1
|
Wu SW, Hsieh CY, Liu BH, Lin XJ, Yu FY. Novel antibody- and aptamer-based approaches for sensitive detection of mycotoxin fusaric acid in cereal. Food Chem 2025; 463:141245. [PMID: 39298849 DOI: 10.1016/j.foodchem.2024.141245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 08/28/2024] [Accepted: 09/10/2024] [Indexed: 09/22/2024]
Abstract
This study presents the first successful generation of polyclonal antibodies (pAbs) and oligonucleotide aptamers specifically targeting fusaric acid (FA). Utilizing these pAbs and aptamers, three highly sensitive and specific assays were developed for the detection of FA in cereals with limits of detection (LOD) ranging from 5 to 50 ng/g: an antibody-based enzyme-linked immunosorbent assay (ELISA), an aptamer-based enzyme-linked aptamer-sorbent assay (ELASA), and a hybrid enzyme-linked aptamer-antibody sandwich assay (ELAAA). The recovery rates of FA in spiked cereal samples ranged from 87 % to 112 % across all assays. Analysis of 15 cereal feed samples revealed FA contamination levels of 459 to 1743 ng/g (ELISA), 427 to 1960 ng/g (ELASA), and 381 to 1987 ng/g (ELAAA). These results were further validated by HPLC analysis, confirming high consistency within developed assays. Overall, the ELISA, ELASA, and ELAAA are promising tools for the rapid detection of FA, significantly contributing to food safety monitoring.
Collapse
Affiliation(s)
- Shih-Wei Wu
- Graduate Institute of Toxicology, College of Medicine, National Taiwan University, No.1, Sec. 1, Jen Ai Rd, Taipei 100, Taiwan
| | - Chia-Yu Hsieh
- Department of Biomedical Sciences, Chung Shan Medical University, No.110, Sec. 1, Chien Kuo N. Rd, Taichung 402, Taiwan
| | - Biing-Hui Liu
- Graduate Institute of Toxicology, College of Medicine, National Taiwan University, No.1, Sec. 1, Jen Ai Rd, Taipei 100, Taiwan
| | - Xin-Jie Lin
- Department of Biomedical Sciences, Chung Shan Medical University, No.110, Sec. 1, Chien Kuo N. Rd, Taichung 402, Taiwan
| | - Feng-Yih Yu
- Department of Biomedical Sciences, Chung Shan Medical University, No.110, Sec. 1, Chien Kuo N. Rd, Taichung 402, Taiwan; Department of Medical Research, Chung Shan Medical University Hospital, No.110, Sec. 1, Chien Kuo N. Rd, Taichung 402, Taiwan.
| |
Collapse
|
2
|
Khan R, Anwar F, Ghazali FM. A comprehensive review of mycotoxins: Toxicology, detection, and effective mitigation approaches. Heliyon 2024; 10:e28361. [PMID: 38628751 PMCID: PMC11019184 DOI: 10.1016/j.heliyon.2024.e28361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 01/19/2024] [Accepted: 01/21/2024] [Indexed: 04/19/2024] Open
Abstract
Mycotoxins, harmful compounds produced by fungal pathogens, pose a severe threat to food safety and consumer health. Some commonly produced mycotoxins such as aflatoxins, ochratoxin A, fumonisins, trichothecenes, zearalenone, and patulin have serious health implications in humans and animals. Mycotoxin contamination is particularly concerning in regions heavily reliant on staple foods like grains, cereals, and nuts. Preventing mycotoxin contamination is crucial for a sustainable food supply. Chromatographic methods like thin layer chromatography (TLC), gas chromatography (GC), high-performance liquid chromatography (HPLC), and liquid chromatography coupled with a mass spectrometer (LC/MS), are commonly used to detect mycotoxins; however, there is a need for on-site, rapid, and cost-effective detection methods. Currently, enzyme-linked immunosorbent assays (ELISA), lateral flow assays (LFAs), and biosensors are becoming popular analytical tools for rapid detection. Meanwhile, preventing mycotoxin contamination is crucial for food safety and a sustainable food supply. Physical, chemical, and biological approaches have been used to inhibit fungal growth and mycotoxin production. However, new strains resistant to conventional methods have led to the exploration of novel strategies like cold atmospheric plasma (CAP) technology, polyphenols and flavonoids, magnetic materials and nanoparticles, and natural essential oils (NEOs). This paper reviews recent scientific research on mycotoxin toxicity, explores advancements in detecting mycotoxins in various foods, and evaluates the effectiveness of innovative mitigation strategies for controlling and detoxifying mycotoxins.
Collapse
Affiliation(s)
- Rahim Khan
- Department of Food Science, Faculty of Food Science and Technology, Universiti Putra Malaysia, 43400, UPM, Serdang, Malaysia
| | - Farooq Anwar
- Department of Food Science, Faculty of Food Science and Technology, Universiti Putra Malaysia, 43400, UPM, Serdang, Malaysia
- Institute of Chemistry, University of Sargodha, Sargodha, 40100, Pakistan
| | - Farinazleen Mohamad Ghazali
- Department of Food Science, Faculty of Food Science and Technology, Universiti Putra Malaysia, 43400, UPM, Serdang, Malaysia
| |
Collapse
|
3
|
Billet B, Chovelon B, McConnell EM, André D, Puillet-Anselme L, Fiore E, Faure P, Ravelet C, DeRosa MC, Peyrin E. Iodinated organic molecule as tag for inductively coupled Plasma-mass spectrometry aptamer assays. Talanta 2024; 267:125107. [PMID: 37672983 DOI: 10.1016/j.talanta.2023.125107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Revised: 08/09/2023] [Accepted: 08/21/2023] [Indexed: 09/08/2023]
Abstract
Inductively Coupled Plasma-Mass Spectrometry (ICP-MS) aptamer-based assays using metallic nanostructures or chelates as exogenous tags have gained growing attention in the last decade. We describe here a proof-of-concept study based on the exploitation of a simple organic molecule as a tag, i.e.l-thyroxine carrying four iodine atoms detectable by ICP-MS. A solid-phase assay involving the structure-switching format was deployed for the detection of the small molecule l-tyrosinamide as model target. The overall design involved (i) a reporter agent consisting of a DNA aptamer incorporating a single l-thyroxine label at its end and (ii) a capture agent, which is a partially complementary strand, immobilized on a microplate. Limit of detection in the nanomolar range was reported. The present labeling approach was further developed for the detection of a model protein (α-thrombin), using a sandwich mode, and proved effective in a biological matrix. We believe that the l-thyroxine tagging method could become a simple and robust alternative to commonly used labeling methods for ICP-MS aptamer-based assays.
Collapse
Affiliation(s)
- Blandine Billet
- University Grenoble Alpes, DPM UMR, 5063, F-38041, Grenoble, France; CNRS, DPM UMR, 5063, F-38041, Grenoble, France; Biochemistry, Toxicology and Pharmacology Department, Grenoble Site Nord CHU, Biology and Pathology Institute, F-38041, Grenoble, France
| | - Benoit Chovelon
- University Grenoble Alpes, DPM UMR, 5063, F-38041, Grenoble, France; CNRS, DPM UMR, 5063, F-38041, Grenoble, France; Biochemistry, Toxicology and Pharmacology Department, Grenoble Site Nord CHU, Biology and Pathology Institute, F-38041, Grenoble, France; Department of Chemistry, Carleton University, Ottawa, Canada.
| | | | - Dominique André
- Biochemistry, Toxicology and Pharmacology Department, Grenoble Site Nord CHU, Biology and Pathology Institute, F-38041, Grenoble, France
| | - Laurence Puillet-Anselme
- Biochemistry, Toxicology and Pharmacology Department, Grenoble Site Nord CHU, Biology and Pathology Institute, F-38041, Grenoble, France
| | - Emmanuelle Fiore
- University Grenoble Alpes, DPM UMR, 5063, F-38041, Grenoble, France; CNRS, DPM UMR, 5063, F-38041, Grenoble, France
| | - Patrice Faure
- University Grenoble Alpes, DPM UMR, 5063, F-38041, Grenoble, France; CNRS, DPM UMR, 5063, F-38041, Grenoble, France; Biochemistry, Toxicology and Pharmacology Department, Grenoble Site Nord CHU, Biology and Pathology Institute, F-38041, Grenoble, France
| | - Corinne Ravelet
- University Grenoble Alpes, DPM UMR, 5063, F-38041, Grenoble, France; CNRS, DPM UMR, 5063, F-38041, Grenoble, France
| | - Maria C DeRosa
- Department of Chemistry, Carleton University, Ottawa, Canada
| | - Eric Peyrin
- University Grenoble Alpes, DPM UMR, 5063, F-38041, Grenoble, France; CNRS, DPM UMR, 5063, F-38041, Grenoble, France.
