1
|
Cheng SS, Mody AC, Woo CM. Opportunities for Therapeutic Modulation of O-GlcNAc. Chem Rev 2024. [PMID: 39509538 DOI: 10.1021/acs.chemrev.4c00417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2024]
Abstract
O-Linked β-N-acetylglucosamine (O-GlcNAc) is an essential, dynamic monosaccharide post-translational modification (PTM) found on serine and threonine residues of thousands of nucleocytoplasmic proteins. The installation and removal of O-GlcNAc is controlled by a single pair of enzymes, O-GlcNAc transferase (OGT) and O-GlcNAcase (OGA), respectively. Since its discovery four decades ago, O-GlcNAc has been found on diverse classes of proteins, playing important functional roles in many cellular processes. Dysregulation of O-GlcNAc homeostasis has been implicated in the pathogenesis of disease, including neurodegeneration, X-linked intellectual disability (XLID), cancer, diabetes, and immunological disorders. These foundational studies of O-GlcNAc in disease biology have motivated efforts to target O-GlcNAc therapeutically, with multiple clinical candidates under evaluation. In this review, we describe the characterization and biochemistry of OGT and OGA, cellular O-GlcNAc regulation, development of OGT and OGA inhibitors, O-GlcNAc in pathophysiology, clinical progress of O-GlcNAc modulators, and emerging opportunities for targeting O-GlcNAc. This comprehensive resource should motivate further study into O-GlcNAc function and inspire strategies for therapeutic modulation of O-GlcNAc.
Collapse
Affiliation(s)
- Steven S Cheng
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, United States
| | - Alison C Mody
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, United States
| | - Christina M Woo
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, United States
- Affiliate member of the Broad Institute, Cambridge, Massachusetts 02142, United States
| |
Collapse
|
2
|
Balsollier C, Bijkerk S, de Smit A, van Eekelen K, Bozovičar K, Husstege D, Tomašič T, Anderluh M, Pieters RJ. Discovery of two non-UDP-mimic inhibitors of O-GlcNAc transferase by screening a DNA-encoded library. Bioorg Chem 2024; 147:107321. [PMID: 38604018 DOI: 10.1016/j.bioorg.2024.107321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 03/26/2024] [Accepted: 03/28/2024] [Indexed: 04/13/2024]
Abstract
Finding potent inhibitors of O-GlcNAc transferase (OGT) has proven to be a challenge, especially because the diversity of published inhibitors is low. The large majority of available OGT inhibitors are uridine-based or uridine-like compounds that mimic the main interactions of glycosyl donor UDP-GlcNAc with the enzyme. Until recently, screening of DNA-encoded libraries for discovering hits against protein targets was dedicated to a few laboratories around the world, but has become accessible to wider public with the recent launch of the DELopen platform. Here we report the results and follow-up of a DNA-encoded library screening by using the DELopen platform. This led to the discovery of two new hits with structural features not resembling UDP. Small focused libraries bearing those two scaffolds were made, leading to low micromolar inhibition of OGT and elucidation of their structure-activity relationship.
Collapse
Affiliation(s)
- Cyril Balsollier
- Department of Chemical Biology & Drug Discovery, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht NL-3508 TB, The Netherlands; Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Ljubljana, Aškerčeva cesta 7, 1000 Ljubljana, Slovenia
| | - Simon Bijkerk
- Department of Chemical Biology & Drug Discovery, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht NL-3508 TB, The Netherlands
| | - Arjan de Smit
- Department of Chemical Biology & Drug Discovery, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht NL-3508 TB, The Netherlands
| | - Kevin van Eekelen
- Department of Chemical Biology & Drug Discovery, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht NL-3508 TB, The Netherlands
| | - Krištof Bozovičar
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Ljubljana, Aškerčeva cesta 7, 1000 Ljubljana, Slovenia
| | - Dirk Husstege
- Department of Chemical Biology & Drug Discovery, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht NL-3508 TB, The Netherlands
| | - Tihomir Tomašič
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Ljubljana, Aškerčeva cesta 7, 1000 Ljubljana, Slovenia
| | - Marko Anderluh
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Ljubljana, Aškerčeva cesta 7, 1000 Ljubljana, Slovenia.
| | - Roland J Pieters
- Department of Chemical Biology & Drug Discovery, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht NL-3508 TB, The Netherlands.
