1
|
Denimal D. Antioxidant and Anti-Inflammatory Functions of High-Density Lipoprotein in Type 1 and Type 2 Diabetes. Antioxidants (Basel) 2023; 13:57. [PMID: 38247481 PMCID: PMC10812436 DOI: 10.3390/antiox13010057] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 12/24/2023] [Accepted: 12/27/2023] [Indexed: 01/23/2024] Open
Abstract
(1) Background: high-density lipoproteins (HDLs) exhibit antioxidant and anti-inflammatory properties that play an important role in preventing the development of atherosclerotic lesions and possibly also diabetes. In turn, both type 1 diabetes (T1D) and type 2 diabetes (T2D) are susceptible to having deleterious effects on these HDL functions. The objectives of the present review are to expound upon the antioxidant and anti-inflammatory functions of HDLs in both diabetes in the setting of atherosclerotic cardiovascular diseases and discuss the contributions of these HDL functions to the onset of diabetes. (2) Methods: this narrative review is based on the literature available from the PubMed database. (3) Results: several antioxidant functions of HDLs, such as paraoxonase-1 activity, are compromised in T2D, thereby facilitating the pro-atherogenic effects of oxidized low-density lipoproteins. In addition, HDLs exhibit diminished ability to inhibit pro-inflammatory pathways in the vessels of individuals with T2D. Although the literature is less extensive, recent evidence suggests defective antiatherogenic properties of HDL particles in T1D. Lastly, substantial evidence indicates that HDLs play a role in the onset of diabetes by modulating glucose metabolism. (4) Conclusions and perspectives: impaired HDL antioxidant and anti-inflammatory functions present intriguing targets for mitigating cardiovascular risk in individuals with diabetes. Further investigations are needed to clarify the influence of glycaemic control and nephropathy on HDL functionality in patients with T1D. Furthermore, exploring the effects on HDL functionality of novel antidiabetic drugs used in the management of T2D may provide intriguing insights for future research.
Collapse
Affiliation(s)
- Damien Denimal
- Unit 1231, Center for Translational and Molecular Medicine, University of Burgundy, 21000 Dijon, France;
- Department of Clinical Biochemistry, Dijon Bourgogne University Hospital, 21079 Dijon, France
| |
Collapse
|
2
|
Truong CD, Ton TT. The relation between coronary artery disease and newly diagnosed dysglycemia. Perfusion 2023; 38:1428-1435. [PMID: 35817752 DOI: 10.1177/02676591221113970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
INTRODUCTION There is a known association between hyperglycemia and the presence of coronary syndrome. The purpose of this work is to study risk factors and clinical manifestations of hyperglycemia in patients diagnosed with coronary artery disease. METHODS The study was conducted in 2018-2020 among 505 patients in Ho Chi Minh city, Vietnam. Based on the results of the glucose test at 0 and 120 min, the patients were divided into the groups: with normal glucose metabolism (control, 204), patients with impaired fasting glucose levels (175 patients, group 2), and patients with impaired glucose tolerance, including diabetes mellitus (126, group 3). Anthropometric measurements were performed, and the levels of hemoglobin HbA, glucose, lipids were measured. RESULTS In the group of patients with fasting hyperinsulinemia, all variables (body weight, body mass index, waist circumference, LAP, creatinine clearance) differed considerably as compared to the control group (p ≤ 0.0001). Decrease in tissue sensitivity to insulin is already present at normal levels of glucose metabolism. CONCLUSIONS The study found that diabetes mellitus and prediabetes are more typical for patients with metabolic syndrome and acute coronary syndrome. The results obtained will allow predicting the risk of developing coronary syndrome depending on the presence of diabetes mellitus or prediabetes.
Collapse
Affiliation(s)
- Cam Dinh Truong
- Cardiovascular Department, Military Hospital 175, Ho Chi Minh, Vietnam
| | - Tung Thanh Ton
- Emergency Department, Military Hospital 175, Ho Chi Minh, Vietnam
| |
Collapse
|
3
|
Zvintzou E, Xepapadaki E, Skroubis G, Mparnia V, Giannatou K, Benabdellah K, Kypreos KE. High-Density Lipoprotein in Metabolic Disorders and Beyond: An Exciting New World Full of Challenges and Opportunities. Pharmaceuticals (Basel) 2023; 16:855. [PMID: 37375802 DOI: 10.3390/ph16060855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 05/17/2023] [Accepted: 05/29/2023] [Indexed: 06/29/2023] Open
Abstract
High-density lipoprotein (HDL) is an enigmatic member of the plasma lipid and lipoprotein transport system, best known for its ability to promote the reverse cholesterol efflux and the unloading of excess cholesterol from peripheral tissues. More recently, data in experimental mice and humans suggest that HDL may play important novel roles in other physiological processes associated with various metabolic disorders. Important parameters in the HDL functions are its apolipoprotein and lipid content, further reinforcing the principle that HDL structure defines its functionality. Thus, based on current evidence, low levels of HDL-cholesterol (HDL-C) or dysfunctional HDL particles contribute to the development of metabolic diseases such as morbid obesity, type 2 diabetes mellitus, and nonalcoholic fatty liver disease. Interestingly, low levels of HDL-C and dysfunctional HDL particles are observed in patients with multiple myeloma and other types of cancer. Therefore, adjusting HDL-C levels within the optimal range and improving HDL particle functionality is expected to benefit such pathological conditions. The failure of previous clinical trials testing various HDL-C-raising pharmaceuticals does not preclude a significant role for HDL in the treatment of atherosclerosis and related metabolic disorders. Those trials were designed on the principle of "the more the better", ignoring the U-shape relationship between HDL-C levels and morbidity and mortality. Thus, many of these pharmaceuticals should be retested in appropriately designed clinical trials. Novel gene-editing-based pharmaceuticals aiming at altering the apolipoprotein composition of HDL are expected to revolutionize the treatment strategies, improving the functionality of dysfunctional HDL.
Collapse
Affiliation(s)
- Evangelia Zvintzou
- Department of Pharmacology, School of Medicine, University of Patras, Rio Achaias, 26500 Patras, Greece
| | - Eva Xepapadaki
- Department of Pharmacology, School of Medicine, University of Patras, Rio Achaias, 26500 Patras, Greece
| | - George Skroubis
- Morbid Obesity Unit, Department of Surgery, School of Medicine, University of Patras, Rio Achaias, 26500 Patras, Greece
| | - Victoria Mparnia
- Department of Pharmacology, School of Medicine, University of Patras, Rio Achaias, 26500 Patras, Greece
| | - Katerina Giannatou
- Department of Pharmacology, School of Medicine, University of Patras, Rio Achaias, 26500 Patras, Greece
| | - Karim Benabdellah
- Department of Genomic Medicine, Pfizer-University of Granada-Andalusian Regional Government Centre for Genomics and Oncological Research (GENYO), PTS, Avda. de la Ilustración 114, 18016 Granada, Spain
| | - Kyriakos E Kypreos
- Department of Pharmacology, School of Medicine, University of Patras, Rio Achaias, 26500 Patras, Greece
- Department of Life Sciences, School of Sciences, European University Cyprus, 2404 Nicosia, Cyprus
| |
Collapse
|
4
|
Meneri M, Abati E, Gagliardi D, Faravelli I, Parente V, Ratti A, Verde F, Ticozzi N, Comi GP, Ottoboni L, Corti S. Identification of Novel Biomarkers of Spinal Muscular Atrophy and Therapeutic Response by Proteomic and Metabolomic Profiling of Human Biological Fluid Samples. Biomedicines 2023; 11:1254. [PMID: 37238925 PMCID: PMC10215459 DOI: 10.3390/biomedicines11051254] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 04/16/2023] [Accepted: 04/20/2023] [Indexed: 05/28/2023] Open
Abstract
Spinal muscular atrophy (SMA) is a neuromuscular disease resulting from mutations or deletions in SMN1 that lead to progressive death of alpha motor neurons, ultimately leading to severe muscle weakness and atrophy, as well as premature death in the absence of treatment. Recent approval of SMN-increasing medications as SMA therapy has altered the natural course of the disease. Thus, accurate biomarkers are needed to predict SMA severity, prognosis, drug response, and overall treatment efficacy. This article reviews novel non-targeted omics strategies that could become useful clinical tools for patients with SMA. Proteomics and metabolomics can provide insights into molecular events underlying disease progression and treatment response. High-throughput omics data have shown that untreated SMA patients have different profiles than controls. In addition, patients who clinically improved after treatment have a different profile than those who did not. These results provide a glimpse on potential markers that could assist in identifying therapy responders, in tracing the course of the disease, and in predicting its outcome. These studies have been restricted by the limited number of patients, but the approaches are feasible and can unravel severity-specific neuro-proteomic and metabolic SMA signatures.
Collapse
Affiliation(s)
- Megi Meneri
- Dino Ferrari Centre, Department of Pathophysiology and Transplantation (DEPT), University of Milan, 20122 Milan, Italy
- Stroke Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy
| | - Elena Abati
- Dino Ferrari Centre, Department of Pathophysiology and Transplantation (DEPT), University of Milan, 20122 Milan, Italy
- Neurology Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy
| | - Delia Gagliardi
- Dino Ferrari Centre, Department of Pathophysiology and Transplantation (DEPT), University of Milan, 20122 Milan, Italy
- Neurology Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy
| | - Irene Faravelli
- Dino Ferrari Centre, Department of Pathophysiology and Transplantation (DEPT), University of Milan, 20122 Milan, Italy
- Neurology Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy
| | - Valeria Parente
- Neurology Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy
| | - Antonia Ratti
- Laboratory of Neuroscience, Department of Neurology, IRCCS Istituto Auxologico Italiano, 20095 Milan, Italy
- Department Medical Biotechnology and Translational Medicine, University of Milan, 20100 Milan, Italy
| | - Federico Verde
- Dino Ferrari Centre, Department of Pathophysiology and Transplantation (DEPT), University of Milan, 20122 Milan, Italy
- Laboratory of Neuroscience, Department of Neurology, IRCCS Istituto Auxologico Italiano, 20095 Milan, Italy
| | - Nicola Ticozzi
- Dino Ferrari Centre, Department of Pathophysiology and Transplantation (DEPT), University of Milan, 20122 Milan, Italy
- Laboratory of Neuroscience, Department of Neurology, IRCCS Istituto Auxologico Italiano, 20095 Milan, Italy
| | - Giacomo P. Comi
- Dino Ferrari Centre, Department of Pathophysiology and Transplantation (DEPT), University of Milan, 20122 Milan, Italy
- Neurology Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy
| | - Linda Ottoboni
- Dino Ferrari Centre, Department of Pathophysiology and Transplantation (DEPT), University of Milan, 20122 Milan, Italy
| | - Stefania Corti
- Dino Ferrari Centre, Department of Pathophysiology and Transplantation (DEPT), University of Milan, 20122 Milan, Italy
- Neuromuscular and Rare Diseases Unit, Department of Neuroscience, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy
| |
Collapse
|
5
|
Aranda-Lara L, Isaac-Olivé K, Ocampo-García B, Ferro-Flores G, González-Romero C, Mercado-López A, García-Marín R, Santos-Cuevas C, Estrada JA, Morales-Avila E. Engineered rHDL Nanoparticles as a Suitable Platform for Theranostic Applications. Molecules 2022; 27:7046. [PMID: 36296638 PMCID: PMC9610567 DOI: 10.3390/molecules27207046] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 10/12/2022] [Accepted: 10/14/2022] [Indexed: 08/27/2023] Open
Abstract
Reconstituted high-density lipoproteins (rHDLs) can transport and specifically release drugs and imaging agents, mediated by the Scavenger Receptor Type B1 (SR-B1) present in a wide variety of tumor cells, providing convenient platforms for developing theranostic systems. Usually, phospholipids or Apo-A1 lipoproteins on the particle surfaces are the motifs used to conjugate molecules for the multifunctional purposes of the rHDL nanoparticles. Cholesterol has been less addressed as a region to bind molecules or functional groups to the rHDL surface. To maximize the efficacy and improve the radiolabeling of rHDL theranostic systems, we synthesized compounds with bifunctional agents covalently linked to cholesterol. This strategy means that the radionuclide was bound to the surface, while the therapeutic agent was encapsulated in the lipophilic core. In this research, HYNIC-S-(CH2)3-S-Cholesterol and DOTA-benzene-p-SC-NH-(CH2)2-NH-Cholesterol derivatives were synthesized to prepare nanoparticles (NPs) of HYNIC-rHDL and DOTA-rHDL, which can subsequently be linked to radionuclides for SPECT/PET imaging or targeted radiotherapy. HYNIC is used to complexing 99mTc and DOTA for labeling molecules with 111, 113mIn, 67, 68Ga, 177Lu, 161Tb, 225Ac, and 64Cu, among others. In vitro studies showed that the NPs of HYNIC-rHDL and DOTA-rHDL maintain specific recognition by SR-B1 and the ability to internalize and release, in the cytosol of cancer cells, the molecules carried in their core. The biodistribution in mice showed a similar behavior between rHDL (without surface modification) and HYNIC-rHDL, while DOTA-rHDL exhibited a different biodistribution pattern due to the significant reduction in the lipophilicity of the modified cholesterol molecule. Both systems demonstrated characteristics for the development of suitable theranostic platforms for personalized cancer treatment.
