1
|
McKinnon JC, Balez R, Young RSE, Brown ML, Lum JS, Robinson L, Belov ME, Ooi L, Tortorella S, Mitchell TW, Ellis SR. MALDI-2-Enabled Oversampling for the Mass Spectrometry Imaging of Metabolites at Single-Cell Resolution. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2024; 35:2729-2742. [PMID: 39137242 DOI: 10.1021/jasms.4c00241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/15/2024]
Abstract
Matrix-assisted laser desorption/ionization mass spectrometry imaging (MALDI-MSI) can provide valuable insights into the metabolome of complex biological systems such as organ tissues and cells. However, obtaining metabolite data at single-cell spatial resolutions presents a few technological challenges. Generally, spatial resolution is defined by the increment the sample stage moves between laser ablation spots. Stage movements less than the diameter of the focused laser beam (i.e., oversampling) can improve spatial resolution; however, such oversampling conditions result in a reduction in sensitivity. To overcome this, we combine an oversampling approach with laser postionization (MALDI-2), which allows for both higher spatial resolution and improved analyte ionization efficiencies. This approach provides significant enhancements to sensitivity for various metabolite classes (e.g., amino acids, purines, carbohydrates etc.), with mass spectral intensities from 6 to 8 μm pixel sizes (from a laser spot size of ∼13 μm) being commensurate with or higher than those obtained by conventional MALDI at 20 μm pixel sizes for many different metabolites. This technique has been used to map the distribution of metabolites throughout mouse spinal cord tissue to observe how metabolite localizations change throughout specific anatomical regions, such as those distributed to the somatosensory area of the dorsal horn, white matter, gray matter, and ventral horn. Furthermore, this method is utilized for single-cell metabolomics of human iPSC-derived astrocytes at 10 μm pixel sizes whereby many different metabolites, including nucleotides, were detected from individual cells while providing insight into cellular localizations.
Collapse
Affiliation(s)
- Jayden C McKinnon
- Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Northfields Ave, Wollongong, NSW 2522, Australia
| | - Rachelle Balez
- Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Northfields Ave, Wollongong, NSW 2522, Australia
| | - Reuben S E Young
- Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Northfields Ave, Wollongong, NSW 2522, Australia
| | - Mikayla L Brown
- Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Northfields Ave, Wollongong, NSW 2522, Australia
| | - Jeremy S Lum
- Molecular Horizons, School of Medical, Indigenous and Health Science, University of Wollongong, Northfields Ave, Wollongong, NSW 2522, Australia
| | - Liam Robinson
- Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Northfields Ave, Wollongong, NSW 2522, Australia
| | - Mikhail E Belov
- Spectroglyph LLC, Kennewick, Washington 99338, United States
| | - Lezanne Ooi
- Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Northfields Ave, Wollongong, NSW 2522, Australia
| | - Sara Tortorella
- Molecular Horizon srl, Via Montelino 30, Bettona, PG 06084, Italy
| | - Todd W Mitchell
- Molecular Horizons, School of Medical, Indigenous and Health Science, University of Wollongong, Northfields Ave, Wollongong, NSW 2522, Australia
| | - Shane R Ellis
- Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Northfields Ave, Wollongong, NSW 2522, Australia
| |
Collapse
|
2
|
Pan S, Yin L, Liu J, Tong J, Wang Z, Zhao J, Liu X, Chen Y, Miao J, Zhou Y, Zeng S, Xu T. Metabolomics-driven approaches for identifying therapeutic targets in drug discovery. MedComm (Beijing) 2024; 5:e792. [PMID: 39534557 PMCID: PMC11555024 DOI: 10.1002/mco2.792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Revised: 09/29/2024] [Accepted: 09/30/2024] [Indexed: 11/16/2024] Open
Abstract
Identification of therapeutic targets can directly elucidate the mechanism and effect of drug therapy, which is a central step in drug development. The disconnect between protein targets and phenotypes under complex mechanisms hampers comprehensive target understanding. Metabolomics, as a systems biology tool that captures phenotypic changes induced by exogenous compounds, has emerged as a valuable approach for target identification. A comprehensive overview was provided in this review to illustrate the principles and advantages of metabolomics, delving into the application of metabolomics in target identification. This review outlines various metabolomics-based methods, such as dose-response metabolomics, stable isotope-resolved metabolomics, and multiomics, which identify key enzymes and metabolic pathways affected by exogenous substances through dose-dependent metabolite-drug interactions. Emerging techniques, including single-cell metabolomics, artificial intelligence, and mass spectrometry imaging, are also explored for their potential to enhance target discovery. The review emphasizes metabolomics' critical role in advancing our understanding of disease mechanisms and accelerating targeted drug development, while acknowledging current challenges in the field.
Collapse
Affiliation(s)
- Shanshan Pan
- Research Center for Clinical PharmacyCollege of Pharmaceutical SciencesZhejiang UniversityHangzhouZhejiangChina
- College of Pharmaceutical SciencesZhejiang UniversityHangzhouZhejiangChina
| | - Luan Yin
- College of Pharmaceutical SciencesZhejiang UniversityHangzhouZhejiangChina
| | - Jie Liu
- College of Pharmaceutical SciencesZhejiang UniversityHangzhouZhejiangChina
| | - Jie Tong
- Department of Radiology and Biomedical ImagingPET CenterYale School of MedicineNew HavenConnecticutUSA
| | - Zichuan Wang
- Research Center for Clinical PharmacyCollege of Pharmaceutical SciencesZhejiang UniversityHangzhouZhejiangChina
- College of Pharmaceutical SciencesZhejiang UniversityHangzhouZhejiangChina
| | - Jiahui Zhao
- School of Basic Medical SciencesZhejiang Chinese Medical UniversityHangzhouChina
| | - Xuesong Liu
- College of Pharmaceutical SciencesZhejiang UniversityHangzhouZhejiangChina
- Cangnan County Qiushi Innovation Research Institute of Traditional Chinese MedicineWenzhouZhejiangChina
| | - Yong Chen
- College of Pharmaceutical SciencesZhejiang UniversityHangzhouZhejiangChina
- Cangnan County Qiushi Innovation Research Institute of Traditional Chinese MedicineWenzhouZhejiangChina
| | - Jing Miao
- Research Center for Clinical PharmacyCollege of Pharmaceutical SciencesZhejiang UniversityHangzhouZhejiangChina
| | - Yuan Zhou
- School of Basic Medical SciencesZhejiang Chinese Medical UniversityHangzhouChina
| | - Su Zeng
- Research Center for Clinical PharmacyCollege of Pharmaceutical SciencesZhejiang UniversityHangzhouZhejiangChina
- College of Pharmaceutical SciencesZhejiang UniversityHangzhouZhejiangChina
| | - Tengfei Xu
- Research Center for Clinical PharmacyCollege of Pharmaceutical SciencesZhejiang UniversityHangzhouZhejiangChina
- College of Pharmaceutical SciencesZhejiang UniversityHangzhouZhejiangChina
| |
Collapse
|
3
|
Vandergrift GW, Kew W, Andersen A, Lukowski JK, Goo YA, Anderton CR. Experimental and Computational Evaluation of Lipidomic In-Source Fragmentation as a Result of Postionization with Matrix-Assisted Laser Desorption/Ionization. Anal Chem 2024; 96:16127-16133. [PMID: 39297865 DOI: 10.1021/acs.analchem.4c00258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2024]
Abstract
Matrix-assisted laser desorption/ionization mass spectrometry imaging (MALDI-MSI) can provide spatially resolved molecular information about a sample. Recently, a postionization approach (MALDI-2) has been commercially integrated with MALDI-MSI, allowing for bettered sensitivity and consequent improved spatial resolution. While advantages of MALDI-2 have previously been established, we demonstrate here statistically increased in-source fragmentation (ISF) results from postionization with a commercial instrument. Via lipid standard analyses, known MALDI ISF pathways (e.g., loss of trimethylamine) were statistically increased in MALDI-2 compared to MALDI-1 (65-172% increase in fragmentation). Gas phase molecular modeling with density functional theory estimated that the most-weighted virtual orbitals to excite within lipids involve ester and phosphate bonds. Protonated lipid excitation energies are furthermore red-shifted compared to those of other adduct types [e.g., 254 nm for protonated PC(16:0/18:1)] and approach the MALDI-2 laser energy (266 nm). Analysis of rat brain homogenate detected statistically more positive-ion mode peaks with MALDI-2 (1090) than that with MALDI-1 (719), where Kernel density estimations showed that the majority of this enhancement occurs with low m/z ions (i.e., m/z 75-500). Taken together with the lipid standard data, these observations may indicate ISF due to postionization. While artifact contributions from matrix blanks were also noted, both experimental and computational data sets suggest that the overall extent of ISF is statistically increased in MALDI-2 compared to MALDI-1.
Collapse
Affiliation(s)
- Gregory W Vandergrift
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, Washington 99354, United States
| | - William Kew
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, Washington 99354, United States
| | - Amity Andersen
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, Washington 99354, United States
| | - Jessica K Lukowski
- Washington University in St. Louis School of Medicine, St. Louis, Missouri 63108, United States
| | - Young Ah Goo
- Washington University in St. Louis School of Medicine, St. Louis, Missouri 63108, United States
| | - Christopher R Anderton
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, Washington 99354, United States
| |
Collapse
|
4
|
Kibbe RR, Sohn AL, Muddiman DC. Leveraging Supervised Machine Learning Algorithms for System Suitability Testing of Mass Spectrometry Imaging Platforms. J Proteome Res 2024; 23:4384-4391. [PMID: 39226439 DOI: 10.1021/acs.jproteome.4c00360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/05/2024]
Abstract
Quality control and system suitability testing are vital protocols implemented to ensure the repeatability and reproducibility of data in mass spectrometry investigations. However, mass spectrometry imaging (MSI) analyses present added complexity since both chemical and spatial information are measured. Herein, we employ various machine learning algorithms and a novel quality control mixture to classify the working conditions of an MSI platform. Each algorithm was evaluated in terms of its performance on unseen data, validated with negative control data sets to rule out confounding variables or chance agreement, and utilized to determine the necessary sample size to achieve a high level of accurate classifications. In this work, a robust machine learning workflow was established where models could accurately classify the instrument condition as clean or compromised based on data metrics extracted from the analyzed quality control sample. This work highlights the power of machine learning to recognize complex patterns in MSI data and use those relationships to perform a system suitability test for MSI platforms.
Collapse
Affiliation(s)
- Russell R Kibbe
- FTMS Laboratory for Human Health Research, Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27695, United States
| | - Alexandria L Sohn
- FTMS Laboratory for Human Health Research, Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27695, United States
| | - David C Muddiman
- FTMS Laboratory for Human Health Research, Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27695, United States
| |
Collapse
|
5
|
Vats M, Cillero-Pastor B, Cuypers E, Heeren RMA. Mass spectrometry imaging in plants, microbes, and food: a review. Analyst 2024; 149:4553-4582. [PMID: 39196541 DOI: 10.1039/d4an00644e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/29/2024]
Abstract
Plant health, which affects the nutritional quality and safety of derivative food products, is influenced by symbiotic interactions with microorganisms. These interactions influence the local molecular profile at the tissue level. Therefore, studying the distribution of molecules within plants, microbes, and plant-based food is crucial to assess plant health, ensure the safety and quality of the agricultural products that become part of our food supply, and plan agricultural management practices. Within this framework, the molecular distribution within plant-based samples can be visualized with mass spectrometry imaging (MSI). This review describes key MSI methodologies, highlighting the role they play in unraveling the localization of metabolites, lipids, proteins, pigments, and elemental components across plants, microbes, and food products. Furthermore, investigations that involve multimodal molecular imaging approaches combining MSI with other imaging techniques are described. The advantages and limitations of the different MSI techniques that influence their applicability in diverse agro-food studies are described to enable informed choices for tailored analyses. For example, some MSI technologies involve meticulous sample preparation while others compromise spatial resolution to gain throughput. Key parameters such as sensitivity, ionization bias and fragmentation, reference database and compound class specificity are described and discussed in this review. With the ongoing refinements in instrumentation, data analysis, and integration of complementary techniques, MSI deepens our insight into the molecular biology of the agricultural ecosystem. This in turn empowers the quest for sustainable and productive agricultural practices.
Collapse
Affiliation(s)
- Mudita Vats
- Maastricht MultiModal Molecular Imaging Institute (M4i), Division of Imaging Mass Spectrometry, Maastricht University, Maastricht, the Netherlands.
| | - Berta Cillero-Pastor
- Maastricht MultiModal Molecular Imaging Institute (M4i), Division of Imaging Mass Spectrometry, Maastricht University, Maastricht, the Netherlands.
- MERLN Institute for Technology-inspired Regenerative Medicine, Department of Cell Biology-Inspired Tissue Engineering (cBITE), Maastricht University, Maastricht, the Netherlands
| | - Eva Cuypers
- Maastricht MultiModal Molecular Imaging Institute (M4i), Division of Imaging Mass Spectrometry, Maastricht University, Maastricht, the Netherlands.
| | - Ron M A Heeren
- Maastricht MultiModal Molecular Imaging Institute (M4i), Division of Imaging Mass Spectrometry, Maastricht University, Maastricht, the Netherlands.
| |
Collapse
|
6
|
Yin Z, Huang W, Li K, Fernie AR, Yan S. Advances in mass spectrometry imaging for plant metabolomics-Expanding the analytical toolbox. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 119:2168-2180. [PMID: 38990529 DOI: 10.1111/tpj.16924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 06/24/2024] [Accepted: 07/01/2024] [Indexed: 07/12/2024]
Abstract
Mass spectrometry imaging (MSI) has become increasingly popular in plant science due to its ability to characterize complex chemical, spatial, and temporal aspects of plant metabolism. Over the past decade, as the emerging and unique features of various MSI techniques have continued to support new discoveries in studies of plant metabolism closely associated with various aspects of plant function and physiology, spatial metabolomics based on MSI techniques has positioned it at the forefront of plant metabolic studies, providing the opportunity for far higher resolution than was previously available. Despite these efforts, profound challenges at the levels of spatial resolution, sensitivity, quantitative ability, chemical confidence, isomer discrimination, and spatial multi-omics integration, undoubtedly remain. In this Perspective, we provide a contemporary overview of the emergent MSI techniques widely used in the plant sciences, with particular emphasis on recent advances in methodological breakthroughs. Having established the detailed context of MSI, we outline both the golden opportunities and key challenges currently facing plant metabolomics, presenting our vision as to how the enormous potential of MSI technologies will contribute to progress in plant science in the coming years.