| |
Collapse
|
4
|
He Y, Xie C, Zhang Q, Cheng R, Liu X, Guo Y, Liu C, Jiang M, Wang M, Luo X. SERS Immunoassay Based on an Enzyme-Catalyzed Cascade Reaction and Metal-Organic Framework/Alkaline Phosphatase for Ultrasensitive Detection of Adenosine Triphosphate. ACS APPLIED MATERIALS & INTERFACES 2024; 16:1712-1718. [PMID: 38113293 DOI: 10.1021/acsami.3c13512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2023]
Abstract
Herein, an adenosine triphosphate (ATP)-induced enzyme-catalyzed cascade reaction system based on metal-organic framework/alkaline phosphatase (MOF/ALP) nanocomposites was designed to establish a surface-enhanced Raman spectroscopy (SERS) biosensor for use in rapid, sensitive ATP detection. Numerous ALP molecules were first encapsulated using ZIF-90 to temporarily deactivate the enzyme activity, similar to a lock. Au nanostars (AuNSs), as SERS-enhancing substrates, were combined with o-phenylenediamine (OPD) to form AuNSs@OPD, which could significantly improve the Raman signal of OPD. When the target ATP interacted with the MOF/ALP nanocomposites, ATP could act as a key to open the MOF structure, releasing ALP, which should further catalyze the conversion of OPD to oxOPD with the aid of ascorbic acid 2-phosphate. Therefore, with the increasing concentrations of ATP, more ALP was released to catalyze the conversion of OPD, resulting in the reduced intensity of the Raman peak at 1262 cm-1, corresponding to the level of OPD. Based on this principle, the ATP-induced enzyme-catalyzed cascade reaction SERS biosensor enabled the ultrasensitive detection of ATP, with a low detection limit of 0.075 pM. Consequently, this study provides a novel strategy for use in the ultrasensitive, rapid detection of ATP, which displays considerable potential for application in the fields of biomedicine and disease diagnosis.
Collapse
Affiliation(s)
- Yi He
- College of Science, Xihua University, Chengdu 610039, P. R. China
| | - Chenfeng Xie
- College of Science, Xihua University, Chengdu 610039, P. R. China
| | - Qianyan Zhang
- College of Science, Xihua University, Chengdu 610039, P. R. China
| | - Rui Cheng
- College of Science, Xihua University, Chengdu 610039, P. R. China
| | - Xiyu Liu
- College of Science, Xihua University, Chengdu 610039, P. R. China
| | - Yunli Guo
- College of Science, Xihua University, Chengdu 610039, P. R. China
| | - Chunhong Liu
- College of Science, Xihua University, Chengdu 610039, P. R. China
| | - Minghang Jiang
- College of Science, Xihua University, Chengdu 610039, P. R. China
| | - Mengjun Wang
- College of Science, Xihua University, Chengdu 610039, P. R. China
| | - Xiaojun Luo
- College of Science, Xihua University, Chengdu 610039, P. R. China
| |
Collapse
|
5
|
Wu SW, Chen YJ, Chang YW, Huang CY, Liu BH, Yu FY. Novel enzyme-linked aptamer-antibody sandwich assay and hybrid lateral flow strip for SARS-CoV-2 detection. J Nanobiotechnology 2024; 22:5. [PMID: 38169397 PMCID: PMC10762915 DOI: 10.1186/s12951-023-02191-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Accepted: 11/03/2023] [Indexed: 01/05/2024] Open
Abstract
We have successfully generated oligonucleotide aptamers (Apts) and monoclonal antibodies (mAbs) targeting the recombinant nucleocapsid (N) protein of SARS-CoV-2. Apts were obtained through seven rounds of systematic evolution of ligands by exponential enrichment (SELEX), while mAbs were derived from the 6F6E11 hybridoma cell line. Leveraging these Apts and mAbs, we have successfully devised two innovative and remarkably sensitive detection techniques for the rapid identification of SARS-CoV-2 N protein in nasopharyngeal samples: the enzyme-linked aptamer-antibody sandwich assay (ELAAA) and the hybrid lateral flow strip (hybrid-LFS). ELAAA exhibited an impressive detection limit of 0.1 ng/mL, while hybrid-LFS offered a detection range of 0.1 - 0.5 ng/mL. In the evaluation using ten nasopharyngeal samples spiked with known N protein concentrations, ELAAA demonstrated an average recovery rate of 92%. Additionally, during the assessment of five nasopharyngeal samples from infected individuals and ten samples from healthy volunteers, hybrid-LFS displayed excellent sensitivity and specificity. Our study introduces a novel and efficient on-site approach for SARS-CoV-2 detection in nasopharyngeal samples. The reliable hybrid Apt-mAb strategy not only advances virus diagnostic methods but also holds promise in combating the spread of related diseases.
Collapse
Affiliation(s)
- Shih-Wei Wu
- Graduate Institute of Toxicology, College of Medicine, National Taiwan University, No.1, Sec. 1, Jen Ai Rd, Taipei, 100, Taiwan
| | - Ying-Ju Chen
- School of Medicine, Chung Shan Medical University, No.110, Sec. 1, Chien Kuo N. Rd, Taichung, 402, Taiwan
| | - Yu-Wen Chang
- Department of Biomedical Sciences, Chung Shan Medical University, No.110, Sec. 1, Chien Kuo N. Rd, Taichung, 402, Taiwan
| | - Cheng-Yang Huang
- Department of Biomedical Sciences, Chung Shan Medical University, No.110, Sec. 1, Chien Kuo N. Rd, Taichung, 402, Taiwan
| | - Biing-Hui Liu
- Graduate Institute of Toxicology, College of Medicine, National Taiwan University, No.1, Sec. 1, Jen Ai Rd, Taipei, 100, Taiwan.
| | - Feng-Yih Yu
- Department of Biomedical Sciences, Chung Shan Medical University, No.110, Sec. 1, Chien Kuo N. Rd, Taichung, 402, Taiwan.
- Department of Medical Research, Chung Shan Medical University Hospital, No.110, Sec. 1, Chien Kuo N. Rd, Taichung, 402, Taiwan.
| |
Collapse
|
6
|
Wu W, Bai Y, Zhao T, Liang M, Hu X, Wang D, Tang X, Yu L, Zhang Q, Li P, Zhang Z. Intelligent Electrochemical Point-of-Care Test Method with Interface Control Based on DNA Pyramids: Aflatoxin B1 Detection in Food and the Environment. Foods 2023; 12:4447. [PMID: 38137251 PMCID: PMC10743006 DOI: 10.3390/foods12244447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 12/06/2023] [Accepted: 12/06/2023] [Indexed: 12/24/2023] Open
Abstract
Sensitive, intelligent point-of-care test (iPOCT) methods for small molecules like aflatoxin B1 (AFB1) are urgently needed for food and the environment. The challenge remains of surface control in iPOCT. Herein, we developed an electrochemical sensor based on the DNA pyramid (DNP), combining a smartphone, app, and mobile electrochemical workstations to detect AFB1. The DNP's structure can reduce local overcrowding and entanglement between neighboring probes, control the density and orientation of recognition probes (antibodies), produce uniform and orientational surface assemblies, and improve antigen-antibody-specific recognition and binding efficiency. Simultaneously, the hollow structure of the DNP enhances the electron transfer capacity and increases the sensitivity of electrochemical detection. In this work, the biosensor based on DNP was first combined with electrochemical (Ec) iPOCT to simultaneously achieve ordered interface modulation of recognition probes and intelligent detection of AFB1. Under optimal conditions, we found a detection limit of 3 pg/mL and a linear range of 0.006-30 ng/mL (R2 = 0.995). Further, using peanut, soybean, corn, and lake water as complex matrices, it recorded recoveries of 82.15-100.53%, excellent selectivity, acceptable stability, and good reproducibility. Finally, this Ec iPOCT provides consistent results compared to the high-performance liquid chromatography-tandem mass spectrometry method.