Collapse
Affiliation(s)
- Liliana Aranda-Lara
- Faculty of Medicine, Universidad Autónoma del Estado de México, Toluca 50180, Estado de México, Mexico
| | - Keila Isaac-Olivé
- Faculty of Medicine, Universidad Autónoma del Estado de México, Toluca 50180, Estado de México, Mexico
| | - Blanca Ocampo-García
- Department of Radioactive Materials, Instituto Nacional de Investigaciones Nucleares, Ocoyoacac 52750, Estado de México, Mexico
| | - Guillermina Ferro-Flores
- Department of Radioactive Materials, Instituto Nacional de Investigaciones Nucleares, Ocoyoacac 52750, Estado de México, Mexico
| | - Carlos González-Romero
- Faculty of Chemistry, Universidad Autónoma del Estado de México, Toluca 50120, Estado de México, Mexico
| | - Alfredo Mercado-López
- Faculty of Chemistry, Universidad Autónoma del Estado de México, Toluca 50120, Estado de México, Mexico
| | - Rodrigo García-Marín
- Faculty of Chemistry, Universidad Autónoma del Estado de México, Toluca 50120, Estado de México, Mexico
| | - Clara Santos-Cuevas
- Department of Radioactive Materials, Instituto Nacional de Investigaciones Nucleares, Ocoyoacac 52750, Estado de México, Mexico
| | - José A. Estrada
- Faculty of Medicine, Universidad Autónoma del Estado de México, Toluca 50180, Estado de México, Mexico
| | - Enrique Morales-Avila
- Faculty of Chemistry, Universidad Autónoma del Estado de México, Toluca 50120, Estado de México, Mexico
| |
Collapse
|
6
|
Vyletelová V, Nováková M, Pašková Ľ. Alterations of HDL's to piHDL's Proteome in Patients with Chronic Inflammatory Diseases, and HDL-Targeted Therapies. Pharmaceuticals (Basel) 2022; 15:1278. [PMID: 36297390 PMCID: PMC9611871 DOI: 10.3390/ph15101278] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 10/03/2022] [Accepted: 10/14/2022] [Indexed: 09/10/2023] Open
Abstract
Chronic inflammatory diseases, such as rheumatoid arthritis, steatohepatitis, periodontitis, chronic kidney disease, and others are associated with an increased risk of atherosclerotic cardiovascular disease, which persists even after accounting for traditional cardiac risk factors. The common factor linking these diseases to accelerated atherosclerosis is chronic systemic low-grade inflammation triggering changes in lipoprotein structure and metabolism. HDL, an independent marker of cardiovascular risk, is a lipoprotein particle with numerous important anti-atherogenic properties. Besides the essential role in reverse cholesterol transport, HDL possesses antioxidative, anti-inflammatory, antiapoptotic, and antithrombotic properties. Inflammation and inflammation-associated pathologies can cause modifications in HDL's proteome and lipidome, transforming HDL from atheroprotective into a pro-atherosclerotic lipoprotein. Therefore, a simple increase in HDL concentration in patients with inflammatory diseases has not led to the desired anti-atherogenic outcome. In this review, the functions of individual protein components of HDL, rendering them either anti-inflammatory or pro-inflammatory are described in detail. Alterations of HDL proteome (such as replacing atheroprotective proteins by pro-inflammatory proteins, or posttranslational modifications) in patients with chronic inflammatory diseases and their impact on cardiovascular health are discussed. Finally, molecular, and clinical aspects of HDL-targeted therapies, including those used in therapeutical practice, drugs in clinical trials, and experimental drugs are comprehensively summarised.
Collapse
Affiliation(s)
| | | | - Ľudmila Pašková
- Department of Cell and Molecular Biology of Drugs, Faculty of Pharmacy, Comenius University, 83232 Bratislava, Slovakia
| |
Collapse
|
7
|
Benfrid S, Park K, Dellarole M, Voss JE, Tamietti C, Pehau‐Arnaudet G, Raynal B, Brûlé S, England P, Zhang X, Mikhailova A, Hasan M, Ungeheuer M, Petres S, Biering SB, Harris E, Sakuntabhai A, Buchy P, Duong V, Dussart P, Coulibaly F, Bontems F, Rey FA, Flamand M. Dengue virus NS1 protein conveys pro-inflammatory signals by docking onto high-density lipoproteins. EMBO Rep 2022; 23:e53600. [PMID: 35607830 PMCID: PMC10549233 DOI: 10.15252/embr.202153600] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Revised: 04/24/2022] [Accepted: 04/27/2022] [Indexed: 10/05/2023] Open
Abstract
The dengue virus nonstructural protein 1 (NS1) is a secreted virulence factor that modulates complement, activates immune cells and alters endothelial barriers. The molecular basis of these events remains incompletely understood. Here we describe a functional high affinity complex formed between NS1 and human high-density lipoproteins (HDL). Collapse of the soluble NS1 hexamer upon binding to the lipoprotein particle leads to the anchoring of amphipathic NS1 dimeric subunits into the HDL outer layer. The stable complex can be visualized by electron microscopy as a spherical HDL with rod-shaped NS1 dimers protruding from the surface. We further show that the assembly of NS1-HDL complexes triggers the production of pro-inflammatory cytokines in human primary macrophages while NS1 or HDL alone do not. Finally, we detect NS1 in complex with HDL and low-density lipoprotein (LDL) particles in the plasma of hospitalized dengue patients and observe NS1-apolipoprotein E-positive complexes accumulating overtime. The functional reprogramming of endogenous lipoprotein particles by NS1 as a means to exacerbate systemic inflammation during viral infection provides a new paradigm in dengue pathogenesis.
Collapse
Affiliation(s)
- Souheyla Benfrid
- Unité de Virologie StructuraleInstitut Pasteur and CNRS UMR3569ParisFrance
- Université Paris Descartes SorbonneParis CitéFrance
- Present address:
Laboratoire de Santé AnimaleANSES, INRA, ENVA, UMR 1161Université Paris‐EstMaisons‐AlfortFrance
| | - Kyu‐Ho Park
- Unité de Virologie StructuraleInstitut Pasteur and CNRS UMR3569ParisFrance
- Present address:
Applied Molecular VirologyInstitut Pasteur KoreaSeongnam‐siKorea
| | - Mariano Dellarole
- Unité de Virologie StructuraleInstitut Pasteur and CNRS UMR3569ParisFrance
- Present address:
Virus Biophysics LaboratoryBionanosciences Research Center (CIBION)National Scientific and Technical Research Council (CONICET)Ciudad Autónoma de Buenos AiresArgentina
| | - James E Voss
- Unité de Virologie StructuraleInstitut Pasteur and CNRS UMR3569ParisFrance
- Present address:
Department of Immunology and MicrobiologyThe Scripps Research InstituteLa JollaCAUSA
| | - Carole Tamietti
- Unité de Virologie StructuraleInstitut Pasteur and CNRS UMR3569ParisFrance
| | | | - Bertrand Raynal
- Molecular Biophysics FacilityCNRS UMR 3528Institut PasteurParisFrance
| | - Sébastien Brûlé
- Molecular Biophysics FacilityCNRS UMR 3528Institut PasteurParisFrance
| | - Patrick England
- Molecular Biophysics FacilityCNRS UMR 3528Institut PasteurParisFrance
| | - Xiaokang Zhang
- Unité de Virologie StructuraleInstitut Pasteur and CNRS UMR3569ParisFrance
- Present address:
Guangdong Provincial Key Laboratory of Brain Connectome and Behavior, CAS Key Laboratory of Brain Connectome and Manipulationthe Brain Cognition and Brain Disease Institute (BCBDI)Shenzhen Institutes of Advanced TechnologyChinese Academy of SciencesShenzhen‐Hong Kong Institute of Brain Science‐Shenzhen Fundamental Research InstitutionsShenzhenChina
| | - Anastassia Mikhailova
- HIV Inflammation et PersistanceInstitut PasteurParisFrance
- Present address:
Division of Molecular NeurobiologyDepartment of Medical Biochemistry and BiophysicsKarolinska InstituteStockholmSweden
| | - Milena Hasan
- Cytometry and Biomarkers Unit of Technology and ServiceCB UTechSParisFrance
| | | | - Stéphane Petres
- Production and Purification of Recombinant Proteins FacilityInstitut PasteurParisFrance
| | - Scott B Biering
- Division of Infectious Diseases and VaccinologySchool of Public HealthUniversity of CaliforniaBerkeleyCAUSA
| | - Eva Harris
- Division of Infectious Diseases and VaccinologySchool of Public HealthUniversity of CaliforniaBerkeleyCAUSA
| | | | - Philippe Buchy
- Virology UnitInstitut Pasteur du CambodgeInstitut Pasteur International NetworkPhnom PenhCambodia
- Present address:
GlaxoSmithKline Vaccines R&DSingaporeSingapore
| | - Veasna Duong
- Virology UnitInstitut Pasteur du CambodgeInstitut Pasteur International NetworkPhnom PenhCambodia
| | - Philippe Dussart
- Virology UnitInstitut Pasteur du CambodgeInstitut Pasteur International NetworkPhnom PenhCambodia
| | - Fasséli Coulibaly
- Department of Biochemistry and Molecular BiologyMonash UniversityClaytonVic.Australia
| | - François Bontems
- Unité de Virologie StructuraleInstitut Pasteur and CNRS UMR3569ParisFrance
- Département de Biologie et Chimie StructuralesInstitut de Chimie des Substances Naturelles, CNRS UPR2301Gif‐sur‐YvetteFrance
| | - Félix A Rey
- Unité de Virologie StructuraleInstitut Pasteur and CNRS UMR3569ParisFrance
| | - Marie Flamand
- Unité de Virologie StructuraleInstitut Pasteur and CNRS UMR3569ParisFrance
| |
Collapse
|
8
|
Leitner DF, William C, Faustin A, Askenazi M, Kanshin E, Snuderl M, McGuone D, Wisniewski T, Ueberheide B, Gould L, Devinsky O. Proteomic differences in hippocampus and cortex of sudden unexplained death in childhood. Acta Neuropathol 2022; 143:585-599. [PMID: 35333953 PMCID: PMC8953962 DOI: 10.1007/s00401-022-02414-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 03/18/2022] [Accepted: 03/19/2022] [Indexed: 11/01/2022]
Abstract
Sudden unexplained death in childhood (SUDC) is death of a child over 1 year of age that is unexplained after review of clinical history, circumstances of death, and complete autopsy with ancillary testing. Multiple etiologies may cause SUDC. SUDC and sudden unexpected death in epilepsy (SUDEP) share clinical and pathological features, suggesting some similarities in mechanism of death and possible abnormalities in hippocampus and cortex. To identify molecular signaling pathways, we performed label-free quantitative mass spectrometry on microdissected frontal cortex, hippocampal dentate gyrus (DG), and cornu ammonis (CA1-3) in SUDC (n = 19) and pediatric control cases (n = 19) with an explained cause of death. At a 5% false discovery rate (FDR), we found differential expression of 660 proteins in frontal cortex, 170 in DG, and 57 in CA1-3. Pathway analysis of altered proteins identified top signaling pathways associated with activated oxidative phosphorylation (p = 6.3 × 10-15, z = 4.08) and inhibited EIF2 signaling (p = 2.0 × 10-21, z = - 2.56) in frontal cortex, and activated acute phase response in DG (p = 8.5 × 10-6, z = 2.65) and CA1-3 (p = 4.7 × 10-6, z = 2.00). Weighted gene correlation network analysis (WGCNA) of clinical history indicated that SUDC-positive post-mortem virology (n = 4/17) had the most significant module in each brain region, with the top most significant associated with decreased mRNA metabolic processes (p = 2.8 × 10-5) in frontal cortex. Additional modules were associated with clinical history, including fever within 24 h of death (top: increased mitochondrial fission in DG, p = 1.8 × 10-3) and febrile seizure history (top: decreased small molecule metabolic processes in frontal cortex, p = 8.8 × 10-5) in all brain regions, neuropathological hippocampal findings in the DG (top: decreased focal adhesion, p = 1.9 × 10-3). Overall, cortical and hippocampal protein changes were present in SUDC cases and some correlated with clinical features. Our studies support that proteomic studies of SUDC cohorts can advance our understanding of the pathogenesis of these tragedies and may inform the development of preventive strategies.
Collapse
|
9
|
Ouweneel AB, Reiche ME, Snip OSC, Wever R, van der Wel EJ, Schaftenaar FH, Kauerova S, Lutgens E, Van Eck M, Hoekstra M. Apolipoprotein A1 deficiency in mice primes bone marrow stem cells for T cell lymphopoiesis. J Cell Sci 2022; 135:272619. [PMID: 34698355 PMCID: PMC8645231 DOI: 10.1242/jcs.258901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Accepted: 10/14/2021] [Indexed: 11/20/2022] Open
Abstract
The bone marrow has emerged as a potentially important target in cardiovascular disease as it generates all leukocytes involved in atherogenesis. In the current study, we evaluated whether a change in bone marrow functionality underlies the increased atherosclerosis susceptibility associated with high-density lipoprotein (HDL) deficiency. We found that HDL deficiency in mice due to the genetic lack of hepatocyte-derived apolipoprotein A1 (APOA1) was associated with an increase in the Lin−Sca-1+Kit+ (LSK) bone marrow stem cell population and lymphoid-primed multipotent progenitor numbers, which translated into a higher production and systemic flux of T cell subsets. In accordance with APOA1 deficiency-associated priming of stem cells to increase T lymphocyte production, atherogenic diet-fed low-density lipoprotein receptor knockout mice transplanted with bone marrow from APOA1-knockout mice displayed marked lymphocytosis as compared to wild-type bone marrow recipients. However, atherosclerotic lesion sizes and collagen contents were similar in the two groups of bone marrow recipients. In conclusion, systemic lack of APOA1 primes bone marrow stem cells for T cell lymphopoiesis. Our data provide novel evidence for a regulatory role of HDL in bone marrow functioning in normolipidemic mice. Summary: Changes in cholesterol metabolism, that is, in high-density lipoprotein levels, can significantly impact leukocyte numbers via modulating bone marrow functionality.
