1
|
Oliw EH. Thirty years with three-dimensional structures of lipoxygenases. Arch Biochem Biophys 2024; 752:109874. [PMID: 38145834 DOI: 10.1016/j.abb.2023.109874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 12/17/2023] [Accepted: 12/17/2023] [Indexed: 12/27/2023]
Abstract
The X-ray crystal structures of soybean lipoxygenase (LOX) and rabbit 15-LOX were reported in the 1990s. Subsequent 3D structures demonstrated a conserved U-like shape of the substrate cavities as reviewed here. The 8-LOX:arachidonic acid (AA) complex showed AA bound to the substrate cavity carboxylate-out with C10 at 3.4 Å from the iron metal center. A recent cryo-electron microscopy (EM) analysis of the 12-LOX:AA complex illustrated AA in the same position as in the 8-LOX:AA complex. The 15- and 12-LOX complexes with isoenzyme-specific inhibitors/substrate mimics confirmed the U-fold. 5-LOX oxidizes AA to leukotriene A4, the first step in biosynthesis of mediators of asthma. The X-ray structure showed that the entrance to the substrate cavity was closed to AA by Phe and Tyr residues of a partly unfolded α2-helix. Recent X-ray analysis revealed that soaking with inhibitors shifted the short α2-helix to a long and continuous, which opened the substrate cavity. The α2-helix also adopted two conformations in 15-LOX. 12-LOX dimers consisted of one closed and one open subunit with an elongated α2-helix. 13C-ENDOR-MD computations of the 9-MnLOX:linoleate complex showed carboxylate-out position with C11 placed 3.4 ± 0.1 Å from the catalytic water. 3D structures have provided a solid ground for future research.
Collapse
Affiliation(s)
- Ernst H Oliw
- Department of Pharmaceutical Biosciences, Uppsala University, Box 591, SE 751 24, Uppsala, Sweden.
| |
Collapse
|
2
|
Rudrapal M, Eltayeb WA, Rakshit G, El-Arabey AA, Khan J, Aldosari SM, Alshehri B, Abdalla M. Dual synergistic inhibition of COX and LOX by potential chemicals from Indian daily spices investigated through detailed computational studies. Sci Rep 2023; 13:8656. [PMID: 37244921 PMCID: PMC10224994 DOI: 10.1038/s41598-023-35161-0] [Citation(s) in RCA: 46] [Impact Index Per Article: 46.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 05/13/2023] [Indexed: 05/29/2023] Open
Abstract
Cyclooxygenase (COX) and Lipoxygenase (LOX) are essential enzymes for arachidonic acid (AA) to eicosanoids conversion. These AA-derived eicosanoids are essential for initiating immunological responses, causing inflammation, and resolving inflammation. Dual COX/5-LOX inhibitors are believed to be promising novel anti-inflammatory agents. They inhibit the synthesis of prostaglandins (PGs) and leukotrienes (LTs), but have no effect on lipoxin formation. This mechanism of combined inhibition circumvents certain limitations for selective COX-2 inhibitors and spares the gastrointestinal mucosa. Natural products, i.e. spice chemicals and herbs, offer an excellent opportunity for drug discovery. They have proven anti-inflammatory properties. However, the potential of a molecule to be a lead/ drug candidate can be much more enhanced if it has the property of inhibition in a dual mechanism. Synergistic activity is always a better option than the molecule's normal biological activity. Herein, we have explored the dual COX/5-LOX inhibition property of the three major potent phytoconsituents (curcumin, capsaicin, and gingerol) from Indian spices using in silico tools and biophysical techniques in a quest to identify their probable inhibitory role as anti-inflammatory agents. Results revealed the dual COX/5-LOX inhibitory potential of curcumin. Gingerol and capsaicin also revealed favorable results as dual COX/5-LOX inhibitors. Our results are substantiated by target similarity studies, molecular docking, molecular dynamics, energy calculations, DFT, and QSAR studies. In experimental inhibitory (in vitro) studies, curcumin exhibited the best dual inhibitory activities against COX-1/2 and 5-LOX enzymes. Capsaicin and gingerol also showed inhibitory potential against both COX and LOX enzymes. In view of the anti-inflammatory potential these spice chemicals, this research could pave the way for more scientific exploration in this area for drug discovery.
Collapse
Affiliation(s)
- Mithun Rudrapal
- Department of Pharmaceutical Sciences, School of Biotechnology and Pharmaceutical Sciences, Vignan's Foundation for Science, Technology & Research (Deemed to Be University), Guntur, 522213, India.
| | - Wafa Ali Eltayeb
- Biotechnology Department, Faculty of Science and Technology, Shendi University, Shendi, 414601, Sudan
| | - Gourav Rakshit
- Department of Pharmaceutical Sciences and Technology, Birla Institute of Technology, Ranchi, 835215, India
| | - Amr Ahmed El-Arabey
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Al-Azhar University, Cairo, 11651, Egypt
| | - Johra Khan
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Majmaah University, Al'Majmaah, 11952, Saudi Arabia.
- Health and Basic Sciences Research Center, Majmaah University, Al'Majmaah, 11952, Saudi Arabia.
| | - Sahar M Aldosari
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Majmaah University, Al'Majmaah, 11952, Saudi Arabia
- Health and Basic Sciences Research Center, Majmaah University, Al'Majmaah, 11952, Saudi Arabia
| | - Bader Alshehri
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Majmaah University, Al'Majmaah, 11952, Saudi Arabia
- Health and Basic Sciences Research Center, Majmaah University, Al'Majmaah, 11952, Saudi Arabia
| | - Mohnad Abdalla
- Pediatric Research Institute, Children's Hospital Affiliated to Shandong University, Jinan, 250022, People's Republic of China.