Collapse
Affiliation(s)
- Zhibin Yin
- Guangdong Key Laboratory for Crop Germplasm Resources Preservation and Utilization, Agro-biological Gene Research Center, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, Guangdong, China
- Institute of Advanced Science Facilities, Shenzhen, 518107, Guangdong, China
| | - Wenjie Huang
- Guangdong Key Laboratory for Crop Germplasm Resources Preservation and Utilization, Agro-biological Gene Research Center, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, Guangdong, China
| | - Kun Li
- Guangdong Key Laboratory of Crop Genetic Improvement, Crop Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, Guangdong, China
| | - Alisdair R Fernie
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476, Potsdam-Golm, Germany
| | - Shijuan Yan
- Guangdong Key Laboratory for Crop Germplasm Resources Preservation and Utilization, Agro-biological Gene Research Center, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, Guangdong, China
| |
Collapse
|
7
|
Geng Z, Jin Q, Liu L, Huang Y, Zhou X, Zhang X, Sun W. Enhanced MALDI-2 Sensitivity with Reflecting Post-Ionization Laser for High-Resolution MS Imaging Combined with Real-Time Microscope Imaging. Anal Chem 2024. [PMID: 39093983 DOI: 10.1021/acs.analchem.4c00576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/04/2024]
Abstract
Laser-induced matrix-assisted laser desorption/ionization post-ionization (MALDI-2) could improve the MALDI sensitivity of biological metabolites by over 1 order of magnitude. Herein, we demonstrate that MALDI-2 sensitivity can be further enhanced with reflecting post-ionization laser that multiplies the intersection times between laser and MALDI plume. This method, which we named MALDI-2+, typically brought over 2 times sensitivity improvement from conventional MALDI-2. Advancing in sensitivity thereby prompted us to pursue higher mass spectrometry imaging (MSI) spatial resolution. A dedicated T-shaped ion guide was designed to allow perpendicular incidence of ablation laser in reflection geometry MALDI. Although 8-10 μm pixel was used in MALDI imaging due to the limited precision of the motorized stage, the laser spot diameter could be down to 2.5 μm for potentially higher spatial resolution. In addition, this ion source enabled real-time and high-quality microscope imaging from backward of the sample plate. Beneficially, we were able to monitor the actual laser spot condition in real time as well as obtain high-resolution microscopic sample images that inherently register with MSI images. All of these benefits have been demonstrated by analyzing standard samples and imaging of cells. We believe that the enhancement in sensitivity, spatial resolution, and microscope capacity of our design could facilitate spatial omics studies.
Collapse
Affiliation(s)
- Zhi Geng
- Shimadzu Research Laboratory (Shanghai) Co., Ltd., Shanghai 201206, China
| | - Qiao Jin
- Shimadzu Research Laboratory (Shanghai) Co., Ltd., Shanghai 201206, China
| | - Lin Liu
- Shimadzu Research Laboratory (Shanghai) Co., Ltd., Shanghai 201206, China
| | - Yuanyuan Huang
- Shimadzu Research Laboratory (Shanghai) Co., Ltd., Shanghai 201206, China
| | - Xinfeng Zhou
- Shimadzu Research Laboratory (Shanghai) Co., Ltd., Shanghai 201206, China
| | - Xiaoqiang Zhang
- Shimadzu Research Laboratory (Shanghai) Co., Ltd., Shanghai 201206, China
| | - Wenjian Sun
- Shimadzu Research Laboratory (Shanghai) Co., Ltd., Shanghai 201206, China
| |
Collapse
|
8
|
Veličković M, Wu R, Gao Y, Thairu MW, Veličković D, Munoz N, Clendinen CS, Bilbao A, Chu RK, Lalli PM, Zemaitis K, Nicora CD, Kyle JE, Orton D, Williams S, Zhu Y, Zhao R, Monroe ME, Moore RJ, Webb-Robertson BJM, Bramer LM, Currie CR, Piehowski PD, Burnum-Johnson KE. Mapping microhabitats of lignocellulose decomposition by a microbial consortium. Nat Chem Biol 2024; 20:1033-1043. [PMID: 38302607 PMCID: PMC11288888 DOI: 10.1038/s41589-023-01536-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Accepted: 12/20/2023] [Indexed: 02/03/2024]
Abstract
The leaf-cutter ant fungal garden ecosystem is a naturally evolved model system for efficient plant biomass degradation. Degradation processes mediated by the symbiotic fungus Leucoagaricus gongylophorus are difficult to characterize due to dynamic metabolisms and spatial complexity of the system. Herein, we performed microscale imaging across 12-µm-thick adjacent sections of Atta cephalotes fungal gardens and applied a metabolome-informed proteome imaging approach to map lignin degradation. This approach combines two spatial multiomics mass spectrometry modalities that enabled us to visualize colocalized metabolites and proteins across and through the fungal garden. Spatially profiled metabolites revealed an accumulation of lignin-related products, outlining morphologically unique lignin microhabitats. Metaproteomic analyses of these microhabitats revealed carbohydrate-degrading enzymes, indicating a prominent fungal role in lignocellulose decomposition. Integration of metabolome-informed proteome imaging data provides a comprehensive view of underlying biological pathways to inform our understanding of metabolic fungal pathways in plant matter degradation within the micrometer-scale environment.
Collapse
Affiliation(s)
- Marija Veličković
- The Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Ruonan Wu
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Yuqian Gao
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Margaret W Thairu
- Wisconsin Institute for Discovery and Department of Plant Pathology, University of Wisconsin-Madison, Madison, WI, USA
| | - Dušan Veličković
- The Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Nathalie Munoz
- The Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Chaevien S Clendinen
- The Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Aivett Bilbao
- The Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Rosalie K Chu
- The Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Priscila M Lalli
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Kevin Zemaitis
- The Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Carrie D Nicora
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Jennifer E Kyle
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Daniel Orton
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Sarai Williams
- The Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Ying Zhu
- Department of Microchemistry, Proteomics, Lipidomics, and Next Generation Sequencing, Genentech, San Francisco, CA, USA
| | - Rui Zhao
- The Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Matthew E Monroe
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Ronald J Moore
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, USA
| | | | - Lisa M Bramer
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Cameron R Currie
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI, USA
- Department of Biochemistry & Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada
| | - Paul D Piehowski
- The Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Kristin E Burnum-Johnson
- The Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, WA, USA.
| |
Collapse
|
9
|
Colley ME, Esselman AB, Scott CF, Spraggins JM. High-Specificity Imaging Mass Spectrometry. ANNUAL REVIEW OF ANALYTICAL CHEMISTRY (PALO ALTO, CALIF.) 2024; 17:1-24. [PMID: 38594938 DOI: 10.1146/annurev-anchem-083023-024546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/11/2024]
Abstract
Imaging mass spectrometry (IMS) enables highly multiplexed, untargeted tissue mapping for a broad range of molecular classes, facilitating in situ biological discovery. Yet, challenges persist in molecular specificity, which is the ability to discern one molecule from another, and spatial specificity, which is the ability to link untargeted imaging data to specific tissue features. Instrumental developments have dramatically improved IMS spatial resolution, allowing molecular observations to be more readily associated with distinct tissue features across spatial scales, ranging from larger anatomical regions to single cells. High-performance mass analyzers and systems integrating ion mobility technologies are also becoming more prevalent, further improving molecular coverage and the ability to discern chemical identity. This review provides an overview of recent advancements in high-specificity IMS that are providing critical biological context to untargeted molecular imaging, enabling integrated analyses, and addressing advanced biomedical research applications.
Collapse
Affiliation(s)
- Madeline E Colley
- 1Department of Biochemistry, Vanderbilt University, Nashville, Tennessee, USA;
- 2Mass Spectrometry Research Center, Vanderbilt University, Nashville, Tennessee, USA
| | - Allison B Esselman
- 2Mass Spectrometry Research Center, Vanderbilt University, Nashville, Tennessee, USA
- 3Department of Chemistry, Vanderbilt University, Nashville, Tennessee, USA
| | - Claire F Scott
- 2Mass Spectrometry Research Center, Vanderbilt University, Nashville, Tennessee, USA
- 4Department of Cell and Developmental Biology, Vanderbilt University, Nashville, Tennessee, USA
| | - Jeffrey M Spraggins
- 1Department of Biochemistry, Vanderbilt University, Nashville, Tennessee, USA;
- 2Mass Spectrometry Research Center, Vanderbilt University, Nashville, Tennessee, USA
- 3Department of Chemistry, Vanderbilt University, Nashville, Tennessee, USA
- 4Department of Cell and Developmental Biology, Vanderbilt University, Nashville, Tennessee, USA
- 5Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| |
Collapse
|
10
|
Soltwisch J, Palmer A, Hong H, Majer J, Dreisewerd K, Marshall P. Large-Scale Screening of Pharmaceutical Compounds to Explore the Application Space of On-Tissue MALDI and MALDI-2 Mass Spectrometry. Anal Chem 2024; 96:10294-10301. [PMID: 38864171 DOI: 10.1021/acs.analchem.4c01088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2024]
Abstract
The successful application of matrix-assisted laser desorption ionization mass spectrometry imaging (MALDI-MSI) in pharmaceutical research is strongly dependent on the detection of the drug of interest at physiologically relevant concentrations. Here we explored how insufficient sensitivity due to low ionization efficiency and/or the interaction of the drug molecule with the local biochemical environment of the tissue can be mitigated for many compound classes using the recently introduced MALDI-MSI coupled with laser-induced postionization, known as MALDI-2-MSI. Leveraging a MALDI-MSI screen of about 1,200 medicines/drug-like compounds from a broad range of medicinal application areas, we demonstrate a significant improvement in drug detection and the degree of sensitivity uplift by using MALDI-2 versus traditional MALDI. Our evaluation was made under simulated imaging conditions using liver homogenate sections as substrate, onto which the compounds were spotted to mimic biological conditions to the first order. To enable an evaluable detection by both MALDI and MALDI-2 for the majority of employed compounds, we spotted 1 μL of a 10 mM solution using a spotting robot and performed our experiments with a Bruker timsTOF fleX MALDI-2 instrument in both positive and negative ion modes. Specifically, we demonstrate using a large cohort of drug-like compounds that ∼60% of the tested compounds showed a more than 10-fold increase in signal intensity and ∼16% showed a more than 100-fold increase upon use of MALDI-2 postionization. Such increases in sensitivity could help advance pharmaceutical MALDI-MSI applications toward the single-cell level.
Collapse
Affiliation(s)
- Jens Soltwisch
- Institute of Hygiene, University of Münster, 48149 Münster, Germany
| | - Andrew Palmer
- GSK Research & Development, Stevenage, Hertfordshire SG1 2NY, United Kingdom
| | - Hyundae Hong
- GSK Research & Development, Stevenage, Hertfordshire SG1 2NY, United Kingdom
| | - Jan Majer
- GSK Research & Development, Stevenage, Hertfordshire SG1 2NY, United Kingdom
| | - Klaus Dreisewerd
- Institute of Hygiene, University of Münster, 48149 Münster, Germany
| | - Peter Marshall
- GSK Research & Development, Stevenage, Hertfordshire SG1 2NY, United Kingdom
| |
Collapse
|
11
|
Sohn AL, Kibbe RR, Dioli OE, Hector EC, Bai H, Garrard KP, Muddiman DC. A statistical approach to system suitability testing for mass spectrometry imaging. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2024; 38:e9725. [PMID: 38456255 PMCID: PMC10926995 DOI: 10.1002/rcm.9725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 02/05/2024] [Accepted: 02/06/2024] [Indexed: 03/09/2024]
Abstract
RATIONALE Mass spectrometry imaging (MSI) elevates the power of conventional mass spectrometry (MS) to multidimensional space, elucidating both chemical composition and localization. However, the field lacks any robust quality control (QC) and/or system suitability testing (SST) protocols to monitor inconsistencies during data acquisition, both of which are integral to ensure the validity of experimental results. To satisfy this demand in the community, we propose an adaptable QC/SST approach with five analyte options amendable to various ionization MSI platforms (e.g., desorption electrospray ionization, matrix-assisted laser desorption/ionization [MALDI], MALDI-2, and infrared matrix-assisted laser desorption electrospray ionization [IR-MALDESI]). METHODS A novel QC mix was sprayed across glass slides to collect QC/SST regions-of-interest (ROIs). Data were collected under optimal conditions and on a compromised instrument to construct and refine the principal component analysis (PCA) model in R. Metrics, including mass measurement accuracy and spectral accuracy, were evaluated, yielding an individual suitability score for each compound. The average of these scores is utilized to inform if troubleshooting is necessary. RESULTS The PCA-based SST model was applied to data collected when the instrument was compromised. The resultant SST scores were used to determine a statistically significant threshold, which was defined as 0.93 for IR-MALDESI-MSI analyses. This minimizes the type-I error rate, where the QC/SST would report the platform to be in working condition when cleaning is actually necessary. Further, data scored after a partial cleaning demonstrate the importance of QC and frequent full instrument cleaning. CONCLUSIONS This study is the starting point for addressing an important issue and will undergo future development to improve the efficiency of the protocol. Ultimately, this work is the first of its kind and proposes this approach as a proof of concept to develop and implement universal QC/SST protocols for a variety of MSI platforms.
Collapse
Affiliation(s)
- Alexandria L. Sohn
- FTMS Laboratory for Human Health Research, Department of Chemistry, North Carolina State University, Raleigh, NC 27695
| | - Russell R. Kibbe
- FTMS Laboratory for Human Health Research, Department of Chemistry, North Carolina State University, Raleigh, NC 27695
| | - Olivia E. Dioli
- FTMS Laboratory for Human Health Research, Department of Chemistry, North Carolina State University, Raleigh, NC 27695
| | - Emily C. Hector
- Department of Statistics, North Carolina State University, Raleigh, NC 27695
| | - Hongxia Bai
- FTMS Laboratory for Human Health Research, Department of Chemistry, North Carolina State University, Raleigh, NC 27695
| | - Kenneth P. Garrard
- FTMS Laboratory for Human Health Research, Department of Chemistry, North Carolina State University, Raleigh, NC 27695
| | - David C. Muddiman
- FTMS Laboratory for Human Health Research, Department of Chemistry, North Carolina State University, Raleigh, NC 27695
| |
Collapse
|
12
|
Van Assche CXL, Krüger DN, Flinders B, Vandenbosch M, Franssen C, Guns PJD, Heeren RMA, Cillero-Pastor B. Improved on-tissue detection of the anti-cancer agent doxorubicin by quantitative matrix-assisted laser desorption/ionization mass spectrometry imaging. Talanta 2024; 271:125667. [PMID: 38245959 DOI: 10.1016/j.talanta.2024.125667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 12/18/2023] [Accepted: 01/12/2024] [Indexed: 01/23/2024]
Abstract
Doxorubicin (dox) is an affordable, and highly effective chemotherapeutic agent used in cancer treatment, yet its application is known to cause cumulative cardiac and renal toxicity. In this study, we employed matrix-assisted laser desorption/ionization-mass spectrometry imaging (MALDI-MSI) to evaluate the distribution of dox in mouse heart and kidney after in vivo treatment. To this end, we performed absolute quantification using an isotopically labeled form (13C d3-dox) as an internal standard. Unfortunately, ion suppression often leads to loss of sensitivity in compound detection and can result in hampered drug quantification. To overcome this issue, we developed an on-tissue chemical derivatization (OTCD) method using Girard's reagent T (GirT). With the developed method, dox signal was increased by two orders of magnitude. This optimized sample preparation enabled a sensible gain in dox detection, making it possible to study its distribution and abundance (up to 0.11 pmol/mm2 in the heart and 0.33 pmol/mm2 in the kidney medulla). The optimized approach for on-tissue derivatization and subsequent quantification creates a powerful tool to better understand the relationship between dox exposure (at clinically relevant concentrations) and its biological detrimental effects in various tissues. Overall, this work is a showcase of the added value of MALDI-MSI for pharmaceutical studies to better understand heterogeneity in drug exposure between and within organs.