Collapse
Affiliation(s)
- Amber B Ouweneel
- Division of BioTherapeutics, Leiden Academic Centre for Drug Research, Leiden University, 2333CC Leiden, The Netherlands
| | - Myrthe E Reiche
- Department of Medical Biochemistry, Amsterdam Cardiovascular Sciences, Amsterdam University Medical Centers, University of Amsterdam, 1105AZ Amsterdam, The Netherlands
| | - Olga S C Snip
- Division of BioTherapeutics, Leiden Academic Centre for Drug Research, Leiden University, 2333CC Leiden, The Netherlands
| | - Robbert Wever
- Division of BioTherapeutics, Leiden Academic Centre for Drug Research, Leiden University, 2333CC Leiden, The Netherlands
| | - Ezra J van der Wel
- Division of BioTherapeutics, Leiden Academic Centre for Drug Research, Leiden University, 2333CC Leiden, The Netherlands
| | - Frank H Schaftenaar
- Division of BioTherapeutics, Leiden Academic Centre for Drug Research, Leiden University, 2333CC Leiden, The Netherlands
| | - Soňa Kauerova
- Laboratory for Atherosclerosis Research, Institute for Clinical and Experimental Medicine, 12111 Prague, Czech Republic
| | - Esther Lutgens
- Department of Medical Biochemistry, Amsterdam Cardiovascular Sciences, Amsterdam University Medical Centers, University of Amsterdam, 1105AZ Amsterdam, The Netherlands
| | - Miranda Van Eck
- Division of BioTherapeutics, Leiden Academic Centre for Drug Research, Leiden University, 2333CC Leiden, The Netherlands
| | - Menno Hoekstra
- Division of BioTherapeutics, Leiden Academic Centre for Drug Research, Leiden University, 2333CC Leiden, The Netherlands
| |
Collapse
|
10
|
Zvintzou E, Karampela DS, Vakka A, Xepapadaki E, Karavia EA, Hatziri A, Giannopoulou PC, Kypreos KE. High density lipoprotein in atherosclerosis and coronary heart disease: Where do we stand today? Vascul Pharmacol 2021; 141:106928. [PMID: 34695591 DOI: 10.1016/j.vph.2021.106928] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 09/28/2021] [Accepted: 10/18/2021] [Indexed: 01/23/2023]
Abstract
Epidemiological studies during the last five years suggest that a relation between high density lipoprotein cholesterol (HDL-C) levels and the risk for cardiovascular disease (CVD) does exist but follows rather a "U-shaped" curve with an optimal range of HDL-C concentration between 40 and 70 mg/dl for men and 50-70 mg/dl for women. Moreover, as research in the field of lipoproteins progresses it becomes increasingly apparent that HDL particles possess different attributes and depending on their structural and functional characteristics, they may be "antiatherogenic" or "proatherogenic". In light of this information, it is highly doubtful that the choice of experimental drugs and the design of respective clinical trials that put the HDL-C raising hypothesis at test, were the most suitable. Here, we compile the existing literature on HDL, providing a critical up-to-date view that focuses on key data from the biochemistry, epidemiology and pharmacology of HDL, including data from clinical trials. We also discuss the most up-to-date information on the contribution of HDL structure and function to the prevention of atherosclerosis. We conclude by summarizing important differences between mouse models and humans, that may explain why pharmacological successes in mice turn out to be failures in humans.
Collapse
Affiliation(s)
- Evangelia Zvintzou
- University of Patras, School of Medicine, Department of Pharmacology, Rio Achaias, TK 26500, Greece
| | | | - Aggeliki Vakka
- University of Patras, School of Medicine, Department of Pharmacology, Rio Achaias, TK 26500, Greece
| | - Eva Xepapadaki
- University of Patras, School of Medicine, Department of Pharmacology, Rio Achaias, TK 26500, Greece
| | - Eleni A Karavia
- University of Patras, School of Medicine, Department of Pharmacology, Rio Achaias, TK 26500, Greece
| | - Aikaterini Hatziri
- University of Patras, School of Medicine, Department of Pharmacology, Rio Achaias, TK 26500, Greece
| | - Panagiota C Giannopoulou
- University of Patras, School of Medicine, Department of Pharmacology, Rio Achaias, TK 26500, Greece
| | - Kyriakos E Kypreos
- University of Patras, School of Medicine, Department of Pharmacology, Rio Achaias, TK 26500, Greece; European University Cyprus, Department of Life Sciences, School of Sciences, Nicosia, Cyprus.
| |
Collapse
|
11
|
Xepapadaki E, Nikdima I, Sagiadinou EC, Zvintzou E, Kypreos KE. HDL and type 2 diabetes: the chicken or the egg? Diabetologia 2021; 64:1917-1926. [PMID: 34255113 DOI: 10.1007/s00125-021-05509-0] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 05/05/2021] [Indexed: 12/17/2022]
Abstract
HDL is a complex macromolecular cluster of various components, such as apolipoproteins, enzymes and lipids. Quality evidence from clinical and epidemiological studies led to the principle that HDL-cholesterol (HDL-C) levels are inversely correlated with the risk of CHD. Nevertheless, the failure of many cholesteryl ester transfer protein inhibitors to protect against CVD casts doubts on this principle and highlights the fact that HDL functionality, as dictated by its proteome and lipidome, also plays an important role in protecting against metabolic disorders. Recent data indicate that HDL-C levels and HDL particle functionality are correlated with the pathogenesis and prognosis of type 2 diabetes mellitus, a major risk factor for CVD. Hyperglycaemia leads to reduced HDL-C levels and deteriorated HDL functionality, via various alterations in HDL particles' proteome and lipidome. In turn, reduced HDL-C levels and impaired HDL functionality impact the performance of key organs related to glucose homeostasis, such as pancreas and skeletal muscles. Interestingly, different structural alterations in HDL correlate with distinct metabolic abnormalities, as indicated by recent data evaluating the role of apolipoprotein A1 and lecithin-cholesterol acyltransferase deficiency in glucose homeostasis. While it is becoming evident that not all HDL disturbances are causatively associated with the development and progression of type 2 diabetes, a bidirectional correlation between these two conditions exists, leading to a perpetual self-feeding cycle.
Collapse
Affiliation(s)
- Eva Xepapadaki
- Pharmacology Laboratory, Department of Medicine, School of Health Sciences, University of Patras, Rio Achaias, Greece
| | - Ioanna Nikdima
- Pharmacology Laboratory, Department of Medicine, School of Health Sciences, University of Patras, Rio Achaias, Greece
| | - Eleftheria C Sagiadinou
- Pharmacology Laboratory, Department of Medicine, School of Health Sciences, University of Patras, Rio Achaias, Greece
| | - Evangelia Zvintzou
- Pharmacology Laboratory, Department of Medicine, School of Health Sciences, University of Patras, Rio Achaias, Greece
| | - Kyriakos E Kypreos
- Pharmacology Laboratory, Department of Medicine, School of Health Sciences, University of Patras, Rio Achaias, Greece.
- Department of Life Sciences, School of Sciences, European University Cyprus, Nicosia, Cyprus.
| |
Collapse
|
12
|
Lazaris V, Hatziri A, Symeonidis A, Kypreos KE. The Lipoprotein Transport System in the Pathogenesis of Multiple Myeloma: Advances and Challenges. Front Oncol 2021; 11:638288. [PMID: 33842343 PMCID: PMC8032975 DOI: 10.3389/fonc.2021.638288] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Accepted: 02/10/2021] [Indexed: 01/02/2023] Open
Abstract
Multiple myeloma (MM) is an incurable neoplastic hematologic disorder characterized by malignant plasma cells, mainly in the bone marrow. MM is associated with multiple factors, such as lipid metabolism, obesity, and age-associated disease development. Although, the precise pathogenetic mechanisms remain unknown, abnormal lipid and lipoprotein levels have been reported in patients with MM. Interestingly, patients with higher APOA1 levels, the major apolipoprotein of high density lipoprotein (HDL), have better overall survival. The limited existing studies regarding serum lipoproteins in MM are inconclusive, and often contradictory. Nevertheless, it appears that deregulation of the lipoprotein transport system may facilitate the development of the disease. Here, we provide a critical review of the literature on the role of lipids and lipoproteins in MM pathophysiology. We also propose novel mechanisms, linking the development and progression of MM to the metabolism of blood lipoproteins. We anticipate that proteomic and lipidomic analyses of serum lipoproteins along with analyses of their functionality may improve our understanding and shed light on novel mechanistic aspects of MM pathophysiology.
Collapse
Affiliation(s)
- Vasileios Lazaris
- Pharmacology Laboratory, Department of Medicine, School of Health Sciences, University of Patras, Patras, Greece.,Hematology Clinic, Department of Medicine, School of Health Sciences, University of Patras, Patras, Greece
| | - Aikaterini Hatziri
- Pharmacology Laboratory, Department of Medicine, School of Health Sciences, University of Patras, Patras, Greece
| | - Argiris Symeonidis
- Hematology Clinic, Department of Medicine, School of Health Sciences, University of Patras, Patras, Greece
| | - Kyriakos E Kypreos
- Pharmacology Laboratory, Department of Medicine, School of Health Sciences, University of Patras, Patras, Greece.,Department of Life Sciences, School of Sciences, European University Cyprus, Nicosia, Cyprus
| |
Collapse
|
13
|
Ma Q, Cheng X, Hou X, Yang Z, Ma D, Wang Z. Bone Marrow Fat Measured by a Chemical Shift-Encoded Sequence (IDEAL-IQ) in Patients With and Without Metabolic Syndrome. J Magn Reson Imaging 2021; 54:146-153. [PMID: 33728737 DOI: 10.1002/jmri.27548] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 01/19/2021] [Accepted: 01/19/2021] [Indexed: 01/14/2023] Open
Abstract
BACKGROUND Metabolic syndrome increases the risk of chronic diseases such as cardiovascular disease and diabetes. Metabolic syndrome also has an impact on bone mineral density. However, the relationship between metabolic syndrome and bone marrow fat is unclear. PURPOSE To determine factors associated with bone marrow fat concentration in subjects with and without metabolic syndrome. STUDY TYPE Retrospective. POPULATION One hundred and one women with metabolic syndrome (31.0 years ±5.1) and 96 female living liver transplant donors (32.0 years ±3.7). Our institutional review board approved the study. Each subject signed written informed consent. FIELD STRENGTH/SEQUENCE 3.0 T MRI system and a commercially available chemical shift-encoded 3D sequence (Iterative Decomposition of water and fat with Echo asymmetry and Least Square Estimation). ASSESSMENT Proton density fat fraction (PDFF) in liver, vertebral body, and paraspinal muscle (erector spinae) were measured from a single acquisition by a 15-year-experience orthopedic radiologist. The factors associated with PDFF were acquired. STATISTICAL TESTS The analysis of covariance test, after adjustment for body mass index and age, was used to analyze the differences between metabolic syndrome and non-metabolic syndrome groups. A stepwise multiple regression analysis was used to determine which variables were independently associated with PDFF. RESULTS Mean vertebral PDFF and alanine aminotransferase (ALT) were significantly lower in donors than subjects with metabolic syndrome (both P < 0.05). Serum vitamin D concentration, ferritin, and high-density lipoprotein (HDL) cholesterol were significantly higher in donors than subjects with metabolic syndrome (all P < 0.05). Multiple regression analysis revealed antidiabetic medicine, higher serum vitamin D concentration, lower waist circumference, lower ferritin, lower HDL, absence of metabolic syndrome, and lower ALT were significantly associated with lower vertebral PDFF (all P < 0.05). DATA CONCLUSION Multiple factors affect bone marrow fat concentration in subjects with metabolic syndrome. Serum vitamin D concentration and antidiabetic medicine are associated with low bone marrow fat, whereas waist circumference, serum ferritin, metabolic syndrome, imbalanced lipid metabolism, and abnormal liver function are associated with high bone marrow fat. LEVEL OF EVIDENCE LEVEL 3 TECHNICAL EFFICACY STAGE: 1.
Collapse
Affiliation(s)
- Qiang Ma
- Radiology Department, Capital Medical University Affiliated Beijing Friendship Hospital, Beijing, China
| | - Xiaoyue Cheng
- Radiology Department, Capital Medical University Affiliated Beijing Friendship Hospital, Beijing, China
| | - Xinmeng Hou
- Radiology Department, Capital Medical University Affiliated Beijing Friendship Hospital, Beijing, China
| | - Zhenghan Yang
- Radiology Department, Capital Medical University Affiliated Beijing Friendship Hospital, Beijing, China
| | - Daqing Ma
- Radiology Department, Capital Medical University Affiliated Beijing Friendship Hospital, Beijing, China
| | - Zhenchang Wang
- Radiology Department, Capital Medical University Affiliated Beijing Friendship Hospital, Beijing, China
| |
Collapse
|
14
|
Xepapadaki E, Nikdima I, Zvintzou E, Karavia EA, Kypreos KE. Tissue-specific functional interaction between apolipoproteins A1 and E in cold-induced adipose organ mitochondrial energy metabolism. Biochim Biophys Acta Mol Cell Biol Lipids 2021; 1866:158859. [PMID: 33309975 DOI: 10.1016/j.bbalip.2020.158859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 12/02/2020] [Accepted: 12/08/2020] [Indexed: 11/27/2022]
Abstract
White (WAT) and brown (BAT) adipose tissue, the two main types of adipose organ, are responsible for lipid storage and non-shivering thermogenesis, respectively. Thermogenesis is a process mediated by mitochondrial uncoupling protein 1 (UCP1) which uncouples oxidative phosphorylation from ATP production, leading to the conversion of free fatty acids to heat. This process can be triggered by exposure to low ambient temperatures, caloric excess, and the immune system. Recently mitochondrial thermogenesis has also been associated with plasma lipoprotein transport system. Specifically, apolipoprotein (APO) E3 is shown to have a bimodal effect on WAT thermogenesis that is highly dependent on its site of expression. Similarly, APOE2 and APOE4 differentially affect BAT and WAT mitochondrial metabolic activity in processes highly modulated by APOA1. Furthermore, the absence of classical APOA1 containing HDL (APOA1-HDL), is associated with no measurable non-shivering thermogenesis in WAT of mice fed high fat diet. Based on these previous observations which indicate important regulatory roles for both APOA1 and APOE in adipose tissue mitochondrial metabolic activity, here we sought to investigate the potential roles of these apolipoproteins in BAT and WAT metabolic activation in mice, following stimulation by cold exposure (7 °C). Our data indicate that APOA1-HDL promotes metabolic activation of BAT only in the presence of very low levels (virtually undetectable) of APOE3-containing HDL (APOE3-HDL), which acts as an inhibitor in this process. In contrast, induction of WAT thermogenesis is subjected to a more complicated regulation which requires the combined presence of both APOA1-HDL and APOE3-HDL.
