1
|
Gao RQ, Hu XD, Zhou Q, Hou XF, Cao C, Tang GL. Different DNA Binding and Damage Mode between Anticancer Antibiotics Trioxacarcin A and LL-D49194α1. JACS AU 2024; 4:3641-3648. [PMID: 39328742 PMCID: PMC11423299 DOI: 10.1021/jacsau.4c00611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 08/28/2024] [Accepted: 08/28/2024] [Indexed: 09/28/2024]
Abstract
Trioxacarcin A (TXN) is a highly potent cytotoxic antibiotic with remarkable structural complexity. The crystal structure of TXN bound to double-stranded DNA (dsDNA) suggested that the TXN interaction might depend on positions of two sugar subunits on the minor and major grooves of dsDNA. LL-D49194α1 (LLD) is a TXN analogue bearing the same polycyclic polyketide scaffold with a distinct glycosylation pattern. Although LLD was in a phase I clinical trial, how LLD binds to dsDNA remains unclear. Here, we solved the solution structures at high resolutions of palindromic 2″-fluorine-labeled guanine-containing duplex d(A1A2C3C4GFGFT7T8)2 and of its stable LLD and TXN covalently bound complexes. Combined with biochemical assays, we found that TXN-alkylated dsDNA would tend to keep DNA helix conformation, while LLD-alkylated dsDNA lost its stability more than TXN-alkylated dsDNA, leading to dsDNA denaturation. Thus, despite lower cytotoxicity in vitro, the differences of sugar substitutions in LLD caused greater DNA damage than TXN, thereby bringing about a completely new biological effect.
Collapse
Affiliation(s)
- Ruo-Qin Gao
- State
Key Laboratory of Chemical Biology, Shanghai Institute of Organic
Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Xiao-Dong Hu
- State
Key Laboratory of Chemical Biology, Shanghai Institute of Organic
Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Qiang Zhou
- State
Key Laboratory of Chemical Biology, Shanghai Institute of Organic
Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Xian-Feng Hou
- State
Key Laboratory of Chemical Biology, Shanghai Institute of Organic
Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Chunyang Cao
- State
Key Laboratory of Chemical Biology, Shanghai Institute of Organic
Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Gong-Li Tang
- State
Key Laboratory of Chemical Biology, Shanghai Institute of Organic
Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200032, China
- School
of Chemistry and Materials Science, Hangzhou Institute for Advanced
Study, University of Chinese Academy of
Sciences, Hangzhou, Zhejiang 310024, China
| |
Collapse
|
2
|
Song J, He GN, Dai L. A comprehensive review on celastrol, triptolide and triptonide: Insights on their pharmacological activity, toxicity, combination therapy, new dosage form and novel drug delivery routes. Biomed Pharmacother 2023; 162:114705. [PMID: 37062220 DOI: 10.1016/j.biopha.2023.114705] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 04/01/2023] [Accepted: 04/12/2023] [Indexed: 04/18/2023] Open
Abstract
Celastrol, triptolide and triptonide are the most significant active ingredients of Tripterygium wilfordii Hook F (TWHF). In 2007, the 'Cell' journal ranked celastrol, triptolide, artemisinin, capsaicin and curcumin as the five natural drugs that can be developed into modern medicinal compounds. In this review, we collected relevant data from the Web of Science, PubMed and China Knowledge Resource Integrated databases. Some information was also acquired from government reports and conference papers. Celastrol, triptolide and triptonide have potent pharmacological activity and evident anti-cancer, anti-tumor, anti-obesity and anti-diabetes effects. Because these compounds have demonstrated unique therapeutic potential for acute and chronic inflammation, brain injury, vascular diseases, immune diseases, renal system diseases, bone diseases and cardiac diseases, they can be used as effective drugs in clinical practice in the future. However, celastrol, triptolide and triptonide have certain toxic effects on the liver, kidney, cholangiocyte heart, ear and reproductive system. These shortcomings limit their clinical application. Suitable combination therapy, new dosage forms and new routes of administration can effectively reduce toxicity and increase the effect. In recent years, the development of different targeted drug delivery formulations and administration routes of celastrol and triptolide to overcome their toxic effects and maximise their efficacy has become a major focus of research. However, in-depth investigation is required to elucidate the mechanisms of action of celastrol, triptolide and triptonide, and more clinical trials are required to assess the safety and clinical value of these compounds.
Collapse
Affiliation(s)
- Jing Song
- School of Pharmacy, Binzhou Medical University, Yantai, China; Shandong Yuze Pharmaceutical Industry Technology Research Institute Co., Ltd, Dezhou, China
| | - Guan-Nan He
- Shandong University of Traditional Chinese Medicine, Ji'nan 250014, China
| | - Long Dai
- School of Pharmacy, Binzhou Medical University, Yantai, China.
| |
Collapse
|
3
|
Jung H, Rayala NK, Lee S. Effects of N7-Alkylguanine Conformation and Metal Cofactors on the Translesion Synthesis by Human DNA Polymerase η. Chem Res Toxicol 2022; 35:512-521. [PMID: 35239327 DOI: 10.1021/acs.chemrestox.1c00416] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Non-enzymatic alkylation on DNA often generates N7-alkyl-2'-deoxyguanosine (N7alkylG) adducts as major lesions. N7alkylG adducts significantly block replicative DNA polymerases and can be bypassed by translesion synthesis (TLS) polymerases such as polymerase η (polη). To gain insights into the bypass of N7alkylG by TLS polymerases, we conducted kinetic and structural studies of polη catalyzing across N7BnG, a genotoxic lesion generated by the carcinogenic N-nitrosobenzylmethylamine. The presence of templating N7BnG in the polη catalytic site decreased the replication fidelity by ∼9-fold, highlighting the promutagenicity of N7BnG. The catalytic efficiency for dCTP incorporation opposite N7BnG decreased ∼22-fold and ∼7-fold compared to the incorporation opposite undamaged guanine in the presence of Mg2+ and Mn2+, respectively. A crystal structure of the complexes grown with polη, templating N7BnG, incoming dCTP, and Mg2+ ions showed the lack of the incoming nucleotide and metal cofactors in the polη catalytic site. Interestingly, the templating N7BnG adopted a syn conformation, which has not been observed in the published N7alkylG structures. The preferential formation of syn-N7BnG conformation at the templating site may deter the binding of an incoming dCTP, causing the inefficient bypass by polη. In contrast, the use of Mn2+ in place of Mg2+ in co-crystallization yielded a ternary complex displaying an anti-N7BnG:dCTP base pair and catalytic metal ions, which would be a close mimic of a catalytically competent state. We conclude that certain bulky N7-alkylG lesions can slow TLS polymerase-mediated bypass by adopting a catalytically unfavorable syn conformation in the replicating base pair site.