Collapse
Affiliation(s)
- Charles X L Van Assche
- Maastricht Multimodal Molecular Imaging institute (M4i), Maastricht University, Maastricht, Netherlands
| | - Dustin N Krüger
- Laboratory of Physiopharmacology, Faculty of Medicine and Health Sciences, Faculty of Pharmaceutical, Biomedical and Veterinary Sciences, Campus Drie Eiken, University of Antwerp, Antwerp B-2610, Belgium
| | - Bryn Flinders
- Maastricht Multimodal Molecular Imaging institute (M4i), Maastricht University, Maastricht, Netherlands
| | - Michiel Vandenbosch
- Maastricht Multimodal Molecular Imaging institute (M4i), Maastricht University, Maastricht, Netherlands
| | - Constantijn Franssen
- Research Group Cardiovascular Diseases, GENCOR, University of Antwerp, B-2610 Antwerp, Belgium; Department of Cardiology, Antwerp University Hospital (UZA), Drie Eikenstraat 655, Edegem, Belgium
| | - Pieter-Jan D Guns
- Laboratory of Physiopharmacology, Faculty of Medicine and Health Sciences, Faculty of Pharmaceutical, Biomedical and Veterinary Sciences, Campus Drie Eiken, University of Antwerp, Antwerp B-2610, Belgium
| | - Ron M A Heeren
- Maastricht Multimodal Molecular Imaging institute (M4i), Maastricht University, Maastricht, Netherlands
| | - Berta Cillero-Pastor
- Maastricht Multimodal Molecular Imaging institute (M4i), Maastricht University, Maastricht, Netherlands; Institute for Technology-Inspired Regenerative Medicine (MERLN), Department of Cell Biology-Inspired Tissue Engineering, Maastricht University, Maastricht, Netherlands.
| |
Collapse
|
13
|
Chen B, Vavrek M, Cancilla MT. From molecules to visuals: Empowering drug discovery and development with mass spectrometry imaging. JOURNAL OF MASS SPECTROMETRY : JMS 2024; 59:e5029. [PMID: 38656528 DOI: 10.1002/jms.5029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 03/20/2024] [Accepted: 03/25/2024] [Indexed: 04/26/2024]
Abstract
Over the past three decades, mass spectrometry imaging (MSI) has emerged as a valuable tool for the spatial localization of drugs and metabolites directly from tissue surfaces without the need for labels. MSI offers molecular specificity, making it increasingly popular in the pharmaceutical industry compared to conventional imaging techniques like quantitative whole-body autoradiography (QWBA) and immunohistochemistry, which are unable to distinguish parent drugs from metabolites. Across the industry, there has been a consistent uptake in the utilization of MSI to investigate drug and metabolite distribution patterns, and the integration of MSI with omics technologies in preclinical investigations. To continue the further adoption of MSI in drug discovery and development, we believe there are two key areas that need to be addressed. First, there is a need for accurate quantification of analytes from MSI distribution studies. Second, there is a need for increased interactions with regulatory agencies for guidance on the utility and incorporation of MSI techniques in regulatory filings. Ongoing efforts are being made to address these areas, and it is hoped that MSI will gain broader utilization within the industry, thereby becoming a critical ingredient in driving drug discovery and development.
Collapse
Affiliation(s)
- Bingming Chen
- Department of Pharmacokinetics, Dynamics, Metabolism & Bioanalytics, Merck & Co., Inc, Rahway, New Jersey, USA
| | - Marissa Vavrek
- Department of Pharmacokinetics, Dynamics, Metabolism & Bioanalytics, Merck & Co., Inc, Rahway, New Jersey, USA
| | - Mark T Cancilla
- Department of Pharmacokinetics, Dynamics, Metabolism & Bioanalytics, Merck & Co., Inc, Rahway, New Jersey, USA
| |
Collapse
|
14
|
Sarretto T, Gardner W, Brungs D, Napaki S, Pigram PJ, Ellis SR. A Machine Learning-Driven Comparison of Ion Images Obtained by MALDI and MALDI-2 Mass Spectrometry Imaging. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2024; 35:466-475. [PMID: 38407924 DOI: 10.1021/jasms.3c00357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/27/2024]
Abstract
Matrix-assisted laser desorption ionization mass spectrometry imaging (MALDI-MSI) enables label-free imaging of biomolecules in biological tissues. However, many species remain undetected due to their poor ionization efficiencies. MALDI-2 (laser-induced post-ionization) is the most widely used post-ionization method for improving analyte ionization efficiencies. Mass spectra acquired using MALDI-2 constitute a combination of ions generated by both MALDI and MALDI-2 processes. Until now, no studies have focused on a detailed comparison between the ion images (as opposed to the generated m/z values) produced by MALDI and MALDI-2 for mass spectrometry imaging (MSI) experiments. Herein, we investigated the ion images produced by both MALDI and MALDI-2 on the same tissue section using correlation analysis (to explore similarities in ion images for ions common to both MALDI and MALDI-2) and a deep learning approach. For the latter, we used an analytical workflow based on the Xception convolutional neural network, which was originally trained for human-like natural image classification but which we adapted to elucidate similarities and differences in ion images obtained using the two MSI techniques. Correlation analysis demonstrated that common ions yielded similar spatial distributions with low-correlation species explained by either poor signal intensity in MALDI or the generation of additional unresolved signals using MALDI-2. Using the Xception-based method, we identified many regions in the t-SNE space of spatially similar ion images containing MALDI and MALDI-2-related signals. More notably, the method revealed distinct regions containing only MALDI-2 ion images with unique spatial distributions that were not observed using MALDI. These data explicitly demonstrate the ability of MALDI-2 to reveal molecular features and patterns as well as histological regions of interest that are not visible when using conventional MALDI.
Collapse
Affiliation(s)
- Tassiani Sarretto
- Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, Australia, 2522
| | - Wil Gardner
- Centre for Materials and Surface Science and Department of Mathematical and Physical Sciences, La Trobe University, Bundoora, Australia, 3086
| | - Daniel Brungs
- Graduate School of Medicine, University of Wollongong, Wollongong, Australia, 2522
| | - Sarbar Napaki
- Graduate School of Medicine, University of Wollongong, Wollongong, Australia, 2522
| | - Paul J Pigram
- Centre for Materials and Surface Science and Department of Mathematical and Physical Sciences, La Trobe University, Bundoora, Australia, 3086
| | - Shane R Ellis
- Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, Australia, 2522
| |
Collapse
|
15
|
Ma X, Fernández FM. Advances in mass spectrometry imaging for spatial cancer metabolomics. MASS SPECTROMETRY REVIEWS 2024; 43:235-268. [PMID: 36065601 PMCID: PMC9986357 DOI: 10.1002/mas.21804] [Citation(s) in RCA: 46] [Impact Index Per Article: 46.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 08/02/2022] [Accepted: 08/02/2022] [Indexed: 05/09/2023]
Abstract
Mass spectrometry (MS) has become a central technique in cancer research. The ability to analyze various types of biomolecules in complex biological matrices makes it well suited for understanding biochemical alterations associated with disease progression. Different biological samples, including serum, urine, saliva, and tissues have been successfully analyzed using mass spectrometry. In particular, spatial metabolomics using MS imaging (MSI) allows the direct visualization of metabolite distributions in tissues, thus enabling in-depth understanding of cancer-associated biochemical changes within specific structures. In recent years, MSI studies have been increasingly used to uncover metabolic reprogramming associated with cancer development, enabling the discovery of key biomarkers with potential for cancer diagnostics. In this review, we aim to cover the basic principles of MSI experiments for the nonspecialists, including fundamentals, the sample preparation process, the evolution of the mass spectrometry techniques used, and data analysis strategies. We also review MSI advances associated with cancer research in the last 5 years, including spatial lipidomics and glycomics, the adoption of three-dimensional and multimodal imaging MSI approaches, and the implementation of artificial intelligence/machine learning in MSI-based cancer studies. The adoption of MSI in clinical research and for single-cell metabolomics is also discussed. Spatially resolved studies on other small molecule metabolites such as amino acids, polyamines, and nucleotides/nucleosides will not be discussed in the context.
Collapse
Affiliation(s)
- Xin Ma
- School of Chemistry and Biochemistry and Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - Facundo M Fernández
- School of Chemistry and Biochemistry and Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia, USA
| |
Collapse
|
16
|
Jha D, Blennow K, Zetterberg H, Savas JN, Hanrieder J. Spatial neurolipidomics-MALDI mass spectrometry imaging of lipids in brain pathologies. JOURNAL OF MASS SPECTROMETRY : JMS 2024; 59:e5008. [PMID: 38445816 DOI: 10.1002/jms.5008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 01/03/2024] [Accepted: 01/25/2024] [Indexed: 03/07/2024]
Abstract
Given the complexity of nervous tissues, understanding neurochemical pathophysiology puts high demands on bioanalytical techniques with respect to specificity and sensitivity. Mass spectrometry imaging (MSI) has evolved to become an important, biochemical imaging technology for spatial biology in biological and translational research. The technique facilitates comprehensive, sensitive elucidation of the spatial distribution patterns of drugs, lipids, peptides, and small proteins in situ. Matrix-assisted laser desorption ionization (MALDI)-based MSI is the dominating modality due to its broad applicability and fair compromise of selectivity, sensitivity price, throughput, and ease of use. This is particularly relevant for the analysis of spatial lipid patterns, where no other comparable spatial profiling tools are available. Understanding spatial lipid biology in nervous tissue is therefore a key and emerging application area of MSI research. The aim of this review is to give a concise guide through the MSI workflow for lipid imaging in central nervous system (CNS) tissues and essential parameters to consider while developing and optimizing MSI assays. Further, this review provides a broad overview of key developments and applications of MALDI MSI-based spatial neurolipidomics to map lipid dynamics in neuronal structures, ultimately contributing to a better understanding of neurodegenerative disease pathology.
Collapse
Affiliation(s)
- Durga Jha
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy at the University of Gothenburg, Mölndal Hospital, Mölndal, Sweden
| | - Kaj Blennow
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy at the University of Gothenburg, Mölndal Hospital, Mölndal, Sweden
- Clinical Neurochemistry Lab, Sahlgrenska University Hospital, Mölndal, Sweden
- Paris Brain Institute, ICM, Pitié-Salpêtrière Hospital, Sorbonne University, Paris, France
- Neurodegenerative Disorder Research Center, Division of Life Sciences and Medicine, Department of Neurology, Institute on Aging and Brain Disorders, University of Science and Technology of China and First Affiliated Hospital of USTC, Hefei, China
| | - Henrik Zetterberg
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy at the University of Gothenburg, Mölndal Hospital, Mölndal, Sweden
- Clinical Neurochemistry Lab, Sahlgrenska University Hospital, Mölndal, Sweden
- UK Dementia Research Institute at UCL, London, UK
- Department of Neurodegenerative Disease, Queen Square Institute of Neurology, University College London, London, UK
- Hong Kong Center for Neurodegenerative Diseases, Clear Water Bay, Hong Kong, China
- Wisconsin Alzheimer's Disease Research Center, University of Wisconsin School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Jeffrey N Savas
- Department of Neurology, Northwestern University Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Jörg Hanrieder
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy at the University of Gothenburg, Mölndal Hospital, Mölndal, Sweden
- Clinical Neurochemistry Lab, Sahlgrenska University Hospital, Mölndal, Sweden
- Department of Neurodegenerative Disease, Queen Square Institute of Neurology, University College London, London, UK
| |
Collapse
|
17
|
Holbrook JH, Kemper GE, Hummon AB. Quantitative mass spectrometry imaging: therapeutics & biomolecules. Chem Commun (Camb) 2024; 60:2137-2151. [PMID: 38284765 PMCID: PMC10878071 DOI: 10.1039/d3cc05988j] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 01/22/2024] [Indexed: 01/30/2024]
Abstract
Mass spectrometry imaging (MSI) has become increasingly utilized in the analysis of biological molecules. MSI grants the ability to spatially map thousands of molecules within one experimental run in a label-free manner. While MSI is considered by most to be a qualitative method, recent advancements in instrumentation, sample preparation, and development of standards has made quantitative MSI (qMSI) more common. In this feature article, we present a tailored review of recent advancements in qMSI of therapeutics and biomolecules such as lipids and peptides/proteins. We also provide detailed experimental considerations for conducting qMSI studies on biological samples, aiming to advance the methodology.
Collapse
Affiliation(s)
- Joseph H Holbrook
- Ohio State Biochemistry Program, The Ohio State University, Columbus, Ohio 43210, USA.
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, USA
| | - Gabrielle E Kemper
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, USA
| | - Amanda B Hummon
- Ohio State Biochemistry Program, The Ohio State University, Columbus, Ohio 43210, USA.
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, USA
- Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio 43210, USA
| |
Collapse
|
18
|
Fan X, Sun AR, Young RSE, Afara IO, Hamilton BR, Ong LJY, Crawford R, Prasadam I. Spatial analysis of the osteoarthritis microenvironment: techniques, insights, and applications. Bone Res 2024; 12:7. [PMID: 38311627 PMCID: PMC10838951 DOI: 10.1038/s41413-023-00304-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 11/21/2023] [Accepted: 11/27/2023] [Indexed: 02/06/2024] Open
Abstract
Osteoarthritis (OA) is a debilitating degenerative disease affecting multiple joint tissues, including cartilage, bone, synovium, and adipose tissues. OA presents diverse clinical phenotypes and distinct molecular endotypes, including inflammatory, metabolic, mechanical, genetic, and synovial variants. Consequently, innovative technologies are needed to support the development of effective diagnostic and precision therapeutic approaches. Traditional analysis of bulk OA tissue extracts has limitations due to technical constraints, causing challenges in the differentiation between various physiological and pathological phenotypes in joint tissues. This issue has led to standardization difficulties and hindered the success of clinical trials. Gaining insights into the spatial variations of the cellular and molecular structures in OA tissues, encompassing DNA, RNA, metabolites, and proteins, as well as their chemical properties, elemental composition, and mechanical attributes, can contribute to a more comprehensive understanding of the disease subtypes. Spatially resolved biology enables biologists to investigate cells within the context of their tissue microenvironment, providing a more holistic view of cellular function. Recent advances in innovative spatial biology techniques now allow intact tissue sections to be examined using various -omics lenses, such as genomics, transcriptomics, proteomics, and metabolomics, with spatial data. This fusion of approaches provides researchers with critical insights into the molecular composition and functions of the cells and tissues at precise spatial coordinates. Furthermore, advanced imaging techniques, including high-resolution microscopy, hyperspectral imaging, and mass spectrometry imaging, enable the visualization and analysis of the spatial distribution of biomolecules, cells, and tissues. Linking these molecular imaging outputs to conventional tissue histology can facilitate a more comprehensive characterization of disease phenotypes. This review summarizes the recent advancements in the molecular imaging modalities and methodologies for in-depth spatial analysis. It explores their applications, challenges, and potential opportunities in the field of OA. Additionally, this review provides a perspective on the potential research directions for these contemporary approaches that can meet the requirements of clinical diagnoses and the establishment of therapeutic targets for OA.