| |
Collapse
|
3
|
Shin KC, Lee J, Oh DK. Characterization of Arachidonate 5S-Lipoxygenase from Danio rerio with High Activity for the Production of 5S- and 7S-Hydroxy Polyunsaturated Fatty Acids. Appl Biochem Biotechnol 2023; 195:958-972. [PMID: 36251113 DOI: 10.1007/s12010-022-04150-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/28/2022] [Indexed: 01/24/2023]
Abstract
A recombinant putative lipoxygenase (LOX) from Danio rerio (zebrafish), ALOX3c protein with 6-histidine tag, was purified using affinity chromatography, with a specific activity of 17.2 U mg-1 for arachidonic acid (AA). The molecular mass of the native ALOX3c was 156 kDa composed of a 78-kDa dimer by gel-filtration chromatography. The product obtained from the conversion of AA was identified as 5S-hydroxyeicosatetraenoic acid (5S-HETE) by HPLC and LC-MS/MS analyses. The specific activity and catalytic efficiency of the LOX from D. rerio for polyunsaturated fatty acids (PUFAs) followed the order AA (17.2 U mg-1, 1.96 s-1 μM-1) > docosahexaenoic acid (DHA, 13.6 U mg-1, 0.91 s-1 μM-1) > eicosapentaenoic acid (EPA, 10.5 U mg-1, 0.65 s-1 μM-1) and these values for AA were the highest among the 5S-LOXs reported to date. Based on identified products and substrate specificity, the enzyme is an AA 5S-LOX. The enzyme exhibited the maximal activity at pH 8.0 and 20 °C with 0.1 mM Zn2+ in the presence of 10 mM cysteine. Under these reaction conditions, 6.88 U mL-1 D. rerio 5S-LOX converted 1.0 mM of AA, EPA, and DHA to 0.91 mM 5S-HETE, 0.72 mM 5S-hydroxyeicosapentaenoic acid (5S-HEPE), and 0.68 mM 7S-hydroxydocosahexaenoic acid (7S-HDHA) in 25, 30, and 25 min, corresponding to molar conversion rates of 91, 72, and 68% and productivities of 2.18, 1.44, and 1.63 mM h-1, respectively. To the best of our knowledge, this study is the first to describe the bioconversion into 5S-HETE, 5S-HEPE, and 7S-HDHA for the application of biotechnological production.
Collapse
Affiliation(s)
- Kyung-Chul Shin
- Department of Integrative Bioscience and Biotechnology, Konkuk University, Seoul, 05029, Republic of Korea
| | - Jin Lee
- Department of Bioscience and Biotechnology, Konkuk University, Seoul, 05029, Republic of Korea
| | - Deok-Kun Oh
- Department of Integrative Bioscience and Biotechnology, Konkuk University, Seoul, 05029, Republic of Korea. .,Department of Bioscience and Biotechnology, Konkuk University, Seoul, 05029, Republic of Korea.
| |
Collapse
|
4
|
Haeggström JZ, Newcomer ME. Structures of Leukotriene Biosynthetic Enzymes and Development of New Therapeutics. Annu Rev Pharmacol Toxicol 2023; 63:407-428. [PMID: 36130059 DOI: 10.1146/annurev-pharmtox-051921-085014] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Leukotrienes are potent immune-regulating lipid mediators with patho-genic roles in inflammatory and allergic diseases, particularly asthma. These autacoids also contribute to low-grade inflammation, a hallmark of cardiovascular, neurodegenerative, metabolic, and tumor diseases. Biosynthesis of leukotrienes involves release and oxidative metabolism of arachidonic acid and proceeds via a set of cytosolic and integral membrane enzymes that are typically expressed by cells of the innate immune system. In activated cells, these enzymes traffic and assemble at the endoplasmic and perinuclear membrane, together comprising a biosynthetic complex. Here we describe recent advances in our molecular understanding of the protein components of the leukotriene-synthesizing enzyme machinery and also briefly touch upon the leukotriene receptors. Moreover, we discuss emerging opportunities for pharmacological intervention and development of new therapeutics.
Collapse
Affiliation(s)
- Jesper Z Haeggström
- Department of Medical Biochemistry and Biophysics, Division of Chemistry 2, Karolinska Institutet, Stockholm, Sweden;
| | - Marcia E Newcomer
- Department of Biological Sciences, Louisiana State University, Baton Rouge, Louisiana, USA;
| |
Collapse
|
5
|
Gallegos EM, Reed TD, Mathes FA, Guevara NV, Neau DB, Huang W, Newcomer ME, Gilbert NC. Helical remodeling augments 5-lipoxygenase activity in the synthesis of pro-inflammatory mediators. J Biol Chem 2022; 298:102282. [PMID: 35863431 PMCID: PMC9418500 DOI: 10.1016/j.jbc.2022.102282] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 07/13/2022] [Accepted: 07/15/2022] [Indexed: 11/29/2022] Open
Abstract
The synthesis of pro-inflammatory leukotrienes implicated in asthma, allergic rhinitis, and atherosclerosis is initiated by the enzyme 5-lipoxygenase (5-LOX). The crystal structure of human Stable-5-LOX revealed a conformation where the catalytic iron was inaccessible to bulk solvent as two aromatic residues on a conserved helix-α2 (Hα2) plugged the substrate access portal. Whether 5-LOX can also adopt a more open conformation has not been resolved. Here, we present a new conformation of 5-LOX where Hα2 adopts an elongated conformation equivalent to that described in other animal lipoxygenase structures. Our observation of the sigmoidal kinetic behavior of 5-LOX, which is indicative of positive cooperativity, is consistent with a substrate-induced conformational change that shifts the ensemble of enzyme populations to favor the catalytically competent state. Strategic point mutations along Hα2 designed to unlock the closed conformation and elongate Hα2 resulted in improved kinetic parameters, altered limited-proteolysis data, and a drastic reduction in the length of the lag phase yielding the most active Stable-5-LOX to date. Structural predictions by AlphaFold2 of these variants statistically favor an elongated Hα2 and reinforce a model in which improved kinetic parameters correlate with a more readily adopted, open conformation. Taken together, these data provide valuable insights into the synthesis of leukotrienes.
Collapse
Affiliation(s)
- Eden M Gallegos
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA, USA
| | - Tanner D Reed
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA, USA
| | - Forge A Mathes
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA, USA
| | - Nelson V Guevara
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA, USA
| | - David B Neau
- Cornell University, Northeastern Collaborative Access Team, Argonne National Laboratory, Argonne, IL, USA
| | - Wei Huang
- Department of Pharmacology, Case Western Reserve University, Cleveland, OH, USA
| | - Marcia E Newcomer
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA, USA
| | - Nathaniel C Gilbert
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA, USA.
| |
Collapse
|
6
|
Meshram MA, Bhise UO, Makhal PN, Kaki VR. Synthetically-tailored and nature-derived dual COX-2/5-LOX inhibitors: Structural aspects and SAR. Eur J Med Chem 2021; 225:113804. [PMID: 34479036 DOI: 10.1016/j.ejmech.2021.113804] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 08/22/2021] [Accepted: 08/23/2021] [Indexed: 12/24/2022]
Abstract
Inflammation is a most complex pathological process that gives birth to different diseases. Different inflammatory mediators are released during an inflammation responsible for acute pain and chronic inflammatory diseases like cancer, asthma, rheumatoid arthritis, osteoarthritis, neurodegenerative diseases, metabolic and cardiovascular disorders. The arachidonic acid pathway, which results in the production of inflammatory mediators, provides several targets for anti-inflammatory intervention. The most popularly used medications for inflammation are non-steroidal anti-inflammatory agents (NSAIDs) but it has some limitations, in particular traditional NSAIDs which inhibit the COX pathway non-selectively, producing gastrointestinal side effects, and other adverse effects like stroke and renal failure. On the other hand, selective COX-2 inhibitors commonly known as 'coxibs' produce cardiovascular side effects. Frequent inhibition of either cyclooxygenase or lipoxygenase enzyme switches the metabolism of arachidonic acid from one to another which could lead to serious consequences. Therefore, a need to develop novel, effective and safe anti-inflammatory agents which can inhibit the release of both prostaglandins and leukotrienes from the respective cyclooxygenase and lipoxygenase pathways has emerged. This resulted in the discovery of new anti-inflammatory agents derived from natural and synthetic sources as dual COX-2/5-LOX inhibitors. To further contribute towards the discovery in this field, we have attempted to summarize structural features and pharmacological activities of heterocyclic scaffolds and natural products explored as dual COX-2/5-LOX inhibitors. We have emphasized the designing of the dual inhibitors inspired by the previously reported COX-2 and 5-LOX inhibitors. This outline could render us to identify the best pharmacophores catering to dual COX-2/5-LOX inhibitory activity while improving their efficiency as anti-inflammatory agents.
