1
|
Ten Kate GA, Sanders P, Dijkhuizen L, van Leeuwen SS. Kinetics and products of Thermotoga maritima β-glucosidase with lactose and cellobiose. Appl Microbiol Biotechnol 2024; 108:349. [PMID: 38809317 PMCID: PMC11136819 DOI: 10.1007/s00253-024-13183-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 05/09/2024] [Accepted: 05/14/2024] [Indexed: 05/30/2024]
Abstract
Galacto-oligosaccharides (GOS) are prebiotic compounds that are mainly used in infant formula to mimic bifidogenic effects of mother's milk. They are synthesized by β-galactosidase enzymes in a trans-glycosylation reaction with lactose. Many β-galactosidase enzymes from different sources have been studied, resulting in varying GOS product compositions and yields. The in vivo role of these enzymes is in lactose hydrolysis. Therefore, the best GOS yields were achieved at high lactose concentrations up to 60%wt, which require a relatively high temperature to dissolve. Some thermostable β-glucosidase enzymes from thermophilic bacteria are also capable of using lactose or para nitrophenyl-galactose as a substrate. Here, we describe the use of the β-glucosidase BglA from Thermotoga maritima for synthesis of oligosaccharides derived from lactose and cellobiose and their detailed structural characterization. Also, the BglA enzyme kinetics and yields were determined, showing highest productivity at higher lactose and cellobiose concentrations. The BglA trans-glycosylation/hydrolysis ratio was higher with 57%wt lactose than with a nearly saturated cellobiose (20%wt) solution. The yield of GOS was very high, reaching 72.1%wt GOS from lactose. Structural elucidation of the products showed mainly β(1 → 3) and β(1 → 6) elongating activity, but also some β(1 → 4) elongation was observed. The β-glucosidase BglA from T. maritima was shown to be a very versatile enzyme, producing high yields of oligosaccharides, particularly GOS from lactose. KEY POINTS: • β-Glucosidase of Thermotoga maritima synthesizes GOS from lactose at very high yield. • Thermotoga maritima β-glucosidase has high activity and high thermostability. • Thermotoga maritima β-glucosidase GOS contains mainly (β1-3) and (β1-6) linkages.
Collapse
Affiliation(s)
- Geert A Ten Kate
- Microbial Physiology, Groningen Biomolecular Sciences and Biotechnology Institute (GBB), University of Groningen, Nijenborgh 7, 9747 AG, Groningen, The Netherlands
- Royal FrieslandCampina, Stationsplein 4, 3818 LE, Amersfoort, The Netherlands
| | - Peter Sanders
- Eurofins Expertise Centre for Complex Carbohydrates and Chemistry, PO Box 766, 8440 AT, Heerenveen, The Netherlands
| | - Lubbert Dijkhuizen
- Microbial Physiology, Groningen Biomolecular Sciences and Biotechnology Institute (GBB), University of Groningen, Nijenborgh 7, 9747 AG, Groningen, The Netherlands
- CarbExplore Research BV, Zernikelaan 8, 9747 AA, Groningen, The Netherlands
| | - Sander S van Leeuwen
- Microbial Physiology, Groningen Biomolecular Sciences and Biotechnology Institute (GBB), University of Groningen, Nijenborgh 7, 9747 AG, Groningen, The Netherlands.
- Department of Laboratory Medicine, University of Groningen, University Medical Center Groningen, Hanzeplein 1, EA30, 9713 GZ, Groningen, The Netherlands.
- Van Hall Larenstein, University of Applied Sciences, Agora 1, P.O. box 1528, 8901 BV, Leeuwarden, The Netherlands.
| |
Collapse
|
2
|
Liu P, Chen Y, Ma C, Ouyang J, Zheng Z. β-Galactosidase: a traditional enzyme given multiple roles through protein engineering. Crit Rev Food Sci Nutr 2023:1-20. [PMID: 38108277 DOI: 10.1080/10408398.2023.2292282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2023]
Abstract
β-Galactosidases are crucial carbohydrate-active enzymes that naturally catalyze the hydrolysis of galactoside bonds in oligo- and disaccharides. These enzymes are commonly used to degrade lactose and produce low-lactose and lactose-free dairy products that are beneficial for lactose-intolerant people. β-galactosidases exhibit transgalactosylation activity, and they have been employed in the synthesis of galactose-containing compounds such as galactooligosaccharides. However, most β-galactosidases have intrinsic limitations, such as low transglycosylation efficiency, significant product inhibition effects, weak thermal stability, and a narrow substrate spectrum, which greatly hinder their applications. Enzyme engineering offers a solution for optimizing their catalytic performance. The study of the enzyme's structure paves the way toward explaining catalytic mechanisms and increasing the efficiency of enzyme engineering. In this review, the structure features of β-galactosidases from different glycosyl hydrolase families and the catalytic mechanisms are summarized in detail to offer guidance for protein engineering. The properties and applications of β-galactosidases are discussed. Additionally, the latest progress in β-galactosidase engineering and the strategies employed are highlighted. Based on the combined analysis of structure information and catalytic mechanisms, the ultimate goal of this review is to furnish a thorough direction for β-galactosidases engineering and promote their application in the food and dairy industries.
Collapse
Affiliation(s)
- Peng Liu
- School of Grain Science and Technology, Jiangsu University of Science and Technology, Zhenjiang, People's Republic of China
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing, People's Republic of China
| | - Yuehua Chen
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing, People's Republic of China
| | - Cuiqing Ma
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, People's Republic of China
| | - Jia Ouyang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing, People's Republic of China
| | - Zhaojuan Zheng
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing, People's Republic of China
| |
Collapse
|
3
|
Sun H, Lv Y, Zhang J, Zhou C, Su X. A dual-signal fluorometric and colorimetric sensing platform based on gold-platinum bimetallic nanoclusters for the determination of β-galactosidase activity. Anal Chim Acta 2023; 1252:341010. [PMID: 36935161 DOI: 10.1016/j.aca.2023.341010] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 02/21/2023] [Accepted: 02/23/2023] [Indexed: 02/25/2023]
Abstract
Herein, a novel dual-signal sensing system for the determination of β-galactosidase (β-Gal) activity was established, which was based on a dual-emission probe assembled from gold-platinum bimetallic nanoclusters (Au-Pt NCs) and rhodamine B. Under the catalysis of β-Gal, 4-nitrophenyl β-D-galactopyranoside (PNPG) was rapidly hydrolyzed to generate p-nitrophenol (PNP), which has an obvious UV absorption peak at 400 nm. The hydrolyzed product PNP can quench the fluorescence of Au-Pt NCs effectively by inner filter effect (IFE), and PNP had no impact on the fluorescence of rhodamine B, which will change the emission intensity ratio of Au-Pt NCs and rhodamine B. Therefore, the ratiometric fluorescent and colorimetric dual-signal sensor based on Au-Pt NCs and rhodamine B was successfully constructed for sensitive detection of β-Gal activity. The linear detection range for the ratiometric fluorescence and colorimetric methods were 2.5-25 U/L and 15-55 U/L with detection limits of 1.2 U/L and 5.2 U/L, respectively. The developed assay method has been used for quantitative detection of β-Gal in spiked serum samples and showed good performance. And the detection platform has high reliability and excellent selectivity, which opens a new avenue for the further application of Au-Pt NCs in chemical sensing and biological analysis.