Collapse
Affiliation(s)
- Xiwei Fan
- Centre for Biomedical Technologies, Queensland University of Technology, Brisbane, QLD, Australia
- School of Mechanical, Medical & Process Engineering, Queensland University of Technology, Brisbane, QLD, Australia
| | - Antonia Rujia Sun
- Centre for Biomedical Technologies, Queensland University of Technology, Brisbane, QLD, Australia
- School of Mechanical, Medical & Process Engineering, Queensland University of Technology, Brisbane, QLD, Australia
| | - Reuben S E Young
- Central Analytical Research Facility, Queensland University of Technology, Brisbane, QLD, Australia
- Molecular Horizons, University of Wollongong, Wollongong, NSW, Australia
| | - Isaac O Afara
- Department of Technical Physics, University of Eastern Finland, Kuopio, Finland
- School of Electrical Engineering and Computer Science, Faculty of Engineering, Architecture and Information Technology, University of Queensland, Brisbane, QLD, Australia
| | - Brett R Hamilton
- Centre for Microscopy and Microanalysis, University of Queensland, Brisbane, QLD, Australia
| | - Louis Jun Ye Ong
- Centre for Biomedical Technologies, Queensland University of Technology, Brisbane, QLD, Australia
- School of Mechanical, Medical & Process Engineering, Queensland University of Technology, Brisbane, QLD, Australia
| | - Ross Crawford
- Centre for Biomedical Technologies, Queensland University of Technology, Brisbane, QLD, Australia
- The Prince Charles Hospital, Brisbane, QLD, Australia
| | - Indira Prasadam
- Centre for Biomedical Technologies, Queensland University of Technology, Brisbane, QLD, Australia.
- School of Mechanical, Medical & Process Engineering, Queensland University of Technology, Brisbane, QLD, Australia.
| |
Collapse
|
19
|
Rajbhandari P, Neelakantan TV, Hosny N, Stockwell BR. Spatial pharmacology using mass spectrometry imaging. Trends Pharmacol Sci 2024; 45:67-80. [PMID: 38103980 PMCID: PMC10842749 DOI: 10.1016/j.tips.2023.11.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 11/07/2023] [Accepted: 11/11/2023] [Indexed: 12/19/2023]
Abstract
The emerging and powerful field of spatial pharmacology can map the spatial distribution of drugs and their metabolites, as well as their effects on endogenous biomolecules including metabolites, lipids, proteins, peptides, and glycans, without the need for labeling. This is enabled by mass spectrometry imaging (MSI) that provides previously inaccessible information in diverse phases of drug discovery and development. We provide a perspective on how MSI technologies and computational tools can be implemented to reveal quantitative spatial drug pharmacokinetics and toxicology, tissue subtyping, and associated biomarkers. We also highlight the emerging potential of comprehensive spatial pharmacology through integration of multimodal MSI data with other spatial technologies. Finally, we describe how to overcome challenges including improving reproducibility and compound annotation to generate robust conclusions that will improve drug discovery and development processes.
Collapse
Affiliation(s)
- Presha Rajbhandari
- Department of Biological Sciences, Columbia University, New York, NY, USA
| | | | - Noreen Hosny
- Irving Institute for Cancer Dynamics, Columbia University, New York, NY, USA; Department of Molecular Biology, Princeton University, Princeton, NJ, USA
| | - Brent R Stockwell
- Department of Biological Sciences, Columbia University, New York, NY, USA; Department of Chemistry, Columbia University, New York, NY, USA; Irving Institute for Cancer Dynamics, Columbia University, New York, NY, USA; Herbert Irving Comprehensive Cancer Center, Columbia University, New York, NY, USA; Department of Pathology and Cell Biology, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY, USA.
| |
Collapse
|
20
|
Shan L, Huang Y, Zhang J, Su Y, Guo Y. Inhibiting Protein Aggregation Using Cellulose Nanocrystal in MALDI-TOF MS Analysis: Improving the Sensitivity and Repeatability of Intact Protein in Pueraria. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:20146-20154. [PMID: 38060840 DOI: 10.1021/acs.jafc.3c04650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2023]
Abstract
Protein aggregation can induce low sensitivity and poor repeatability of matrix-assisted laser desorption/ionization time-of-fight mass spectrometry (MALDI-TOF MS) analysis for intact protein. Herein, we introduced a strategy to decrease protein aggregation in the sample solution by using cellulose nanocrystal (CNC). The results indicated that protein granule size was effectively reduced by adding CNC to the sample solution. Through MALDI-TOF MS analysis, the signal-to-noise ratio of [M + H]+ peak increased 2-fold, and the detection of limit was <10 μg/mL for intact protein. The CNC also contributed to excellent point-to-point repeatability for MALDI-TOF MS analysis with the coefficient of variation (CV) of 10.0% with CNC vs 48.9% without CNC in Hb solution. Also, the repeatability of Pueraria protein ion signals was improved by using CNC, and the CV with and without CNC was 16.1% and 39.6%, respectively. Moreover, protein ion intensity exhibited great linear relationship (y = 53.04x - 3.474, R2 = 0.9936) with the concentrations (ranging from 0.1 to 10 mg/mL) when using CNC. Further investigation revealed that m/z 19,000 and m/z 21,000 peaks of Pueraria could be used for the adulteration analysis and post-translational modification research, demonstrating our method has the potential for broad applications.
Collapse
Affiliation(s)
- Liang Shan
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, PR China
- National Center for Organic Mass Spectrometry in Shanghai, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, PR China
| | - Yiman Huang
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, PR China
- National Center for Organic Mass Spectrometry in Shanghai, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, PR China
| | - Jing Zhang
- National Center for Organic Mass Spectrometry in Shanghai, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, PR China
| | - Yue Su
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, PR China
| | - Yinlong Guo
- National Center for Organic Mass Spectrometry in Shanghai, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, PR China
| |
Collapse
|
21
|
Krestensen KK, Heeren RMA, Balluff B. State-of-the-art mass spectrometry imaging applications in biomedical research. Analyst 2023; 148:6161-6187. [PMID: 37947390 DOI: 10.1039/d3an01495a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2023]
Abstract
Mass spectrometry imaging has advanced from a niche technique to a widely applied spatial biology tool operating at the forefront of numerous fields, most notably making a significant impact in biomedical pharmacological research. The growth of the field has gone hand in hand with an increase in publications and usage of the technique by new laboratories, and consequently this has led to a shift from general MSI reviews to topic-specific reviews. Given this development, we see the need to recapitulate the strengths of MSI by providing a more holistic overview of state-of-the-art MSI studies to provide the new generation of researchers with an up-to-date reference framework. Here we review scientific advances for the six largest biomedical fields of MSI application (oncology, pharmacology, neurology, cardiovascular diseases, endocrinology, and rheumatology). These publications thereby give examples for at least one of the following categories: they provide novel mechanistic insights, use an exceptionally large cohort size, establish a workflow that has the potential to become a high-impact methodology, or are highly cited in their field. We finally have a look into new emerging fields and trends in MSI (immunology, microbiology, infectious diseases, and aging), as applied MSI is continuously broadening as a result of technological breakthroughs.
Collapse
Affiliation(s)
- Kasper K Krestensen
- The Maastricht MultiModal Molecular Imaging (M4I) Institute, Maastricht University, 6229 ER Maastricht, The Netherlands.
| | - Ron M A Heeren
- The Maastricht MultiModal Molecular Imaging (M4I) Institute, Maastricht University, 6229 ER Maastricht, The Netherlands.
| | - Benjamin Balluff
- The Maastricht MultiModal Molecular Imaging (M4I) Institute, Maastricht University, 6229 ER Maastricht, The Netherlands.
| |
Collapse
|
22
|
Abstract
Imaging mass spectrometry is a well-established technology that can easily and succinctly communicate the spatial localization of molecules within samples. This review communicates the recent advances in the field, with a specific focus on matrix-assisted laser desorption/ionization (MALDI) imaging mass spectrometry (IMS) applied on tissues. The general sample preparation strategies for different analyte classes are explored, including special considerations for sample types (fresh frozen or formalin-fixed,) strategies for various analytes (lipids, metabolites, proteins, peptides, and glycans) and how multimodal imaging strategies can leverage the strengths of each approach is mentioned. This work explores appropriate experimental design approaches and standardization of processes needed for successful studies, as well as the various data analysis platforms available to analyze data and their strengths. The review concludes with applications of imaging mass spectrometry in various fields, with a focus on medical research, and some examples from plant biology and microbe metabolism are mentioned, to illustrate the breadth and depth of MALDI IMS.
Collapse
Affiliation(s)
- Jessica L Moore
- Department of Proteomics, Discovery Life Sciences, Huntsville, Alabama 35806, United States
| | - Georgia Charkoftaki
- Department of Environmental Health Sciences, Yale School of Public Health, Yale University, New Haven, Connecticut 06520, United States
| |
Collapse
|
23
|
Molina-Millán L, Körber A, Flinders B, Cillero-Pastor B, Cuypers E, Heeren RMA. MALDI-2 Mass Spectrometry for Synthetic Polymer Analysis. Macromolecules 2023; 56:7729-7736. [PMID: 37841532 PMCID: PMC10569092 DOI: 10.1021/acs.macromol.3c01401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 09/04/2023] [Indexed: 10/17/2023]
Abstract
Synthetic polymers are ubiquitous in daily life, and their properties offer diverse benefits in numerous applications. However, synthetic polymers also present an increasing environmental burden through their improper disposal and subsequent degradation into secondary micro- and nanoparticles (MNPs). These MNPs accumulate in soil and water environments and can ultimately end up in the food chain, resulting in potential health risks. Matrix-assisted laser desorption/ionization mass spectrometry imaging (MALDI MSI) has the potential to study localized biological or toxicological changes in organisms exposed to MNPs. Here, we investigate whether MALDI-2 postionization can provide a sensitivity enhancement in polymer analysis that could contribute to the study of MNPs. We evaluated the effect of MALDI-2 by comparing MALDI and MALDI-2 ion yields from polyethyleneglycol (PEG), polypropylene glycol (PPG), polytetrahydrofuran (PTHF), nylon-6, and polystyrene (PS). MALDI-2 caused a signal enhancement of the protonated species for PEG, PPG, PTHF, and nylon-6. PS, by contrast, preferentially formed radical ions, which we attribute to direct resonance-enhanced multiphoton ionization (REMPI). REMPI of PS led to an improvement in sensitivity by several orders of magnitude, even without cationizing salts. The improved sensitivity demonstrated by MALDI-2 for all polymers tested highlights its potential for studying the distribution of certain classes of polymers in biological systems.
Collapse
Affiliation(s)
- Lidia Molina-Millán
- The
Maastricht MultiModal Molecular Imaging Institute (M4i), Division
of Imaging Mass Spectrometry, Maastricht
University, Universiteitssingel 50, 6229 ER Maastricht, The Netherlands
| | - Aljoscha Körber
- The
Maastricht MultiModal Molecular Imaging Institute (M4i), Division
of Imaging Mass Spectrometry, Maastricht
University, Universiteitssingel 50, 6229 ER Maastricht, The Netherlands
| | - Bryn Flinders
- The
Maastricht MultiModal Molecular Imaging Institute (M4i), Division
of Imaging Mass Spectrometry, Maastricht
University, Universiteitssingel 50, 6229 ER Maastricht, The Netherlands
| | - Berta Cillero-Pastor
- The
Maastricht MultiModal Molecular Imaging Institute (M4i), Division
of Imaging Mass Spectrometry, Maastricht
University, Universiteitssingel 50, 6229 ER Maastricht, The Netherlands
- The
MERLN Institute for Technology-Inspired Regenerative Medicine, Department
of Cell Biology-Inspired Tissue Engineering, Maastricht University, Universiteitssingel 40, 6229 ER Maastricht, The Netherlands
| | - Eva Cuypers
- The
Maastricht MultiModal Molecular Imaging Institute (M4i), Division
of Imaging Mass Spectrometry, Maastricht
University, Universiteitssingel 50, 6229 ER Maastricht, The Netherlands
| | - Ron M. A. Heeren
- The
Maastricht MultiModal Molecular Imaging Institute (M4i), Division
of Imaging Mass Spectrometry, Maastricht
University, Universiteitssingel 50, 6229 ER Maastricht, The Netherlands
| |
Collapse
|
24
|
Raths J, Pinto FE, Janfelt C, Hollender J. Elucidating the spatial distribution of organic contaminants and their biotransformation products in amphipod tissue by MALDI- and DESI-MS-imaging. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 264:115468. [PMID: 37738825 DOI: 10.1016/j.ecoenv.2023.115468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 08/29/2023] [Accepted: 09/08/2023] [Indexed: 09/24/2023]
Abstract
The application of mass spectrometry imaging (MSI) is a promising tool to analyze the spatial distribution of organic contaminants in organisms and thereby improve the understanding of toxicokinetic and toxicodynamic processes. MSI is a common method in medical research but has been rarely applied in environmental science. In the present study, the suitability of MSI to assess the spatial distribution of organic contaminants and their biotransformation products (BTPs) in the aquatic invertebrate key species Gammarus pulex was studied. Gammarids were exposed to a mixture of common organic contaminants (carbamazepine, citalopram, cyprodinil, efavirenz, fluopyram and terbutryn). The distribution of the parent compounds and their BTPs in the organisms was analyzed by two MSI methods (MALDI- and DESI-HRMSI) after cryo-sectioning, and by LC-HRMS/MS after dissection into different organ compartments. The spatial distribution of contaminats in gammarid tissue could be successfully analyzed by the different analytical methods. The intestinal system was identified as the main site of biotransformation, possibly due to the presence of biotransforming enzymes. LC-HRMS/MS was more sensitive and provided higher confidence in BTP identification due to chromatographic separation and MS/MS. DESI was found to be the more sensitive MSI method for the analyzed contaminants, whereas additional biomarkers were found using MALDI. The results demonstrate the suitability of MSI for investigations on the spatial distribution of accumulated organic contaminants. However, both MSI methods required high exposure concentrations. Further improvements of ionization methods would be needed to address environmentally relevant concentrations.