Collapse
Affiliation(s)
- Wenqin Wu
- Oil Crops Research Institute of Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Oil Crops, Key Laboratory of Detection for Mycotoxins, National Reference Laboratory for Agricultural Testing (Biotoxin), Hubei Hongshan Lab, Wuhan 430062, China
| | - Yizhen Bai
- Oil Crops Research Institute of Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Oil Crops, Key Laboratory of Detection for Mycotoxins, National Reference Laboratory for Agricultural Testing (Biotoxin), Hubei Hongshan Lab, Wuhan 430062, China
| | - Tiantian Zhao
- Oil Crops Research Institute of Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Oil Crops, Key Laboratory of Detection for Mycotoxins, National Reference Laboratory for Agricultural Testing (Biotoxin), Hubei Hongshan Lab, Wuhan 430062, China
| | - Meijuan Liang
- Oil Crops Research Institute of Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Oil Crops, Key Laboratory of Detection for Mycotoxins, National Reference Laboratory for Agricultural Testing (Biotoxin), Hubei Hongshan Lab, Wuhan 430062, China
| | - Xiaofeng Hu
- Oil Crops Research Institute of Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Oil Crops, Key Laboratory of Detection for Mycotoxins, National Reference Laboratory for Agricultural Testing (Biotoxin), Hubei Hongshan Lab, Wuhan 430062, China
| | - Du Wang
- Oil Crops Research Institute of Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Oil Crops, Key Laboratory of Detection for Mycotoxins, National Reference Laboratory for Agricultural Testing (Biotoxin), Hubei Hongshan Lab, Wuhan 430062, China
| | - Xiaoqian Tang
- Oil Crops Research Institute of Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Oil Crops, Key Laboratory of Detection for Mycotoxins, National Reference Laboratory for Agricultural Testing (Biotoxin), Hubei Hongshan Lab, Wuhan 430062, China
| | - Li Yu
- Oil Crops Research Institute of Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Oil Crops, Key Laboratory of Detection for Mycotoxins, National Reference Laboratory for Agricultural Testing (Biotoxin), Hubei Hongshan Lab, Wuhan 430062, China
| | - Qi Zhang
- Oil Crops Research Institute of Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Oil Crops, Key Laboratory of Detection for Mycotoxins, National Reference Laboratory for Agricultural Testing (Biotoxin), Hubei Hongshan Lab, Wuhan 430062, China
| | - Peiwu Li
- Oil Crops Research Institute of Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Oil Crops, Key Laboratory of Detection for Mycotoxins, National Reference Laboratory for Agricultural Testing (Biotoxin), Hubei Hongshan Lab, Wuhan 430062, China
| | - Zhaowei Zhang
- Oil Crops Research Institute of Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Oil Crops, Key Laboratory of Detection for Mycotoxins, National Reference Laboratory for Agricultural Testing (Biotoxin), Hubei Hongshan Lab, Wuhan 430062, China
- School of Bioengineering and Health, State Key Laboratory of New Textile Materials and Advanced Processing Technologies, Wuhan Textile University, Wuhan 430200, China
| |
Collapse
|
7
|
Wu R, Guo J, Wang M, Liu H, Ding L, Yang R, Liu LE, Liu Z. Fluorescent Sensor Based on Magnetic Separation and Strand Displacement Amplification for the Sensitive Detection of Ochratoxin A. ACS OMEGA 2023; 8:15741-15750. [PMID: 37151502 PMCID: PMC10157876 DOI: 10.1021/acsomega.3c01408] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 04/11/2023] [Indexed: 05/09/2023]
Abstract
Ochratoxin A (OTA) is a common mycotoxin, and it is a significant threat to human health throughout the food chain. In this study, a sensitive and specific fluorescent sensor based on magnetic separation technology combined with chain displacement amplification was developed for fast and easy detection of OTA in food. The designed strand displacement amplification can improve the sensitivity for the detection, and the magnetic nanomaterials can provide a large surface area, thus enhancing the capture efficiency of the target from the sample. Based on those designs, the experimental results showed that the proposed method displayed excellent performance. The linearity range was 0.5-128.0 ng/mL. The detection limit was 0.125 ng/mL; the relative standard deviations were 3.92-7.71%. Additionally, the developed method was satisfactorily applied to determine OTA in wheat, corn, and red wine samples at three spiked levels (1.0, 8.0, and 64.0 ng/mL). The recoveries ranged from 85.45 to 107.8% for wheat flour, 101.34 to 108.35% for corn flour, and 91.15 to 93.80% for red wine, respectively. Compared with high-performance liquid chromatography, the proposed method showed a lower limit of detection and equal recovery. Hence, the designed method is a potential and good detecting tool for OTA residue analysis in complex matrix samples.
Collapse
Affiliation(s)
- Ruoyu Wu
- College
of Public Health, Zhengzhou University, Zhengzhou 450001, People’s Republic of China
| | - Jiaping Guo
- College
of Public Health, Zhengzhou University, Zhengzhou 450001, People’s Republic of China
| | - Minkai Wang
- Department
of Neurosurgery, First Affiliated Hospital
of Zhengzhou University, Zhengzhou, Henan 450052, People’s Republic of China
| | - Huimin Liu
- College
of Public Health, Zhengzhou University, Zhengzhou 450001, People’s Republic of China
| | - Lihua Ding
- College
of Public Health, Zhengzhou University, Zhengzhou 450001, People’s Republic of China
| | - Ruiying Yang
- College
of Public Health, Zhengzhou University, Zhengzhou 450001, People’s Republic of China
| | - Li-e Liu
- College
of Public Health, Zhengzhou University, Zhengzhou 450001, People’s Republic of China
| | - Zhiyong Liu
- Key
Laboratory of Food Safety Quick Testing and Smart Supervision Technology
for State Market Regulation, Beijing 100094, People’s
Republic of China
| |
Collapse
|
8
|
Zhang L, Wu H, Chen Y, Zhang S, Song M, Liu C, Li J, Cheng W, Ding S. Target response controlled enzyme activity switch for multimodal biosensing detection. J Nanobiotechnology 2023; 21:122. [PMID: 37031177 PMCID: PMC10082497 DOI: 10.1186/s12951-023-01860-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 03/16/2023] [Indexed: 04/10/2023] Open
Abstract
How to achieve delicate regulation of enzyme activity and empower it with more roles is the peak in the field of enzyme catalysis research. Traditional proteases or novel nano-enzymes are unable to achieve stimulus-responsive activity modulation due to their own structural limitations. Here, we propose a novel Controllable Enzyme Activity Switch, CEAS, based on hemin aggregation regulation, to deeply explore its regulatory mechanism and develop multimodal biosensing applications. The core of CEAS relies on the dimerizable inactivation of catalytically active center hemin and utilizes a DNA template to orderly guide the G4-Hemin DNAzyme to tightly bind to DNA-Hemin, thereby shutting down the catalytic ability. By customizing the design of the guide template, different target stimulus responses lead to hemin dimerization dissociation and restore the synergistic catalysis of G4-Hemin and DNA-Hemin, thus achieving a target-regulated enzymatic activity switch. Moreover, the programmability of CEAS allowed it easy to couple with a variety of DNA recognition and amplification techniques, thus developing a series of visual protein detection systems and highly sensitive fluorescent detection systems with excellent bioanalytical performance. Therefore, the construction of CEAS is expected to break the limitation of conventional enzymes that cannot be targetable regulated, thus enabling customizable enzymatic reaction systems and providing a new paradigm for controllable enzyme activities.
Collapse
Affiliation(s)
- Lu Zhang
- Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing, 400016, People's Republic of China
| | - Haiping Wu
- Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing, 400016, People's Republic of China
| | - Yirong Chen
- Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing, 400016, People's Republic of China
| | - Songzhi Zhang
- Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing, 400016, People's Republic of China
| | - Mingxuan Song
- Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing, 400016, People's Republic of China
| | - Changjin Liu
- Department of Laboratory Medicine, The Fifth People's Hospital of Chongqing, Chongqing, 400062, China
| | - Jia Li
- The Center for Clinical Molecular Medical Detection, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, People's Republic of China.
| | - Wei Cheng
- The Center for Clinical Molecular Medical Detection, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, People's Republic of China.
| | - Shijia Ding
- Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing, 400016, People's Republic of China.
| |
Collapse
|
9
|
An electrochemical aptasensor based on exonuclease III-assisted signal amplification coupled with CRISPR-Cas12a for ochratoxin A detection. Food Control 2023. [DOI: 10.1016/j.foodcont.2023.109631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
10
|
Ren X, Jiao X, Wang Y, Yao C, Xu X. A sensitive aflatoxin B1 electrochemical aptasensor based on ferrocene-functionalized hollow porous carbon spheres as signal amplifier. Microchem J 2022. [DOI: 10.1016/j.microc.2022.107649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
11
|
Ke X, Ou Y, Lin Y, Hu T. Enhanced chemiluminescence imaging sensor for ultrasensitive detection of nucleic acids based on HCR-CRISPR/Cas12a. Biosens Bioelectron 2022; 212:114428. [DOI: 10.1016/j.bios.2022.114428] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 05/19/2022] [Accepted: 05/24/2022] [Indexed: 12/13/2022]
|
12
|
Development of a Lateral Flow Strip with a Positive Readout for the On-Site Detection of Aflatoxin B1. Molecules 2022; 27:molecules27154949. [PMID: 35956902 PMCID: PMC9370625 DOI: 10.3390/molecules27154949] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Revised: 07/29/2022] [Accepted: 07/30/2022] [Indexed: 11/20/2022] Open
Abstract
Aflatoxin B1 is one of the contamination indicators for food safety monitoring. The rapid and effective assessment and determination of AFB1 in food is of great importance to dietary safety. The lateral flow assay shows advantages in its simplicity, and rapidity, and provides a visual readout, while the available lateral flow assay for AFB1 requires a competitive format that produces readings inversely proportional to the AFB1 concentration, which is counterintuitive and may lead to a potential misinterpretation of the results. Herein, we developed a positive readout aptamer-based lateral flow strip (Apt-strip) for the detection of AFB1. This Apt-strip relies on the competition between AFB1 and fluorescein-labeled complementary DNA strands (FAM-cDNA) for affinity binding to limited aptamers against AFB1 (AFB1-Apt). In the absence of AFB1, AFB1-Apt hybridizes with FAM-cDNA. No signal at the T-line of the Apt-strip was observed. In contrast, AFB1-Apt binds to AFB1 in the sample, and then a part of the FAM-cDNA is hybridized with the free AFB1-Apt, at which time the other unreacted FAM-cDNA is captured by A35-Apt on the T-line. The signal was observed. This method achieved fast detection of AFB1 with a detection limit (DL) of 0.1 ng/mL, positive readout, and increased sensitivity.