Collapse
Affiliation(s)
- Hunmin Jung
- The Division of Chemical Biology and Medicinal Chemistry, College of Pharmacy, The University of Texas at Austin, Austin, Texas 78712, USA
| | - Naveen Kumar Rayala
- The Division of Chemical Biology and Medicinal Chemistry, College of Pharmacy, The University of Texas at Austin, Austin, Texas 78712, USA
| | - Seongmin Lee
- The Division of Chemical Biology and Medicinal Chemistry, College of Pharmacy, The University of Texas at Austin, Austin, Texas 78712, USA
| |
Collapse
|
4
|
Xu ML, Liu TC, Dong FX, Meng LX, Ling AX, Liu S. Exosomal lncRNA LINC01711 facilitates metastasis of esophageal squamous cell carcinoma via the miR-326/FSCN1 axis. Aging (Albany NY) 2021; 13:19776-19788. [PMID: 34370713 PMCID: PMC8386530 DOI: 10.18632/aging.203389] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Accepted: 02/18/2021] [Indexed: 01/11/2023]
Abstract
Esophageal cancer is a malignant tumor with a five-year survival rate of less than 20%. Early diagnosis and exploration of esophageal cancer pathogenesis are of great significance for the treatment and prognosis of esophageal cancer. Long non-coding RNA (lncRNA) plays a vital role in the occurrence and development of different types of tumors. However, the role of exosome LncRNA in esophageal squamous cell carcinoma (ESCC) is rarely reported. In this study, we detected high expression of lncRNA LINC01711 in ESCC tissues and was associated with poor prognosis. Silencing LINC01711 can inhibit the proliferation, migration, invasion, and growth of ESCC cell lines, and induce apoptosis. Linc01711 was identified as a competitive endogenous RNA that suppressed miR-326, and up-regulated the expression of fascin actin-bundling protein 1 (FSCN1). Besides, in vivo experiments showed that the administration of exosome-derived LINC01711 (LINC01711-Exo) promoted the growth of tumors in nude mice. In general, exosomal LINC01711 promoted the proliferation, migration, and invasion of esophageal cancer cells by up-regulating FSCN1 and down-regulating miR-326, thus improved the occurrence and development of ESCC.
Collapse
Affiliation(s)
- Mei-Ling Xu
- Department of Oncology, Rizhao People's Hospital, Rizhao, Shandong Province, China
| | - Tian-Cheng Liu
- First Department of Oncology, People's Hospital of Juxian, Rizhao, Shandong Province, China
| | - Feng-Xiang Dong
- First Department of Oncology, People's Hospital of Juxian, Rizhao, Shandong Province, China
| | - Ling-Xin Meng
- Department of Oncology, Rizhao People's Hospital, Rizhao, Shandong Province, China
| | - Ai-Xia Ling
- Department of Physical-Chemistry, College of Pharmaceutical Sciences, Jining Medical College, Jinan, Shandong Province, China
| | - Shan Liu
- Department of Oncology, Rizhao People's Hospital, Rizhao, Shandong Province, China
| |
Collapse
|
5
|
Suo C, Chen H, Binczyk F, Zhao R, Fan J, Yang X, Yuan Z, Kreil D, Łabaj P, Zhang T, Lu M, Jin L, Polańska J, Chen X, Ye W. Tumor infiltrating lymphocyte signature is associated with single nucleotide polymorphisms and predicts survival in esophageal squamous cell carcinoma patients. Aging (Albany NY) 2021; 13:10369-10386. [PMID: 33819921 PMCID: PMC8064198 DOI: 10.18632/aging.202798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Accepted: 02/08/2021] [Indexed: 12/09/2022]
Abstract
Purpose: Esophageal cancer is the sixth leading cause of cancer-related death worldwide, and is associated with a poor prognosis. Stromal tumor infiltrating lymphocytes (sTIL) and certain single nucleotide polymorphisms (SNPs) have been found to be predictive of patient survival. In this study, we explored the association between SNPs and sTIL regarding the predictability of disease-free survival in patients with esophageal squamous cell carcinoma (ESCC). Materials and methods: We collected 969 pathologically confirmed ESCC patients from 2010 to 2013 and genotyped 101 SNPs from 59 genes. The number of sTIL for each patient was determined using an automatic algorithm. A Kruskal-Wallis test was used to determine the association between genotype and sTIL. The genotypes and clinical factors related to survival were analyzed using a Kaplan-Meier curve, Cox proportional hazards model, and log-rank test. Results: The median age of the patients was 67 (42-85 years), there was a median follow-up of 851.5 days and 586 patients died. The univariable analysis showed that 10 of the 101 SNPs were associated with sTIL. Six SNPs were also associated with disease-free survival. A multivariable analysis revealed that sTIL, rs1801131, rs25487, and rs8030672 were independent prognostic markers for ESCC patients. The model combining SNPs, clinical characteristics and sTIL outperformed the model with clinical characteristics alone for predicting outcomes in ESCC patients. Conclusion: We discovered 10 SNPs associated with sTIL in ESCC and we built a model of sTIL, SNPs and clinical characteristics with improved prediction of survival in ESCC patients.
Collapse
Affiliation(s)
- Chen Suo
- Department of Epidemiology and Ministry of Education Key Laboratory of Public Health Safety, School of Public Health, Fudan University, Shanghai, China.,Fudan University Taizhou Institute of Health Sciences, Taizhou, China
| | - Huiyao Chen
- Department of Epidemiology and Ministry of Education Key Laboratory of Public Health Safety, School of Public Health, Fudan University, Shanghai, China.,Center for Molecular Medicine of Children's Hospital of Fudan University, Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Franciszek Binczyk
- Silesian University of Technology, Data Mining Division, Gliwice, Poland
| | - Renjia Zhao
- Department of Epidemiology and Ministry of Education Key Laboratory of Public Health Safety, School of Public Health, Fudan University, Shanghai, China
| | - Jiahui Fan
- State Key Laboratory of Genetic Engineering and Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Fudan University, Shanghai, China
| | - Xiaorong Yang
- Clinical Epidemiology Unit, Qilu Hospital of Shandong University, Jinan, China
| | - Ziyu Yuan
- Fudan University Taizhou Institute of Health Sciences, Taizhou, China
| | - David Kreil
- IMBT Bioinformatics Research, Boku University Vienn, Vienna, Austria
| | - Paweł Łabaj
- Malopolska Centre of Biotechnology, Jagiellonian University, Krakow, Poland
| | - Tiejun Zhang
- Department of Epidemiology and Ministry of Education Key Laboratory of Public Health Safety, School of Public Health, Fudan University, Shanghai, China.,Fudan University Taizhou Institute of Health Sciences, Taizhou, China
| | - Ming Lu
- Clinical Epidemiology Unit, Qilu Hospital of Shandong University, Jinan, China
| | - Li Jin
- Fudan University Taizhou Institute of Health Sciences, Taizhou, China.,Human Phenome Institute, Fudan University, Shanghai, China
| | - Joanna Polańska
- Silesian University of Technology, Data Mining Division, Gliwice, Poland
| | - Xingdong Chen
- Fudan University Taizhou Institute of Health Sciences, Taizhou, China.,Human Phenome Institute, Fudan University, Shanghai, China
| | - Weimin Ye
- Department of Medical Epidemiology and Biostatistics, Karolinska Institute, Stockholm, Sweden
| |
Collapse
|
6
|
Translesion synthesis of the major nitrogen mustard-induced DNA lesion by human DNA polymerase η. Biochem J 2021; 477:4543-4558. [PMID: 33175093 DOI: 10.1042/bcj20200767] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 11/05/2020] [Accepted: 11/11/2020] [Indexed: 12/16/2022]
Abstract
Nitrogen mustards are among the first modern anticancer chemotherapeutics that are still widely used as non-specific anticancer alkylating agents. While the mechanism of action of mustard drugs involves the generation of DNA interstrand cross-links, the predominant lesions produced by these drugs are nitrogen half-mustard-N7-dG (NHMG) adducts. The bulky major groove lesion NHMG, if left unrepaired, can be bypassed by translesion synthesis (TLS) DNA polymerases. However, studies of the TLS past NHMG have not been reported so far. Here, we present the first synthesis of an oligonucleotide containing a site-specific NHMG. We also report kinetic and structural characterization of human DNA polymerase η (polη) bypassing NHMG. The templating NHMG slows dCTP incorporation ∼130-fold, while it increases the misincorporation frequency ∼10-30-fold, highlighting the promutagenic nature of NHMG. A crystal structure of polη incorporating dCTP opposite NHMG shows a Watson-Crick NHMG:dCTP base pair with a large propeller twist angle. The nitrogen half-mustard moiety fits snugly into an open cleft created by the Arg61-Trp64 loop of polη, suggesting a role of the Arg61-Trp64 loop in accommodating bulky major groove adducts during lesion bypass. Overall, our results presented here to provide first insights into the TLS of the major DNA adduct formed by nitrogen mustard drugs.
