1
|
Cheng H, Wang Y, Wang Y, Ge L, Liu X, Li F. A visualized sensor based on layered double hydroxides with peroxidase-like activity for sensitive acetylcholinesterase assay. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2023. [PMID: 37470116 DOI: 10.1039/d3ay00776f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/21/2023]
Abstract
Acetylcholinesterase (AChE) plays a crucial role in biological neurotransmission. The aberrant expression of AChE is associated with various neurodegenerative diseases. Therefore, it is of great significance to develop a simple and highly sensitive AChE analysis platform. Herein, a simple colorimetric sensor was constructed for sensitive detection of AChE based on the peroxidase-like catalytic activity of Ni/Co layered double hydroxides (Ni/Co LDHs). In this sensor, the fabricated Ni/Co LDHs possess high peroxidase-like activity, enabling rapid catalysis of o-phenylenediamine (OPD) to produce yellow oxOPD in the presence of H2O2. This peroxidase-like activity of Ni/Co LDHs was found to be effectively inhibited by the presence of AChE. It is speculated that the combination of AChE on the outer surface of Ni/Co LDHs through non-covalent interaction may cover the active sites and hinder their adsorption to the substrates, leading to the failure of OPD oxidation. As a result, the yellow color from oxOPD is related to the AChE concentration, enabling the direct AChE assay in an equipment-free manner. In addition, the fabricated Ni/Co LDHs could be modified on a paper surface to obtain a paper-based analytical device for visualized colorimetric detection of AChE. The as-proposed sensor shows high sensitivity to AChE with a detection limit down to 6.6 μU mL-1. Therefore, this naked-eye paper-based sensor is capable of on-site and real-time detection of AChE, and has outstanding application prospects in clinical diagnosis and biomedical fields.
Collapse
Affiliation(s)
- Hao Cheng
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao 266109, P. R. China.
- College of Plant Health & Medicine, Qingdao Agricultural University, Qingdao 266109, P. R. China
| | - Yuying Wang
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao 266109, P. R. China.
- College of Plant Health & Medicine, Qingdao Agricultural University, Qingdao 266109, P. R. China
| | - Yue Wang
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao 266109, P. R. China.
| | - Lei Ge
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao 266109, P. R. China.
| | - Xiaojuan Liu
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao 266109, P. R. China.
| | - Feng Li
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao 266109, P. R. China.
| |
Collapse
|
2
|
Lin X, Zhao M, Peng T, Zhang P, Shen R, Jia Y. Detection and discrimination of pathogenic bacteria with nanomaterials-based optical biosensors: A review. Food Chem 2023; 426:136578. [PMID: 37336102 DOI: 10.1016/j.foodchem.2023.136578] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 02/16/2023] [Accepted: 06/02/2023] [Indexed: 06/21/2023]
Abstract
Pathogenic bacteria can pose a great threat to food safety and human health. It is therefore imperative to develop a rapid, portable, and sensitive determination and discrimination method for pathogenic bacteria. Over the past few years, various nanomaterials (NMs) have been employed as desirable nanoprobes because they possess extraordinary properties that can be used for optical signal enabled detection and identification of bacteria. By means of modification, NMs can, depending on different mechanisms, sense targets directly or indirectly, which then provides an essential support for the detection and differentiation of pathogenic bacteria. In this review, recent application of NMs-based optical biosensors for food safety bacterial detection and discrimination is performed, mainly in but not limited to noble metal NMs, fluorescent NMs, and point-of-care testing (POCT). This review also focuses on future trends in bacterial detection and discrimination, and machine learning in performing intelligent rapid detection and multiple accurate identification of bacteria.
Collapse
Affiliation(s)
- Xiaodong Lin
- Zhuhai UM Science & Technology Research Institute, Zhuhai, China.
| | - Minyang Zhao
- Precision Medicine Institute, The First Affiliated Hospital of Sun Yat-Sen University, Sun Yat-Sen University, Guangzhou, China
| | - Tao Peng
- Zhuhai UM Science & Technology Research Institute, Zhuhai, China
| | - Pan Zhang
- State Key Laboratory of Analog and Mixed-Signal VLSI, Institute of Microelectronics, University of Macau, Macau, China
| | - Ren Shen
- State Key Laboratory of Analog and Mixed-Signal VLSI, Institute of Microelectronics, University of Macau, Macau, China
| | - Yanwei Jia
- Zhuhai UM Science & Technology Research Institute, Zhuhai, China; State Key Laboratory of Analog and Mixed-Signal VLSI, Institute of Microelectronics, University of Macau, Macau, China.
| |
Collapse
|
3
|
Li T, Mei Q, Wang Y, Sun Q, Liu S, Zhang Y, Liu W, Wei G, Zhou M, Wei H. Air-Derived Inhibitor of Nanozymes. ACS APPLIED MATERIALS & INTERFACES 2023. [PMID: 37257026 DOI: 10.1021/acsami.3c06255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Nanozymes are functional nanomaterials with enzyme-mimicking activities, which have found wide applications in various fields. Investigation on nanozyme inhibitors not only helps to apply nanozymes in a controlled manner but also deepens our insight into the catalysis mechanism. Herein, we report an inorganic ion inhibitor, HCO3-, which can significantly inhibit the alkaline phosphatase-mimicking activities of Ce6 cluster-based metal-organic framework (Ce-MOF) nanozymes. The inhibition of adsorption of the negatively charged fluorescence sodium on Ce6 clusters in Ce-MOF nanoparticles (NPs) by HCO3- proves that HCO3- ions occupy and deactivate Ce6 clusters (i.e., catalytic active sites), leading to the activity inhibition of Ce-MOF nanozymes. Tris(hydroxymethyl)aminomethane hydrochloride (Tris-HCl) buffer is widely employed as the alkaline reaction medium. HCO3- ions can be formed in Tris-HCl buffer through adsorption of CO2 in the air during storage in a sealed tube, which significantly inhibits the activity of Ce-MOF nanozymes. To our knowledge, this study is the first to demonstrate an air-derived inhibitor of nanozymes.
