1
|
Wang MY, Li ZX. Recent advances in chemotherapy for cancer therapy over Cu-based nanocatalysts. J Mater Chem B 2024; 12:11336-11346. [PMID: 39417829 DOI: 10.1039/d4tb01140f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
Recently, the emerging chemotherapy (CDT) has provided a new biocompatibility pathway for cancer therapy. Among them, Cu-based nanocatalysts with good biocompatibility and Fenton-like catalytic efficiency are considered to be a promising approach for enhancing CDT and CDT-involved multimodal synergies to improve the effectiveness of catalytic cancer therapy. Meanwhile, the emerging in situ therapy strategy promoted by Cu-based nanocatalysts has proven to exhibit attractive clinical application potential in replacing traditional chemotherapy and radiotherapy for cancer therapy with significant toxic side effects. In this work, the recent progress of various Cu-based nanocatalysts in cancer therapy was reviewed, especially the remarkable achievements in the catalytic treatment of cancer in the tumor microenvironment using CDT and CDT-involved multimodal synergies. In addition, the development expectations and challenges of Cu-based nanocatalysts in the field of cancer therapy were briefly summarized and discussed. We expect that this review will contribute to the development of Cu-based nanocatalysts for cancer therapy.
Collapse
Affiliation(s)
- Meng-Yu Wang
- Medical College, Qingdao University, Qingdao, 266023, China
| | - Zhi-Xin Li
- College of Chemistry, Chemical Engineering and Material Science, Zaozhuang University, Zaozhuang, 277160, China.
- School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100, China
| |
Collapse
|
2
|
Meng D, Yang S, Ju L, Wang J, Yang Y, Zhang L, Cui L. Cell membrane camouflaged Cu-doped mesoporous polydopamine for combined CT/PTT/CDT synergistic treatment of breast cancer. Biomed Pharmacother 2024; 180:117539. [PMID: 39383733 DOI: 10.1016/j.biopha.2024.117539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 10/02/2024] [Accepted: 10/04/2024] [Indexed: 10/11/2024] Open
Abstract
Currently, traditional monotherapy for cancer often results in indiscriminate attacks on the body, leading to the emergence of new health problems. To confront these challenges, multimodal combination therapy has become necessary. However, how to develop new smart nanomaterials through green synthesis methods, delivering drugs while simultaneously synergizing multimodal combination therapies for tumor treatment, remains a topic of great significance. In this study, a biomimetic composite nanomaterial (RM-Cu/P) composed of mesoporous polydopamine (MPDA) as the core and red blood cell membranes (RBCMs) as the shell was synthesized as a drug carrier to deliver doxorubicin (DOX) while achieving synergistic chemotherapy, photothermal and chemodynamic therapy (CT/PTT/CDT). Herein, the nanoparticles were extensively characterized to examine their morphological characteristics, elemental composition, and drug-carrying capacity. Notably, the coating of RBCM reduced the toxicity of the RM-Cu/P@DOX nanoparticles, improved their targeting ability and prolonged their circulation time in vivo. The Cu-doped nanoparticles were capable of initiating a Fenton-like reaction to generate reactive oxygen species (ROS) for CDT, while the photothermal conversion efficiency (η) reached 45.20 % under NIR laser irradiation. Subsequently, the particles were examined by in vivo and in vitro experimental studies in cytotoxicity, cellular uptake, ROS levels, lysosomal escape, and mouse tumor model to evaluate their potential application in antitumor. Compared with monotherapy, the RM-Cu/P@DOX nanoparticles had multiple-stimulation response properties under redox, pH, and NIR, which exhibited the advantage of combined trimodal therapy, resulting in remarkable synergistic antitumor efficacy. In conclusion, this innovative platform exhibited promising applications in smart drug delivery and synergistic treatment of cancer.
Collapse
Affiliation(s)
- Di Meng
- School of Biological Engineering, Henan University of Technology, Zhengzhou, PR China
| | - Shuoye Yang
- School of Biological Engineering, Henan University of Technology, Zhengzhou, PR China; Key Laboratory of Functional Molecules for Biomedical Research, Zhengzhou, PR China.
| | - Lin Ju
- School of Biological Engineering, Henan University of Technology, Zhengzhou, PR China
| | - Jinpeng Wang
- School of Biological Engineering, Henan University of Technology, Zhengzhou, PR China
| | - Yanan Yang
- School of Biological Engineering, Henan University of Technology, Zhengzhou, PR China; Key Laboratory of Functional Molecules for Biomedical Research, Zhengzhou, PR China
| | - Lu Zhang
- School of Biological Engineering, Henan University of Technology, Zhengzhou, PR China; Key Laboratory of Functional Molecules for Biomedical Research, Zhengzhou, PR China
| | - Lan Cui
- School of Biological Engineering, Henan University of Technology, Zhengzhou, PR China; Key Laboratory of Functional Molecules for Biomedical Research, Zhengzhou, PR China
| |
Collapse
|
3
|
Li Y, Qian L, Yang Z, Li S, Wu A, Wang X. Photothermal and ferroptosis synergistic therapy for liver cancer using iron-doped polydopamine nanozymes. Colloids Surf B Biointerfaces 2024; 239:113911. [PMID: 38714079 DOI: 10.1016/j.colsurfb.2024.113911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 04/04/2024] [Accepted: 04/08/2024] [Indexed: 05/09/2024]
Abstract
An innovative nanozyme, iron-doped polydopamine (Fe-PDA), which integrates iron ions into a PDA matrix, conferred peroxidase-mimetic activity and achieved a substantial photothermal conversion efficiency of 43.5 %. Fe-PDA mediated the catalysis of H2O2 to produce toxic hydroxyl radicals (•OH), thereby facilitating lipid peroxidation in tumour cells and inducing ferroptosis. Downregulation of solute carrier family 7 no. 11 (SLC7A11) and solute carrier family 3 no. 2 (SLC3A2) in System Xc- resulted in decreased intracellular glutathione (GSH) production and inactivation of the nuclear factor erythroid 2-related factor 2 (NRF2)-glutathione peroxidase 4 (GPX4) pathway, contributing to ferroptosis. Moreover, the application of photothermal therapy (PTT) enhanced the effectiveness of chemodynamic therapy (CDT), accelerating the Fenton reaction for targeted tumour eradication while sparing adjacent non-cancerous tissues. In vivo experiments revealed that Fe-PDA significantly hampered tumour progression in mice, emphasizing the potential of the dual-modality treatment combining CDT and PTT for future clinical oncology applications.
Collapse
Affiliation(s)
- Yunchun Li
- College of Science, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Linqun Qian
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Zhouping Yang
- College of Science, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Siyu Li
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Chengdu, Sichuan 611130, China
| | - Aimin Wu
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan 611130, China.
| | - Xianxiang Wang
- College of Science, Sichuan Agricultural University, Chengdu, Sichuan 611130, China.
| |
Collapse
|
4
|
Sun W, Sun J, Ding Q, Qi M, Zhou J, Shi Y, Liu J, Won M, Sun X, Bai X, Dong B, Kim JS, Wang L. Breaking Iron Homeostasis: Iron Capturing Nanocomposites for Combating Bacterial Biofilm. Angew Chem Int Ed Engl 2024; 63:e202319690. [PMID: 38320965 DOI: 10.1002/anie.202319690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 01/22/2024] [Accepted: 02/06/2024] [Indexed: 02/08/2024]
Abstract
Given the scarcity of novel antibiotics, the eradication of bacterial biofilm infections poses formidable challenges. Upon bacterial infection, the host restricts Fe ions, which are crucial for bacterial growth and maintenance. Having coevolved with the host, bacteria developed adaptive pathways like the hemin-uptake system to avoid iron deficiency. Inspired by this, we propose a novel strategy, termed iron nutritional immunity therapy (INIT), utilizing Ga-CT@P nanocomposites constructed with gallium, copper-doped tetrakis (4-carboxyphenyl) porphyrin (TCPP) metal-organic framework, and polyamine-amine polymer dots, to target bacterial iron intakes and starve them. Owing to the similarity between iron/hemin and gallium/TCPP, gallium-incorporated porphyrin potentially deceives bacteria into uptaking gallium ions and concurrently extracts iron ions from the surrounding bacteria milieu through the porphyrin ring. This strategy orchestrates a "give and take" approach for Ga3+/Fe3+ exchange. Simultaneously, polymer dots can impede bacterial iron metabolism and serve as real-time fluorescent iron-sensing probes to continuously monitor dynamic iron restriction status. INIT based on Ga-CT@P nanocomposites induced long-term iron starvation, which affected iron-sulfur cluster biogenesis and carbohydrate metabolism, ultimately facilitating biofilm eradication and tissue regeneration. Therefore, this study presents an innovative antibacterial strategy from a nutritional perspective that sheds light on refractory bacterial infection treatment and its future clinical application.
Collapse
Affiliation(s)
- Wenyue Sun
- Department of Oral Implantology, Jilin Provincial Key Laboratory of Sciences and Technology for Stomatology Nanoengineering, School and Hospital of Stomatology, Jilin University, Changchun, 130021, China
- State Key Laboratory on Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun, 130012, China
| | - Jiao Sun
- Department of Cell Biology, Norman Bethune College of Medicine, Jilin University, Changchun, 130021, China
| | - Qihang Ding
- Department of Chemistry, Korea University, Seoul, 02841, Republic of, Korea
| | - Manlin Qi
- Department of Oral Implantology, Jilin Provincial Key Laboratory of Sciences and Technology for Stomatology Nanoengineering, School and Hospital of Stomatology, Jilin University, Changchun, 130021, China
| | - Jing Zhou
- Department of Oral Implantology, Jilin Provincial Key Laboratory of Sciences and Technology for Stomatology Nanoengineering, School and Hospital of Stomatology, Jilin University, Changchun, 130021, China
| | - Yujia Shi
- Department of Oral Implantology, Jilin Provincial Key Laboratory of Sciences and Technology for Stomatology Nanoengineering, School and Hospital of Stomatology, Jilin University, Changchun, 130021, China
| | - Jia Liu
- Department of Oral Implantology, Jilin Provincial Key Laboratory of Sciences and Technology for Stomatology Nanoengineering, School and Hospital of Stomatology, Jilin University, Changchun, 130021, China
| | - Miae Won
- Department of Chemistry, Korea University, Seoul, 02841, Republic of, Korea
- TheranoChem Incorporation, Seoul, 02856, Republic of, Korea
| | - Xiaolin Sun
- Department of Oral Implantology, Jilin Provincial Key Laboratory of Sciences and Technology for Stomatology Nanoengineering, School and Hospital of Stomatology, Jilin University, Changchun, 130021, China
| | - Xue Bai
- State Key Laboratory on Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun, 130012, China
| | - Biao Dong
- State Key Laboratory on Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun, 130012, China
| | - Jong Seung Kim
- Department of Chemistry, Korea University, Seoul, 02841, Republic of, Korea
- TheranoChem Incorporation, Seoul, 02856, Republic of, Korea
| | - Lin Wang
- Department of Oral Implantology, Jilin Provincial Key Laboratory of Sciences and Technology for Stomatology Nanoengineering, School and Hospital of Stomatology, Jilin University, Changchun, 130021, China
| |
Collapse
|
5
|
Zhang H, Bao Y, Li G, Li S, Zhang X, Guo C, Wu X, Jin Y. pH-Responsive Hyaluronic Acid Nanomicelles for Photodynamic /Chemodynamic Synergistic Therapy Trigger Immunogenicity and Oxygenation. ACS Biomater Sci Eng 2024; 10:1379-1392. [PMID: 38373297 DOI: 10.1021/acsbiomaterials.3c01613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/21/2024]
Abstract
Cancer metastasis and invasion are closely related to tumor cell immunosuppression and intracellular hypoxia. Activation of immunogenicity and intracellular oxygenation are effective strategies for cancer treatment. In this study, multifunctional nanomicelle hyaluronic acid and cinnamaldehyde is self-assembled into nanomicelles (HPCNPs) were constructed for immunotherapy and tumor cell oxygenation. The Schiff base was constructed of HPCNPs with pyropheophorbide a-Cu (PPa-Cu). HPCNPs are concentrated in tumor sites under the guidance of CD44 proteins, and under the stimulation of tumor environment (weakly acidic), the Schiff base is destroyed to release free PPa. HPCNPs with photodynamic therapeutic functions and chemokinetic therapeutic functions produce a large number of reactive oxygen species (1O2 and •OH) under exogenous (laser) and endogenous (H2O2) stimulations, causing cell damage, and then inducing immunogenic cell death (ICD). ICD markers (CRT and ATP) and immunoactivity markers (IL-2 and CD8) were characterized by immunofluorescence. Downregulation of Arg1 protein proved that the tumor microenvironment changed from immunosuppressive type (M2) to antitumor type (M1). The oxidation of glutathione by HPCNP cascades to amplify the concentration of reactive oxygen species. In situ oxygenation by HPCNPs based on a Fenton-like reaction improves the intracellular oxygen level. In vitro and in vivo experiments demonstrated that HPCNPs combined with an immune checkpoint blocker (α-PD-L1) effectively ablated primary tumors, effectively inhibited the growth of distal tumors, and increased the oxygen level in tumor cells.