| |
Collapse
|
3
|
Chen M, Ma A, Sun Z, Xie B, Shi L, Chen S, Chen L, Xiong G, Wang L, Wu W. Enhancing activity of food protein-derived peptides: An overview of pretreatment, preparation, and modification methods. Compr Rev Food Sci Food Saf 2023; 22:4698-4733. [PMID: 37732471 DOI: 10.1111/1541-4337.13238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 08/08/2023] [Accepted: 08/22/2023] [Indexed: 09/22/2023]
Abstract
Food protein-derived peptides have garnered considerable attention due to their potential bioactivities and functional properties. However, the limited activity poses a challenge in effective utilization aspects. To overcome this hurdle, various methods have been explored to enhance the activity of these peptides. This comprehensive review offers an extensive overview of pretreatment, preparation methods, and modification strategies employed to augment the activity of food protein-derived peptides. Additionally, it encompasses a discussion on the current status and future prospects of bioactive peptide applications. The review also addresses the standardization of mass production processes and safety considerations for bioactive peptides while examining the future challenges and opportunities associated with these compounds. This comprehensive review serves as a valuable guide for researchers in the food industry, offering insights and recommendations to optimize the production process of bioactive peptides.
Collapse
Affiliation(s)
- Mengting Chen
- Key Laboratory of Agricultural Products Cold Chain Logistics, Ministry of Agriculture and Rural Affairs, Institute of Agro-Products Processing and Nuclear agricultural Technology, Hubei Academy of Agricultural Sciences, Wuhan, China
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Aimin Ma
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Zhida Sun
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Bijun Xie
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Liu Shi
- Key Laboratory of Agricultural Products Cold Chain Logistics, Ministry of Agriculture and Rural Affairs, Institute of Agro-Products Processing and Nuclear agricultural Technology, Hubei Academy of Agricultural Sciences, Wuhan, China
- Agro-product Processing Research Sub-center of Hubei Innovation Center of Agriculture Science and Technology, Wuhan, China
| | - Sheng Chen
- Key Laboratory of Agricultural Products Cold Chain Logistics, Ministry of Agriculture and Rural Affairs, Institute of Agro-Products Processing and Nuclear agricultural Technology, Hubei Academy of Agricultural Sciences, Wuhan, China
- Agro-product Processing Research Sub-center of Hubei Innovation Center of Agriculture Science and Technology, Wuhan, China
| | - Lang Chen
- Key Laboratory of Agricultural Products Cold Chain Logistics, Ministry of Agriculture and Rural Affairs, Institute of Agro-Products Processing and Nuclear agricultural Technology, Hubei Academy of Agricultural Sciences, Wuhan, China
- Agro-product Processing Research Sub-center of Hubei Innovation Center of Agriculture Science and Technology, Wuhan, China
| | - Guangquan Xiong
- Key Laboratory of Agricultural Products Cold Chain Logistics, Ministry of Agriculture and Rural Affairs, Institute of Agro-Products Processing and Nuclear agricultural Technology, Hubei Academy of Agricultural Sciences, Wuhan, China
- Agro-product Processing Research Sub-center of Hubei Innovation Center of Agriculture Science and Technology, Wuhan, China
| | - Lan Wang
- Key Laboratory of Agricultural Products Cold Chain Logistics, Ministry of Agriculture and Rural Affairs, Institute of Agro-Products Processing and Nuclear agricultural Technology, Hubei Academy of Agricultural Sciences, Wuhan, China
- Agro-product Processing Research Sub-center of Hubei Innovation Center of Agriculture Science and Technology, Wuhan, China
| | - Wenjin Wu
- Key Laboratory of Agricultural Products Cold Chain Logistics, Ministry of Agriculture and Rural Affairs, Institute of Agro-Products Processing and Nuclear agricultural Technology, Hubei Academy of Agricultural Sciences, Wuhan, China
- Agro-product Processing Research Sub-center of Hubei Innovation Center of Agriculture Science and Technology, Wuhan, China
| |
Collapse
|
4
|
Chettri D, Verma AK. Biological significance of carbohydrate active enzymes and searching their inhibitors for therapeutic applications. Carbohydr Res 2023; 529:108853. [PMID: 37235954 DOI: 10.1016/j.carres.2023.108853] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 05/01/2023] [Accepted: 05/18/2023] [Indexed: 05/28/2023]
Abstract
Glycans are the most abundant and diverse group of biomolecules with a crucial role in all the biological processes. Their structural and functional diversity is not genetically encoded, but depends on Carbohydrate Active Enzymes (CAZymes) which carry out all catalytic activities in terms of synthesis, modification, and degradation. CAZymes comprise large families of enzymes with specific functions and are widely used for various commercial applications ranging from biofuel production to textile and food industries with impact on biorefineries. To understand the structure and functional mechanism of these CAZymes for their modification for industrial use, together with knowledge of therapeutic aspects of their dysfunction associated with various diseases, CAZyme inhibitors can be used as a valuable tool. In search for new inhibitors, the screening of various secondary metabolites using high-throughput techniques and rational design techniques have been explored. The inhibitors can thus help tune CAZymes and are emerging as a potential research interest.