Collapse
Affiliation(s)
- Tong Li
- Department of Biomedical Engineering, College of Engineering and Applied Sciences, Nanjing National Laboratory of Microstructures, Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing, Jiangsu 210023, China
| | - Qi Mei
- Department of Biomedical Engineering, College of Engineering and Applied Sciences, Nanjing National Laboratory of Microstructures, Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing, Jiangsu 210023, China
| | - Yuting Wang
- Department of Biomedical Engineering, College of Engineering and Applied Sciences, Nanjing National Laboratory of Microstructures, Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing, Jiangsu 210023, China
| | - Qi Sun
- Department of Biomedical Engineering, College of Engineering and Applied Sciences, Nanjing National Laboratory of Microstructures, Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing, Jiangsu 210023, China
| | - Shujie Liu
- Department of Biomedical Engineering, College of Engineering and Applied Sciences, Nanjing National Laboratory of Microstructures, Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing, Jiangsu 210023, China
| | - Yihong Zhang
- Department of Biomedical Engineering, College of Engineering and Applied Sciences, Nanjing National Laboratory of Microstructures, Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing, Jiangsu 210023, China
| | - Wanling Liu
- Department of Biomedical Engineering, College of Engineering and Applied Sciences, Nanjing National Laboratory of Microstructures, Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing, Jiangsu 210023, China
| | - Gen Wei
- Department of Biomedical Engineering, College of Engineering and Applied Sciences, Nanjing National Laboratory of Microstructures, Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing, Jiangsu 210023, China
| | - Min Zhou
- Department of Biomedical Engineering, College of Engineering and Applied Sciences, Nanjing National Laboratory of Microstructures, Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing, Jiangsu 210023, China
| | - Hui Wei
- Department of Biomedical Engineering, College of Engineering and Applied Sciences, Nanjing National Laboratory of Microstructures, Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing, Jiangsu 210023, China
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing, Jiangsu 210023, China
| |
Collapse
|
4
|
Li T, Wang Y, Liu W, Fei H, Guo C, Wei H. Nanoconfinement-Guided Construction of Nanozymes for Determining H 2 O 2 Produced by Sonication. Angew Chem Int Ed Engl 2023; 62:e202212438. [PMID: 36705059 DOI: 10.1002/anie.202212438] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 01/24/2023] [Accepted: 01/27/2023] [Indexed: 01/28/2023]
Abstract
Nanomaterials with enzyme-like activities, termed as nanozymes, have found wide applications in various fields. It has been a long-term aim to rationally design and synthesize highly active nanozymes and thus to further improve their application performance. Guided by the nanoconfinement effect, we confine cytochrome c (Cyt c) within a mesoporous metal-organic framework (MOF), PCN-222 nanoparticle (NP), forming a protein/MOF hybrid nanozyme, termed as Cyt c@PCN-222 NP. The confined Cyt c exhibits around 3-4-fold higher peroxidase-like activity than free Cyt c. Due to the increase in the activity of Cyt c, the Cyt c@PCN-222 NPs exhibit a quite low limit of detection (≈0.13 μM) towards H2 O2 . Sonication-induced H2 O2 formation in water by using a lab-quipped ultrasonic cleaner can be sensitively probed, which suggests that H2 O2 -sensitive materials should be carefully handled during the utilization of ultrasonic equipment. We speculate that this nanoconfinement strategy can broaden our synthetic methodology for the rational design of nanozymes.
Collapse
Affiliation(s)
- Tong Li
- College of Engineering and Applied Sciences, Nanjing National Laboratory of Microstructures, Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing, Jiangsu, 210023, China
| | - Yuting Wang
- College of Engineering and Applied Sciences, Nanjing National Laboratory of Microstructures, Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing, Jiangsu, 210023, China
| | - Wanling Liu
- College of Engineering and Applied Sciences, Nanjing National Laboratory of Microstructures, Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing, Jiangsu, 210023, China
| | - Houguo Fei
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, Hubei, 430072, China
| | - Cunlan Guo
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, Hubei, 430072, China
| | - Hui Wei
- College of Engineering and Applied Sciences, Nanjing National Laboratory of Microstructures, Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing, Jiangsu, 210023, China.,State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing, Jiangsu, 210023, China
| |
Collapse
|
5
|
Chen X, Liao J, Lin Y, Zhang J, Zheng C. Nanozyme's catalytic activity at neutral pH: reaction substrates and application in sensing. Anal Bioanal Chem 2023:10.1007/s00216-023-04525-w. [PMID: 36633622 DOI: 10.1007/s00216-023-04525-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Revised: 01/01/2023] [Accepted: 01/04/2023] [Indexed: 01/13/2023]
Abstract
Nanozymes exhibit their great potential as alternatives to natural enzymes. In addition to catalytic activity, nanozymes also need to have biologically relevant catalytic reactions at physiological pH to fit in the definition of an enzyme and to achieve efficient analytical applications. Previous reviews in the nanozyme field mainly focused on the catalytic mechanisms, activity regulation, and types of catalytic reactions. In this paper, we discuss efforts made on the substrate-dependent catalytic activity of nanozymes at neutral pH. First, the discrepant catalytic activities for different substrates are compared, where the key differences are the characteristics of substrates and the adsorption of substrates by nanozymes at different pH. We then reviewed efforts to enhance reaction activity for model chromogenic substrates and strategies to engineer nanomaterials to accelerate reaction rates for other substrates at physiological pH. Finally, we also discussed methods to achieve efficient sensing applications at neutral pH using nanozymes. We believe that the nanozyme is catching up with enzymes rapidly in terms of reaction rates and reaction conditions. Designing nanozymes with specific catalysis for efficient sensing remains a challenge.