Collapse
Affiliation(s)
- Minakshi A Meshram
- Department of Chemical Sciences, National Institute of Pharmaceutical Education and Research, Hyderabad, 500037, India
| | - Utkarsha O Bhise
- Department of Chemical Sciences, National Institute of Pharmaceutical Education and Research, Hyderabad, 500037, India
| | - Priyanka N Makhal
- Department of Chemical Sciences, National Institute of Pharmaceutical Education and Research, Hyderabad, 500037, India
| | - Venkata Rao Kaki
- Department of Chemical Sciences, National Institute of Pharmaceutical Education and Research, Hyderabad, 500037, India.
| |
Collapse
|
7
|
Gilbert NC, Newcomer ME, Werz O. Untangling the web of 5-lipoxygenase-derived products from a molecular and structural perspective: The battle between pro- and anti-inflammatory lipid mediators. Biochem Pharmacol 2021; 193:114759. [PMID: 34487716 PMCID: PMC8865081 DOI: 10.1016/j.bcp.2021.114759] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 08/29/2021] [Accepted: 09/01/2021] [Indexed: 12/31/2022]
Abstract
Arachidonic acid (AA) is the precursor to leukotrienes (LT), potent mediators of the inflammatory response. In the 35 + years since cysteinyl-LTs were reported to mediate antigen-induced constriction of bronchi in tissue from asthma patients, numerous cellular responses evoked by the LTs, such as chemoattraction and G protein-coupled receptor (GPCR) activation, have been elucidated and revealed a potential for 5-lipoxygenase (5-LOX) as a promising drug target that goes beyond asthma. We describe herein early work identifying 5-LOX as the key enzyme that initiates LT biosynthesis and the discovery of its membrane-embedded helper protein required to execute the two-step reaction that transforms AA to the progenitor leukotriene A4 (LTA4). 5-LOX must traffic to the nuclear membrane to interact with its partner and undergo a conformational change so that AA can enter the active site. Additionally, the enzyme must retain the hydroperoxy-reaction intermediate for its final transformation to LTA4. Each of these steps provide a unique target for inhibition. Next, we describe the recent structures of GPCRs that recognize metabolites of the 5-LOX pathway and thus provide target alternatives. We also highlight the role of 5-LOX in the biosynthesis of anti-inflammatory lipid mediators (LM), the so-called specialized pro-resolving mediators (SPM). The involvement of 5-LOX in the biosynthesis of LM with opposing functions undoubtedly complicates the continuing search for 5-LOX inhibitors as therapeutic leads. Finally, we address the recent discovery of how some allosteric 5-LOX inhibitors promote oxygenation at the 12/15 carbon on AA to generate mediators that resolve, rather than promote, inflammation.
Collapse
Affiliation(s)
- Nathaniel C Gilbert
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA, USA.
| | - Marcia E Newcomer
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA, USA
| | - Oliver Werz
- Department of Pharmaceutical/Medicinal Chemistry, Institute of Pharmacy, Friedrich-Schiller-University Jena, 07743 Jena, Germany
| |
Collapse
|
8
|
Alzarea SI, Elmaidomy AH, Saber H, Musa A, Al-Sanea MM, Mostafa EM, Hendawy OM, Youssif KA, Alanazi AS, Alharbi M, Sayed AM, Abdelmohsen UR. Potential Anticancer Lipoxygenase Inhibitors from the Red Sea-Derived Brown Algae Sargassum cinereum: An In-Silico-Supported In-Vitro Study. Antibiotics (Basel) 2021; 10:416. [PMID: 33920213 PMCID: PMC8069941 DOI: 10.3390/antibiotics10040416] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Revised: 04/06/2021] [Accepted: 04/07/2021] [Indexed: 01/25/2023] Open
Abstract
LC-MS-assisted metabolomic profiling of the Red Sea-derived brown algae Sargassum cinereum "Sargassaceae" dereplicated eleven compounds 1-11. Further phytochemical investigation afforded two new aryl cresol 12-13, along with eight known compounds 14-21. Both new metabolites, along with 19, showed moderate in vitro antiproliferative activity against HepG2, MCF-7, and Caco-2. Pharmacophore-based virtual screening suggested both 5-LOX and 15-LOX as the most probable target linked to their observed antiproliferative activity. The in vitro enzyme assays revealed 12 and 13 were able to inhibit 5-LOX more preferentially than 15-LOX, while 19 showed a convergent inhibitory activity toward both enzymes. Further in-depth in silico investigation revealed the molecular interactions inside both enzymes' active sites and explained the varying inhibitory activity for 12 and 13 toward 5-LOX and 15-LOX.
Collapse
Affiliation(s)
- Sami I. Alzarea
- Department of Pharmacology, College of Pharmacy, Jouf University, Sakaka 72341, Aljouf, Saudi Arabia; (S.I.A.); (O.M.H.)
| | - Abeer H. Elmaidomy
- Department of Pharmacognosy, Faculty of Pharmacy, Beni-Suef University, Beni-Suef 62511, Egypt;
| | - Hani Saber
- Department of Botany and Microbiology, Faculty of Science, South Valley University, Qena 83523, Egypt;
| | - Arafa Musa
- Department of Pharmacognosy, College of Pharmacy, Jouf University, Sakaka 72341, Saudi Arabia; (A.M.); (E.M.M.)
- Department of Pharmacognosy, Faculty of Pharmacy, Al-Azhar University, Cairo 11371, Egypt
| | - Mohammad M. Al-Sanea
- Department of Pharmaceutical Chemistry, College of Pharmacy, Jouf University, Sakaka 72341, Saudi Arabia;
| | - Ehab M. Mostafa
- Department of Pharmacognosy, College of Pharmacy, Jouf University, Sakaka 72341, Saudi Arabia; (A.M.); (E.M.M.)