Collapse
Affiliation(s)
- Dixita Chettri
- Department of Microbiology, Sikkim University, Gangtok, 737102, Sikkim, India
| | - Anil Kumar Verma
- Department of Microbiology, Sikkim University, Gangtok, 737102, Sikkim, India.
| |
Collapse
|
5
|
Alteen MG, Peacock H, Meek RW, Busmann JA, Zhu S, Davies GJ, Suga H, Vocadlo DJ. Potent De Novo Macrocyclic Peptides That Inhibit O-GlcNAc Transferase through an Allosteric Mechanism. Angew Chem Int Ed Engl 2023; 62:e202215671. [PMID: 36460613 DOI: 10.1002/anie.202215671] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 11/27/2022] [Accepted: 11/28/2022] [Indexed: 12/04/2022]
Abstract
Glycosyltransferases are a superfamily of enzymes that are notoriously difficult to inhibit. Here we apply an mRNA display technology integrated with genetic code reprogramming, referred to as the RaPID (random non-standard peptides integrated discovery) system, to identify macrocyclic peptides with high binding affinities for O-GlcNAc transferase (OGT). These macrocycles inhibit OGT activity through an allosteric mechanism that is driven by their binding to the tetratricopeptide repeats of OGT. Saturation mutagenesis in a maturation screen using 39 amino acids, including 22 non-canonical residues, led to an improved unnatural macrocycle that is ≈40 times more potent than the parent compound (Ki app =1.5 nM). Subsequent derivatization delivered a biotinylated derivative that enabled one-step affinity purification of OGT from complex samples. The high potency and novel mechanism of action of these OGT ligands should enable new approaches to elucidate the specificity and regulation of OGT.
Collapse
Affiliation(s)
- Matthew G Alteen
- Department of Chemistry, Simon Fraser University, Burnaby, BC, V5A 1S6, Canada
| | - Hayden Peacock
- Department of Chemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Richard W Meek
- York Structural Biology Laboratory, Department of Chemistry, University of York, York, YO10 5DD, UK
| | - Jil A Busmann
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, BC, V5A 1S6, Canada
| | - Sha Zhu
- Department of Chemistry, Simon Fraser University, Burnaby, BC, V5A 1S6, Canada
| | - Gideon J Davies
- York Structural Biology Laboratory, Department of Chemistry, University of York, York, YO10 5DD, UK
| | - Hiroaki Suga
- Department of Chemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Bunkyo-ku, Tokyo, 113-0033, Japan
| | - David J Vocadlo
- Department of Chemistry, Simon Fraser University, Burnaby, BC, V5A 1S6, Canada.,Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, BC, V5A 1S6, Canada
| |
Collapse
|
6
|
Thalhammer A, Bröker NK. Biophysical Approaches for the Characterization of Protein-Metabolite Interactions. Methods Mol Biol 2023; 2554:199-229. [PMID: 36178628 DOI: 10.1007/978-1-0716-2624-5_13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
With an estimate of hundred thousands of protein molecules per cell and the number of metabolites several orders of magnitude higher, protein-metabolite interactions are omnipresent. In vitro analyses are one of the main pillars on the way to establish a solid understanding of how these interactions contribute to maintaining cellular homeostasis. A repertoire of biophysical techniques is available by which protein-metabolite interactions can be quantitatively characterized in terms of affinity, specificity, and kinetics in a broad variety of solution environments. Several of those provide information on local or global conformational changes of the protein partner in response to ligand binding. This review chapter gives an overview of the state-of-the-art biophysical toolbox for the study of protein-metabolite interactions. It briefly introduces basic principles, highlights recent examples from the literature, and pinpoints promising future directions.
Collapse
Affiliation(s)
- Anja Thalhammer
- Physical Biochemistry, University of Potsdam, Potsdam, Germany.