Collapse
Affiliation(s)
- Xueshan Chen
- Key Laboratory of Green Chemistry & Technology of MOE, College of Chemistry, Sichuan University, Chengdu, 610065, Sichuan, China
| | - Jing Liao
- Key Laboratory of Green Chemistry & Technology of MOE, College of Chemistry, Sichuan University, Chengdu, 610065, Sichuan, China.,College of Chemistry and Material Science, Sichuan Normal University, Chengdu, 610068, Sichuan, China
| | - Yao Lin
- West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, 610041, China
| | - Jinyi Zhang
- Key Laboratory of Green Chemistry & Technology of MOE, College of Chemistry, Sichuan University, Chengdu, 610065, Sichuan, China.
| | - Chengbin Zheng
- Key Laboratory of Green Chemistry & Technology of MOE, College of Chemistry, Sichuan University, Chengdu, 610065, Sichuan, China
| |
Collapse
|
6
|
Li Y, Sun J, Huang L, Liu S, Wang S, Zhang D, Zhu M, Wang J. Nanozyme-encoded luminescent detection for food safety analysis: An overview of mechanisms and recent applications. Compr Rev Food Sci Food Saf 2022; 21:5077-5108. [PMID: 36200572 DOI: 10.1111/1541-4337.13055] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Revised: 08/25/2022] [Accepted: 09/06/2022] [Indexed: 01/28/2023]
Abstract
With the rapid growth in global food production, delivery, and consumption, reformative food analytical techniques are required to satisfy the monitoring requirements of speed and high sensitivity. Nanozyme-encoded luminescent detections (NLDs) integrating nanozyme-based rapid detections with luminescent output signals have emerged as powerful methods for food safety monitoring, not only because of their preeminent performance in analysis, such as rapid, facile, low background signal, and ultrasensitive, but also due to their strong attractiveness for future sensing research. However, the lack of a full understanding of the fundamentals of NLDs for food safety detection technologies limits their further application. In this review, a systematic overview of the mechanisms of NLDs and their applications in the food industry is summarized, which covers the nanozyme-mimicking types and their luminescent signal generation mechanisms, as well as their applications in monitoring common foodborne contaminants. As demonstrated by previous studies, NLDs are bridging the gap to practical-oriented food analytical technologies and various opportunities to improve their food analytical performance to be considered in the future are proposed.
Collapse
Affiliation(s)
- Yuechun Li
- College of Food Science and Engineering, Northwest A&F University, Yangling, China
| | - Jing Sun
- Qinghai Key Laboratory of Qinghai-Tibet Plateau Biological Resources, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, China
| | - Lunjie Huang
- School of Food Science and Engineering, South China University of Technology, Guangzhou, China
| | - Sijie Liu
- College of Food Science and Engineering, Northwest A&F University, Yangling, China
| | - Shaochi Wang
- College of Food Science and Engineering, Northwest A&F University, Yangling, China
| | - Daohong Zhang
- College of Food Science and Engineering, Northwest A&F University, Yangling, China
| | - Mingqiang Zhu
- College of Mechanical and Electronic Engineering, Northwest A&F University, Yangling, China
| | - Jianlong Wang
- College of Food Science and Engineering, Northwest A&F University, Yangling, China
| |
Collapse
|
7
|
Liu L, Lai Y, Cao J, Peng Y, Tian T, Fu W. Exploring the Antibacterial and Biosensing Applications of Peroxidase-Mimetic Ni 0.1Cu 0.9S Nanoflower. BIOSENSORS 2022; 12:874. [PMID: 36291011 PMCID: PMC9599305 DOI: 10.3390/bios12100874] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 10/10/2022] [Accepted: 10/12/2022] [Indexed: 06/16/2023]
Abstract
Nanozymes, as artificial enzymes with the biological action of natural enzymes, have enormous potential in the fields of disease diagnosis, bacteriostasis, biosensing, etc. In this work, the Ni0.1Cu0.9S nanoflower was successfully synthesized through a one-step hydrothermal method. A combined strategy of Ni doping and morphology design was employed to adjust its electronic structure and active sites, endowing the Ni0.1Cu0.9S nanoflower with excellent peroxidase-like activity. Therefore, it can catalyze the decomposition of H2O2 to generate •OH with higher antibacterial activity, establishing a broad-spectrum antibacterial system based on the Ni0.1Cu0.9S nanoflower against E. coli and S. aureus, which avoids the harm of a high concentration of H2O2. Additionally, the colorless substrate TMB can be catalytically oxidized into blue ox-TMB via •OH. As a result, a colorimetric technique with rapid and accurate detection of ascorbic acid (AA) by the unaided eye was designed, in view of the specific inhibition effect towards the oxidation of TMB. This detection platform has a wide linear range (10~800 μM) with a low limit of detection (0.84 μM) and exhibits a satisfactory selectivity toward the detection of AA. This study sheds new light on the application of copper-containing nanozymes in the fields of biomedicine and bioassay.