Collapse
|
13
|
Wu W, Xia S, Zhao M, Ping J, Lin JM, Hu Q. Colorimetric liquid crystal-based assay for the ultrasensitive detection of AFB1 assisted with rolling circle amplification. Anal Chim Acta 2022; 1220:340065. [DOI: 10.1016/j.aca.2022.340065] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 05/28/2022] [Accepted: 06/07/2022] [Indexed: 11/17/2022]
|
14
|
Chen JY, Wei QX, Yang LY, Li JY, Lu TC, Liu ZJ, Zhong GX, Weng XH, Xu XW. Multimodal Ochratoxin A-Aptasensor Using 3'-FAM-Enhanced Exonuclease I Tool and Magnetic Microbead Carrier. Anal Chem 2022; 94:10921-10929. [PMID: 35904339 DOI: 10.1021/acs.analchem.1c05576] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Thanks to its preparatory ease, close affinity, and low cost, the aptasensor can serve as a promising substitute for antibody-dependent biosensors. However, the available aptasensors are mostly subject to a single-mode readout and the interference of unbound aptamers in solution and non-target-induced transition events. Herein, we proposed a multimodal aptasensor for multimode detection of ochratoxin A (OTA) with cross-validation using the 3'-6-carboxyfluorescein (FAM)-enhanced exonuclease I (Exo I) tool and magnetic microbead carrier. Specifically, the 3'-FAM-labeled aptamer/biotinylated-cDNA hybrids were immobilized onto streptavidin-magnetic microbeads via streptavidin-biotin interaction. With the presence of OTA, an antiparallel G-quadruplex conformation was formed, protecting the 3'-FAM labels from Exo I digestion, and then anti-FAM-horseradish peroxidase (HRP) was bound via specific antigen-antibody affinity; for the aptamers without the protection of OTA, the distal ssDNA was hydrolyzed from 3' → 5', releasing 3'-FAM labels to the solution. Therefore, the OTA was detected by analyzing the "signal-off" fluorescence of the supernatant and two "signal-on" signals in electrochemistry and colorimetry through the detection of the coating magnetic microbeads in HRP's substrate. The results showed that the 3'-FAM labels increased the activity of Exo I, producing a low background due to a more thorough digestion of unbound aptamers. The proposed multimodal aptasensor successfully detected the OTA in actual samples. This work first provides a novel strategy for the development of aptasensors with Exo I and 3'-FAM labels, broadening the application of aptamer in the multimode detection of small molecules.
Collapse
Affiliation(s)
- Jin-Yuan Chen
- The Central Laboratory, Fujian Key Laboratory of Precision Medicine for Cancer, Key Laboratory of Radiation Biology of Fujian Higher Education Institutions, the First Affiliated Hospital, Fujian Medical University, Fuzhou 350005, China
| | - Qing-Xia Wei
- Department of Pharmacy, First Affiliated Hospital of Fujian Medical University, Fuzhou 350005, China
| | - Liang-Yong Yang
- Department of Pharmacy, First Affiliated Hospital of Fujian Medical University, Fuzhou 350005, China
| | - Jia-Yi Li
- Department of Pharmacy, First Affiliated Hospital of Fujian Medical University, Fuzhou 350005, China
| | - Tai-Cheng Lu
- The Central Laboratory, Fujian Key Laboratory of Precision Medicine for Cancer, Key Laboratory of Radiation Biology of Fujian Higher Education Institutions, the First Affiliated Hospital, Fujian Medical University, Fuzhou 350005, China
| | - Zhou-Jie Liu
- Department of Pharmacy, First Affiliated Hospital of Fujian Medical University, Fuzhou 350005, China
| | - Guang-Xian Zhong
- Department of Orthopaedics, Fujian Provincial Institute of Orthopaedics, the First Affiliated Hospital, Fujian Medical University, Fuzhou 350005, China
| | - Xiu-Hua Weng
- Department of Pharmacy, First Affiliated Hospital of Fujian Medical University, Fuzhou 350005, China
| | - Xiong-Wei Xu
- Department of Pharmacy, First Affiliated Hospital of Fujian Medical University, Fuzhou 350005, China
| |
Collapse
|
15
|
Li J, Shi J, Liang A, Jiang Z. Highly catalysis amplification of MOF Nd-loaded nanogold combined with specific aptamer SERS/RRS assay of trace glyphosate. Analyst 2022; 147:2369-2377. [PMID: 35535968 DOI: 10.1039/d2an00549b] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2023]
Abstract
A neodymium metal-organic framework (MOFNd) was prepared using 1H-pyrazole-3,5-dicarboxylic acid (H3pdc) and 2-pyrazinecarboxylic acid as ligands. Through the addition of HAuCl4 as a precursor and NaBH4 as a reducing agent, a new MOFNd-loaded nanogold (AuNPs) (Au@MOFNd) nanosol with good stability and high catalytic activity was conveniently prepared via a solvothermal-reduction method and characterized. It was found that the indicator reaction of reducing HAuCl4 by Na2SO3 to generate AuNPs was slow. Au@MOFNd strongly catalyzes this nanoreaction, and the produced AuNPs exhibit a strong resonance Rayleigh scattering (RRS) peak at 370 nm, and a strong surface-enhanced Raman scattering (SERS) peak at 1617 cm-1 with the addition of the molecular probe Victoria blue 4R (VB4r). A novel SERS/RRS di-mode quantitative analysis method for glyphosate (GLY) was established by coupling this new Au@MOFNd catalytic indicator reaction with the aptamer (Apt) reaction of GLY, with SERS and RRS detection limits of 0.02 nM and 0.3 nM, respectively. It has been applied to the analysis of soil samples with a recovery rate of 93.0%-106.5% and precision of 2.2%-4.1%, and the results were satisfactory.
Collapse
Affiliation(s)
- Jingjing Li
- Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, Guilin 541004, China
| | - Jinling Shi
- Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, Guilin 541004, China
| | - Aihui Liang
- Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, Guilin 541004, China
| | - Zhiliang Jiang
- Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, Guilin 541004, China
| |
Collapse
|
16
|
Hu T, Ke X, Ou Y, Lin Y. CRISPR/Cas12a-Triggered Chemiluminescence Enhancement Biosensor for Sensitive Detection of Nucleic Acids by Introducing a Tyramide Signal Amplification Strategy. Anal Chem 2022; 94:8506-8513. [PMID: 35635022 DOI: 10.1021/acs.analchem.2c01507] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
CRISPR-based biosensors have attracted increasing attention in accurate and sensitive nucleic acid detection. In this work, we report a CRISPR/Cas12a-triggered chemiluminescence enhancement biosensor for the ultrasensitive detection of nucleic acids by introducing tyramide signal amplification for the first time (termed CRICED). The hybrid chain DNA (crDNA) formed by NH2-capture DNA (capDNA) and biotin-recognition DNA (recDNA) was preferentially attached to the magnetic beads (MBs), and the streptavidin-HRP was subsequently introduced to obtain MB@HRP-crDNA. In the presence of the DNA target, the activated CRISPR/Cas12a is capable of randomly cutting initiator DNA (intDNA) into vast short products, and thus the fractured intDNA could not trigger the toehold-mediated DNA-strand displacement reaction (TSDR) event with MB@HRP-crDNA. After the addition of tyramine-AP and H2O2, abundant HRP-tyramine-AP emerges through the covalent attachment of HRP-tyramine, exhibiting enhanced chemiluminescence (CL) signals or visual image readouts. By virtue of this biosensor, we achieved high sensitivity of synthetic DNA target and amplified DNA plasmid using recombinase polymerase amplification (RPA) as low as 17 pM and single-copy detection, respectively. Our proposed CRICED was further evaluated to test 20 HPV clinical samples, showing a superior sensitivity of 87.50% and specificity of 100.00%. Consequently, the CRICED platform could be an attractive means for ultrasensitive and imaging detection of nucleic acids and holds a promising strategy for the practical application of CRISPR-based diagnostics.
