immunotherapies. However, the overall response rate remains only 10-30%. Even among initial responders, drug resistance often occurs, which can lead to prolonged use of a futile therapy in the race with the fatal disease. It would be ideal to closely monitor key indicators of patients' immune responsiveness, such as circulating PD-L1 levels. Traditional PD-L1 detection methods, such as ELISA, are limited in sensitivity and rely on core lab facilities, preventing their use for the regular monitoring. Electrochemical sensors exist as an attractive candidate for point-of-care tool, yet, streamlining multiple processes in a single platform remains a challenge. To overcome this challenge, this work integrated electrochemical sensor arrays into a digital microfluidic device to combine their distinct merits, so that soluble PD-L1 (sPD-L1) molecules can be rapidly detected in a programmed and automated manner. This new platform featured microscale electrochemical sensor arrays modified with electrically conductive 3D matrix, and can detect as low as 1 pg/mL sPD-L1 with high specificity. The sensors also have desired repeatability and can obtain reproducible results on different days. To demonstrate the functionality of the device to process more complex biofluids, we used the device to detect sPD-L1 molecules secreted by human breast cancer cell line in culture media directly and observed 2X increase in signal compared with control experiment. This novel platform holds promise for the close monitoring of sPD-L1 level in human physiological fluids to evaluate the efficacy of PD-1/PD-L1 immunotherapy.
Collapse
Affiliation(s)
- Yuqian Zhang
- Department of Physiology & Biomedical Engineering, Mayo Clinic, Rochester, MN, 55905, USA
- Microbiomics Program, Center for Individualized Medicine, Mayo Clinic, Rochester, MN, 55905, USA
| | - Jing Liu
- Department of Physiology & Biomedical Engineering, Mayo Clinic, Rochester, MN, 55905, USA
- Microbiomics Program, Center for Individualized Medicine, Mayo Clinic, Rochester, MN, 55905, USA
| | - Ting-Wen Lo
- Department of Physiology & Biomedical Engineering, Mayo Clinic, Rochester, MN, 55905, USA
- Microbiomics Program, Center for Individualized Medicine, Mayo Clinic, Rochester, MN, 55905, USA
| | - Yohan Kim
- Department of Urology, Mayo Clinic College of Medicine and Science, Rochester, MN, 55905, USA
| | - Fabrice Lucien
- Department of Urology, Mayo Clinic College of Medicine and Science, Rochester, MN, 55905, USA
- Department of Immunology, Mayo Clinic, Rochester, MN, 55905, USA
| | - Haidong Dong
- Department of Urology, Mayo Clinic College of Medicine and Science, Rochester, MN, 55905, USA
- Department of Immunology, Mayo Clinic, Rochester, MN, 55905, USA
| | - Yuguang Liu
- Department of Physiology & Biomedical Engineering, Mayo Clinic, Rochester, MN, 55905, USA
- Microbiomics Program, Center for Individualized Medicine, Mayo Clinic, Rochester, MN, 55905, USA
- Department of Immunology, Mayo Clinic, Rochester, MN, 55905, USA
- Department of Surgery, Mayo Clinic, Rochester, MN, 55905, USA
| |
Collapse
|
5
|
Xia J, Zhou Y, Wang Y, Liu Y, Chen Q, Koh K, Hu X, Chen H. Ultrasensitive electrochemical sensor based on synergistic effect of Ag@MXene and antifouling cyclic multifunctional peptide for PD-L1 detection in serum. Mikrochim Acta 2024; 191:380. [PMID: 38858258 DOI: 10.1007/s00604-024-06470-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 05/26/2024] [Indexed: 06/12/2024]
Abstract
A sensing interface co-constructed from the two-dimensional conductive material (Ag@MXene) and an antifouling cyclic multifunctional peptide (CP) is described. While the large surface area of Ag@MXene loads more CP probes, CP binds to Ag@MXene to form a fouling barrier and ensure the structural rigidity of the targeting sequence. This strategy synergistically enhances the biosensor's sensitivity and resistance to contamination. The SPR results showed that the binding affinity of the CP to the target was 6.23 times higher than that of the antifouling straight-chain multifunctional peptide (SP) to the target. In the 10 mg/mL BSA electrochemical fouling test, the fouling resistance of Ag@MXene + CP (composite sensing interface of CP combined with Ag@MXene) was 30 times higher than that of the bare electrode. The designed electrochemical sensor exhibited good selectivity and wide dynamic response range at PD-L1 concentrations from 0.1 to 50 ng/mL. The lowest detection limit was 24.54 pg/mL (S/N = 3). Antifouling 2D materials with a substantial specific surface area, coupled with non-straight chain antifouling multifunctional peptides, offer a wide scope for investigating the sensitivity and antifouling properties of electrochemical sensors.
Collapse
Affiliation(s)
- Junjie Xia
- School of Life Sciences, Shanghai University, Shanghai, 200444, China
| | - Yangyang Zhou
- School of Medicine, Shanghai University, Shanghai, 200444, China
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, China
| | - Yindian Wang
- School of Medicine, Shanghai University, Shanghai, 200444, China
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, China
| | - Yawen Liu
- School of Medicine, Shanghai University, Shanghai, 200444, China
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, China
| | - Qiang Chen
- School of Medicine, Shanghai University, Shanghai, 200444, China
| | - Kwangnak Koh
- Institute of General Education, Pusan National University, Busan, 609-735, Republic of Korea
| | - Xiaojun Hu
- School of Life Sciences, Shanghai University, Shanghai, 200444, China.
| | - Hongxia Chen
- School of Life Sciences, Shanghai University, Shanghai, 200444, China.
| |
Collapse
|
6
|
Qin X, Xiang Y, Mao L, Yang Y, Wei B, Lu H, Li X, Zhang Y, Yang F. Buoyant Metal-Organic Framework Corona-Driven Fast Isolation and Ultrasensitive Profiling of Circulating Extracellular Vesicles. ACS NANO 2024; 18:14569-14582. [PMID: 38781132 DOI: 10.1021/acsnano.4c02339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2024]
Abstract
Accurately assaying tumor-derived circulating extracellular vesicles (EVs) is fundamental in noninvasive cancer diagnosis and therapeutic monitoring but limited by challenges in efficient EV isolation and profiling. Here, we report a bioinspired buoyancy-driven metal-organic framework (MOF) corona that leverages on-bubble coordination and dual-encoded surface-enhanced Raman scattering (SERS) nanotags to streamline rapid isolation and ultrasensitive profiling of plasma EVs in a single assay for cancer diagnostics. This integrated bubble-MOF-SERS EV assay (IBMsv) allows barnacle-like high-density adhesion of MOFs on a self-floating bubble surface to enable fast isolation (2 min, near 90% capture efficiency) of tumor EVs via enhanced EV-MOF binding. Also, IBMsv harnesses four-plexed SERS nanotags to profile the captured EV surface protein markers at a single-particle level. Such a sensitive assay allows multiplexed profiling of EVs across five cancer types, revealing heterogeneous EV surface expression patterns. Furthermore, the IBMsv assay enables cancer diagnosis in a pilot clinical cohort (n = 55) with accuracies >95%, improves discrimination between cancer and noncancer patients via an algorithm, and monitors the surgical treatment response from hepatocellular carcinoma patients. This assay provides a fast, sensitive, streamlined, multiplexed, and portable blood test tool to enable cancer diagnosis and response monitoring in clinical settings.
Collapse
Affiliation(s)
- Xiaojie Qin
- Guangxi Key Laboratory of Pharmaceutical Precision Detection and Screening, Key Laboratory of Micro-Nanoscale Bioanalysis and Drug Screening of Guangxi Education Department, State Key Laboratory of Targeting Oncology, Pharmaceutical College, Guangxi Medical University, Nanning 530021, China
| | - Yuanhang Xiang
- Guangxi Key Laboratory of Pharmaceutical Precision Detection and Screening, Key Laboratory of Micro-Nanoscale Bioanalysis and Drug Screening of Guangxi Education Department, State Key Laboratory of Targeting Oncology, Pharmaceutical College, Guangxi Medical University, Nanning 530021, China
| | - Linfeng Mao
- Department of Hepatobiliary Surgery, The First Affiliated Hospital, Guangxi Medical University, Nanning 530021, China
| | - Yu Yang
- Guangxi Key Laboratory of Pharmaceutical Precision Detection and Screening, Key Laboratory of Micro-Nanoscale Bioanalysis and Drug Screening of Guangxi Education Department, State Key Laboratory of Targeting Oncology, Pharmaceutical College, Guangxi Medical University, Nanning 530021, China
| | - Binqi Wei
- Guangxi Key Laboratory of Pharmaceutical Precision Detection and Screening, Key Laboratory of Micro-Nanoscale Bioanalysis and Drug Screening of Guangxi Education Department, State Key Laboratory of Targeting Oncology, Pharmaceutical College, Guangxi Medical University, Nanning 530021, China
| | - Hao Lu
- Guangxi Key Laboratory of Pharmaceutical Precision Detection and Screening, Key Laboratory of Micro-Nanoscale Bioanalysis and Drug Screening of Guangxi Education Department, State Key Laboratory of Targeting Oncology, Pharmaceutical College, Guangxi Medical University, Nanning 530021, China
| | - Xinchun Li
- Guangxi Key Laboratory of Pharmaceutical Precision Detection and Screening, Key Laboratory of Micro-Nanoscale Bioanalysis and Drug Screening of Guangxi Education Department, State Key Laboratory of Targeting Oncology, Pharmaceutical College, Guangxi Medical University, Nanning 530021, China
| | - Yuanqing Zhang
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Fan Yang
- Guangxi Key Laboratory of Pharmaceutical Precision Detection and Screening, Key Laboratory of Micro-Nanoscale Bioanalysis and Drug Screening of Guangxi Education Department, State Key Laboratory of Targeting Oncology, Pharmaceutical College, Guangxi Medical University, Nanning 530021, China
| |
Collapse
|
7
|
Vázquez-Iglesias L, Stanfoca Casagrande GM, García-Lojo D, Ferro Leal L, Ngo TA, Pérez-Juste J, Reis RM, Kant K, Pastoriza-Santos I. SERS sensing for cancer biomarker: Approaches and directions. Bioact Mater 2024; 34:248-268. [PMID: 38260819 PMCID: PMC10801148 DOI: 10.1016/j.bioactmat.2023.12.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 12/14/2023] [Accepted: 12/21/2023] [Indexed: 01/24/2024] Open
Abstract
These days, cancer is thought to be more than just one illness, with several complex subtypes that require different screening approaches. These subtypes can be distinguished by the distinct markings left by metabolites, proteins, miRNA, and DNA. Personalized illness management may be possible if cancer is categorized according to its biomarkers. In order to stop cancer from spreading and posing a significant risk to patient survival, early detection and prompt treatment are essential. Traditional cancer screening techniques are tedious, time-consuming, and require expert personnel for analysis. This has led scientists to reevaluate screening methodologies and make use of emerging technologies to achieve better results. Using time and money saving techniques, these methodologies integrate the procedures from sample preparation to detection in small devices with high accuracy and sensitivity. With its proven potential for biomedical use, surface-enhanced Raman scattering (SERS) has been widely used in biosensing applications, particularly in biomarker identification. Consideration was given especially to the potential of SERS as a portable clinical diagnostic tool. The approaches to SERS-based sensing technologies for both invasive and non-invasive samples are reviewed in this article, along with sample preparation techniques and obstacles. Aside from these significant constraints in the detection approach and techniques, the review also takes into account the complexity of biological fluids, the availability of biomarkers, and their sensitivity and selectivity, which are generally lowered. Massive ways to maintain sensing capabilities in clinical samples are being developed recently to get over this restriction. SERS is known to be a reliable diagnostic method for treatment judgments. Nonetheless, there is still room for advancement in terms of portability, creation of diagnostic apps, and interdisciplinary AI-based applications. Therefore, we will outline the current state of technological maturity for SERS-based cancer biomarker detection in this article. The review will meet the demand for reviewing various sample types (invasive and non-invasive) of cancer biomarkers and their detection using SERS. It will also shed light on the growing body of research on portable methods for clinical application and quick cancer detection.