Collapse
Affiliation(s)
- Li Liu
- Chongqing Key Laboratory of Green Synthesis and Applications, College of Chemistry, Chongqing Normal University, Chongqing 401331, China
| | - Yayu Lai
- The Department of General Practice, The 958th Hospital of Chinese People’s Liberation Army, Chongqing 400000, China
| | - Jinming Cao
- Chongqing Key Laboratory of Green Synthesis and Applications, College of Chemistry, Chongqing Normal University, Chongqing 401331, China
| | - Yu Peng
- Chongqing Key Laboratory of Green Synthesis and Applications, College of Chemistry, Chongqing Normal University, Chongqing 401331, China
| | - Tian Tian
- Chongqing Key Laboratory of Green Synthesis and Applications, College of Chemistry, Chongqing Normal University, Chongqing 401331, China
| | - Wensheng Fu
- Chongqing Key Laboratory of Green Synthesis and Applications, College of Chemistry, Chongqing Normal University, Chongqing 401331, China
| |
Collapse
|
8
|
Yin B, Qian C, Wan X, Muhtasim Fuad Sohan A, Lin X. Tape integrated self-designed microfluidic chip for point-of-care immunoassays simultaneous detection of disease biomarkers with tunable detection range. Biosens Bioelectron 2022; 212:114429. [DOI: 10.1016/j.bios.2022.114429] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 05/19/2022] [Accepted: 05/24/2022] [Indexed: 01/04/2023]
|
9
|
Sun L, Li C, Yan Y, Yu Y, Zhao H, Zhou Z, Wang F, Feng Y. Engineering DNA/Fe-N-C single-atom nanozymes interface for colorimetric biosensing of cancer cells. Anal Chim Acta 2021; 1180:338856. [PMID: 34538322 DOI: 10.1016/j.aca.2021.338856] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2021] [Revised: 07/11/2021] [Accepted: 07/13/2021] [Indexed: 10/20/2022]
Abstract
Single atom nanozymes (SAzymes) represent the state-of-the-art technology in nanomaterial-based catalysis, which have attracted attentions in catalysis, cancer treatment, disinfection and biosensing fields. However, numerous SAzymes suffered from low aqueous dispersion and without recognition capacity, which impeded their applications in bioanalysis. Herein, we engineered DNA onto SAzymes to obtain the DNA/SAzymes conjugates, which significantly improved the aqueous dispersion and recognition ability of SAzymes. We synthesized iron SAzymes (Fe-N-C SAzymes) as the catalytic nanomaterials, and investigated the interactions between Fe-N-C SAzymes and DNA. We compared A15, T15 and C15 adsorption of Fe-N-C SAzymes in HEPES containing 2 mM MgCl2. We found that 50 μg mL-1 Fe-N-C SAzymes produced nearly 100% A15 adsorption, 90% T15 adsorption and only 69% C15 adsorption, indicating that adenine and thymine had higher adsorption affinity on Fe-N-C SAzymes. More importantly, DNA modification did not affect the peroxidase-like activity of Fe-N-C SAzymes and the bioactivity of the adsorbed DNA. Taking the advantage of the diblock DNA with one DNA sequence (adenine) binding to Fe-N-C SAzymes and the other DNA sequence (i.e., aptamer) binding to cancer cells, we designed Apt/Fe-N-C SAzymes for colorimetric detection of cancer cells, which offered new insights for the use of SAzymes in biomedicine.
Collapse
Affiliation(s)
- Liping Sun
- School of Materials Science and Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Chao Li
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Yong Yan
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Yue Yu
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Hao Zhao
- School of Materials Science and Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Zijue Zhou
- School of Materials Science and Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Feng Wang
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009, China.
| | - Yi Feng
- School of Materials Science and Engineering, Hefei University of Technology, Hefei, 230009, China.
| |
Collapse
|
10
|
Ni P, Liu S, Wang B, Chen C, Jiang Y, Zhang C, Chen J, Lu Y. Light-responsive Au nanoclusters with oxidase-like activity for fluorescent detection of total antioxidant capacity. JOURNAL OF HAZARDOUS MATERIALS 2021; 411:125106. [PMID: 33485225 DOI: 10.1016/j.jhazmat.2021.125106] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 01/03/2021] [Accepted: 01/08/2021] [Indexed: 06/12/2023]
Abstract
A fluorescent assay for total antioxidant capacity (TAC) detection based on the light-responsive oxidase-like activity of bovine serum albumin-stabilized gold nanoclusters (BSA-AuNCs) has been developed. Thiamine (TH) as the peroxidase substrate usually works at alkaline conditions and thus limits its practical applications. Here, by utilization the light-responsive oxidase-like activity of BSA-AuNCs, TH is oxidized to fluorescent thiochrome under neutral condition in two minutes due to the single oxygen generated by BSA-AuNCs upon light irradiation. After the introduction of antioxidants into the BSA-AuNCs-TH system, the formation of thiochrome is inhibited resulting in the fluorescence decrease. On the basis of the above facts, BSA-AuNCs-TH-based assay has been fabricated and applied successfully to detect antioxidants and the TAC of vitamin C tablets as well as some commercial fruit juice with satisfied results. This work may provide novel insights into developing light-responsive nanozymes-based fluorescent assays.
Collapse
Affiliation(s)
- Pengjuan Ni
- School of Materials Science and Engineering, University of Jinan, Jinan 250022, PR China
| | - Siyuan Liu
- Shandong Provincial Key Laboratory of Molecular Engineering, School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, PR China
| | - Bo Wang
- School of Materials Science and Engineering, University of Jinan, Jinan 250022, PR China
| | - Chuanxia Chen
- School of Materials Science and Engineering, University of Jinan, Jinan 250022, PR China
| | - Yuanyuan Jiang
- School of Materials Science and Engineering, University of Jinan, Jinan 250022, PR China
| | - Chenghui Zhang
- School of Materials Science and Engineering, University of Jinan, Jinan 250022, PR China
| | - Jianbin Chen
- Shandong Provincial Key Laboratory of Molecular Engineering, School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, PR China
| | - Yizhong Lu
- School of Materials Science and Engineering, University of Jinan, Jinan 250022, PR China.