Collapse
Affiliation(s)
- Tao Hu
- The Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, Zhejiang 310052, China
| | - Xinxin Ke
- The Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, Zhejiang 310052, China
| | - Yangjing Ou
- International Peace Maternity & Child Health Hospital, Shanghai Municipal Key Clinical Specialty, Institute of Embryo-Fetal Original Adult Disease, School of Medicine, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Yu Lin
- International Peace Maternity & Child Health Hospital, Shanghai Municipal Key Clinical Specialty, Institute of Embryo-Fetal Original Adult Disease, School of Medicine, Shanghai Jiao Tong University, Shanghai 200030, China
| |
Collapse
|
17
|
Modulation of Aptamer-Ligand-Binding by Complementary Oligonucleotides: A G-Quadruplex Anti-Ochratoxin A Aptamer Case Study. Int J Mol Sci 2022; 23:ijms23094876. [PMID: 35563267 PMCID: PMC9103105 DOI: 10.3390/ijms23094876] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 04/21/2022] [Accepted: 04/24/2022] [Indexed: 11/16/2022] Open
Abstract
Short oligonucleotides are widely used for the construction of aptamer-based sensors and logical bioelements to modulate aptamer-ligand binding. However, relationships between the parameters (length, location of the complementary region) of oligonucleotides and their influence on aptamer-ligand interactions remain unclear. Here, we addressed this task by comparing the effects of short complementary oligonucleotides (ssDNAs) on the structure and ligand-binding ability of an aptamer and identifying ssDNAs' features that determine these effects. Within this, the interactions between the OTA-specific G-quadruplex aptamer 1.12.2 (5'-GATCGGGTGTGGGTGGCGTAAAGGGA GCATCGGACA-3') and 21 single-stranded DNA (ssDNA) oligonucleotides complementary to different regions of the aptamer were studied. Two sets of aptamer-ssDNA dissociation constants were obtained in the absence and in the presence of OTA by isothermal calorimetry and fluorescence anisotropy, respectively. In both sets, the binding constants depend on the number of hydrogen bonds formed in the aptamer-ssDNA complex. The ssDNAs' having more than 23 hydrogen bonds with the aptamer have a lower aptamer dissociation constant than for aptamer-OTA interactions. The ssDNAs' having less than 18 hydrogen bonds did not affect the aptamer-OTA affinity. The location of ssDNA's complementary site in the aptamer affeced the kinetics of the interaction and retention of OTA-binding in aptamer-ssDNA complexes. The location of the ssDNA site in the aptamer G-quadruplex led to its unfolding. In the presence of OTA, the unfolding process was longer and takes from 20 to 70 min. The refolding in the presence of OTA was possible and depends on the length and location of the ssDNA's complementary site. The location of the ssDNA site in the tail region led to its rapid displacement and wasn't affecting the G-qaudruplex's integrity. It makes the tail region more perspective for the development of ssDNA-based tools using this aptamer.
Collapse
|
18
|
Adegoke O, Daeid NN. Alloyed AuFeZnSe quantum dots@gold nanorod nanocomposite as an ultrasensitive and selective plasmon-amplified fluorescence OFF-ON aptasensor for arsenic (III). J Photochem Photobiol A Chem 2022. [DOI: 10.1016/j.jphotochem.2021.113755] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
19
|
He K, Sun L, Wang L, Li W, Hu G, Ji X, Zhang Y, Xu X. Engineering DNA G-quadruplex assembly for label-free detection of Ochratoxin A in colorimetric and fluorescent dual modes. JOURNAL OF HAZARDOUS MATERIALS 2022; 423:126962. [PMID: 34464866 DOI: 10.1016/j.jhazmat.2021.126962] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 08/10/2021] [Accepted: 08/17/2021] [Indexed: 06/13/2023]
Abstract
Colorimetric and fluorescent methods for Ochratoxin A (OTA) detection are convenient and well received. However, the pigments and autofluorescence originated from food matrices often interfere with detection signals. We have developed a strategy with colorimetric and fluorescent dual modes to solve this challenge. In the colorimetric mode, OTA aptamer (AP9) was assembled into a DNA triple-helix switch with a specially designed signal-amplifying sequence. The OTA-induced G-quadruplex (G4) of AP9 would open the switch and release the signal-amplifying sequence for colorimetric signal amplification. The G4 structures of AP9 were further utilized to combine with the fluorogenic dye ThT for fluorescent mode. By skillfully engineering DNA G4 assembly for signal amplification, there was no need for any DNA amplification or nanomaterials labeling. Detections could be carried out in a wide temperature range (22-37 ℃) and finished rapidly (colorimetric mode, 60 min; fluorescent mode, 15 min). Broad linear ranges (colorimetric mode, 10-1.5 ×103 μg/kg; fluorescent mode, 0.05-1.0 ×103 μg/kg) were achieved. The limit of detection for colorimetric and fluorescent modes were 4 μg/kg and 0.01 μg/kg, respectively. The two modes have been successfully applied to detect OTA in samples with intrinsic pigments and autofluorescence, showing their applicability and reliability.
Collapse
Affiliation(s)
- Kaiyu He
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Liping Sun
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Liu Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Wang Li
- College of Food Science & Engineering, Central South University of Forestry & Technology, Changsha 410004, China
| | - Guixian Hu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Xiaofeng Ji
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Yiming Zhang
- School of Agriculture and Food Science, Zhejiang A&F University, Hangzhou 311300, China.
| | - Xiahong Xu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China.
| |
Collapse
|
20
|
Li H, Kou B, Yuan Y, Chai Y, Yuan R. Porous Fe 3O 4@COF-Immobilized gold nanoparticles with excellent catalytic performance for sensitive electrochemical detection of ATP. Biosens Bioelectron 2022; 197:113758. [PMID: 34798499 DOI: 10.1016/j.bios.2021.113758] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 10/26/2021] [Accepted: 10/29/2021] [Indexed: 12/20/2022]
Abstract
In this work, a "signal-off" electrochemical biosensor was established for sensitive detection of adenosine triphosphate (ATP) based on Fe3O4@covalent organic framework-immobilized gold nanoparticles (Fe3O4@COF-Au NPs) porous composite material as a nanocarrier. The proposed Fe3O4@COF-Au NPs could effectively confine Au NPs in the uniform channels of the Fe3O4@COF, which successfully avoided Au NPs aggregation to a certain extent and provided a comparatively independent and stable micro-environment via its hydrophobic porous nanochannels, thereby owning excellent electro-catalytic performance for the reduction of 4-nitrophenol. Moreover, the Fe3O4@COF-Au NPs nanomaterials were served as functional platform for immobilizing DNA substrate (S0), which was used to bind with the conversion product (S1) of the target ATP for subsequent branched hybridization chain reaction (b-HCR) to form dendritic DNA strands to hinder electron transfer between Fe3O4@COF-Au NPs and 4-nitrophenol, finally achieving sensitive detection of ATP with a wide linear range of 5 pM-50 μM and a low detection limit of 1.6 pM. Such strategy provides a multifunctional immobilized platform for the sensitive detection of ATP and a versatile strategy for monitoring other biomolecules.
Collapse
Affiliation(s)
- Hao Li
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, PR China
| | - Beibei Kou
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, PR China
| | - Yali Yuan
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, PR China
| | - Yaqin Chai
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, PR China.
| | - Ruo Yuan
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, PR China.
| |
Collapse
|
21
|
Wang Y, Zhang C, Wang J, Knopp D. Recent Progress in Rapid Determination of Mycotoxins Based on Emerging Biorecognition Molecules: A Review. Toxins (Basel) 2022; 14:73. [PMID: 35202100 PMCID: PMC8874725 DOI: 10.3390/toxins14020073] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 01/14/2022] [Accepted: 01/15/2022] [Indexed: 12/12/2022] Open
Abstract
Mycotoxins are secondary metabolites produced by fungal species, which pose significant risk to humans and livestock. The mycotoxins which are produced from Aspergillus, Penicillium, and Fusarium are considered most important and therefore regulated in food- and feedstuffs. Analyses are predominantly performed by official laboratory methods in centralized labs by expert technicians. There is an urgent demand for new low-cost, easy-to-use, and portable analytical devices for rapid on-site determination. Most significant advances were realized in the field bioanalytical techniques based on molecular recognition. This review aims to discuss recent progress in the generation of native biomolecules and new bioinspired materials towards mycotoxins for the development of reliable bioreceptor-based analytical methods. After brief presentation of basic knowledge regarding characteristics of most important mycotoxins, the generation, benefits, and limitations of present and emerging biorecognition molecules, such as polyclonal (pAb), monoclonal (mAb), recombinant antibodies (rAb), aptamers, short peptides, and molecularly imprinted polymers (MIPs), are discussed. Hereinafter, the use of binders in different areas of application, including sample preparation, microplate- and tube-based assays, lateral flow devices, and biosensors, is highlighted. Special focus, on a global scale, is placed on commercial availability of single receptor molecules, test-kits, and biosensor platforms using multiplexed bead-based suspension assays and planar biochip arrays. Future outlook is given with special emphasis on new challenges, such as increasing use of rAb based on synthetic and naïve antibody libraries to renounce animal immunization, multiple-analyte test-kits and high-throughput multiplexing, and determination of masked mycotoxins, including stereoisomeric degradation products.