Collapse
Affiliation(s)
- Johannes Raths
- Department of Environmental Chemistry, Swiss Federal Institute of Aquatic Science and Technology - Eawag, Dübendorf, Switzerland; Institute of Biogeochemistry and Pollutant Dynamics, ETH Zürich, Zürich, Switzerland
| | - Fernanda E Pinto
- Department of Pharmacy, University of Copenhagen, Copenhagen, Denmark
| | - Christian Janfelt
- Department of Pharmacy, University of Copenhagen, Copenhagen, Denmark
| | - Juliane Hollender
- Department of Environmental Chemistry, Swiss Federal Institute of Aquatic Science and Technology - Eawag, Dübendorf, Switzerland; Institute of Biogeochemistry and Pollutant Dynamics, ETH Zürich, Zürich, Switzerland.
| |
Collapse
|
25
|
McKinnon JC, Milioli HH, Purcell CA, Chaffer CL, Wadie B, Alexandrov T, Mitchell TW, Ellis SR. Enhancing metabolite coverage in MALDI-MSI using laser post-ionisation (MALDI-2). ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2023; 15:4311-4320. [PMID: 37605803 DOI: 10.1039/d3ay01046e] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/23/2023]
Abstract
Matrix-assisted laser desorption/ionisation mass spectrometry imaging (MALDI-MSI) of metabolites can reveal how metabolism is altered throughout heterogeneous tissues. Here negative ion mode MALDI-MSI has been coupled with laser post-ionisation (MALDI-2) and applied to the MSI of low molecular weight (LMW) metabolites (
Collapse
Affiliation(s)
- J C McKinnon
- Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Northfields Ave, Wollongong, NSW 2522, Australia.
| | - H H Milioli
- Garvan Institute of Medical Research, Darlinghurst, NSW, Australia
- St. Vincent's Clinical School, UNSW Medicine, UNSW Sydney, NSW, Australia
- The Kinghorn Cancer Centre, Darlinghurst, NSW, Australia
| | - C A Purcell
- Garvan Institute of Medical Research, Darlinghurst, NSW, Australia
- St. Vincent's Clinical School, UNSW Medicine, UNSW Sydney, NSW, Australia
- The Kinghorn Cancer Centre, Darlinghurst, NSW, Australia
| | - C L Chaffer
- Garvan Institute of Medical Research, Darlinghurst, NSW, Australia
- St. Vincent's Clinical School, UNSW Medicine, UNSW Sydney, NSW, Australia
- The Kinghorn Cancer Centre, Darlinghurst, NSW, Australia
| | - B Wadie
- Structural and Computational Biology Unit, European Molecular Biology Laboratory (EMBL), Heidelberg, Germany
| | - T Alexandrov
- Structural and Computational Biology Unit, European Molecular Biology Laboratory (EMBL), Heidelberg, Germany
| | - T W Mitchell
- Molecular Horizons, School of Medical, Indigenous and Health Science, University of Wollongong, Northfields Ave, Wollongong, NSW 2522, Australia
| | - S R Ellis
- Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Northfields Ave, Wollongong, NSW 2522, Australia.
| |
Collapse
|
26
|
Lesco KC, Rowland SM, Ratanathanawongs Williams SK, Laurens LML. Single-filament imaging mass spectrometry lipidomics in Arthrospira platensis. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2023; 37:e9525. [PMID: 37062938 DOI: 10.1002/rcm.9525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 04/13/2023] [Accepted: 04/14/2023] [Indexed: 06/17/2023]
Abstract
RATIONALE Elucidating intra-organismal biochemical and lipid organization in photosynthetic biological cell factories of filamentous cyanobacteria, such as Arthrospira platensis (Spirulina), is important for tracking physiological response mechanisms during growth. Little is known about the filaments' biochemical organization and cellular structure and no label-free imaging techniques exist that provide molecular mapping. METHODS We applied ultrahigh-resolution mass spectrometry (MS) with matrix-assisted laser desorption ionization (MALDI) imaging to immobilized Spirulina filaments to investigate the localization of lipids across distinct physiological regions. We optimized matrix selection and deposition methods with the goal of facilitating high spatial, and intra-filament, resolution using untargeted multivariate statistical spectral deconvolution across MS pixels. RESULTS Our results demonstrate an improved two-step matrix application with an optimized procedure for intra-organismal lipid profiling to improve analyte sensitivity and achieve higher spatial resolution. We evaluate several conventional matrices, namely 2,5-dihydroxybenzoic acid (DHB), superDHB (sDHB), 1,5-diaminonaphthalene (DAN), and a 50:50 mix of DHB and sDHB, and compare delineation and pixel-based elucidation of intra-filament lipidomics. We identified a total of 1626 features that could be putatively assigned a lipid-like formula based on database query and 46 unique features, with associated lipid assignments that were significantly distinct in their intra-filament location. CONCLUSIONS MALDI imaging MS with untargeted statistical spectral deconvolution was used to visualize intra-filament lipidomics organization in Spirulina filaments. Improvements in matrix deposition, including sequential sublimation and pneumatic spraying, increased signal abundance at high spatial resolution and allowed for identification of distinct lipid composition regions. This work outlines a methodology that may be used for micro-ecological untargeted molecular phenotyping.
Collapse
Affiliation(s)
- Kaitlin C Lesco
- Bioenergy Science and Technology Directorate, National Renewable Energy Laboratory, Golden, Colorado, USA
- Laboratory for Advanced Separation Technologies, Department of Chemistry, Colorado School of Mines, Golden, Colorado, USA
| | - Steven M Rowland
- Bioenergy Science and Technology Directorate, National Renewable Energy Laboratory, Golden, Colorado, USA
| | | | - Lieve M L Laurens
- Bioenergy Science and Technology Directorate, National Renewable Energy Laboratory, Golden, Colorado, USA
| |
Collapse
|
27
|
Mamun MA, Rahman MM, Sakamoto T, Islam A, Oyama S, Nabi MM, Sato T, Kahyo T, Takahashi Y, Setou M. Detection of Distinct Distributions of Acetaminophen and Acetaminophen-Cysteine in Kidneys up to 10 μm Resolution and Identification of a Novel Acetaminophen Metabolite Using an AP-MALDI Imaging Mass Microscope. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2023; 34:1491-1500. [PMID: 37308161 PMCID: PMC10327650 DOI: 10.1021/jasms.3c00149] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 05/02/2023] [Accepted: 05/08/2023] [Indexed: 06/14/2023]
Abstract
Drug distribution studies in tissue are crucial for understanding the pharmacokinetics and potential toxicity of drugs. Recently, matrix-assisted laser desorption ionization-mass spectrometry imaging (MALDI-MSI) has gained attention for drug distribution studies due to its high sensitivity, label-free nature, and ability to distinguish between parent drugs, their metabolites, and endogenous molecules. Despite these advantages, achieving high spatial resolution in drug imaging is challenging. Importantly, many drugs and metabolites are rarely detectable by conventional vacuum MALDI-MSI because of their poor ionization efficiency. It has been reported that acetaminophen (APAP) and one of its major metabolites, APAP-Cysteine (APAP-CYS), cannot be detected by vacuum MALDI-MSI without derivatization. In this context, we showed the distribution of both APAP and APAP-CYS in kidneys at high spatial resolution (25 and 10 μm) by employing an atmospheric pressure-MALDI imaging mass microscope without derivatization. APAP was highly accumulated in the renal pelvis 1 h after drug administration, while APAP-CYS exhibited characteristic distributions in the outer medulla and renal pelvis at both 30 min and 1 h after administration. Interestingly, cluster-like distributions of APAP and APAP-CYS were observed in the renal pelvis at 10 μm spatial resolution. Additionally, a novel APAP metabolite, tentatively coined as APAP-butyl sulfate (APAP-BS), was identified in the kidney, brain, and liver by combining MSI and tandem MSI. For the first time, our study revealed differential distributions of APAP, APAP-CYS (in kidneys), and APAP-BS (in kidney, brain, and liver) and is believed to enhance the understanding of the pharmacokinetics and potential nephrotoxicity of this drug.
Collapse
Affiliation(s)
- Md. Al Mamun
- Department
of Cellular & Molecular Anatomy, Hamamatsu
University School of Medicine, 1-20-1 Handayama, Higashi-ku, Hamamatsu, Shizuoka 431-3192, Japan
- Preppers
Co., Ltd., Hamamatsu University School of
Medicine, 1-20-1 Handayama, Higashi-ku, Hamamatsu, Shizuoka 431-3192, Japan
| | - Md. Muedur Rahman
- Department
of Cellular & Molecular Anatomy, Hamamatsu
University School of Medicine, 1-20-1 Handayama, Higashi-ku, Hamamatsu, Shizuoka 431-3192, Japan
| | - Takumi Sakamoto
- Department
of Cellular & Molecular Anatomy, Hamamatsu
University School of Medicine, 1-20-1 Handayama, Higashi-ku, Hamamatsu, Shizuoka 431-3192, Japan
- Preppers
Co., Ltd., Hamamatsu University School of
Medicine, 1-20-1 Handayama, Higashi-ku, Hamamatsu, Shizuoka 431-3192, Japan
| | - Ariful Islam
- Department
of Cellular & Molecular Anatomy, Hamamatsu
University School of Medicine, 1-20-1 Handayama, Higashi-ku, Hamamatsu, Shizuoka 431-3192, Japan
- Preppers
Co., Ltd., Hamamatsu University School of
Medicine, 1-20-1 Handayama, Higashi-ku, Hamamatsu, Shizuoka 431-3192, Japan
| | - Soho Oyama
- Department
of Cellular & Molecular Anatomy, Hamamatsu
University School of Medicine, 1-20-1 Handayama, Higashi-ku, Hamamatsu, Shizuoka 431-3192, Japan
| | - Md. Mahamodun Nabi
- Department
of Cellular & Molecular Anatomy, Hamamatsu
University School of Medicine, 1-20-1 Handayama, Higashi-ku, Hamamatsu, Shizuoka 431-3192, Japan
| | - Tomohito Sato
- Department
of Cellular & Molecular Anatomy, Hamamatsu
University School of Medicine, 1-20-1 Handayama, Higashi-ku, Hamamatsu, Shizuoka 431-3192, Japan
| | - Tomoaki Kahyo
- Department
of Cellular & Molecular Anatomy, Hamamatsu
University School of Medicine, 1-20-1 Handayama, Higashi-ku, Hamamatsu, Shizuoka 431-3192, Japan
- International
Mass Imaging Center, Hamamatsu University
School of Medicine, 1-20-1 Handayama, Higashi-ku, Hamamatsu, Shizuoka 431-3192, Japan
| | - Yutaka Takahashi
- Department
of Cellular & Molecular Anatomy, Hamamatsu
University School of Medicine, 1-20-1 Handayama, Higashi-ku, Hamamatsu, Shizuoka 431-3192, Japan
- Preppers
Co., Ltd., Hamamatsu University School of
Medicine, 1-20-1 Handayama, Higashi-ku, Hamamatsu, Shizuoka 431-3192, Japan
| | - Mitsutoshi Setou
- Department
of Cellular & Molecular Anatomy, Hamamatsu
University School of Medicine, 1-20-1 Handayama, Higashi-ku, Hamamatsu, Shizuoka 431-3192, Japan
- International
Mass Imaging Center, Hamamatsu University
School of Medicine, 1-20-1 Handayama, Higashi-ku, Hamamatsu, Shizuoka 431-3192, Japan
- Department
of Systems Molecular Anatomy, Institute for Medical Photonics Research, Preeminent Medical Photonics Education & Research
Center, 1-20-1 Handayama,
Higashi-ku, Hamamatsu, Shizuoka 431-3192, Japan
| |
Collapse
|
28
|
Maciel LÍL, Bernardo RA, Martins RO, Batista Junior AC, Oliveira JVA, Chaves AR, Vaz BG. Desorption electrospray ionization and matrix-assisted laser desorption/ionization as imaging approaches for biological samples analysis. Anal Bioanal Chem 2023:10.1007/s00216-023-04783-8. [PMID: 37329466 DOI: 10.1007/s00216-023-04783-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 05/19/2023] [Accepted: 05/30/2023] [Indexed: 06/19/2023]
Abstract
The imaging of biological tissues can offer valuable information about the sample composition, which improves the understanding of analyte distribution in such complex samples. Different approaches using mass spectrometry imaging (MSI), also known as imaging mass spectrometry (IMS), enabled the visualization of the distribution of numerous metabolites, drugs, lipids, and glycans in biological samples. The high sensitivity and multiple analyte evaluation/visualization in a single sample provided by MSI methods lead to various advantages and overcome drawbacks of classical microscopy techniques. In this context, the application of MSI methods, such as desorption electrospray ionization-MSI (DESI-MSI) and matrix-assisted laser desorption/ionization-MSI (MALDI-MSI), has significantly contributed to this field. This review discusses the evaluation of exogenous and endogenous molecules in biological samples using DESI and MALDI imaging. It offers rare technical insights not commonly found in the literature (scanning speed and geometric parameters), making it a comprehensive guide for applying these techniques step-by-step. Furthermore, we provide an in-depth discussion of recent research findings on using these methods to study biological tissues.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Boniek Gontijo Vaz
- Instituto de Química, Universidade Federal de Goiás, Goiânia, GO, 74690-900, Brazil.
| |
Collapse
|
29
|
Fresnais M, Liang S, Seven D, Prodanovic N, Sundheimer J, Haefeli WE, Burhenne J, Longuespée R. Desorption Kinetics Evaluation for the Development of Validated Desorption Electrospray Ionization-Mass Spectrometric Assays for Drug Quantification in Tissue Sections. Int J Mol Sci 2023; 24:ijms24108469. [PMID: 37239813 DOI: 10.3390/ijms24108469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 04/24/2023] [Accepted: 05/05/2023] [Indexed: 05/28/2023] Open
Abstract
The development of desorption/ionization (DI) mass spectrometric (MS) assays for drug quantification in tissue sections and their validation according to regulatory guidelines would enable their universalization for applications in (clinical) pharmacology. Recently, new enhancements in desorption electrospray ionization (DESI) have highlighted the reliability of this ion source for the development of targeted quantification methods that meet requirements for method validation. However, it is necessary to consider subtle parameters leading to the success of such method developments, such as the morphology of desorption spots, the analytical time, and sample surface, to cite but a few. Here, we provide additional experimental data highlighting an additional important parameter, based on the unique advantage of DESI-MS on continuous extraction during analysis. We demonstrate that considering desorption kinetics during DESI analyses would largely help (i) reducing analytical time during profiling analyses, (ii) verifying solvent-based drug extraction using the selected sample preparation method for profiling and imaging modes, and (iii) predicting the feasibility of imaging assays using samples in a given expected concentration range of the targeted drug. These observations will likely serve as precious guidance for the development of validated DESI-profiling and imaging methods in the future.