Collapse
Affiliation(s)
- Huilin Sun
- Department of Analytical Chemistry, College of Chemistry, Jilin University, Changchun, 130012, China
| | - Yuntai Lv
- Department of Analytical Chemistry, College of Chemistry, Jilin University, Changchun, 130012, China
| | - Jiabao Zhang
- Department of Analytical Chemistry, College of Chemistry, Jilin University, Changchun, 130012, China
| | - Chenyu Zhou
- Department of Analytical Chemistry, College of Chemistry, Jilin University, Changchun, 130012, China
| | - Xingguang Su
- Department of Analytical Chemistry, College of Chemistry, Jilin University, Changchun, 130012, China.
| |
Collapse
|
4
|
Harvey DJ. Analysis of carbohydrates and glycoconjugates by matrix-assisted laser desorption/ionization mass spectrometry: An update for 2017-2018. MASS SPECTROMETRY REVIEWS 2023; 42:227-431. [PMID: 34719822 DOI: 10.1002/mas.21721] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Revised: 07/26/2021] [Accepted: 07/26/2021] [Indexed: 06/13/2023]
Abstract
This review is the tenth update of the original article published in 1999 on the application of matrix-assisted laser desorption/ionization mass spectrometry (MALDI) mass spectrometry to the analysis of carbohydrates and glycoconjugates and brings coverage of the literature to the end of 2018. Also included are papers that describe methods appropriate to glycan and glycoprotein analysis by MALDI, such as sample preparation techniques, even though the ionization method is not MALDI. Topics covered in the first part of the review include general aspects such as theory of the MALDI process, new methods, matrices, derivatization, MALDI imaging, fragmentation and the use of arrays. The second part of the review is devoted to applications to various structural types such as oligo- and poly-saccharides, glycoproteins, glycolipids, glycosides, and biopharmaceuticals. Most of the applications are presented in tabular form. The third part of the review covers medical and industrial applications of the technique, studies of enzyme reactions, and applications to chemical synthesis. The reported work shows increasing use of combined new techniques such as ion mobility and highlights the impact that MALDI imaging is having across a range of diciplines. MALDI is still an ideal technique for carbohydrate analysis and advancements in the technique and the range of applications continue steady progress.
Collapse
Affiliation(s)
- David J Harvey
- Nuffield Department of Medicine, Target Discovery Institute, University of Oxford, Oxford, UK
| |
Collapse
|
5
|
Souza AFCE, Gabardo S, Coelho RDJS. Galactooligosaccharides: Physiological benefits, production strategies, and industrial application. J Biotechnol 2022; 359:116-129. [DOI: 10.1016/j.jbiotec.2022.09.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 09/09/2022] [Accepted: 09/27/2022] [Indexed: 01/05/2023]
|
6
|
Franco YN, Mesa M. Complementary experimental/docking approach for determining chitosan and carboxymethylchitosan ability for the formation of active polymer-β-galactosidase adducts. Int J Biol Macromol 2021; 192:736-744. [PMID: 34655585 DOI: 10.1016/j.ijbiomac.2021.10.020] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 09/30/2021] [Accepted: 10/04/2021] [Indexed: 11/27/2022]
Abstract
The spontaneous aggregation of chitosan and carboxymethylchitosan polymers can be advantageous for the enzyme confinement on these colloidal systems during immobilization processes. The initial crucial step involves the polymer-enzyme adduct formation. The objective here is to determine the interactions that drive the adduct formation between these polymers and β-galactosidase from Bacillus circulans. The chemical characterization of chitosan and its carboxymethyl-derivate allowed to explain their colloidal behavior and design the four-unit fragments ligands used for the docking study. The deacetylation degree (0.6 times lower), isoelectric point (5.2 instead 6.4) and substitution degree (DSO = 1.779 and DS2N = 0.441) of carboxymenthylchitosan are due to the hydroxide concentration (>25%) and 30 °C modification conditions. Favorable Van der Waals and H-bond interactions between chitosan-β-galactosidase and contribution of electrostatic attraction mediated by calcium ions for carboxymethylchitosan-β-galactosidase explained the zeta potential and dynamic light scattering results at pH 7.0. These interactions occur onto the external surface of this galactosidase, without affecting the catalytic activity. A cross-linked enzyme aggregates-type model was proposed for the formation of the adducts, based on the complementary experimental-docking results. They contribute understanding the behavior of polyelectrolyte chitosan-derived matrices for enzyme immobilization.
Collapse
Affiliation(s)
- Y N Franco
- Materials Science Group, Institute of Chemistry, University of Antioquia, Calle 70 #52-21, AA 1226 Medellín, Colombia
| | - M Mesa
- Materials Science Group, Institute of Chemistry, University of Antioquia, Calle 70 #52-21, AA 1226 Medellín, Colombia.
| |
Collapse
|
7
|
Mészáros Z, Nekvasilová P, Bojarová P, Křen V, Slámová K. Reprint of: Advanced glycosidases as ingenious biosynthetic instruments. Biotechnol Adv 2021; 51:107820. [PMID: 34462167 DOI: 10.1016/j.biotechadv.2021.107820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 03/09/2021] [Accepted: 03/17/2021] [Indexed: 11/27/2022]
Abstract
Until recently, glycosidases, naturally hydrolyzing carbohydrate-active enzymes, have found few synthetic applications in industry, being primarily used for cleaving unwanted carbohydrates. With the establishment of glycosynthase and transglycosidase technology by genetic engineering, the view of glycosidases as industrial biotechnology tools has started to change. Their easy production, affordability, robustness, and substrate versatility, added to the possibility of controlling undesired side hydrolysis by enzyme engineering, have made glycosidases competitive synthetic tools. Current promising applications of engineered glycosidases include the production of well-defined chitooligomers, precious galactooligosaccharides or specialty chemicals such as glycosylated flavonoids. Other synthetic pathways leading to human milk oligosaccharides or remodeled antibodies are on the horizon. This work provides an overview of the synthetic achievements to date for glycosidases, emphasizing the latest trends and outlining possible developments in the field.