Collapse
Affiliation(s)
- Yanru Wang
- College of Food Science and Engineering, Northwest A&F University, Yangling, Xianyang 712100, China; (Y.W.); (C.Z.)
| | - Cui Zhang
- College of Food Science and Engineering, Northwest A&F University, Yangling, Xianyang 712100, China; (Y.W.); (C.Z.)
| | - Jianlong Wang
- College of Food Science and Engineering, Northwest A&F University, Yangling, Xianyang 712100, China; (Y.W.); (C.Z.)
| | - Dietmar Knopp
- Chair for Analytical Chemistry and Water Chemistry, Institute of Hydrochemistry, Technische Universitat München, Elisabeth-Winterhalter-Weg 6, D-81377 München, Germany
| |
Collapse
|
22
|
A Novel Colorimetric Nano Aptasensor for Ultrasensitive Detection of Aflatoxin B1 Based on the Exonuclease III-Assisted Signal Amplification Approach. Foods 2021; 10:foods10112568. [PMID: 34828849 PMCID: PMC8625208 DOI: 10.3390/foods10112568] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 10/15/2021] [Accepted: 10/16/2021] [Indexed: 12/25/2022] Open
Abstract
The detection of aflatoxin B1 (AFB1) has recently garnered much attention on the issue of food safety. In this study, a novel and sensitive aptasensor towards AFB1 is proposed using an Exonuclease III (Exo III)-integrated signal amplification strategy. This reported sensing strategy is regulated by aptamer-functionalized nanobeads that can target AFB1; furthermore, complementary DNA (cDNA) strands can lock the immobilized aptamer strands, preventing the signal amplification function of Exo III in the absence of AFB1. The presence of AFB1 triggers the displacement of cDNA, which will then activate the Exo III-integrated signal amplification procedure, resulting in the generation of a guanine (G)-rich sequence to form a G-4/hemin DNAzyme, which can catalyze the substrate of ABTS to produce a green color. Using this method, a practical detection limit of 0.0032 ng/mL and a dynamic range of detection from 0.0032 to 50 ng/mL were obtained. Additionally, the practical application of the established sensing method for AFB1 in complex matrices was demonstrated through recovery experiments. The recovery rate and relative standard deviations (RSD) in three kinds of cereal samples ranged from 93.83% to 111.58%, and 0.82% to 7.20%, respectively, which were comparable with or better than previously reported methods.
Collapse
|
23
|
Wei YY, Zhang YZ, Song D, Li J, Xu ZR. Alkaline phosphatase-regulated in situ formation of chromogenic probes for multicolor visual sensing of biomarkers. Talanta 2021; 228:122222. [DOI: 10.1016/j.talanta.2021.122222] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Revised: 02/07/2021] [Accepted: 02/13/2021] [Indexed: 12/31/2022]
|
24
|
Jiaul Haque A, Kwon J, Kim J, Kim G, Lee N, Ho Yoon Y, Yang H. Sensitive and Low‐background Electrochemical Immunosensor Employing Glucose Dehydrogenase and 1,10‐Phenanthroline‐5,6‐dione. ELECTROANAL 2021. [DOI: 10.1002/elan.202100079] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Al‐Monsur Jiaul Haque
- Department of Chemistry and Chemistry Institute for Functional Materials Pusan National University Busan 46241 Korea
| | - Jungwook Kwon
- Department of Chemistry and Chemistry Institute for Functional Materials Pusan National University Busan 46241 Korea
| | - Jihyeon Kim
- Department of Chemistry and Chemistry Institute for Functional Materials Pusan National University Busan 46241 Korea
| | - Gyeongho Kim
- Department of Chemistry and Chemistry Institute for Functional Materials Pusan National University Busan 46241 Korea
| | | | | | - Haesik Yang
- Department of Chemistry and Chemistry Institute for Functional Materials Pusan National University Busan 46241 Korea
| |
Collapse
|
25
|
Zhao X, Dai X, Zhao S, Cui X, Gong T, Song Z, Meng H, Zhang X, Yu B. Aptamer-based fluorescent sensors for the detection of cancer biomarkers. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2021; 247:119038. [PMID: 33120124 DOI: 10.1016/j.saa.2020.119038] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 09/30/2020] [Accepted: 10/01/2020] [Indexed: 06/11/2023]
Abstract
Aptamers are short single-stranded RNA or DNA molecules that can recognize a series of targets with high affinity and specificity. Known as "chemical antibodies", aptamers have many unique merits, including ease of chemical synthesis, high chemical stability, low molecular weight, lack of immunogenicity, and ease of modification and manipulation compared to their protein counterparts. Using aptamers as the recognition groups, fluorescent aptasensors provide exciting opportunities for sensitive detection and quantification of analytes. Herein, we give an overview on the recent development of aptamer-based fluorescent sensors for the detection of cancer biomarkers. Based on various nanostructured sensor designs, we extended our discussions on sensitivity, specificity and the potential applications of aptamer-based fluorescent sensors in early diagnosis, treatment and prognosis of cancers.
Collapse
Affiliation(s)
- Xuhua Zhao
- Department of Biochemistry and Molecular Biology, Shanxi Medical University, Taiyuan, Shanxi 030001, China
| | - Xiaochun Dai
- Department of Biochemistry and Molecular Biology, Shanxi Medical University, Taiyuan, Shanxi 030001, China
| | - Suya Zhao
- Department of Biochemistry and Molecular Biology, Shanxi Medical University, Taiyuan, Shanxi 030001, China
| | - Xiaohua Cui
- Department of Biochemistry and Molecular Biology, Shanxi Medical University, Taiyuan, Shanxi 030001, China
| | - Tao Gong
- Department of Biochemistry and Molecular Biology, Shanxi Medical University, Taiyuan, Shanxi 030001, China
| | - Zhiling Song
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, Shandong Key Laboratory of Biochemical Analysis, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Hongmin Meng
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| | - Xiaobing Zhang
- State Key Laboratory for Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China.
| | - Baofeng Yu
- Department of Biochemistry and Molecular Biology, Shanxi Medical University, Taiyuan, Shanxi 030001, China.
| |
Collapse
|
26
|
Yang CP, He L, Huang CZ, Li YF, Zhen SJ. Continuous singlet oxygen generation for persistent chemiluminescence in Cu-MOFs-based catalytic system. Talanta 2021; 221:121498. [DOI: 10.1016/j.talanta.2020.121498] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 07/30/2020] [Accepted: 07/31/2020] [Indexed: 11/30/2022]
|
27
|
Lin X, Li S, Zhang B, Yang H, Zhang K, Huang H. An enzyme-free fluorescent biosensor for highly sensitive detection of carcinoembryonic antigen based on aptamer-induced entropy-driven circuit. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2020; 12:5496-5502. [PMID: 33150889 DOI: 10.1039/d0ay01326a] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Carcinoembryonic antigen (CEA) is a disease biomarker, which can reflect the existence of tumors. The accurate detection of CEA in clinical samples is highly valuable for diagnosis of tumors. Herein, we developed an enzyme-free fluorescent biosensor for highly sensitive detection of CEA based on an aptamer-induced entropy-driven circuit. The aptamer hairpin specifically bound to CEA to expose the locked domain. Then, the exposed domain could trigger disassembly of multiple fluorophore strands from the three-strand complexes with the aid of fuel strands, leading to the production of remarkable amplified fluorescent signals. The one-step and homogeneous method exhibited high specificity and a wide linear range from 10 pg mL-1 to 500 ng mL-1 with a low limit of detection of 4.2 pg mL-1. What's more, the whole detection process could be performed within 45 min and did not involve the use of any protein enzymes and antibodies. The developed strategy could also be applied to detect CEA in clinical samples with satisfactory results. Therefore, the strategy is an alternative sensing method for the detection of CEA.
Collapse
Affiliation(s)
- Xiaojuan Lin
- Department of Clinical Laboratory, The Third Hospital of Xingtai, Xingtai, Hebei 054100, China.
| | | | | | | | | | | |
Collapse
|
28
|
Recent advances in aptasensors for mycotoxin detection: On the surface and in the colloid. Talanta 2020; 223:121729. [PMID: 33303172 DOI: 10.1016/j.talanta.2020.121729] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 09/22/2020] [Accepted: 09/29/2020] [Indexed: 01/08/2023]
Abstract
Mycotoxins are a great potential threat to human health, and the progress in the development of mycotoxin detection methods is of an escalating importance with the increasing emphasis on food safety. Aptamer, performing the same function as antibody in specific binding with targets, exhibits profound potential in biosensing since its debut in 1990. Recent years have witnessed the rapid development of aptasensors for mycotoxin detection with the achievement of ultralow limit of detection and high sensitivity in the lab. However, there is still no officially approved aptasensing methods in mycotoxin detection application. In order to provide researchers with inspirations in the design and development of aptasensors for mycotoxin detection, we divide these aptasensors into two types, namely "on the surface" and "in the colloid", according to the location where the key sensing reaction occurs. We also systematically review aptasensors reported in the past 5 years under the abovementioned criterion of classification, and compare the advantages and disadvantages of each kind of aptasensors. Finally, we discuss prospective directions in the development of aptasensors for mycotoxin detection. This paper will offer insight and motivation to practitioners working on the research and practical application of aptasensors in the detection of mycotoxins and other substances.