Collapse
Affiliation(s)
- Hui Zhang
- Key Laboratory of Molecular Cytogenetics and Genetic Breeding of Heilongjiang Province, College of Life Science and Technology, Harbin Normal University, Harbin 150025, China
| | - Yujun Bao
- Key Laboratory of Molecular Cytogenetics and Genetic Breeding of Heilongjiang Province, College of Life Science and Technology, Harbin Normal University, Harbin 150025, China
| | - Guanghao Li
- Key Laboratory for Photonic and Electronic Bandgap Materials, Ministry of Education, College of Chemistry & Chemical Engineering, Harbin Normal University, Harbin 150025, China
| | - Siqi Li
- Key Laboratory for Photonic and Electronic Bandgap Materials, Ministry of Education, College of Chemistry & Chemical Engineering, Harbin Normal University, Harbin 150025, China
| | - Xiong Zhang
- Key Laboratory for Photonic and Electronic Bandgap Materials, Ministry of Education, College of Chemistry & Chemical Engineering, Harbin Normal University, Harbin 150025, China
| | - Changhong Guo
- Key Laboratory of Molecular Cytogenetics and Genetic Breeding of Heilongjiang Province, College of Life Science and Technology, Harbin Normal University, Harbin 150025, China
| | - Xiaodan Wu
- Key Laboratory for Photonic and Electronic Bandgap Materials, Ministry of Education, College of Chemistry & Chemical Engineering, Harbin Normal University, Harbin 150025, China
| | - Yingxue Jin
- Key Laboratory of Molecular Cytogenetics and Genetic Breeding of Heilongjiang Province, College of Life Science and Technology, Harbin Normal University, Harbin 150025, China
- Key Laboratory for Photonic and Electronic Bandgap Materials, Ministry of Education, College of Chemistry & Chemical Engineering, Harbin Normal University, Harbin 150025, China
| |
Collapse
|
6
|
Nguyen NTT, Nguyen TTT, Nguyen DTC, Tran TV. Functionalization strategies of metal-organic frameworks for biomedical applications and treatment of emerging pollutants: A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 906:167295. [PMID: 37742958 DOI: 10.1016/j.scitotenv.2023.167295] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 09/19/2023] [Accepted: 09/21/2023] [Indexed: 09/26/2023]
Abstract
One of the representative coordination polymers, metal-organic frameworks (MOFs) material, is of hotspot interest in the multi field thanks to their unique structural characteristics and properties. As a novel hierarchical structural class, MOFs show diverse topologies, intrinsic behaviors, flexibility, etc. However, bare MOFs have less desirable biofunction, high humid sensitivity and instability in water, restraining their efficiencies in biomedical and environmental applications. Thus, a structural modification is required to address such drawbacks. Herein, we pinpoint new strategies in the synthesis and functionalization of MOFs to meet demanding requirements in in vitro tests, i.e., antibacterial face masks against corona virus infection and in wound healing and nanocarriers for drug delivery in anticancer. Regarding the treatment of wastewater containing emerging pollutants such as POPs, PFAS, and PPCPs, functionalized MOFs showed excellent performance with high efficiency and selectivity. Challenges in toxicity, vast database of clinical trials for biomedical tests and production cost can be still presented. MOFs-based composites can be, however, a bright candidate for reasonable replacement of traditional nanomaterials in biomedical and wastewater treatment applications.
Collapse
Affiliation(s)
- Ngoan Thi Thao Nguyen
- Institute of Applied Technology and Sustainable Development, Nguyen Tat Thanh University, 298-300A Nguyen Tat Thanh, District 4, Ho Chi Minh City 755414, Vietnam; Faculty of Chemical Engineering, Ho Chi Minh City University of Technology (HCMUT), 268 Ly Thuong Kiet Street, District 10, Ho Chi Minh City, Vietnam; Vietnam National University Ho Chi Minh City, Linh Trung Ward, Thu Duc District, Ho Chi Minh City, Vietnam
| | - Thuy Thi Thanh Nguyen
- Faculty of Science, Nong Lam University, Thu Duc District, Ho Chi Minh City 700000, Vietnam
| | - Duyen Thi Cam Nguyen
- Institute of Applied Technology and Sustainable Development, Nguyen Tat Thanh University, 298-300A Nguyen Tat Thanh, District 4, Ho Chi Minh City 755414, Vietnam
| | - Thuan Van Tran
- Institute of Applied Technology and Sustainable Development, Nguyen Tat Thanh University, 298-300A Nguyen Tat Thanh, District 4, Ho Chi Minh City 755414, Vietnam.
| |
Collapse
|
7
|
Bai Y, Liu M, Wang X, Liu K, Liu X, Duan X. Multifunctional Nanoparticles for Enhanced Chemodynamic/Photodynamic Therapy through a Photothermal, H 2O 2-Elevation, and GSH-Consumption Strategy. ACS APPLIED MATERIALS & INTERFACES 2023; 15:55379-55391. [PMID: 38058112 DOI: 10.1021/acsami.3c12479] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/08/2023]
Abstract
Chemodynamic therapy (CDT) has witnessed significant advancements in recent years due to its specific properties. Its association with photodynamic therapy (PDT) has also garnered increased attention due to its mutually reinforcing effects. However, achieving further enhancement of the CDT/PDT efficacy remains a major challenge. In this study, we have developed an integrated nanosystem comprising a Fenton catalyst and multifunctional photosensitizers to achieve triply enhanced CDT/PDT through photothermal effects, H2O2 elevation, and GSH consumption. We prepared nano-ZIF-8 vesicles as carriers to encapsulate ferrocene-(phenylboronic acid pinacol ester) conjugates (Fc-BE) and photosensitizers IR825. Subsequently, cinnamaldehyde-modified hyaluronic acid (HA-CA) was coated onto ZIF-8 through metal coordination interactions, resulting in the formation of active targeting nanoparticles (NPs@Fc-BE&IR825). Upon cellular internalization mediated by CD44 receptors, HA-CA elevated H2O2 levels, while released Fc-BE consumed GSH and catalyzed H2O2 to generate highly cytotoxic hydroxyl radicals (·OH). Furthermore, NIR irradiation led to increased ·OH production and the generation of singlet oxygen (1O2), accompanied by a greater GSH consumption. This accelerated and strengthened amplification of oxidative stress can be harnessed to develop highly effective CDT/PDT nanoagents.
Collapse
Affiliation(s)
- Yang Bai
- Shaanxi Key Laboratory of Chemical Additives for Industry, College of Chemistry and Chemical Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Mingying Liu
- Shaanxi Key Laboratory of Chemical Additives for Industry, College of Chemistry and Chemical Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Xiaoning Wang
- School of Pharmacy, Xi'an Medical University, Xi'an 710021, China
| | - Kun Liu
- Shaanxi Key Laboratory of Chemical Additives for Industry, College of Chemistry and Chemical Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Xinping Liu
- Department of Pharmacy, Changzhi Medical College, Changzhi 046000, China
| | - Xiao Duan
- Department of Pharmacy, Changzhi Medical College, Changzhi 046000, China
| |
Collapse
|
8
|
Song S, Yang M, He F, Zhang X, Gao Y, An B, Ding H, Gai S, Yang P. Multiple therapeutic mechanisms of pyrrolic N-rich g-C 3N 4 nanosheets with enzyme-like function in the tumor microenvironment. J Colloid Interface Sci 2023; 650:1125-1137. [PMID: 37473473 DOI: 10.1016/j.jcis.2023.06.177] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 06/12/2023] [Accepted: 06/25/2023] [Indexed: 07/22/2023]
Abstract
Nanozyme-based synergistic catalytic therapies for tumors have attracted extensive research attention. However, the unsatisfactory efficiency and negative impact of the tumor microenvironment (TME) hinder its clinical applications. In this study, we provide an easy method to prepare transition metals loaded onto pyrrolic nitrogen-rich g-C3N4 (PN-g-C3N4) for forming metal-N4 sites. This N-rich material effectively transfers electrons from g-C3N4 to metal-N4 sites, promotes the oxidation-reduction reaction of metals with different valence states, and improves material reusability. Under TME conditions, copper ions loaded onto PN-g-C3N4 (Cu-PN-g-C3N4, CPC) can produce ·OH through a Fenton-like reaction for tumor inhibition. This Fenton-like reaction and tumor cell inhibition can be improved further by a photodynamic effect caused by light irradiation. We introduced upconversion nanoparticles (UCNPs) into CPC to obtain nano-enzymes (UCNPs@Cu-PN-g-C3N4, UCPC) for effectively penetrating the tissue, which emits light corresponding to the UV absorption region of CPC when excited with 980 nm near-infrared (NIR) light. The nanoplatform can reduce H2O2 concentration upon exposure to NIR light; this induces an increase in dissolved oxygen content and produces a higher supply of reactive oxygen species (ROS) for destroying tumor cells. Owing to the narrow bandgap (1.92 eV) of UCPC under 980 light irradiation, even under the condition of hypoxia, the excited electrons in the conduction band can reduce insoluble O2 through a single electron transfer process, thus effectively generating O2•-. Nanoenzyme materials with catalase properties produce three types of ROS (·OH, O2•- and 1O2) when realizing chemodynamic and photodynamic therapies. An excellent therapeutic effect was established by killing cells in vitro and the tumor-inhibiting effect in vivo, proving that the prepared nanoenzymes have an effective therapeutic effect and that the endogenous synergistic treatment of multiple treatment technologies can be realized.