Collapse
Affiliation(s)
- Margaux Fresnais
- Department of Clinical Pharmacology and Pharmacoepidemiology, Heidelberg University Hospital, Im Neuenheimer Feld 410, 69120 Heidelberg, Germany
| | - Siwen Liang
- Department of Clinical Pharmacology and Pharmacoepidemiology, Heidelberg University Hospital, Im Neuenheimer Feld 410, 69120 Heidelberg, Germany
| | - Deniz Seven
- Department of Clinical Pharmacology and Pharmacoepidemiology, Heidelberg University Hospital, Im Neuenheimer Feld 410, 69120 Heidelberg, Germany
| | - Nevena Prodanovic
- Department of Clinical Pharmacology and Pharmacoepidemiology, Heidelberg University Hospital, Im Neuenheimer Feld 410, 69120 Heidelberg, Germany
| | - Julia Sundheimer
- Hopp Children's Cancer Center Heidelberg (KiTZ), Im Neuenheimer Feld 430, 69120 Heidelberg, Germany
- Division of Pediatric Neurooncology, German Cancer Research Center (DKFZ), German Cancer Consortium (DKTK), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
- Faculty of Biosciences, Heidelberg University, Im Neuenheimer Feld 234, 69120 Heidelberg, Germany
| | - Walter E Haefeli
- Department of Clinical Pharmacology and Pharmacoepidemiology, Heidelberg University Hospital, Im Neuenheimer Feld 410, 69120 Heidelberg, Germany
| | - Jürgen Burhenne
- Department of Clinical Pharmacology and Pharmacoepidemiology, Heidelberg University Hospital, Im Neuenheimer Feld 410, 69120 Heidelberg, Germany
| | - Rémi Longuespée
- Department of Clinical Pharmacology and Pharmacoepidemiology, Heidelberg University Hospital, Im Neuenheimer Feld 410, 69120 Heidelberg, Germany
| |
Collapse
|
30
|
McDowell CT, Lu X, Mehta AS, Angel PM, Drake RR. Applications and continued evolution of glycan imaging mass spectrometry. MASS SPECTROMETRY REVIEWS 2023; 42:674-705. [PMID: 34392557 PMCID: PMC8946722 DOI: 10.1002/mas.21725] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 07/16/2021] [Accepted: 08/03/2021] [Indexed: 05/03/2023]
Abstract
Glycosylation is an important posttranslational modifier of proteins and lipid conjugates critical for the stability and function of these macromolecules. Particularly important are N-linked glycans attached to asparagine residues in proteins. N-glycans have well-defined roles in protein folding, cellular trafficking and signal transduction, and alterations to them are implicated in a variety of diseases. However, the non-template driven biosynthesis of these N-glycans leads to significant structural diversity, making it challenging to identify the most biologically and clinically relevant species using conventional analyses. Advances in mass spectrometry instrumentation and data acquisition, as well as in enzymatic and chemical sample preparation strategies, have positioned mass spectrometry approaches as powerful analytical tools for the characterization of glycosylation in health and disease. Imaging mass spectrometry expands upon these strategies by capturing the spatial component of a glycan's distribution in-situ, lending additional insight into the organization and function of these molecules. Herein we review the ongoing evolution of glycan imaging mass spectrometry beginning with widely adopted tissue imaging approaches and expanding to other matrices and sample types with potential research and clinical implications. Adaptations of these techniques, along with their applications to various states of disease, are discussed. Collectively, glycan imaging mass spectrometry analyses broaden our understanding of the biological and clinical relevance of N-glycosylation to human disease.
Collapse
Affiliation(s)
- Colin T. McDowell
- Department of Cell and Molecular Pharmacology and Experimental Therapeutics, Medical University of South Carolina, Charleston, SC, 29425, USA
| | - Xiaowei Lu
- Department of Cell and Molecular Pharmacology and Experimental Therapeutics, Medical University of South Carolina, Charleston, SC, 29425, USA
| | - Anand S. Mehta
- Department of Cell and Molecular Pharmacology and Experimental Therapeutics, Medical University of South Carolina, Charleston, SC, 29425, USA
| | - Peggi M. Angel
- Department of Cell and Molecular Pharmacology and Experimental Therapeutics, Medical University of South Carolina, Charleston, SC, 29425, USA
| | - Richard R. Drake
- Department of Cell and Molecular Pharmacology and Experimental Therapeutics, Medical University of South Carolina, Charleston, SC, 29425, USA
| |
Collapse
|
31
|
Zhang N, Kandalai S, Zhou X, Hossain F, Zheng Q. Applying multi-omics toward tumor microbiome research. IMETA 2023; 2:e73. [PMID: 38868335 PMCID: PMC10989946 DOI: 10.1002/imt2.73] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 10/30/2022] [Accepted: 11/28/2022] [Indexed: 06/14/2024]
Abstract
Rather than a "short-term tenant," the tumor microbiome has been shown to play a vital role as a "permanent resident," affecting carcinogenesis, cancer development, metastasis, and cancer therapies. As the tumor microbiome has great potential to become a target for the early diagnosis and treatment of cancer, recent research on the relevance of the tumor microbiota has attracted a wide range of attention from various scientific fields, resulting in remarkable progress that benefits from the development of interdisciplinary technologies. However, there are still a great variety of challenges in this emerging area, such as the low biomass of intratumoral bacteria and unculturable character of some microbial species. Due to the complexity of tumor microbiome research (e.g., the heterogeneity of tumor microenvironment), new methods with high spatial and temporal resolution are urgently needed. Among these developing methods, multi-omics technologies (combinations of genomics, transcriptomics, proteomics, and metabolomics) are powerful approaches that can facilitate the understanding of the tumor microbiome on different levels of the central dogma. Therefore, multi-omics (especially single-cell omics) will make enormous impacts on the future studies of the interplay between microbes and tumor microenvironment. In this review, we have systematically summarized the advances in multi-omics and their existing and potential applications in tumor microbiome research, thus providing an omics toolbox for investigators to reference in the future.
Collapse
Affiliation(s)
- Nan Zhang
- Department of Radiation Oncology, College of MedicineThe Ohio State UniversityColumbusOhioUSA
- Center for Cancer Metabolism, Ohio State University Comprehensive Cancer Center ‐ James Cancer Hospital and Solove Research InstituteThe Ohio State UniversityOhioColumbusUSA
| | - Shruthi Kandalai
- Department of Radiation Oncology, College of MedicineThe Ohio State UniversityColumbusOhioUSA
- Center for Cancer Metabolism, Ohio State University Comprehensive Cancer Center ‐ James Cancer Hospital and Solove Research InstituteThe Ohio State UniversityOhioColumbusUSA
| | - Xiaozhuang Zhou
- Department of Radiation Oncology, College of MedicineThe Ohio State UniversityColumbusOhioUSA
- Center for Cancer Metabolism, Ohio State University Comprehensive Cancer Center ‐ James Cancer Hospital and Solove Research InstituteThe Ohio State UniversityOhioColumbusUSA
| | - Farzana Hossain
- Department of Radiation Oncology, College of MedicineThe Ohio State UniversityColumbusOhioUSA
- Center for Cancer Metabolism, Ohio State University Comprehensive Cancer Center ‐ James Cancer Hospital and Solove Research InstituteThe Ohio State UniversityOhioColumbusUSA
| | - Qingfei Zheng
- Department of Radiation Oncology, College of MedicineThe Ohio State UniversityColumbusOhioUSA
- Center for Cancer Metabolism, Ohio State University Comprehensive Cancer Center ‐ James Cancer Hospital and Solove Research InstituteThe Ohio State UniversityOhioColumbusUSA
- Department of Biological Chemistry and Pharmacology, College of MedicineThe Ohio State UniversityColumbusOhioUSA
| |
Collapse
|
32
|
Bowman AP, Sawicki J, Talaty NN, Buck WR, Yang J, Wagner DS. Evaluation of Quantitative Platforms for Single Target Mass Spectrometry Imaging. Pharmaceuticals (Basel) 2022; 15:ph15101180. [PMID: 36297291 PMCID: PMC9609477 DOI: 10.3390/ph15101180] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 09/19/2022] [Accepted: 09/21/2022] [Indexed: 12/05/2022] Open
Abstract
(1) Imaging of pharmaceutical compounds in tissue is an increasingly important subsection of Mass Spectrometry Imaging (MSI). Identifying proper target engagement requires MS platforms with high sensitivity and spatial resolution. Three prominent categories of drugs are small molecule drugs, antibody-drug conjugate payloads, and protein degraders. (2) We tested six common MSI platforms for their limit of detection (LoD) on a representative compound for each category: a Matrix-Assisted Laser Desorption/Ionization (MALDI) Fourier Transform Ion Cyclotron, a MALDI-2 Time-of-Flight (ToF), a MALDI-2 Trapped Ion Mobility Spectrometry ToF, a Desorption Electrospray Ionization Orbitrap, and 2 Atmospheric Pressure-MALDI Triple Quadrupoles. Samples were homogenized tissue mimetic models of rat liver spiked with known concentrations of analytes. (3) We found that the AP-MALDI-QQQ platform outperformed all 4 competing platforms by a minimum of 2- to 52-fold increase in LoD for representative compounds from each category of pharmaceutical. (4) AP-MALDI-QQQ platforms are effective, cost-efficient mass spectrometers for the identification of targeted analytes of interest.
Collapse
|
33
|
Bookmeyer C, Röhling U, Dreisewerd K, Soltwisch J. Single‐Photon‐Induced Post‐Ionization to Boost Ion Yields in MALDI Mass Spectrometry Imaging**. Angew Chem Int Ed Engl 2022; 61:e202202165. [PMID: 35727295 PMCID: PMC9546322 DOI: 10.1002/anie.202202165] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Indexed: 12/15/2022]
Abstract
Matrix‐assisted laser desorption/ionization mass spectrometry imaging (MALDI‐MSI) is a rapidly growing method in the life sciences. However, for many analyte classes, its sensitivity is limited due to poor ionization efficiencies. To mitigate this problem, we here introduce a novel post‐ionization scheme based on single‐photon induced chemical ionization using pulsed RF‐Kr lamps. The fine‐vacuum conditions of a dual ion‐funnel ion source effectively thermalize the evolving MALDI plume and enable ample gas‐phase reactions. Injected chemical dopants crucially support fragment‐less ionization to [M+H]+/[M−H]− species. Based on this interplay, numerous glycerophospho‐, sphingo‐, and further lipids, registered from mammalian tissue sections, were boosted by up to three orders of magnitude, similar to results obtained with laser‐based post‐ionization (MALDI‐2). Experiments with deuterated matrix and dopant, however, indicated complex chemical ionization pathways different from MALDI‐2.
Collapse
Affiliation(s)
- Christoph Bookmeyer
- Institute of Hygiene University of Münster Robert-Koch-Str. 41 48149 Münster Germany
- Metabolomics Interdisciplinary Laboratory University of Tarragona Avinguda Països Catalans 26 43007 Tarragona (Spain)
| | - Ulrich Röhling
- Institute of Medical Physics and Biophysics University of Münster Robert-Koch-Str. 31 48149 Münster Germany
| | - Klaus Dreisewerd
- Institute of Hygiene University of Münster Robert-Koch-Str. 41 48149 Münster Germany
| | - Jens Soltwisch
- Institute of Hygiene University of Münster Robert-Koch-Str. 41 48149 Münster Germany
| |
Collapse
|
34
|
Dong Y, Aharoni A. Image to insight: exploring natural products through mass spectrometry imaging. Nat Prod Rep 2022; 39:1510-1530. [PMID: 35735199 DOI: 10.1039/d2np00011c] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Covering: 2017 to 2022Mass spectrometry imaging (MSI) has become a mature molecular imaging technique that is well-matched for natural product (NP) discovery. Here we present a brief overview of MSI, followed by a thorough discussion of different MSI applications in NP research. This review will mainly focus on the recent progress of MSI in plants and microorganisms as they are the main producers of NPs. Specifically, the opportunity and potential of combining MSI with other imaging modalities and stable isotope labeling are discussed. Throughout, we focus on both the strengths and weaknesses of MSI, with an eye on future improvements that are necessary for the progression of MSI toward routine NP studies. Finally, we discuss new areas of research, future perspectives, and the overall direction that the field may take in the years to come.
Collapse
Affiliation(s)
- Yonghui Dong
- Department of Plant Sciences, Weizmann Institute of Science, Rehovot 76100, Israel.
| | - Asaph Aharoni
- Department of Plant Sciences, Weizmann Institute of Science, Rehovot 76100, Israel.
| |
Collapse
|
35
|
Bookmeyer C, Röhling U, Dreisewerd K, Soltwisch J. Single‐Photon‐Induced Post‐Ionization to Boost Ion Yields in MALDI Mass Spectrometry Imaging. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202202165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Christoph Bookmeyer
- University of Münster: Westfälische Wilhelms-Universität Münster Institute of Hygiene Robert-Koch.Str. 41 48149 Münster GERMANY
| | - Ulrich Röhling
- University of Münster: Westfälische Wilhelms-Universität Münster Institute of Medical Physics and Biophysics GERMANY
| | - Klaus Dreisewerd
- University of Münster: Westfälische Wilhelms-Universität Münster Institute of Hygiene GERMANY
| | - Jens Soltwisch
- Westfalische Wilhelms-Universität Munster Institute of Hygiene Robert-Koch-Str. 41 48149 Munster GERMANY
| |
Collapse
|
36
|
Tuck M, Grélard F, Blanc L, Desbenoit N. MALDI-MSI Towards Multimodal Imaging: Challenges and Perspectives. Front Chem 2022; 10:904688. [PMID: 35615316 PMCID: PMC9124797 DOI: 10.3389/fchem.2022.904688] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 04/14/2022] [Indexed: 01/22/2023] Open
Abstract
Multimodal imaging is a powerful strategy for combining information from multiple images. It involves several fields in the acquisition, processing and interpretation of images. As multimodal imaging is a vast subject area with various combinations of imaging techniques, it has been extensively reviewed. Here we focus on Matrix-assisted Laser Desorption Ionization Mass Spectrometry Imaging (MALDI-MSI) coupling other imaging modalities in multimodal approaches. While MALDI-MS images convey a substantial amount of chemical information, they are not readily informative about the morphological nature of the tissue. By providing a supplementary modality, MALDI-MS images can be more informative and better reflect the nature of the tissue. In this mini review, we emphasize the analytical and computational strategies to address multimodal MALDI-MSI.