Collapse
Affiliation(s)
- Zuzana Mészáros
- Institute of Microbiology, Czech Academy of Sciences, Vídeňská 1083, CZ-14220 Praha 4, Czech Republic; Faculty of Food and Biochemical Technology, University of Chemistry and Technology Prague, Technická 1903/3, CZ-16628 Praha 6, Czech Republic
| | - Pavlína Nekvasilová
- Institute of Microbiology, Czech Academy of Sciences, Vídeňská 1083, CZ-14220 Praha 4, Czech Republic; Department of Genetics and Microbiology, Faculty of Science, Charles University, Viničná 5, CZ-12843, Praha 2, Czech Republic
| | - Pavla Bojarová
- Institute of Microbiology, Czech Academy of Sciences, Vídeňská 1083, CZ-14220 Praha 4, Czech Republic
| | - Vladimír Křen
- Institute of Microbiology, Czech Academy of Sciences, Vídeňská 1083, CZ-14220 Praha 4, Czech Republic
| | - Kristýna Slámová
- Institute of Microbiology, Czech Academy of Sciences, Vídeňská 1083, CZ-14220 Praha 4, Czech Republic.
| |
Collapse
|
8
|
Baek Y, Ahn Y, Shin J, Suh HJ, Jo K. Evaluation of Safety through Acute and Subacute Tests of Galacto-Oligosaccharide (GOS). Prev Nutr Food Sci 2021; 26:315-320. [PMID: 34737992 PMCID: PMC8531431 DOI: 10.3746/pnf.2021.26.3.315] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 04/23/2021] [Indexed: 11/28/2022] Open
Abstract
Acute and subacute toxicity tests were undertaken on a novel galacto-oligosaccharide (GOS) produced from lactose by β-galactosidase derived from Bacillus circulans. Toxicity was evaluated by single dose oral administration (5,000 mg/kg) and was repeated at day 28 (1,000 mg/kg) in male and female Sprague-Dawley rats. In acute toxicity tests, the protein levels of male rats administered GOS showed a significant difference from controls, but remained within the normal range. There were no GOS-related changes in clinical symptoms, weight, food intake, hematology, blood chemistry, relative organ weight, or severe pathology in rats treated with GOS compared with controls. The no observed adverse effect level of GOS was at least 1,000 mg/kg/d in both male and female rats. Bovine-specific genes were not detected in GOS 70%-based products (NeoGOS-P70, NeoGOS-L70, and organic GOS), indirectly showing the absence of an allergen and that products containing GOS 70% are non-toxic and allergen-free.
Collapse
Affiliation(s)
- Youngjin Baek
- Department of Integrated Biomedical and Life Science, Graduate School, Korea University, Seoul 02841, Korea.,Department of R&D, Neo Cremar Co., Ltd., Seoul 05702, Korea
| | - Yejin Ahn
- Department of Integrated Biomedical and Life Science, Graduate School, Korea University, Seoul 02841, Korea
| | - Jungcheul Shin
- Department of R&D, Neo Cremar Co., Ltd., Seoul 05702, Korea
| | - Hyung Joo Suh
- Department of Integrated Biomedical and Life Science, Graduate School, Korea University, Seoul 02841, Korea
| | - Kyungae Jo
- Department of Integrated Biomedical and Life Science, Graduate School, Korea University, Seoul 02841, Korea
| |
Collapse
|
9
|
Liu P, Wu J, Liu J, Ouyang J. Engineering of a β-galactosidase from Bacillus coagulans to relieve product inhibition and improve hydrolysis performance. J Dairy Sci 2021; 104:10566-10575. [PMID: 34334201 DOI: 10.3168/jds.2021-20388] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Accepted: 05/27/2021] [Indexed: 11/19/2022]
Abstract
Most β-galactosidases reported are sensitive to the end product (galactose), making it the rate-limiting component for the efficient degradation of lactose through the enzymatic route. Therefore, there is ongoing interest in searching for galactose-tolerant β-galactosidases. In the present study, the predicted galactose-binding residues of β-galactosidase from Bacillus coagulans, which were determined by molecular docking, were selected for alanine substitution. The asparagine residue at position 148 (N148) is correlated with the reduction of galactose inhibition. Saturation mutations revealed that the N148C, N148D, N148S, and N148G mutants exhibited weaker galactose inhibition effects. The N148D mutant was used for lactose hydrolysis and exhibited a higher hydrolytic rate. Molecular dynamics revealed that the root mean square deviation and gyration radius of the N148D-galactose complex were higher than those of wild-type enzyme-galactose complex. In addition, the N148D mutant had a higher absolute binding free-energy value. All these factors may lead to a lower affinity between galactose and the mutant enzyme. The use of mutant enzyme may have potential value in lactose hydrolysis.
Collapse
Affiliation(s)
- Peng Liu
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, People's Republic of China; College of Forestry, Nanjing Forestry University, Nanjing 210037, People's Republic of China
| | - Jiawei Wu
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, People's Republic of China; College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, People's Republic of China
| | - Junhua Liu
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, People's Republic of China; College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, People's Republic of China
| | - Jia Ouyang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, People's Republic of China; College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, People's Republic of China.
| |
Collapse
|
10
|
Madhavan A, Arun KB, Binod P, Sirohi R, Tarafdar A, Reshmy R, Kumar Awasthi M, Sindhu R. Design of novel enzyme biocatalysts for industrial bioprocess: Harnessing the power of protein engineering, high throughput screening and synthetic biology. BIORESOURCE TECHNOLOGY 2021; 325:124617. [PMID: 33450638 DOI: 10.1016/j.biortech.2020.124617] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Revised: 12/19/2020] [Accepted: 12/22/2020] [Indexed: 05/13/2023]
Abstract
Biocatalysts have wider applications in various industries. Biocatalysts are generating bigger attention among researchers due to their unique catalytic properties like activity, specificity and stability. However the industrial use of many enzymes is hindered by low catalytic efficiency and stability during industrial processes. Properties of enzymes can be altered by protein engineering. Protein engineers are increasingly study the structure-function characteristics, engineering attributes, design of computational tools for enzyme engineering, and functional screening processes to improve the design and applications of enzymes. The potent and innovative techniques of enzyme engineering deliver outstanding opportunities for tailoring industrially important enzymes for the versatile production of biochemicals. An overview of the current trends in enzyme engineering is explored with important representative examples.