Collapse
Affiliation(s)
- Lorena Vázquez-Iglesias
- CINBIO, Universidade de Vigo, Campus Universitario As Lagoas Marcosende, Vigo 36310, Spain
- Galicia Sur Health Research Institute (IIS Galicia Sur), 36310, Vigo, Spain
| | | | - Daniel García-Lojo
- CINBIO, Universidade de Vigo, Campus Universitario As Lagoas Marcosende, Vigo 36310, Spain
- Galicia Sur Health Research Institute (IIS Galicia Sur), 36310, Vigo, Spain
| | - Letícia Ferro Leal
- Molecular Oncology Research Center, Barretos Cancer Hospital, Barretos, Brazil
- Barretos School of Medicine Dr. Paulo Prata—FACISB, Barretos, 14785-002, Brazil
| | - Tien Anh Ngo
- Vinmec Tissue Bank, Vinmec Health Care System, Hanoi, Viet Nam
| | - Jorge Pérez-Juste
- CINBIO, Universidade de Vigo, Campus Universitario As Lagoas Marcosende, Vigo 36310, Spain
- Galicia Sur Health Research Institute (IIS Galicia Sur), 36310, Vigo, Spain
| | - Rui Manuel Reis
- Molecular Oncology Research Center, Barretos Cancer Hospital, Barretos, Brazil
- Life and Health Sciences Research Institute (ICVS), School of Medicine, Campus de Gualtar, University of Minho, 4710-057 Braga, Portugal
- ICVS/3B's—PT Government Associate Laboratory, 4710-057, Braga, Portugal
| | - Krishna Kant
- CINBIO, Universidade de Vigo, Campus Universitario As Lagoas Marcosende, Vigo 36310, Spain
- Galicia Sur Health Research Institute (IIS Galicia Sur), 36310, Vigo, Spain
| | - Isabel Pastoriza-Santos
- CINBIO, Universidade de Vigo, Campus Universitario As Lagoas Marcosende, Vigo 36310, Spain
- Galicia Sur Health Research Institute (IIS Galicia Sur), 36310, Vigo, Spain
| |
Collapse
|
8
|
Wang KS, Kuan TY, Chen YC, Chu YJ, Chen JS, Chen CC, Liu TY. Simultaneous detection of SARS-CoV-2 S1 protein by using flexible electrochemical and Raman enhancing biochip. Biosens Bioelectron 2024; 249:116021. [PMID: 38219466 DOI: 10.1016/j.bios.2024.116021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 12/25/2023] [Accepted: 01/08/2024] [Indexed: 01/16/2024]
Abstract
Flexible laser-scribed graphene (LSG) substrates with gold nanoislands have been developed as biochips for in situ electrochemical (EC) and surface-enhanced Raman scattering (SERS) biodetection (biomolecules and viral proteins). A flexible biochip was fabricated using CO2 laser engraving polyimide (PI) films to form a 3D porous graphene-like nanostructure. Gold nanoislands were deposited on the LSG substrates to enhance the intensity of the Raman signals. Moreover, the addition of auxiliary and reference electrodes induced a dual-function EC-SERS biochip with significantly enhanced detection sensitivity. The biochip could selectively and easily capture SARS-CoV-2 S1 protein through the SARS-CoV-2 S1 antibody immobilized on EC-SERS substrates using 1-ethyl-(3-dimethylaminopropyl)carbodiimide (EDC) and N-hydroxysuccinimide (NHS). The grafted antibody specifically bound to SARS-CoV-2, resulting in a significant increase in the SERS signal of the target analyte. The limit of detection (LOD) of the SARS-CoV-2 S1 protein was 5 and 100 ng/mL by using EC and SERS detection, respectively. Although the LOD of the SARS-CoV-2 S1 protein detected using SERS is only 100 ng/mL, it can provide fingerprint information for identification. To improve the LOD, EC detection was integrated with SERS detection. The three-electrode detection chip enables the simultaneous detection of SERS and EC signals, which provides complementary information for target identification. The dual-functional detection technology demonstrated in this study has great potential for biomedical applications, such as the rapid and sensitive detection of SARS-CoV-2.
Collapse
Affiliation(s)
- Kuan-Syun Wang
- Department of Materials Engineering, Ming Chi University of Technology, New Taipei City, 243303, Taiwan
| | - Tsai-Yu Kuan
- Department of Materials Engineering, Ming Chi University of Technology, New Taipei City, 243303, Taiwan
| | - Yun-Chu Chen
- Department of Materials Engineering, Ming Chi University of Technology, New Taipei City, 243303, Taiwan
| | - Yu-Ju Chu
- Department of Materials Engineering, Ming Chi University of Technology, New Taipei City, 243303, Taiwan
| | - Jeng-Shiung Chen
- Yottadeft Optoelectronics Technology Co., Ltd., Taipei, 10460, Taiwan
| | - Cheng-Cheung Chen
- Institute of Preventive Medicine, National Defense Medical Center, New Taipei City, 23742, Taiwan; Graduate Institute of Medical Science, National Defense Medical Center, Taipei, 11490, Taiwan.
| | - Ting-Yu Liu
- Department of Materials Engineering, Ming Chi University of Technology, New Taipei City, 243303, Taiwan; College of Engineering & Center for Sustainability and Energy Technologies, Chang Gung University, Taoyuan, 33302, Taiwan; Department of Chemical Engineering and Materials Science, Yuan Ze University, Taoyuan City, Taiwan.
| |
Collapse
|
9
|
Gao X, Cao K, Yang J, Liu L, Gao L. Recent advances in nanotechnology for programmed death ligand 1-targeted cancer theranostics. J Mater Chem B 2024; 12:3191-3208. [PMID: 38497358 DOI: 10.1039/d3tb02787b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2024]
Abstract
Programmed cell death ligand 1 (PD-L1)/programmed cell death protein 1 (PD-1) checkpoint inhibitor-based immunotherapy has provided a unique and potent weapon against cancer in clinical practice. The likelihood of achieving beneficial effects from PD-L1/PD-1 immune checkpoint blockade (ICB) therapy is clinically assessed by detecting PD-L1 expression through invasive tissue biopsies. However, PD-L1 expression is susceptible to tumor heterogeneity and dynamic response to ICB therapy. Moreover, currently, anti-PD-L1 immunotherapy still faces challenges of the low targeting efficiency of antibody drugs and the risk of immune-associated adverse events. To overcome these issues, advanced nanotechnology has been developed for the purpose of quantitative, non-invasive, and dynamic analyses of PD-L1, and to enhance the efficiency of ICB therapy. In this review, we first introduce the nanoprobe-assisted in vitro/in vivo modalities for the selective and sensitive analysis of PD-L1 during the diagnostic and therapeutic process. On the other hand, the feasibility of fabricating diverse functional nanocarriers as smart delivery systems for precisely targeted delivery of PD-L1 immune checkpoint inhibitors and combined therapies is highlighted. Finally, the current challenges are discussed and future perspectives for PD-L1-targeted cancer theranostics in preclinical research and clinical settings are proposed.
Collapse
Affiliation(s)
- Xinxin Gao
- Department of Chemistry, College of Chemistry and Life Science, Beijing University of Technology, Beijing, 100124, China.
| | - Kai Cao
- Department of Chemistry, College of Chemistry and Life Science, Beijing University of Technology, Beijing, 100124, China.
| | - Jingru Yang
- Department of Chemistry, College of Chemistry and Life Science, Beijing University of Technology, Beijing, 100124, China.
| | - Linhong Liu
- Department of Chemistry, College of Chemistry and Life Science, Beijing University of Technology, Beijing, 100124, China.
| | - Liang Gao
- Department of Chemistry, College of Chemistry and Life Science, Beijing University of Technology, Beijing, 100124, China.
| |
Collapse
|
10
|
Cheng L, Xu J, Yuan H, Zhao Q, Yue W, Ma S, Lu W. An aptamer and Au/Si CCA based SERS sensor for ultra-sensitive detection of Vimentin during EMT in gastric cancer. Front Bioeng Biotechnol 2023; 11:1310258. [PMID: 38130825 PMCID: PMC10733448 DOI: 10.3389/fbioe.2023.1310258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 11/23/2023] [Indexed: 12/23/2023] Open
Abstract
Introduction: In this study, a surface-enhanced Raman scattering (SERS) sensor based on a functionalized Au/Si cap-cone array (Au/Si CCA) was constructed using the identity-release strategy to detect Vimentin changes during epithelial-mesenchymal transition (EMT) in gastric cancer (GC). Methods: The periodic structure of Au/Si CCA, which can form "hot spots" with high density and regular arrangement, is a substrate with excellent performance. Au/Si CCA was functionalized with aptamers as the capture substrate, and Au nanocubes (AuNCs) were modified with 5-carboxyfluorescein (5-FAM) labelled complementary strand as SERS probe. The capture substrate and SERS probe were assembled by hybridization, and the SERS signal intensity of 5-FAM was greatly enhanced. The binding of Vimentin to the aptamer resulted in a broken connection between the SERS sensor Au/Si CCA array and AuNCs, which resulted in a decrease in the signal intensity of 5-FAM. The identity-release strategy requires only a simple step of reaction to achieve rapid detection of target proteins, which has clinical practicability. Results: Using this protocol, the concentration of Vimentin in GES-1 cells could be successfully detected, and the detection limit was as low as 4.92 pg/mL. Biological experiments of Vincristine, Oncovin (VCR)-treated GES-1 cells effectively mimicked the EMT process, and Vimentin changes during EMT could be accurately detected by this method. Discussion: This study provides a selective, ultra-sensitive and accurate assay for Vimentin detection, which may provide a means for the future detection of EMT process in GC.
Collapse
Affiliation(s)
- Lingling Cheng
- Department of Oncology, Yancheng TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Yancheng, Jiangsu, China
| | - Jianlin Xu
- Department of Oncology, Yancheng TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Yancheng, Jiangsu, China
| | - Hua Yuan
- Pharmacy Department, Yancheng TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Yancheng, Jiangsu, China
| | - Qihao Zhao
- Department of Laboratory Medicine, Yancheng TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Yancheng, Jiangsu, China
| | - Wei Yue
- Department of Oncology, Yancheng TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Yancheng, Jiangsu, China
| | - Shuang Ma
- Department of Oncology, Yancheng TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Yancheng, Jiangsu, China
| | - Weimin Lu
- General Internal Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing, Jiangsu, China
| |
Collapse
|
11
|
Yang Y, Wu S, Chen Y, Ju H. Surface-enhanced Raman scattering sensing for detection and mapping of key cellular biomarkers. Chem Sci 2023; 14:12869-12882. [PMID: 38023499 PMCID: PMC10664603 DOI: 10.1039/d3sc04650h] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Accepted: 10/20/2023] [Indexed: 12/01/2023] Open
Abstract
Cellular biomarkers mainly contain proteins, nucleic acids, glycans and many small molecules including small biomolecule metabolites, reactive oxygen species and other cellular chemical entities. The detection and mapping of the key cellular biomarkers can effectively help us to understand important cellular mechanisms associated with physiological and pathological processes, which greatly promote the development of clinical diagnosis and disease treatment. Surface-enhanced Raman scattering (SERS) possesses high sensitivity and is free from the influence of strong self-fluorescence in living systems as well as the photobleaching of the dyes. It exhibits rich and narrow chemical fingerprint spectra for multiplexed detection, and has become a powerful tool to detect and map cellular biomarkers. In this review, we present an overview of recent advances in the detection and mapping of different classes of cellular biomarkers based on SERS sensing. These advances fully confirm that the SERS-based sensors and sensing methods have great potential for the exploration of biological mechanisms and clinical applications. Additionally, we also discuss the limitations of present research and the future developments of the SERS technology in this field.
Collapse
Affiliation(s)
- Yuanjiao Yang
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University Nanjing 210023 China
| | - Shan Wu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University Nanjing 210023 China
| | - Yunlong Chen
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University Nanjing 210023 China
| | - Huangxian Ju
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University Nanjing 210023 China
| |
Collapse
|
12
|
Ratajczak K, Grel H, Olejnik P, Jakiela S, Stobiecka M. Current progress, strategy, and prospects of PD-1/PDL-1 immune checkpoint biosensing platforms for cancer diagnostics, therapy monitoring, and drug screening. Biosens Bioelectron 2023; 240:115644. [PMID: 37660460 DOI: 10.1016/j.bios.2023.115644] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 08/22/2023] [Accepted: 08/26/2023] [Indexed: 09/05/2023]
Abstract
Recent technological advancements in testing and monitoring instrumentation have greatly contributed to the progress in cancer treatment by surgical, chemotherapeutic and radiotherapeutic interventions. However, the mortality rate still remains high, calling for the development of new treatment strategies with higher efficacy. Extensive efforts driven in this direction have included broadening of early cancer screening and applying innovative theranostic nanotechnologies. They have been supported by platforms introduced to enable the detection and monitoring of cancer biomarkers, inhibitors, and other agents, able to slow down cancer progression and prevent metastasis. Despite of the well-recognized principles of the immune checkpoint blockade, the efficacy of immunotherapy achieved so far does not meet the well-founded expectations. For a successful cancer treatment, highly sensitive, robust, and inexpensive multiplex biosensors have to be designed to aid in the biomarkers monitoring and in the development of new inhibitors. In this review, we provide an overview of the efforts undertaken to aid in the development and monitoring of anticancer immunotherapy, based on the programmed cell-death immune checkpoint (PD-1/PDL-1) blockade, by designing biosensors for the detection of relevant cancer biomarkers and their inhibitors screening. This review also emphasizes alternative targets made by exosomes carrying PD-L1 overexpressed in cancer cells and passed into the excreted exosomes. Evaluated are also novel targeted drug delivery nanocarriers, providing simultaneous biosensing, thereby contributing to the emerging immune checkpoint cancer therapy. On the basis of the current trends and the emerging technologies, future perspectives of cancer diagnostics and treatment monitoring using biosensing platforms are projected.