Collapse
Affiliation(s)
- Shanshan Song
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Material Sciences and Chemical Engineering, Harbin Engineering University, Harbin 150001, PR China
| | - Miao Yang
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Material Sciences and Chemical Engineering, Harbin Engineering University, Harbin 150001, PR China
| | - Fei He
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Material Sciences and Chemical Engineering, Harbin Engineering University, Harbin 150001, PR China.
| | - Xiao Zhang
- Department of Mechanical Engineering, The Hong Kong Polytechnic University, Kowloon, Hong Kong SAR 999077, PR China;.
| | - Yijun Gao
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Material Sciences and Chemical Engineering, Harbin Engineering University, Harbin 150001, PR China
| | - Baichao An
- College of Sciences, School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510315, PR China
| | - He Ding
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Material Sciences and Chemical Engineering, Harbin Engineering University, Harbin 150001, PR China
| | - Shili Gai
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Material Sciences and Chemical Engineering, Harbin Engineering University, Harbin 150001, PR China
| | - Piaoping Yang
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Material Sciences and Chemical Engineering, Harbin Engineering University, Harbin 150001, PR China.
| |
Collapse
|
9
|
Gao W, Liu W, Dong X, Sun Y. Albumin-manganese dioxide nanocomposites: a potent inhibitor and ROS scavenger against Alzheimer's β-amyloid fibrillogenesis and neuroinflammation. J Mater Chem B 2023; 11:10482-10496. [PMID: 37909060 DOI: 10.1039/d3tb01763j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2023]
Abstract
Alzheimer's disease (AD) is the most prevalent neurodegenerative disease pathologically caused by amyloid-β protein (Aβ) aggregation, oxidative stress, and neuroinflammation. The pathogenesis of AD is still uncertain and intricate, and helpful therapy has rarely been recorded. So, discovering amyloid modulators is deemed a promising avenue for preventing and treating AD. In this study, human serum albumin (HSA), a protein-based Aβ inhibitor, was utilized as a template to guide the synthesis of HSA-manganese dioxide nanocomposites (HMn NCs) through biomineralization. The in situ formed MnO2 in HSA endows this nano-platform with outstanding reactive oxygen species (ROS) scavenging capability, including superoxide dismutase-mimetic and catalase-mimetic activities, which could scavenge the plethora of superoxide anion radicals and hydrogen peroxide. More importantly, the HMn NCs show enhanced potency in suppressing Aβ fibrillization compared with HSA, which further alleviates Aβ-mediated SH-SY5Y neurotoxicity by scavenging excessive ROS. Moreover, it is demonstrated that HMn NCs reduce Aβ-related inflammation in BV-2 cells by lowering tumor necrosis factor-α and interleukin-6. Furthermore, transgenic C. elegans studies showed that HMn NCs could remove Aβ plaques, reduce ROS in CL2006 worms, and promote the lifespan extension of worms. Thus, HMn NCs provide a promising tactic to facilitate the application of multifunctional nanocomposites in AD treatment.
Collapse
Affiliation(s)
- Weiqun Gao
- Department of Biochemical Engineering, School of Chemical Engineering and Technology and Key Laboratory of Systems Bioengineering and Frontiers Science Center for Synthetic Biology (Ministry of Education), Tianjin University, Tianjin 300350, China.
| | - Wei Liu
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300192, China
| | - Xiaoyan Dong
- Department of Biochemical Engineering, School of Chemical Engineering and Technology and Key Laboratory of Systems Bioengineering and Frontiers Science Center for Synthetic Biology (Ministry of Education), Tianjin University, Tianjin 300350, China.
| | - Yan Sun
- Department of Biochemical Engineering, School of Chemical Engineering and Technology and Key Laboratory of Systems Bioengineering and Frontiers Science Center for Synthetic Biology (Ministry of Education), Tianjin University, Tianjin 300350, China.
| |
Collapse
|
10
|
Kong Q, Qi M, Li W, Shi Y, Su J, Xiao S, Sun J, Bai X, Dong B, Wang L. A Novel Z-Scheme Heterostructured Bi 2 S 3 /Cu-TCPP Nanocomposite with Synergistically Enhanced Therapeutics against Bacterial Biofilm Infections in Periodontitis. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2302547. [PMID: 37376834 DOI: 10.1002/smll.202302547] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Revised: 06/14/2023] [Indexed: 06/29/2023]
Abstract
Porphyrin-based antibacterial photodynamic therapy (aPDT) has found widespread applications in treating periodontitis. However, its clinical use is limited by poor energy absorption, resulting in limited reactive oxygen species (ROS) generation. To overcome this challenge, a novel Z-scheme heterostructured nanocomposite of Bi2 S3 /Cu-TCPP is developed. This nanocomposite exhibits highly efficient light absorption and effective electron-hole separation, thanks to the presence of heterostructures. The enhanced photocatalytic properties of the nanocomposite facilitate effective biofilm removal. Theoretical calculations confirm that the interface of the Bi2 S3 /Cu-TCPP nanocomposite readily adsorbs oxygen molecules and hydroxyl radicals, thereby improving ROS production rates. Additionally, the photothermal treatment (PTT) using Bi2 S3 nanoparticles promotes the release of Cu2+ ions, enhancing the chemodynamic therapy (CDT) effect and facilitating the eradication of dense biofilms. Furthermore, the released Cu2+ ions deplete glutathione in bacterial cells, weakening their antioxidant defense mechanisms. The synergistic effect of aPDT/PTT/CDT demonstrates potent antibacterial activity against periodontal pathogens, particularly in animal models of periodontitis, resulting in significant therapeutic effects, including inflammation alleviation and bone preservation. Therefore, this design of semiconductor-sensitized energy transfer represents an important advancement in improving aPDT efficacy and the treatment of periodontal inflammation.
Collapse
Affiliation(s)
- Qingchao Kong
- Department of Oral Implantology, Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, School and Hospital of Stomatology, Jilin University, Changchun, 130021, P. R. China
| | - Manlin Qi
- Department of Oral Implantology, Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, School and Hospital of Stomatology, Jilin University, Changchun, 130021, P. R. China
| | - Wen Li
- Department of Oral Implantology, Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, School and Hospital of Stomatology, Jilin University, Changchun, 130021, P. R. China
| | - Yujia Shi
- Department of Oral Implantology, Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, School and Hospital of Stomatology, Jilin University, Changchun, 130021, P. R. China
| | - Jing Su
- Department of Cell Biology, Norman Bethune College of Medicine Jilin University, Changchun, 130021, P. R. China
| | - Shimeng Xiao
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Periodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, P. R. China
| | - Jiao Sun
- Department of Cell Biology, Norman Bethune College of Medicine Jilin University, Changchun, 130021, P. R. China
| | - Xue Bai
- State Key Laboratory on Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun, 130012, P. R. China
| | - Biao Dong
- State Key Laboratory on Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun, 130012, P. R. China
| | - Lin Wang
- Department of Oral Implantology, Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, School and Hospital of Stomatology, Jilin University, Changchun, 130021, P. R. China
| |
Collapse
|
11
|
Guo S, Gu D, Yang Y, Tian J, Chen X. Near-infrared photodynamic and photothermal co-therapy based on organic small molecular dyes. J Nanobiotechnology 2023; 21:348. [PMID: 37759287 PMCID: PMC10523653 DOI: 10.1186/s12951-023-02111-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 09/15/2023] [Indexed: 09/29/2023] Open
Abstract
Near-infrared (NIR) organic small molecule dyes (OSMDs) are effective photothermal agents for photothermal therapy (PTT) due to their advantages of low cost and toxicity, good biodegradation, and strong NIR absorption over a wide wavelength range. Nevertheless, OSMDs have limited applicability in PTT due to their low photothermal conversion efficiency and inadequate destruction of tumor regions that are nonirradiated by NIR light. However, they can also act as photosensitizers (PSs) to produce reactive oxygen species (ROS), which can be further eradicated by using ROS-related therapies to address the above limitations of PTT. In this review, the synergistic mechanism, composition, and properties of photodynamic therapy (PDT)-PTT nanoplatforms were comprehensively discussed. In addition, some specific strategies for further improving the combined PTT and PDT based on OSMDs for cancer to completely eradicate cancer cells were outlined. These strategies include performing image-guided co-therapy, enhancing tumor infiltration, increasing H2O2 or O2 in the tumor microenvironment, and loading anticancer drugs onto nanoplatforms to enable combined therapy with phototherapy and chemotherapy. Meanwhile, the intriguing prospects and challenges of this treatment modality were also summarized with a focus on the future trends of its clinical application.
Collapse
Affiliation(s)
- Shuang Guo
- School of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian, 116034, China
| | - Dongyu Gu
- College of Marine Science and Environment, Dalian Ocean University, Dalian, 116023, China
| | - Yi Yang
- School of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian, 116034, China.
| | - Jing Tian
- School of Biological Engineering, Dalian Polytechnic University, Dalian, 116034, China.
| | - Xiaoyuan Chen
- Yong Loo Lin School of Medicine, Faculty of Engineering, National University of Singapore, Singapore, 117597, Singapore.
| |
Collapse
|
12
|
Peng X, Xu L, Zeng M, Dang H. Application and Development Prospect of Nanoscale Iron Based Metal-Organic Frameworks in Biomedicine. Int J Nanomedicine 2023; 18:4907-4931. [PMID: 37675409 PMCID: PMC10479543 DOI: 10.2147/ijn.s417543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 07/19/2023] [Indexed: 09/08/2023] Open
Abstract
Metal-organic frameworks (MOFs) are coordination polymers that comprise metal ions/clusters and organic ligands. MOFs have been extensively employed in different fields (eg, gas adsorption, energy storage, chemical separation, catalysis, and sensing) for their versatility, high porosity, and adjustable geometry. To be specific, Fe2+/Fe3+ exhibits unique redox chemistry, photochemical and electrical properties, as well as catalytic activity. Fe-based MOFs have been widely investigated in numerous biomedical fields over the past few years. In this study, the key index requirements of Fe-MOF materials in the biomedical field are summarized, and a conclusion is drawn in terms of the latest application progress, development prospects, and future challenges of Fe-based MOFs as drug delivery systems, antibacterial therapeutics, biocatalysts, imaging agents, and biosensors in the biomedical field.