Collapse
Affiliation(s)
- Eva Xepapadaki
- University of Patras School of Health Sciences, Department of Medicine, Pharmacology Laboratory, Panepistimioupolis, Rio, Greece
| | - Ioanna Nikdima
- University of Patras School of Health Sciences, Department of Medicine, Pharmacology Laboratory, Panepistimioupolis, Rio, Greece
| | - Evangelia Zvintzou
- University of Patras School of Health Sciences, Department of Medicine, Pharmacology Laboratory, Panepistimioupolis, Rio, Greece
| | - Eleni A Karavia
- University of Patras School of Health Sciences, Department of Medicine, Pharmacology Laboratory, Panepistimioupolis, Rio, Greece
| | - Kyriakos E Kypreos
- University of Patras School of Health Sciences, Department of Medicine, Pharmacology Laboratory, Panepistimioupolis, Rio, Greece; European University Cyprus, School of Sciences, Department of Life Sciences, Nicosia, Cyprus.
| |
Collapse
|
15
|
Ben Aissa M, Lewandowski CT, Ratia KM, Lee SH, Layden BT, LaDu MJ, Thatcher GRJ. Discovery of Nonlipogenic ABCA1 Inducing Compounds with Potential in Alzheimer's Disease and Type 2 Diabetes. ACS Pharmacol Transl Sci 2021; 4:143-154. [PMID: 33615168 PMCID: PMC7887740 DOI: 10.1021/acsptsci.0c00149] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Indexed: 02/07/2023]
Abstract
Selective liver X receptor (LXR) agonists have been extensively pursued as therapeutics for Alzheimer's disease and related dementia (ADRD) and, for comorbidities such as type 2 diabetes (T2D) and cerebrovascular disease (CVD), disorders with underlying impaired insulin signaling, glucose metabolism, and cholesterol mobilization. The failure of the LXR-focused approach led us to pursue a novel strategy to discover nonlipogenic ATP-binding cassette transporter A1 (ABCA1) inducers (NLAIs): screening for ABCA1-luciferase activation in astrocytoma cells and counterscreening against lipogenic gene upregulation in hepatocarcinoma cells. Beneficial effects of LXRβ agonists mediated by ABCA1 include the following: control of cholesterol and phospholipid efflux to lipid-poor apolipoproteins forming beneficial peripheral HDL and HDL-like particles in the brain and attenuation of inflammation. While rare, ABCA1 variants reduce plasma HDL and correlate with an increased risk of ADRD and CVD. In secondary assays, NLAI hits enhanced cholesterol mobilization and positively impacted in vitro biomarkers associated with insulin signaling, inflammatory response, and biogenic properties. In vivo target engagement was demonstrated after oral administration of NLAIs in (i) mice fed a high-fat diet, a model for obesity-linked T2D, (ii) mice administered LPS, and (iii) mice with accelerated oxidative stress. The lack of adverse effects on lipogenesis and positive effects on multiple biomarkers associated with T2D and ADRD supports this novel phenotypic approach to NLAIs as a platform for T2D and ADRD drug discovery.
Collapse
Affiliation(s)
- Manel Ben Aissa
- Department
of Pharmaceutical Sciences, College of Pharmacy, University of Illinois at Chicago (UIC), Chicago, Illinois 60612, United States
- UICentre
(Drug Discovery @ UIC), University of Illinois
at Chicago (UIC), Chicago, Illinois 60612, United States
| | - Cutler T. Lewandowski
- Department
of Pharmaceutical Sciences, College of Pharmacy, University of Illinois at Chicago (UIC), Chicago, Illinois 60612, United States
| | - Kiira M. Ratia
- HTS
Screening Facility, Research Resources Center, University of Illinois at Chicago (UIC), Chicago, Illinois 60612, United States
| | - Sue H. Lee
- Department
of Pharmaceutical Sciences, College of Pharmacy, University of Illinois at Chicago (UIC), Chicago, Illinois 60612, United States
| | - Brian T. Layden
- Department
of Medicine, University of Illinois at Chicago
(UIC), Chicago, Illinois 60612, United States
| | - Mary Jo LaDu
- Department
of Anatomy and Cell Biology, College of Medicine, University of Illinois at Chicago (UIC), Chicago, Illinois 60612, United States
| | - Gregory R. J. Thatcher
- Department
of Pharmacology & Toxicology, College of Pharmacy, University of Arizona, Tucson, Arizona 85721, United States
| |
Collapse
|
16
|
Liu H, Wang Y, Ren Z, Ji X, Peprah FA, Zhang X, Dai S, Zhou Y, Gu J, Shi H. Dietary cadmium exposure causes elevation of blood ApoE with triglyceride level in mice. Biometals 2020; 33:241-254. [DOI: 10.1007/s10534-020-00247-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Accepted: 09/10/2020] [Indexed: 11/30/2022]
|
17
|
Pappa E, Elisaf MS, Kostara C, Bairaktari E, Tsimihodimos VK. Cardioprotective Properties of HDL: Structural and Functional Considerations. Curr Med Chem 2020; 27:2964-2978. [PMID: 30714519 DOI: 10.2174/0929867326666190201142321] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Revised: 12/03/2018] [Accepted: 12/11/2018] [Indexed: 11/22/2022]
Abstract
BACKGROUND As Mendelian Randomization (MR) studies showed no effect of variants altering HDL-cholesterol (HDL-C) levels concerning Cardiovascular Disease (CVD) and novel therapeutic interventions aiming to raise HDL-C resulted to futility, the usefulness of HDL-C is unclear. OBJECTIVE As the role of HDL-C is currently doubtful, it is suggested that the atheroprotective functions of HDLs can be attributed to the number of HDL particles, and their characteristics including their lipid and protein components. Scientific interest has focused on HDL function and on the causes of rendering HDL particles dysfunctional, whereas the relevance of HDL subclasses with CVD remains controversial. METHODS The present review discusses changes in quality as much as in quantity of HDL in pathological conditions and the connection between HDL particle concentration and cardiovascular disease and mortality. Emphasis is given to the recently available data concerning the cholesterol efflux capacity and the parameters that determine HDL functionality, as well as to recent investigations concerning the associations of HDL subclasses with cardiovascular mortality. RESULTS MR studies or pharmacological interventions targeting HDL-C are not in favor of the hypothesis of HDL-C levels and the relationship with CVD. The search of biomarkers that relate with HDL functionality is needed. Similarly, HDL particle size and number exhibit controversial data in the context of CVD and further studies are needed. CONCLUSION There is no room for the old concept of HDL as a silver bullet,as HDL-C cannot be considered a robust marker and does not reflect the importance of HDL particle size and number. Elucidation of the complex HDL system, as well as the finding of biomarkers, will allow the development of any HDL-targeted therapy.
Collapse
Affiliation(s)
- Eleni Pappa
- Department of Internal Medicine, Medical University of Ioannina, Ioannina, Greece
| | - Moses S Elisaf
- Department of Internal Medicine, Medical University of Ioannina, Ioannina, Greece
| | - Christina Kostara
- Laboratory of Clinical Chemistry, School of Medicine, University of Ioannina, Ioannina, Greece
| | - Eleni Bairaktari
- Laboratory of Clinical Chemistry, School of Medicine, University of Ioannina, Ioannina, Greece
| | | |
Collapse
|
18
|
Chew H, Solomon VA, Fonteh AN. Involvement of Lipids in Alzheimer's Disease Pathology and Potential Therapies. Front Physiol 2020; 11:598. [PMID: 32581851 PMCID: PMC7296164 DOI: 10.3389/fphys.2020.00598] [Citation(s) in RCA: 178] [Impact Index Per Article: 35.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Accepted: 05/14/2020] [Indexed: 12/15/2022] Open
Abstract
Lipids constitute the bulk of the dry mass of the brain and have been associated with healthy function as well as the most common pathological conditions of the brain. Demographic factors, genetics, and lifestyles are the major factors that influence lipid metabolism and are also the key components of lipid disruption in Alzheimer's disease (AD). Additionally, the most common genetic risk factor of AD, APOE ϵ4 genotype, is involved in lipid transport and metabolism. We propose that lipids are at the center of Alzheimer's disease pathology based on their involvement in the blood-brain barrier function, amyloid precursor protein (APP) processing, myelination, membrane remodeling, receptor signaling, inflammation, oxidation, and energy balance. Under healthy conditions, lipid homeostasis bestows a balanced cellular environment that enables the proper functioning of brain cells. However, under pathological conditions, dyshomeostasis of brain lipid composition can result in disturbed BBB, abnormal processing of APP, dysfunction in endocytosis/exocytosis/autophagocytosis, altered myelination, disturbed signaling, unbalanced energy metabolism, and enhanced inflammation. These lipid disturbances may contribute to abnormalities in brain function that are the hallmark of AD. The wide variance of lipid disturbances associated with brain function suggest that AD pathology may present as a complex interaction between several metabolic pathways that are augmented by risk factors such as age, genetics, and lifestyles. Herewith, we examine factors that influence brain lipid composition, review the association of lipids with all known facets of AD pathology, and offer pointers for potential therapies that target lipid pathways.
Collapse
Affiliation(s)
- Hannah Chew
- Huntington Medical Research Institutes, Pasadena, CA, United States
- University of California, Los Angeles, Los Angeles, CA, United States
| | | | - Alfred N. Fonteh
- Huntington Medical Research Institutes, Pasadena, CA, United States
| |
Collapse
|
19
|
Satta N, Frias MA, Vuilleumier N, Pagano S. Humoral Immunity Against HDL Particle: A New Perspective in Cardiovascular Diseases? Curr Pharm Des 2020; 25:3128-3146. [PMID: 31470782 DOI: 10.2174/1381612825666190830164917] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Accepted: 08/24/2019] [Indexed: 01/03/2023]
Abstract
BACKGROUND Autoimmune diseases are closely associated with cardiovascular diseases (CVD). Over the last decades, the comprehension of atherosclerosis, the principal initiator of CVD, evolved from a lipidcentered disease to a predominant inflammatory and immune response-driven disease displaying features of autoimmunity against a broad range of auto-antigens, including lipoproteins. Among them, high density lipoproteins (HDL) are important actors of cholesterol transport and bear several anti-atherogenic properties, raising a growing interest as therapeutic targets to decrease atherosclerosis and CVD burden, with nevertheless rather disappointing results so far. Reflecting HDL composition complexity, autoimmune responses and autoantibodies against various HDL components have been reported. RESULTS In this review, we addressed the important complexity of humoral autoimmunity towards HDL and particularly how this autoimmune response could help improving our understanding of HDL biological implication in atherosclerosis and CVD. We also discussed several issues related to specific HDL autoantibody subclasses characteristics, including etiology, prognosis and pathological mechanisms according to Rose criteria. CONCLUSION Finally, we addressed the possible clinical value of using these antibodies not only as potential biomarkers of atherogenesis and CVD, but also as a factor potentially mitigating the benefit of HDL-raising therapies.