Collapse
Affiliation(s)
- Katarzyna Ratajczak
- Department of Physics and Biophysics, Warsaw University of Life Sciences (SGGW), 159 Nowoursynowska Street, 02776, Warsaw, Poland
| | - Hubert Grel
- Department of Physics and Biophysics, Warsaw University of Life Sciences (SGGW), 159 Nowoursynowska Street, 02776, Warsaw, Poland
| | - Piotr Olejnik
- Department of Physics and Biophysics, Warsaw University of Life Sciences (SGGW), 159 Nowoursynowska Street, 02776, Warsaw, Poland
| | - Slawomir Jakiela
- Department of Physics and Biophysics, Warsaw University of Life Sciences (SGGW), 159 Nowoursynowska Street, 02776, Warsaw, Poland.
| | - Magdalena Stobiecka
- Department of Physics and Biophysics, Warsaw University of Life Sciences (SGGW), 159 Nowoursynowska Street, 02776, Warsaw, Poland.
| |
Collapse
|
13
|
Li J, Liu F, Bi X, Ye J. Imaging immune checkpoint networks in cancer tissues with supermultiplexed SERS nanoprobes. Biomaterials 2023; 302:122327. [PMID: 37716283 DOI: 10.1016/j.biomaterials.2023.122327] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 09/06/2023] [Accepted: 09/11/2023] [Indexed: 09/18/2023]
Abstract
Combined immune checkpoint (ICP) inhibitors maximize immune response rates of patients compared to the single-drug treatment strategy in cancer immunotherapy, and prediction of such optimal combinations requires high-throughput imaging techniques and suitable data analysis. In this work, we report a rational strategy for predicting combined drugs of ICP inhibitors based on supermultiplexed surface-enhanced Raman scattering (SERS) imaging and correlation network analysis. To this end, we first built an ultrasensitive and supermultiplexed volume-active SERS (VASERS) nanoprobe platform, where Raman molecules are randomly arranged in 3D volumetric electromagnetic hotspots. By examining various bio-orthogonal Raman molecules with different electronic properties, we developed frequency modulation guidelines and achieved 32 resolvable colors in the Raman-silent region, the largest number of resolvable SERS colors demonstrated to date. We then demonstrated one-shot ten-color imaging of ICPs with high spectral resolution in clinical biopsies of breast cancer tissues, suggesting highly heterogeneous expression patterns of ICPs across tumor subtypes. Through correlation network analysis of these high-throughput Raman data, we investigated co-expression relationships among these ten-panel ICPs in cancer tissues and finally identified a variety of possible ICP combinations for synergistic immunotherapy of breast cancers, which may lead to novel therapeutical insights.
Collapse
Affiliation(s)
- Jin Li
- State Key Laboratory of Systems Medicine for Cancer, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200030, China; Shenzhen Research Institute of Xiamen University, Shenzhen, 518057, China
| | - Fugang Liu
- State Key Laboratory of Systems Medicine for Cancer, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200030, China
| | - Xinyuan Bi
- State Key Laboratory of Systems Medicine for Cancer, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200030, China
| | - Jian Ye
- State Key Laboratory of Systems Medicine for Cancer, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200030, China; Institute of Medical Robotics, Shanghai Jiao Tong University, Shanghai, 200240, PR China; Shanghai Key Laboratory of Gynecologic Oncology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, PR China.
| |
Collapse
|
14
|
Chen Z, Sun Y, Shi J, Zhang W, Zhang X, Hang X, Li Z, Zou X. Convenient self-assembled PDADMAC/PSS/Au@Ag NRs filter paper for swift SERS evaluate of non-systemic pesticides on fruit and vegetable surfaces. Food Chem 2023; 424:136232. [PMID: 37207598 DOI: 10.1016/j.foodchem.2023.136232] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 04/05/2023] [Accepted: 04/20/2023] [Indexed: 05/21/2023]
Abstract
The goal of food safety supervision is to directly identify the pesticide residues on the surface of fruits and vegetables. This study proposed to develop a facile, non-destructive, and sensitive method based on surface-enhanced Raman scattering (SERS) to detect non-systemic pesticides on the surface of fruits and vegetables. The composite material was prepared by loading CTAB guided Au@Ag NRs with positive charge onto filter paper which was modified with PDADMAC(+) and PSS(-) using electrostatic adsorption. Au@Ag NRs with bimetallic synergies were effectively adsorbed in the fiber grid to generate 3D SERS hotspots within a few microns of depth. The results showed that the 3D composite flexible substrate had a high SERS activity, great repeatability, and sensitivity when the method was utilized to detect 4-MBA, methyl-parathion, thiram and chlorpyrifos. Three kinds of non-systemic pesticides on the peel could be detected directly and quickly owing to the arbitrary bending of the substrate, demonstrating the efficiency of the SERS "paste-reading" method. The acquired findings demonstrated that PDADMAC/PSS/Au@Ag NRs composite filter paper had the potential to provide rapid feedback for in-situ analysis of pesticide residues on the surface of fruit and vegetable.
Collapse
Affiliation(s)
- Zhiyang Chen
- Agricultural Product Processing and Storage Lab, School of Food and Biological Engineering, @, Zhenjiang, Jiangsu 212013, China; China-UK Joint Laboratory for Nondestructive Detection of Agro-products, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Yue Sun
- Agricultural Product Processing and Storage Lab, School of Food and Biological Engineering, @, Zhenjiang, Jiangsu 212013, China; China-UK Joint Laboratory for Nondestructive Detection of Agro-products, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Jiyong Shi
- Agricultural Product Processing and Storage Lab, School of Food and Biological Engineering, @, Zhenjiang, Jiangsu 212013, China; China-UK Joint Laboratory for Nondestructive Detection of Agro-products, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Wen Zhang
- Agricultural Product Processing and Storage Lab, School of Food and Biological Engineering, @, Zhenjiang, Jiangsu 212013, China; China-UK Joint Laboratory for Nondestructive Detection of Agro-products, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Xinai Zhang
- Agricultural Product Processing and Storage Lab, School of Food and Biological Engineering, @, Zhenjiang, Jiangsu 212013, China; China-UK Joint Laboratory for Nondestructive Detection of Agro-products, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Xiaowei Hang
- Agricultural Product Processing and Storage Lab, School of Food and Biological Engineering, @, Zhenjiang, Jiangsu 212013, China; China-UK Joint Laboratory for Nondestructive Detection of Agro-products, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Zhihua Li
- Agricultural Product Processing and Storage Lab, School of Food and Biological Engineering, @, Zhenjiang, Jiangsu 212013, China; China-UK Joint Laboratory for Nondestructive Detection of Agro-products, Jiangsu University, Zhenjiang, Jiangsu 212013, China.
| | - Xiaobo Zou
- Agricultural Product Processing and Storage Lab, School of Food and Biological Engineering, @, Zhenjiang, Jiangsu 212013, China; China-UK Joint Laboratory for Nondestructive Detection of Agro-products, Jiangsu University, Zhenjiang, Jiangsu 212013, China.
| |
Collapse
|
15
|
Kumar RR, Kumar A, Chuang CH, Shaikh MO. Recent Advances and Emerging Trends in Cancer Biomarker Detection Technologies. Ind Eng Chem Res 2023. [DOI: 10.1021/acs.iecr.2c04097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2023]
Affiliation(s)
- Rajkumar Rakesh Kumar
- Institute of Medical Science and Technology, National Sun Yat-sen University, Kaohsiung 80424, Taiwan
| | - Amit Kumar
- Institute of Medical Science and Technology, National Sun Yat-sen University, Kaohsiung 80424, Taiwan
| | - Cheng-Hsin Chuang
- Institute of Medical Science and Technology, National Sun Yat-sen University, Kaohsiung 80424, Taiwan
| | - Muhammad Omar Shaikh
- Sustainability Science and Management, Tunghai University, Taichung 407224, Taiwan
| |
Collapse
|
16
|
Awiaz G, Lin J, Wu A. Recent advances of Au@Ag core-shell SERS-based biosensors. EXPLORATION (BEIJING, CHINA) 2023; 3:20220072. [PMID: 37323623 PMCID: PMC10190953 DOI: 10.1002/exp.20220072] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Accepted: 05/18/2022] [Indexed: 06/17/2023]
Abstract
The methodological advancements in surface-enhanced Raman scattering (SERS) technique with nanoscale materials based on noble metals, Au, Ag, and their bimetallic alloy Au-Ag, has enabled the highly efficient sensing of chemical and biological molecules at very low concentration values. By employing the innovative various type of Au, Ag nanoparticles and especially, high efficiency Au@Ag alloy nanomaterials as substrate in SERS based biosensors have revolutionized the detection of biological components including; proteins, antigens antibodies complex, circulating tumor cells, DNA, and RNA (miRNA), etc. This review is about SERS-based Au/Ag bimetallic biosensors and their Raman enhanced activity by focusing on different factors related to them. The emphasis of this research is to describe the recent developments in this field and conceptual advancements behind them. Furthermore, in this article we apex the understanding of impact by variation in basic features like effects of size, shape varying lengths, thickness of core-shell and their influence of large-scale magnitude and morphology. Moreover, the detailed information about recent biological applications based on these core-shell noble metals, importantly detection of receptor binding domain (RBD) protein of COVID-19 is provided.
Collapse
Affiliation(s)
- Gul Awiaz
- Cixi Institute of Biomedical Engineering, International Cooperation Base of Biomedical Materials Technology and Application, Chinese Academy of Sciences (CAS) Key Laboratory of Magnetic Materials and Devices and Zhejiang Engineering Research Center for Biomedical MaterialsNingbo Institute of Materials Technology and Engineering, CASNingboChina
- University of Chinese Academy of SciencesBeijingChina
| | - Jie Lin
- Cixi Institute of Biomedical Engineering, International Cooperation Base of Biomedical Materials Technology and Application, Chinese Academy of Sciences (CAS) Key Laboratory of Magnetic Materials and Devices and Zhejiang Engineering Research Center for Biomedical MaterialsNingbo Institute of Materials Technology and Engineering, CASNingboChina
- Advanced Energy Science and Technology Guangdong LaboratoryHuizhouChina
| | - Aiguo Wu
- Cixi Institute of Biomedical Engineering, International Cooperation Base of Biomedical Materials Technology and Application, Chinese Academy of Sciences (CAS) Key Laboratory of Magnetic Materials and Devices and Zhejiang Engineering Research Center for Biomedical MaterialsNingbo Institute of Materials Technology and Engineering, CASNingboChina
- Advanced Energy Science and Technology Guangdong LaboratoryHuizhouChina
| |
Collapse
|
17
|
Liu X, Li M, Yu X, Shen L, Li W. Silent region barcode particle arrays for ultrasensitive multiplexed SERS detection. Biosens Bioelectron 2023; 219:114804. [PMID: 36272345 DOI: 10.1016/j.bios.2022.114804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Revised: 09/30/2022] [Accepted: 10/10/2022] [Indexed: 11/19/2022]
Abstract
Suspension arrays are a critical components of next generation multiplexed detection technologies. Current fluorescence suspension arrays are limited by a multiplexed coding ceiling and difficulties with ultrasensitive detection. Raman mode is a promising substitute, but the complex spectral peak distributions and extremely weak intrinsic signal intensity severely diminish Raman signal performance in suspension arrays. To address these limitations, we constructed a Raman suspension array system using plasmonic microbeads as barcode substrates and Au nanoflowers as reporter carriers. The well-designed shell morphology and plasmonic microbead composition enabled significant surface enhancement Raman scattering (SERS) such that we were able to adjust silent region Raman-coding intensity levels. Due to synergistic SERS effects from the plasmonic shell and the multi-branched Au nanoflower nanostructure, the reporting signal was greatly improved, enabling ultrasensitive detection of 5-plexed lung cancer markers. Detection in patient serum samples demonstrated good consistency with the standard electrochemiluminescence method. Thus, this silent region SERS barcode-based suspension array is a developmental advance for modern multiplexed biodetection, potentially providing a powerful early disease screening and diagnosis tool.
Collapse
Affiliation(s)
- Xinyi Liu
- State Key Lab of Metal Matrix Composites, School of Materials Science and Engineering, Zhangjiang Institute for Advanced Study, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, PR China
| | - Meng Li
- Zhejiang Orient Gene Biotech Co., Ltd., 3787 East Yangguang Avenue, Anji, 313300, Zhejiang, PR China
| | - Xujiang Yu
- State Key Lab of Metal Matrix Composites, School of Materials Science and Engineering, Zhangjiang Institute for Advanced Study, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, PR China
| | - Lisong Shen
- Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai Jiao Tong University, 1665 Kongjiang Road, Shanghai, 200092, PR China
| | - Wanwan Li
- State Key Lab of Metal Matrix Composites, School of Materials Science and Engineering, Zhangjiang Institute for Advanced Study, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, PR China.
| |
Collapse
|
18
|
Nasrollahpour H, Khalilzadeh B, Hasanzadeh M, Rahbarghazi R, Estrela P, Naseri A, Tasoglu S, Sillanpää M. Nanotechnology‐based electrochemical biosensors for monitoring breast cancer biomarkers. Med Res Rev 2022; 43:464-569. [PMID: 36464910 DOI: 10.1002/med.21931] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Revised: 10/01/2022] [Accepted: 11/04/2022] [Indexed: 12/07/2022]
Abstract
Breast cancer is categorized as the most widespread cancer type among women globally. On-time diagnosis can decrease the mortality rate by making the right decision in the therapy procedure. These features lead to a reduction in medication time and socioeconomic burden. The current review article provides a comprehensive assessment for breast cancer diagnosis using nanomaterials and related technologies. Growing use of the nano/biotechnology domain in terms of electrochemical nanobiosensor designing was discussed in detail. In this regard, recent advances in nanomaterial applied for amplified biosensing methodologies were assessed for breast cancer diagnosis by focusing on the advantages and disadvantages of these approaches. We also monitored designing methods, advantages, and the necessity of suitable (nano) materials from a statistical standpoint. The main objective of this review is to classify the applicable biosensors based on breast cancer biomarkers. With numerous nano-sized platforms published for breast cancer diagnosis, this review tried to collect the most suitable methodologies for detecting biomarkers and certain breast cancer cell types.