| |
Collapse
|
11
|
Mohammadinejad A, Rizi KS, Oskuee RK, Aryan E, Meshkat Z, Ulianas A, Rezayi M. Development of detection methods for the diagnosis and analysis of highly toxic metal phosphides: A comprehensive and critical review. Biotechnol Appl Biochem 2021; 69:1121-1147. [PMID: 33987922 DOI: 10.1002/bab.2190] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Accepted: 05/03/2021] [Indexed: 01/29/2023]
Abstract
Metal phosphides, especially aluminum phosphide, and phosphine (PH3 ) are widely used as insecticides and rodenticides for protection of grains during process of storage and transportation. The main reason of poisoning with this compound is related to the conscious ingestion of salts or accidental inhalation of PH3 . So the early and accurate diagnosis of poisoning can significantly help to the effective clinical treatment or recognition of death cause. PH3 is somewhat unstable due to reaction with oxygen or hemoglobin leading to formation of oxy-acids phosphorous. Here, we critically reviewed the literature introducing the quantitative and qualitative methods for the detection of metal phosphides, PH3 , and its products. This study obviously demonstrates that during past years, different diagnosis methods have been remarkably progressed. Head-space gas chromatography and confirmatory colorimetric methods have been as the most popular techniques. Also, the gas sensors are a promising method that must be more progressed.
Collapse
Affiliation(s)
- Arash Mohammadinejad
- Department of Medical Biotechnology and Nanotechnology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Kobra Salimiyan Rizi
- Antimicrobial Resistance Research Center, Department of Medical Bacteriology and Virology, Qaem University Hospital, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Reza Kazemi Oskuee
- Department of Medical Biotechnology and Nanotechnology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Ehsan Aryan
- Antimicrobial Resistance Research Center, Department of Medical Bacteriology and Virology, Qaem University Hospital, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Zahra Meshkat
- Antimicrobial Resistance Research Center, Department of Medical Bacteriology and Virology, Qaem University Hospital, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Alizar Ulianas
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Negeri Padang. J1. Prof. Hamka, Air Tawar Padang, Indonesia
| | - Majid Rezayi
- Department of Medical Biotechnology and Nanotechnology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.,Medical Toxicology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
12
|
Liu Y, Zhang D, Ding J, Hayat K, Yang X, Zhan X, Zhang D, Lu Y, Zhou P. A Facile Aptasensor for Instantaneous Determination of Cadmium Ions Based on Fluorescence Amplification Effect of MOPS on FAM-Labeled Aptamer. BIOSENSORS-BASEL 2021; 11:bios11050133. [PMID: 33922514 PMCID: PMC8145427 DOI: 10.3390/bios11050133] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 04/07/2021] [Accepted: 04/18/2021] [Indexed: 12/12/2022]
Abstract
Analytical performance and efficiency are two pivotal issues for developing an on-site and real-time aptasensor for cadmium (Cd2+) determination. However, suffering from redundant preparations, fabrications, and incubation, most of them fail to well satisfy the requirements. In this work, we found that fluorescence intensity of 6-carboxyfluorescein(FAM)-labeled aptamer (FAM-aptamer) could be remarkably amplified by 3-(N-morpholino)propane sulfonic acid (MOPS), then fell proportionally as Cd2+ concentration introduced. Importantly, the fluorescence variation occurred immediately after addition of Cd2+, and would keep stable for at least 60 min. Based on the discovery, a facile and ultra-efficient aptasensor for Cd2+ determination was successfully developed. The sensing mechanism was confirmed by fluorescence pattern, circular dichroism (CD) and intermolecular interaction related to pKa. Under the optimal conditions, Cd2+ could be determined rapidly from 5 to 4000 ng mL-1. The detection limit (1.92 ng mL-1) was also lower than the concentration limit for drinking water set by WHO and EPA (3 and 5 ng mL-1, respectively). More than a widely used buffer, MOPS was firstly revealed to have fluorescence amplification effect on FAM-aptamer upon a given context. Despite being sensitive to pH, this simple, high-performance and ultra-efficient aptasensor would be practical for on-site and real-time monitoring of Cd2+.
Collapse
Affiliation(s)
- Yang Liu
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China; (Y.L.); (D.Z.); (J.D.); (K.H.); (X.Y.); (X.Z.); (D.Z.); (Y.L.)
- Key Laboratory of Urban Agriculture, Ministry of Agriculture and Rural Affairs, Shanghai 200240, China
- Bor S. Luh Food Safety Research Center, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Dongwei Zhang
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China; (Y.L.); (D.Z.); (J.D.); (K.H.); (X.Y.); (X.Z.); (D.Z.); (Y.L.)
- Key Laboratory of Urban Agriculture, Ministry of Agriculture and Rural Affairs, Shanghai 200240, China
- Bor S. Luh Food Safety Research Center, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Jina Ding
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China; (Y.L.); (D.Z.); (J.D.); (K.H.); (X.Y.); (X.Z.); (D.Z.); (Y.L.)
- Key Laboratory of Urban Agriculture, Ministry of Agriculture and Rural Affairs, Shanghai 200240, China
- Bor S. Luh Food Safety Research Center, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Kashif Hayat
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China; (Y.L.); (D.Z.); (J.D.); (K.H.); (X.Y.); (X.Z.); (D.Z.); (Y.L.)
- Key Laboratory of Urban Agriculture, Ministry of Agriculture and Rural Affairs, Shanghai 200240, China
- Bor S. Luh Food Safety Research Center, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xijia Yang
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China; (Y.L.); (D.Z.); (J.D.); (K.H.); (X.Y.); (X.Z.); (D.Z.); (Y.L.)
- Key Laboratory of Urban Agriculture, Ministry of Agriculture and Rural Affairs, Shanghai 200240, China
- Bor S. Luh Food Safety Research Center, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xuejia Zhan
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China; (Y.L.); (D.Z.); (J.D.); (K.H.); (X.Y.); (X.Z.); (D.Z.); (Y.L.)