Collapse
|
29
|
La M, Wu D, Gao Y, Xia N, Niu Y, Liu L, Yi X. Competitive impedimetric aptasensors for detection of small molecule pollutants by the signal amplification of self-assembled biotin-phenylalanine nanoparticle networks. Electrochem commun 2020. [DOI: 10.1016/j.elecom.2020.106791] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
|
30
|
Hu P, Wang X, Wei L, Dai R, Yuan X, Huang K, Chen P. Selective recognition of CdTe QDs and strand displacement signal amplification-assisted label-free and homogeneous fluorescence assay of nucleic acid and protein. J Mater Chem B 2020; 7:4778-4783. [PMID: 31389950 DOI: 10.1039/c9tb00753a] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Due to their simplicity of design and operation, homogeneous bioassays have been of great interest to researchers. Herein, a label-free and free separation fluorescence sensing platform was constructed for the determination of nucleic acid and prostate specific antigen (PSA) using CdTe QDs as the signal molecule. In our previous work, we surprisingly found that the CdTe QDs can selectively distinguish Ag+ and the C-Ag+-C complex, which was the basis of the sensor. On the basis of the selective cation exchange reaction (CER), combined with the signal amplification of the strand displacement reaction (SDR), this work was first applied for the sensitive analysis of DNA. There are two types of hairpin structures in this sensing system, including the recognition probe (HP) and Ag+, which formed the C-Ag+-C structure, and the hairpin structure formed by the helper DNA itself. In this work, target DNA can trigger the SDR that generates lots of HP-helper double-stranded DNA (dsDNA) and recycles the target DNA while releasing a large amount of Ag+, thus quenching the fluorescence signal of CdTe QDs to achieve the highly sensitive detection of DNA. In order to verify the versatility of this system using DNA as a bridge and aptamers as recognition probes, we extended the system to the detection of PSA. After examining its experimental performance, it was determined that this method displayed good analytical capability for DNA in the range of 10-13-10-10 M and PSA in the range of 10-13-10-10 g mL-1 with low 25 fM and 30 fg mL-1 limits of detection (LODs), respectively; high selectivity for both the target sequence and protein was shown. In addition, this platform was successfully used for the analysis of PSA in serum samples.
Collapse
Affiliation(s)
- Pingyue Hu
- College of Chemistry and Material Science, Sichuan Normal University, Chengdu, Sichuan 610068, China.
| | | | | | | | | | | | | |
Collapse
|
31
|
Ultra-Thin 2D CuO Nanosheet for HRP Immobilization Supported by Encapsulation in a Polymer Matrix: Characterization and Dye Degradation. Catal Letters 2020. [DOI: 10.1007/s10562-020-03289-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
32
|
Zhao D, Kong Y, Zhao S, Xing H. Engineering Functional DNA–Protein Conjugates for Biosensing, Biomedical, and Nanoassembly Applications. Top Curr Chem (Cham) 2020; 378:41. [DOI: 10.1007/s41061-020-00305-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2019] [Accepted: 05/05/2020] [Indexed: 12/31/2022]
|
33
|
Zhao Z, Wang H, Zhai W, Feng X, Fan X, Chen A, Wang M. A Lateral Flow Strip Based on a Truncated Aptamer-Complementary Strand for Detection of Type-B Aflatoxins in Nuts and Dried Figs. Toxins (Basel) 2020; 12:E136. [PMID: 32098355 PMCID: PMC7076875 DOI: 10.3390/toxins12020136] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 02/18/2020] [Accepted: 02/20/2020] [Indexed: 12/13/2022] Open
Abstract
Type-B aflatoxins (AFB1 and AFB2) frequently contaminate food, especially nuts and fried figs, and seriously threaten human health; hence, it is necessary for the newly rapid and sensitive detection methods to prevent the consumption of potentially contaminated food. Here, a lateral flow aptasensor for the detection of type-B aflatoxins was developed. It is based on the use of fluorescent dye Cy5 as a label for the aptamer, and on the competition between type-B aflatoxins and the complementary DNA of the aptamer. This is the first time that the complementary strand of the aptamer has been used as the test line (T-line) to detect type-B aflatoxins. In addition, the truncated aptamer was used to improve the affinity with type-B aflatoxins in our study. Therefore, the lengths of aptamer and cDNA probe were optimized as key parameters for higher sensitivity. In addition, binding buffer and organic solvent were investigated. The results showed that the best pair for achieving improved sensitivity and accuracy in detecting AFB1 was formed by a shorter aptamer (32 bases) coupled with the probe complementary to the AFB1 binding region of the aptamer. Under the optimal experimental conditions, the test strip showed an excellent linear relationship in the range from 0.2 to 20 ng/mL with a limit of detection of 0.16 ng/mL. This aptamer-based strip was successfully applied to the determination of type-B aflatoxins in spiked and commercial peanuts, almonds, and dried figs, and the recoveries of the spiked samples were from 93.3%-112.0%. The aptamer-complementary strand-based lateral flow test strip is a potential alternative tool for the rapid and sensitive detection of type-B aflatoxins in nuts and dried figs. It is of help for monitoring aflatoxins to avoid the consumption of unsafe food.
Collapse
Affiliation(s)
- Zhilei Zhao
- Hebei University, No. 180 Wusi Dong Road, Lian Chi District, Baoding 071002, Hebei Province, China; (Z.Z.); (H.W.)
- Beijing Research Center for Agricultural Standards and Testing, No. 9 Middle Road of Shuguanghuayuan, Haidian Dist. Beijing 100097, China; (W.Z.); (X.F.)
| | - He Wang
- Hebei University, No. 180 Wusi Dong Road, Lian Chi District, Baoding 071002, Hebei Province, China; (Z.Z.); (H.W.)
- Beijing Research Center for Agricultural Standards and Testing, No. 9 Middle Road of Shuguanghuayuan, Haidian Dist. Beijing 100097, China; (W.Z.); (X.F.)
| | - Wenlei Zhai
- Beijing Research Center for Agricultural Standards and Testing, No. 9 Middle Road of Shuguanghuayuan, Haidian Dist. Beijing 100097, China; (W.Z.); (X.F.)
| | - Xiaoyuan Feng
- Beijing Research Center for Agricultural Standards and Testing, No. 9 Middle Road of Shuguanghuayuan, Haidian Dist. Beijing 100097, China; (W.Z.); (X.F.)
| | - Xia Fan
- Institute of Quality Standards and Testing Technology for Agro-products, Key Laboratory of Agro-product Quality and Safety, Chinese Academy of Agricultural Sciences, Beijing 100081, China;
| | - Ailiang Chen
- Institute of Quality Standards and Testing Technology for Agro-products, Key Laboratory of Agro-product Quality and Safety, Chinese Academy of Agricultural Sciences, Beijing 100081, China;
| | - Meng Wang
- Hebei University, No. 180 Wusi Dong Road, Lian Chi District, Baoding 071002, Hebei Province, China; (Z.Z.); (H.W.)
- Beijing Research Center for Agricultural Standards and Testing, No. 9 Middle Road of Shuguanghuayuan, Haidian Dist. Beijing 100097, China; (W.Z.); (X.F.)
| |
Collapse
|
34
|
Zhong Y, Li J, Lambert A, Yang Z, Cheng Q. Expanding the scope of chemiluminescence in bioanalysis with functional nanomaterials. J Mater Chem B 2019; 7:7257-7266. [PMID: 31544920 PMCID: PMC8371923 DOI: 10.1039/c9tb01029g] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Nanomaterial-enabled chemiluminescence (CL) detection has become a growing area of interest in recent years. We review the development of nanomaterial-based CL detection strategies and their applications in bioanalysis. Much progress has been achieved in the past decade, but most attempts still remain in the proof-of-concept stage. This review highlights recent advances in nanomaterials in CL detection and organizes them into three groups based on their role in detection: as a sensing platform, as a signal probe, and applications in homogeneous systems. Furthermore, we have discussed the critical challenges we are facing and future prospects of this field.