Collapse
Affiliation(s)
- Hassan Nasrollahpour
- Department of Analytical Chemistry, Faculty of Chemistry University of Tabriz Tabriz Iran
| | - Balal Khalilzadeh
- Stem Cell Research Center Tabriz University of Medical Sciences Tabriz Iran
| | - Mohammad Hasanzadeh
- Pharmaceutical Analysis Research Center Tabriz University of Medical Sciences Tabriz Iran
| | - Reza Rahbarghazi
- Stem Cell Research Center Tabriz University of Medical Sciences Tabriz Iran
- Department of Applied Cellular Sciences, Faculty of Advanced Medical Sciences Tabriz University of Medical Sciences Tabriz Iran
| | - Pedro Estrela
- Centre for Biosensors, Bioelectronics and Biodevices (C3Bio) and Department of Electronic and Electrical Engineering University of Bath Bath UK
| | - Abdolhossein Naseri
- Department of Analytical Chemistry, Faculty of Chemistry University of Tabriz Tabriz Iran
| | - Savas Tasoglu
- Koç University Translational Medicine Research Center (KUTTAM) Rumeli Feneri, Sarıyer Istanbul Turkey
| | - Mika Sillanpää
- Environmental Engineering and Management Research Group Ton Duc Thang University Ho Chi Minh City Vietnam
- Faculty of Environment and Labour Safety Ton Duc Thang University Ho Chi Minh City Vietnam
| |
Collapse
|
19
|
Agahi M, Rahaie M. A novel DNA tweezers-based nanobiosensor for multiple detections of circulating exosomal microRNAs in breast cancer. Anal Biochem 2022; 651:114697. [PMID: 35487268 DOI: 10.1016/j.ab.2022.114697] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 04/04/2022] [Accepted: 04/24/2022] [Indexed: 11/25/2022]
Abstract
Breast cancer is the prevalent disease in women, and diagnosis of it in early stage and takes preventive measures is very critical. Recently, circulating microRNAs have emerged as promising early biomarkers of cancer. MiR-21 and miR-155 are two significant biomarkers that act as oncomir in breast cancer. In this study, to detect both microRNAs in one test simultaneously, a novel colorimetric nanobiosensor was developed upon the peroxidation property of a specific G-quadruplex nanostructure. The nanostructure forms a DNA Nano-Tweezers after self-assembly of three DNA oligonucleotides with target sequences, and TMB (2, 2'-azino-bis (3-ethylbenzothiazo-line-6-sulfonic acid)) is used as a reporter to produce color. The high sensitivity of the nanobiosensor was determined (in buffer and blood) using different concentrations of target sequences with a linear response range from 0 to 10 nM, and detection limit of 0.38 nM (R2 = 0.98). The method precisely detected target sequences from non-target sequences in both buffer and blood media. These findings demonstrate, the nanobiosensor is superior to most previous published works due to its simultaneous dual detection, simplicity, low response time, and cost. The analytical data is convenient for accurately use for clinical purposes to detect breast cancer in early stage, more significantly.
Collapse
Affiliation(s)
- Melika Agahi
- Department of Life Science Engineering, Faculty of New Sciences and Technologies, University of Tehran, Tehran, 14399-57131, Iran
| | - Mahdi Rahaie
- Department of Life Science Engineering, Faculty of New Sciences and Technologies, University of Tehran, Tehran, 14399-57131, Iran.
| |
Collapse
|
20
|
Chen Q, Hu J, Hu X, Koh K, Chen H. Current methods and emerging approaches for detection of programmed death ligand 1. Biosens Bioelectron 2022; 208:114179. [PMID: 35364526 DOI: 10.1016/j.bios.2022.114179] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 02/21/2022] [Accepted: 03/08/2022] [Indexed: 02/08/2023]
Abstract
Various tumor cells overexpress programmed death ligand 1 (PD-L1), a main immune checkpoint protein (ICP) embedded in the tumor cells membrane, to evade immune recognition through the interaction between PD-L1 and its receptor programmed death 1 (PD-1) which is from T-cells for maintaining immune tolerance. So inhibitors targeting the PD-1 or PD-L1 can block the PD-1/PD-L1 signaling pathway to restore the recognition activity of the immune system to tumor cells, which also have been utilized as a novel approach to improve the clinical therapeutic effect for cancer patients. Since not all cancer patients can respond to these inhibitors effectively, previous diagnosis of PD-L1 is significant to target the right treatments for cancer patients. This review pays attention to the PD-L1 detection and recent progress in the measurement of PD-L1 concentration, including various detection methods based on optical sensors as well as electrochemical assays. Apart from above those, we also focus on the prospects of PD-L1 detection in precision medicine.
Collapse
Affiliation(s)
- Qiang Chen
- School of Life Sciences, Shanghai University, Shanghai, 200444, PR China; School of Medicine, Shanghai University, Shanghai, 200444, PR China
| | - Junjie Hu
- School of Life Sciences, Shanghai University, Shanghai, 200444, PR China
| | - Xiaojun Hu
- School of Life Sciences, Shanghai University, Shanghai, 200444, PR China
| | - Kwangnak Koh
- Institute of General Education, Pusan National University, Busan, 609-735, Republic of Korea
| | - Hongxia Chen
- School of Life Sciences, Shanghai University, Shanghai, 200444, PR China.
| |
Collapse
|
21
|
Jin C, Wu Z, Molinski JH, Zhou J, Ren Y, Zhang JX. Plasmonic nanosensors for point-of-care biomarker detection. Mater Today Bio 2022; 14:100263. [PMID: 35514435 PMCID: PMC9062760 DOI: 10.1016/j.mtbio.2022.100263] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 04/12/2022] [Accepted: 04/13/2022] [Indexed: 01/17/2023] Open
Abstract
Advancement of materials along with their fascinating properties play increasingly important role in facilitating the rapid progress in medicine. An excellent example is the recent development of biosensors based on nanomaterials that induce surface plasmon effect for screening biomarkers of various diseases ranging from cancer to Covid-19. The recent global pandemic re-confirmed the trend of real-time diagnosis in public health to be in point-of-care (POC) settings that can screen interested biomarkers at home, or literally anywhere else, at any time. Plasmonic biosensors, thanks to its versatile designs and extraordinary sensitivities, can be scaled into small and portable devices for POC diagnostic tools. In the meantime, efforts are being made to speed up, simplify and lower the cost of the signal readout process including converting the conventional heavy laboratory instruments into lightweight handheld devices. This article reviews the recent progress on the design of plasmonic nanomaterial-based biosensors for biomarker detection with a perspective of POC applications. After briefly introducing the plasmonic detection working mechanisms and devices, the selected highlights in the field focusing on the technology's design including nanomaterials development, structure assembly, and target applications are presented and analyzed. In parallel, discussions on the sensor's current or potential applicability in POC diagnosis are provided. Finally, challenges and opportunities in plasmonic biosensor for biomarker detection, such as the current Covid-19 pandemic and its testing using plasmonic biosensor and incorporation of machine learning algorithms are discussed.
Collapse
Affiliation(s)
| | | | | | - Junhu Zhou
- Thayer School of Engineering, Dartmouth College, NH, USA
| | - Yundong Ren
- Thayer School of Engineering, Dartmouth College, NH, USA
| | | |
Collapse
|
22
|
Kaur B, Kumar S, Kaushik BK. Recent advancements in optical biosensors for cancer detection. Biosens Bioelectron 2022; 197:113805. [PMID: 34801795 DOI: 10.1016/j.bios.2021.113805] [Citation(s) in RCA: 100] [Impact Index Per Article: 33.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 10/29/2021] [Accepted: 11/13/2021] [Indexed: 12/13/2022]
Abstract
Optical biosensors are rapid, real-time, and portable, have a low detection limit and a high sensitivity, and have a great potential for diagnosing various types of cancer. Optical biosensors can detect cancer in a few million malignant cells, in comparison to conventional diagnosis techniques that use 1 billion cells in tumor tissue with a diameter of 7 nm-10 nm. Current cancer detection methods are also costly, inconvenient, complex, time consuming, and require technical specialists. This review focuses on recent advances in optical biosensors for early detection of cancer. It is primarily concerned with advancements in the design of various biosensors using resonance, scattering, chemiluminescence, luminescence, interference, fluorescence, absorbance or reflectance, and various fiber types. The development of various two-dimensional materials with optical properties such as biocompatibility, field enhancement, and a higher surface-to-volume ratio, as well as advancements in microfabrication technologies, have accelerated the development of optical sensors for early detection of cancer and other diseases. Surface enhanced Raman spectroscopy technology has the potential to detect a single molecule with high specificity, and terahertz waves are a recently explored technology for cancer detection. Due to the low electromagnetic interference, small size, multiplexing, and remote sensing capabilities of optical fiber-based platforms, they may be a driving force behind the rapid development of biosensors. The advantages and disadvantages of existing and future optical biosensor designs for cancer detection are discussed in detail. Additionally, a prospect for future advancements in the development of optical biosensors for point-of-care and clinical applications is highlighted.
Collapse
Affiliation(s)
- Baljinder Kaur
- Department of Electronics and Communication Engineering, Indian Institute of Technology Roorkee, Roorkee, 247667, India
| | - Santosh Kumar
- Shandong Key Laboratory of Optical Communication Science and Technology, School of Physics Science and Information Technology, Liaocheng University, Liaocheng, 252059, China; Department of Electrical and Electronics & Communication Engineering, DIT University, Dehradun, 248009, India.
| | - Brajesh Kumar Kaushik
- Department of Electronics and Communication Engineering, Indian Institute of Technology Roorkee, Roorkee, 247667, India
| |
Collapse
|
23
|
Wu W, Liu X, Li W. Progress and challenges in functional nanomaterial‐based suspension array technology for multiplexed biodetection. VIEW 2022. [DOI: 10.1002/viw.20200140] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Affiliation(s)
- Weijie Wu
- State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering Shanghai Jiao Tong University Shanghai P. R. China
| | - Xinyi Liu
- State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering Shanghai Jiao Tong University Shanghai P. R. China
| | - Wanwan Li
- State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering Shanghai Jiao Tong University Shanghai P. R. China
| |
Collapse
|
24
|
Wang P, Tang L, Zhou B, Cheng L, Zhao RC, Zhang J. Analytical methods for the detection of PD-1/PD-L1 and other molecules related to immune checkpoints. Trends Analyt Chem 2022. [DOI: 10.1016/j.trac.2021.116505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
25
|
Muhammad M, Shao CS, Liu C, Huang Q. Highly Sensitive Detection of Elevated Exosomal miR-122 Levels in Radiation Injury and Hepatic Inflammation Using an Aptamer-Functionalized SERS-Sandwich Assay. ACS APPLIED BIO MATERIALS 2021; 4:8386-8395. [PMID: 35005951 DOI: 10.1021/acsabm.1c00845] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Radiation-induced organ injury is one of the major fallouts noticed during radiotherapy treatment of malignancies and other detrimental radiation exposures. MicroRNA (miRNA), which is involved in multiple critical cellular processes, is released from the cells of damaged organs in cellular vesicles, commonly known as exosomes. Specifically, exosomal miR-122 is reported to be actively involved in radiation-actuated rectal and hepatic injuries or inflammation. In this work, we developed a surface-enhanced Raman spectroscopy (SERS) assay for the quantitative and targeted detection of exosomal miR-122 in mice after drug/radiation treatments. In particular, an aptamer-functionalized magnetic capturing element and Au shell nanoparticle (NP)-based SERS tags were utilized, which upon recognition of the target miRNA constituted a "sandwich" formation, with which an 8 fM limit of detection (LOD) could be achieved. Using this SERS assay, we further found that radiation injury led to the elevated expression of exosomal miR-122 in mice at 4 h postirradiation, confirmed by the quantitative real-time PCR method. It was demonstrated that the drug-induced hepatic inflammation could also be assessed via detecting miR-122 using this SERS method. As such, this work has demonstrated the achievement of a highly selective and sensitive probe of exosomal miRNA, which may thus open a gateway for promising usage in drug/radiation-induced inflammation.
Collapse
Affiliation(s)
- Muhammad Muhammad
- CAS Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Anhui Key Laboratory of Environmental Toxicology and Pollution Control Technology, Hefei Institute of Intelligent Agriculture, Institute of Intelligent Machines, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei Anhui230031, China.,Science Island Branch of Graduate School, University of Science and Technology of China, Hefei 230026, China
| | - Chang-Sheng Shao
- CAS Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Anhui Key Laboratory of Environmental Toxicology and Pollution Control Technology, Hefei Institute of Intelligent Agriculture, Institute of Intelligent Machines, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei Anhui230031, China.,Science Island Branch of Graduate School, University of Science and Technology of China, Hefei 230026, China
| | - Chao Liu
- CAS Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Anhui Key Laboratory of Environmental Toxicology and Pollution Control Technology, Hefei Institute of Intelligent Agriculture, Institute of Intelligent Machines, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei Anhui230031, China.,Science Island Branch of Graduate School, University of Science and Technology of China, Hefei 230026, China
| | - Qing Huang
- CAS Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Anhui Key Laboratory of Environmental Toxicology and Pollution Control Technology, Hefei Institute of Intelligent Agriculture, Institute of Intelligent Machines, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei Anhui230031, China.,Science Island Branch of Graduate School, University of Science and Technology of China, Hefei 230026, China
| |
Collapse
|
26
|
Canetta E. Current and Future Advancements of Raman Spectroscopy Techniques in Cancer Nanomedicine. Int J Mol Sci 2021; 22:13141. [PMID: 34884946 PMCID: PMC8658204 DOI: 10.3390/ijms222313141] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 12/01/2021] [Accepted: 12/02/2021] [Indexed: 12/11/2022] Open
Abstract
Raman scattering is one of the most used spectroscopy and imaging techniques in cancer nanomedicine due to its high spatial resolution, high chemical specificity, and multiplexity modalities. The flexibility of Raman techniques has led, in the past few years, to the rapid development of Raman spectroscopy and imaging for nanodiagnostics, nanotherapy, and nanotheranostics. This review focuses on the applications of spontaneous Raman spectroscopy and bioimaging to cancer nanotheranostics and their coupling to a variety of diagnostic/therapy methods to create nanoparticle-free theranostic systems for cancer diagnostics and therapy. Recent implementations of confocal Raman spectroscopy that led to the development of platforms for monitoring the therapeutic effects of anticancer drugs in vitro and in vivo are also reviewed. Another Raman technique that is largely employed in cancer nanomedicine, due to its ability to enhance the Raman signal, is surface-enhanced Raman spectroscopy (SERS). This review also explores the applications of the different types of SERS, such as SERRS and SORS, to cancer diagnosis through SERS nanoprobes and the detection of small-size biomarkers, such as exosomes. SERS cancer immunotherapy and immuno-SERS (iSERS) microscopy are reviewed.