Collapse
Affiliation(s)
- Aravind Madhavan
- Rajiv Gandhi Centre for Biotechnology, Trivandrum 695 014, India
| | - K B Arun
- Rajiv Gandhi Centre for Biotechnology, Trivandrum 695 014, India
| | - Parameswaran Binod
- Microbial Processes and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST), Trivandrum 695 019, India
| | - Ranjna Sirohi
- The Center for Energy and Environmental Sustainability, Lucknow 226 010, Uttar Pradesh, India
| | - Ayon Tarafdar
- Division of Livestock Production and Management, ICAR - Indian Veterinary Research Institute, Izatnagar, Bareilly 243 122, Uttar Pradesh, India
| | - R Reshmy
- Post Graduate and Research Department of Chemistry, Bishop Moore College, Mavelikara 690 110, Kerala, India
| | - Mukesh Kumar Awasthi
- College of Natural Resources and Environment, North West A & F University, Yangling, Shaanxi 712 100, China
| | - Raveendran Sindhu
- Microbial Processes and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST), Trivandrum 695 019, India.
| |
Collapse
|
11
|
Mészáros Z, Nekvasilová P, Bojarová P, Křen V, Slámová K. Advanced glycosidases as ingenious biosynthetic instruments. Biotechnol Adv 2021; 49:107733. [PMID: 33781890 DOI: 10.1016/j.biotechadv.2021.107733] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 03/09/2021] [Accepted: 03/17/2021] [Indexed: 12/22/2022]
Abstract
Until recently, glycosidases, naturally hydrolyzing carbohydrate-active enzymes, have found few synthetic applications in industry, being primarily used for cleaving unwanted carbohydrates. With the establishment of glycosynthase and transglycosidase technology by genetic engineering, the view of glycosidases as industrial biotechnology tools has started to change. Their easy production, affordability, robustness, and substrate versatility, added to the possibility of controlling undesired side hydrolysis by enzyme engineering, have made glycosidases competitive synthetic tools. Current promising applications of engineered glycosidases include the production of well-defined chitooligomers, precious galactooligosaccharides or specialty chemicals such as glycosylated flavonoids. Other synthetic pathways leading to human milk oligosaccharides or remodeled antibodies are on the horizon. This work provides an overview of the synthetic achievements to date for glycosidases, emphasizing the latest trends and outlining possible developments in the field.
Collapse
Affiliation(s)
- Zuzana Mészáros
- Institute of Microbiology, Czech Academy of Sciences, Vídeňská 1083, CZ-14220 Praha 4, Czech Republic; Faculty of Food and Biochemical Technology, University of Chemistry and Technology Prague, Technická 1903/3, CZ-16628 Praha 6, Czech Republic
| | - Pavlína Nekvasilová
- Institute of Microbiology, Czech Academy of Sciences, Vídeňská 1083, CZ-14220 Praha 4, Czech Republic; Department of Genetics and Microbiology, Faculty of Science, Charles University, Viničná 5, CZ-12843, Praha 2, Czech Republic
| | - Pavla Bojarová
- Institute of Microbiology, Czech Academy of Sciences, Vídeňská 1083, CZ-14220 Praha 4, Czech Republic
| | - Vladimír Křen
- Institute of Microbiology, Czech Academy of Sciences, Vídeňská 1083, CZ-14220 Praha 4, Czech Republic
| | - Kristýna Slámová
- Institute of Microbiology, Czech Academy of Sciences, Vídeňská 1083, CZ-14220 Praha 4, Czech Republic.
| |
Collapse
|
12
|
Movahedpour A, Ahmadi N, Ghalamfarsa F, Ghesmati Z, Khalifeh M, Maleksabet A, Shabaninejad Z, Taheri-Anganeh M, Savardashtaki A. β-Galactosidase: From its source and applications to its recombinant form. Biotechnol Appl Biochem 2021; 69:612-628. [PMID: 33656174 DOI: 10.1002/bab.2137] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 02/19/2021] [Indexed: 12/12/2022]
Abstract
Carbohydrate-active enzymes are a group of important enzymes playing a critical role in the degradation and synthesis of carbohydrates. Glycosidases can hydrolyze glycosides into oligosaccharides, polysaccharides, and glycoconjugates via a cost-effective approach. Lactase is an important member of β-glycosidases found in higher plants, animals, and microorganisms. β-Galactosidases can be used to degrade the milk lactose for making lactose-free milk, which is sweeter than regular milk and is suitable for lactose-intolerant people. β-Galactosidase is employed by many food industries to degrade lactose and improve the digestibility, sweetness, solubility, and flavor of dairy products. β-Galactosidase enzymes have various families and are applied in the food-processing industries such as hydrolyzed-milk products, whey, and galactooligosaccharides. Thus, this enzyme is a valuable protein which is now produced by recombinant technology. In this review, origins, structure, recombinant production, and critical modifications of β-galactosidase for improving the production process are discussed. Since β-galactosidase is a valuable enzyme in industry and health care, a study of its various aspects is important in industrial biotechnology and applied biochemistry.