Collapse
|
37
|
Angerer TB, Bour J, Biagi JL, Moskovets E, Frache G. Evaluation of 6 MALDI-Matrices for 10 μm Lipid Imaging and On-Tissue MSn with AP-MALDI-Orbitrap. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2022; 33:760-771. [PMID: 35358390 PMCID: PMC9074099 DOI: 10.1021/jasms.1c00327] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Mass spectrometry imaging is a technique uniquely suited to localize and identify lipids in a tissue sample. Using an atmospheric pressure (AP-) matrix-assisted laser desorption ionization (MALDI) source coupled to an Orbitrap Elite, numerous lipid locations and structures can be determined in high mass resolution spectra and at cellular spatial resolution, but careful sample preparation is necessary. We tested 11 protocols on serial brain sections for the commonly used MALDI matrices CHCA, norharmane, DHB, DHAP, THAP, and DAN in combination with tissue washing and matrix additives to determine the lipid coverage, signal intensity, and spatial resolution achievable with AP-MALDI. In positive-ion mode, the most lipids could be detected with CHCA and THAP, while THAP and DAN without additional treatment offered the best signal intensities. In negative-ion mode, DAN showed the best lipid coverage and DHAP performed superiorly for gangliosides. DHB produced intense cholesterol signals in the white matter. One hundred fifty-five lipids were assigned in positive-ion mode (THAP) and 137 in negative-ion mode (DAN), and 76 peaks were identified using on-tissue tandem-MS. The spatial resolution achievable with DAN was 10 μm, confirmed with on tissue line-scans. This enabled the association of lipid species to single neurons in AP-MALDI images. The results show that the performance of AP-MALDI is comparable to vacuum MALDI techniques for lipid imaging.
Collapse
Affiliation(s)
- Tina B. Angerer
- Luxembourg
Institute of Science and Technology (LIST), Advanced Characterization platform, Materials Research
and Technology, 41, rue
du Brill, L-4422 Belvaux, Luxembourg
| | - Jerome Bour
- Luxembourg
Institute of Science and Technology (LIST), Advanced Characterization platform, Materials Research
and Technology, 41, rue
du Brill, L-4422 Belvaux, Luxembourg
| | - Jean-Luc Biagi
- Luxembourg
Institute of Science and Technology (LIST), Advanced Characterization platform, Materials Research
and Technology, 41, rue
du Brill, L-4422 Belvaux, Luxembourg
| | | | - Gilles Frache
- Luxembourg
Institute of Science and Technology (LIST), Advanced Characterization platform, Materials Research
and Technology, 41, rue
du Brill, L-4422 Belvaux, Luxembourg
| |
Collapse
|
38
|
Cruz Villarreal J, Kruithoff R, Egatz-Gomez A, Coleman PD, Ros R, Sandrin TR, Ros A. MIMAS: microfluidic platform in tandem with MALDI mass spectrometry for protein quantification from small cell ensembles. Anal Bioanal Chem 2022; 414:3945-3958. [PMID: 35385983 PMCID: PMC9188328 DOI: 10.1007/s00216-022-04038-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 03/17/2022] [Accepted: 03/22/2022] [Indexed: 11/26/2022]
Abstract
Understanding cell-to-cell variation at the molecular level provides relevant information about biological phenomena and is critical for clinical and biological research. Proteins carry important information not available from single-cell genomics and transcriptomics studies; however, due to the minute amount of proteins in single cells and the complexity of the proteome, quantitative protein analysis at the single-cell level remains challenging. Here, we report an integrated microfluidic platform in tandem with matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF-MS) for the detection and quantification of targeted proteins from small cell ensembles (> 10 cells). All necessary steps for the assay are integrated on-chip including cell lysis, protein immunocapture, tryptic digestion, and co-crystallization with the matrix solution for MALDI-MS analysis. We demonstrate that our approach is suitable for protein quantification by assessing the apoptotic protein Bcl-2 released from MCF-7 breast cancer cells, ranging from 26 to 223 cells lysed on-chip (8.75 nL wells). A limit of detection (LOD) of 11.22 nM was determined, equivalent to 5.91 × 107 protein molecules per well. Additionally, the microfluidic platform design was further improved, establishing the successful quantification of Bcl-2 protein from MCF-7 cell ensembles ranging from 8 to 19 cells in 4 nL wells. The LOD in the smaller well designs for Bcl-2 resulted in 14.85 nM, equivalent to 3.57 × 107 protein molecules per well. This work shows the capability of our approach to quantitatively assess proteins from cell lysate on the MIMAS platform for the first time. These results demonstrate our approach constitutes a promising tool for quantitative targeted protein analysis from small cell ensembles down to single cells, with the capability for multiplexing through parallelization and automation.
Collapse
Affiliation(s)
- Jorvani Cruz Villarreal
- School of Molecular Sciences, Arizona State University, Temple, AZ, USA
- Center for Applied Structural Discovery, The Biodesign Institute, Arizona State University, Tempe, AZ, USA
| | - Rory Kruithoff
- Department of Physics and Center for Biological Physics, Arizona State University, Tempe, AZ, USA
| | - Ana Egatz-Gomez
- School of Molecular Sciences, Arizona State University, Temple, AZ, USA
- Center for Applied Structural Discovery, The Biodesign Institute, Arizona State University, Tempe, AZ, USA
| | - Paul D Coleman
- School of Life Sciences, Arizona State University, Temple, AZ, USA
- ASU-Banner Neurodegenerative Research Center, The Biodesign Institute, Arizona State University, Tempe, AZ, USA
| | - Robert Ros
- Department of Physics and Center for Biological Physics, Arizona State University, Tempe, AZ, USA
- Center for Single Molecule Biophysics, The Biodesign Institute, Arizona State University, Temple, AZ, USA
| | - Todd R Sandrin
- School of Mathematical and Natural Sciences, Arizona State University, Phoenix, AZ, USA
- Julie Ann Wrigley Global Futures Laboratory, Arizona State University, Tempe, AZ, USA
| | - Alexandra Ros
- School of Molecular Sciences, Arizona State University, Temple, AZ, USA.
- Center for Applied Structural Discovery, The Biodesign Institute, Arizona State University, Tempe, AZ, USA.
| |
Collapse
|
39
|
Wang DD, Wang J. Characterization of Allergic Polymerized Impurities in Cephalosporins by MALDI-TOF MS/MS Spectrometry. CURR PHARM ANAL 2022. [DOI: 10.2174/1573412918666220330003952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Background:
Characterization of allergic polymerized impurities in cephalosporins is significant to ensure the safety and quality of the products.
Objective:
To develop a MALDI-TOF MS/MS method to characterize the structures of polymerized impurities in cefuroxime axetil drug substance and cefetamet pivoxil drug substance.
Methods:
Calibrant references were TOF mix, including Angiotensin 2, Angiotensin 1, Glu-1-fibrino, N-Acetyl renin, ACTH 1-17, ACTH 18-39 and ACTH 7-38. Matrix was DHB at a concentration of 10 mg•mL-1. Acetone and water were used as solvent to dissolve cefuroxime axetil and cefetamet pivoxil hydrochloride drug substances, respectively. The prepared solutions were mixed with DHB, volatilized to dry, and subjected to MALDI-TOF MS/MS analysis, respectively. MS data was obtained in the linear mode with a power of 80, and MS2 data was obtained in the reflection mode with a power of 120. Molecular weights of polymerized impurities in cefuroxime axetil and cefetamet pivoxil were obtained based on the MS data. Their fragmentation patterns and structural assignments were studied based on the MS2 data.
Results:
Eight polymerized impurities in cefuroxime axetil drug substance and cefetamet pivoxil hydrochloride drug substance made in China were characterized by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS/MS), among which impurity Ⅰ-Ⅴ were in cefuroxime axetil and impurities Ⅵ-Ⅷ were in cefetamet pivoxil. Based on the experimental results, the polymerization mechanism of polymerized impurities in cephalosporins was discussed.
Conclusion:
MALDI-TOF MS/MS was proved to be simple, quick and sensitive for the analysis of polymerized impurities in cephalosporins.
Collapse
Affiliation(s)
- Dan-dan Wang
- Zhejiang Institute for Food and Drug Control, Hangzhou, China
- Key Laboratory of Drug Contacting Materials Quality Control of Zhejiang Province, Hangzhou, China
| | - Jian Wang
- Zhejiang Institute for Food and Drug Control, Hangzhou, China
| |
Collapse
|
40
|
DeLaney K, Phetsanthad A, Li L. ADVANCES IN HIGH-RESOLUTION MALDI MASS SPECTROMETRY FOR NEUROBIOLOGY. MASS SPECTROMETRY REVIEWS 2022; 41:194-214. [PMID: 33165982 PMCID: PMC8106695 DOI: 10.1002/mas.21661] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Accepted: 09/13/2020] [Indexed: 05/08/2023]
Abstract
Research in the field of neurobiology and neurochemistry has seen a rapid expansion in the last several years due to advances in technologies and instrumentation, facilitating the detection of biomolecules critical to the complex signaling of neurons. Part of this growth has been due to the development and implementation of high-resolution Fourier transform (FT) mass spectrometry (MS), as is offered by FT ion cyclotron resonance (FTICR) and Orbitrap mass analyzers, which improves the accuracy of measurements and helps resolve the complex biological mixtures often analyzed in the nervous system. The coupling of matrix-assisted laser desorption/ionization (MALDI) with high-resolution MS has drastically expanded the information that can be obtained with these complex samples. This review discusses notable technical developments in MALDI-FTICR and MALDI-Orbitrap platforms and their applications toward molecules in the nervous system, including sequence elucidation and profiling with de novo sequencing, analysis of post-translational modifications, in situ analysis, key advances in sample preparation and handling, quantitation, and imaging. Notable novel applications are also discussed to highlight key developments critical to advancing our understanding of neurobiology and providing insight into the exciting future of this field. © 2020 John Wiley & Sons Ltd. Mass Spec Rev.
Collapse
Affiliation(s)
- Kellen DeLaney
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Avenue, Madison, WI 53706, USA
| | - Ashley Phetsanthad
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Avenue, Madison, WI 53706, USA
| | - Lingjun Li
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Avenue, Madison, WI 53706, USA
- School of Pharmacy, University of Wisconsin-Madison, 777 Highland Avenue, Madison, WI 53705, USA
| |
Collapse
|
41
|
Li B, Gao W, Ling L, Yu S. Enzyme-assisted ReMALDI-MS assay for quantification of cholesterol in food. Food Chem 2022; 383:132444. [PMID: 35182868 DOI: 10.1016/j.foodchem.2022.132444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 01/17/2022] [Accepted: 02/10/2022] [Indexed: 12/01/2022]
Abstract
Cholesterol is a vital building block for animal cell membranes and participates in the synthesis of various hormones. Accurate quantitation of cholesterol in food is crucial for healthy diets. Here, we describe an enzyme-assisted reactive matrix-assisted laser desorption/ionization mass spectrometry (ReMALDI-MS) assay for the quantification of cholesterol in food. First, cholesterol was converted to 4-cholesten-3-one using the cholesterol oxidase, and then reacted with a reactive matrix, 4-hydrazinoquinazoline (4-HQ), to form a hydrazone bond. Utilizing 4-HQ significantly improved the ionization efficiency of cholesterol, which possesses poor ionization efficiency in MALDI-MS, and no additional tedious derivatization/purification steps were needed. Thus, the proposed assay was successfully used for the quantification of cholesterol in bovine milk and cream. The standard recovery tests show a recovery range of 95.3-103.0% with a relative standard deviation of 0.3-3.1%. Therefore, the proposed enzyme-assisted ReMALDI-MS assay has great potential for quantification of cholesterol in other foods.
Collapse
Affiliation(s)
- Bin Li
- Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis of Zhejiang Province, Institute of Mass Spectrometry, School of Material Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang 315211, China
| | - Wenjing Gao
- Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis of Zhejiang Province, Institute of Mass Spectrometry, School of Material Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang 315211, China
| | - Ling Ling
- Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis of Zhejiang Province, Institute of Mass Spectrometry, School of Material Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang 315211, China.
| | - Shaoning Yu
- Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis of Zhejiang Province, Institute of Mass Spectrometry, School of Material Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang 315211, China.
| |
Collapse
|
42
|
Dreisewerd K, Bien T, Soltwisch J. MALDI-2 and t-MALDI-2 Mass Spectrometry Imaging. METHODS IN MOLECULAR BIOLOGY (CLIFTON, N.J.) 2022; 2437:21-40. [PMID: 34902138 DOI: 10.1007/978-1-0716-2030-4_2] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Matrix-assisted laser desorption ionization mass spectrometry imaging (MALDI-MSI) combined with laser-induced postionization for MALDI-2 enables the simultaneous registration of numerous classes of small molecules (e.g., secondary metabolites including sterols) as well as phospholipids, glycolipids, and glycans from tissue sections and from cell cultures with strongly boosted ion yields. Here, we describe methodological aspects that are key for optimizing the analytical sensitivity and spatial resolution of a MALDI-2 imaging experiment. We will include both top-illumination MALDI-2 as well as the recently introduced transmission (t-) mode MALDI-2 approach.
Collapse
Affiliation(s)
| | - Tanja Bien
- Institute of Hygiene, University of Münster, Münster, Germany
| | - Jens Soltwisch
- Institute of Hygiene, University of Münster, Münster, Germany
| |
Collapse
|
43
|
Mass spectrometry imaging in drug distribution and drug metabolism studies – Principles, applications and perspectives. Trends Analyt Chem 2022. [DOI: 10.1016/j.trac.2021.116482] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
44
|
Yu D, Lai P, Yan T, Fang K, Chen L, Zhang S. Quantifying the Matrix Metalloproteinase 2 (MMP2) Spatially in Tissues by Probe via MALDI Imaging Mass Spectrometry. Front Chem 2021; 9:786283. [PMID: 34976953 PMCID: PMC8715900 DOI: 10.3389/fchem.2021.786283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 11/25/2021] [Indexed: 11/25/2022] Open
Abstract
As a matrix metalloproteinase, the abnormal expression of MMP2 is associated with multiple biological processes, including tissue remodeling and cancer progression. Therefore, spatial analysis of MMP2 protein in tissues can be used as an important approach to evaluate the expression distribution of MMP2 in complex tissue environments, which will help the diagnosis and treatment of various diseases, including tissue or organ injuries. Moreover, this analysis will also help the evaluation of prognoses. However, MMP2 is difficult to be spatially determined by MALDI TOF mass spectrometry due to its large molecular weight (over 72 KD) and low content. Therefore, a new method should be developed to help this detection. Here, we have designed a specific MMP2 probe that closely binds to MMP2 protein in tissue. This probe has a Cl on Tyr at the terminal, which can provide two isotope peaks to help the accuracy quantitative of MMP2 protein. Based on this, we used the probe to determine the spatial expression of MMP2 in the tissues based on MALDI TOF mass spectrometry. This approach may help to study the influence of multifunctional proteases on the degree of malignancy in vivo.