- Department of Pharmacognosy, Faculty of Pharmacy, Al-Azhar University, Cairo 11371, Egypt
| | - Omnia Magdy Hendawy
- Department of Pharmacology, College of Pharmacy, Jouf University, Sakaka 72341, Aljouf, Saudi Arabia; (S.I.A.); (O.M.H.)
- Clinical Pharmacology Department, Faculty of Medicine, Beni-Suef University, Beni-Suef 62511, Egypt
| | - Khayrya A. Youssif
- Department of Pharmacognosy, Faculty of Pharmacy, Modern University for Technology and Information, Cairo 11371, Egypt;
| | - Abdullah S. Alanazi
- Department of Clinical Pharmacy, College of Pharmacy, Jouf University, Sakaka 72341, Aljouf, Saudi Arabia;
- Health Sciences Research Unit, Jouf university, Sakaka 72341, Aljouf, Saudi Arabia
| | - Metab Alharbi
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia;
| | - Ahmed M. Sayed
- Department of Pharmacognosy, Faculty of Pharmacy, Nahda University, Beni-Suef 62513, Egypt
| | - Usama Ramadan Abdelmohsen
- Department of Pharmacognosy, Faculty of Pharmacy, Minia University, Minia 61519, Egypt
- Department of Pharmacognosy, Faculty of Pharmacy, Deraya University, 7 Universities Zone, New Minia 61111, Egypt
| |
Collapse
|
9
|
Lipoxygenase catalyzed metabolites derived from docosahexaenoic acid are promising antitumor agents against breast cancer. Sci Rep 2021; 11:410. [PMID: 33431978 PMCID: PMC7801725 DOI: 10.1038/s41598-020-79716-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 12/08/2020] [Indexed: 11/29/2022] Open
Abstract
Docosahexaenoic acid (DHA) is known to inhibit breast cancer in the rat. Here we investigated whether DHA itself or select metabolites can account for its antitumor action. We focused on metabolites derived from the lipoxygenase (LOX) pathway since we previously showed that they were superior anti-proliferating agents compared to DHA; 4-OXO-DHA was the most potent. A lipidomics approach detected several LOX-metabolites in plasma and the mammary gland in rats fed DHA; we also identified for the first time, 4-OXO-DHA in rat plasma. In a reporter assay, 4-OXO-DHA and 4-HDHA were more effective activators of PPARɣ than DHA. In breast cancer cell lines, 4-OXO-DHA induced PPARɣ and 15-hydroxyprostaglandin dehydrogenase (15-PGDH) but inhibited the activity of NF-κB and suppressed PI3K and mTOR signaling. Because of the structural characteristics of 4-OXO-DHA (Michael acceptor), not shared by any of the other hydroxylated-DHA, we used MS and showed that it can covalently modify the cysteine residue of NF-κB. We have also shown that the chemopreventive effect of DHA is associated with significant reduction of PGE2 levels, in both rat mammary tumors induced by MNU and non-involved mammary tissues. Collectively, our results indicate that 4-OXO-DHA is the metabolite of choice in future chemoprevention studies.
Collapse
|
10
|
New Zileuton-Hydroxycinnamic Acid Hybrids: Synthesis and Structure-Activity Relationship towards 5-Lipoxygenase Inhibition. Molecules 2020; 25:molecules25204686. [PMID: 33066378 PMCID: PMC7587396 DOI: 10.3390/molecules25204686] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Revised: 09/29/2020] [Accepted: 10/03/2020] [Indexed: 12/12/2022] Open
Abstract
A novel series of zileuton-hydroxycinnamic acid hybrids were synthesized and screened as 5-lipoxygenase (5-LO) inhibitors in stimulated HEK293 cells and polymorphonuclear leukocytes (PMNL). Zileuton’s (1) benzo[b]thiophene and hydroxyurea subunits combined with hydroxycinnamic acid esters’ ester linkage and phenolic acid moieties were investigated. Compound 28, bearing zileuton’s (1) benzo[b]thiophene and sinapic acid phenethyl ester’s (2) α,β-unsaturated phenolic acid moiety 28, was shown to be equipotent to zileuton (1), the only clinically approved 5-LO inhibitor, in stimulated HEK293 cells. Compound 28 was three times as active as zileuton (1) for the inhibition of 5-LO in PMNL. Compound 37, bearing the same sinapic acid (3,5-dimethoxy-4-hydroxy substitution) moiety as 28, combined with zileuton’s (1) hydroxyurea subunit was inactive. This result shows that the zileuton’s (1) benzo[b]thiophene moiety is essential for the inhibition of 5-LO product biosynthesis with our hydrids. Unlike zileuton (1), Compound 28 formed two π–π interactions with Phe177 and Phe421 as predicted when docked into 5-LO. Compound 28 was the only docked ligand that showed a π–π interaction with Phe177 which may play a part in product specificity as reported.
Collapse
|
11
|
Valdés E, González C, Díaz K, Vásquez-Martínez Y, Mascayano C, Torrent C, Cabezas F, Mejias S, Montoya M, Cortez-San Martín M, Muñoz MA, Joseph-Nathan P, Osorio M, Taborga L. Biological Properties and Absolute Configuration of Flavanones From Calceolaria thyrsiflora Graham. Front Pharmacol 2020; 11:1125. [PMID: 32848744 PMCID: PMC7399337 DOI: 10.3389/fphar.2020.01125] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Accepted: 07/10/2020] [Indexed: 01/10/2023] Open
Abstract
Flavanones (-)-(2S)-5,4'-dihydroxy-7-methoxyflavanone (1) and (-)-(2S)-5,3',4'-trihydroxy-7-methoxyflavanone (2) were isolated from the extracts of Calceolaria thyrsiflora Graham, an endemic perennial small shrub growing in the central zone of Chile. The absolute configuration of these compounds was resolved by optical rotation experiments and in silico calculations. Three analogs (3, 4, and 5) were synthesized to do structure-activity relationships with the biological assays studied. Biological tests revealed that only flavanone 2 exhibited a moderate inhibitory activity against the methicillin-resistant strain S. aureus MRSA 97-77 (MIC value of 50 µg/ml). In addition, flavanone 2 showed a potent, selective, and competitive inhibition of 5-hLOX, which supports the traditional use of this plant as an anti-inflammatory in diseases of the respiratory tract. Also, 2 exhibited cytotoxic and selective effects against B16-F10 (8.07 ± 1.61 µM) but 4.6- and 17-fold lesser activity than etoposide and taxol.