Collapse
|
7
|
Li P, Wang L, Li P, Hu F, Cao Y, Tang D, Ye G, Li H, Wang D. Silencing lncRNA XIST exhibits antiproliferative and proapoptotic effects on gastric cancer cells by up-regulating microRNA-132 and down-regulating PXN. Aging (Albany NY) 2020; 13:14469-14481. [PMID: 33154189 PMCID: PMC8202840 DOI: 10.18632/aging.103635] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Accepted: 06/25/2020] [Indexed: 02/07/2023]
Abstract
The present study aims to elucidate the potential therapeutic role of lncRNA XIST in gastric cancer through regulation of microRNA-132 (miR-132) and paxillin (PXN) expression. The study employed 65 gastric cancer tissue specimens and SGC7901 cell lines. Our results demonstrated that expression of lncRNA XIST and PXN was significantly elevated while the expression of miR-132 was significantly reduced in gastric cancer tissues. Dual-luciferase, RNA pull-down and RIP assays demonstrated that lncRNA XIST up-regulated the PXN expression by competitively binding to miR-132. Moreover, silencing of lncRNA XIST and up-regulation of miR-132 could suppress tumor formation ability, cell proliferation and migration, but enhanced apoptosis in gastric cancer. However, the overexpression of PXN achieved the opposite tumor-promotive effect. Meanwhile, rescue experiments suggested that silencing of lncRNA XIST could reverse the tumor-promotive effect exerted by either miR-132 inhibitor or PXN. Taken together, the present study demonstrates lncRNA XIST as a novel oncogenic lncRNA in gastric cancer, highlighting its therapeutic role in this disease.
Collapse
Affiliation(s)
- Ping Li
- Department of General Surgery, Huaian Tumor Hospital, Huaian Hospital of Huaian City, Huaian, 223200, P.R. China
- Department of Experimental Surgery-Cancer Metastasis, Medical Faculty Mannheim, Ruprecht Karls University, Mannheim 68167, Germany
| | - Liuhua Wang
- Department of General Surgery, Northern Jiangsu Province Hospital, Clinical Medical College, Institute of General Surgery - Yangzhou, Yangzhou University, Yangzhou 225000, P.R. China
| | - Pengfei Li
- Department of General Surgery, Huaian Tumor Hospital, Huaian Hospital of Huaian City, Huaian, 223200, P.R. China
| | - Fangyong Hu
- Department of General Surgery, Huaian Tumor Hospital, Huaian Hospital of Huaian City, Huaian, 223200, P.R. China
| | - Yi Cao
- Department of Experimental Surgery-Cancer Metastasis, Medical Faculty Mannheim, Ruprecht Karls University, Mannheim 68167, Germany
| | - Dong Tang
- Department of General Surgery, Northern Jiangsu Province Hospital, Clinical Medical College, Institute of General Surgery - Yangzhou, Yangzhou University, Yangzhou 225000, P.R. China
| | - Gang Ye
- Department of General Surgery, Jiangdu People's Hospital of Yangzhou, Yangzhou 225200, P.R. China
| | - Hongbo Li
- Department of General Surgery, Jiangdu People's Hospital of Yangzhou, Yangzhou 225200, P.R. China
| | - Daorong Wang
- Department of General Surgery, Northern Jiangsu Province Hospital, Clinical Medical College, Institute of General Surgery - Yangzhou, Yangzhou University, Yangzhou 225000, P.R. China
| |
Collapse
|
8
|
Gene expression-based clinical predictions in lung adenocarcinoma. Aging (Albany NY) 2020; 12:15492-15503. [PMID: 32756002 PMCID: PMC7467359 DOI: 10.18632/aging.103721] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2020] [Accepted: 07/06/2020] [Indexed: 12/25/2022]
Abstract
Mining disease-related genes contributes momentously to handling lung adenocarcinoma (LUAD). But genetic complexity and tumor heterogeneity severely get in the way. Fortunately, new light has been shed by dramatic progress of bioinformatic technology in the past decades. In this research, we investigated relationships between gene expression and clinical features of LUAD via integrative bioinformatic analysis. First, we applied limma and DESeq2 packages to analyze differentially expressed genes (DEGs) of LUAD from GEO database and TCGA project (tumor tissues versus normal tissues), and acquired 180 down-regulated DEGs and 52 up-regulated DEGs. Then, we investigated genetic and biological assignment of theses DEGs by Bioconductor packages and STRING database. We found these DEGs were distributed dispersedly among chromosomes, enriched observably in extracellular matrix-related processes, and weighted hierarchically in interaction network. Finally, we established DEGs-based statistical models for evaluating TNM stage and survival status of LUAD. And these models (logistic regression models for TNM parameter and Cox regression models for survival probability) all possessed fine predictive efficacy (C-indexes: T, 0.740; N, 0.687; M, 0.823; overall survival, 0.678; progression-free survival, 0.611). In summary, we have successfully established gene expression-based models for assessing clinical characteristics of LUAD, which will assist its pathogenesis investigation and clinical intervention.