Collapse
Affiliation(s)
- Ahmad Movahedpour
- Department of Medical Biotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran.,Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Nahid Ahmadi
- Department of Medical Biotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Farideh Ghalamfarsa
- Department of Medical Biotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Zeinab Ghesmati
- Department of Medical Biotechnology, School of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Masoomeh Khalifeh
- Department of Medical Biotechnology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amir Maleksabet
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Zahra Shabaninejad
- Department of Nanobiotechnology, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran.,Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mortaza Taheri-Anganeh
- Shahid Arefian Hospital, Urmia, Iran.,Cellular and Molecular Research Center, Cellular and Molecular Medicine Institute, Urmia University of Medical Sciences, Urmia, Iran
| | - Amir Savardashtaki
- Department of Medical Biotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran.,Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
13
|
Figueroa-Lozano S, Ren C, Yin H, Pham H, van Leeuwen S, Dijkhuizen L, de Vos P. The impact of oligosaccharide content, glycosidic linkages and lactose content of galacto-oligosaccharides (GOS) on the expression of mucus-related genes in goblet cells. Food Funct 2021; 11:3506-3515. [PMID: 32253406 DOI: 10.1039/d0fo00064g] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Galacto-oligosaccharides (GOS) have been reported to modulate the function of intestinal goblet cells and to improve mucus barrier function. However, GOS is available in many structurally different compositions and it is unknown how GOS structural diversity impacts this modulation of goblet cells. This study aims to investigate the effects of oligosaccharide content and glycosidic linkages of GOS on expression of genes associated with the secretory function of goblet cells. To investigate the effect of oligosaccharide content, LS174T cells were incubated with (β1 → 4)GOS of variable transgalactosylated oligosaccharides and lactose (Lac) composition. To investigate the effect of glycosidic linkages, we compared the effects of (β1 → 4)GOS with (β1 → 3)GOS, and with a mixture of α-linked oligosaccharides (lactose-derived oligosaccharides-LDO). The changes in mRNA expression of mucus-related genes were assessed by RT-PCR. GOS containing Lac significantly enhanced the expression of MUC2, TFF3 and RETNLB but not of Golgi sulfotransferases genes. In contrast, GOS without Lac did not impact these genes. Lac alone significantly enhanced MUC2, TFF3, RETNLB, CHST5, and GAL3ST2 genes suggesting that Lac might be responsible for goblet cell modulation in (β1 → 4)GOS preparations. (β1 → 3)GOS induced the expression of MUC2 and TFF3, and downregulated the RETNLB gene. Compared with the (β1 → 3) and GOS (β1 → 4)GOS, the α-linked LDO significantly upregulated the expression MUC2, TFF3, RETNLB and the Golgi sulfotransferases genes. We identify structural features of GOS that contribute to enhanced mucus integrity. Our study might lead to better GOS formulations for foods to prevent or treat different types of intestinal disorders.
Collapse
Affiliation(s)
- Susana Figueroa-Lozano
- Immunoendocrinology, Division of Medical Biology, Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen (RUG-UMCG), Hanzeplein 1, 9700 RB Groningen, The Netherlands.
| | - Chengcheng Ren
- Immunoendocrinology, Division of Medical Biology, Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen (RUG-UMCG), Hanzeplein 1, 9700 RB Groningen, The Netherlands.
| | - Huifang Yin
- Microbial Physiology, Groningen Biomolecular Sciences and Biotechnology Institute (GBB), Nijenborgh 7, 9747 AG Groningen, The Netherlands
| | - Hien Pham
- Microbial Physiology, Groningen Biomolecular Sciences and Biotechnology Institute (GBB), Nijenborgh 7, 9747 AG Groningen, The Netherlands
| | - Sander van Leeuwen
- Microbial Physiology, Groningen Biomolecular Sciences and Biotechnology Institute (GBB), Nijenborgh 7, 9747 AG Groningen, The Netherlands and Department of Laboratory Medicine, RUG-UMCG, Hanzeplein 1, 9713 GZ Groningen, The Netherlands
| | - Lubbert Dijkhuizen
- Microbial Physiology, Groningen Biomolecular Sciences and Biotechnology Institute (GBB), Nijenborgh 7, 9747 AG Groningen, The Netherlands and CarbExplore Research BV, Zernikepark 12, 9747 AN Groningen, The Netherlands
| | - Paul de Vos
- Immunoendocrinology, Division of Medical Biology, Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen (RUG-UMCG), Hanzeplein 1, 9700 RB Groningen, The Netherlands.
| |
Collapse
|
14
|
Choi JY, Hong H, Seo H, Pan JG, Kim EJ, Maeng PJ, Yang TH, Kim KJ. High Galacto-Oligosaccharide Production and a Structural Model for Transgalactosylation of β-Galactosidase II from Bacillus circulans. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:13806-13814. [PMID: 33169609 DOI: 10.1021/acs.jafc.0c05871] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The transgalactosylase activity of β-galactosidase produces galacto-oligosaccharides (GOSs) with prebiotic effects similar to those of major oligosaccharides in human milk. β-Galactosidases from Bacillus circulans ATCC 31382 are important enzymes in industrial-scale GOS production. Here, we show the high GOS yield of β-galactosidase II from B. circulans (β-Gal-II, Lactazyme-B), compared to other commercial enzymes. We also determine the crystal structure of the five conserved domains of β-Gal-II in an apo-form and complexed with galactose and an acceptor sugar, showing the heterogeneous mode of transgalactosylation by the enzyme. Truncation studies of the five conserved domains reveal that all five domains are essential for enzyme catalysis, while some truncated constructs were still expressed as soluble proteins. Structural comparison of β-Gal-II with other β-galactosidase homologues suggests that the GOS linkage preference of the enzyme might be quite different from other enzymes. The structural information on β-Gal-II might provide molecular insights into the transgalactosylation process of the β-galactosidases in GOS production.
Collapse
Affiliation(s)
- Jae Youl Choi
- R&D Center, GenoFocus Inc., 65 Techno 1-ro, Yusung-gu, Daejeon 34014, Republic of Korea
- Department of Microbiology and Molecular Biology, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Hwaseok Hong
- School of Life Sciences, KNU Creative BioResearch Group, Kyungpook National University, Daegu 41566, Republic of Korea
- KNU Institute for Microorganisms, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Hogyun Seo
- School of Life Sciences, KNU Creative BioResearch Group, Kyungpook National University, Daegu 41566, Republic of Korea
- Pohang Accelerator Laboratory, Pohang University of Science and Technology, Pohang 37673, Republic of Korea
| | - Jae Gu Pan
- R&D Center, GenoFocus Inc., 65 Techno 1-ro, Yusung-gu, Daejeon 34014, Republic of Korea
| | - Eui Joong Kim
- R&D Center, GenoFocus Inc., 65 Techno 1-ro, Yusung-gu, Daejeon 34014, Republic of Korea
| | - Pil Jae Maeng
- Department of Microbiology and Molecular Biology, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Taek Ho Yang
- R&D Center, GenoFocus Inc., 65 Techno 1-ro, Yusung-gu, Daejeon 34014, Republic of Korea
| | - Kyung-Jin Kim
- School of Life Sciences, KNU Creative BioResearch Group, Kyungpook National University, Daegu 41566, Republic of Korea
- KNU Institute for Microorganisms, Kyungpook National University, Daegu 41566, Republic of Korea
| |
Collapse
|
15
|
Visootsat A, Nakamura A, Wang TW, Iino R. Combined Approach to Engineer a Highly Active Mutant of Processive Chitinase Hydrolyzing Crystalline Chitin. ACS OMEGA 2020; 5:26807-26816. [PMID: 33111007 PMCID: PMC7581260 DOI: 10.1021/acsomega.0c03911] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Accepted: 09/25/2020] [Indexed: 05/08/2023]
Abstract
Serratia marcescens chitinase A (SmChiA) processively hydrolyzes recalcitrant biomass crystalline chitin under mild conditions. Here, we combined multiple sequence alignment, site-saturation mutagenesis, and automated protein purification and activity measurement with liquid-handling robot to reduce the number of mutation trials and shorten the screening time for hydrolytic activity improvement of SmChiA. The amino acid residues, which are not conserved in the alignment and are close to the aromatic residues along the substrate-binding sites in the crystal structure, were selected for site-saturation mutagenesis. Using the previously identified highly active F232W/F396W mutant as a template, we identified the F232W/F396W/S538V mutant, which shows further improved hydrolytic activity just by trying eight different sites. Importantly, valine was not found in the multiple sequence alignment at Ser538 site of SmChiA. Our combined approach allows engineering of highly active enzyme mutants, which cannot be identified only by the introduction of predominant amino acid residues in the multiple sequence alignment.