Collapse
Affiliation(s)
- Elisabetta Canetta
- Faculty of Sport, Applied Health and Performance Science, St Mary's University, Twickenham, London TW1 4SX, UK
| |
Collapse
|
27
|
Liu YQ, Zhu W, Hu JM, Shen AG. Recent advances in plasmonic Prussian blue-based SERS nanotags for biological application. NANOSCALE ADVANCES 2021; 3:6568-6579. [PMID: 36132655 PMCID: PMC9417754 DOI: 10.1039/d1na00464f] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Accepted: 10/19/2021] [Indexed: 05/07/2023]
Abstract
The reliability and reproducibility of surface-enhanced Raman scattering (SERS) technology is still a great challenge in bio-related analysis. Prussian blue (PB)-based SERS tags have attracted increasing interest for improving these deficiencies due to its unique Raman band (near 2156 cm-1) in the Raman-silent region, providing zero-background bio-Raman labels without interference from endogenous biomolecules. Moreover, the stable PB shell consisting of multiple layers of CN- reporters ensure a stable and strong Raman signal output, avoiding the desorption of the Raman reporter from the plasmonic region by the competitive adsorption of the analyte. More importantly, they possess outstanding multiplexing potential in biological analysis owing to the adjustable Raman shift with unique narrow spectral widths. Despite more attention having been attracted to the structure and preparation of PB-based SERS tags for their better biological applications over the past five years, there is still a great challenge for SERS suitable for applications in the actual environment. The biological applications of PB-based SERS tags are comprehensively recounted in this minireview, mainly focusing on quantification analysis, multiple-spectral analysis and cell-imaging joint phototherapy. The prospects of PB-based SERS tags in clinical diagnosis and treatment are also discussed. This review aims to draw attention to the importance of SERS tags and provide a reference for the design and application of PB-based SERS tags in future bio-applications.
Collapse
Affiliation(s)
- Ya-Qin Liu
- College of Chemistry and Molecular Sciences, Wuhan University Wuhan 430072 China
| | - Wei Zhu
- School of Printing and Packaging, Wuhan University Wuhan 430079 China
| | - Ji-Ming Hu
- College of Chemistry and Molecular Sciences, Wuhan University Wuhan 430072 China
| | - Ai-Guo Shen
- School of Printing and Packaging, Wuhan University Wuhan 430079 China
| |
Collapse
|
28
|
Farokhinejad F, Lane RE, Lobb RJ, Edwardraja S, Wuethrich A, Howard CB, Trau M. Generation of Nanoyeast Single-Chain Variable Fragments as High-Avidity Biomaterials for Dengue Virus Detection. ACS Biomater Sci Eng 2021; 7:5850-5860. [PMID: 34738789 DOI: 10.1021/acsbiomaterials.1c01001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Bioengineered yeast bio-nanomaterials termed nanoyeasts displaying antibody single-chain variable fragments (scFvs) against diagnostic targets are a promising alternative to monoclonal antibodies (mAbs). A potential limitation for translating nanoyeasts into diagnostic tools is batch-to-batch variability. Herein, we demonstrate a systematic approach for cost-efficient production of highly specific nanoyeasts that enabled accurate dengue virus (DENV) detection by immunoassay (2.5% CV). Yeasts bioengineered to surface express DENV-specific scFvs (up to 66% of the total cell population) were fragmented into nanoyeast fractions trialing sonication, bead beating, and high-pressure disruption methods. Nanoyeast fractions from sonication had optimal target binding, uniform particle size (±89 nm), were stable, and retained diagnostic activity for 7 days at 37 °C compared to traditional mAbs that lost activity after 1 day at 37 °C. We engineered a panel of nanoyeast scFvs targeting DENV nonstructural protein 1 (NS1): (i) specific for serotyping DENV 1-4 and (ii) cross-reactive anti-DENV scFvs that are suitable for "yes/no" diagnostic applications. We demonstrate highly specific nanoyeast scFvs for serotyping DENV. We show that nanoyeast scFvs specifically detect NS1 in simulated patient plasma with a limit of detection of 250 ng/mL, the concentration found in infected patients.
Collapse
Affiliation(s)
- Fahimeh Farokhinejad
- Centre of Personalized Nanomedicine, Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, QLD 4072, Australia
| | - Rebecca E Lane
- Centre of Personalized Nanomedicine, Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, QLD 4072, Australia
| | - Richard J Lobb
- Centre of Personalized Nanomedicine, Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, QLD 4072, Australia
| | - Selvakumar Edwardraja
- Centre of Personalized Nanomedicine, Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, QLD 4072, Australia
| | - Alain Wuethrich
- Centre of Personalized Nanomedicine, Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, QLD 4072, Australia
| | - Christopher B Howard
- Centre of Personalized Nanomedicine, Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, QLD 4072, Australia
| | - Matt Trau
- Centre of Personalized Nanomedicine, Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, QLD 4072, Australia.,School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD 4072, Australia
| |
Collapse
|
29
|
Lin T, Song YL, Kuang P, Chen S, Mao Z, Zeng TT. Nanostructure-based surface-enhanced Raman scattering for diagnosis of cancer. Nanomedicine (Lond) 2021; 16:2389-2406. [PMID: 34530631 DOI: 10.2217/nnm-2021-0298] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Cancer is a malignant disease that seriously affects human health and life. Early diagnosis and timely treatment can significantly improve the survival rate of cancer patients. Surface-enhanced Raman scattering (SERS) is an optical technology that can detect and image samples at the single-molecule level. It has the advantages of rapidity, high specificity, high sensitivity and no damage to the sample. The performance of SERS is highly dependent on the properties, size and morphology of the SERS substrate. Preparation of SERS substrates with good reproducibility and chemical stability is a key factor in realizing the wide application of SERS technology in cancer diagnosis. In this review we provide a detailed presentation of the latest research on SERS in cancer diagnosis and the detection of cancer biomarkers, mainly focusing on nanotechnological approaches in cancer diagnosis by using SERS. We also consider the future development of nanostructure-based SERS in cancer diagnosis.
Collapse
Affiliation(s)
- Ting Lin
- Department of Hematology, Research Laboratory of Hematology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Ya-Li Song
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Pu Kuang
- Department of Hematology, Research Laboratory of Hematology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Si Chen
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Zhigang Mao
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Ting-Ting Zeng
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, 610041, China
| |
Collapse
|
30
|
Momenbeitollahi N, Cloet T, Li H. Pushing the detection limits: strategies towards highly sensitive optical-based protein detection. Anal Bioanal Chem 2021; 413:5995-6011. [PMID: 34363087 PMCID: PMC8346249 DOI: 10.1007/s00216-021-03566-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2021] [Revised: 07/14/2021] [Accepted: 07/19/2021] [Indexed: 01/07/2023]
Abstract
Proteins are one of the main constituents of living cells. Studying the quantities of proteins under physiological and pathological conditions can give valuable insights into health status, since proteins are the functional molecules of life. To be able to detect and quantify low-abundance proteins in biofluids for applications such as early disease diagnostics, sensitive analytical techniques are desired. An example of this application is using proteins as biomarkers for detecting cancer or neurological diseases, which can provide early, lifesaving diagnoses. However, conventional methods for protein detection such as ELISA, mass spectrometry, and western blotting cannot offer enough sensitivity for certain applications. Recent advances in optical-based micro- and nano-biosensors have demonstrated promising results to detect proteins at low quantities down to the single-molecule level, shining lights on their capacities for ultrasensitive disease diagnosis and rare protein detection. However, to date, there is a lack of review articles synthesizing and comparing various optical micro- and nano-sensing methods of enhancing the limits of detections of the antibody-based protein assays. The purpose of this article is to critically review different strategies of improving assay sensitivity using miniaturized biosensors, such as assay miniaturization, improving antibody binding capacity, sample purification, and signal amplification. The pros and cons of different methods are compared, and the future perspectives of this research field are discussed.
Collapse
Affiliation(s)
| | - Teran Cloet
- School of Engineering, University of Guelph, Guelph, Ontario, N1G 2W1, Canada
| | - Huiyan Li
- School of Engineering, University of Guelph, Guelph, Ontario, N1G 2W1, Canada.
| |
Collapse
|
31
|
Khairil Anwar NA, Mohd Nazri MN, Murtadha AH, Mohd Adzemi ER, Balakrishnan V, Mustaffa KMF, Tengku Din TADAA, Yahya MM, Haron J, Mokshtar NF. Prognostic prospect of soluble programmed cell death ligand-1 in cancer management. Acta Biochim Biophys Sin (Shanghai) 2021; 53:961-978. [PMID: 34180502 DOI: 10.1093/abbs/gmab077] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Indexed: 12/17/2022] Open
Abstract
Aggressive tissue biopsy is commonly unavoidable in the management of most suspected tumor cases to conclusively verify the presence of cancerous cells through histological assessment. The extracted tissue is also immunostained for detection of antigens (tissue tumor markers) of potential prognostic or therapeutic importance to assist in treatment decision. Although liquid biopsies can be a powerful tool for monitoring treatment response, they are still excluded from standard cancer diagnostics, and their utility is still being debated in the scientific community. With a myriad of soluble tissue tumor markers now being discovered, liquid biopsies could completely change the current paradigms of cancer management. Recently, soluble programmed cell death ligand-1 (sPD-L1), which is found in the peripheral blood, i.e. serum and plasma, has shown potential as a pre-therapeutic predictive marker as well as a prognostic biomarker to monitor treatment efficacy. Thus, this review focuses on the emergence of sPD-L1 and promising technologies for its detection in order to support liquid biopsies for future cancer management.
Collapse
Affiliation(s)
- Nur Amira Khairil Anwar
- Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, Kubang Kerian, Kelantan 16150, Malaysia
| | - Muhammad Najmi Mohd Nazri
- Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, Kubang Kerian, Kelantan 16150, Malaysia
| | - Ahmad Hafiz Murtadha
- Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, Kubang Kerian, Kelantan 16150, Malaysia
| | - Elis Rosliza Mohd Adzemi
- Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, Kubang Kerian, Kelantan 16150, Malaysia
| | - Venugopal Balakrishnan
- Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, Kubang Kerian, Kelantan 16150, Malaysia
| | - Khairul Mohd Fadzli Mustaffa
- Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, Kubang Kerian, Kelantan 16150, Malaysia
| | | | - Maya Mazuwin Yahya
- Breast Cancer Awareness & Research Unit (BestARi), Hospital Universiti Sains Malaysia, Universiti Sains Malaysia, Kota Bharu, Kelantan 16150, Malaysia
| | - Juhara Haron
- Breast Cancer Awareness & Research Unit (BestARi), Hospital Universiti Sains Malaysia, Universiti Sains Malaysia, Kota Bharu, Kelantan 16150, Malaysia
| | - Noor Fatmawati Mokshtar
- Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, Kubang Kerian, Kelantan 16150, Malaysia
| |
Collapse
|
32
|
Li J, Wuethrich A, Edwardraja S, Lobb RJ, Puttick S, Rose S, Howard CB, Trau M. Amplification-Free SARS-CoV-2 Detection Using Nanoyeast-scFv and Ultrasensitive Plasmonic Nanobox-Integrated Nanomixing Microassay. Anal Chem 2021; 93:10251-10260. [PMID: 34264067 PMCID: PMC8290924 DOI: 10.1021/acs.analchem.1c01657] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Accepted: 07/06/2021] [Indexed: 02/06/2023]
Abstract
The implementation of accurate and sensitive molecular detection for the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is paramount to effectively control the ongoing coronavirus disease 2019 (COVID-19) pandemic. In this regard, we herein propose the specific and highly sensitive SARS-CoV-2 detection based on nanoyeast single-chain-variable fragment (scFv) and ultrasensitive plasmonic nanobox-integrated nanomixing microassay. Importantly, this designed platform showcases the utility of nanoyeast-scFvs as specific capture reagents targeting the receptor-binding domain (RBD) of the virus and as monoclonal antibody alternatives suitable for cost-effective mass production and frequent testing. By capitalizing on single-particle active nanoboxes as plasmonic nanostructures for surface-enhanced Raman scattering (SERS), the microassay utilizes highly sensitive Raman signals to indicate virus infection. The developed microassay further integrated nanomixing for accelerating molecular collisions. Through the synergistic working of nanoyeast-scFv, plasmonic nanoboxes, and nanomixing, the highly specific and sensitive SARS-CoV-2 detection is achieved as low as 17 virus/μL without any molecular amplification. We successfully demonstrate SARS-CoV-2 detection in saliva samples of simulated patients at clinically relevant viral loads, suggesting the possibility of this platform for accurate and noninvasive patient screening.