Collapse
|
9
|
Genetic variant of COL11A2 gene is functionally associated with developmental dysplasia of the hip in Chinese Han population. Aging (Albany NY) 2020; 12:7694-7703. [PMID: 32396528 PMCID: PMC7244083 DOI: 10.18632/aging.103040] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Accepted: 03/10/2020] [Indexed: 12/27/2022]
Abstract
OBJECTIVES Developmental dysplasia of the hip (DDH) is a common skeletal disorder. This study was conducted to demonstrate the association between DDH and a polymorphism rs9277935 of COL11A2 gene. RESULTS A significant difference in genotype distribution in a recessive model (TT+GT vs. GG) between two groups (P=0.017) was demonstrated. Analysis in female patients showed significantly greater frequency of minor allele G(0.49 vs. 0.43, p=0.024) and significantly higher distribution of GG genotype (p=0.006). DDH patients were found to have significantly lower COL11A2 expression than controls. Moreover, DDH patients with rs9277935 genotype TT have a significantly increased expression of COL11A2 than those with genotype GG. COL11A2 demonstrated chondrogenic properties in vitro. CONCLUSION Polymorphism rs9277935 of gene COL11A2 is a functional variant regulating the expression and the chondrogenic properties of COL11A2 in DDH in Chinese Han population. METHODS A case-control candidate gene association study was conducted in 945 patients (350 radiologically confirmed DDH patients and 595 healthy controls). Difference of COL11A2 expression in hip joint tissue was compared between the patients and the controls. Allelic difference in Col11a2 expression by rs9277935 was assessed with luciferase activity. Chondrogenic effects of Col11a2 signaling on BMSCs were also determined in vitro.
Collapse
|
10
|
Jiang L, Yang H, Chen T, Zhu X, Ye J, Lv K. Identification of HMG-box family establishes the significance of SOX6 in the malignant progression of glioblastoma. Aging (Albany NY) 2020; 12:8084-8106. [PMID: 32388501 PMCID: PMC7244032 DOI: 10.18632/aging.103127] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2019] [Accepted: 03/30/2020] [Indexed: 12/20/2022]
Abstract
Glioblastoma multiforme (GBM) is the most malignant neuroepithelial primary brain tumor and its mean survival time is 15 months after diagnosis. This study undertook to investigate the genome-wide and transcriptome-wide analyses of human high mobility group box (HMG-box) TF (transcript factor) families / HOX, TOX, FOX, HMG and SOX gene families, and their relationships to GBM. According to the TCGA-GBM profile analysis, differentially expressed HOX, FOX, HMG and SOX gene families (62 DEmRNA) were found in this study. We also analyzed DEmRNA (HMG-box related genes) co-expressed eight DElncRNA in GBM, and constructed a ceRNA network analysis as well. We constructed 50 DElncRNA-DEmiRNA-DEmRNA (HMG-box related genes) pairs between GBM and normal tissues. Then, risk genes SOX6 and SOX21 expression were correlated with immune infiltration levels in GBM. SOX6 also had a strong association with MAPT, GSK3B, FYN and DPYSL4, suggesting that they might be functional members in GBM.
Collapse
Affiliation(s)
- Lan Jiang
- Central Laboratory, Yijishan Hospital of Wannan Medical College, Wuhu 241001, China
- Key Laboratory of Non-coding RNA Transformation Research of Anhui Higher Education Institution, Wannan Medical College, Wuhu 241001, China
| | - Hui Yang
- Central Laboratory, Yijishan Hospital of Wannan Medical College, Wuhu 241001, China
- Key Laboratory of Non-coding RNA Transformation Research of Anhui Higher Education Institution, Wannan Medical College, Wuhu 241001, China
| | - Tianbing Chen
- Central Laboratory, Yijishan Hospital of Wannan Medical College, Wuhu 241001, China
- Key Laboratory of Non-coding RNA Transformation Research of Anhui Higher Education Institution, Wannan Medical College, Wuhu 241001, China
| | - Xiaolong Zhu
- Central Laboratory, Yijishan Hospital of Wannan Medical College, Wuhu 241001, China
- Key Laboratory of Non-coding RNA Transformation Research of Anhui Higher Education Institution, Wannan Medical College, Wuhu 241001, China
| | - Jingjing Ye
- Central Laboratory, Yijishan Hospital of Wannan Medical College, Wuhu 241001, China
- Key Laboratory of Non-coding RNA Transformation Research of Anhui Higher Education Institution, Wannan Medical College, Wuhu 241001, China
| | - Kun Lv
- Central Laboratory, Yijishan Hospital of Wannan Medical College, Wuhu 241001, China
- Key Laboratory of Non-coding RNA Transformation Research of Anhui Higher Education Institution, Wannan Medical College, Wuhu 241001, China
| |
Collapse
|
11
|
Deng Y, Li W, Liu X, Ma G, Wu Q, Chen F, Wang Z, Zhou Q. The combination of platelet count and lymphocyte to monocyte ratio is a prognostic factor in patients with resected breast cancer. Medicine (Baltimore) 2020; 99:e18755. [PMID: 32358341 PMCID: PMC7440296 DOI: 10.1097/md.0000000000018755] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Many inflammation indicators have been reported to be related with patient outcomes in various cancers. Previous studies have evaluated the combination of platelet (PLT) and lymphocyte to monocyte ratio (COP-LMR) as a systemic inflammatory marker for prognostication in lung cancer, yet its prognostic role among breast cancer patients remains unclear.In the present study, a total of 409 breast cancer patients with surgical resection were retrospectively investigated. The receiver operating characteristic (ROC) curve was used to choose the optimal cut-off value of PLT and lymphocyte to monocyte ratio (LMR). Patients were classified into 3 groups according to the score of COP-LMR, and its relationship with various clinicopathological factors and breast cancer prognosis were further evaluated.The ROC curve analysis showed that COP-LMR had a higher area under the ROC curve for the prediction of 5-year disease-free survival and overall survival than PLT or LMR alone. Multivariable analysis showed that an elevated COP-LMR was an independent predictor of poor disease-free survival (P = .032) and overall survival (P = .005). Subgroup analysis revealed that COP-LMR was still significantly associated with prognosis in both luminal A and luminal B subtypes.Preoperative COP-LMR is a potential prognostic factor in breast cancer patients who underwent surgery.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Zhu Wang
- Laboratory of Molecular Diagnosis of Cancer, Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, P.R. China
| | | |
Collapse
|
12
|
Sirt1 is regulated by miR-135a and involved in DNA damage repair during mouse cellular reprogramming. Aging (Albany NY) 2020; 12:7431-7447. [PMID: 32335545 PMCID: PMC7202538 DOI: 10.18632/aging.103090] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Accepted: 03/30/2020] [Indexed: 02/07/2023]
Abstract
Sirt1 facilitates the reprogramming of mouse somatic cells into induced pluripotent stem cells (iPSCs). It is regulated by micro-RNA and reported to be a target of miR-135a. However, their relationship and roles on cellular reprogramming remain unknown. In this study, we found negative correlations between miR-135a and Sirt1 during mouse embryonic stem cells differentiation and mouse embryonic fibroblasts reprogramming. We further found that the reprogramming efficiency was reduced by the overexpression of miR-135a precursor but induced by the miR-135a inhibitor. Co-immunoprecipitation followed by mass spectrometry identified 21 SIRT1 interacting proteins including KU70 and WRN, which were highly enriched for DNA damage repair. In accordance, Sirt1 activator resveratrol reduced DNA damage during the reprogramming process. Wrn was regulated by miR-135a and resveratrol partly rescued the impaired reprogramming efficiency induced by Wrn knockdown. This study showed Sirt1, being partly regulated by miR-135a, bound proteins involved in DNA damage repair and enhanced the iPSCs production.