Collapse
Affiliation(s)
- Akasit Visootsat
- Department
of Functional Molecular Science, School of Physical Sciences, SOKENDAI (The Graduate University for Advanced Studies), Hayama, Kanagawa 240-0193, Japan
- Institute
for Molecular Science, National Institutes
of Natural Sciences, Okazaki, Aichi 444-8787, Japan
| | - Akihiko Nakamura
- Department
of Applied Life Sciences, Faculty of Agriculture, Shizuoka University, Shizuoka, Shizuoka 422-8529, Japan
| | | | - Ryota Iino
- Department
of Functional Molecular Science, School of Physical Sciences, SOKENDAI (The Graduate University for Advanced Studies), Hayama, Kanagawa 240-0193, Japan
- Institute
for Molecular Science, National Institutes
of Natural Sciences, Okazaki, Aichi 444-8787, Japan
| |
Collapse
|
16
|
Logtenberg M, Donners KMH, Vink JCM, van Leeuwen SS, de Waard P, de Vos P, Schols HA. Touching the High Complexity of Prebiotic Vivinal Galacto-oligosaccharides Using Porous Graphitic Carbon Ultra-High-Performance Liquid Chromatography Coupled to Mass Spectrometry. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:7800-7808. [PMID: 32551629 PMCID: PMC7378999 DOI: 10.1021/acs.jafc.0c02684] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 06/10/2020] [Accepted: 06/17/2020] [Indexed: 06/07/2023]
Abstract
Galacto-oligosaccharides (GOS) are used in infant formula to replace the health effects of human milk oligosaccharides, which appear to be dependent upon the structure of the individual oligosaccharides present. However, a comprehensive overview of the structure-specific effects is still limited as a result of the high structural complexity of GOS. In this study, porous graphitic carbon (PGC) was used as the stationary phase during ultra-high-performance liquid chromatography-mass spectrometry (UHPLC-MS). This approach resulted in the recognition of more than 100 different GOS structures in one single run, including reducing and non-reducing GOS isomers. Using nuclear magnetic resonance-validated structures of GOS trisaccharides, we discovered MS fragmentation rules to distinguish reducing isomers with a mono- and disubstituted terminal glucose by UHPLC-PGC-MS. UHPLC-PGC-MS enabled effective recognition of structural features of individual GOS components in complex GOS preparations and during, e.g., biological conversion reactions. Hence, this study lays the groundwork for future research into structure-specific health effects of GOS.
Collapse
Affiliation(s)
- Madelon
J. Logtenberg
- Laboratory
of Food Chemistry, Wageningen University
& Research, Bornse Weilanden 9, 6708 WG Wageningen, Netherlands
| | - Kristel M. H. Donners
- Laboratory
of Food Chemistry, Wageningen University
& Research, Bornse Weilanden 9, 6708 WG Wageningen, Netherlands
| | - Jolien C. M. Vink
- Laboratory
of Food Chemistry, Wageningen University
& Research, Bornse Weilanden 9, 6708 WG Wageningen, Netherlands
| | - Sander S. van Leeuwen
- Cluster
Human Nutrition & Health, Department of Laboratory Medicine, University Medical Center Groningen, Hanzeplein 1, 9713 GZ Groningen, Netherlands
| | - Pieter de Waard
- Magnetic
Resonance Research Facility (MAGNEFY), Wageningen
University & Research, Stippeneng 4, 6708 WE Wageningen, Netherlands
| | - Paul de Vos
- Immunoendocrinology,
Department of Pathology and Medical Biology, University of Groningen and University Medical Centre Groningen, Hanzeplein 1, 9700 RB Groningen, Netherlands
| | - Henk A. Schols
- Laboratory
of Food Chemistry, Wageningen University
& Research, Bornse Weilanden 9, 6708 WG Wageningen, Netherlands
| |
Collapse
|
17
|
Chen L, Liang J. An overview of functional nanoparticles as novel emerging antiviral therapeutic agents. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 112:110924. [PMID: 32409074 PMCID: PMC7195146 DOI: 10.1016/j.msec.2020.110924] [Citation(s) in RCA: 127] [Impact Index Per Article: 31.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Revised: 03/23/2020] [Accepted: 03/31/2020] [Indexed: 01/04/2023]
Abstract
Research on highly effective antiviral drugs is essential for preventing the spread of infections and reducing losses. Recently, many functional nanoparticles have been shown to possess remarkable antiviral ability, such as quantum dots, gold and silver nanoparticles, nanoclusters, carbon dots, graphene oxide, silicon materials, polymers and dendrimers. Despite their difference in antiviral mechanism and inhibition efficacy, these functional nanoparticles-based structures have unique features as potential antiviral candidates. In this topical review, we highlight the antiviral efficacy and mechanism of these nanoparticles. Specifically, we introduce various methods for analyzing the viricidal activity of functional nanoparticles and the latest advances in antiviral functional nanoparticles. Furthermore, we systematically describe the advantages and disadvantages of these functional nanoparticles in viricidal applications. Finally, we discuss the challenges and prospects of antiviral nanostructures. This topic review covers 132 papers and will enrich our knowledge about the antiviral efficacy and mechanism of various functional nanoparticles.