| | - Nina K Bröker
- Physical Biochemistry, University of Potsdam, Potsdam, Germany
- Health and Medical University Potsdam, Potsdam, Germany
| |
Collapse
|
7
|
Zhang N, Jiang H, Zhang K, Zhu J, Wang Z, Long Y, He Y, Feng F, Liu W, Ye F, Qu W. OGT as potential novel target: Structure, function and inhibitors. Chem Biol Interact 2022; 357:109886. [DOI: 10.1016/j.cbi.2022.109886] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 02/23/2022] [Accepted: 03/07/2022] [Indexed: 12/14/2022]
|
8
|
Zorko M, Jones S, Langel Ü. Cell-penetrating peptides in protein mimicry and cancer therapeutics. Adv Drug Deliv Rev 2022; 180:114044. [PMID: 34774552 DOI: 10.1016/j.addr.2021.114044] [Citation(s) in RCA: 46] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 10/29/2021] [Accepted: 11/04/2021] [Indexed: 12/14/2022]
Abstract
Extensive research has been undertaken in the pursuit of anticancer therapeutics. Many anticancer drugs require specificity of delivery to cancer cells, whilst sparing healthy tissue. Cell-penetrating peptides (CPPs), now well established as facilitators of intracellular delivery, have in recent years advanced to incorporate target specificity and thus possess great potential for the targeted delivery of anticancer cargoes. Though none have yet been approved for clinical use, this novel technology has already entered clinical trials. In this review we present CPPs, discuss their classification, mechanisms of cargo internalization and highlight strategies for conjugation to anticancer moieties including their incorporation into therapeutic proteins. As the mainstay of this review, strategies to build specificity into tumor targeting CPP constructs through exploitation of the tumor microenvironment and the use of tumor homing peptides are discussed, whilst acknowledging the extensive contribution made by CPP constructs to target specific protein-protein interactions integral to intracellular signaling pathways associated with tumor cell survival and progression. Finally, antibody/antigen CPP conjugates and their potential roles in cancer immunotherapy and diagnostics are considered. In summary, this review aims to harness the potential of CPP-aided drug delivery for future cancer therapies and diagnostics whilst highlighting some of the most recent achievements in selective delivery of anticancer drugs, including cytostatic drugs, to a range of tumor cells both in vitro and in vivo.
Collapse
Affiliation(s)
- Matjaž Zorko
- University of Ljubljana, Medical Faculty, Institute of Biochemistry and Molecular Genetics, Vrazov trg 2, 1000 Ljubljana, Slovenia
| | - Sarah Jones
- University of Wolverhampton, School of Pharmacy, Faculty of Science & Engineering, Wulfruna Street, Wolverhampton WV1 1LY, UK.
| | - Ülo Langel
- University of Stockholm, Department of Biochemistry and Biophysics, Svante Arrhenius väg 16, 106 91 Stockholm, Sweden; Institute of Technology, University of Tartu, Nooruse 1, Tartu, Estonia 50411, Estonia.
| |
Collapse
|
9
|
Meek RW, Blaza JN, Busmann JA, Alteen MG, Vocadlo DJ, Davies GJ. Cryo-EM structure provides insights into the dimer arrangement of the O-linked β-N-acetylglucosamine transferase OGT. Nat Commun 2021; 12:6508. [PMID: 34764280 PMCID: PMC8586251 DOI: 10.1038/s41467-021-26796-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Accepted: 10/20/2021] [Indexed: 01/17/2023] Open
Abstract
The O-linked β-N-acetylglucosamine modification is a core signalling mechanism, with erroneous patterns leading to cancer and neurodegeneration. Although thousands of proteins are subject to this modification, only a single essential glycosyltransferase catalyses its installation, the O-GlcNAc transferase, OGT. Previous studies have provided truncated structures of OGT through X-ray crystallography, but the full-length protein has never been observed. Here, we report a 5.3 Å cryo-EM model of OGT. We show OGT is a dimer, providing a structural basis for how some X-linked intellectual disability mutations at the interface may contribute to disease. We observe that the catalytic section of OGT abuts a 13.5 tetratricopeptide repeat unit region and find the relative positioning of these sections deviate from the previously proposed, X-ray crystallography-based model. We also note that OGT exhibits considerable heterogeneity in tetratricopeptide repeat units N-terminal to the dimer interface with repercussions for how OGT binds protein ligands and partners.
Collapse
Affiliation(s)
- Richard W Meek
- York Structural Biology Laboratory, Department of Chemistry, University of York, York, YO10 5DD, UK
| | - James N Blaza
- York Structural Biology Laboratory, Department of Chemistry, University of York, York, YO10 5DD, UK.
| | - Jil A Busmann
- Department of Molecular Biology and Biochemistry, Simon Fraser University, 8888 University Drive, Burnaby, BC, V5A 1S6, Canada
| | - Matthew G Alteen
- Department of Chemistry, Simon Fraser University, 8888 University Drive, Burnaby, BC, V5A 1S6, Canada
| | - David J Vocadlo
- Department of Molecular Biology and Biochemistry, Simon Fraser University, 8888 University Drive, Burnaby, BC, V5A 1S6, Canada
- Department of Chemistry, Simon Fraser University, 8888 University Drive, Burnaby, BC, V5A 1S6, Canada
| | - Gideon J Davies
- York Structural Biology Laboratory, Department of Chemistry, University of York, York, YO10 5DD, UK.