Collapse
Affiliation(s)
- Ernesto Valdés
- Laboratorio de Productos Naturales, Departamento de Química, Universidad Técnica Federico Santa María, Valparaíso, Chile
| | - César González
- Laboratorio de Productos Naturales, Departamento de Química, Universidad Técnica Federico Santa María, Valparaíso, Chile
| | - Katy Díaz
- Laboratorio de Productos Naturales, Departamento de Química, Universidad Técnica Federico Santa María, Valparaíso, Chile
| | - Yesseny Vásquez-Martínez
- Programa Centro de Investigaciones Biomédicas Aplicadas, Facultad de Ciencias Médicas, Escuela de Medicina, Universidad de Santiago de Chile, Santiago, Chile.,Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago, Chile
| | - Carolina Mascayano
- Departamento de Ciencias del Ambiente, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago, Chile
| | - Claudia Torrent
- Departamento de Ciencias del Ambiente, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago, Chile
| | - Francisco Cabezas
- Departamento de Ciencias del Ambiente, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago, Chile
| | - Sophia Mejias
- Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago, Chile
| | - Margarita Montoya
- Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago, Chile
| | - Marcelo Cortez-San Martín
- Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago, Chile
| | - Marcelo A Muñoz
- Facultad de Ciencias, Instituto de Ciencias Químicas, Universidad Austral de Chile, Valdivia, Chile
| | - Pedro Joseph-Nathan
- Departamento de Química, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Mexico City, Mexico
| | - Mauricio Osorio
- Laboratorio de Productos Naturales, Departamento de Química, Universidad Técnica Federico Santa María, Valparaíso, Chile
| | - Lautaro Taborga
- Laboratorio de Productos Naturales, Departamento de Química, Universidad Técnica Federico Santa María, Valparaíso, Chile
| |
Collapse
|
12
|
Offenbacher AR, Holman TR. Fatty Acid Allosteric Regulation of C-H Activation in Plant and Animal Lipoxygenases. Molecules 2020; 25:molecules25153374. [PMID: 32722330 PMCID: PMC7436259 DOI: 10.3390/molecules25153374] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 07/18/2020] [Accepted: 07/21/2020] [Indexed: 12/18/2022] Open
Abstract
Lipoxygenases (LOXs) catalyze the (per) oxidation of fatty acids that serve as important mediators for cell signaling and inflammation. These reactions are initiated by a C-H activation step that is allosterically regulated in plant and animal enzymes. LOXs from higher eukaryotes are equipped with an N-terminal PLAT (Polycystin-1, Lipoxygenase, Alpha-Toxin) domain that has been implicated to bind to small molecule allosteric effectors, which in turn modulate substrate specificity and the rate-limiting steps of catalysis. Herein, the kinetic and structural evidence that describes the allosteric regulation of plant and animal lipoxygenase chemistry by fatty acids and their derivatives are summarized.
Collapse
Affiliation(s)
- Adam R. Offenbacher
- Department of Chemistry, East Carolina University, Greenville, NC 27858, USA
- Correspondence:
| | - Theodore R. Holman
- Department of Chemistry and Biochemistry, University of California Santa Cruz, Santa Cruz, CA 95064, USA;
| |
Collapse
|
13
|
Hsu KC, HuangFu WC, Lin TE, Chao MW, Sung TY, Chen YY, Pan SL, Lee JC, Tzou SC, Sun CM, Yang JM. A site-moiety map and virtual screening approach for discovery of novel 5-LOX inhibitors. Sci Rep 2020; 10:10510. [PMID: 32601404 PMCID: PMC7324578 DOI: 10.1038/s41598-020-67420-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Accepted: 06/04/2020] [Indexed: 11/09/2022] Open
Abstract
The immune system works in conjunction with inflammation. Excessive inflammation underlies various human diseases, such as asthma, diabetes and heart disease. Previous studies found that 5-lipoxygenase (5-LOX) plays a crucial role in metabolizing arachidonic acid into inflammatory mediators and is a potential therapeutic target. In this study, we performed an in silico approach to establish a site-moiety map (SiMMap) to screen for new 5-LOX inhibitors. The map is composed of several anchors that contain key residues, moiety preferences, and their interaction types (i.e., electrostatic (E), hydrogen-bonding (H), and van der Waals (V) interactions) within the catalytic site. In total, we identified one EH, one H, and five V anchors, within the 5-LOX catalytic site. Based on the SiMMap, three 5-LOX inhibitors (YS1, YS2, and YS3) were identified. An enzyme-based assay validated inhibitory activity of YS1, YS2, and YS3 against 5-LOX with an IC50 value of 2.7, 4.2, and 5.3 μM, respectively. All three inhibitors significantly decrease LPS-induced TNF-α and IL-6 production, which suggests its potential use an anti-inflammatory agent. In addition, the identified 5-LOX inhibitors contain a novel scaffold. The discovery of these inhibitors presents an opportunity for designing specific anti-inflammatory drugs.
Collapse
Affiliation(s)
- Kai-Cheng Hsu
- Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
- Ph.D. Program for Cancer Molecular Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
- Ph.D. Program in Biotechnology Research and Development, College of Pharmacy, Taipei Medical University, Taipei, Taiwan
- Biomedical Commercialization Center, Taipei Medical University, Taipei, Taiwan
| | - Wei-Chun HuangFu
- Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
- Ph.D. Program for Cancer Molecular Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
- Ph.D. Program in Biotechnology Research and Development, College of Pharmacy, Taipei Medical University, Taipei, Taiwan
| | - Tony Eight Lin
- Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
- Ph.D. Program for Cancer Molecular Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
| | - Min-Wu Chao
- Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
| | - Tzu-Ying Sung
- Institute of Bioinformatics and Systems Biology, National Chiao Tung University, Hsinchu, Taiwan
| | - Yi-Ying Chen
- Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
| | - Shiow-Lin Pan
- Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
- Ph.D. Program for Cancer Molecular Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
- Ph.D. Program in Biotechnology Research and Development, College of Pharmacy, Taipei Medical University, Taipei, Taiwan
- Biomedical Commercialization Center, Taipei Medical University, Taipei, Taiwan
| | - Jih-Chin Lee
- Department of Otolaryngology-Head and Neck Surgery, Tri-Service General Hospital, Taipei, Taiwan
- Department of Otolaryngology-Head and Neck Surgery, National Defense Medical Center, Taipei, Taiwan
| | - Shey-Cherng Tzou
- Department of Biological Science and Technology, National Chiao Tung University, Hsinchu, Taiwan
| | - Chung-Ming Sun
- Department of Applied Chemistry, National Chiao Tung University, Hsinchu, Taiwan
| | - Jinn-Moon Yang
- Institute of Bioinformatics and Systems Biology, National Chiao Tung University, Hsinchu, Taiwan.
- Department of Biological Science and Technology, National Chiao Tung University, Hsinchu, Taiwan.