Collapse
Affiliation(s)
- Lu Chen
- State Key Laboratory of Agricultural Microbiology, College of Science, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Jiangong Liang
- State Key Laboratory of Agricultural Microbiology, College of Science, Huazhong Agricultural University, Wuhan 430070, PR China.
| |
Collapse
|
18
|
Füreder V, Rodriguez-Colinas B, Cervantes FV, Fernandez-Arrojo L, Poveda A, Jimenez-Barbero J, Ballesteros AO, Plou FJ. Selective Synthesis of Galactooligosaccharides Containing β(1→3) Linkages with β-Galactosidase from Bifidobacterium bifidum (Saphera). JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:4930-4938. [PMID: 32279499 DOI: 10.1021/acs.jafc.0c00997] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The transglycosylation activity of a novel commercial β-galactosidase from Bifidobacterium bifidum (Saphera) was evaluated. The optimal conditions for the operation of this enzyme, measured with o-nitrophenyl-β-d-galactopyranoside, were 40 °C and pH around 6.0. Although at low lactose concentrations the property of this enzyme was basically hydrolytic, an increase of lactose concentration to 400 g/L resulted in a significant formation (107.2 g/L, 27% yield) of prebiotic galactooligosaccharides (GOS). The maximum amount of GOS was obtained at a lactose conversion of approximately 90%, which contrasts with other β-galactosidases, for which the highest GOS yield is achieved at 40-50% lactose conversion. Using high-performance anion-exchange chromatography with pulsed amperometric detection, semipreparative high-performance liquid chromatography-hydrophilic interaction liquid chromatography, mass spectrometry, and 1D and 2D NMR, we determined the structure of most of the GOS synthesized by this enzyme. The main identified products were Gal-β(1→3)-Gal-β(1→4)-Glc (3'-O-β-galactosyl-lactose), Gal-β(1→6)-Glc (allolactose), Gal-β(1→3)-Glc (3-galactosyl-glucose), Gal-β(1→3)-Gal (3-galactobiose), and the tetrasaccharide Gal-β(1→3)-Gal-β(1→3)-Gal-β(1→4)-Glc. In general, B. bifidum β-galactosidase showed a tendency to form β(1→3) linkages followed by β(1→6) and more scarcely β(1→4).
Collapse
Affiliation(s)
- Vera Füreder
- Instituto de Catálisis y Petroleoquímica, CSIC, 28049 Madrid, Spain
| | - Barbara Rodriguez-Colinas
- Instituto de Catálisis y Petroleoquímica, CSIC, 28049 Madrid, Spain
- Departamento de Biotecnología, Facultad de Ciencias Experimentales, Universidad Francisco de Vitoria, Pozuelo de Alarcón, 28223 Madrid, Spain
| | | | | | - Ana Poveda
- CIC bioGUNE, Basque Research and Technology Alliance (BRTA), 48160 Derio, Spain
| | - Jesus Jimenez-Barbero
- CIC bioGUNE, Basque Research and Technology Alliance (BRTA), 48160 Derio, Spain
- Ikerbasque, Basque Foundation for Science, Maria Diaz de Haro 3, 48013 Bilbao, Spain
| | | | - Francisco J Plou
- Instituto de Catálisis y Petroleoquímica, CSIC, 28049 Madrid, Spain
| |
Collapse
|
19
|
Deng P, Meng C, Wu Y, Xu J, Tang X, Zhang X, Xiao Y, Wang X, Fang Z, Fang W. An unusual GH1 β-glucosidase from marine sediment with β-galactosidase and transglycosidation activities for superior galacto-oligosaccharide synthesis. Appl Microbiol Biotechnol 2020; 104:4927-4943. [DOI: 10.1007/s00253-020-10578-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 03/08/2020] [Accepted: 03/22/2020] [Indexed: 12/11/2022]
|
20
|
β-Galactosidases: A great tool for synthesizing galactose-containing carbohydrates. Biotechnol Adv 2020; 39:107465. [DOI: 10.1016/j.biotechadv.2019.107465] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 10/26/2019] [Accepted: 10/31/2019] [Indexed: 12/17/2022]
|
21
|
Ospina V, Bernal C, Mesa M. Thermal Hyperactivation and Stabilization of β-Galactosidase from Bacillus circulans through a Silica Sol–Gel Process Mediated by Chitosan–Metal Chelates. ACS APPLIED BIO MATERIALS 2019; 2:3380-3392. [DOI: 10.1021/acsabm.9b00371] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Viviana Ospina
- Grupo Ciencia de los Materiales, Instituto de Química, Facultad de Ciencias Exactas y Naturales, Universidad de Antioquia, UdeA, Calle 70 no. 52-21, Medellín 1226, Colombia
| | - Claudia Bernal
- Instituto de Investigación Multidisciplinario en Ciencia y Tecnología, Tecnología Enzimática para Bioprocesos, Departamento de Ingeniería de Alimentos, Universidad de La Serena, Raul Bitran, La Serena 1305,Chile
| | - Monica Mesa
- Grupo Ciencia de los Materiales, Instituto de Química, Facultad de Ciencias Exactas y Naturales, Universidad de Antioquia, UdeA, Calle 70 no. 52-21, Medellín 1226, Colombia
| |
Collapse
|
22
|
Kawai F, Nakamura A, Visootsat A, Iino R. Plasmid-Based One-Pot Saturation Mutagenesis and Robot-Based Automated Screening for Protein Engineering. ACS OMEGA 2018; 3:7715-7726. [PMID: 30221239 PMCID: PMC6130897 DOI: 10.1021/acsomega.8b00663] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Accepted: 06/27/2018] [Indexed: 05/24/2023]
Abstract
We evaluated a method for protein engineering using plasmid-based one-pot saturation mutagenesis and robot-based automated screening. When the biases in nucleotides and amino acids were assessed for a loss-of-function point mutation in green fluorescent protein, the ratios of gain-of-function mutants were not significantly different from the expected values for the primers among the three different suppliers. However, deep sequencing analysis revealed that the ratios of nucleotides in the primers were highly biased among the suppliers. Biases for NNB were less severe than for NNN. We applied this method to screen a fusion protein of two chitinases, ChiA and ChiB (ChiAB). Three NNB codons as well as tyrosine and serine (X1YSX2X3) were inserted to modify the surface structure of ChiAB. We observed significant amino acid bias at the X3 position in water-soluble, active ChiAB-X1YSX2X3 mutants. Examination of the crystal structure of one active mutant, ChiAB-FYSFV, revealed that the X3 residue plays an important role in structure stabilization.