Collapse
Affiliation(s)
- Junrong Li
- Centre
for Personalized Nanomedicine, Australian
Institute for Bioengineering and Nanotechnology, The University of
Queensland, Brisbane, QLD 4072, Australia
| | - Alain Wuethrich
- Centre
for Personalized Nanomedicine, Australian
Institute for Bioengineering and Nanotechnology, The University of
Queensland, Brisbane, QLD 4072, Australia
| | - Selvakumar Edwardraja
- Centre
for Personalized Nanomedicine, Australian
Institute for Bioengineering and Nanotechnology, The University of
Queensland, Brisbane, QLD 4072, Australia
| | - Richard J. Lobb
- Centre
for Personalized Nanomedicine, Australian
Institute for Bioengineering and Nanotechnology, The University of
Queensland, Brisbane, QLD 4072, Australia
| | - Simon Puttick
- Probing
Biosystems Future Science Platform, Commonwealth
Scientific and Industrial Research Organization, Brisbane, QLD 4029, Australia
| | - Stephen Rose
- Probing
Biosystems Future Science Platform, Commonwealth
Scientific and Industrial Research Organization, Brisbane, QLD 4029, Australia
| | - Christopher B. Howard
- Centre
for Personalized Nanomedicine, Australian
Institute for Bioengineering and Nanotechnology, The University of
Queensland, Brisbane, QLD 4072, Australia
| | - Matt Trau
- Centre
for Personalized Nanomedicine, Australian
Institute for Bioengineering and Nanotechnology, The University of
Queensland, Brisbane, QLD 4072, Australia
- School
of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD 4072, Australia
| |
Collapse
|
33
|
Integration of a fiber-based cell culture and biosensing system for monitoring of multiple protein markers secreted from stem cells. Biosens Bioelectron 2021; 193:113531. [PMID: 34333363 DOI: 10.1016/j.bios.2021.113531] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 07/20/2021] [Accepted: 07/21/2021] [Indexed: 11/20/2022]
Abstract
We propose a new platform that can integrate three-dimensional cell culture scaffold and a surface-enhanced Raman spectroscopy (SERS)-based biosensor by stacking them to form a multilayer system, which would allow monitoring of the protein markers secreted from cultured stem cells without periodic cell and/or media collection. The cell culture scaffold supported the proliferation and osteogenic differentiation of adipose-derived mesenchymal stem cells (ADSCs). The SERS capture substrate detected protein markers in combination with SERS tag made with Au-Ag alloy nanoboxes. Incorporating the different Raman reporters into the SERS tag allowed easy identification of target proteins for multiplex assays. The resultant SERS-based immunoassay could detect the pg/mL levels of protein markers without crosstalk and interference. When one ADSC culture scaffold and multiple SERS capture substrates were integrated and incubated in differentiation culture media, our system was sufficiently sensitive to monitor time-dependent secretion of three different osteogenic protein markers from ADSCs during their osteogenic differentiation. Since the sensor and cell culture scaffold can be manipulated independently, various cell and biomarker combinations are possible to obtain relevant information regarding the actual state of the different types of cells.
Collapse
|
34
|
Liu X, Wu W, Cui D, Chen X, Li W. Functional Micro-/Nanomaterials for Multiplexed Biodetection. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2004734. [PMID: 34137090 DOI: 10.1002/adma.202004734] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2020] [Revised: 11/08/2020] [Indexed: 05/24/2023]
Abstract
When analyzing biological phenomena and processes, multiplexed biodetection has many advantages over single-factor biodetection and is highly relevant to both human health issues and advancements in the life sciences. However, many key problems with current multiplexed biodetection strategies remain unresolved. Herein, the main issues are analyzed and summarized: 1) generating sufficient signal to label targets, 2) improving the signal-to-noise ratio to ensure total detection sensitivity, and 3) simplifying the detection process to reduce the time and labor costs of multiple target detection. Then, available solutions made possible by designing and controlling the properties of micro- and nanomaterials are introduced. The aim is to emphasize the role that micro-/nanomaterials can play in the improvement of multiplexed biodetection strategies. Through analyzing existing problems, introducing state-of-the-art developments regarding relevant materials, and discussing future directions of the field, it is hopeful to help promote necessary developments in multiplexed biodetection and associated scientific research.
Collapse
Affiliation(s)
- Xinyi Liu
- State Key Lab of Metal Matrix Composites, School of Materials Science and Engineering, Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, P. R. China
| | - Weijie Wu
- State Key Lab of Metal Matrix Composites, School of Materials Science and Engineering, Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, P. R. China
| | - Daxiang Cui
- Department of Instrument Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Engineering Research Center for Intelligent Diagnosis and Treatment Instrument, Key Laboratory of Thin Film and Microfabrication (Ministry of Education), Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, P. R. China
| | - Xiaoyuan Chen
- Yong Loo Lin School of Medicine and Faculty of Engineering, National University of Singapore, Singapore, 117597, Singapore
| | - Wanwan Li
- State Key Lab of Metal Matrix Composites, School of Materials Science and Engineering, Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, P. R. China
| |
Collapse
|
35
|
Ryu HJ, Lee WK, Kim YH, Lee JS. Interfacial interactions of SERS-active noble metal nanostructures with functional ligands for diagnostic analysis of protein cancer markers. Mikrochim Acta 2021; 188:164. [PMID: 33844071 DOI: 10.1007/s00604-021-04807-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Accepted: 03/22/2021] [Indexed: 12/27/2022]
Abstract
Noble metal nanostructures with designed hot spots have been widely investigated as surface-enhanced Raman spectroscopy (SERS)-active substrates, particularly for selective and sensitive detection of protein cancer markers. For specific target recognition and efficient signal amplification, SERS probe design requires a choice of SERS-active nanostructures as well as their controlled functionalization with Raman dyes and target recognition entities such as antibodies. However, the chemical conjugation of antibodies and Raman dyes to SERS substrates has rarely been discussed to date, despite their substantial roles in detection schemes. The interfacial interactions of metal nanostructures with functional ligands during conjugation are known to be strongly influenced by the various chemical and physical properties of the ligands, such as size, molecular weight, surface charge, 3-dimensional structures, and hydrophilicity/hydrophobicity. In this review, we discuss recent developments in the design of SERS probes over the last 4 years, focusing on their conjugation chemistry for functionalization. A strong preference for covalent bonding is observed with Raman dyes having simpler molecular structures, whereas more complicated ones are non-covalently adsorbed. Antibodies are both covalently and non-covalently bonded to nanostructures, depending on their activity in the SERS probes. Considering that ligand conjugation is highly important for chemical stability, biocompatibility, and functionality of SERS probes, this review is expected to expand the understanding of their interfacial design, leading to SERS as one of the most promising spectroscopic analytical tools for the early detection of protein cancer markers.
Collapse
Affiliation(s)
- Han-Jung Ryu
- Department of Materials Science and Engineering, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea
| | - Won Kyu Lee
- Department of Materials Science and Engineering, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea
| | - Yoon Hyuck Kim
- Department of Materials Science and Engineering, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea
| | - Jae-Seung Lee
- Department of Materials Science and Engineering, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea.
| |
Collapse
|
36
|
Jarockyte G, Karabanovas V, Rotomskis R, Mobasheri A. Multiplexed Nanobiosensors: Current Trends in Early Diagnostics. SENSORS (BASEL, SWITZERLAND) 2020; 20:E6890. [PMID: 33276535 PMCID: PMC7729484 DOI: 10.3390/s20236890] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 11/28/2020] [Accepted: 11/30/2020] [Indexed: 02/07/2023]
Abstract
The ever-growing demand for fast, cheap, and reliable diagnostic tools for personalised medicine is encouraging scientists to improve existing technology platforms and to create new methods for the detection and quantification of biomarkers of clinical significance. Simultaneous detection of multiple analytes allows more accurate assessment of changes in biomarker expression and offers the possibility of disease diagnosis at the earliest stages. The concept of multiplexing, where multiple analytes can be detected in a single sample, can be tackled using several types of nanomaterial-based biosensors. Quantum dots are widely used photoluminescent nanoparticles and represent one of the most frequent choices for different multiplex systems. However, nanoparticles that incorporate gold, silver, and rare earth metals with their unique optical properties are an emerging perspective in the multiplexing field. In this review, we summarise progress in various nanoparticle applications for multiplexed biomarkers.
Collapse
Affiliation(s)
- Greta Jarockyte
- Department of Regenerative Medicine, State Research Institute Centre for Innovative Medicine, Santariskiu 5, LT-08406 Vilnius, Lithuania; (G.J.); (A.M.)
- Biomedical Physics Laboratory, National Cancer Institute, Baublio 3b, LT-08406 Vilnius, Lithuania;
| | - Vitalijus Karabanovas
- Department of Regenerative Medicine, State Research Institute Centre for Innovative Medicine, Santariskiu 5, LT-08406 Vilnius, Lithuania; (G.J.); (A.M.)
- Biomedical Physics Laboratory, National Cancer Institute, Baublio 3b, LT-08406 Vilnius, Lithuania;
| | - Ricardas Rotomskis
- Biomedical Physics Laboratory, National Cancer Institute, Baublio 3b, LT-08406 Vilnius, Lithuania;
| | - Ali Mobasheri
- Department of Regenerative Medicine, State Research Institute Centre for Innovative Medicine, Santariskiu 5, LT-08406 Vilnius, Lithuania; (G.J.); (A.M.)
- Research Unit of Medical Imaging, Physics and Technology, Faculty of Medicine, University of Oulu, FI-90014 Oulu, Finland
- Departments of Orthopedics, Rheumatology and Clinical Immunology, University Medical Center Utrecht, 3508 GA Utrecht, The Netherlands
| |
Collapse
|
37
|
Zhu A, Ali S, Xu Y, Ouyang Q, Chen Q. A SERS aptasensor based on AuNPs functionalized PDMS film for selective and sensitive detection of Staphylococcus aureus. Biosens Bioelectron 2020; 172:112806. [PMID: 33190016 DOI: 10.1016/j.bios.2020.112806] [Citation(s) in RCA: 97] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 10/18/2020] [Accepted: 11/05/2020] [Indexed: 01/19/2023]
Abstract
In this study, a sensitive biosensor was developed based on aptamer functionalized polydimethylsiloxane (PDMS) film for the detection of Staphylococcus aureus (S. aureus) using surface-enhanced Raman scattering (SERS) technology. Initially, the surface of PDMS film was chemically modified by piranha solution and 3-Aminopropyltriethoxysilane (APTES), and then AuNPs-PDMS film was prepared by coating gold nanoparticles (AuNPs) through electrostatic interaction. Next, the aptamers were immobilized on the AuNPs-PDMS membrane via gold-sulfur bond to form the capture substrate. Meanwhile, gold-silver core-shell nanoflowers (Au@Ag NFs) modified with mercaptobenzoic acid (4-MBA) and aptamers were applied as a signal probe. In the presence of the target, the signal molecular probe and the capturing substrate specifically combined with the target and resulted in a sandwich structure "capture substrate-target-signal molecular probe". Under the optimized experimental condition, the signal of 4-MBA at 1085 cm-1 was linearly related to the S. aureus concentration in the range of 4.3 × 10 cfu mL-1-4.3 × 107 cfu mL-1 (y = 326.91x-117.62, R2 = 0.9932) with a detection limit of 13 cfu mL-1. The method was successfully applied to spiked actual samples and a 92.5-110% recovery rate was achieved.
Collapse
Affiliation(s)
- Afang Zhu
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, 212013, PR China
| | - Shujat Ali
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, 212013, PR China
| | - Yi Xu
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, 212013, PR China
| | - Qin Ouyang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, 212013, PR China.
| | - Quansheng Chen
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, 212013, PR China.
| |
Collapse
|
38
|
Dey S, Trau M, Koo KM. Surface-Enhanced Raman Spectroscopy for Cancer Immunotherapy Applications: Opportunities, Challenges, and Current Progress in Nanomaterial Strategies. NANOMATERIALS (BASEL, SWITZERLAND) 2020; 10:E1145. [PMID: 32545182 PMCID: PMC7353228 DOI: 10.3390/nano10061145] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 06/05/2020] [Accepted: 06/06/2020] [Indexed: 02/06/2023]
Abstract
Cancer immunotherapy encompasses a variety of approaches which target or use a patient's immune system components to eliminate cancer. Notably, the current use of immune checkpoint inhibitors to target immune checkpoint receptors such as CTLA-4 or PD-1 has led to remarkable treatment responses in a variety of cancers. To predict cancer patients' immunotherapy responses effectively and efficiently, multiplexed immunoassays have been shown to be advantageous in sensing multiple immunomarkers of the tumor microenvironment simultaneously for patient stratification. Surface-enhanced Raman spectroscopy (SERS) is well-regarded for its capabilities in multiplexed bioassays and has been increasingly demonstrated in cancer immunotherapy applications in recent years. This review focuses on SERS-active nanomaterials in the modern literature which have shown promise for enabling cancer patient-tailored immunotherapies, including multiplexed in vitro and in vivo immunomarker sensing and imaging, as well as immunotherapy drug screening and delivery.