- Center for Intelligent Drug Systems and Smart Bio-Devices, National Chiao Tung University, Hsinchu, Taiwan.
| |
Collapse
|
14
|
Gilbert NC, Gerstmeier J, Schexnaydre EE, Börner F, Garscha U, Neau DB, Werz O, Newcomer ME. Structural and mechanistic insights into 5-lipoxygenase inhibition by natural products. Nat Chem Biol 2020; 16:783-790. [PMID: 32393899 DOI: 10.1038/s41589-020-0544-7] [Citation(s) in RCA: 123] [Impact Index Per Article: 30.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Accepted: 04/06/2020] [Indexed: 12/31/2022]
Abstract
Leukotrienes (LT) are lipid mediators of the inflammatory response that are linked to asthma and atherosclerosis. LT biosynthesis is initiated by 5-lipoxygenase (5-LOX) with the assistance of the substrate-binding 5-LOX-activating protein at the nuclear membrane. Here, we contrast the structural and functional consequences of the binding of two natural product inhibitors of 5-LOX. The redox-type inhibitor nordihydroguaiaretic acid (NDGA) is lodged in the 5-LOX active site, now fully exposed by disordering of the helix that caps it in the apo-enzyme. In contrast, the allosteric inhibitor 3-acetyl-11-keto-beta-boswellic acid (AKBA) from frankincense wedges between the membrane-binding and catalytic domains of 5-LOX, some 30 Å from the catalytic iron. While enzyme inhibition by NDGA is robust, AKBA promotes a shift in the regiospecificity, evident in human embryonic kidney 293 cells and in primary immune cells expressing 5-LOX. Our results suggest a new approach to isoform-specific 5-LOX inhibitor development through exploitation of an allosteric site in 5-LOX.
Collapse
Affiliation(s)
- Nathaniel C Gilbert
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA, USA
| | - Jana Gerstmeier
- Department of Pharmaceutical/Medicinal Chemistry, Institute of Pharmacy, Friedrich-Schiller-University, Jena, Germany
| | - Erin E Schexnaydre
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA, USA
| | - Friedemann Börner
- Department of Pharmaceutical/Medicinal Chemistry, Institute of Pharmacy, Friedrich-Schiller-University, Jena, Germany
| | - Ulrike Garscha
- Department of Pharmaceutical/Medicinal Chemistry, Institute of Pharmacy, Friedrich-Schiller-University, Jena, Germany
| | - David B Neau
- Cornell University, Northeastern Collaborative Access Team, Argonne National Laboratory, Argonne, IL, USA
| | - Oliver Werz
- Department of Pharmaceutical/Medicinal Chemistry, Institute of Pharmacy, Friedrich-Schiller-University, Jena, Germany.
| | - Marcia E Newcomer
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA, USA.
| |
Collapse
|
15
|
The role of propofol hydroxyl group in 5-lipoxygenase recognition. Biochem Biophys Res Commun 2020; 525:909-914. [PMID: 32171526 DOI: 10.1016/j.bbrc.2020.03.037] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Accepted: 03/06/2020] [Indexed: 12/29/2022]
Abstract
Propofol is a clinically important intravenous anesthetic. We previously reported that it directly inhibited 5-lipoxygenase (5-LOX), a key enzyme for leukotriene biosynthesis. Because the hydroxyl group in propofol (propofol 1-hydroxyl) is critical for its anesthetic effect, we examined if its presence would be inevitable for 5-lipoxygenase recognition. Fropofol is developed by substituting the hydroxy group in propofol with fluorine. We found that propofol 1-hydroxyl was important for 5-lipoxygenase recognition, but it was not absolutely necessary. Azi-fropofol bound to 5-LOX at one of the two propofol binding sites of 5-LOX (pocket around Phe-187), suggesting that propofol 1-hydroxyl is important for 5-LOX inhibition at the other propofol binding site (pocket around Val-431). Interestingly, 5-hydroperoxyeicosatetraenoic acid (5-HpETE) production was significantly increased by stimulation with calcium ionophore A23187 in HEK293 cells expressing 5-LOX, suggesting that the fropofol binding site is important for the conversion from 5-HpETE to leukotriene A4. We also indicated that propofol 1-hydroxyl might have contributed to interaction with wider targets among our body.
Collapse
|
16
|
Acetyl-11-keto-β-boswellic acid derivatives effects on 5-lipoxygenase: In silico viewpoint. J Mol Graph Model 2020; 94:107464. [DOI: 10.1016/j.jmgm.2019.107464] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2019] [Revised: 10/01/2019] [Accepted: 10/01/2019] [Indexed: 01/12/2023]
|
17
|
Selka A, Doiron JA, Lyons P, Dastous S, Chiasson A, Cormier M, Turcotte S, Surette ME, Touaibia M. Discovery of a novel 2,5-dihydroxycinnamic acid-based 5-lipoxygenase inhibitor that induces apoptosis and may impair autophagic flux in RCC4 renal cancer cells. Eur J Med Chem 2019; 179:347-357. [DOI: 10.1016/j.ejmech.2019.06.060] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Revised: 06/21/2019] [Accepted: 06/21/2019] [Indexed: 12/14/2022]
|
18
|
Mbarik M, Poirier SJ, Doiron J, Selka A, Barnett DA, Cormier M, Touaibia M, Surette ME. Phenolic acid phenethylesters and their corresponding ketones: Inhibition of 5-lipoxygenase and stability in human blood and HepaRG cells. Pharmacol Res Perspect 2019; 7:e00524. [PMID: 31523435 PMCID: PMC6743424 DOI: 10.1002/prp2.524] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Revised: 08/27/2019] [Accepted: 08/27/2019] [Indexed: 02/07/2023] Open
Abstract
5-lipoxygenase (5-LO) catalyzes the biosynthesis of leukotrienes, potent lipid mediators involved in inflammatory diseases, and both 5-LO and the leukotrienes are validated therapeutic targets. Caffeic acid phenethyl ester (CAPE) is an effective inhibitor of 5-LO and leukotriene biosynthesis but is susceptible to hydrolysis by esterases. In this study a number of CAPE analogues were synthesized with modifications to the caffeoyl moiety and the replacement of the ester linkage with a ketone. Several new molecules showed better inhibition of leukotriene biosynthesis than CAPE in isolated human neutrophils and in whole blood with IC50 values in the nanomolar (290-520 nmol/L) and low micromolar (1.0-2.3 µmol/L) ranges, respectively. Sinapic acid and 2,5-dihydroxy derivatives were more stable than CAPE in whole blood, and ketone analogues were degraded more slowly in HepaRG hepatocyte cultures than esters. All compounds underwent modification consistent with glucuronidation in HepaRG cultures as determined using LC-MS/MS analysis, though the modified sinapoyl ketone (10) retained 50% of its inhibitory activity after up to one hour of incubation. This study has identified at least one CAPE analogue, compound 10, that shows favorable properties that warrant further in vivo investigation as an antiinflammatory compound.