Collapse
Affiliation(s)
- Nathalie Satta
- Division of Laboratory Medicine, Department of Diagnostic, Geneva University Hospitals, 4 rue Gabrielle Perret-Gentil, 1205 Geneva, Switzerland.,Department of Medical Specialties, Faculty of Medicine, University of Geneva, 1 rue Michel Servet, 1211 Geneva, Switzerland
| | - Miguel A Frias
- Division of Laboratory Medicine, Department of Diagnostic, Geneva University Hospitals, 4 rue Gabrielle Perret-Gentil, 1205 Geneva, Switzerland.,Department of Medical Specialties, Faculty of Medicine, University of Geneva, 1 rue Michel Servet, 1211 Geneva, Switzerland
| | - Nicolas Vuilleumier
- Division of Laboratory Medicine, Department of Diagnostic, Geneva University Hospitals, 4 rue Gabrielle Perret-Gentil, 1205 Geneva, Switzerland.,Department of Medical Specialties, Faculty of Medicine, University of Geneva, 1 rue Michel Servet, 1211 Geneva, Switzerland
| | - Sabrina Pagano
- Division of Laboratory Medicine, Department of Diagnostic, Geneva University Hospitals, 4 rue Gabrielle Perret-Gentil, 1205 Geneva, Switzerland.,Department of Medical Specialties, Faculty of Medicine, University of Geneva, 1 rue Michel Servet, 1211 Geneva, Switzerland
| |
Collapse
|
20
|
Zvintzou E, Xepapadaki E, Kalogeropoulou C, Filou S, Kypreos KE. Pleiotropic effects of apolipoprotein A-Ⅱ on high-density lipoprotein functionality, adipose tissue metabolic activity and plasma glucose homeostasis. J Biomed Res 2020; 0:1-13. [PMID: 31741463 DOI: 10.7555/jbr.33.20190048] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Apolipoprotein A-Ⅱ (APOA-Ⅱ) is the second most abundant apolipoprotein of high-density lipoprotein (HDL) synthesized mainly by the liver and to a much lesser extent by the intestine. Transgenic mice overexpressing human APOA-Ⅱ present abnormal lipoprotein composition and are prone to atherosclerosis, though in humans the role for APOA-Ⅱ in coronary heart disease remains controversial. Here, we investigated the effects of overexpressed APOA-Ⅱ on HDL structure and function, adipose tissue metabolic activity, glucose tolerance and insulin sensitivity. C57BL/6 mice were infected with an adenovirus expressing human APOA-Ⅱ or a control adenovirus AdGFP, and five days post-infection blood and tissue samples were isolated. APOA-Ⅱ expression resulted in distinct changes in HDL apoproteome that correlated with increased antioxidant and anti-inflammatory activities. No effects on cholesterol efflux from RAW 264.7 macrophages were observed. Molecular analyses in white adipose tissue (WAT) indicated a stimulation of oxidative phosphorylation coupled with respiration for ATP production in mice overexpressing APOA-Ⅱ. Finally, overexpressed APOA-Ⅱ improved glucose tolerance of mice but had no effect on the response to exogenously administered insulin. In summary, expression of APOA-Ⅱ in C57BL/6 mice results in pleiotropic effects with respect to HDL functionality, adipose tissue metabolism and glucose utilization, many of which are beneficial to health.
Collapse
Affiliation(s)
- Evangelia Zvintzou
- Department of Pharmacology, University of Patras Medical School, Rio Achaias, TK 26500, Greece
| | - Eva Xepapadaki
- Department of Pharmacology, University of Patras Medical School, Rio Achaias, TK 26500, Greece
| | | | - Serafoula Filou
- Department of Pharmacology, University of Patras Medical School, Rio Achaias, TK 26500, Greece
| | - Kyriakos E Kypreos
- Department of Pharmacology, University of Patras Medical School, Rio Achaias, TK 26500, Greece
| |
Collapse
|
21
|
Isoform and tissue dependent impact of apolipoprotein E on adipose tissue metabolic activation: The role of apolipoprotein A1. Biochim Biophys Acta Mol Cell Biol Lipids 2019; 1865:158551. [PMID: 31678510 DOI: 10.1016/j.bbalip.2019.158551] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 09/17/2019] [Accepted: 09/22/2019] [Indexed: 01/27/2023]
Abstract
Adipose organ is made of white (WAT) and brown (BAT) adipose tissue which are primarily responsible for lipid storage and energy production (heat and ATP) respectively. Metabolic activation of WAT may ascribe to this tissue characteristics of BAT, namely non-shivering thermogenesis and ATP production. Recent data indicate that apolipoproteins E (APOE) and A1 (APOA1) regulate WAT mitochondrial metabolic activation. Here, we investigated the functional cross-talk between natural human APOE2 and APOE4 isoforms with APOA1 in this process, using Apoe2knock-in and Apoe4knock-in mice. At baseline when Apoe2knock-in and Apoe4knock-in mice express both APOE and Apoa1, the Apoe2knock-in strain appears to have higher mitochondrial oxidative phosphorylation levels and non-shivering thermogenesis in WAT compared to Apoe4knock-in mice. When mice were switched to a high-fat diet for 18 weeks, circulating levels of endogenous Apoa1 in Apoe2knock-in mice became barely detectable though significant levels of APOE2 were still present. This change was accompanied by a significant reduction in WAT mitochondrial Ucp1 expression while BAT Ucp1 was unaffected. Ectopic APOA1 expression in Apoe2knock-in animals potently stimulated WAT but not BAT mitochondrial Ucp1 expression providing further evidence that APOA1 potently stimulates WAT non-shivering thermogenesis in the presence of APOE2. Ectopic expression of APOA1 in Apoe4knock-in mice stimulated BAT but no WAT mitochondrial Ucp1 levels, suggesting that in the presence of APOE4, APOA1 is a trigger of BAT non-shivering thermogenesis. Overall, our data identified a tissue-specific role of the natural human APOE2 and APOE4 isoforms in WAT- and BAT-metabolic activation respectively, that appears dependent on circulating APOA1 levels.
Collapse
|
22
|
Paiva-Lopes MJ, Batuca JR, Gouveia S, Alves M, Papoila AL, Alves JD. Antibodies towards high-density lipoprotein components in patients with psoriasis. Arch Dermatol Res 2019; 312:93-102. [PMID: 31612328 DOI: 10.1007/s00403-019-01986-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2019] [Revised: 09/22/2019] [Accepted: 09/25/2019] [Indexed: 10/25/2022]
Abstract
Psoriasis is a chronic inflammatory immune disorder associated with an increased risk of atherosclerosis. This increased risk is not fully understood. High-density lipoproteins (HDL) play an important role in the prevention of atherosclerosis and any factors that may hamper HDL function such as anti-HDL antibodies (aHDL) might be associated with an increased cardiovascular risk. We aimed to determine whether anti-HDL antibodies (aHDL) are present in patients with psoriasis. Sixty-seven patients with psoriasis were compared with a healthy control group. Epidemiologic and clinical data were recorded. IgG and IgM aHDL, IgG anti-apolipoprotein A-I (aApoA-I), anti-apolipoprotein E (aApoE), and anti-paraoxonase 1 (aPON1) antibodies, as well as VCAM-1, IL-6, and TNF-α were assessed by ELISA. Apolipoprotein A-I (ApoA-I) and Apolipoprotein E (ApoE) were measured by immunoturbidimetric immunoassay. Patients with psoriasis had higher titers of IgG aHDL (p < 0.001), IgG aApoA-I (p = 0.001) and aApoE antibodies (p < 0.001). IgG aHDL and aApoE titers were higher in patients with severe psoriasis (p = 0.010 and p = 0.018, respectively). Multiple regression analysis, considering all clinical and biological variables, showed that aApoE, IL-6, and aPON1 are the biological variables that best explain aHDL variability. This is the first report showing the presence of aHDL, aApoA-I, and aApoE antibodies in patients with psoriasis. These antibodies were associated with increased disease severity and may contribute to the pathogenesis of atherosclerosis in psoriasis. They may fulfill the clinical need for biomarkers of cardiovascular risk associated with psoriasis that would help to stratify patients for prevention and therapeutic approaches.
Collapse
Affiliation(s)
- Maria Joao Paiva-Lopes
- Dermatology Department, Centro Hospitalar de Lisboa Central, Alameda de Santo António Dos Capuchos, 1169-050, Lisbon, Portugal. .,CEDOC, NOVA Medical School, Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, Campo dos Mártires da Pátria, 130, 1169-056, Lisbon, Portugal.
| | - Joana R Batuca
- CEDOC, NOVA Medical School, Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, Campo dos Mártires da Pátria, 130, 1169-056, Lisbon, Portugal
| | - Sofia Gouveia
- Serviço Imunohemoterapia, Centro Hospitalar Lisboa Central, R. José António Serrano, 1150-199, Lisbon, Portugal
| | - Marta Alves
- Epidemiology and Statistics Unit, Research Centre, Centro Hospitalar de Lisboa Central, R. Jacinta Marto, 1169-045, Lisbon, Portugal
| | - Ana Luisa Papoila
- CEDOC, NOVA Medical School, Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, Campo dos Mártires da Pátria, 130, 1169-056, Lisbon, Portugal.,Epidemiology and Statistics Unit, Research Centre, Centro Hospitalar de Lisboa Central, R. Jacinta Marto, 1169-045, Lisbon, Portugal.,Centro de Estatística E Aplicações da, Universidade de Lisboa, Lisbon, Portugal
| | - José Delgado Alves
- CEDOC, NOVA Medical School, Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, Campo dos Mártires da Pátria, 130, 1169-056, Lisbon, Portugal.,Immunomediated Systemic Diseases Unit (UDIMS), Fernando Fonseca Hospital, IC19, 2720-276, Amadora, Portugal
| |
Collapse
|
23
|
Xepapadaki E, Zvintzou E, Kalogeropoulou C, Filou S, Kypreos KE. Τhe Antioxidant Function of HDL in Atherosclerosis. Angiology 2019; 71:112-121. [PMID: 31185723 DOI: 10.1177/0003319719854609] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Atherosclerosis is a multistep process that progresses over a long period of time and displays a broad range of severity. In its final form, it manifests as a lesion of the intimal layer of the arterial wall. There is strong evidence supporting that oxidative stress contributes to coronary heart disease morbidity and mortality and antioxidant high-density lipoprotein (HDL) could have a beneficial role in the prevention and prognosis of the disease. Indeed, certain subspecies of HDL may act as natural antioxidants preventing oxidation of lipids on low-density lipoprotein (LDL) and biological membranes. The antioxidant function may be attributed to inhibition of synthesis or neutralization of free radicals and reactive oxygen species by HDL lipids and associated enzymes or transfer of oxidation prone lipids from LDL and biological membranes to HDL for catabolism. A limited number of clinical trials suggest that the increased antioxidant potential of HDL correlates with decreased risk for atherosclerosis. Some nutritional interventions to increase HDL antioxidant activity have been proposed with limited success so far. The limitations in measuring and understanding HDL antioxidant function in vivo are also discussed.
Collapse
Affiliation(s)
- Eva Xepapadaki
- Department of Pharmacology, School of Medicine, University of Patras, Rio Achaias, TK, Greece
| | - Evangelia Zvintzou
- Department of Pharmacology, School of Medicine, University of Patras, Rio Achaias, TK, Greece
| | | | - Serafoula Filou
- Department of Pharmacology, School of Medicine, University of Patras, Rio Achaias, TK, Greece
| | - Kyriakos E Kypreos
- Department of Pharmacology, School of Medicine, University of Patras, Rio Achaias, TK, Greece
| |
Collapse
|
24
|
Xepapadaki E, Maulucci G, Constantinou C, Karavia EA, Zvintzou E, Daniel B, Sasson S, Kypreos KE. Impact of apolipoprotein A1- or lecithin:cholesterol acyltransferase-deficiency on white adipose tissue metabolic activity and glucose homeostasis in mice. Biochim Biophys Acta Mol Basis Dis 2019; 1865:1351-1360. [DOI: 10.1016/j.bbadis.2019.02.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Revised: 02/04/2019] [Accepted: 02/06/2019] [Indexed: 12/15/2022]
|
25
|
Wagner R, Dittrich J, Thiery J, Ceglarek U, Burkhardt R. Simultaneous LC/MS/MS quantification of eight apolipoproteins in normal and hypercholesterolemic mouse plasma. J Lipid Res 2019; 60:900-908. [PMID: 30723096 PMCID: PMC6446716 DOI: 10.1194/jlr.d084301] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Revised: 01/30/2019] [Indexed: 12/18/2022] Open
Abstract
Apolipoproteins are major structural and functional constituents of lipoprotein particles. As modulators of lipid metabolism, adipose tissue biology, and energy homeostasis, apolipoproteins may serve as biomarkers or potential therapeutic targets for cardiometabolic diseases. Mice are the preferred model to study metabolic disease and CVD, but a comprehensive method to quantify circulating apolipoproteins in mice is lacking. We developed and validated a targeted proteomics assay to quantify eight apolipoproteins in mice via proteotypic signature peptides and corresponding stable isotope-labeled analogs. The LC/MS/MS method requires only a 3 µl sample volume to simultaneously determine mouse apoA-I, apoA-II, apoA-IV, apoB-100, total apoB, apoC-I, apoE, and apoJ concentrations. ApoB-48 concentrations can be calculated by subtracting apoB-100 from total apoB. After we established the analytic performance (sensitivity, linearity, and imprecision) and compared results for selected apolipoproteins against immunoassays, we applied the method to profile apolipoprotein levels in plasma and isolated HDL from normocholesterolemic C57BL/6 mice and from hypercholesterolemic Ldl-receptor- and Apoe-deficient mice. In conclusion, we present a robust, quantitative LC/MS/MS method for the multiplexed analysis of eight apolipoproteins in mice. This assay can be applied to investigate the effects of genetic manipulation or dietary interventions on apolipoprotein levels in plasma and isolated lipoprotein fractions.