- Key Laboratory of Urban Agriculture, Ministry of Agriculture and Rural Affairs, Shanghai 200240, China
- Bor S. Luh Food Safety Research Center, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Dan Zhang
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China; (Y.L.); (D.Z.); (J.D.); (K.H.); (X.Y.); (X.Z.); (D.Z.); (Y.L.)
- Key Laboratory of Urban Agriculture, Ministry of Agriculture and Rural Affairs, Shanghai 200240, China
- Bor S. Luh Food Safety Research Center, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yitong Lu
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China; (Y.L.); (D.Z.); (J.D.); (K.H.); (X.Y.); (X.Z.); (D.Z.); (Y.L.)
- Key Laboratory of Urban Agriculture, Ministry of Agriculture and Rural Affairs, Shanghai 200240, China
- Bor S. Luh Food Safety Research Center, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Pei Zhou
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China; (Y.L.); (D.Z.); (J.D.); (K.H.); (X.Y.); (X.Z.); (D.Z.); (Y.L.)
- Key Laboratory of Urban Agriculture, Ministry of Agriculture and Rural Affairs, Shanghai 200240, China
- Bor S. Luh Food Safety Research Center, Shanghai Jiao Tong University, Shanghai 200240, China
- Correspondence: ; Tel.: +86-21-34205762
| |
Collapse
|
13
|
Abdillah A, Sonawane PM, Kim D, Mametov D, Shimodaira S, Park Y, Churchill DG. Discussions of Fluorescence in Selenium Chemistry: Recently Reported Probes, Particles, and a Clearer Biological Knowledge. Molecules 2021; 26:692. [PMID: 33525729 PMCID: PMC7866183 DOI: 10.3390/molecules26030692] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 01/21/2021] [Accepted: 01/22/2021] [Indexed: 12/15/2022] Open
Abstract
In this review from literature appearing over about the past 5 years, we focus on selected selenide reports and related chemistry; we aimed for a digestible, relevant, review intended to be usefully interconnected within the realm of fluorescence and selenium chemistry. Tellurium is mentioned where relevant. Topics include selenium in physics and surfaces, nanoscience, sensing and fluorescence, quantum dots and nanoparticles, Au and oxide nanoparticles quantum dot based, coatings and catalyst poisons, thin film, and aspects of solar energy conversion. Chemosensing is covered, whether small molecule or nanoparticle based, relating to metal ion analytes, H2S, as well as analyte sulfane (biothiols-including glutathione). We cover recent reports of probing and fluorescence when they deal with redox biology aspects. Selenium in therapeutics, medicinal chemistry and skeleton cores is covered. Selenium serves as a constituent for some small molecule sensors and probes. Typically, the selenium is part of the reactive, or active site of the probe; in other cases, it is featured as the analyte, either as a reduced or oxidized form of selenium. Free radicals and ROS are also mentioned; aggregation strategies are treated in some places. Also, the relationship between reduced selenium and oxidized selenium is developed.
Collapse
Affiliation(s)
- Ariq Abdillah
- Molecular Logic Gate Laboratory, Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea; (A.A.); (P.M.S.); (D.K.); (D.M.); (S.S.); (Y.P.)
| | - Prasad M. Sonawane
- Molecular Logic Gate Laboratory, Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea; (A.A.); (P.M.S.); (D.K.); (D.M.); (S.S.); (Y.P.)
| | - Donghyeon Kim
- Molecular Logic Gate Laboratory, Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea; (A.A.); (P.M.S.); (D.K.); (D.M.); (S.S.); (Y.P.)
| | - Dooronbek Mametov
- Molecular Logic Gate Laboratory, Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea; (A.A.); (P.M.S.); (D.K.); (D.M.); (S.S.); (Y.P.)
| | - Shingo Shimodaira
- Molecular Logic Gate Laboratory, Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea; (A.A.); (P.M.S.); (D.K.); (D.M.); (S.S.); (Y.P.)
| | - Yunseon Park
- Molecular Logic Gate Laboratory, Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea; (A.A.); (P.M.S.); (D.K.); (D.M.); (S.S.); (Y.P.)
| | - David G. Churchill
- Molecular Logic Gate Laboratory, Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea; (A.A.); (P.M.S.); (D.K.); (D.M.); (S.S.); (Y.P.)
- Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon 34141, Korea
- KAIST Institute for Health Science and Technology (KIHST) (Therapeutic Bioengineering), Daejeon 34141, Korea
| |
Collapse
|
14
|
Preparing Selective Nanozymes by Molecular Imprinting. Methods Mol Biol 2021; 2359:223-232. [PMID: 34410673 DOI: 10.1007/978-1-0716-1629-1_19] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Recently, many nanomaterials such as Fe3O4, CeO2, and gold nanoparticles have been reported to have enzyme-like activities and they are called nanozymes. Although these nanozymes have oxidase or peroxidase-like activities, they can catalyze the oxidation of many substrates and thus lack the specificity expected for enzymes. The selectivity of nanozymes can be significantly enhanced up to 100-fold by coating them with a molecularly imprinted polymer (MIP) layer. Since MIP creates specific binding pockets for the imprinted substrate, the imprinted molecules can be enriched, selectively access the catalytic core, and be oxidized, while other substrates are blocked from accessing the nanozyme surface. In this chapter, the detailed protocol for the preparation of the MIP-coated Fe3O4 peroxidase-mimicking nanozymes is described. In addition, some procedures needing special attention are described in detail, which will facilitate the applications of MIP-coated nanozymes in analytical, biomedical, and environmental fields.