Collapse
Affiliation(s)
- Maroua Mbarik
- Department of Chemistry and BiochemistryUniversité de MonctonMonctonNBCanada
| | - Samuel J. Poirier
- Department of Chemistry and BiochemistryUniversité de MonctonMonctonNBCanada
| | - Jérémie Doiron
- Department of Chemistry and BiochemistryUniversité de MonctonMonctonNBCanada
| | - Ayyoub Selka
- Department of Chemistry and BiochemistryUniversité de MonctonMonctonNBCanada
| | | | - Marc Cormier
- Department of Chemistry and BiochemistryUniversité de MonctonMonctonNBCanada
| | - Mohamed Touaibia
- Department of Chemistry and BiochemistryUniversité de MonctonMonctonNBCanada
| | - Marc E. Surette
- Department of Chemistry and BiochemistryUniversité de MonctonMonctonNBCanada
| |
Collapse
|
19
|
Gly188Arg substitution eliminates substrate inhibition in arachidonate 11R-lipoxygenase. Biochem Biophys Res Commun 2019; 519:81-85. [PMID: 31477267 DOI: 10.1016/j.bbrc.2019.08.132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Accepted: 08/23/2019] [Indexed: 11/21/2022]
Abstract
Lipoxygenases (LOXs) are dioxygenases that catalyze the oxygenation of polyunsaturated fatty acids to hydroperoxyl derivates. These products are precursors for different lipid mediators which are associated with pathogenesis of various diseases such as asthma, atherosclerosis and cancer. Several LOXs suffer from substrate inhibition, a potential regulatory mechanism, yet it is unclear what is the cause of this phenomenon. One such enzyme is the coral 11R-LOX which displays a significant decrease in turnover rate at arachidonic acid concentrations above 30 μM. In this report, site-directed mutagenesis and inhibition assays were employed to shed light on the mechanism of substrate inhibition in 11R-LOX. We found that introduction of a positive charge to the active site entrance with Gly188Arg substitution completely eliminates the slow-down at higher substrate concentrations. Inhibition of 11R-LOX by its catalysis product, 11(R)-hydroperoxyeicosatetraenoic acid, suggests an uncompetitive mechanism. We reason that substrate inhibition in 11R-LOX is due to additional fatty acid binding by the enzyme:substrate complex at an allosteric site situated in the very vicinity of the active site entrance.
Collapse
|
20
|
Sankaralingam M, Lee YM, Karmalkar DG, Nam W, Fukuzumi S. A Mononuclear Non-heme Manganese(III)–Aqua Complex as a New Active Oxidant in Hydrogen Atom Transfer Reactions. J Am Chem Soc 2018; 140:12695-12699. [DOI: 10.1021/jacs.8b07772] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
| | - Yong-Min Lee
- Department of Chemistry and Nano Science, Ewha Womans University, Seoul 03760, Korea
| | - Deepika G. Karmalkar
- Department of Chemistry and Nano Science, Ewha Womans University, Seoul 03760, Korea
| | - Wonwoo Nam
- Department of Chemistry and Nano Science, Ewha Womans University, Seoul 03760, Korea
| | - Shunichi Fukuzumi
- Department of Chemistry and Nano Science, Ewha Womans University, Seoul 03760, Korea
- Faculty of Science and Engineering, Meijo University, Nagoya, Aichi 468-8502, Japan
| |
Collapse
|
21
|
Abstract
Leukotrienes are powerful immune-regulating lipid mediators with established pathogenic roles in inflammatory allergic diseases of the respiratory tract - in particular, asthma and hay fever. More recent work indicates that these lipids also contribute to low-grade inflammation, a hallmark of cardiovascular, neurodegenerative, and metabolic diseases as well as cancer. Biosynthesis of leukotrienes involves oxidative metabolism of arachidonic acid and proceeds via a set of soluble and membrane enzymes that are primarily expressed by cells of myeloid origin. In activated immune cells, these enzymes assemble at the endoplasmic and perinuclear membrane, constituting a biosynthetic complex. This Review describes recent advances in our understanding of the components of the leukotriene-synthesizing enzyme machinery, emerging opportunities for pharmacological intervention, and the development of new medicines exploiting both antiinflammatory and pro-resolving mechanisms.
Collapse
|
22
|
Oliveira TLS, Morais SRD, Sá SD, Oliveira MGD, Florentino IF, Silva DMD, Carvalho VV, Silva VBD, Vaz BG, Sabino JR, Costa EA, Paula JRD. Antinociceptive, anti-inflammatory and anxiolytic-like effects of the ethanolic extract, fractions and Hibalactone isolated from Hydrocotyle umbellata L. (Acariçoba) – Araliaceae. Biomed Pharmacother 2017; 95:837-846. [DOI: 10.1016/j.biopha.2017.08.140] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Revised: 08/28/2017] [Accepted: 08/30/2017] [Indexed: 12/30/2022] Open
|
23
|
Wan M, Tang X, Stsiapanava A, Haeggström JZ. Biosynthesis of leukotriene B 4. Semin Immunol 2017; 33:3-15. [DOI: 10.1016/j.smim.2017.07.012] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Revised: 05/29/2017] [Accepted: 07/31/2017] [Indexed: 12/31/2022]
|
24
|
Okuno T, Koutsogiannaki S, Ohba M, Chamberlain M, Bu W, Lin FY, Eckenhoff RG, Yokomizo T, Yuki K. Intravenous anesthetic propofol binds to 5-lipoxygenase and attenuates leukotriene B 4 production. FASEB J 2017; 31:1584-1594. [PMID: 28069825 DOI: 10.1096/fj.201601095r] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Accepted: 12/19/2016] [Indexed: 11/11/2022]
Abstract
Propofol is an intravenous anesthetic that produces its anesthetic effect, largely via the GABAA receptor in the CNS, and also reduces the N-formyl-methionyl-leucyl-phenylalanine (fMLP)-induced neutrophil respiratory burst. Because fMLP-stimulated neutrophils produce leukotriene (LT)B4, we examined the effect of propofol on LTB4 production in vivo and in vitro Cecal ligation and puncture surgery was performed in mice, with or without exposure to propofol. Propofol attenuated the production of 5-lipoxygenase (5-LOX)-related arachidonic acid (AA) derivatives in the peritoneal fluid. Also, in the in vitro experiments on fMLP-stimulated neutrophils and 5-LOX-transfected human embryonic kidney cells, propofol attenuated the production of 5-LOX-related AA derivatives. Based on these results, we hypothesized that propofol would directly affect 5-LOX function. Using meta-azi-propofol (AziPm), we photolabeled stable 5-LOX protein, which had been used to solve the X-ray crystallographic structure of 5-LOX, and examined the binding site(s) of propofol on 5-LOX. Two propofol binding pockets were identified near the active site of 5-LOX. Alanine scanning mutagenesis was performed for the residues of 5-LOX in the vicinity of propofol, and we evaluated the functional role of these pockets in LTB4 production. We demonstrated that these pockets were functionally important for 5-LOX activity. These two pockets can be used to explore a novel 5-LOX inhibitor in the future.-Okuno, T., Koutsogiannaki, S., Ohba, M., Chamberlain, M., Bu, W., Lin, F.-Y., Eckenhoff, R. G., Yokomizo T., Yuki, K. Intravenous anesthetic propofol binds to 5-lipoxygenase and attenuates leukotriene B4 production.