Collapse
Affiliation(s)
- Shuvashis Dey
- Centre for Personalized Nanomedicine, Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, QLD 4072, Australia
| | - Matt Trau
- Centre for Personalized Nanomedicine, Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, QLD 4072, Australia
- School of Chemistry and Molecular Biosciences, the University of Queensland, Brisbane, QLD 4072, Australia
| | - Kevin M. Koo
- XING Technologies Pty Ltd., Brisbane, QLD 4073, Australia
- The University of Queensland Centre for Clinical Research (UQCCR), Brisbane, QLD 4029, Australia
| |
Collapse
|
39
|
Liu Y, Lyu N, Rajendran VK, Piper J, Rodger A, Wang Y. Sensitive and Direct DNA Mutation Detection by Surface-Enhanced Raman Spectroscopy Using Rational Designed and Tunable Plasmonic Nanostructures. Anal Chem 2020; 92:5708-5716. [PMID: 32223184 DOI: 10.1021/acs.analchem.9b04183] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Efficient DNA mutation detection methods are required for diagnosis, personalized therapy development, and prognosis assessment for diseases such as cancer. To address this issue, we proposed a straightforward approach by combining active plasmonic nanostructures, surface-enhanced Raman spectroscopy (SERS), and polymerase chain reaction (PCR) with a statistical tool to identify and classify BRAF wild type (WT) and V600E mutant genes. The nanostructures provide enhanced sensitivity, while PCR offers high specificity toward target DNA. A series of positively charged plasmonic nanostructures including gold/silver nanospheres, nanoshells, nanoflowers, and nanostars were synthesized with a one-pot strategy and characterized. By changing the shape of nanostructures, we are able to vary the surface plasmon resonance from 551 to 693 nm. The gold/silver nanostar showed the highest SERS activity, which was employed for DNA mutation detection. We reproducibly analyzed as few as 100 copies of target DNA sequences using gold/silver nanostars, thus demonstrating the high sensitivity of the direct SERS detection. By means of statistical analysis (principal component analysis-linear discriminant analysis), this method was successfully applied to differentiate the WT and V600E mutant both from whole genome DNA lysed from cell line and from cell-free DNA collected from cell culture media. We further proved that this assay is capable of specifically amplifying and accurately classifying a real plasma sample. Thus, this direct SERS strategy combined with the active plasmonic nanostructures has the potential for wide applications as an alternative tool for sensitively monitoring and evaluating important clinical nucleotide biomarkers.
Collapse
|
40
|
Zhang Z, Wang J, Shanmugasundaram KB, Yeo B, Möller A, Wuethrich A, Lin LL, Trau M. Tracking Drug-Induced Epithelial-Mesenchymal Transition in Breast Cancer by a Microfluidic Surface-Enhanced Raman Spectroscopy Immunoassay. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2020; 16:e1905614. [PMID: 32141228 DOI: 10.1002/smll.201905614] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 01/31/2020] [Accepted: 02/16/2020] [Indexed: 06/10/2023]
Abstract
Epithelial-mesenchymal transition (EMT) is a primary mechanism for cancer metastasis. Detecting the activation of EMT can potentially convey signs of metastasis to guide treatment management and improve patient survival. One of the classic signatures of EMT is characterized by dynamic changes in cellular expression levels of E-cadherin and N-cadherin, whose soluble active fragments have recently been reported to be biomarkers for cancer diagnosis and prognosis. Herein, a microfluidic immunoassay (termed "SERS immunoassay") based on sensitive and simultaneous detection of soluble E-cadherin (sE-cadherin) and soluble N-cadherin (sN-cadherin) for EMT monitoring in patients' plasma is presented. The SERS immunoassay integrates in situ nanomixing and surface-enhanced Raman scattering readout to enable accurate detection of sE-cadherin and sN-cadherin from as low as 10 cells mL-1 . This assay enables tracking of a concurrent decrease in sE-cadherin and increase in sN-cadherin in breast cancer cells undergoing drug-induced mesenchymal transformation. The clinical potential of the SERS immunoassay is further demonstrated by successful detection of sE-cadherin and sN-cadherin in metastatic stage IV breast cancer patient plasma samples. The SERS immunoassay can potentially sense the activation of EMT to provide early indications of cancer invasions or metastasis.
Collapse
Affiliation(s)
- Zhen Zhang
- Centre for Personalized Nanomedicine, Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Jing Wang
- Centre for Personalized Nanomedicine, Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Karthik Balaji Shanmugasundaram
- Centre for Personalized Nanomedicine, Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Belinda Yeo
- Olivia Newton-John Cancer Research Institute, Austin Hospital, Heidelberg, Melbourne, VIC, 3084, Australia
| | - Andreas Möller
- Tumour Microenvironment Laboratory, QIMR Berghofer Medical Research Institute, Herston, QLD, 4006, Australia
| | - Alain Wuethrich
- Centre for Personalized Nanomedicine, Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Lynlee L Lin
- Centre for Personalized Nanomedicine, Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, QLD, 4072, Australia
- Dermatology Research Centre, University of Queensland Diamantina Institute, University of Queensland, Brisbane, QLD, 4102, Australia
| | - Matt Trau
- Centre for Personalized Nanomedicine, Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, QLD, 4072, Australia
- School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane, QLD, 4072, Australia
| |
Collapse
|
41
|
Jones A, Dhanapala L, Kankanamage RNT, Kumar CV, Rusling JF. Multiplexed Immunosensors and Immunoarrays. Anal Chem 2020; 92:345-362. [PMID: 31726821 PMCID: PMC7202053 DOI: 10.1021/acs.analchem.9b05080] [Citation(s) in RCA: 98] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Abby Jones
- Department of Chemistry, University of Connecticut, 55 North Eagleville Road, Storrs, Connecticut 06269, United States
| | - Lasangi Dhanapala
- Department of Chemistry, University of Connecticut, 55 North Eagleville Road, Storrs, Connecticut 06269, United States
| | - Rumasha N. T. Kankanamage
- Department of Chemistry, University of Connecticut, 55 North Eagleville Road, Storrs, Connecticut 06269, United States
| | - Challa V. Kumar
- Department of Chemistry, University of Connecticut, 55 North Eagleville Road, Storrs, Connecticut 06269, United States
- Institute of Materials Science, University of Connecticut, 97 North Eagleville Road, Storrs, Connecticut 06269, United States
| | - James F. Rusling
- Department of Chemistry, University of Connecticut, 55 North Eagleville Road, Storrs, Connecticut 06269, United States
- Institute of Materials Science, University of Connecticut, 97 North Eagleville Road, Storrs, Connecticut 06269, United States
- Department of Surgery and Neag Cancer Center, University of Connecticut Health Center, Farmington, Connecticut 06232, United States
- School of Chemistry, National University of Ireland Galway, University Road, Galway, Ireland H91 TK33
| |
Collapse
|
42
|
Kumar AR, Shanmugasundaram KB, Li J, Zhang Z, Ibn Sina AA, Wuethrich A, Trau M. Ultrasensitive melanoma biomarker detection using a microchip SERS immunoassay with anisotropic Au–Ag alloy nanoboxes. RSC Adv 2020; 10:28778-28785. [PMID: 35520058 PMCID: PMC9055796 DOI: 10.1039/d0ra05032f] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2020] [Accepted: 07/25/2020] [Indexed: 12/21/2022] Open
Abstract
The detection of circulating biomarkers in liquid biopsies has the potential to provide a non-invasive route for earlier cancer diagnosis and treatment management. Melanoma chondroitin sulfate proteoglycan (MCSP) is a membrane protein characteristic for melanoma cell migration and tissue invasion with its soluble form (sMCSP) serving as a potential promising diagnostic surrogate. However, at the initial disease stage, the detection of sMCSP is challenging because of its low abundance and the required high specificity to analyze sMCSP in complex bodily fluids. Herein, we report a highly sensitive and high-throughput microchip that enables Surface Enhanced Raman Spectroscopy (SERS) immunoassay for parallel detection of up to 28 samples. Key to assay speed and sensitivity is the stimulation of an alternating current-induced nanofluidic mixing that improves target-sensor collision and displacement of non-specific molecules. Anisotropic Au–Ag alloy nanoboxes (NB's) with strong plasmonic hot spots provide single SERS particle sensitivity that enables ultrasensitive sMCSP detection of as low as 0.79 pM (200 pg ml−1). As a proof of concept study, we investigate the assay performance in simulated melanoma patient samples. The detection of circulating biomarkers in liquid biopsies has the potential to provide a non-invasive route for earlier cancer diagnosis and treatment management.![]()
Collapse
Affiliation(s)
- Aswin Raj Kumar
- Centre for Personalized Nanomedicine
- Australian Institute for Bioengineering and Nanotechnology (AIBN)
- The University of Queensland
- Brisbane
- Australia
| | - Karthik Balaji Shanmugasundaram
- Centre for Personalized Nanomedicine
- Australian Institute for Bioengineering and Nanotechnology (AIBN)
- The University of Queensland
- Brisbane
- Australia
| | - Junrong Li
- Centre for Personalized Nanomedicine
- Australian Institute for Bioengineering and Nanotechnology (AIBN)
- The University of Queensland
- Brisbane
- Australia
| | - Zhen Zhang
- Centre for Personalized Nanomedicine
- Australian Institute for Bioengineering and Nanotechnology (AIBN)
- The University of Queensland
- Brisbane
- Australia
| | - Abu Ali Ibn Sina
- Centre for Personalized Nanomedicine
- Australian Institute for Bioengineering and Nanotechnology (AIBN)
- The University of Queensland
- Brisbane
- Australia
| | - Alain Wuethrich
- Centre for Personalized Nanomedicine
- Australian Institute for Bioengineering and Nanotechnology (AIBN)
- The University of Queensland
- Brisbane
- Australia
| | - Matt Trau
- Centre for Personalized Nanomedicine
- Australian Institute for Bioengineering and Nanotechnology (AIBN)
- The University of Queensland
- Brisbane
- Australia
| |
Collapse
|
43
|
Wang J, Koo KM, Wang Y, Trau M. Engineering State-of-the-Art Plasmonic Nanomaterials for SERS-Based Clinical Liquid Biopsy Applications. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2019; 6:1900730. [PMID: 31832306 PMCID: PMC6891916 DOI: 10.1002/advs.201900730] [Citation(s) in RCA: 78] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 07/26/2019] [Indexed: 05/23/2023]
Abstract
Precision oncology, defined as the use of the molecular understanding of cancer to implement personalized patient treatment, is currently at the heart of revolutionizing oncology practice. Due to the need for repeated molecular tumor analyses in facilitating precision oncology, liquid biopsies, which involve the detection of noninvasive cancer biomarkers in circulation, may be a critical key. Yet, existing liquid biopsy analysis technologies are still undergoing an evolution to address the challenges of analyzing trace quantities of circulating tumor biomarkers reliably and cost effectively. Consequently, the recent emergence of cutting-edge plasmonic nanomaterials represents a paradigm shift in harnessing the unique merits of surface-enhanced Raman scattering (SERS) biosensing platforms for clinical liquid biopsy applications. Herein, an expansive review on the design/synthesis of a new generation of diverse plasmonic nanomaterials, and an updated evaluation of their demonstrated SERS-based uses in liquid biopsies, such as circulating tumor cells, tumor-derived extracellular vesicles, as well as circulating cancer proteins, and tumor nucleic acids is presented. Existing challenges impeding the clinical translation of plasmonic nanomaterials for SERS-based liquid biopsy applications are also identified, and outlooks and insights into advancing this rapidly growing field for practical patient use are provided.
Collapse
Affiliation(s)
- Jing Wang
- Centre for Personalized NanomedicineAustralian Institute for Bioengineering and Nanotechnology (AIBN)The University of QueenslandBrisbaneQLD4072Australia
| | - Kevin M. Koo
- Centre for Personalized NanomedicineAustralian Institute for Bioengineering and Nanotechnology (AIBN)The University of QueenslandBrisbaneQLD4072Australia
| | - Yuling Wang
- Department of Molecular SciencesARC Excellence Centre for Nanoscale BioPhotonicsFaculty of Science and EngineeringMacquarie UniversitySydneyNSW2109Australia
| | - Matt Trau
- Centre for Personalized NanomedicineAustralian Institute for Bioengineering and Nanotechnology (AIBN)The University of QueenslandBrisbaneQLD4072Australia
- School of Chemistry and Molecular BiosciencesThe University of QueenslandBrisbaneQLD4072Australia
| |
Collapse
|
44
|
Wuethrich A, Rajkumar AR, Shanmugasundaram KB, Reza KK, Dey S, Howard CB, Sina AAI, Trau M. Single droplet detection of immune checkpoints on a multiplexed electrohydrodynamic biosensor. Analyst 2019; 144:6914-6921. [PMID: 31657376 DOI: 10.1039/c9an01450k] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Monitoring soluble immune checkpoints in circulating fluids has the potential for minimally-invasive diagnostics and personalised therapy in precision medicine. Yet, the sensitive detection of multiple immune checkpoints from small volumes of liquid biopsy samples is challenging. In this study, we develop a multiplexed immune checkpoint biosensor (MICB) for parallel detection of soluble immune checkpoints PD-1, PD-L1, and LAG-3. MICB integrates a microfluidic sandwich immunoassay using engineered single chain variable fragments and alternating current electrohydrodynamic in situ nanofluidic mixing for promoting biosensor-target interaction and reducing non-specific non-target binding. MICB provides advantages of simultaneous analysis of up to 28 samples in <2 h, requires as little as a single sample drop (i.e., 20 μL) per target immune checkpoint, and applies high-affinity yeast cell-derived single chain variable fragments as a cost-effective alternative to monoclonal antibodies. We investigate the assay performance of MICB and demonstrate its capability for accurate immune checkpoint detection in simulated patient serum samples at clinically-relevant levels. MICB provides a dynamic range of 5 to 200 pg mL-1 for PD-1 and PD-L1, and 50 to 1000 pg mL-1 for LAG-3 with a coefficient of variation <13.8%. Sensitive immune checkpoint detection was achieved with limits of detection values of 5 pg mL-1 for PD-1, 5 pg mL-1 for PD-L1, and 50 pg mL-1 for LAG-3. The multiplexing capability, sensitivity, and relative assay simplicity of MICB make it capable of serving as a bioanalytical tool for immune checkpoint therapy monitoring.