Collapse
|
15
|
Tian L, Feng H, Dai Z, Zhang R. Resorufin-based responsive probes for fluorescence and colorimetric analysis. J Mater Chem B 2020; 9:53-79. [PMID: 33226060 DOI: 10.1039/d0tb01628d] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The fluorescence imaging technique has attracted increasing attention in the detection of various biological molecules in situ and in real-time owing to its inherent advantages including high selectivity and sensitivity, outstanding spatiotemporal resolution and fast feedback. In the past few decades, a number of fluorescent probes have been developed for bioassays and imaging by exploiting different fluorophores. Among various fluorophores, resorufin exhibits a high fluorescence quantum yield, long excitation/emission wavelength and pronounced ability in both fluorescence and colorimetric analysis. This fluorophore has been widely utilized in the design of responsive probes specific for various bioactive species. In this review, we summarize the advances in the development of resorufin-based fluorescent probes for detecting various analytes, such as cations, anions, reactive (redox-active) sulfur species, small molecules and biological macromolecules. The chemical structures of probes, response mechanisms, detection limits and practical applications are investigated, which is followed by the discussion of recent challenges and future research perspectives. This review article is expected to promote the further development of resorufin-based responsive fluorescent probes and their biological applications.
Collapse
Affiliation(s)
- Lu Tian
- Key Laboratory of Functional Nanomaterials and Technology in Universities of Shandong, College of Chemistry and Chemical Engineering, Linyi University, Linyi 276005, P. R. China.
| | | | | | | |
Collapse
|
16
|
Chang Y, Gao S, Liu M, Liu J. Designing signal-on sensors by regulating nanozyme activity. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2020; 12:4708-4723. [PMID: 32990706 DOI: 10.1039/d0ay01625j] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Nanozymes are nanomaterials with enzyme-like activities. Compared to natural enzymes, nanozymes are more stable and cost-effective, and they have unique properties due to their nanoscale size and surface chemistry. In this review, we summarize 'signal-on' nanozyme-based sensors for detecting metal ions, anions, small molecules and proteins. Since protein-based enzymes are already highly active, they were used to detect their inhibitors, resulting in 'signal-off' sensors. On the other hand, for nanozymes, target molecules were detected either as a promotor of nanozyme activity or for its ability to selectively remove nanozyme inhibitors. In both cases, 'signal-on' detection was achieved. We classify the commonly used nanozymes based on their composition such as metal oxide, gold nanoparticles and other nanomaterials, most of which belong to the oxidase, peroxidase and catalase mimics. The nanozymes can catalyze the oxidation of colorless or non-fluorescent substrates to produce a visual or fluorescent signal. Based on this, this article presents some typical 'turn-on' and 'turn-off-on' sensors, and we critically review their design principles. At the end, further perspectives for the nanozyme-based sensors are outlined.
Collapse
Affiliation(s)
- Yangyang Chang
- School of Environmental Science and Technology, Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), Dalian University of Technology, Dalian 116024, China.
| | | | | | | |
Collapse
|
17
|
Kushalkar MP, Liu B, Liu J. Promoting DNA Adsorption by Acids and Polyvalent Cations: Beyond Charge Screening. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:11183-11195. [PMID: 32881531 DOI: 10.1021/acs.langmuir.0c02122] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Adsorbing DNA oligonucleotides onto nanoparticles is the first step in developing DNA-based biosensors, drug delivery systems, and smart materials. Since DNA is a polyanion, it is repelled by negatively charged nanoparticles, which constitute the majority of commonly used nanomaterials. Adding salt such as NaCl to screen charge repulsion is a standard method of promoting DNA adsorption. However, Na+ does not supply additional attractive forces. In addition, adding a high concentration of NaCl can cause the aggregation of nanomaterials. In this feature article, we mainly summarize the methods developed in our laboratory to promote DNA adsorption by lowering the pH and by adding polyvalent metal ions, especially transition-metal ions. Various materials including noble metals (gold, silver, and platinum), 2D materials (graphene oxide, MoS2, WS2, and MXene), polydopamine, and several metal oxides are discussed. In general, low pH can protonate DNA bases and nanoparticle surfaces, reducing charge repulsion and even leading to attraction, although DNA folding at low pH can sometimes be detrimental to adsorption. Polyvalent metal ions can bridge additional interactions to achieve otherwise impossible adsorption. On the basis of the current understanding, a few future research directions are proposed to further improve DNA adsorption.