Collapse
Affiliation(s)
- Richard Wagner
- Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostics, University Hospital Leipzig, Leipzig, Germany
| | - Julia Dittrich
- Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostics, University Hospital Leipzig, Leipzig, Germany; LIFE-Leipzig Research Center for Civilization Diseases, University of Leipzig, Germany
| | - Joachim Thiery
- Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostics, University Hospital Leipzig, Leipzig, Germany; LIFE-Leipzig Research Center for Civilization Diseases, University of Leipzig, Germany
| | - Uta Ceglarek
- Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostics, University Hospital Leipzig, Leipzig, Germany; LIFE-Leipzig Research Center for Civilization Diseases, University of Leipzig, Germany.
| | - Ralph Burkhardt
- Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostics, University Hospital Leipzig, Leipzig, Germany; LIFE-Leipzig Research Center for Civilization Diseases, University of Leipzig, Germany; Institute of Clinical Chemistry and Laboratory Medicine, University Hospital Regensburg, Regensburg, Germany.
| |
Collapse
|
26
|
Domínguez-Avila JA, Astiazaran-Garcia H, Wall-Medrano A, de la Rosa LA, Alvarez-Parrilla E, González-Aguilar GA. Mango phenolics increase the serum apolipoprotein A1/B ratio in rats fed high cholesterol and sodium cholate diets. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2019; 99:1604-1612. [PMID: 30187493 DOI: 10.1002/jsfa.9340] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Revised: 08/24/2018] [Accepted: 08/27/2018] [Indexed: 06/08/2023]
Abstract
BACKGROUND Serum lipoproteins are in dynamic equilibrium, partially controlled by the apolipoprotein A1 to apolipoprotein B ratio (APOA1/APOB). Freeze-dried mango pulp (FDM) is a rich source of phenolic compounds (MP) and dietary fiber (MF), although their effects on lipoprotein metabolism have not yet been studied. RESULTS Thirty male Wistar rats were fed with four different isocaloric diets (3.4 kcal g-1 ) for 12 weeks: control diet, high cholesterol (8 g kg-1 ) + sodium cholate (2 g kg-1 ) diet either alone or supplemented with MF (60 g kg-1 ), MP (1 g kg-1 ) or FDM (50 g kg-1 ). MP and FDM reduced food intake, whereas MF and MP tended to increase serum APOA1/APOB ratio, independently of their hepatic gene expression. This suggests that lipoprotein metabolism was favorably altered by mango bioactives, MP also mitigated the non-alcoholic steatohepatitis that resulted from the intake of this diet. CONCLUSION We propose that phenolics are the most bioactive components of mango pulp, acting as anti-atherogenic and hepatoprotective agents, with a mechanism of action tentatively based on changes to the main protein components of lipoproteins. © 2018 Society of Chemical Industry.
Collapse
Affiliation(s)
- J Abraham Domínguez-Avila
- Coordinación de Tecnología de Alimentos de Origen Vegetal, Centro de Investigación en Alimentación y Desarrollo AC, Hermosillo, Mexico
| | - Humberto Astiazaran-Garcia
- Coordinación de Nutrición, Centro de Investigación en Alimentación y Desarrollo A. C., Hermosillo, Mexico
| | - Abraham Wall-Medrano
- Departamento de Ciencias Químico-Biológicas, Instituto de Ciencias Biomédicas, Universidad Autónoma de Ciudad Juárez, Chihuahua, Mexico
| | - Laura A de la Rosa
- Departamento de Ciencias de la Salud, Instituto de Ciencias Biomédicas, Universidad Autónoma de Ciudad Juárez, Chihuahua, Mexico
| | - Emilio Alvarez-Parrilla
- Departamento de Ciencias de la Salud, Instituto de Ciencias Biomédicas, Universidad Autónoma de Ciudad Juárez, Chihuahua, Mexico
| | - Gustavo A González-Aguilar
- Coordinación de Tecnología de Alimentos de Origen Vegetal, Centro de Investigación en Alimentación y Desarrollo AC, Hermosillo, Mexico
| |
Collapse
|
27
|
Vlad CE, Foia L, Popescu R, Ivanov I, Luca MC, Delianu C, Toma V, Statescu C, Rezus C, Florea L. Apolipoproteins A and B and PCSK9: Nontraditional Cardiovascular Risk Factors in Chronic Kidney Disease and in End-Stage Renal Disease. J Diabetes Res 2019; 2019:6906278. [PMID: 31915710 PMCID: PMC6931031 DOI: 10.1155/2019/6906278] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Revised: 09/09/2019] [Accepted: 11/26/2019] [Indexed: 12/23/2022] Open
Abstract
PURPOSE Nontraditional cardiovascular risk factors as apolipoprotein A (ApoA), apolipoprotein B (ApoB), and the proprotein convertase subtilisin/kexin type 9 (PCSK9) increase the prevalence of cardiovascular mortality in chronic kidney disease (CKD) or in end-stage renal disease (ESRD) through quantitative alterations. This review is aimed at establishing the biomarker (ApoA, ApoB, and PCSK9) level variations in uremic patients, to identify the studies showing the association between these biomarkers and the development of cardiovascular events and to depict the therapeutic options to reduce cardiovascular risk in CKD and ESRD patients. METHODS We searched the electronic database of PubMed, Scopus, EBSCO, and Cochrane CENTRAL for studies evaluating apolipoproteins and PCSK9 in CKD and ESRD. Randomized controlled trials, observational studies (including case-control, prospective or retrospective cohort), and reviews/meta-analysis were included if reference was made to those keys and cardiovascular outcomes in CKD/ESRD. RESULTS 18 studies met inclusion criteria. Serum ApoA-I has been significantly associated with the development of new cardiovascular event and with cardiovascular mortality in ESRD patients. ApoA-IV level was independently associated with maximum carotid intima-media thickness (cIMT) and was a predictor for sudden cardiac death. The ApoB/ApoA-I ratio represents a strong predictor for coronary artery calcifications, cardiovascular mortality, and myocardial infarction in CKD/ESRD. Plasma levels of PCSK9 were not associated with cardiovascular events in CKD patients. CONCLUSIONS Although the "dyslipidemic status" in CKD/ESRD is not clearly depicted, due to different research findings, ApoA-I, ApoA-IV, and ApoB/ApoA-I ratio could be predictors of cardiovascular risk. Serum PCSK9 levels were not associated with the cardiovascular events in patients with CKD/ESRD. Probably in the future, the treatment of dyslipidemia in CKD/ESRD will be aimed at discovering new effective therapies on the action of these biomarkers.
Collapse
Affiliation(s)
- Cristiana-Elena Vlad
- Department of Nephrology, “Dr. C. I. Parhon” Clinical Hospital Iasi, Iasi, Romania
- Grigore T. Popa University of Medicine and Pharmacy, Iasi, Romania
| | - Liliana Foia
- Grigore T. Popa University of Medicine and Pharmacy, Iasi, Romania
| | - Roxana Popescu
- Grigore T. Popa University of Medicine and Pharmacy, Iasi, Romania
| | - Iuliu Ivanov
- Grigore T. Popa University of Medicine and Pharmacy, Iasi, Romania
| | | | - Carmen Delianu
- Grigore T. Popa University of Medicine and Pharmacy, Iasi, Romania
| | - Vasilica Toma
- Grigore T. Popa University of Medicine and Pharmacy, Iasi, Romania
| | | | - Ciprian Rezus
- Grigore T. Popa University of Medicine and Pharmacy, Iasi, Romania
- Department of Cardiology, “Sf. Spiridon” Clinical Hospital Iasi, Iasi, Romania
| | - Laura Florea
- Department of Nephrology, “Dr. C. I. Parhon” Clinical Hospital Iasi, Iasi, Romania
- Grigore T. Popa University of Medicine and Pharmacy, Iasi, Romania
| |
Collapse
|
28
|
Marais AD. Apolipoprotein E in lipoprotein metabolism, health and cardiovascular disease. Pathology 2018; 51:165-176. [PMID: 30598326 DOI: 10.1016/j.pathol.2018.11.002] [Citation(s) in RCA: 217] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Revised: 10/31/2018] [Accepted: 11/01/2018] [Indexed: 12/16/2022]
Abstract
Apolipoprotein E (apoE), a 34 kDa circulating glycoprotein of 299 amino acids, predominantly synthesised in the liver, associates with triglyceride-rich lipoproteins to mediate the clearance of their remnants after enzymatic lipolysis in the circulation. Its synthesis in macrophages initiates the formation of high density-like lipoproteins to effect reverse cholesterol transport to the liver. In the nervous system apoE forms similar lipoproteins which perform the function of distributing lipids amongst cells. ApoE accounts for much of the variation in plasma lipoproteins by three common variants (isoforms) that influence low-density lipoprotein concentration and the risk of atherosclerosis. ApoE2 generally is most favourable and apoE4 least favourable for cardiovascular and neurological health. The apoE variants relate to different amino acids at positions 112 and 158: cysteine in both for apoE2, arginine at both sites for apoE4, and respectively cysteine and arginine for apoE3 that is viewed as the wild type. Paradoxically, under metabolic stress, homozygosity for apoE2 may result in dysbetalipoproteinaemia in adults owing to impaired binding of remnant lipoproteins to the LDL receptor and related proteins as well as heparan sulphate proteoglycans. This highly atherogenic condition is also seen with other mutations in apoE, but with autosomal dominant inheritance. Mutations in apoE may also cause lipoprotein glomerulopathy. In the central nervous system apoE binds amyloid β-protein and tau protein and fragments may incur cellular damage. ApoE4 is a strong risk factor for the development of Alzheimer's disease. ApoE has several other physiological effects that may influence health and disease, including supply of docosahexaenoic acid for the brain and modulating immune and inflammatory responses. Genotyping of apoE may have application in disorders of lipoprotein metabolism as well as glomerulopathy and may be relevant to personalised medicine in understanding cardiovascular risk, and the outcome of nutritional and therapeutic interventions. Quantitation of apoE will probably not be clinically useful. ApoE is also of interest as it may generate peptides with biological function and could be employed in nanoparticles that may allow crossing of the blood-brain barrier. Therapeutic options may emerge from these newer insights.
Collapse
Affiliation(s)
- A David Marais
- Chemical Pathology Division, Pathology Department, University of Cape Town Health Science Faculty and National Health Laboratory Service, Cape Town, South Africa.
| |
Collapse
|
29
|
Current and Emerging Reconstituted HDL-apoA-I and HDL-apoE Approaches to Treat Atherosclerosis. J Pers Med 2018; 8:jpm8040034. [PMID: 30282955 PMCID: PMC6313318 DOI: 10.3390/jpm8040034] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Revised: 09/26/2018] [Accepted: 09/27/2018] [Indexed: 01/14/2023] Open
Abstract
Atherosclerosis affects millions of people worldwide. However, the wide variety of limitations in the current therapeutic options leaves much to be desired in future lipid-lowering therapies. For example, although statins, which are the first-line treatment for coronary heart disease (CHD), reduce the risk of cardiovascular events in a large percentage of patients, they lead to optimal levels of low density lipoprotein-cholesterol (LDL-C) in only about one-third of patients. A new promising research direction against atherosclerosis aims to improve lipoprotein metabolism. Novel therapeutic approaches are being developed to increase the levels of functional high density lipoprotein (HDL) particles. This review aims to highlight the atheroprotective potential of the in vitro synthesized reconstituted HDL particles containing apolipoprotein E (apoE) as their sole apolipoprotein component (rHDL-apoE). For this purpose, we provide: (1) a summary of the atheroprotective properties of native plasma HDL and its apolipoprotein components, apolipoprotein A-I (apoA-I) and apoE; (2) an overview of the anti-atherogenic functions of rHDL-apoA-I and apoA-I-containing HDL, i.e., natural HDL isolated from transgenic Apoa1−/− × Apoe−/− mice overexpressing human apoA-I (HDL-apoA-I); and (3) the latest developments and therapeutic potential of HDL-apoE and rHDL-apoE. Novel rHDL formulations containing apoE could possibly present enhanced biological functions, leading to improved therapeutic efficacy against atherosclerosis.
Collapse
|
30
|
Kypreos KE, Bitzur R, Karavia EA, Xepapadaki E, Panayiotakopoulos G, Constantinou C. Pharmacological Management of Dyslipidemia in Atherosclerosis: Limitations, Challenges, and New Therapeutic Opportunities. Angiology 2018; 70:197-209. [PMID: 29862840 DOI: 10.1177/0003319718779533] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Clinical and epidemiological studies during the last 7 decades indicated that elevated low-density lipoprotein cholesterol (LDL-C) levels and reduced high-density lipoprotein cholesterol (HDL-C) levels correlate with the pathogenesis and progression of atherosclerotic lesions in the arterial wall. This observation led to the development of LDL-C-lowering drugs for the prevention and treatment of atherosclerosis, some with greater success than others. However, a body of recent clinical evidence shows that a substantial residual cardiovascular risk exists even at very low levels of LDL-C, suggesting that new therapeutic modalities are still needed for reduction of atherosclerosis morbidity and mortality. Unfortunately, HDL-C-raising drugs developed toward this goal had disappointing results thus far. Here, we critically review the literature presenting available evidence and challenges that need to be met and discuss possible new avenues for the development of novel lipid pharmacotherapeutics to reduce the burden of atherosclerosis.