Collapse
Affiliation(s)
- Alain Wuethrich
- Centre for Personalized Nanomedicine, Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, QLD 4072, Australia.
| | | | | | | | | | | | | | | |
Collapse
|
45
|
Sigaeva A, Ong Y, Damle VG, Morita A, van der Laan KJ, Schirhagl R. Optical Detection of Intracellular Quantities Using Nanoscale Technologies. Acc Chem Res 2019; 52:1739-1749. [PMID: 31187980 PMCID: PMC6639779 DOI: 10.1021/acs.accounts.9b00102] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Indexed: 12/11/2022]
Abstract
Optical probes that can be used to measure certain quantities with subcellular resolution give us access to a new level of information at which physics, chemistry, life sciences, and medicine become strongly intertwined. The emergence of these new technologies is owed to great advances in the physical sciences. However, evaluating and improving these methods to new standards requires a joint effort with life sciences and clinical practice. In this Account, we give an overview of the probes that have been developed for measuring a few highly relevant parameters at the subcellular scale: temperature, pH, oxygen, free radicals, inorganic ions, genetic material, and biomarkers. Luminescent probes are available in many varieties, which can be used for measuring temperature, pH, and oxygen. Since they are influenced by virtually any metabolic process in the healthy or diseased cell, these quantities are extremely useful to understand intracellular processes. Probes for them can roughly be divided into molecular dyes with a parameter dependent fluorescence or phosphorescence and nanoparticle platforms. Nanoparticle probes can provide enhanced photostability, measurement quality, and potential for multiple functionalities. Embedding into coatings can improve biocompatibility or prevent nonspecific interactions between the probe and the cellular environment. These qualities need to be matched however with good uptake properties, colloidal properties and eventually intracellular targeting to optimize their practical applicability. Inorganic ions constitute a broad class of compounds or elements, some of which play specific roles in signaling, while others are toxic. Their detection is often difficult due to the cross-talk with similar ions, as well as other parameters. The detection of free radicals, DNA, and biomarkers at extremely low levels has significant potential for biomedical applications. Their presence is linked more directly to physiological and clinical manifestations. Since existing methods for free radical detection are generally poor in sensitivity and spatiotemporal resolution, new reliable methods that are generally applicable can contribute greatly to advancing this topic in biology. Optical methods that detect DNA or RNA and protein biomarkers exist for intracellular applications, but are mostly relevant for the development of rapid point-of-care sample testing. To elucidate the inner workings of cells, focused multidisciplinary research is required to define the validity and limitations of a nanoparticle probe, in both physical and biological terms. Multifunctional platforms and those that are easily made compatible with conventional research equipment have an edge over other techniques in growing the body of research evidencing their versatility.
Collapse
Affiliation(s)
- Alina Sigaeva
- Groningen
University, University Medical
Center Groningen, Antonius
Deusinglaan 1, 9713 AV Groningen, The Netherlands
| | - Yori Ong
- Groningen
University, University Medical
Center Groningen, Antonius
Deusinglaan 1, 9713 AV Groningen, The Netherlands
| | - Viraj G. Damle
- Groningen
University, University Medical
Center Groningen, Antonius
Deusinglaan 1, 9713 AV Groningen, The Netherlands
| | - Aryan Morita
- Groningen
University, University Medical
Center Groningen, Antonius
Deusinglaan 1, 9713 AV Groningen, The Netherlands
- Dept.
Dental Biomedical Sciences, Faculty of Dentistry, Universitas Gadjah Mada, Yogyakarta 55281, Indonesia
| | - Kiran J. van der Laan
- Groningen
University, University Medical
Center Groningen, Antonius
Deusinglaan 1, 9713 AV Groningen, The Netherlands
| | - Romana Schirhagl
- Groningen
University, University Medical
Center Groningen, Antonius
Deusinglaan 1, 9713 AV Groningen, The Netherlands
| |
Collapse
|
46
|
Hu X, Wang X, Ge Z, Zhang L, Zhou Y, Li J, Bu L, Wu H, Li P, Xu W. Bimetallic plasmonic Au@Ag nanocuboids for rapid and sensitive detection of phthalate plasticizers with label-free surface-enhanced Raman spectroscopy. Analyst 2019; 144:3861-3869. [PMID: 31099357 DOI: 10.1039/c9an00251k] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Phthalate plasticizers (PAEs) are posing a serious threat to human health, so it is urgent to develop effective and reliable ways to detect the food additives PAEs sensitively. In this study, we have reported plasmonic bimetallic Au@Ag core-shell nanocuboids for the rapid and sensitive detection of PAEs in liquor samples with a label-free Surface-enhanced Raman Spectroscopy (SERS) strategy. Compared with single-element nanostructures, the bimetallic SERS platform can integrate two distinct functions into a single entity with unprecedented properties. Consequently, we synthesized Au@Ag nanocuboids (Au@Ag NCs) composed of a Au nanorod (Au NR) core and a Ag cuboid shell, which could produce richer and broader plasmonic resonance modes than Au NRs. It is obvious that the SERS signals of crystal violet (CV) and butyl benzyl phthalate (BBP) reached a maximum as the thickness of the Ag coating shell was in a certain threshold and there was a strong dependence of the Raman enhancement on the Ag cuboid shell-thickness. Based on the optimized size, the sensitivity and repeatability of Au@Ag NCs were evaluated with limits of detection (LODs) at around 10-9 M both for BBP and diethylhexyl phthalate (DEHP). In addition, the SERS active substrate core-shell Au@Ag NCs can be used to detect BBP as low as 1.3 mg kg-1 spiked into the liquor samples. Thereby, the unique bimetallic Au@Ag NCs showed a huge potential for the rapid and sensitive detection of PAEs in liquor samples.
Collapse
Affiliation(s)
- Xiaoyan Hu
- Department of Pharmacy, Anhui University of Chinese Medicine, Anhui, Hefei 230038, China
| | - Xinru Wang
- Department of Pharmacy, Anhui University of Chinese Medicine, Anhui, Hefei 230038, China
| | - Zipan Ge
- Department of Pharmacy, Anhui University of Chinese Medicine, Anhui, Hefei 230038, China
| | - Le Zhang
- Department of Pharmacy, Anhui University of Chinese Medicine, Anhui, Hefei 230038, China
| | - Yaru Zhou
- School of Chemistry and Chemical Engineering, Hefei University of Technology, Anhui, Hefei 230009, China
| | - Jingya Li
- Department of Biological Physics, University of Science and Technology of China, Anhui, Hefei 230027, China
| | - Linfeng Bu
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Modern Mechanics, CAS Center for Excellence in Complex System Mechanics, University of Science and Technology of China, Hefei 230027, China
| | - Hengan Wu
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Modern Mechanics, CAS Center for Excellence in Complex System Mechanics, University of Science and Technology of China, Hefei 230027, China
| | - Pan Li
- Center of medical physics and technology, Hefei institutes of physical science, CAS, Hefei 230021, China.
| | - Weiping Xu
- Department of Pharmacy, Anhui University of Chinese Medicine, Anhui, Hefei 230038, China and The First Affiliated Hospital of USTC, Anhui Provincial Hospital, Anhui, Hefei 230001, China.
| |
Collapse
|
47
|
Enhancing Disease Diagnosis: Biomedical Applications of Surface-Enhanced Raman Scattering. APPLIED SCIENCES-BASEL 2019. [DOI: 10.3390/app9061163] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Surface-enhanced Raman scattering (SERS) has recently gained increasing attention for the detection of trace quantities of biomolecules due to its excellent molecular specificity, ultrasensitivity, and quantitative multiplex ability. Specific single or multiple biomarkers in complex biological environments generate strong and distinct SERS spectral signals when they are in the vicinity of optically active nanoparticles (NPs). When multivariate chemometrics are applied to decipher underlying biomarker patterns, SERS provides qualitative and quantitative information on the inherent biochemical composition and properties that may be indicative of healthy or diseased states. Moreover, SERS allows for differentiation among many closely-related causative agents of diseases exhibiting similar symptoms to guide early prescription of appropriate, targeted and individualised therapeutics. This review provides an overview of recent progress made by the application of SERS in the diagnosis of cancers, microbial and respiratory infections. It is envisaged that recent technology development will help realise full benefits of SERS to gain deeper insights into the pathological pathways for various diseases at the molecular level.
Collapse
|
48
|
Yu Q, Wang Y, Mei R, Yin Y, You J, Chen L. Polystyrene Encapsulated SERS Tags as Promising Standard Tools: Simple and Universal in Synthesis; Highly Sensitive and Ultrastable for Bioimaging. Anal Chem 2019; 91:5270-5277. [DOI: 10.1021/acs.analchem.9b00038] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Qian Yu
- Department of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, China
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China
| | - Yunqing Wang
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China
- School of Pharmacy, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Yantai University, Yantai 264005, China
| | - Rongchao Mei
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China
| | - Yingchao Yin
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China
- School of Pharmacy, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Yantai University, Yantai 264005, China
| | - Jinmao You
- Department of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, China
| | - Lingxin Chen
- Department of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, China
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China
- Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology, Qingdao 266237, China
| |
Collapse
|
49
|
Reza K, Sina AAI, Wuethrich A, Grewal YS, Howard CB, Korbie D, Trau M. A SERS microfluidic platform for targeting multiple soluble immune checkpoints. Biosens Bioelectron 2019; 126:178-186. [DOI: 10.1016/j.bios.2018.10.044] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Revised: 09/28/2018] [Accepted: 10/18/2018] [Indexed: 10/28/2022]
|
50
|
Wang J, Anderson W, Li J, Lin LL, Wang Y, Trau M. A high-resolution study of in situ surface-enhanced Raman scattering nanotag behavior in biological systems. J Colloid Interface Sci 2018; 537:536-546. [PMID: 30469121 DOI: 10.1016/j.jcis.2018.11.035] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2018] [Revised: 11/02/2018] [Accepted: 11/10/2018] [Indexed: 01/14/2023]
Abstract
The colloidal stability of surface-enhanced Raman scattering (SERS) nanotags (Raman reporter-conjugated plasmonic nanoparticles) significantly affects the accuracy and reproducibility of SERS measurements, particularly in biological systems. Limited understanding of SERS nanotag stability may partly hamper the translation of SERS nanotags from the laboratory to their use in the clinic. In this contribution, we utilized differential centrifugal sedimentation (DCS), a reliable and straightforward technique to comprehensively analyze the colloidal stability of SERS nanotags in biological systems. Compared with other particle characterization techniques, DCS has been shown to have a unique advantage for high-resolution and high-throughput polydisperse particle characterization. DCS data revealed that the universal aggregation prevention practice of coating SERS nanotags with silica or bovine serum albumin layers did not sufficiently stabilize them in common measurement environments (e.g., 1 × PBS). Combined DCS and SERS measurements established a strong correlation between the degrees of nanotag aggregation and signal intensities, further reinforcing the necessity of characterizing SERS nanotag stability for every condition in which they are used. We also found that increasing the protein thickness by the inclusion of extra protein components in the detection environments and antibody functionalization can improve the stability of SERS nanotags. We believe that this study can provide guidelines on appropriate measurement techniques and particle design considerations to assess and improve SERS nanotag stability in complex biological systems.
Collapse
Affiliation(s)
- Jing Wang
- Centre for Personalised Nanomedicine, Australian Institute for Bioengineering and Nanotechnology, University of Queensland, Brisbane, QLD 4072, Australia.
| | - Will Anderson
- Centre for Personalised Nanomedicine, Australian Institute for Bioengineering and Nanotechnology, University of Queensland, Brisbane, QLD 4072, Australia.
| | - Junrong Li
- Centre for Personalised Nanomedicine, Australian Institute for Bioengineering and Nanotechnology, University of Queensland, Brisbane, QLD 4072, Australia.
| | - Lynlee L Lin
- Centre for Personalised Nanomedicine, Australian Institute for Bioengineering and Nanotechnology, University of Queensland, Brisbane, QLD 4072, Australia; Dermatology Research Centre, University of Queensland Diamantina Institute, University of Queensland, Brisbane, QLD 4102, Australia.
| | - Yuling Wang
- Department of Molecular Sciences, ARC Excellence Centre for Nanoscale BioPhotonics, Faculty of Science and Engineering, Macquarie University, Sydney, NSW 2109, Australia.
| | - Matt Trau
- Centre for Personalised Nanomedicine, Australian Institute for Bioengineering and Nanotechnology, University of Queensland, Brisbane, QLD 4072, Australia; School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane, QLD 4072, Australia.
| |
Collapse
|