Collapse
Affiliation(s)
- Xiujuan Peng
- Department of Clinical Laboratory, The Third Hospital of Mianyang (Sichuan Mental Health Center), Mianyang, Sichuan, 621000, People’s Republic of China
| | - Li Xu
- Department of Clinical Laboratory, The Third Hospital of Mianyang (Sichuan Mental Health Center), Mianyang, Sichuan, 621000, People’s Republic of China
| | - Min Zeng
- School of Materials and Chemistry, Southwest University of Science and Technology, Mianyang, Sichuan, 621010, People’s Republic of China
| | - Hao Dang
- Department of Clinical Laboratory, The Third Hospital of Mianyang (Sichuan Mental Health Center), Mianyang, Sichuan, 621000, People’s Republic of China
| |
Collapse
|
13
|
Shuai Y. A tumor-microenvironment-activated nanoplatform of modified SnFe 2O 4 nanozyme in scaffold for enhanced PTT/PDT tumor therapy. Heliyon 2023; 9:e18019. [PMID: 37483724 PMCID: PMC10362236 DOI: 10.1016/j.heliyon.2023.e18019] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 07/01/2023] [Accepted: 07/05/2023] [Indexed: 07/25/2023] Open
Abstract
Phototherapy has attracted widespread attention for cancer treatment due to its noninvasiveness and high selectivity. However, severe hypoxia, overexpressed glutathione and high levels of hydrogen peroxide (H2O2) of tumor microenvironment limit the antitumor efficiency of phototherapy. Herein, inspired by the specific response of nanozymes to the tumor microenvironment, a simple and versatile nanozyme-mediated synergistic dual phototherapy nanoplatform is constructed. In this study, tin ferrite (SnFe2O4, SFO) nanozyme as a photosensitizer was surface modified with polydopamine (denoted as P-SFO) and incorporated into poly(l-lactide) to fabricate an antitumor scaffold fabricated by selective laser sintering. On one hand, SFO nanozyme could act as a photoabsorber to convert light energy into heat for photothermal therapy (PTT). On the other hand, it played a role of photosensitizer in transferring the photon energy to generate reactive oxygen species (ROS) for photodynamic therapy (PDT). Importantly, its multivalent metal ions redox couples would decompose H2O2 into O2 for enhancing O2-dependent PDT and consume glutathione to relieve antioxidant capability of the tumors. Besides, polydopamine as a photothermal conversion agent further enhanced the photothermal performance of SFO. The results revealed the PLLA/P-SFO scaffold possessed a photothermal conversion efficiency of 43.52% for PTT and a high ROS generation capacity of highly toxic ·O2- and ·OH for PDT. Consequently, the scaffold displayed a prominent phototherapeutic effect with antitumor rate of 96.3%. In addition, the PLLA/P-SFO scaffolds possessed good biocompatibility for cell growth. These advantages endow PLLA/P-SFO scaffold with extensive applications in biomedical fields and opened up new avenue towards nanozyme-mediated synergistic phototherapy.
Collapse
Affiliation(s)
- Yang Shuai
- College of Life Science and Technology, Huazhong University of Science and Technology. 430074, China
| |
Collapse
|
14
|
Duan F, Jia Q, Liang G, Wang M, Zhu L, McHugh KJ, Jing L, Du M, Zhang Z. Schottky Junction Nanozyme Based on Mn-Bridged Co-Phthalocyanines and Ti 3C 2T x Nanosheets Boosts Integrative Type I and II Photosensitization for Multimodal Cancer Therapy. ACS NANO 2023. [PMID: 37276377 DOI: 10.1021/acsnano.2c12270] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Cancer phototheranostics have the potential for significantly improving the therapeutic effectiveness, as it can accurately diagnose and treat cancer. However, the current phototheranostic platforms leave much to be desired and are often limited by tumor hypoxia. Herein, a Schottky junction nanozyme has been established between a manganese-bridged cobalt-phthalocyanines complex and Ti3C2Tx MXene nanosheets (CoPc-Mn/Ti3C2Tx), which can serve as an integrative type I and II photosensitizer for enhancing cancer therapeutic efficacy via a photoacoustic imaging-guided multimodal chemodynamic/photothermal/photodynamic therapy strategy under near-infrared (808 nm) light irradiation. The Schottky junction not only possessed a narrow-bandgap, enhanced electron-hole separation ability and exhibited a potent redox potential but also enabled improved H2O2 and O2 supplying performances in vitro. Accordingly, the AS1411 aptamer-immobilized CoPc-Mn/Ti3C2Tx nanozyme illustrated high accuracy and excellent anticancer efficiency through a multimodal therapy strategy in in vitro and in vivo experiments. This work presents a valuable method for designing and constructing a multifunctional nanocatalytic medicine platform for synergistic cancer therapy of solid tumors.
Collapse
Affiliation(s)
- Fenghe Duan
- College of Material and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou 450001, China
| | - Qiaojuan Jia
- College of Material and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou 450001, China
| | - Gaolei Liang
- College of Material and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou 450001, China
| | - Mengfei Wang
- College of Material and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou 450001, China
| | - Lei Zhu
- College of Material and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou 450001, China
| | - Kevin J McHugh
- Departments of Bioengineering and Chemistry, Rice University, Houston, Texas 77005, United States
| | - Lihong Jing
- CAS Key Laboratory of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Miao Du
- College of Material and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou 450001, China
| | - Zhihong Zhang
- College of Material and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou 450001, China
| |
Collapse
|
15
|
Di X, Pei Z, Pei Y, James TD. Tumor microenvironment-oriented MOFs for chemodynamic therapy. Coord Chem Rev 2023. [DOI: 10.1016/j.ccr.2023.215098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2023]
|
16
|
Elsherbiny SM, Khalifa MA, Acheampong A, Liu C, Bondzie-Quaye P, Swallah MS, Lin X, Huang Q. Effective Nanocomposite Based on Bi 2MoO 6/MoS 2/AuNRs for NIR-II Light-Boosted Photodynamic/Chemodynamic Therapy. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023. [PMID: 37146209 DOI: 10.1021/acs.langmuir.3c00372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Bi2MoO6 (BMO) nanoparticles (NPs) have been widely used as a photocatalyst to decompose organic pollutants, but their potential for photodynamic therapy (PDT) is yet to be explored. Normally, the UV absorption property of BMO NPs is not suitable for clinical application because the penetration depth of the UV light is too small. To overcome this limitation, we rationally designed a novel nanocomposite based on Bi2MoO6/MoS2/AuNRs (BMO-MSA), which simultaneously possesses both the high photodynamic ability and POD-like activity under NIR-II light irradiation. Additionally, it has excellent photothermal stability with good photothermal conversion efficiency. The as-prepared BMO-MSA nanocomposite could induce the germline apoptosis of Caenorhabditis elegans (C. elegans) via the cep-1/p53 pathway after being illuminated by light with a wavelength of 1064 nm. The in vivo investigations confirmed the ability of the BMO-MSA nanocomposite for the induction of DNA damage in the worms, and the mechanism was approved by determining the egl-1 fold induction in the mutants that have a loss of function in the genes involved in DNA damage response mutants. Thus, this work has not only provided a novel PDT agent, which may be used for PDT in the NIR-II region, but also introduced a new approach to therapy, taking advantage of both PDT and CDT effects.
Collapse
Affiliation(s)
- Shereen M Elsherbiny
- CAS Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Anhui Key Laboratory of Environmental Toxicology and Pollution Control Technology, Institute of Intelligent Machine, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
- Science Island Branch of Graduate School, University of Science and Technology of China, Hefei 230026, China
- Physics Department, Faculty of Science, Mansoura University, Mansoura 35516, Egypt
| | - Mahmoud A Khalifa
- Physics Department, Faculty of Science, Mansoura University, Mansoura 35516, Egypt
- Anhui Province Key Laboratory of Condensed Matter Physics at Extreme Conditions, High Magnetic Field Laboratory, HFIPS, Chinese Academy of Sciences, Hefei 230031, Anhui, China
| | - Adolf Acheampong
- CAS Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Anhui Key Laboratory of Environmental Toxicology and Pollution Control Technology, Institute of Intelligent Machine, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
- Science Island Branch of Graduate School, University of Science and Technology of China, Hefei 230026, China
| | - Chao Liu
- CAS Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Anhui Key Laboratory of Environmental Toxicology and Pollution Control Technology, Institute of Intelligent Machine, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
- Science Island Branch of Graduate School, University of Science and Technology of China, Hefei 230026, China
| | - Precious Bondzie-Quaye
- CAS Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Anhui Key Laboratory of Environmental Toxicology and Pollution Control Technology, Institute of Intelligent Machine, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
- Science Island Branch of Graduate School, University of Science and Technology of China, Hefei 230026, China
| | - Mohammed S Swallah
- CAS Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Anhui Key Laboratory of Environmental Toxicology and Pollution Control Technology, Institute of Intelligent Machine, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
- Science Island Branch of Graduate School, University of Science and Technology of China, Hefei 230026, China
| | - Xiuping Lin
- CAS Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Anhui Key Laboratory of Environmental Toxicology and Pollution Control Technology, Institute of Intelligent Machine, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
- Science Island Branch of Graduate School, University of Science and Technology of China, Hefei 230026, China
| | - Qing Huang
- CAS Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Anhui Key Laboratory of Environmental Toxicology and Pollution Control Technology, Institute of Intelligent Machine, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
- Science Island Branch of Graduate School, University of Science and Technology of China, Hefei 230026, China
| |
Collapse
|
17
|
Asil SM, Guerrero ED, Bugarini G, Cayme J, De Avila N, Garcia J, Hernandez A, Mecado J, Madero Y, Moncayo F, Olmos R, Perches D, Roman J, Salcido-Padilla D, Sanchez E, Trejo C, Trevino P, Nurunnabi M, Narayan M. Theranostic applications of multifunctional carbon nanomaterials. VIEW 2023; 4:20220056. [PMID: 37426287 PMCID: PMC10328449 DOI: 10.1002/viw.20220056] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 02/01/2023] [Indexed: 03/06/2023] Open
Abstract
Nanobiotechnology is one of the leading research areas in biomedical science, developing rapidly worldwide. Among various types of nanoparticles, carbon nanomaterials (CNMs) have attracted a great deal of attention from the scientific community, especially with respect to their prospective application in the field of disease diagnosis and therapy. The unique features of these nanomaterials, including favorable size, high surface area, and electrical, structural, optical, and chemical properties, have provided an excellent opportunity for their utilization in theranostic systems. Carbon nanotubes, carbon quantum dots, graphene, and fullerene are the most employed CNMs in biomedical fields. They have been considered safe and efficient for non-invasive diagnostic techniques such as fluorescence imaging, magnetic resonance imaging, and biosensors. Various functionalized CNMs exhibit a great capacity to improve cell targeting of anti-cancer drugs. Due to their thermal properties, they have been extensively used in cancer photothermal and photodynamic therapy assisted by laser irradiation and CNMs. CNMs also can cross the blood-brain barrier and have the potential to treat various brain disorders, for instance, neurodegenerative diseases, by removing amyloid fibrils. This review has summarized and emphasized on biomedical application of CNMs and their recent advances in diagnosis and therapy.