Collapse
|
13
|
Ye J, Liu L, Xu X, Wen Y, Li P, Cheng B, Cheng S, Zhang L, Ma M, Qi X, Liang C, Kafle OP, Wu C, Wang S, Wang X, Ning Y, Chu X, Niu L, Zhang F. A genome-wide multiphenotypic association analysis identified candidate genes and gene ontology shared by four common risky behaviors. Aging (Albany NY) 2020; 12:3287-3297. [PMID: 32090979 PMCID: PMC7066886 DOI: 10.18632/aging.102812] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Accepted: 01/25/2020] [Indexed: 12/20/2022]
Abstract
BACKGROUND Risky behaviors can lead to huge economic and health losses. However, limited efforts are paid to explore the genetic mechanisms of risky behaviors. RESULT MASH analysis identified a group of target genes for risky behaviors, such as APBB2, MAPT and DCC. For GO enrichment analysis, FUMA detected multiple risky behaviors related GO terms and brain related diseases, such as regulation of neuron differentiation (adjusted P value = 2.84×10-5), autism spectrum disorder (adjusted P value =1.81×10-27) and intelligence (adjusted P value =5.89×10-15). CONCLUSION We reported multiple candidate genes and GO terms shared by the four risky behaviors, providing novel clues for understanding the genetic mechanism of risky behaviors. METHODS Multivariate Adaptive Shrinkage (MASH) analysis was first applied to the GWAS data of four specific risky behaviors (automobile speeding, drinks per week, ever-smoker, number of sexual partners) to detect the common genetic variants shared by the four risky behaviors. Utilizing genomic functional annotation data of SNPs, the SNPs detected by MASH were then mapped to target genes. Finally, gene set enrichment analysis of the identified candidate genes were conducted by the FUMA platform to obtain risky behaviors related gene ontology (GO) terms as well as diseases and traits, respectively.
Collapse
Affiliation(s)
- Jing Ye
- Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning Commission, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, China
| | - Li Liu
- Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning Commission, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, China
| | - Xiaoqiao Xu
- Clinical Research Center of Shaanxi Province for Dental and Maxillofacial Diseases, College of Stomatology, Xi'an Jiaotong University, Xi'an, China
| | - Yan Wen
- Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning Commission, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, China
| | - Ping Li
- Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning Commission, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, China
| | - Bolun Cheng
- Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning Commission, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, China
| | - Shiqiang Cheng
- Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning Commission, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, China
| | - Lu Zhang
- Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning Commission, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, China
| | - Mei Ma
- Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning Commission, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, China
| | - Xin Qi
- Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning Commission, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, China
| | - Chujun Liang
- Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning Commission, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, China
| | - Om Prakash Kafle
- Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning Commission, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, China
| | - Cuiyan Wu
- Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning Commission, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, China
| | - Sen Wang
- Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning Commission, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, China
| | - Xi Wang
- Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning Commission, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, China
| | - Yujie Ning
- Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning Commission, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, China
| | - Xiaomeng Chu
- Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning Commission, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, China
| | - Lin Niu
- Clinical Research Center of Shaanxi Province for Dental and Maxillofacial Diseases, College of Stomatology, Xi'an Jiaotong University, Xi'an, China
| | - Feng Zhang
- Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning Commission, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, China
| |
Collapse
|
14
|
Cheng S, Li C, Xie W, Miao Y, Guo J, Wang J, Zhang Y. Integrated analysis of DNA methylation and mRNA expression profiles to identify key genes involved in the regrowth of clinically non-functioning pituitary adenoma. Aging (Albany NY) 2020; 12:2408-2427. [PMID: 32015217 PMCID: PMC7041752 DOI: 10.18632/aging.102751] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Accepted: 01/07/2020] [Indexed: 12/15/2022]
Abstract
Tumour regrowth is a key characteristic of clinically non-functioning pituitary adenoma (NFPA). No applicable prognosis evaluation method is available for post-operative patients. We aimed to identify DNA methylation biomarkers that can facilitate prognosis evaluation. Genome-wide DNA methylation and mRNA microarray analyses were performed for tumour samples from 71 NFPA patients. Differentially expressed genes and methylated genes were identified based on the regrowth vs non-regrowth grouping. There were 139 genes that showed alterations in methylation status and expression level, and only 13 genes showed a negative correlation. The progression-free analysis found that FAM90A1, ETS2, STAT6, MYT1L, ING2 and KCNK1 are related to tumour regrowth. A prognosis-prediction model was built based on all 13 genes from integrated analysis, and the 6-gene model achieved the best area under the receiver operating characteristic curves (AUC) of 0.820, compared with 0.785 and 0.568 for the 13-gene and 7-gene models, respectively. Our prognostic biomarkers were validated by pyrosequencing and RT-PCR. FAM90A1 and ING2 was found to be independent prognostic factors of tumour regrowth with univariate Cox regression. The DNA methylation and expression levels of FAM90A1 and ING2 are associated with tumour regrowth, and may serve as biomarkers for predicting the prognosis of patients with NFPA.