Collapse
Affiliation(s)
- Yihong Zhong
- Guangling College, College of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, 225002, P. R. China.
| | - Juan Li
- Guangling College, College of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, 225002, P. R. China.
| | - Alexander Lambert
- Department of Chemistry, University of California, Riverside, California 92521, USA.
| | - Zhanjun Yang
- Guangling College, College of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, 225002, P. R. China.
| | - Quan Cheng
- Department of Chemistry, University of California, Riverside, California 92521, USA.
| |
Collapse
|
35
|
Mao K, Zhang H, Wang Z, Cao H, Zhang K, Li X, Yang Z. Nanomaterial-based aptamer sensors for arsenic detection. Biosens Bioelectron 2019; 148:111785. [PMID: 31689596 DOI: 10.1016/j.bios.2019.111785] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Revised: 10/02/2019] [Accepted: 10/12/2019] [Indexed: 02/06/2023]
Abstract
Arsenic (As) is a highly toxic contaminant in the environment and a serious carcinogen for the human being. The toxicity of arsenic significantly threatens environmental and human health. The effective removing technology for arsenic remains challenging, and one of the reasons is due to the lack of powerful detection method in the complex environmental matrix. There is thus an urgent need to develop novel analytical methods for arsenic, preferably with the potential for the field-testing. To combat arsenic pollution and maintain a healthy environment and eco-system, many analytical methods have been developed for arsenic detection in various samples. Among these strategies, biosensors hold great promise for rapid detection of arsenic, in particular, nanomaterials-based aptamer sensors have attracted significant attention due to their simplicity, high sensitivity and rapidness. In this paper, we reviewed the recent development and applications of aptamer sensors (aptasensors) based-on nanomaterial for arsenic detection, in particular with emphasis on the works using optical and electrochemical technologies. We also discussed the recent novel technology in aptasensors development for arsenic detection, including nucleic acid amplification for signal enhancement and device integration for the portability of arsenic sensors. We are hoping this review could inspire further researches in developing novel nanotechnologies based aptasensors for possible on-site detection of arsenic.
Collapse
Affiliation(s)
- Kang Mao
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang, 550081, China
| | - Hua Zhang
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang, 550081, China.
| | - Zhenglu Wang
- Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing, 100871, China
| | - Haorui Cao
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang, 550081, China
| | - Kuankuan Zhang
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang, 550081, China
| | - Xiqing Li
- Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing, 100871, China
| | - Zhugen Yang
- Cranfield Water Science Institute, Cranfield University, Cranfield MK43 0AL, United Kingdom.
| |
Collapse
|
36
|
Li J, Zhao X, Chen LJ, Qian HL, Wang WL, Yang C, Yan XP. p-Bromophenol-Enhanced Bienzymatic Chemiluminescence Competitive Immunoassay for Ultrasensitive Determination of Aflatoxin B1. Anal Chem 2019; 91:13191-13197. [DOI: 10.1021/acs.analchem.9b03579] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Juan Li
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, China
- Institute of Analytical Food Safety, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Xu Zhao
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, China
- Institute of Analytical Food Safety, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Li-Jian Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, China
- Institute of Analytical Food Safety, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Hai-Long Qian
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, China
- Institute of Analytical Food Safety, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Wen-Long Wang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, China
- Institute of Analytical Food Safety, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Cheng Yang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, China
- Institute of Analytical Food Safety, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Xiu-Ping Yan
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, China
- Institute of Analytical Food Safety, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
37
|
Liu Z, Wang H. An antifouling interface integrated with HRP-based amplification to achieve a highly sensitive electrochemical aptasensor for lysozyme detection. Analyst 2019; 144:5794-5801. [PMID: 31464300 DOI: 10.1039/c9an01430f] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
We report here a highly sensitive sandwich type electrochemical aptasensor for lysozyme (lys) detection by the integration of an antifouling interface with HRP-based signal amplification. The biosensing interface with antifouling ability is designed, consisting of a lys-binding aptamer (LBA), dithiothreitol (DTT) and mercaptohexanol (MCH). When lys is captured by the immobilized LBA due to the specific recognition of the aptamer, gold nanoparticles (AuNPs) functionalized with HRP and LBA (HRP-AuNP-LBA) are further conjugated to the surface-bound lys, forming a sandwich assay format. HRP catalyzes the chemical oxidation of hydroquinone (HQ) by hydrogen peroxide (H2O2) to produce benzoquinone (BQ) which results in a large electrochemical reduction signal of BQ. Therefore, this reduction signal measured by differential pulse voltammetry (DPV) is used to detect lys. The catalytic behavior of HRP toward the reaction between HQ and H2O2, together with the high loading of HRP on AuNPs, remarkably amplifies the signal. A linear relationship between the DPV response and the logarithm of lys concentration from 0.01 pg mL-1 to 105 pg mL-1 with a detection limit of 0.003 pg mL-1 (S/N = 3) is obtained. The proposed biosensing platform combines antifouling ability and signal amplification, resulting in high sensitivity, providing an effective way for ultrasensitive assay of protein biomarkers in complex media.
Collapse
Affiliation(s)
- Zimeng Liu
- College of Chemistry and Materials Science, Editorial Department of Journal of Anhui Normal University, Anhui Normal University, Wuhu 241000, P. R. China.
| | - Haiyan Wang
- College of Chemistry and Materials Science, Editorial Department of Journal of Anhui Normal University, Anhui Normal University, Wuhu 241000, P. R. China.
| |
Collapse
|
38
|
Deng S, Wu J, Zhang K, Li Y, Yang L, Hu D, Jin Y, Hao Y, Wang X, Liu Y, Liu H, Chen Y, Xie M. Fluorescence Resonance Energy Transfer-Mediated Immunosensor Based on Design and Synthesis of the Substrate of Amp Cephalosporinase for Biosensing. Anal Chem 2019; 91:11316-11323. [DOI: 10.1021/acs.analchem.9b02427] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Suimin Deng
- Analytical and Testing Center of Beijing Normal University, Beijing 100875, China
| | - Jing Wu
- Analytical and Testing Center of Beijing Normal University, Beijing 100875, China
| | - Kaina Zhang
- Analytical and Testing Center of Beijing Normal University, Beijing 100875, China
| | - Yike Li
- Analytical and Testing Center of Beijing Normal University, Beijing 100875, China
| | - Lina Yang
- Analytical and Testing Center of Beijing Normal University, Beijing 100875, China
| | - Dehua Hu
- Analytical and Testing Center of Beijing Normal University, Beijing 100875, China
| | - Yuhao Jin
- Analytical and Testing Center of Beijing Normal University, Beijing 100875, China
| | - Yun Hao
- Analytical and Testing Center of Beijing Normal University, Beijing 100875, China
| | - Xiangfeng Wang
- Analytical and Testing Center of Beijing Normal University, Beijing 100875, China
| | - Yuan Liu
- Analytical and Testing Center of Beijing Normal University, Beijing 100875, China
| | - Hailing Liu
- Analytical and Testing Center of Beijing Normal University, Beijing 100875, China
| | - Yiping Chen
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, Hubei China
| | - Mengxia Xie
- Analytical and Testing Center of Beijing Normal University, Beijing 100875, China
| |
Collapse
|
39
|
Li Y, Zhao Q. Aptamer Structure Switch Fluorescence Anisotropy Assay for Small Molecules Using Streptavidin as an Effective Signal Amplifier Based on Proximity Effect. Anal Chem 2019; 91:7379-7384. [PMID: 31079453 DOI: 10.1021/acs.analchem.9b01253] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Fluorescence polarization/anisotropy (FP/FA) approaches are appealing for targets sensing in homogeneous solution due to simplicity, reproducibility and sensitivity. Taking advantage of aptamers, aptamer structure switch FA methods are unique for small molecule detection based on the competition between aptamer-target binding and the hybridization of aptamer and complementary DNA (cDNA). However, usually small FA change is generated in these aptamer assays that only rely on size change caused by hybridization of an oligonucleotide because of the rapid local rotation of fluorophores and small mass change. Here we describe a simple and general aptamer structure switch FA assay for small molecules by employing a large-sized streptavidin (SA) as an effective signal amplifier based on proximity effect to reduce local rotation of fluorophore. In this design, the SA-labeled cDNA hybridizes with fluorescein (FAM)-labeled aptamer, drawing FAM close to SA and bringing a much higher FA value due to restricted local rotation of FAM. Small molecule-aptamer probe binding causes displacement of the SA-labeled cDNA and great decrease of FA. The closeness of SA to FAM in the duplex is key for this proposed strategy to produce large FA changes in target detection. Our method enabled to detect 60 pM aflatoxin B1 (AFB1), 1 nM ochratoxin A (OTA), and 0.5 μM adenosine triphosphate (ATP), respectively. This aptamer FA method combines the merits of aptamers and FA analysis, and it is promising in applications of detection of small molecules with good sensitivity.
Collapse
Affiliation(s)
- Yapiao Li
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences , Chinese Academy of Sciences , Beijing 100085 , China.,University of Chinese Academy of Sciences , Beijing 100049 , China
| | - Qiang Zhao
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences , Chinese Academy of Sciences , Beijing 100085 , China.,University of Chinese Academy of Sciences , Beijing 100049 , China
| |
Collapse
|