Collapse
Affiliation(s)
- Shima Masoudi Asil
- Department of Environmental Science and Engineering, The University of Texas at El Paso, El Paso, Texas, USA
| | - Erick Damian Guerrero
- Department of Biochemistry, Simmons Comprehensive Cancer Center, The University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Georgina Bugarini
- BUILDing SCHOLARS, Research Intensive Sequence (FYRIS) students, The University of Texas at El Paso, El Paso, Texas, USA
| | - Joshua Cayme
- BUILDing SCHOLARS, Research Intensive Sequence (FYRIS) students, The University of Texas at El Paso, El Paso, Texas, USA
| | - Nydia De Avila
- BUILDing SCHOLARS, Research Intensive Sequence (FYRIS) students, The University of Texas at El Paso, El Paso, Texas, USA
| | - Jaime Garcia
- BUILDing SCHOLARS, Research Intensive Sequence (FYRIS) students, The University of Texas at El Paso, El Paso, Texas, USA
| | - Adrian Hernandez
- BUILDing SCHOLARS, Research Intensive Sequence (FYRIS) students, The University of Texas at El Paso, El Paso, Texas, USA
| | - Julia Mecado
- BUILDing SCHOLARS, Research Intensive Sequence (FYRIS) students, The University of Texas at El Paso, El Paso, Texas, USA
| | - Yazeneth Madero
- BUILDing SCHOLARS, Research Intensive Sequence (FYRIS) students, The University of Texas at El Paso, El Paso, Texas, USA
| | - Frida Moncayo
- BUILDing SCHOLARS, Research Intensive Sequence (FYRIS) students, The University of Texas at El Paso, El Paso, Texas, USA
| | - Rosario Olmos
- BUILDing SCHOLARS, Research Intensive Sequence (FYRIS) students, The University of Texas at El Paso, El Paso, Texas, USA
| | - David Perches
- BUILDing SCHOLARS, Research Intensive Sequence (FYRIS) students, The University of Texas at El Paso, El Paso, Texas, USA
| | - Jacob Roman
- BUILDing SCHOLARS, Research Intensive Sequence (FYRIS) students, The University of Texas at El Paso, El Paso, Texas, USA
| | - Diana Salcido-Padilla
- BUILDing SCHOLARS, Research Intensive Sequence (FYRIS) students, The University of Texas at El Paso, El Paso, Texas, USA
| | - Efrain Sanchez
- BUILDing SCHOLARS, Research Intensive Sequence (FYRIS) students, The University of Texas at El Paso, El Paso, Texas, USA
| | - Christopher Trejo
- BUILDing SCHOLARS, Research Intensive Sequence (FYRIS) students, The University of Texas at El Paso, El Paso, Texas, USA
| | - Paulina Trevino
- BUILDing SCHOLARS, Research Intensive Sequence (FYRIS) students, The University of Texas at El Paso, El Paso, Texas, USA
| | - Md Nurunnabi
- Department of Pharmaceutical Sciences, School of Pharmacy, The University of Texas at El Paso, El Paso, Texas, USA
| | - Mahesh Narayan
- Department of Chemistry and Biochemistry, The University of Texas at El Paso, El Paso, Texas, USA
| |
Collapse
|
18
|
Geng T, Zhang J, Wang Z, Shi Y, Shi Y, Zeng L. Ultrasmall gold decorated bimetallic metal-organic framework based nanoprobes for enhanced chemodynamic therapy with triple amplification. J Mater Chem B 2023; 11:2249-2257. [PMID: 36794807 DOI: 10.1039/d2tb02548e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Chemodynamic therapy (CDT) has shown potential for important applications in tumor precision therapy, but insufficient endogenous hydrogen peroxide (H2O2), overexpressed glutathione (GSH) and a weak Fenton-reaction rate greatly reduced the efficacy of CDT. Herein, a metal-organic framework (MOF) based bimetallic nanoprobe with self-supplying H2O2 was developed for enhancing CDT with triple amplification, in which ultrasmall gold nanoparticles (AuNPs) were deposited on Co-based MOFs (ZIF-67), and manganese dioxide (MnO2) nanoshells were coated to form a ZIF-67@AuNPs@MnO2 nanoprobe. In the tumor microenvironment, MnO2 depleted overexpressed GSH to produce Mn2+, and the bimetallic Co2+/Mn2+ nanoprobe accelerated the Fenton-like reaction rate. Moreover, by catalyzing glucose via ultrasmall AuNPs, the self-supplying H2O2 further promoted hydroxyl radical (˙OH) generation. Compared with those of ZIF-67 and ZIF-67@AuNPs, the ˙OH yield of ZIF-67@AuNPs@MnO2 obviously increased, due to which the cell viability decreased to 9.3%, and the tumor completely disappeared, indicating the enhanced CDT performance of the ZIF-67@AuNPs@MnO2 nanoprobe.
Collapse
Affiliation(s)
- Tianzi Geng
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, Institute of Life Science and Green Development, Chemical Biology Key Laboratory of Hebei Province, Hebei Key Laboratory of Precise Imaging of Inflammation Related Tumors, College of Chemistry & Environmental Science, Hebei University, Baoding, 071002, P. R. China.
| | - Jiahe Zhang
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, Institute of Life Science and Green Development, Chemical Biology Key Laboratory of Hebei Province, Hebei Key Laboratory of Precise Imaging of Inflammation Related Tumors, College of Chemistry & Environmental Science, Hebei University, Baoding, 071002, P. R. China.
| | - Zhaoyang Wang
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, Institute of Life Science and Green Development, Chemical Biology Key Laboratory of Hebei Province, Hebei Key Laboratory of Precise Imaging of Inflammation Related Tumors, College of Chemistry & Environmental Science, Hebei University, Baoding, 071002, P. R. China.
| | - Yuehua Shi
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, Institute of Life Science and Green Development, Chemical Biology Key Laboratory of Hebei Province, Hebei Key Laboratory of Precise Imaging of Inflammation Related Tumors, College of Chemistry & Environmental Science, Hebei University, Baoding, 071002, P. R. China.
| | - Yu Shi
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, Institute of Life Science and Green Development, Chemical Biology Key Laboratory of Hebei Province, Hebei Key Laboratory of Precise Imaging of Inflammation Related Tumors, College of Chemistry & Environmental Science, Hebei University, Baoding, 071002, P. R. China.
| | - Leyong Zeng
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, Institute of Life Science and Green Development, Chemical Biology Key Laboratory of Hebei Province, Hebei Key Laboratory of Precise Imaging of Inflammation Related Tumors, College of Chemistry & Environmental Science, Hebei University, Baoding, 071002, P. R. China.
| |
Collapse
|
19
|
Zhang M, Bao S, Qiu G, Liang J, Wang Q, Zhu X, Qin G, Liu J, Zhao C. An Magnetic-Targeting Nano-Diagnosis and Treatment Platform for TNBC. BREAST CANCER (DOVE MEDICAL PRESS) 2023; 15:101-119. [PMID: 36761696 PMCID: PMC9904310 DOI: 10.2147/bctt.s387793] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Accepted: 01/12/2023] [Indexed: 02/05/2023]
Abstract
Purpose In this experiment, we constructed a magnetic targeting nano-diagnosis and treatment platform of doxorubicin (DOX) combined with iron nanoparticles, and explored their application value and mechanism in the treatment of Triple Negative Breast Cancer (TNBC), as well as its new diagnosis and treatment mode in Magnetic Resonance Imaging (MRI). Patients and Methods Hollow mesoporous nanoparticles (HFON) were synthesized by solvothermal method, and loaded the drug DOX (DOX@HFON) to treat TNBC. The experiments in vivo and in vitro were carried out according to the characteristics of the materials. In vitro experiments, the killing effect of the drug on cells was verified by cell viability CCK8, ROS generation level, LPO evaluation and flow cytometry; the MRI effect and targeted anti-tumor therapy effect were studied by in vivo experiments; then the tumor tissue sections were detected by Ki-67, CD31, ROS, LPO and TUNEL immunofluorescence detection; H&E staining and blood biochemical tests were used to evaluate the biosafety of the materials. Results Through a series of characterization tests, it is confirmed that the nano-materials prepared in this experiment have positive drug loading properties. MDA-MB-231 cells had great phagocytic ability to DOX@HFON under Confocal Laser Scanning Microscope (CLSM). Experiments in vitro confirmed that DOX and Fe were released and concentrated in cells, and a large number of ROS production and induction of LPO were detected by DCFH-DA and C11-BODIPY probes in cells. Apoptosis experiments further confirmed that DOX@HFON induced apoptosis, autophagy and ferroptosis. In the vivo experiment, the anti-tumor therapy effect of MAGNET@DOX@HFON group was the most significant, and in MRI also proved that the drug had great tendency and imaging ability in tumor tissue. Conclusion The new magnetic targeting nano-diagnosis and treatment platform prepared in this experiment is expected to become a new treatment model for TNBC.
Collapse
Affiliation(s)
- Mengqi Zhang
- Department of Interventional Therapy, Affiliated Tumor Hospital of Guangxi Medical University, Nanning, People’s Republic of China
| | - Shengxian Bao
- Department of Ultrasound and Department of Radiology, Affiliated Tumor Hospital of Guangxi Medical University, Nanning, People’s Republic of China
| | - Guanhua Qiu
- Department of Ultrasound and Department of Radiology, Affiliated Tumor Hospital of Guangxi Medical University, Nanning, People’s Republic of China
| | - Jingchen Liang
- Department of Ultrasound and Department of Radiology, Affiliated Tumor Hospital of Guangxi Medical University, Nanning, People’s Republic of China
| | - Qin Wang
- Department of Ultrasound and Department of Radiology, Affiliated Tumor Hospital of Guangxi Medical University, Nanning, People’s Republic of China
| | - Xiaoqi Zhu
- Department of Ultrasound and Department of Radiology, Affiliated Tumor Hospital of Guangxi Medical University, Nanning, People’s Republic of China
| | - Guchun Qin
- Department of Interventional Therapy, Affiliated Tumor Hospital of Guangxi Medical University, Nanning, People’s Republic of China
| | - Junjie Liu
- Department of Ultrasound and Department of Radiology, Affiliated Tumor Hospital of Guangxi Medical University, Nanning, People’s Republic of China,Correspondence: Junjie Liu; Chang Zhao, Email ;
| | - Chang Zhao
- Department of Interventional Therapy, Affiliated Tumor Hospital of Guangxi Medical University, Nanning, People’s Republic of China
| |
Collapse
|
20
|
Shu Y, Linghu X, Zhao Y, Chen Z, Zhang J, Shan D, Liu W, Di M, Wang B. Photodynamic and photothermal therapy-driven synergistic cancer treatment assisted by zeolitic imidazolate framework-8: A review. J Drug Deliv Sci Technol 2023. [DOI: 10.1016/j.jddst.2023.104272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
|
21
|
Sui C, Tan R, Liu Z, Li X, Xu W. Smart Chemical Oxidative Polymerization Strategy To Construct Au@PPy Core-Shell Nanoparticles for Cancer Diagnosis and Imaging-Guided Photothermal Therapy. Bioconjug Chem 2023; 34:257-268. [PMID: 36516477 DOI: 10.1021/acs.bioconjchem.2c00549] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Imaging-guided photothermal therapy (PTT) in a single nanoscale platform has aroused extensive research interest in precision medicine, yet only a few methods have gained wide acceptance. Thus, it remained an urgent need to facilely develop biocompatible and green probes with excellent theranostic capacity for superior biomedical applications. In this study, a smart chemical oxidative polymerization strategy was successfully developed for the synthesis of Au@PPy core-shell nanoparticles with polyvinyl alcohol (PVA) as the hydrophile. In the reaction, the reactant tetrachloroauric acid (HAuCl4) was reduced by pyrrole to fabricate a gold (Au) core, and pyrrole was oxidized to deposit around the Au core to form a polypyrrole (PPy) shell. The as-synthesized Au@PPy nanoparticles showed a regular core-shell morphology and good colloidal stability. Relying on the high X-ray attenuation of Au and strong near-infrared (NIR) absorbance of PPy and Au, Au@PPy nanoparticles exhibited excellent performance in blood pool/tumor imaging and PTT treatment by a series of in vivo experiments, in which tumor could be precisely positioned and thoroughly eradicated. Hence, the facile chemical oxidative polymerization strategy for constructing monodisperse Au@PPy core-shell nanoparticles with potential for cancer diagnosis and imaging-guided photothermal therapy shed light on an innovative design concept for the facile fabrication of biomedical materials.