Collapse
Affiliation(s)
- Sen Cheng
- Beijing Neurosurgical Institute, Capital Medical University, Beijing 100070, China
| | - Chuzhong Li
- Beijing Neurosurgical Institute, Beijing Tiantan Hospital Affiliated to Capital Medical University, Beijing Institute for Brain Disorders Brain Tumour Center, China National Clinical Research Center for Neurological Diseases, Key Laboratory of Central Nervous System Injury Research, Beijing 100070, China
| | - Weiyan Xie
- Beijing Neurosurgical Institute, Capital Medical University, Beijing 100070, China
| | - Yazhou Miao
- Beijing Neurosurgical Institute, Capital Medical University, Beijing 100070, China
| | - Jing Guo
- Beijing Neurosurgical Institute, Capital Medical University, Beijing 100070, China
| | - Jichao Wang
- People's Hospital of Xin Jiang Uygur Autonomous Region, Urumqi 830001, China
| | - Yazhuo Zhang
- Beijing Neurosurgical Institute, Beijing Tiantan Hospital Affiliated to Capital Medical University, Beijing Institute for Brain Disorders Brain Tumour Center, China National Clinical Research Center for Neurological Diseases, Key Laboratory of Central Nervous System Injury Research, Beijing 100070, China
| |
Collapse
|
15
|
Ieong C, Yang H, Ma J, Lai W. Prognostic significance of X-linked inhibitor of apoptosis protein in patients with gastrointestinal tract cancers: A meta-analysis. Medicine (Baltimore) 2020; 99:e18497. [PMID: 32118702 PMCID: PMC7478481 DOI: 10.1097/md.0000000000018497] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND The aim of this meta-analysis was to systematically evaluate the prognostic significance of X-linked inhibitor of apoptosis protein (XIAP) in patients with gastrointestinal tract (GIT) cancers. METHODS PubMed, Web of Science, EMBASE, Cochrane Library and China National Knowledge Infrastructure were searched for potentially eligible literature. The baseline characteristics and relevant data were extracted. Hazard ratios (HRs) and 95% confidence intervals (CIs) were estimated to assess the prognostic role of XIAP in patients with GIT cancers. RESULTS Twelve studies with 2,477 patients were included. The pooled HRs of higher expression of XIAP for overall survival (OS) and recurrence free survival (RFS) in patients with GIT cancers were 1.64 (95% CI, 1.27-2.13) and 1.06 (95% CI, 0.96-1.16), respectively. Subgroup analysis and sensitivity analysis were also performed. No significant publication bias was found. CONCLUSION Our results suggested that XIAP could be a prognostic marker for OS but not RFS in patients with GIT cancers. Higher expression of XIAP was related to poorer OS. These findings may help evaluate the prognosis of patients and assist future research on novel therapeutic strategies of GIT cancers by targeting XIAP. However, more well-designed studies are warranted to verify the results.
Collapse
Affiliation(s)
- Chengcheng Ieong
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University
| | - Hong Yang
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University
| | - Junpeng Ma
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Wenli Lai
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University
| |
Collapse
|
16
|
Low-abundance mutations in colorectal cancer patients and healthy adults. Aging (Albany NY) 2020; 12:808-824. [PMID: 31927530 PMCID: PMC6977685 DOI: 10.18632/aging.102657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2019] [Accepted: 12/24/2019] [Indexed: 11/25/2022]
Abstract
Detecting low-abundance mutations is very important for cancer diagnosis and treatment. Here we describe an improved targeted sequencing analysis that dramatically increases sequencing depth. Seven colorectal cancer (CRC) patients and seven healthy adults were enrolled in this study. We examined genetic mutations in tissue samples from the central and peripheral regions of tumors from the CRC patients and in blood cells from the healthy adults. We observed that each CRC carried larger numbers of mutations more than previously estimated. These included numerous deletion mutations in the tumor tissue. While the cellular morphology in the surrounding normal colonic tissues was healthy, these cells also carried many mutations. Similarly, the blood cells from the healthy donors carried numerous mutations. These findings shed new light on the processes of tumorigenesis and aging, and also present a potentially effective method for detecting low-abundance mutations for cancer diagnosis and targeted treatments.
Collapse
|
17
|
Wang J, Chen X, Tian Y, Zhu G, Qin Y, Chen X, Pi L, Wei M, Liu G, Li Z, Chen C, Lv Y, Cai G. Six-gene signature for predicting survival in patients with head and neck squamous cell carcinoma. Aging (Albany NY) 2020; 12:767-783. [PMID: 31927533 PMCID: PMC6977678 DOI: 10.18632/aging.102655] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Accepted: 12/24/2019] [Indexed: 12/21/2022]
Abstract
The prognosis of head and neck squamous cell carcinoma (HNSCC) patients remains poor. High-throughput sequencing data have laid a solid foundation for identifying genes related to cancer prognosis, but a gene marker is needed to predict clinical outcomes in HNSCC. In our study, we downloaded RNA Seq, single nucleotide polymorphism, copy number variation, and clinical follow-up data from TCGA. The samples were randomly divided into training and test. In the training set, we screened genes and used random forests for feature selection. Gene-related prognostic models were established and validated in a test set and GEO verification set. Six genes (PEX11A, NLRP2, SERPINE1, UPK, CTTN, D2HGDH) were ultimately obtained through random forest feature selection. Cox regression analysis confirmed the 6-gene signature is an independent prognostic factor in HNSCC patients. This signature effectively stratified samples in the training, test, and external verification sets (P < 0.01). The 5-year survival AUC in the training and verification sets was greater than 0.74. Thus, we have constructed a 6-gene signature as a new prognostic marker for predicting survival of HNSCC patients.
Collapse
Affiliation(s)
- Juncheng Wang
- Department of Otolaryngology, Head and Neck Surgery, Xiangya Hospital, Central South University, Changsha 410008, People's Republic of China
| | - Xun Chen
- Department of Oral and Maxillofacial Surgery, First Affiliated Hospital of Quanzhou, Fujian Medical University, Quanzhou 362000, People's Republic of China
| | - Yuxi Tian
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, 410008 People's Republic of China
| | - Gangcai Zhu
- Department of Otolaryngology, Head and Neck Surgery, The Second Xiangya Hospital, Central South University, Changsha 410011, People's Republic of China
| | - Yuexiang Qin
- Department of Health Management, The Third Xiangya Hospital, Central South University, Changsha 410011, People's Republic of China
| | - Xuan Chen
- Department of Stomatology, Changzheng Hospital, Second Military Medcial University, Shanghai 200003, People's Republic of China
| | - Leiming Pi
- Department of Otolaryngology, Head and Neck Surgery, HeYuan People's Hospital, Jinan University, He Yuan,517000, People's Republic of China
| | - Ming Wei
- Department of Otolaryngology, Head and Neck Surgery, Xiangya Hospital, Central South University, Changsha 410008, People's Republic of China
| | - Guancheng Liu
- Department of Otolaryngology, Head and Neck Surgery, Affiliated Hospital of Guilin University, Guilin 541000, People's Republic of China
| | - Zhexuan Li
- Department of Otolaryngology, Head and Neck Surgery, Xiangya Hospital, Central South University, Changsha 410008, People's Republic of China
| | - Changhan Chen
- Department of Otolaryngology, Head and Neck Surgery, Xiangya Hospital, Central South University, Changsha 410008, People's Republic of China
| | - Yunxia Lv
- Department of Thyroid Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang 330006, People's Republic of China
| | - Gengming Cai
- Department of Otolaryngology, Head and Neck Surgery, First Affiliated Hospital of Quanzhou, Fujian Medical University, Quanzhou 362000, People's Republic of China
| |
Collapse
|
18
|