| |
Collapse
|
10
|
McLean JT, Benny A, Nolan MD, Swinand G, Scanlan EM. Cysteinyl radicals in chemical synthesis and in nature. Chem Soc Rev 2021; 50:10857-10894. [PMID: 34397045 DOI: 10.1039/d1cs00254f] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Nature harnesses the unique properties of cysteinyl radical intermediates for a diverse range of essential biological transformations including DNA biosynthesis and repair, metabolism, and biological photochemistry. In parallel, the synthetic accessibility and redox chemistry of cysteinyl radicals renders them versatile reactive intermediates for use in a vast array of synthetic applications such as lipidation, glycosylation and fluorescent labelling of proteins, peptide macrocyclization and stapling, desulfurisation of peptides and proteins, and development of novel therapeutics. This review provides the reader with an overview of the role of cysteinyl radical intermediates in both chemical synthesis and biological systems, with a critical focus on mechanistic details. Direct insights from biological systems, where applied to chemical synthesis, are highlighted and potential avenues from nature which are yet to be explored synthetically are presented.
Collapse
Affiliation(s)
- Joshua T McLean
- Trinity Biomedical Sciences Institute, Trinity College Dublin, The University of Dublin, 152-160 Pearse St., Dublin, D02 R590, Ireland.
| | - Alby Benny
- Trinity Biomedical Sciences Institute, Trinity College Dublin, The University of Dublin, 152-160 Pearse St., Dublin, D02 R590, Ireland.
| | - Mark D Nolan
- Trinity Biomedical Sciences Institute, Trinity College Dublin, The University of Dublin, 152-160 Pearse St., Dublin, D02 R590, Ireland.
| | - Glenna Swinand
- Trinity Biomedical Sciences Institute, Trinity College Dublin, The University of Dublin, 152-160 Pearse St., Dublin, D02 R590, Ireland.
| | - Eoin M Scanlan
- Trinity Biomedical Sciences Institute, Trinity College Dublin, The University of Dublin, 152-160 Pearse St., Dublin, D02 R590, Ireland.
| |
Collapse
|
11
|
Saha A, Bello D, Fernández-Tejada A. Advances in chemical probing of protein O-GlcNAc glycosylation: structural role and molecular mechanisms. Chem Soc Rev 2021; 50:10451-10485. [PMID: 34338261 PMCID: PMC8451060 DOI: 10.1039/d0cs01275k] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2021] [Indexed: 12/11/2022]
Abstract
The addition of O-linked-β-D-N-acetylglucosamine (O-GlcNAc) onto serine and threonine residues of nuclear and cytoplasmic proteins is an abundant, unique post-translational modification governing important biological processes. O-GlcNAc dysregulation underlies several metabolic disorders leading to human diseases, including cancer, neurodegeneration and diabetes. This review provides an extensive summary of the recent progress in probing O-GlcNAcylation using mainly chemical methods, with a special focus on discussing mechanistic insights and the structural role of O-GlcNAc at the molecular level. We highlight key aspects of the O-GlcNAc enzymes, including development of OGT and OGA small-molecule inhibitors, and describe a variety of chemoenzymatic and chemical biology approaches for the study of O-GlcNAcylation. Special emphasis is placed on the power of chemistry in the form of synthetic glycopeptide and glycoprotein tools for investigating the site-specific functional consequences of the modification. Finally, we discuss in detail the conformational effects of O-GlcNAc glycosylation on protein structure and stability, relevant O-GlcNAc-mediated protein interactions and its molecular recognition features by biological receptors. Future research in this field will provide novel, more effective chemical strategies and probes for the molecular interrogation of O-GlcNAcylation, elucidating new mechanisms and functional roles of O-GlcNAc with potential therapeutic applications in human health.
Collapse
Affiliation(s)
- Abhijit Saha
- Chemical Immunology Lab, Centre for Cooperative Research in Biosciences, CIC-bioGUNE, Basque Research and Technology Alliance (BRTA), Derio 48160, Biscay, Spain.
| | - Davide Bello
- Chemical Immunology Lab, Centre for Cooperative Research in Biosciences, CIC-bioGUNE, Basque Research and Technology Alliance (BRTA), Derio 48160, Biscay, Spain.
| | - Alberto Fernández-Tejada
- Chemical Immunology Lab, Centre for Cooperative Research in Biosciences, CIC-bioGUNE, Basque Research and Technology Alliance (BRTA), Derio 48160, Biscay, Spain.