Collapse
Affiliation(s)
- Chunxiao Sui
- Department of Molecular Imaging and Nuclear Medicine, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer; Tianjin's Clinical Research Center for Cancer; Key Laboratory of Cancer Prevention and Therapy, Tianjin 300060, P. R. China.,Tianjin Medical University, Tianjin 300203, P. R. China
| | - Rui Tan
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin 300052, P. R. China.,Tianjin Medical University, Tianjin 300203, P. R. China
| | - Zifan Liu
- Department of Molecular Imaging and Nuclear Medicine, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer; Tianjin's Clinical Research Center for Cancer; Key Laboratory of Cancer Prevention and Therapy, Tianjin 300060, P. R. China.,Tianjin Medical University, Tianjin 300203, P. R. China
| | - Xiaofeng Li
- Department of Molecular Imaging and Nuclear Medicine, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer; Tianjin's Clinical Research Center for Cancer; Key Laboratory of Cancer Prevention and Therapy, Tianjin 300060, P. R. China
| | - Wengui Xu
- Department of Molecular Imaging and Nuclear Medicine, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer; Tianjin's Clinical Research Center for Cancer; Key Laboratory of Cancer Prevention and Therapy, Tianjin 300060, P. R. China
| |
Collapse
|
22
|
Ren S, Li H, Xu X, Zhao H, He W, Zhang L, Cheng Z. Unimolecular micelles from star-shaped block polymers by photocontrolled BIT-RDRP for PTT/PDT synergistic therapy. Biomater Sci 2023; 11:509-517. [PMID: 36533394 DOI: 10.1039/d2bm01727j] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Unimolecular micelles (UIMs) exhibit promising potential in the precise diagnosis and accurate treatment of tumor tissues, a pressing problem in the field of medical treatment, because of their perfect stability in the complex and variable microenvironment. In this study, porphyrin-based four-armed star-shaped block polymers with narrow molar mass dispersity (Đ = 1.34) were facilely prepared by photocontrolled bromine-iodine transformation reversible-deactivation radical polymerization (BIT-RDRP). A photothermal conversion dye, ketocyanine, was covalently linked onto the PEG and then introduced into the polymers through a "grafting onto" strategy to obtain polymeric nanomaterial, THPP-4PMMA-b-4P(PEGMA-co-APMA)@NIR-800, with dual PTT/PDT function. The resulting polymers could form monodispersed UIMs in the water below critical aggregation concentration, meanwhile maintaining the capacities of singlet oxygen release and photothermal conversion. Importantly, the UIMs displayed excellent biocompatibility while exerting superior PTT and/or PDT therapeutic effects under the irradiation of specific wavelengths of light, according to in vitro cellular experiments, which is expected to become a new hot spot for cancer therapy and anti-tumor research. Overall, stable and powerful UIMs with dual PTT/PDT function is provided, which are expected to be competitive candidates in cancer therapy.
Collapse
Affiliation(s)
- Shusu Ren
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials; Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application; Suzhou key Laboratory of Macromolecular Design and Precision Synthesis; College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China.
| | - Haihui Li
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials; Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application; Suzhou key Laboratory of Macromolecular Design and Precision Synthesis; College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China.
| | - Xiang Xu
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials; Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application; Suzhou key Laboratory of Macromolecular Design and Precision Synthesis; College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China.
| | - Haitao Zhao
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials; Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application; Suzhou key Laboratory of Macromolecular Design and Precision Synthesis; College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China.
| | - Weiwei He
- State Key Laboratory of Radiation Medicine and Protection, School of Radiological and Interdisciplinary Sciences (RADX), Soochow University, Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Suzhou 215123, China.
| | - Lifen Zhang
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials; Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application; Suzhou key Laboratory of Macromolecular Design and Precision Synthesis; College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China.
| | - Zhenping Cheng
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials; Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application; Suzhou key Laboratory of Macromolecular Design and Precision Synthesis; College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China.
| |
Collapse
|
23
|
|
24
|
Liu J, Cong Y, Zeng Y, He Y, Luo Y, Lu W, Xu H, Yin Y, Hong H, Xu W. F3
‐functionalized nanoscale metal–organic frameworks for tumor‐targeting combined chemotherapy and chemodynamic therapy. J Appl Polym Sci 2022. [DOI: 10.1002/app.53408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Affiliation(s)
- Jia Liu
- Department of Pharmaceutical Engineering, School of Chemistry, Chemical Engineering and Life Sciences Wuhan University of Technology Wuhan Hubei China
| | - Yiyang Cong
- Medical School of Nanjing University Nanjing Jiangsu China
| | - Yawen Zeng
- Department of Pharmaceutical Engineering, School of Chemistry, Chemical Engineering and Life Sciences Wuhan University of Technology Wuhan Hubei China
| | - Yiming He
- Department of Pharmaceutical Engineering, School of Chemistry, Chemical Engineering and Life Sciences Wuhan University of Technology Wuhan Hubei China
| | - Ying Luo
- Department of Pharmaceutical Engineering, School of Chemistry, Chemical Engineering and Life Sciences Wuhan University of Technology Wuhan Hubei China
| | - Weifei Lu
- College of Veterinary Medicine Henan Agricultura University Zhengzhou Henan China
| | - Haixing Xu
- Department of Pharmaceutical Engineering, School of Chemistry, Chemical Engineering and Life Sciences Wuhan University of Technology Wuhan Hubei China
| | - Yihua Yin
- Department of Pharmaceutical Engineering, School of Chemistry, Chemical Engineering and Life Sciences Wuhan University of Technology Wuhan Hubei China
| | - Hao Hong
- Medical School of Nanjing University Nanjing Jiangsu China
| | - Wenjin Xu
- Department of Pharmaceutical Engineering, School of Chemistry, Chemical Engineering and Life Sciences Wuhan University of Technology Wuhan Hubei China
| |
Collapse
|
25
|
Wang J, Tian C, Cao Z. One-Pot Synthesis Bodipy Nano-Precipitations for Prostate Cancer Treatment. J BIOMATER TISS ENG 2022. [DOI: 10.1166/jbt.2022.3070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Here in this study, we proposed a polystyrene maleic anhydride (PSMA) stabilized Bodipy nanoparticles (PB NPs) in a one-pot approach for the photodynamic therapy (PDT) of prostate cancer. The nanoparticle formed by precipitation method was then employed to treat PC-3 cells and PC-3
tumor bearing nude mice model. It was shown that this platform showed promising anticancer performance than free bodipy with reduced side effects.
Collapse
Affiliation(s)
- Jianan Wang
- Department of Urology, Yuebei People’s Hospital, Wujiang District, 512000, Shaoguan, Guangdong Province, 51200, China
| | - Chao Tian
- Department of Urology, Yuebei People’s Hospital, Wujiang District, 512000, Shaoguan, Guangdong Province, 51200, China
| | - Zhengguo Cao
- Department of Urology, Yuebei People’s Hospital, Wujiang District, 512000, Shaoguan, Guangdong Province, 51200, China
| |
Collapse
|
26
|
Su J, Jing P, Jiang K, Du J. Recent advances in porous MOFs and their hybrids for photothermal cancer therapy. Dalton Trans 2022; 51:8938-8944. [PMID: 35642650 DOI: 10.1039/d2dt01039a] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Cancer is still one of the most life-threatening diseases in the world. Among the various cancer therapeutic strategies, photothermal therapy (PTT) has attracted considerable attention due to its high treatment efficacy, low invasive burden, and minor side effects. Microporous metal-organic frameworks (MOFs) are potential materials for photothermal tumor treatment thanks to their high surface areas, suitable pore geometry, and easy functionalization. Through designating organic linkers, encapsulating PTT agents and fabricating MOF hybrids, MOF-based treatment platforms have great potential in PTT. In this review, we mainly summarize the recent advances of MOFs in photothermal combined cancer therapy. The present challenges and possible future prospects in this field are also explored.
Collapse
Affiliation(s)
- Jia Su
- Key Laboratory of Food Nutrition and Functional Food of Hainan Province, School of Food Science and Engineering, Hainan University, Haikou 570228, China.
| | - Peng Jing
- Key Laboratory of Food Nutrition and Functional Food of Hainan Province, School of Food Science and Engineering, Hainan University, Haikou 570228, China.
| | - Ke Jiang
- Key Laboratory of Food Nutrition and Functional Food of Hainan Province, School of Food Science and Engineering, Hainan University, Haikou 570228, China. .,State Key Laboratory of Silicon Materials, Zhejiang University, Hangzhou 310027, China
| | - Jingjing Du
- Analytical & Testing Center, Hainan University, Haikou 570228, China.
| |
Collapse
|
27
|
Kang W, Tian Y, Zhao Y, Yin X, Teng Z. Applications of nanocomposites based on zeolitic imidazolate framework-8 in photodynamic and synergistic anti-tumor therapy. RSC Adv 2022; 12:16927-16941. [PMID: 35754870 PMCID: PMC9178442 DOI: 10.1039/d2ra01102f] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Accepted: 05/06/2022] [Indexed: 11/21/2022] Open
Abstract
Due to the limitations resulting from hypoxia and the self-aggregation of photosensitizers, photodynamic therapy (PDT) has not been applied clinically to treat most types of solid tumors. Zeolitic imidazolate framework-8 (ZIF-8) is a common metal-organic framework that has ultra-high porosity, an adjustable structure, good biocompatibility, and pH-induced biodegradability. In this review, we summarize the applications of ZIF-8 and its derivatives in PDT. This review is divided into two parts. In the first part, we summarize progress in the application of ZIF-8 to enhance PDT and realize theranostics. We discuss the use of ZIF-8 to avoid the self-aggregation of photosensitizers, alleviate hypoxia, increase the PDT penetration depth, and combine PDT with multi-modal imaging. In the second part, we summarize how ZIF-8 can achieve synergistic PDT with other anti-tumor therapies, including chemotherapy, photothermal therapy, chemodynamic therapy, starvation therapy, protein therapy, gene therapy, and immunotherapy. Finally, we highlight the challenges that must be overcome for ZIF-8 to be widely applied in PDT. To the best of our knowledge, this is the first review of ZIF-8-based nanoplatforms for PDT.