Hajji L, Saraiba-Bello C, Segovia-Torrente G, Scalambra F, Romerosa A. CpRu Complexes Containing Water Soluble Phosphane PTA and Natural Purines Adenine, Guanine and Theophylline: Synthesis, Characterization, and Antiproliferative Properties. Eur J Inorg Chem 2019. [DOI: 10.1002/ejic.201900677] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Lazhar Hajji
- Área de Química Inorgánica-CIESOL; Universidad de Almería; Carretera Sacramento s/n 40120 Almería Spain
| | - Cristobal Saraiba-Bello
- Área de Química Inorgánica-CIESOL; Universidad de Almería; Carretera Sacramento s/n 40120 Almería Spain
| | - Gaspar Segovia-Torrente
- Área de Química Inorgánica-CIESOL; Universidad de Almería; Carretera Sacramento s/n 40120 Almería Spain
| | - Franco Scalambra
- Área de Química Inorgánica-CIESOL; Universidad de Almería; Carretera Sacramento s/n 40120 Almería Spain
| | - Antonio Romerosa
- Área de Química Inorgánica-CIESOL; Universidad de Almería; Carretera Sacramento s/n 40120 Almería Spain
| |
Collapse
|
19
|
Zhang F, Yin Y, Xu T. Cinobufotalin injection combined with chemotherapy for the treatment of advanced NSCLC in China: A PRISMA-compliant meta-analysis of 29 randomized controlled trials. Medicine (Baltimore) 2019; 98:e16969. [PMID: 31464940 PMCID: PMC6736171 DOI: 10.1097/md.0000000000016969] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND AND OBJECTIVE Cinobufotalin injection (CFI), a kind of Chinese medicine, has been considered as a promising complementary therapy option for advanced non-small cell lung cancer (NSCLC), but their efficacy and safety remain controversial. This study aimed to systematically evaluate the efficacy and safety of CFI and chemotherapy-combined therapy for advanced NSCLC. METHODS Clinical trials were searched from Web of Science, Cochrane Library, PubMed, Embase, China National Knowledge Infrastructure (CNKI), Chinese Biological Medicine Database (CBM), Chinese Medical Citation Index (CMCI), Wanfang database and Chinese Scientific Journal Database (VIP). Main measurements, including therapeutic efficacy, quality of life (QoL) and adverse events, were extracted from the retrieved publications and were systematically evaluated. RESULTS The 29 trials including 2300 advanced NSCLC patients were involved in this study. Compared with chemotherapy alone, its combination with CFI significantly prolonged the patients' 1-, 2- and 3-year overall survival rate (OS) (1-year OS, OR = 1.94, 95% CI = 1.42-2.65, P < .0001; 2-year OS, OR = 2.31, 95% CI = 1.55-3.45, P < .0001; 3-year OS, OR = 4.69, 95% CI = 1.78-12.39, P = .002) and improved patients' overall response (ORR, OR = 1.84, CI = 1.54-2.18, P < .00001), disease control rate (DCR, OR = 2.09, 95% CI = 1.68-2.60, P < .00001) and QoL (quality of life improved rate, QIR, OR = 2.64, 95% CI = 1.98-3.52, P < .00001; karnofsky performance score, KPS, OR = 10.97, 95% CI = 5.48-16.47, P < .0001). Most adverse events caused by chemotherapy were obviously alleviated (P < .05) when CFI was also applied to patients. CONCLUSION The combination of CFI and chemotherapy is safe, and is more effective in treating NSCLC than chemotherapy alone. Therefore, CFI mediated therapy could be recommended as an adjuvant treatment method for NSCLC.
Collapse
Affiliation(s)
| | - Yantong Yin
- Department of Respiratory Medicine, Liaocheng People's Hospital, Liaocheng, Shandong Province, China
| | | |
Collapse
|
20
|
Gao X, Wang J, Li M, Wang J, Lv J, Zhang L, Sun C, Ji J, Yang W, Zhao Z, Mao W. Berberine attenuates XRCC1-mediated base excision repair and sensitizes breast cancer cells to the chemotherapeutic drugs. J Cell Mol Med 2019; 23:6797-6804. [PMID: 31338966 PMCID: PMC6787507 DOI: 10.1111/jcmm.14560] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Revised: 06/21/2019] [Accepted: 07/05/2019] [Indexed: 12/21/2022] Open
Abstract
Berberine (BBR) is a natural isoquinoline alkaloid, which is used in traditional medicine for its anti‐microbial, anti‐protozoal, anti‐diarrhoeal activities. Berberine interacts with DNA and displays anti‐cancer activities, yet its effects on cellular DNA repair and on synthetic treatments with chemotherapeutic drugs remain unclear. In this study, we investigated the effects of BBR on DNA repair and on sensitization of breast cancer cells to different types of DNA damage anti‐tumoural drugs. We found BBR arrested cells in the cell cycle S phase and induced DNA breaks. Cell growth analysis showed BBR sensitized MDA‐MB‐231 cells to cisplatin, camptothecin and methyl methanesulfonate; however, BBR had no synergistic effects with hydroxurea and olaparib. These results suggest BBR only affects specific DNA repair pathways. Western blot showed BBR down‐regulated XRCC1 expressions, and the rescued XRCC1 recovered the resistance of cancer cells to BBR. Therefore, we conclude that BBR interferes with XRCC1‐mediated base excision repair to sensitize cancer cells to chemotherapeutic drugs. These finding can contribute to understanding the effects of BBR on cellular DNA repair and the clinical employment of BBR in treatment of breast cancer.
Collapse
Affiliation(s)
- Xingjie Gao
- Department of Biotechnology, College of Basic Medical Sciences, Dalian Medical University, Dalian, China
| | - Jing Wang
- Department of Biotechnology, College of Basic Medical Sciences, Dalian Medical University, Dalian, China
| | - Meiqi Li
- Department of Biotechnology, College of Basic Medical Sciences, Dalian Medical University, Dalian, China
| | - Jia Wang
- Department of Biotechnology, College of Basic Medical Sciences, Dalian Medical University, Dalian, China
| | - Jian Lv
- Department of Biotechnology, College of Basic Medical Sciences, Dalian Medical University, Dalian, China
| | - Lu Zhang
- Department of Biotechnology, College of Basic Medical Sciences, Dalian Medical University, Dalian, China
| | - Caifeng Sun
- Department of Biotechnology, College of Basic Medical Sciences, Dalian Medical University, Dalian, China
| | - Jiamei Ji
- Department of Biotechnology, College of Basic Medical Sciences, Dalian Medical University, Dalian, China
| | - Wenbo Yang
- Department of Biotechnology, College of Basic Medical Sciences, Dalian Medical University, Dalian, China
| | - Zinan Zhao
- Department of Biotechnology, College of Basic Medical Sciences, Dalian Medical University, Dalian, China
| | - Weifeng Mao
- Department of Biotechnology, College of Basic Medical Sciences, Dalian Medical University, Dalian, China
| |
Collapse
|
21
|
Njuma OJ, Su Y, Guengerich FP. The abundant DNA adduct N 7-methyl deoxyguanosine contributes to miscoding during replication by human DNA polymerase η. J Biol Chem 2019; 294:10253-10265. [PMID: 31101656 DOI: 10.1074/jbc.ra119.008986] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Revised: 05/16/2019] [Indexed: 12/14/2022] Open
Abstract
Aside from abasic sites and ribonucleotides, the DNA adduct N 7-methyl deoxyguanosine (N7 -CH3 dG) is one of the most abundant lesions in mammalian DNA. Because N7 -CH3 dG is unstable, leading to deglycosylation and ring-opening, its miscoding potential is not well-understood. Here, we employed a 2'-fluoro isostere approach to synthesize an oligonucleotide containing an analog of this lesion (N7 -CH3 2'-F dG) and examined its miscoding potential with four Y-family translesion synthesis DNA polymerases (pols): human pol (hpol) η, hpol κ, and hpol ι and Dpo4 from the archaeal thermophile Sulfolobus solfataricus We found that hpol η and Dpo4 can bypass the N7 -CH3 2'-F dG adduct, albeit with some stalling, but hpol κ is strongly blocked at this lesion site, whereas hpol ι showed no distinction with the lesion and the control templates. hpol η yielded the highest level of misincorporation opposite the adduct by inserting dATP or dTTP. Moreover, hpol η did not extend well past an N 7-CH3 2'-F dG:dT mispair. MS-based sequence analysis confirmed that hpol η catalyzes mainly error-free incorporation of dC, with misincorporation of dA and dG in 5-10% of products. We conclude that N 7-CH3 2'-F dG and, by inference, N 7-CH3 dG have miscoding and mutagenic potential. The level of misincorporation arising from this abundant adduct can be considered as potentially mutagenic as a highly miscoding but rare lesion.