- Ikerbasque, Basque Foundation for Science, Bilbao 48013, Spain
| |
Collapse
|
12
|
Balana AT, Moon SP, Pratt MR. O-GlcNAcylated peptides and proteins for structural and functional studies. Curr Opin Struct Biol 2021; 68:84-93. [PMID: 33434850 PMCID: PMC8222092 DOI: 10.1016/j.sbi.2020.12.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 12/08/2020] [Accepted: 12/12/2020] [Indexed: 12/19/2022]
Abstract
O-GlcNAcylation is an enzymatic post-translational modification occurring in hundreds of protein substrates. This modification occurs through the addition of the monosaccharide N-acetylglucosamine to serine and threonine residues on intracellular proteins in the cytosol, nucleus, and mitochondria. As a highly dynamic form of modification, changes in O-GlcNAc levels coincide with alterations in metabolic state, the presence of stressors, and cellular health. At the protein level, the consequences of the sugar modification can vary, thus necessitating biochemical investigations on protein-specific and site-specific effects. To this end, enzymatic and chemical methods to 'encode' the modification have been developed and the utilization of these synthetic glycopeptides and glycoproteins has since been instrumental in the discovery of the mechanisms by which O-GlcNAcylation can affect a diverse array of biological processes.
Collapse
Affiliation(s)
- Aaron T Balana
- Departments of Chemistry, University of Southern California, Los Angeles, CA, 90089, United States
| | - Stuart P Moon
- Departments of Chemistry, University of Southern California, Los Angeles, CA, 90089, United States
| | - Matthew R Pratt
- Departments of Chemistry, University of Southern California, Los Angeles, CA, 90089, United States; Biological Sciences, University of Southern California, Los Angeles, CA, 90089, United States.
| |
Collapse
|
13
|
Overview of the Assays to Probe O-Linked β- N-Acetylglucosamine Transferase Binding and Activity. Molecules 2021; 26:molecules26041037. [PMID: 33669256 PMCID: PMC7920051 DOI: 10.3390/molecules26041037] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 02/11/2021] [Accepted: 02/12/2021] [Indexed: 12/26/2022] Open
Abstract
O-GlcNAcylation is a posttranslational modification that occurs at serine and threonine residues of protein substrates by the addition of O-linked β-d-N-acetylglucosamine (GlcNAc) moiety. Two enzymes are involved in this modification: O-GlcNac transferase (OGT), which attaches the GlcNAc residue to the protein substrate, and O-GlcNAcase (OGA), which removes it. This biological balance is important for many biological processes, such as protein expression, cell apoptosis, and regulation of enzyme activity. The extent of this modification has sparked interest in the medical community to explore OGA and OGT as therapeutic targets, particularly in degenerative diseases. While some OGA inhibitors are already in phase 1 clinical trials for the treatment of Alzheimer's disease, OGT inhibitors still have a long way to go. Due to complex expression and instability, the discovery of potent OGT inhibitors is challenging. Over the years, the field has grappled with this problem, and scientists have developed a number of techniques and assays. In this review, we aim to highlight assays and techniques for OGT inhibitor discovery, evaluate their strength for the field, and give us direction for future bioassay methods.
Collapse
|
14
|
Ryan P, Shi Y, von Itzstein M, Rudrawar S. Novel bisubstrate uridine-peptide analogues bearing a pyrophosphate bioisostere as inhibitors of human O-GlcNAc transferase. Bioorg Chem 2021; 110:104738. [PMID: 33667901 DOI: 10.1016/j.bioorg.2021.104738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2020] [Revised: 02/04/2021] [Accepted: 02/05/2021] [Indexed: 11/16/2022]
Abstract
Protein O-linked β-D-N-acetylglucosamine (O-GlcNAc) modification (O-GlcNAcylation), an essential post-translational as well as cotranslational modification, is the attachment of β-D-N-acetylglucosamine to serine and threonine residues of nucleocytoplasmic proteins. An aberrant O-GlcNAc profile on certain proteins has been implicated in metabolic diseases such as diabetes and cancer. Inhibitors of O-GlcNAc transferase (OGT) are valuable tools to study the cell biology of protein O-GlcNAc modification. In this study we report novel uridine-peptide conjugate molecules composed of an acceptor peptide covalently linked to a catalytically inactive donor substrate analogue that bears a pyrophosphate bioisostere and explore their inhibitory activities against OGT by a radioactive hOGT assay. Further, we investigate the structural basis of their activities via molecular modelling, explaining their lack of potency towards OGT inhibition.