Collapse
Affiliation(s)
- Wen Kang
- Department of Radiology, Nanjing First Hospital, Nanjing Medical University Nanjing 210006 P. R. China
| | - Ying Tian
- Department of Radiology, Affiliated Hospital of Nanjing University of Chinese Medicine Nanjing 210029 P. R. China
| | - Ying Zhao
- Department of Radiology, Nanjing First Hospital, Nanjing Medical University Nanjing 210006 P. R. China
| | - Xindao Yin
- Department of Radiology, Nanjing First Hospital, Nanjing Medical University Nanjing 210006 P. R. China
| | - Zhaogang Teng
- Key Laboratory for Organic Electronics and Information Displays and Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications Nanjing 210046 P. R. China
| |
Collapse
|
28
|
Wang W, Yu Y, Jin Y, Liu X, Shang M, Zheng X, Liu T, Xie Z. Two-dimensional metal-organic frameworks: from synthesis to bioapplications. J Nanobiotechnology 2022; 20:207. [PMID: 35501794 PMCID: PMC9059454 DOI: 10.1186/s12951-022-01395-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 03/23/2022] [Indexed: 12/19/2022] Open
Abstract
As a typical class of crystalline porous materials, metal-organic framework possesses unique features including versatile functionality, structural and compositional tunability. After being reduced to two-dimension, ultrathin metal-organic framework layers possess more external excellent properties favoring various technological applications. In this review article, the unique structural properties of the ultrathin metal-organic framework nanosheets benefiting from the planar topography were highlighted, involving light transmittance, and electrical conductivity. Moreover, the design strategy and versatile fabrication methodology were summarized covering discussions on their applicability and accessibility, especially for porphyritic metal-organic framework nanosheet. The current achievements in the bioapplications of two-dimensional metal-organic frameworks were presented comprising biocatalysis, biosensor, and theranostic, with an emphasis on reactive oxygen species-based nanomedicine for oncology treatment. Furthermore, current challenges confronting the utilization of two-dimensional metal-organic frameworks and future opportunities in emerging research frontiers were presented.
Collapse
Affiliation(s)
- Weiqi Wang
- School of Pharmacy, Nantong University, Nantong, 226001, Jiangsu Province, China
| | - Yuting Yu
- School of Pharmacy, Nantong University, Nantong, 226001, Jiangsu Province, China
| | - Yilan Jin
- School of Pharmacy, Nantong University, Nantong, 226001, Jiangsu Province, China
| | - Xiao Liu
- School of Pharmacy, Nantong University, Nantong, 226001, Jiangsu Province, China
| | - Min Shang
- School of Pharmacy, Nantong University, Nantong, 226001, Jiangsu Province, China
| | - Xiaohua Zheng
- School of Pharmacy, Nantong University, Nantong, 226001, Jiangsu Province, China.
| | - Tingting Liu
- Department of Medical Imaging, Affiliated Hospital of Nantong University, Nantong, 226001, Jiangsu Province, China.
| | - Zhigang Xie
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China.
| |
Collapse
|
29
|
Zhao X, Chang L, Hu Y, Xu S, Liang Z, Ren X, Mei X, Chen Z. Preparation of Photocatalytic and Antibacterial MOF Nanozyme Used for Infected Diabetic Wound Healing. ACS APPLIED MATERIALS & INTERFACES 2022; 14:18194-18208. [PMID: 35412791 DOI: 10.1021/acsami.2c03001] [Citation(s) in RCA: 67] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Bacterial infection has been a considerable obstacle for diabetic wound healing. A multifunctional nanoplatform used as nanozyme for bacterial infected diabetic wound is extremely attractive. Therefore, gold nanoclusters modified zirconium-based porphyrin metal-organic frameworks (Au NCs@PCN) were constructed by an in situ growth method. Through SEM, TEM, and EDS mapping, the surface of ellipsoid-shaped particles around 190 nm was observed to be evenly interspersed with 5-8 nm gold nanoclusters. Notably, Au NCs@PCN exhibits excellent performance in exciting ROS generation and photothermal effects. Under near-infrared (NIR) laser irradiation, Au NCs@PCN can be heated to 56.2 °C and produce ROS, showing an effective killing effect on bacteria. Antibacterial studies showed that Au NCs@PCN inhibited MRSA and Ampr E. coli by destroying membrane structure and inducing protein leakage up to 95.3% and 90.6%, respectively. Animal experiments showed that Au NCs@PCN treated diabetic rats had reduced wound coverage to 2.7% within 21 days. The immunoblot analysis showed that proangiogenic and proepithelial cell proliferation factors were expressed significantly up-regulated. These results prove that Au NCs@PCN with photocatalytic and nanozyme activity has a broad application prospect for promoting diabetic infected wound healing.
Collapse
Affiliation(s)
- Xingjun Zhao
- Jinzhou Medical University, Jinzhou, 121001 Liaoning, China
| | - Linna Chang
- Jinzhou Medical University, Jinzhou, 121001 Liaoning, China
| | - Yanan Hu
- Jinzhou Medical University, Jinzhou, 121001 Liaoning, China
| | - Shibo Xu
- Jinzhou Medical University, Jinzhou, 121001 Liaoning, China
| | - Zepeng Liang
- Jinzhou Medical University, Jinzhou, 121001 Liaoning, China
| | - Xiuli Ren
- Jinzhou Medical University, Jinzhou, 121001 Liaoning, China
| | - Xifan Mei
- Jinzhou Medical University, Jinzhou, 121001 Liaoning, China
| | - Zhenhua Chen
- Jinzhou Medical University, Jinzhou, 121001 Liaoning, China
| |
Collapse
|
30
|
Liu J, Huang M, Hua Z, Ni J, Dong Y, Feng Z, Sun T, Chen C. Synergistic Combination: Promising Nanoplatform W‐POM NCs@ HKUST‐1 for Photothermal and Chemodynamic Reinforced Anti‐tumor Therapy. Appl Organomet Chem 2022. [DOI: 10.1002/aoc.6693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Jiale Liu
- Aulin College, Northeast Forestry University China
| | | | - Zhongyu Hua
- Aulin College, Northeast Forestry University China
| | - Jiatong Ni
- Key Laboratory of Forest Plant Ecology, Ministry of Education College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University China
| | - Yi Dong
- Aulin College, Northeast Forestry University China
| | - Zeran Feng
- Aulin College, Northeast Forestry University China
| | - Tiedong Sun
- Aulin College, Northeast Forestry University China
- Key Laboratory of Forest Plant Ecology, Ministry of Education College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University China
| | - Chunxia Chen
- Key Laboratory of Forest Plant Ecology, Ministry of Education College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University China
| |
Collapse
|
31
|
Chang B, Zhang L, Wu S, Sun Z, Cheng Z. Engineering single-atom catalysts toward biomedical applications. Chem Soc Rev 2022; 51:3688-3734. [PMID: 35420077 DOI: 10.1039/d1cs00421b] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Due to inherent structural defects, common nanocatalysts always display limited catalytic activity and selectivity, making it practically difficult for them to replace natural enzymes in a broad scope of biologically important applications. By decreasing the size of the nanocatalysts, their catalytic activity and selectivity will be substantially improved. Guided by this concept, the advances of nanocatalysts now enter an era of atomic-level precise control. Single-atom catalysts (denoted as SACs), characterized by atomically dispersed active sites, strikingly show utmost atomic utilization, precisely located metal centers, unique metal-support interactions and identical coordination environments. Such advantages of SACs drastically boost the specific activity per metal atom, and thus provide great potential for achieving superior catalytic activity and selectivity to functionally mimic or even outperform natural enzymes of interest. Although the size of the catalysts does matter, it is not clear whether the guideline of "the smaller, the better" is still correct for developing catalysts at the single-atom scale. Thus, it is clearly a new, urgent issue to address before further extending SACs into biomedical applications, representing an important branch of nanomedicine. This review begins by providing an overview of recent advances of synthesis strategies of SACs, which serve as a basis for the discussion of emerging achievements in improving the enzyme-like catalytic properties at an atomic level. Then, we carefully compare the structures and functions of catalysts at various scales from nanoparticles, nanoclusters, and few-atom clusters to single atoms. Contrary to conventional wisdom, SACs are not the most catalytically active catalysts in specific reactions, especially those requiring multi-site auxiliary activities. After that, we highlight the unique roles of SACs toward biomedical applications. To appreciate these advances, the challenges and prospects in rapidly growing studies of SACs-related catalytic nanomedicine are also discussed in this review.
Collapse
Affiliation(s)
- Baisong Chang
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, P. R. China.
| | - Liqin Zhang
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, P. R. China.
| | - Shaolong Wu
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, P. R. China.
| | - Ziyan Sun
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, P. R. China.
| | - Zhen Cheng
- State Key Laboratory of Drug Research, Molecular Imaging Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, P. R. China. .,Bohai rim Advanced Research Institute for Drug Discovery, Yantai, 264000, China.,Molecular Imaging Program at Stanford (MIPS), Department of Radiology and Bio-X Program, Stanford University, California 94305, USA
| |
Collapse
|
32
|
Manganese Single-Atom Nanostructures for Highly Efficient Tumor Therapy. J IND ENG CHEM 2022. [DOI: 10.1016/j.jiec.2022.02.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
33
|
Jia C, Guo Y, Wu FG. Chemodynamic Therapy via Fenton and Fenton-Like Nanomaterials: Strategies and Recent Advances. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2103868. [PMID: 34729913 DOI: 10.1002/smll.202103868] [Citation(s) in RCA: 268] [Impact Index Per Article: 89.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 08/23/2021] [Indexed: 06/13/2023]
Abstract
Chemodynamic therapy (CDT), a novel cancer therapeutic strategy defined as the treatment using Fenton or Fenton-like reaction to produce •OH in the tumor region, was first proposed by Bu, Shi, and co-workers in 2016. Recently, with the rapid development of Fenton and Fenton-like nanomaterials, CDT has attracted tremendous attention because of its unique advantages: 1) It is tumor-selective with low side effects; 2) the CDT process does not depend on external field stimulation; 3) it can modulate the hypoxic and immunosuppressive tumor microenvironment; 4) the treatment cost of CDT is low. In addition to the Fe-involved CDT strategies, the Fenton-like reaction-mediated CDT strategies have also been proposed, which are based on many other metal elements including copper, manganese, cobalt, titanium, vanadium, palladium, silver, molybdenum, ruthenium, tungsten, cerium, and zinc. Moreover, CDT has been combined with other therapies like chemotherapy, radiotherapy, phototherapy, sonodynamic therapy, and immunotherapy for achieving enhanced anticancer effects. Besides, there have also been studies that extend the application of CDT to the antibacterial field. This review introduces the latest advancements in the nanomaterials-involved CDT from 2018 to the present and proposes the current limitations as well as future research directions in the related field.
Collapse
Affiliation(s)
- Chenyang Jia
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, 2 Sipailou Road, Nanjing, 210096, P. R. China
| | - Yuxin Guo
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, 2 Sipailou Road, Nanjing, 210096, P. R. China
| | - Fu-Gen Wu
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, 2 Sipailou Road, Nanjing, 210096, P. R. China
| |
Collapse
|
34
|
Ma Y, Qu X, Liu C, Xu Q, Tu K. Metal-Organic Frameworks and Their Composites Towards Biomedical Applications. Front Mol Biosci 2022; 8:805228. [PMID: 34993235 PMCID: PMC8724581 DOI: 10.3389/fmolb.2021.805228] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Accepted: 11/22/2021] [Indexed: 01/10/2023] Open
Abstract
Owing to their unique features, including high cargo loading, biodegradability, and tailorability, metal–organic frameworks (MOFs) and their composites have attracted increasing attention in various fields. In this review, application strategies of MOFs and their composites in nanomedicine with emphasis on their functions are presented, from drug delivery, therapeutic agents for different diseases, and imaging contrast agents to sensor nanoreactors. Applications of MOF derivatives in nanomedicine are also introduced. Besides, we summarize different functionalities related to MOFs, which include targeting strategy, biomimetic modification, responsive moieties, and other functional decorations. Finally, challenges and prospects are highlighted about MOFs in future applications.