Collapse
Affiliation(s)
- Toshiaki Okuno
- Department of Biochemistry, Juntendo University School of Medicine, Tokyo Japan
| | - Sophia Koutsogiannaki
- Division of Cardiac Anesthesia, Department of Anesthesiology, Perioperative and Pain Medicine, Boston Children's Hospital, Boston Massachusetts, USA.,Department of Anesthesia, Harvard Medical School, Boston, Massachusetts, USA
| | - Mai Ohba
- Department of Biochemistry, Juntendo University School of Medicine, Tokyo Japan
| | - Matthew Chamberlain
- Division of Cardiac Anesthesia, Department of Anesthesiology, Perioperative and Pain Medicine, Boston Children's Hospital, Boston Massachusetts, USA
| | - Weiming Bu
- Department of Anesthesiology and Critical Care, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA; and
| | - Fu-Yan Lin
- Immune Disease Institute, Boston Children's Hospital, Boston, Massachusetts, USA
| | - Roderic G Eckenhoff
- Department of Anesthesiology and Critical Care, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA; and
| | - Takehiko Yokomizo
- Department of Biochemistry, Juntendo University School of Medicine, Tokyo Japan
| | - Koichi Yuki
- Division of Cardiac Anesthesia, Department of Anesthesiology, Perioperative and Pain Medicine, Boston Children's Hospital, Boston Massachusetts, USA; .,Department of Anesthesia, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
25
|
Gerstmeier J, Newcomer ME, Dennhardt S, Romp E, Fischer J, Werz O, Garscha U. 5-Lipoxygenase-activating protein rescues activity of 5-lipoxygenase mutations that delay nuclear membrane association and disrupt product formation. FASEB J 2016; 30:1892-900. [PMID: 26842853 DOI: 10.1096/fj.201500210r] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2015] [Accepted: 01/17/2016] [Indexed: 12/26/2022]
Abstract
Leukotrienes (LTs) are proinflammatory lipid mediators formed from arachidonic acid in a 2-step reaction catalyzed by 5-lipoxygenase (5-LOX) requiring the formation of 5-HPETE [5(S)-hydroperoxy-6-trans-8,11,14-cis-eicosatetraenoic acid] and its subsequent transformation to LTA4 5-LOX is thought to receive arachidonic acid from the nuclear membrane-embedded 5-LOX-activating protein (FLAP). The crystal structure of 5-LOX revealed an active site concealed by F177 and Y181 (FY cork). We examined the influence of the FY cork on 5-LOX activity and membrane binding in HEK293 cells in the absence and presence of FLAP. Uncapping the 5-LOX active site by mutation of F177 and/or Y181 to alanine (5-LOX-F177A, 5-LOX-Y181A, 5-LOX-F177/Y181A) resulted in delayed and diminished 5-LOX membrane association in A23187-stimulated cells. For 5-LOX-F177A and 5-LOX-F177/Y181A, formation of 5-LOX products was dramatically reduced relative to 5-LOX-wild type (wt). Strikingly, coexpression of FLAP in A23187-activated HEK293 cells effectively restored formation of 5-H(p)ETE (5-hydroxy- and 5-peroxy-6-trans-8,11,14-cis-eicosatetraenoic acid) by these same 5-LOX mutants (≈60-70% 5-LOX-wt levels) but not of LTA4 hydrolysis products. Yet 5-LOX-Y181A generated 5-H(p)ETE at levels comparable to 5-LOX-wt but reduced LTA4 hydrolysis products. Coexpression of FLAP partially restored LTA4 hydrolysis product formation by 5-LOX-Y181A. Together, the data suggest that the concealed FY cork impacts membrane association and that FLAP may help shield an uncapped active site.-Gerstmeier, J., Newcomer, M. E., Dennhardt, S., Romp, E., Fischer, J., Werz, O., Garscha, U. 5-Lipoxygenase-activating protein rescues activity of 5-lipoxygenase mutations that delay nuclear membrane association and disrupt product formation.
Collapse
Affiliation(s)
- Jana Gerstmeier
- Department of Pharmaceutical and Medicinal Chemistry, Institute of Pharmacy, Friedrich-Schiller-University Jena, Germany; and
| | - Marcia E Newcomer
- Department of Biological Sciences, Louisiana State University, Baton Rouge, Louisiana, USA
| | - Sophie Dennhardt
- Department of Pharmaceutical and Medicinal Chemistry, Institute of Pharmacy, Friedrich-Schiller-University Jena, Germany; and
| | - Erik Romp
- Department of Pharmaceutical and Medicinal Chemistry, Institute of Pharmacy, Friedrich-Schiller-University Jena, Germany; and
| | - Jana Fischer
- Department of Pharmaceutical and Medicinal Chemistry, Institute of Pharmacy, Friedrich-Schiller-University Jena, Germany; and
| | - Oliver Werz
- Department of Pharmaceutical and Medicinal Chemistry, Institute of Pharmacy, Friedrich-Schiller-University Jena, Germany; and
| | - Ulrike Garscha
- Department of Pharmaceutical and Medicinal Chemistry, Institute of Pharmacy, Friedrich-Schiller-University Jena, Germany; and
| |
Collapse
|
26
|
Saura P, Maréchal JD, Masgrau L, Lluch JM, González-Lafont À. Computational insight into the catalytic implication of head/tail-first orientation of arachidonic acid in human 5-lipoxygenase: consequences for the positional specificity of oxygenation. Phys Chem Chem Phys 2016; 18:23017-35. [DOI: 10.1039/c6cp03973a] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Using a multi-scale approach to search for the arachidonic acid binding modes that determine the catalytic specificity of human 5-LOX.
Collapse
Affiliation(s)
- Patricia Saura
- Departament de Química
- Universitat Autonòma de Barcelona
- 08193 Bellaterra
- Spain
- Institut de Biotecnologia i de Biomedicina (IBB)
| | | | - Laura Masgrau
- Institut de Biotecnologia i de Biomedicina (IBB)
- Universitat Autonòma de Barcelona
- 08193 Bellaterra
- Spain
| | - José M. Lluch
- Departament de Química
- Universitat Autonòma de Barcelona
- 08193 Bellaterra
- Spain
- Institut de Biotecnologia i de Biomedicina (IBB)
| | - Àngels González-Lafont
- Departament de Química
- Universitat Autonòma de Barcelona
- 08193 Bellaterra
- Spain
- Institut de Biotecnologia i de Biomedicina (IBB)
| |
Collapse
|