Collapse
Affiliation(s)
- Philip Ryan
- Menzies Health Institute Queensland, Griffith University, Gold Coast, QLD 4222, Australia; School of Pharmacy and Pharmacology, Griffith University, Gold Coast, QLD 4222, Australia; School of Chemistry, The University of Sydney, NSW 2006, Australia
| | - Yun Shi
- Institute for Glycomics, Griffith University, Gold Coast, QLD 4222, Australia
| | - Mark von Itzstein
- Institute for Glycomics, Griffith University, Gold Coast, QLD 4222, Australia
| | - Santosh Rudrawar
- Menzies Health Institute Queensland, Griffith University, Gold Coast, QLD 4222, Australia; School of Pharmacy and Pharmacology, Griffith University, Gold Coast, QLD 4222, Australia; School of Chemistry, The University of Sydney, NSW 2006, Australia.
| |
Collapse
|
15
|
Ma J, Wu C, Hart GW. Analytical and Biochemical Perspectives of Protein O-GlcNAcylation. Chem Rev 2021; 121:1513-1581. [DOI: 10.1021/acs.chemrev.0c00884] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Junfeng Ma
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Georgetown University, Washington D.C. 20057, United States
| | - Ci Wu
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Georgetown University, Washington D.C. 20057, United States
| | - Gerald W. Hart
- Department of Biochemistry and Molecular Biology, Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia 30602, United States
| |
Collapse
|
16
|
Nolan MD, Scanlan EM. Applications of Thiol-Ene Chemistry for Peptide Science. Front Chem 2020; 8:583272. [PMID: 33282831 PMCID: PMC7689097 DOI: 10.3389/fchem.2020.583272] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 10/13/2020] [Indexed: 12/21/2022] Open
Abstract
Radical thiol-ene chemistry has been demonstrated for a range of applications in peptide science, including macrocyclization, glycosylation and lipidation amongst a myriad of others. The thiol-ene reaction offers a number of advantages in this area, primarily those characteristic of "click" reactions. This provides a chemical approach to peptide modification that is compatible with aqueous conditions with high orthogonality and functional group tolerance. Additionally, the use of a chemical approach for peptide modification affords homogeneous peptides, compared to heterogeneous mixtures often obtained through biological methods. In addition to peptide modification, thiol-ene chemistry has been applied in novel approaches to biological studies through synthesis of mimetics and use in development of probes. This review will cover the range of applications of the radical-mediated thiol-ene reaction in peptide and protein science.
Collapse
Affiliation(s)
- Mark D Nolan
- School of Chemistry, Trinity College Dublin, Trinity Biomedical Sciences Institute, Dublin, Ireland
| | - Eoin M Scanlan
- School of Chemistry, Trinity College Dublin, Trinity Biomedical Sciences Institute, Dublin, Ireland
| |
Collapse
|
17
|
Makwana V, Ryan P, Malde AK, Anoopkumar-Dukie S, Rudrawar S. Bisubstrate Ether-Linked Uridine-Peptide Conjugates as O-GlcNAc Transferase Inhibitors. ChemMedChem 2020; 16:477-483. [PMID: 32991074 DOI: 10.1002/cmdc.202000582] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 09/24/2020] [Indexed: 12/22/2022]
Abstract
The O-linked β-N-acetylglucosamine (O-GlcNAc) transferase (OGT) is a master regulator of installing O-GlcNAc onto serine or threonine residues on a multitude of target proteins. Numerous nuclear and cytosolic proteins of varying functional classes, including translational factors, transcription factors, signaling proteins, and kinases are OGT substrates. Aberrant O-GlcNAcylation of proteins is implicated in signaling in metabolic diseases such as diabetes and cancer. Selective and potent OGT inhibitors are valuable tools to study the role of OGT in modulating a wide range of effects on cellular functions. We report linear bisubstrate ether-linked uridine-peptide conjugates as OGT inhibitors with micromolar affinity. In vitro evaluation of the compounds revealed the importance of donor substrate, linker and acceptor substrate in the rational design of bisubstrate analogue inhibitors. Molecular dynamics simulations shed light on the binding of this novel class of inhibitors and rationalized the effect of amino acid truncation of acceptor peptide on OGT inhibition.