Collapse
Affiliation(s)
- Olive J Njuma
- From the Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee 37232-0146
| | - Yan Su
- From the Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee 37232-0146
| | - F Peter Guengerich
- From the Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee 37232-0146
| |
Collapse
|
22
|
Ghodke PP, Bommisetti P, Nair DT, Pradeepkumar PI. Synthesis of N 2-Deoxyguanosine Modified DNAs and the Studies on Their Translesion Synthesis by the E. coli DNA Polymerase IV. J Org Chem 2019; 84:1734-1747. [PMID: 30628447 DOI: 10.1021/acs.joc.8b02082] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
We report the synthesis of N2-aryl (benzyl, naphthyl, anthracenyl, and pyrenyl)-deoxyguanosine (dG) modified phosphoramidite building blocks and the corresponding damaged DNAs. Primer extension studies using E. coli Pol IV, a translesion polymerase, demonstrate that translesion synthesis (TLS) across these N2-dG adducts is error free. However, the efficiency of TLS activity decreases with increase in the steric bulkiness of the adducts. Molecular dynamics simulations of damaged DNA-Pol IV complexes reveal the van der Waals interactions between key amino acid residues (Phe13, Ile31, Gly32, Gly33, Ser42, Pro73, Gly74, Phe76, and Tyr79) of the enzyme and adduct that help to accommodate the bulky damages in a hydrophobic pocket to facilitate TLS. Overall, the results presented here provide insights into the TLS across N2-aryl-dG damaged DNAs by Pol IV.
Collapse
Affiliation(s)
- Pratibha P Ghodke
- Department of Chemistry , Indian Institute of Technology Bombay , Mumbai 400076 , India
| | - Praneeth Bommisetti
- Department of Chemistry , Indian Institute of Technology Bombay , Mumbai 400076 , India
| | - Deepak T Nair
- Regional Centre for Biotechnology , NCR Biotech Science Cluster , third Milestone, Faridabad-Gurgaon Expressway , Faridabad 121001 , India
| | - P I Pradeepkumar
- Department of Chemistry , Indian Institute of Technology Bombay , Mumbai 400076 , India
| |
Collapse
|
23
|
Guo L, Liu Z, Zhang Y, Quan Q, Huang L, Xu Y, Cao L, Zhang X. Association of increased B7 protein expression by infiltrating immune cells with progression of gastric carcinogenesis. Medicine (Baltimore) 2019; 98:e14663. [PMID: 30813210 PMCID: PMC6407991 DOI: 10.1097/md.0000000000014663] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
B7 negative costimulatory molecules are a group of molecules associated with the occurrence, development, and therapy of cancers. Here, we aimed to determine the clinical significance of PD-L1, B7-H3, and B7-H4 and their expression in CD8 and CD68 positive cells at different stages of gastric carcinogenesis.We detected PD-L1, B7-H3, B7-H4, CD8, and CD68 expression in samples by immunohistochemical staining of 62 chronic superficial gastritis (CSG) samples, 72 chronic atrophic gastritis (CAG) samples, 68 low-grade intraepithelial neoplasia (LIN) samples, 65 high-grade intraepithelial neoplasia (HIN) samples obtained from gastroscopic biopsies and 50 gastric adenocarcinoma (GA) samples obtained from surgical resections. Then we statistically analyzed the expression differences and correlations.Our results indicated that B7 and CD68 expression on infiltrating immune cells was associated with disease progression. However, infiltration of CD8+ cells decreased with disease progression. B7-H3 expression was markedly enhanced at neoplasia and GA stages. B7-H3 in tumor cells was negatively correlated with CD8-expressing cells. Conversely, B7-H3 expression in tumor-infiltrating immune cells was positively correlated with CD68-expressing cells. B7-H4 expression was found in the cell membrane at the stages of gastritis and low-grade neoplasia and was gradually expressed in the cytoplasm at high-grade neoplasia and GA stages. High B7-H4 expression in infiltrating immune cells was also significantly associated with lower CD8-positive and higher CD68-positive cell densities.Increased B7 protein expression by infiltrating immune cells was associated with disease progression, and specifically, the level of B7-H3 expression and localization of B7-H4 expression differed significantly among different stages of gastric carcinogenesis.
Collapse
Affiliation(s)
- Lingchuan Guo
- Jiangsu Institute of Clinical Immunology, The First Affiliated Hospital of Soochow University; Department of Pathology, The First Affiliated Hospital of Soochow University
| | - Zhiju Liu
- Department of Pathology, The First Affiliated Hospital of Soochow University
| | - Yun Zhang
- Department of Pathology, The First Affiliated Hospital of Soochow University
| | - Qiuying Quan
- Department of Pathology, The First Affiliated Hospital of Soochow University
| | | | - Yunyun Xu
- Institute of Pediatric Medicine, Children's Hospital of Soochow University
| | - Lei Cao
- Jiangsu Institute of Clinical Immunology, The First Affiliated Hospital of Soochow University
| | - Xueguang Zhang
- Jiangsu Institute of Clinical Immunology, The First Affiliated Hospital of Soochow University; Jiangsu Key Laboratory of Clinical Immunology, Soochow University; Jiangsu Key Laboratory of Gastrointestinal tumor Immunology, Suzhou, PR China
| |
Collapse
|
24
|
Zhang Z, Sun C, Zhang L, Chi X, Ji J, Gao X, Wang Y, Zhao Z, Liu L, Cao X, Yang Y, Mao W. Triptolide interferes with XRCC1/PARP1-mediated DNA repair and confers sensitization of triple-negative breast cancer cells to cisplatin. Biomed Pharmacother 2019; 109:1541-1546. [DOI: 10.1016/j.biopha.2018.11.008] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Revised: 11/02/2018] [Accepted: 11/02/2018] [Indexed: 01/18/2023] Open
|