Collapse
Affiliation(s)
- Daojiang Yu
- The Second Affiliated Hospital of Chengdu Medical College, China National Nuclear Corporation 416 Hospital, Chengdu, China
- *Correspondence: Daojiang Yu, ; Shuyu Zhang,
| | - Peng Lai
- Department of Endocrinology, Xuzhou Center Hospital, Xuzhou, China
| | - Tao Yan
- The Second Affiliated Hospital of Chengdu Medical College, China National Nuclear Corporation 416 Hospital, Chengdu, China
| | - Kai Fang
- The Second Affiliated Hospital of Chengdu Medical College, China National Nuclear Corporation 416 Hospital, Chengdu, China
| | - Lei Chen
- The Second Affiliated Hospital of Chengdu Medical College, China National Nuclear Corporation 416 Hospital, Chengdu, China
| | - Shuyu Zhang
- The Second Affiliated Hospital of Chengdu Medical College, China National Nuclear Corporation 416 Hospital, Chengdu, China
- Department of Oncology, The Affiliated Changzhou No. 2 People’s Hospital of Nanjing Medical University, Changzhou, China
- *Correspondence: Daojiang Yu, ; Shuyu Zhang,
| |
Collapse
|
45
|
Capturing the third dimension in drug discovery: Spatially-resolved tools for interrogation of complex 3D cell models. Biotechnol Adv 2021; 55:107883. [PMID: 34875362 DOI: 10.1016/j.biotechadv.2021.107883] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 11/22/2021] [Accepted: 11/30/2021] [Indexed: 02/07/2023]
Abstract
Advanced three-dimensional (3D) cell models have proven to be capable of depicting architectural and microenvironmental features of several tissues. By providing data of higher physiological and pathophysiological relevance, 3D cell models have been contributing to a better understanding of human development, pathology onset and progression mechanisms, as well as for 3D cell-based assays for drug discovery. Nonetheless, the characterization and interrogation of these tissue-like structures pose major challenges on the conventional analytical methods, pushing the development of spatially-resolved technologies. Herein, we review recent advances and pioneering technologies suitable for the interrogation of multicellular 3D models, while capable of retaining biological spatial information. We focused on imaging technologies and omics tools, namely transcriptomics, proteomics and metabolomics. The advantages and shortcomings of these novel methodologies are discussed, alongside the opportunities to intertwine data from the different tools.
Collapse
|
46
|
Wang N, Sarathy JP, Zimmerman M, Kaya F, Wang H, Dartois V, Carter CL. On-Slide Heat Sterilization Enables Mass Spectrometry Imaging of Tissue Infected with High-Threat Pathogens Outside of Biocontainment: A Study Directed at Mycobacterium tuberculosis. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2021; 32:2664-2674. [PMID: 34672552 PMCID: PMC8653782 DOI: 10.1021/jasms.1c00205] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 09/27/2021] [Accepted: 10/08/2021] [Indexed: 05/16/2023]
Abstract
Mass spectrometry imaging investigations of tissues infected with agents that require high-security biocontainment, such as Mycobacterium tuberculosis, have been limited due to incompatible sterilization techniques. Here we describe an on-slide heat sterilization method that enables mass spectrometry imaging investigations of pharmaceuticals, lipids, and metabolites in infected tissue samples outside of biocontainment. An evaluation of different temperatures and incubation times determined that 100 °C for 1 h was essential to sterilize 5 times the bacterial burden observed in tuberculosis (TB) cavity sections. Laser-capture microdissection combined with liquid chromatography with tandem mass spectrometry quantitation, in addition to mass spectrometry imaging, showed that no degradation was observed following the on-slide heat sterilization protocol for a variety of drug classes covering a range of physicochemical properties. Utilizing the tissue mimetic model, we demonstrated that the detection of lipid and metabolite ions was not impacted by heat sterilization and that, for several metabolites, the on-slide heat sterilization method improved the sensitivity when compared to control samples. An application of the on-slide heat sterilization to M. tuberculosis infected tissue enabled the first detection and spatial distribution of lipids indicative of a lysosomal storage disease phenotype within TB granuloma macrophages, in addition to the differential distribution of metabolites central to the fatty acid oxidation pathway. These initial investigations detected a pronounced heterogeneity within the cellular regions and necrotic cores of individual TB granulomas and across different evolving granulomas. This study provides the framework for mass spectrometry imaging investigations of high-threat pathogens outside of biocontainment.
Collapse
Affiliation(s)
- Ning Wang
- Center
for Discovery and Innovation, Hackensack
Meridian Health, Nutley, New Jersey 07110, United States
| | - Jansy P. Sarathy
- Center
for Discovery and Innovation, Hackensack
Meridian Health, Nutley, New Jersey 07110, United States
| | - Matthew Zimmerman
- Center
for Discovery and Innovation, Hackensack
Meridian Health, Nutley, New Jersey 07110, United States
| | - Firat Kaya
- Center
for Discovery and Innovation, Hackensack
Meridian Health, Nutley, New Jersey 07110, United States
| | - Han Wang
- Center
for Discovery and Innovation, Hackensack
Meridian Health, Nutley, New Jersey 07110, United States
| | - Véronique Dartois
- Center
for Discovery and Innovation, Hackensack
Meridian Health, Nutley, New Jersey 07110, United States
- Department
of Medical Sciences, Hackensack School of
Medicine, Nutley, New Jersey 07110, United States
| | - Claire L. Carter
- Center
for Discovery and Innovation, Hackensack
Meridian Health, Nutley, New Jersey 07110, United States
- Department
of Pathology, Hackensack School of Medicine, Nutley, New Jersey 07110, United States
| |
Collapse
|
47
|
McMillen JC, Gutierrez DB, Judd AM, Spraggins JM, Caprioli RM. Enhancement of Tryptic Peptide Signals from Tissue Sections Using MALDI IMS Postionization (MALDI-2). JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2021; 32:2583-2591. [PMID: 34515472 DOI: 10.1021/jasms.1c00213] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Matrix-assisted laser desorption/ionization imaging mass spectrometry (MALDI IMS) allows for highly multiplexed, unlabeled mapping of analytes from tissue sections. However, further work is needed to improve the sensitivity and depth of coverage for protein and peptide IMS. We demonstrate signal enhancement of proteolytic peptides from thin tissue sections of human kidney by conventional MALDI (MALDI-1) augmented using a second ionizing laser (termed MALDI-2). Proteins were digested in situ using trypsin prior to IMS analysis. For tentative identification of peptides and proteins, a tissue homogenate from the same organ used for IMS was analyzed by LC-MS/MS, and data are available via ProteomeXchange with identifier PXD023877. These identified proteins were then digested in silico to generate a database of theoretical peptides to then match to MALDI IMS data sets. Peptides were tentatively identified by matching the MALDI peak list to the database peptide list based on mass accuracy (5 ppm mass error). This resulted in 1337 ± 96 (n = 3) peptides and 2076 ± 362 (n = 3) unique peptides matched to IMS peaks from MALDI-1 and MALDI-2, respectively. Protein identifications requiring two or more peptides per protein resulted in 276 ± 20 proteins with MALDI-1 and 401 ± 60 with MALDI-2. These results demonstrate that MALDI-2 provides enhanced sensitivity for the spatial mapping of tryptic peptides and significantly increases the number of proteins identified in IMS experiments.
Collapse
Affiliation(s)
- Josiah C McMillen
- Department of Chemistry, Vanderbilt University, 7330 Stevenson Center, Station B 351822, Nashville, Tennessee 37235, United States
- Mass Spectrometry Research Center, Vanderbilt University, 465 21st Avenue S #9160, Nashville, Tennessee 37235, United States
| | - Danielle B Gutierrez
- Mass Spectrometry Research Center, Vanderbilt University, 465 21st Avenue S #9160, Nashville, Tennessee 37235, United States
- Department of Biochemistry, Vanderbilt University, 607 Light Hall, Nashville, Tennessee 37205, United States
| | - Audra M Judd
- Mass Spectrometry Research Center, Vanderbilt University, 465 21st Avenue S #9160, Nashville, Tennessee 37235, United States
| | - Jeffrey M Spraggins
- Department of Chemistry, Vanderbilt University, 7330 Stevenson Center, Station B 351822, Nashville, Tennessee 37235, United States
- Mass Spectrometry Research Center, Vanderbilt University, 465 21st Avenue S #9160, Nashville, Tennessee 37235, United States
- Department of Biochemistry, Vanderbilt University, 607 Light Hall, Nashville, Tennessee 37205, United States
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, 465 21st Avenue S #3218, Nashville, Tennessee 37205, United States
| | - Richard M Caprioli
- Department of Chemistry, Vanderbilt University, 7330 Stevenson Center, Station B 351822, Nashville, Tennessee 37235, United States
- Mass Spectrometry Research Center, Vanderbilt University, 465 21st Avenue S #9160, Nashville, Tennessee 37235, United States
- Department of Biochemistry, Vanderbilt University, 607 Light Hall, Nashville, Tennessee 37205, United States
- Department of Pharmacology, Vanderbilt University, 2220 Pierce Avenue, Nashville, Tennessee 37232, United States
- Department of Medicine, Vanderbilt University, 1161 21st Avenue S, Nashville, Tennessee 37232, United States
| |
Collapse
|
48
|
Handler AM, Eirefelt S, Lambert M, Johansson F, Hollesen Schefe L, Østergaard Knudsen N, Bodenlenz M, Birngruber T, Sinner F, Huss Eriksson A, Pommergaard Pedersen G, Janfelt C, Troensegaard Nielsen K. Characterizing Cutaneous Drug Delivery Using Open-Flow Microperfusion and Mass Spectrometry Imaging. Mol Pharm 2021; 18:3063-3072. [PMID: 34247482 DOI: 10.1021/acs.molpharmaceut.1c00285] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Traditionally, cutaneous drug delivery is studied by skin accumulation or skin permeation, while alternative techniques may enable the interactions between the drug and the skin to be studied in more detail. Time-resolved skin profiling for pharmacokinetic monitoring of two Janus Kinase (JAK) inhibitors, tofacitinib and LEO 37319A, was performed using dermal open-flow microperfusion (dOFM) for sampling of perfusate in an ex vivo and in vivo setup in pig skin. Additionally, matrix-assisted laser desorption ionization mass spectrometry imaging (MALDI-MSI) was performed to investigate depth-resolved skin distributions at defined time points ex vivo in human skin. By dOFM, higher skin concentrations were observed for tofacitinib compared to LEO 37319A, which was supported by the lower molecular weight, higher solubility, lipophilicity, and degree of protein binding. Using MALDI-MSI, the two compounds were observed to show different skin distributions, which was interpreted to be caused by the difference in the ability of the two molecules to interact with the skin compartments. In conclusion, the techniques assessed time- and depth-resolved skin concentrations and were able to show differences in the pharmacokinetic profiles of two JAK inhibitors. Thus, evidence shows that the two techniques can be used as complementary methods to support decision making in drug development.
Collapse
Affiliation(s)
- Anne Mette Handler
- LEO Pharma A/S, 2750 Ballerup, Denmark.,Department of Pharmacy, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen, Denmark
| | | | | | | | | | | | - Manfred Bodenlenz
- HEALTH-Institute for Biomedicine and Health Sciences, Joanneum Research Forschungsgesellschaft m.b.H, Neue Stiftingtalstrasse 2, 8010 Graz, Austria
| | - Thomas Birngruber
- HEALTH-Institute for Biomedicine and Health Sciences, Joanneum Research Forschungsgesellschaft m.b.H, Neue Stiftingtalstrasse 2, 8010 Graz, Austria
| | - Frank Sinner
- HEALTH-Institute for Biomedicine and Health Sciences, Joanneum Research Forschungsgesellschaft m.b.H, Neue Stiftingtalstrasse 2, 8010 Graz, Austria
| | | | | | - Christian Janfelt
- Department of Pharmacy, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen, Denmark
| | | |
Collapse
|
49
|
Murray KK. Lasers for matrix-assisted laser desorption ionization. JOURNAL OF MASS SPECTROMETRY : JMS 2021; 56:e4664. [PMID: 33819368 DOI: 10.1002/jms.4664] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 09/19/2020] [Accepted: 09/24/2020] [Indexed: 06/12/2023]
Abstract
Matrix-assisted laser desorption ionization (MALDI) was introduced 35 years ago and has advanced from a general method for producing intact ions from large biomolecules to wide use in applications ranging from bacteria identification to tissue imaging. MALDI was enabled by the development of high energy pulsed lasers that create ions from solid samples for analysis by mass spectrometry. The original lasers used for MALDI were ultraviolet fixed-wavelength nitrogen and Nd:YAG lasers, and a number of additional laser sources have been subsequently introduced with wavelengths ranging from the infrared to the ultraviolet and pulse widths from nanosecond to femtosecond. Wavelength tunable sources have been employed both in the IR and UV, and repetition rates have increased from tens of Hz to tens of kHz as MALDI has moved into mass spectrometry imaging. Dual-pulse configurations have been implemented with two lasers directed at the target or with a second laser creating ions in the plume of desorbed material. This review provides a brief history of the use of lasers for ionization in mass spectrometry and describes the various types of lasers and configurations used for MALDI.
Collapse
Affiliation(s)
- Kermit K Murray
- Department of Chemistry, Louisiana State University, Baton Rouge, Louisiana, USA
| |
Collapse
|
50
|
Blaschke CRK, McDowell CT, Black AP, Mehta AS, Angel PM, Drake RR. Glycan Imaging Mass Spectrometry: Progress in Developing Clinical Diagnostic Assays for Tissues, Biofluids, and Cells. Clin Lab Med 2021; 41:247-266. [PMID: 34020762 PMCID: PMC8862151 DOI: 10.1016/j.cll.2021.03.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
N-glycan imaging mass spectrometry (IMS) can rapidly and reproducibly identify changes in disease-associated N-linked glycosylation that are linked with histopathology features in standard formalin-fixed paraffin-embedded tissue samples. It can detect multiple N-glycans simultaneously and has been used to identify specific N-glycans and carbohydrate structural motifs as possible cancer biomarkers. Recent advancements in instrumentation and sample preparation are also discussed. The tissue N-glycan IMS workflow has been adapted to new glass slide-based assays for effective and rapid analysis of clinical biofluids, cultured cells, and immunoarray-captured glycoproteins for detection of changes in glycosylation associated with disease.
Collapse
Affiliation(s)
- Calvin R K Blaschke
- Department of Cell and Molecular Pharmacology, Medical University of South Carolina, 173 Ashley Avenue, BSB 358, Charleston, SC 29425, USA
| | - Colin T McDowell
- Department of Cell and Molecular Pharmacology, Medical University of South Carolina, 173 Ashley Avenue, BSB 358, Charleston, SC 29425, USA
| | - Alyson P Black
- Department of Cell and Molecular Pharmacology, Medical University of South Carolina, 173 Ashley Avenue, BSB 358, Charleston, SC 29425, USA
| | - Anand S Mehta
- Department of Cell and Molecular Pharmacology, Medical University of South Carolina, 173 Ashley Avenue, BSB 358, Charleston, SC 29425, USA
| | - Peggi M Angel
- Department of Cell and Molecular Pharmacology, Medical University of South Carolina, 173 Ashley Avenue, BSB 358, Charleston, SC 29425, USA
| | - Richard R Drake
- Department of Cell and Molecular Pharmacology, Medical University of South Carolina, 173 Ashley Avenue, BSB 358, Charleston, SC 29425, USA.
| |
Collapse
|