Collapse
Affiliation(s)
- Kyriakos E Kypreos
- Department of Pharmacology, University of Patras Medical School, Rio Achaias, Greece
| | - Rafael Bitzur
- The Bert W. Strassburger Lipid Center, Sheba Medical Center, Tel Hashomer, Israel
| | - Eleni A Karavia
- Department of Pharmacology, University of Patras Medical School, Rio Achaias, Greece
| | - Eva Xepapadaki
- Department of Pharmacology, University of Patras Medical School, Rio Achaias, Greece
| | | | - Caterina Constantinou
- Department of Pharmacology, University of Patras Medical School, Rio Achaias, Greece
| |
Collapse
|
31
|
Tumor necrosis factor α stimulates endogenous apolipoprotein A-I expression and secretion by human monocytes and macrophages: role of MAP-kinases, NF-κB, and nuclear receptors PPARα and LXRs. Mol Cell Biochem 2018; 448:211-223. [PMID: 29442267 DOI: 10.1007/s11010-018-3327-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Accepted: 02/07/2018] [Indexed: 02/07/2023]
Abstract
Apolipoprotein A-I (ApoA-I) is the main structural and functional protein component of high-density lipoprotein. ApoA-I has been shown to regulate lipid metabolism and inflammation in macrophages. Recently, we found the moderate expression of endogenous apoA-I in human monocytes and macrophages and showed that pro-inflammatory cytokine tumor necrosis factor α (TNFα) increases apoA-I mRNA and stimulates ApoA-I protein secretion by human monocytes and macrophages. Here, we present data about molecular mechanisms responsible for the TNFα-mediated activation of apoA-I gene in human monocytes and macrophages. This activation depends on JNK and MEK1/2 signaling pathways in human monocytes, whereas inhibition of NFκB, JNK, or p38 blocks an increase of apoA-I gene expression in the macrophages treated with TNFα. Nuclear receptor PPARα is a ligand-dependent regulator of apoA-I gene, whereas LXRs stimulate apoA-I mRNA transcription and ApoA-I protein synthesis and secretion by macrophages. Treatment of human macrophages with PPARα or LXR synthetic ligands as well as knock-down of LXRα, and LXRβ by siRNAs interfered with the TNFα-mediated activation of apoA-I gene in human monocytes and macrophages. At the same time, TNFα differently regulated the levels of PPARα, LXRα, and LXRβ binding to the apoA-I gene promoter in THP-1 cells. Obtained results suggest a novel tissue-specific mechanism of the TNFα-mediated regulation of apoA-I gene in monocytes and macrophages and show that endogenous ApoA-I might be positively regulated in macrophage during inflammation.
Collapse
|
32
|
Site-specific effects of apolipoprotein E expression on diet-induced obesity and white adipose tissue metabolic activation. Biochim Biophys Acta Mol Basis Dis 2018; 1864:471-480. [DOI: 10.1016/j.bbadis.2017.11.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Revised: 10/27/2017] [Accepted: 11/13/2017] [Indexed: 11/21/2022]
|
33
|
Li YL, Qi RQ, Yang Y, Wang HX, Jiang HH, Li ZX, Xiao BH, Zheng S, Hong YX, Li JH, Chen HD, Gao XH. Screening and identification of differentially expressed serum proteins in patients with vitiligo using two‑dimensional gel electrophoresis coupled with mass spectrometry. Mol Med Rep 2017; 17:2651-2659. [PMID: 29207142 DOI: 10.3892/mmr.2017.8159] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2017] [Accepted: 11/22/2017] [Indexed: 11/06/2022] Open
Abstract
In the clinic, vitiligo is characterized by two stages: Stable and progressive. The pathogenesis of vitiligo is still not clear. Here, we identified serum markers of vitiligo by screening for differentially expressed proteins in patients with vitiligo compared to healthy individuals. Serum samples were collected from patients with vitiligo (n=10 for both the stable and progressive stages) and healthy individuals (n=10). Two‑dimensional gel electrophoresis followed by matrix‑assisted laser desorption/ionization time‑of‑flight mass spectrometry and western blotting were used to validate the differential expression of the proteins in the serum (n=20 each, at both stages for patients and healthy individuals). A total of 48 differentially expressed proteins were identified by gel image analysis. There were 28 differentially expressed proteins in patients with progressive vitiligo (PV) and 13 differentially expressed proteins in patients with stable vitiligo (SV) compared with that in healthy individuals. Additionally, 7 differentially expressed proteins were identified in patients with PV compared with those in patients with SV. The western blotting results showed that Peroxiredoxin‑6, apolipoprotein L1, apolipoprotein E and mannose‑binding protein were differentially expressed in patients with different stages of vitiligo. Our results showed that change serum levels of several proteins might be useful as biomarkers or in understanding the pathogenesis of vitiligo.
Collapse
Affiliation(s)
- Yi-Lei Li
- Department of Dermatology, The First Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Rui-Qun Qi
- Department of Dermatology, The First Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Yang Yang
- Department of Dermatology, The First Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - He-Xiao Wang
- Department of Dermatology, The First Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Hang-Hang Jiang
- Department of Dermatology, The First Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Zheng-Xiu Li
- Department of Dermatology, The First Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Bi-Huan Xiao
- Department of Dermatology, The First Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Song Zheng
- Department of Dermatology, The First Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Yu-Xiao Hong
- Department of Dermatology, The First Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Jiu-Hong Li
- Department of Dermatology, The First Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Hong-Duo Chen
- Department of Dermatology, The First Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Xing-Hua Gao
- Department of Dermatology, The First Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| |
Collapse
|
34
|
Qi Y, Liu J, Wang W, Wang M, Zhao F, Sun J, Liu J, Zhao D. Apolipoprotein E-containing high-density lipoprotein (HDL) modifies the impact of cholesterol-overloaded HDL on incident coronary heart disease risk: A community-based cohort study. J Clin Lipidol 2017; 12:89-98.e2. [PMID: 29217413 DOI: 10.1016/j.jacl.2017.11.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Revised: 11/03/2017] [Accepted: 11/07/2017] [Indexed: 12/11/2022]
Abstract
BACKGROUND Experimental studies have shown that cholesterol-overloaded high-density lipoprotein (HDL) can promote the formation of apolipoprotein E (APOE)-containing HDL, a process correcting the atherogenic function of cholesterol-overloaded HDL. OBJECTIVE The objective of the study was to explore whether APOE-containing HDL can attenuate the defective impact of cholesterol-overloaded HDL on the development of coronary heart disease (CHD) in humans. METHODS We measured APOE-HDL cholesterol (APOE-HDLC), HDL cholesterol (HDLC), and HDL particle number in 1112 participants aged 45 to 74 years at baseline in a community-based cohort study. Cholesterol molecules per HDL particle (HDL-C/P ratio) were calculated as the ratio of HDLC to HDL particle number. The ratio of APOE-HDLC to total HDLC (APOE-HDLC/HDLC ratio) was calculated to assess the relative proportion of APOE-HDLC in total HDLC. RESULTS The HDL-C/P ratio was strongly correlated with APOE-HDLC (partial-r: 0.615). Participants with cholesterol-overloaded HDL (indicated by the highest level of the HDL-C/P ratio) had a high APOE-HDLC/HDLC ratio. Baseline cholesterol-overloaded HDL significantly increased the 10-year risk of incident CHD (hazard ratio = 2.42; 95% confidence interval = 1.06-8.32), but this was attenuated by an increased APOE-HDLC/HDLC ratio. Participants with high HDL-C/P ratio and APOE-HDLC/HDLC ratio had a 42% lower risk, whereas those with a high HDL-C/P ratio and low APOE-HDLC/HDLC ratio had a 2.54-fold higher risk, than those with low HDL-C/P ratio and APOE-HDLC/HDLC ratio after multiple adjustments. CONCLUSION Cholesterol-overloaded HDLs are related with increased APOE-containing HDL species. APOE-containing HDL was found to attenuate the impact of cholesterol-overloaded HDL on increased incident CHD risk, suggesting that APOE-containing HDL may correct the dysfunction of cholesterol-overloaded HDL.
Collapse
Affiliation(s)
- Yue Qi
- Department of Epidemiology, Beijing An Zhen Hospital, Capital Medical University, The Key Laboratory of Remodeling-Related Cardiovascular Diseases, Ministry of Education, Beijing Institute of Heart, Lung and Blood Vessel Diseases, Beijing, China
| | - Jing Liu
- Department of Epidemiology, Beijing An Zhen Hospital, Capital Medical University, The Key Laboratory of Remodeling-Related Cardiovascular Diseases, Ministry of Education, Beijing Institute of Heart, Lung and Blood Vessel Diseases, Beijing, China
| | - Wei Wang
- Department of Epidemiology, Beijing An Zhen Hospital, Capital Medical University, The Key Laboratory of Remodeling-Related Cardiovascular Diseases, Ministry of Education, Beijing Institute of Heart, Lung and Blood Vessel Diseases, Beijing, China
| | - Miao Wang
- Department of Epidemiology, Beijing An Zhen Hospital, Capital Medical University, The Key Laboratory of Remodeling-Related Cardiovascular Diseases, Ministry of Education, Beijing Institute of Heart, Lung and Blood Vessel Diseases, Beijing, China
| | - Fan Zhao
- Department of Epidemiology, Beijing An Zhen Hospital, Capital Medical University, The Key Laboratory of Remodeling-Related Cardiovascular Diseases, Ministry of Education, Beijing Institute of Heart, Lung and Blood Vessel Diseases, Beijing, China
| | - Jiayi Sun
- Department of Epidemiology, Beijing An Zhen Hospital, Capital Medical University, The Key Laboratory of Remodeling-Related Cardiovascular Diseases, Ministry of Education, Beijing Institute of Heart, Lung and Blood Vessel Diseases, Beijing, China
| | - Jun Liu
- Department of Epidemiology, Beijing An Zhen Hospital, Capital Medical University, The Key Laboratory of Remodeling-Related Cardiovascular Diseases, Ministry of Education, Beijing Institute of Heart, Lung and Blood Vessel Diseases, Beijing, China
| | - Dong Zhao
- Department of Epidemiology, Beijing An Zhen Hospital, Capital Medical University, The Key Laboratory of Remodeling-Related Cardiovascular Diseases, Ministry of Education, Beijing Institute of Heart, Lung and Blood Vessel Diseases, Beijing, China.
| |
Collapse
|
35
|
E. Kypreos K, A. Karavia E, Constantinou C, Hatziri A, Kalogeropoulou C, Xepapadaki E, Zvintzou E. Apolipoprotein E in diet-induced obesity: a paradigm shift from conventional perception. J Biomed Res 2017; 32:183. [PMID: 29770778 PMCID: PMC6265402 DOI: 10.7555/jbr.32.20180007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Accepted: 03/08/2018] [Indexed: 12/16/2022] Open
Abstract
Apolipoprotein E (APOE) is a major protein component of peripheral and brain lipoprotein transport systems. APOE in peripheral circulation does not cross blood brain barrier or blood cerebrospinal fluid barrier. As a result, peripheral APOE expression does not affect brain APOE levels and vice versa. Numerous epidemiological studies suggest a key role of peripherally expressed APOE in the development and progression of coronary heart disease while brain APOE has been associated with dementia and Alzheimer's disease. More recent studies, mainly in experimental mice, suggested a link between Apoe and morbid obesity. According to the latest findings, expression of human apolipoprotein E3 (APOE3) isoform in the brain of mice is associated with a potent inhibition of visceral white adipose tissue (WAT) mitochondrial oxidative phosphorylation leading to significantly reduced substrate oxidation, increased fat accumulation and obesity. In contrast, hepatically expressed APOE3 is associated with a notable shift of substrate oxidation towards non-shivering thermogenesis in visceral WAT mitochondria, leading to resistance to obesity. These novel findings constitute a major paradigm shift from the widely accepted perception that APOE promotes obesity via receptor-mediated postprandial lipid delivery to WAT. Here, we provide a critical review of the latest facts on the role of APOE in morbid obesity.
Collapse
Affiliation(s)
- Kyriakos E. Kypreos
- Department of Pharmacology, University of Patras Medical School, Rio Achaias, TK 26500, Greece
| | - Eleni A. Karavia
- Department of Pharmacology, University of Patras Medical School, Rio Achaias, TK 26500, Greece
| | - Caterina Constantinou
- Department of Pharmacology, University of Patras Medical School, Rio Achaias, TK 26500, Greece
| | - Aikaterini Hatziri
- Department of Pharmacology, University of Patras Medical School, Rio Achaias, TK 26500, Greece
| | | | - Eva Xepapadaki
- Department of Pharmacology, University of Patras Medical School, Rio Achaias, TK 26500, Greece
| | - Evangelia Zvintzou
- Department of Pharmacology, University of Patras Medical School, Rio Achaias, TK 26500, Greece
| |
Collapse
|
36
|
Paiva-Lopes MJ, Delgado Alves J. Psoriasis-associated vascular disease: the role of HDL. J Biomed Sci 2017; 24:73. [PMID: 28911329 PMCID: PMC5598036 DOI: 10.1186/s12929-017-0382-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Accepted: 09/12/2017] [Indexed: 12/30/2022] Open
Abstract
Psoriasis is a chronic inflammatory systemic disease with a prevalence of 2-3%. Overwhelming evidence show an epidemiological association between psoriasis, cardiovascular disease and atherosclerosis. Cardiovascular disease is the most frequent cause of death in patients with severe psoriasis. Several cardiovascular disease classical risk factors are also increased in psoriasis but the psoriasis-associated risk persists after adjusting for other risk factors.Investigation has focused on finding explanations for these epidemiological data. Several studies have demonstrated significant lipid metabolism and HDL composition and function alterations in psoriatic patients. Altered HDL function is clearly one of the mechanisms involved, as these particles are of the utmost importance in atherosclerosis defense. Recent data indicate that biologic therapy can reverse both structural and functional HDL alterations in psoriasis, reinforcing their therapeutic potential.
Collapse
Affiliation(s)
- Maria Joao Paiva-Lopes
- Serviço de Dermatologia, Hospital dos Capuchos CHLC, Alameda de Santo António dos Capuchos, 1169-050, Lisboa, Portugal.