Collapse
Affiliation(s)
- Mehal P Kushalkar
- Department of Chemistry, Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| | - Biwu Liu
- Department of Chemistry, Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| | - Juewen Liu
- Department of Chemistry, Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| |
Collapse
|
18
|
Yang Y, Wu W, Wang Z, Huang L, Ma X, Zhang Z, Xiang S. UiO‐66/GO Composites with Improved Electrochemical Properties for Effective Detection of Phosphite(P(III)) in Phosphate(P(V)) Buffer Solutions. ChemistrySelect 2020. [DOI: 10.1002/slct.202002594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Ying Yang
- Fujian Provincial Key Laboratory of Polymer Materials College of Chemistry and Materials Science, Fujian Normal University 32 Shangshan Road Fuzhou 350007 PR China
| | - Wangui Wu
- Fujian Provincial Key Laboratory of Polymer Materials College of Chemistry and Materials Science, Fujian Normal University 32 Shangshan Road Fuzhou 350007 PR China
| | - Ziyan Wang
- Fujian Provincial Key Laboratory of Polymer Materials College of Chemistry and Materials Science, Fujian Normal University 32 Shangshan Road Fuzhou 350007 PR China
| | - Limei Huang
- Fujian Provincial Key Laboratory of Polymer Materials College of Chemistry and Materials Science, Fujian Normal University 32 Shangshan Road Fuzhou 350007 PR China
| | - Xiuling Ma
- Fujian Provincial Key Laboratory of Polymer Materials College of Chemistry and Materials Science, Fujian Normal University 32 Shangshan Road Fuzhou 350007 PR China
| | - Zhangjing Zhang
- Fujian Provincial Key Laboratory of Polymer Materials College of Chemistry and Materials Science, Fujian Normal University 32 Shangshan Road Fuzhou 350007 PR China
- State Key Laboratory of Structural Chemistry Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou Fujian 350002 PR China
| | - Shengchang Xiang
- Fujian Provincial Key Laboratory of Polymer Materials College of Chemistry and Materials Science, Fujian Normal University 32 Shangshan Road Fuzhou 350007 PR China
- State Key Laboratory of Structural Chemistry Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou Fujian 350002 PR China
| |
Collapse
|
19
|
Enhancement of the Peroxidase-Like Activity of Iodine-Capped Gold Nanoparticles for the Colorimetric Detection of Biothiols. BIOSENSORS-BASEL 2020; 10:bios10090113. [PMID: 32882936 PMCID: PMC7558680 DOI: 10.3390/bios10090113] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 08/27/2020] [Accepted: 08/29/2020] [Indexed: 12/11/2022]
Abstract
A colorimetric assay was developed for the detection of biothiols, based on the peroxidase-like activity of iodine-capped gold nanoparticles (AuNPs). These AuNPs show a synergetic effect in the form of peroxidase-mimicking activity at the interface of AuNPs, while free AuNPs and iodine alone have weak catalytic properties. Thus, iodine-capped AuNPs possess good intrinsic enzymatic activity and trigger the oxidation of 3,3',5,5'-tetramethylbenzidine (TMB), leading to a change in color from colorless to yellow. When added to solution, biothiols, such as cysteine, strongly bind to the interface of AuNPs via gold-thiol bonds, inhibiting the catalytic activity of AuNPs, resulting in a decrease in oxidized TMB. Using this strategy, cysteine could be linearly determined, at a wide range of concentrations (0.5 to 20 μM), with a detection limit of 0.5 μM using UV-Vis spectroscopy. This method was applied for the detection of cysteine in diluted human urine.
Collapse
|
20
|
Tao X, Wang X, Liu B, Liu J. Conjugation of antibodies and aptamers on nanozymes for developing biosensors. Biosens Bioelectron 2020; 168:112537. [PMID: 32882473 DOI: 10.1016/j.bios.2020.112537] [Citation(s) in RCA: 94] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 08/11/2020] [Accepted: 08/21/2020] [Indexed: 02/06/2023]
Abstract
Nanozymes are engineered nanomaterials with enzyme-like activities. Over the past decade, impressive progresses on nanozymes in biosensing have been made due to their unique advantages of high stability, low cost, and easy modification compared to natural enzymes. For many biosensors, it is critical to conjugate nanozymes to affinity ligands such as antibodies and aptamers. Since different nanomaterials have different surface properties, conjugation methods need to be compatible with these properties. In addition, the effect of biomolecules on nanozyme activity needs to be considered. In this review, we first categorized nanozyme-based biosensors into four parts, respectively describing noncovalent and covalent modifications with antibodies and aptamers. Meanwhile, recent advances in antibody and aptamer labeled nanozyme biosensors are summarized, and the methods of their conjugation are further illustrated. Finally, conclusions and future perspectives for the development and application of nanozyme bioconjugates are discussed.
Collapse
Affiliation(s)
- Xiaoqi Tao
- College of Food Science, Southwest University, Chongqing, 400715, China; Department of Chemistry, Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, ON, N2L 3G1, Canada.
| | - Xin Wang
- College of Food Science, Southwest University, Chongqing, 400715, China
| | - Biwu Liu
- Department of Chemistry, Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, ON, N2L 3G1, Canada
| | - Juewen Liu
- Department of Chemistry, Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, ON, N2L 3G1, Canada.
| |
Collapse
|
21
|
Zhang J, Liu J. Nanozyme‐based luminescence detection. LUMINESCENCE 2020; 35:1185-1194. [DOI: 10.1002/bio.3893] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 05/19/2020] [Accepted: 06/02/2020] [Indexed: 12/24/2022]
Affiliation(s)
- Jinyi Zhang
- Department of Chemistry, Waterloo Institute for Nanotechnology University of Waterloo Waterloo Ontario Canada
| | - Juewen Liu
- Department of Chemistry, Waterloo Institute for Nanotechnology University of Waterloo Waterloo Ontario Canada
| |
Collapse
|
22
|
Zhao Y, Li H, Lopez A, Su H, Liu J. Promotion and Inhibition of the Oxidase‐Mimicking Activity of Nanoceria by Phosphate, Polyphosphate, and DNA. Chembiochem 2020; 21:2178-2186. [DOI: 10.1002/cbic.202000049] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 03/09/2020] [Indexed: 01/31/2023]
Affiliation(s)
- Yilin Zhao
- Beijing Key Laboratory of Bioprocess Beijing University of Chemical Technology (BUCT) 15 Bei Sanhuan East Road, ChaoYang District Beijing 100029 P. R. China
- Department of Chemistry, Waterloo Institute for Nanotechnology University of Waterloo Waterloo Ontario N2 L 3G1 Canada
| | - Haotian Li
- Beijing Key Laboratory of Bioprocess Beijing University of Chemical Technology (BUCT) 15 Bei Sanhuan East Road, ChaoYang District Beijing 100029 P. R. China
| | - Anand Lopez
- Department of Chemistry, Waterloo Institute for Nanotechnology University of Waterloo Waterloo Ontario N2 L 3G1 Canada
| | - Haijia Su
- Beijing Key Laboratory of Bioprocess Beijing University of Chemical Technology (BUCT) 15 Bei Sanhuan East Road, ChaoYang District Beijing 100029 P. R. China
| | - Juewen Liu
- Department of Chemistry, Waterloo Institute for Nanotechnology University of Waterloo Waterloo Ontario N2 L 3G1 Canada
| |
Collapse
|