Collapse
Affiliation(s)
- Fumihiro Kawai
- Institute
for Molecular Science, National Institutes
of Natural Sciences, 5-1 Higashiyama Myodaijicho, Okazaki, Aichi 444-8787, Japan
| | - Akihiko Nakamura
- Institute
for Molecular Science, National Institutes
of Natural Sciences, 5-1 Higashiyama Myodaijicho, Okazaki, Aichi 444-8787, Japan
- The
Graduate University for Advanced Studies (SOKENDAI), Shonan Village, Hayama, Kanagawa 240-0193, Japan
| | - Akasit Visootsat
- The
Graduate University for Advanced Studies (SOKENDAI), Shonan Village, Hayama, Kanagawa 240-0193, Japan
| | - Ryota Iino
- Institute
for Molecular Science, National Institutes
of Natural Sciences, 5-1 Higashiyama Myodaijicho, Okazaki, Aichi 444-8787, Japan
- The
Graduate University for Advanced Studies (SOKENDAI), Shonan Village, Hayama, Kanagawa 240-0193, Japan
| |
Collapse
|
23
|
Yin H, Dijkhuizen L, van Leeuwen SS. Synthesis of galacto-oligosaccharides derived from lactulose by wild-type and mutant β-galactosidase enzymes from Bacillus circulans ATCC 31382. Carbohydr Res 2018; 465:58-65. [DOI: 10.1016/j.carres.2018.06.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Revised: 06/05/2018] [Accepted: 06/16/2018] [Indexed: 01/07/2023]
|
24
|
Yu L, O'Sullivan D. Immobilization of whole cells of Lactococcus lactis containing high levels of a hyperthermostable β-galactosidase enzyme in chitosan beads for efficient galacto-oligosaccharide production. J Dairy Sci 2018; 101:2974-2983. [DOI: 10.3168/jds.2017-13770] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Accepted: 12/06/2017] [Indexed: 12/22/2022]
|
25
|
Enzyme and microbial technology for synthesis of bioactive oligosaccharides: an update. Appl Microbiol Biotechnol 2018; 102:3017-3026. [PMID: 29476402 DOI: 10.1007/s00253-018-8839-2] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2018] [Revised: 02/02/2018] [Accepted: 02/05/2018] [Indexed: 12/28/2022]
Abstract
Oligosaccharides, in either free or bound forms, play crucial roles in a wide range of biological processes. Increasing appreciation of their roles in cellular communication, interaction, pathogenesis, and prebiotic functions has stimulated tremendous interests in their synthesis. Pure and structurally defined oligosaccharides are essential for fundamental studies. On the other hand, for those with near term medical and nutraceutical applications, their large-scale synthesis is necessary. Unfortunately, oligosaccharides are notoriously difficult in their synthesis, and their enormous diverse structures leave a vast gap between what have been synthesized in laboratory and those present in various biological systems. While enzymes and microbes are nature's catalysts for oligosaccharides, their effective use is not without challenges. Using examples of galactose-containing oligosaccharides, this review analyzes the pros and cons of these two forms of biocatalysts and provides an updated view on the status of biocatalysis in this important field. Over the past few years, a large number of novel galactosidases were discovered and/or engineered for improved synthesis via transglycosylation. The use of salvage pathway for regeneration of uridine diphosphate (UDP)-galactose has made the use of Leloir glycosyltransferases simpler and more efficient. The recent success of large-scale synthesis of 2' fucosyllactose heralded the power of whole-cell biocatalysis as a scalable technology. While it still lags behind enzyme catalysis in terms of the number of oligosaccharides synthesized, an acceleration in the use of this form of biocatalyst is expected as rapid advances in synthetic biology have made the engineering of whole cell biocatalysts less arduous and less time consuming.
Collapse
|
26
|
Yin H, Pijning T, Meng X, Dijkhuizen L, van Leeuwen SS. Biochemical Characterization of the Functional Roles of Residues in the Active Site of the β-Galactosidase from Bacillus circulans ATCC 31382. Biochemistry 2017; 56:3109-3118. [PMID: 28538097 PMCID: PMC5481816 DOI: 10.1021/acs.biochem.7b00207] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2017] [Revised: 05/14/2017] [Indexed: 12/29/2022]
Abstract
The β-galactosidase enzyme from Bacillus circulans ATCC 31382 BgaD is widely used in the food industry to produce prebiotic galactooligosaccharides (GOS). Recently, the crystal structure of a C-terminally truncated version of the enzyme (BgaD-D) has been elucidated. The roles of active site amino acid residues in β-galactosidase enzyme reaction and product specificity have remained unknown. On the basis of a structural alignment of the β-galactosidase enzymes BgaD-D from B. circulans and BgaA from Streptococcus pneumoniae, and the complex of BgaA with LacNAc, we identified eight active site amino acid residues (Arg185, Asp481, Lys487, Tyr511, Trp570, Trp593, Glu601, and Phe616) in BgaD-D. This study reports an investigation of the functional roles of these residues, using site-directed mutagenesis, and a detailed biochemical characterization and product profile analysis of the mutants obtained. The data show that these residues are involved in binding and positioning of the substrate and thus determine the BgaD-D activity and product linkage specificity. This study provides detailed insights into the structure-function relationships of the B. circulans BgaD-D enzyme, especially regarding GOS product linkage specificity, allowing the rational mutation of β-galactosidase enzymes to produce specific mixtures of GOS structures.
Collapse
Affiliation(s)
- Huifang Yin
- Microbial
Physiology, Groningen Biomolecular Sciences and Biotechnology Institute
(GBB), University of Groningen, Nijenborgh 7, 9747 AG Groningen, The Netherlands
| | - Tjaard Pijning
- Biophysical
Chemistry, Groningen Biomolecular Sciences and Biotechnology Institute
(GBB), University of Groningen, Nijenborgh 7, 9747 AG Groningen, The Netherlands
| | - Xiangfeng Meng
- Microbial
Physiology, Groningen Biomolecular Sciences and Biotechnology Institute
(GBB), University of Groningen, Nijenborgh 7, 9747 AG Groningen, The Netherlands
| | - Lubbert Dijkhuizen
- Microbial
Physiology, Groningen Biomolecular Sciences and Biotechnology Institute
(GBB), University of Groningen, Nijenborgh 7, 9747 AG Groningen, The Netherlands
| | - Sander S. van Leeuwen
- Microbial
Physiology, Groningen Biomolecular Sciences and Biotechnology Institute
(GBB), University of Groningen, Nijenborgh 7, 9747 AG Groningen, The Netherlands
| |
Collapse
|