Collapse
Affiliation(s)
- Yana Ma
- School of Basic Medical Sciences, Xi'an Key Laboratory of Immune Related Diseases, Xi'an Jiaotong University, Xi'an, China.,Key Laboratory of Environment and Genes Related to Diseases, Xi'an Jiaotong University, Ministry of Education, Xi'an, China
| | - Xianglong Qu
- Department of Hepatobiliary Surgery, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Cui Liu
- School of Basic Medical Sciences, Xi'an Key Laboratory of Immune Related Diseases, Xi'an Jiaotong University, Xi'an, China.,Key Laboratory of Environment and Genes Related to Diseases, Xi'an Jiaotong University, Ministry of Education, Xi'an, China
| | - Qiuran Xu
- Laboratory of Tumor Molecular Diagnosis and Individualized Medicine of Zhejiang Province, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, China.,Research Center of Diagnosis and Treatment Technology for Hepatocellular Carcinoma of Zhejiang Province, Hangzhou, China
| | - Kangsheng Tu
- Department of Hepatobiliary Surgery, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| |
Collapse
|
35
|
Jiang F, Yang C, Ding B, Liang S, Zhao Y, Cheng Z, Liu M, Xing B, Ma P, Lin J. Tumor microenvironment-responsive MnSiO3-Pt@BSA-Ce6 nanoplatform for synergistic catalysis-enhanced sonodynamic and chemodynamic cancer therapy. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2021.12.096] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
36
|
Size-controllable covalent organic frameworks with high NIR absorption for targeted delivery of glucose oxidase. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2021.117896] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
37
|
Biocompatible Nanocarriers for Enhanced Cancer Photodynamic Therapy Applications. Pharmaceutics 2021; 13:pharmaceutics13111933. [PMID: 34834348 PMCID: PMC8624654 DOI: 10.3390/pharmaceutics13111933] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 11/10/2021] [Accepted: 11/10/2021] [Indexed: 02/06/2023] Open
Abstract
In recent years, the role of nanotechnology in drug delivery has become increasingly important, and this field of research holds many potential benefits for cancer treatment, particularly, in achieving cancer cell targeting and reducing the side effects of anticancer drugs. Biocompatible and biodegradable properties have been essential for using a novel material as a carrier molecule in drug delivery applications. Biocompatible nanocarriers are easy to synthesize, and their surface chemistry often enables them to load different types of photosensitizers (PS) to use targeted photodynamic therapy (PDT) for cancer treatment. This review article explores recent studies on the use of different biocompatible nanocarriers, their potential applications in PDT, including PS-loaded biocompatible nanocarriers, and the effective targeting therapy of PS-loaded biocompatible nanocarriers in PDT for cancer treatment. Furthermore, the review briefly recaps the global clinical trials of PDT and its applications in cancer treatment.
Collapse
|
38
|
Jin ZY, Fatima H, Zhang Y, Shao Z, Chen XJ. Recent Advances in Bio‐Compatible Oxygen Singlet Generation and Its Tumor Treatment. ADVANCED THERAPEUTICS 2021. [DOI: 10.1002/adtp.202100176] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Zheng Yang Jin
- The First Affiliated Hospital of Wenzhou Medical University Wenzhou Zhejiang 325015 P. R. China
| | - Hira Fatima
- Western Australia School of Mines: Minerals Energy and Chemical Engineering (WASM‐MECE) Curtin University Perth Western Australia 6102 Australia
| | - Yue Zhang
- The First Affiliated Hospital of Wenzhou Medical University Wenzhou Zhejiang 325015 P. R. China
| | - Zongping Shao
- Western Australia School of Mines: Minerals Energy and Chemical Engineering (WASM‐MECE) Curtin University Perth Western Australia 6102 Australia
- State Key Laboratory of Materials‐Oriented Chemical Engineering College of Chemical Engineering Nanjing Tech University Nanjing Jiangsu 211816 P. R. China
| | - Xiang Jian Chen
- The First Affiliated Hospital of Wenzhou Medical University Wenzhou Zhejiang 325015 P. R. China
| |
Collapse
|
39
|
Zheng X, Bian S, Liu W, Zhang C, Wu J, Ren H, Zhang W, Lee CS, Wang P. Amphiphilic Diketopyrrolopyrrole Derivatives for Efficient Near-Infrared Fluorescence Imaging and Photothermal Therapy. ACS OMEGA 2021; 6:26575-26582. [PMID: 34661012 PMCID: PMC8515603 DOI: 10.1021/acsomega.1c03947] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Indexed: 05/25/2023]
Abstract
The design and synthesis of single-molecule amphiphilic and multifunctional phototherapeutic agents are important to cancer diagnosis and therapy. In this work, we developed three amphiphilic diketopyrrolopyrrole derivatives (TPADPP, DTPADPP, and TPADDPP) with different donor-acceptor structures and poly(ethylene glycol) side chains. The corresponding nanoparticles (NPs) were obtained via a self-assembly from three amphiphilic DPP derivatives and used as smart phototherapeutic agents for tumor diagnosis and treatment. The three amphiphilic DPP NPs exhibited near-infrared (NIR) emissions and good biocompatibility. Thus, they could be used as fluorescence (FL) imaging agents for guided therapy. DTPADPP NPs and TPADDPP NPs also displayed excellent photothermal performance and high accumulation in the tumor. Owing to these beneficial features, the DTPADPP NPs and TPADDPP NPs synthesized herein are suitable for NIR FL imaging and effective photothermal therapy against the tumor in vivo.
Collapse
Affiliation(s)
- Xiuli Zheng
- Key
Laboratory of Photochemical Conversion and Optoelectronic Materials
and CityU-CAS Joint Laboratory of Functional Materials and Devices,
Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Shuaishuai Bian
- Key
Laboratory of Photochemical Conversion and Optoelectronic Materials
and CityU-CAS Joint Laboratory of Functional Materials and Devices,
Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- School
of Future Technology, University of Chinese
Academy of Sciences, Beijing 100049, China
| | - Weimin Liu
- Key
Laboratory of Photochemical Conversion and Optoelectronic Materials
and CityU-CAS Joint Laboratory of Functional Materials and Devices,
Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- School
of Future Technology, University of Chinese
Academy of Sciences, Beijing 100049, China
| | - Chuangli Zhang
- Key
Laboratory of Photochemical Conversion and Optoelectronic Materials
and CityU-CAS Joint Laboratory of Functional Materials and Devices,
Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Jiasheng Wu
- Key
Laboratory of Photochemical Conversion and Optoelectronic Materials
and CityU-CAS Joint Laboratory of Functional Materials and Devices,
Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Haohui Ren
- Key
Laboratory of Photochemical Conversion and Optoelectronic Materials
and CityU-CAS Joint Laboratory of Functional Materials and Devices,
Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Wenjun Zhang
- Center
of Super-Diamond and Advanced Films (COSDAF) & Department of Materials
Science and Engineering, City University
of Hong Kong, Hong Kong SAR 999077, China
| | - Chun-Sing Lee
- Center
of Super-Diamond and Advanced Films (COSDAF) & Department of Materials
Science and Engineering, City University
of Hong Kong, Hong Kong SAR 999077, China
| | - Pengfei Wang
- Key
Laboratory of Photochemical Conversion and Optoelectronic Materials
and CityU-CAS Joint Laboratory of Functional Materials and Devices,
Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- School
of Future Technology, University of Chinese
Academy of Sciences, Beijing 100049, China
| |
Collapse
|
40
|
Miao Z, Wang Y, Li S, Zhang M, Xu M. One-pot synthesis chlorin e6 nano-precipitation for colorectal cancer treatment Ce6 NPs for colorectal cancer treatment. IET Nanobiotechnol 2021; 15:680-685. [PMID: 34694720 PMCID: PMC8675780 DOI: 10.1049/nbt2.12065] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Revised: 06/14/2021] [Accepted: 06/17/2021] [Indexed: 12/24/2022] Open
Abstract
The drug nanoparticles free of additional carriers hold great promise in drug delivery and are suitable for the therapy of cancers. Herein, we developed a one-pot method to prepare chlorin e6 (Ce6) nano-precipitations (Ce6 NPs) for effective photodynamic therapy of colorectal cancer. The drug loading of Ce6 NPs was around 81% and showed acceptable stability, high biocompatibility as well as effective reactive oxygen species (ROS) generation capability. As a result, the Ce6 NPs can produce significantly elevated ROS upon laser irradiations and achieved better anticancer benefits than free Ce6.
Collapse
Affiliation(s)
- Zhongxing Miao
- Department of Gastroenterology SurgeryDalian Municipal Central HospitalDalianLiaoningChina
| | - Yujie Wang
- Department of Gastroenterology SurgeryDalian Municipal Central HospitalDalianLiaoningChina
| | - Shengjie Li
- Department of Gastroenterology SurgeryDalian Municipal Central HospitalDalianLiaoningChina
| | - Min Zhang
- Department of Department of Anorectal SurgeryDalian Municipal Central HospitalDalianLiaoningChina
| | - Meng Xu
- Department of Department of Anorectal SurgeryDalian Municipal Central HospitalDalianLiaoningChina
| |
Collapse
|
41
|
Ma C, Zhang T, Xie Z. Leveraging BODIPY nanomaterials for enhanced tumor photothermal therapy. J Mater Chem B 2021; 9:7318-7327. [PMID: 34355720 DOI: 10.1039/d1tb00855b] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
In the past ten years, photothermal therapy (PTT) has attracted widespread attention in tumor treatment due to its non-invasiveness and little side effects. PTT utilizes heat produced by photothermal agents under the irradiation of near-infrared light to kill tumor cells. Boron-dipyrromethene (BODIPY), an organic phototherapy agent, has been widely used in tumor phototherapy due to its higher molar extinction coefficient, robust photostability and good phototherapy effect. However, there are some issues in the application of BODIPY for tumor PTT, such as low photothermal conversion efficiency and short absorption wavelength. In this review, we focus on the latest development of BODIPY nanomaterials for overcoming the above problems and enhancing the PTT effect.
Collapse
Affiliation(s)
- Chong Ma
- Department of Gastrointestinal Colorectal and Anal Surgery, China-Japan Union Hospital of Jilin University, 126 Xiantai Street, Changchun, Jilin 130033, P. R. China.
| | - Tao Zhang
- Department of Gastrointestinal Colorectal and Anal Surgery, China-Japan Union Hospital of Jilin University, 126 Xiantai Street, Changchun, Jilin 130033, P. R. China.
| | - Zhigang Xie
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun, Jilin 130022, P. R. China.
| |
Collapse
|
42
|
Blum NT, Fu LH, Lin J, Huang P. When Chemodynamic Therapy Meets Photodynamic Therapy: A Synergistic Combination of Cancer Treatments. IEEE NANOTECHNOLOGY MAGAZINE 2021. [DOI: 10.1109/mnano.2021.3081755] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
43
|
Guo C, Ma X, Wang B. Metal-organic Frameworks-based Composites and Their Photothermal Applications. ACTA CHIMICA SINICA 2021. [DOI: 10.6023/a21040173] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|