- CEDOC, NOVA Medical School | Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, Campo dos Mártires da Pátria, 130, 1169-056, Lisboa, Portugal.
| | - José Delgado Alves
- CEDOC, NOVA Medical School | Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, Campo dos Mártires da Pátria, 130, 1169-056, Lisboa, Portugal
- Immunomediated Systemic Diseases Unit (UDIMS), Fernando Fonseca Hospital, Amadora, Portugal
| |
Collapse
|
37
|
Antioxidative activity of high-density lipoprotein (HDL): Mechanistic insights into potential clinical benefit. BBA CLINICAL 2017; 8:66-77. [PMID: 28936395 PMCID: PMC5597817 DOI: 10.1016/j.bbacli.2017.07.002] [Citation(s) in RCA: 151] [Impact Index Per Article: 18.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Revised: 07/21/2017] [Accepted: 07/24/2017] [Indexed: 12/29/2022]
Abstract
Uptake of low-density lipoprotein (LDL) particles by macrophages represents a key step in the development of atherosclerotic plaques, leading to the foam cell formation. Chemical modification of LDL is however necessary to induce this process. Proatherogenic LDL modifications include aggregation, enzymatic digestion and oxidation. LDL oxidation by one-electron (free radicals) and two-electron oxidants dramatically increases LDL affinity to macrophage scavenger receptors, leading to rapid LDL uptake and fatty streak formation. Circulating high-density lipoprotein (HDL) particles, primarily small, dense, protein-rich HDL3, provide potent protection of LDL from oxidative damage by free radicals, resulting in the inhibition of the generation of pro-inflammatory oxidized lipids. HDL-mediated inactivation of lipid hydroperoxides involves their initial transfer from LDL to HDL and subsequent reduction to inactive hydroxides by redox-active Met residues of apolipoprotein A-I. Several HDL-associated enzymes are present at elevated concentrations in HDL3 relative to large, light HDL2 and can be involved in the inactivation of short-chain oxidized phospholipids. Therefore, HDL represents a multimolecular complex capable of acquiring and inactivating proatherogenic lipids. Antioxidative function of HDL can be impaired in several metabolic and inflammatory diseases. Structural and compositional anomalies in the HDL proteome and lipidome underlie such functional deficiency. Concomitant normalization of the metabolism, circulating levels, composition and biological activities of HDL particles, primarily those of small, dense HDL3, can constitute future therapeutic target.
Collapse
|
38
|
Xinxuekang Regulates Reverse Cholesterol Transport by Improving High-density Lipoprotein Synthesis, Maturation, and Catabolism. J Cardiovasc Pharmacol 2017; 70:110-118. [DOI: 10.1097/fjc.0000000000000500] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
39
|
Zvintzou E, Lhomme M, Chasapi S, Filou S, Theodoropoulos V, Xapapadaki E, Kontush A, Spyroulias G, Tellis CC, Tselepis AD, Constantinou C, Kypreos KE. Pleiotropic effects of apolipoprotein C3 on HDL functionality and adipose tissue metabolic activity. J Lipid Res 2017; 58:1869-1883. [PMID: 28701354 DOI: 10.1194/jlr.m077925] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Revised: 06/29/2017] [Indexed: 12/28/2022] Open
Abstract
APOC3 is produced mainly by the liver and intestine and approximately half of plasma APOC3 associates with HDL. Though it was believed that APOC3 associates with HDL by simple binding to preexisting particles, recent data support that biogenesis of APOC3-containing HDL (APOC3-HDL) requires Abca1. Moreover, APOC3-HDL contributes to plasma triglyceride homeostasis by preventing APOC3 association with triglyceride-rich lipoproteins. Interestingly, APOC3-HDL also shows positive correlation with the morbidly obese phenotype. However, the roles of APOC3 in HDL functionality and adipose tissue metabolic activity remain unknown. Therefore, here we investigated the direct effects of APOC3 expression on HDL structure and function, as well as white adipose tissue (WAT) and brown adipose tissue (BAT) metabolic activity. C57BL/6 mice were infected with an adenovirus expressing human APOC3 or a recombinant attenuated control adenovirus expressing green fluorescent protein and blood and tissue samples were collected at 5 days postinfection. HDL was then analyzed for its apolipoprotein and lipid composition and particle functionality. Additionally, purified mitochondria from BAT and WAT were analyzed for uncoupling protein 1, cytochrome c (Cytc), and Cytc oxidase subunit 4 protein levels as an indirect measure of their metabolic activity. Serum metabolomic analysis was performed by NMR. Combined, our data show that APOC3 modulates HDL structure and function, while it selectively promotes BAT metabolic activation.
Collapse
Affiliation(s)
- Evangelia Zvintzou
- Pharmacology Department, University of Patras Medical School, Rio Achaias TK 26500, Greece
| | - Marie Lhomme
- ICANalytics and INSERM UMR_S 1166, ICAN, 75013 Paris, France
| | - Stella Chasapi
- Department of Pharmacy, University of Patras, 26504 Patras, Greece
| | - Serafoula Filou
- Pharmacology Department, University of Patras Medical School, Rio Achaias TK 26500, Greece
| | | | - Eva Xapapadaki
- Pharmacology Department, University of Patras Medical School, Rio Achaias TK 26500, Greece
| | - Anatol Kontush
- Faculté de Médecine Pitié-Salpêtrière, ICAN, 75013 Paris, France
| | | | - Constantinos C Tellis
- Laboratory of Biochemistry, Department of Chemistry, University of Ioannina, 45110 Ioannina, Greece
| | - Alexandros D Tselepis
- Laboratory of Biochemistry, Department of Chemistry, University of Ioannina, 45110 Ioannina, Greece
| | - Caterina Constantinou
- Pharmacology Department, University of Patras Medical School, Rio Achaias TK 26500, Greece
| | - Kyriakos E Kypreos
- Pharmacology Department, University of Patras Medical School, Rio Achaias TK 26500, Greece
| |
Collapse
|
40
|
Tudorache IF, Trusca VG, Gafencu AV. Apolipoprotein E - A Multifunctional Protein with Implications in Various Pathologies as a Result of Its Structural Features. Comput Struct Biotechnol J 2017; 15:359-365. [PMID: 28660014 PMCID: PMC5476973 DOI: 10.1016/j.csbj.2017.05.003] [Citation(s) in RCA: 116] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Revised: 05/15/2017] [Accepted: 05/22/2017] [Indexed: 12/31/2022] Open
Abstract
Apolipoprotein E (apoE), a 34 kDa glycoprotein, mediates hepatic and extrahepatic uptake of plasma lipoproteins and cholesterol efflux from lipid-laden macrophages. In humans, three structural different apoE isoforms occur, with subsequent functional changes and pathological consequences. Here, we review data supporting the involvement of apoE structural domains and isoforms in normal and altered lipid metabolism, cardiovascular and neurodegenerative diseases, as well as stress-related pathological states. Studies using truncated apoE forms provided valuable information regarding the regions and residues responsible for its properties. ApoE3 renders protection against cardiovascular diseases by maintaining lipid homeostasis, while apoE2 is associated with dysbetalipoproteinemia. ApoE4 is a recognized risk factor for Alzheimer's disease, although the exact mechanism of the disease initiation and progression is not entirely elucidated. ApoE is also implicated in infections with herpes simplex type-1, hepatitis C and human immunodeficiency viruses. Interacting with both viral and host molecules, apoE isoforms differently interfere with the viral life cycle. ApoE exerts anti-inflammatory effects, switching macrophage phenotype from the proinflammatory M1 to the anti-inflammatory M2, suppressing CD4+ and CD8+ lymphocytes, and reducing IL-2 production. The anti-oxidative properties of apoE are isoform-dependent, modulating the levels of various molecules (Nrf2 target genes, metallothioneins, paraoxonase). Mimetic peptides were designed to exploit apoE beneficial properties. The "structure correctors" which convert apoE4 into apoE3-like molecules have pharmacological potential. Despite no successful strategy is yet available for apoE-related disorders, several promising candidates deserve further improvement and exploitation.
Collapse
Key Words
- AD, Alzheimer's disease
- ApoE
- ApoE, Apolipoprotein E
- CVD, cardiovascular disease
- HCV, hepatitis C virus
- HDL, high-density lipoprotein
- HIV, human immunodeficiency virus
- HLP, phospholipid transfer protein
- HSPGs, heparan sulfate proteoglycans
- HSV-1, herpes simplex virus type-1
- Isoform
- LDL, low density lipoprotein
- LPG, lipoprotein glomerulopathy
- LPL, lipoprotein lipase
- Mimetic peptide
- NS5A, nonstructural protein 5A
- PLTP, type III hyperlipoproteinemia
- Structural domain
- TG, triglyceride
- Truncated molecule
- VLDL, very-low-density lipoprotein
Collapse
Affiliation(s)
| | | | - Anca Violeta Gafencu
- Institute of Cellular Biology and Pathology “Nicolae Simionescu” of the Romanian Academy, 8 B. P. Hasdeu Street, Sector 5, 050568 Bucharest, Romania
| |
Collapse
|
41
|
Papachristou NI, Blair HC, Kypreos KE, Papachristou DJ. High-density lipoprotein (HDL) metabolism and bone mass. J Endocrinol 2017; 233:R95-R107. [PMID: 28314771 PMCID: PMC5598779 DOI: 10.1530/joe-16-0657] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2017] [Accepted: 03/17/2017] [Indexed: 02/06/2023]
Abstract
It is well appreciated that high-density lipoprotein (HDL) and bone physiology and pathology are tightly linked. Studies, primarily in mouse models, have shown that dysfunctional and/or disturbed HDL can affect bone mass through many different ways. Specifically, reduced HDL levels have been associated with the development of an inflammatory microenvironment that affects the differentiation and function of osteoblasts. In addition, perturbation in metabolic pathways of HDL favors adipoblastic differentiation and restrains osteoblastic differentiation through, among others, the modification of specific bone-related chemokines and signaling cascades. Increased bone marrow adiposity also deteriorates bone osteoblastic function and thus bone synthesis, leading to reduced bone mass. In this review, we present the current knowledge and the future directions with regard to the HDL-bone mass connection. Unraveling the molecular phenomena that underline this connection will promote the deeper understanding of the pathophysiology of bone-related pathologies, such as osteoporosis or bone metastasis, and pave the way toward the development of novel and more effective therapies against these conditions.
Collapse
Affiliation(s)
- Nicholaos I Papachristou
- Department of Anatomy-Histology-EmbryologyUnit of Bone and Soft Tissue Studies, University of Patras Medical School, Patras, Greece
| | - Harry C Blair
- Department of PathologyUniversity of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
- Pittsburgh VA Medical CenterPittsburgh, Pennsylvania, USA
| | - Kyriakos E Kypreos
- Department of PharmacologyUniversity of Patras Medical School, Patras, Greece
| | - Dionysios J Papachristou
- Department of Anatomy-Histology-EmbryologyUnit of Bone and Soft Tissue Studies, University of Patras Medical School, Patras, Greece
- Department of PathologyUniversity of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
42
|
Maulucci G, Cohen O, Daniel B, Sansone A, Petropoulou PI, Filou S, Spyridonidis A, Pani G, De Spirito M, Chatgilialoglu C, Ferreri C, Kypreos KE, Sasson S. Fatty acid-related modulations of membrane fluidity in cells: detection and implications. Free Radic Res 2016; 50:S40-S50. [PMID: 27593084 DOI: 10.1080/10715762.2016.1231403] [Citation(s) in RCA: 96] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Metabolic homeostasis of fatty acids is complex and well-regulated in all organisms. The biosynthesis of saturated fatty acids (SFA) in mammals provides substrates for β-oxidation and ATP production. Monounsaturated fatty acids (MUFA) are products of desaturases that introduce a methylene group in cis geometry in SFA. Polyunsaturated fatty acids (n-6 and n-3 PUFA) are products of elongation and desaturation of the essential linoleic acid and α-linolenic acid, respectively. The liver processes dietary fatty acids and exports them in lipoproteins for distribution and storage in peripheral tissues. The three types of fatty acids are integrated in membrane phospholipids and determine their biophysical properties and functions. This study was aimed at investigating effects of fatty acids on membrane biophysical properties under varying nutritional and pathological conditions, by integrating lipidomic analysis of membrane phospholipids with functional two-photon microscopy (fTPM) of cellular membranes. This approach was applied to two case studies: first, pancreatic beta-cells, to investigate hormetic and detrimental effects of lipids. Second, red blood cells extracted from a genetic mouse model defective in lipoproteins, to understand the role of lipids in hepatic diseases and metabolic syndrome and their effect on circulating cells.
Collapse
Affiliation(s)
- G Maulucci
- a Institute of Physics, Università Cattolica del Sacro Cuore , Roma , Italy
| | - O Cohen
- b Institute for Drug Research, Section of Pharmacology, Diabetes Research Unit, Faculty of Medicine , The Hebrew University , Jerusalem , Israel
| | - B Daniel
- b Institute for Drug Research, Section of Pharmacology, Diabetes Research Unit, Faculty of Medicine , The Hebrew University , Jerusalem , Israel
| | - A Sansone
- c ISOF, BioFreeRadicals Group, Consiglio Nazionale delle Ricerche , Bologna , Italy
| | - P I Petropoulou
- d Department of Pharmacology , University of Patras Medical School , Rio , Greece
| | - S Filou
- d Department of Pharmacology , University of Patras Medical School , Rio , Greece
| | - A Spyridonidis
- e Hematology Department , University of Patras Medical School , Rio , Greece
| | - G Pani
- f Institute of General Pathology, Università Cattolica del Sacro Cuore , Roma , Italy
| | - M De Spirito
- a Institute of Physics, Università Cattolica del Sacro Cuore , Roma , Italy
| | - C Chatgilialoglu
- c ISOF, BioFreeRadicals Group, Consiglio Nazionale delle Ricerche , Bologna , Italy
| | - C Ferreri
- c ISOF, BioFreeRadicals Group, Consiglio Nazionale delle Ricerche , Bologna , Italy
| | - K E Kypreos
- d Department of Pharmacology , University of Patras Medical School , Rio , Greece
| | - S Sasson
- b Institute for Drug Research, Section of Pharmacology, Diabetes Research Unit, Faculty of Medicine , The Hebrew University , Jerusalem , Israel
| |
Collapse
|