Collapse
Affiliation(s)
- Vivek Makwana
- Menzies Health Institute Queensland, Griffith University, Gold Coast, QLD 4222, Australia.,School of Pharmacy and Pharmacology, Griffith University, Gold Coast, QLD 4222, Australia.,Quality Use of Medicines Network, Griffith University, Gold Coast, QLD 4222, Australia
| | - Philip Ryan
- Menzies Health Institute Queensland, Griffith University, Gold Coast, QLD 4222, Australia.,School of Pharmacy and Pharmacology, Griffith University, Gold Coast, QLD 4222, Australia.,Quality Use of Medicines Network, Griffith University, Gold Coast, QLD 4222, Australia
| | - Alpeshkumar K Malde
- Institute for Glycomics, Griffith University, Gold Coast, QLD 4222, Australia.,MaldE Scientific, Australia
| | - Shailendra Anoopkumar-Dukie
- Menzies Health Institute Queensland, Griffith University, Gold Coast, QLD 4222, Australia.,School of Pharmacy and Pharmacology, Griffith University, Gold Coast, QLD 4222, Australia.,Quality Use of Medicines Network, Griffith University, Gold Coast, QLD 4222, Australia
| | - Santosh Rudrawar
- Menzies Health Institute Queensland, Griffith University, Gold Coast, QLD 4222, Australia.,School of Pharmacy and Pharmacology, Griffith University, Gold Coast, QLD 4222, Australia.,Quality Use of Medicines Network, Griffith University, Gold Coast, QLD 4222, Australia
| |
Collapse
|
18
|
Estevez A, Zhu D, Blankenship C, Jiang J. Molecular Interrogation to Crack the Case of O-GlcNAc. Chemistry 2020; 26:12086-12100. [PMID: 32207184 PMCID: PMC7724648 DOI: 10.1002/chem.202000155] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2020] [Revised: 02/28/2020] [Indexed: 12/25/2022]
Abstract
The O-linked β-N-acetylglucosamine (O-GlcNAc) modification, termed O-GlcNAcylation, is an essential and dynamic post-translational modification in cells. O-GlcNAc transferase (OGT) installs this modification on serine and threonine residues, whereas O-GlcNAcase (OGA) hydrolyzes it. O-GlcNAc modifications are found on thousands of intracellular proteins involved in diverse biological processes. Dysregulation of O-GlcNAcylation and O-GlcNAc cycling enzymes has been detected in many diseases, including cancer, diabetes, cardiovascular and neurodegenerative diseases. Here, recent advances in the development of molecular tools to investigate OGT and OGA functions and substrate recognition are discussed. New chemical approaches to study O-GlcNAc dynamics and its potential roles in the immune system are also highlighted. It is hoped that this minireview will encourage more research in these areas to advance the understanding of O-GlcNAc in biology and diseases.
Collapse
Affiliation(s)
- Arielis Estevez
- Pharmaceutical Sciences Division, University of Wisconsin-Madison, Madison, WI, 53705, USA
| | - Dongsheng Zhu
- Pharmaceutical Sciences Division, University of Wisconsin-Madison, Madison, WI, 53705, USA
| | - Connor Blankenship
- Pharmaceutical Sciences Division, University of Wisconsin-Madison, Madison, WI, 53705, USA
| | - Jiaoyang Jiang
- Pharmaceutical Sciences Division, University of Wisconsin-Madison, Madison, WI, 53705, USA
| |
Collapse
|
19
|
Albuquerque SO, Barros TG, Dias LRS, Lima CHDS, Azevedo PHRDA, Flores-Junior LAP, Dos Santos EG, Loponte HF, Pinheiro S, Dias WB, Muri EMF, Todeschini AR. Biological evaluation and molecular modeling of peptidomimetic compounds as inhibitors for O-GlcNAc transferase (OGT). Eur J Pharm Sci 2020; 154:105510. [PMID: 32801002 DOI: 10.1016/j.ejps.2020.105510] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 07/24/2020] [Accepted: 08/10/2020] [Indexed: 01/19/2023]
Abstract
The vital enzyme O-linked β-N-acetylglucosamine transferase (OGT) catalyzes the O-GlcNAcylation of intracellular proteins coupling the metabolic status to cellular signaling and transcription pathways. Aberrant levels of O-GlcNAc and OGT have been linked to metabolic diseases as cancer and diabetes. Here, a new series of peptidomimetic OGT inhibitors was identified highlighting the compound LQMed 330, which presented better IC50 compared to the most potent inhibitors found in the literature. Molecular modeling study of selected inhibitors into the OGT binding site provided insight into the behavior by which these compounds interact with the enzyme. The results obtained in this study provided new perspectives on the design and synthesis of highly specific OGT inhibitors.
Collapse
Affiliation(s)
- Suraby O Albuquerque
- Laboratório de Glicobiologia Estrutural e Funcional, IBCCF, Universidade Federal do Rio de Janeiro, RJ, Brazil
| | - Thalita G Barros
- Laboratório de Química Medicinal, Departamento de Tecnologia Farmacêutica, Faculdade de Farmácia, Universidade Federal Fluminense, Niterói, RJ, Brazil
| | - Luiza R S Dias
- Laboratório de Química Medicinal, Departamento de Tecnologia Farmacêutica, Faculdade de Farmácia, Universidade Federal Fluminense, Niterói, RJ, Brazil
| | - Camilo H da S Lima
- Universidade Federal do Rio de Janeiro, Instituto de Química, Rio de Janeiro, RJ, Brazil
| | - Pedro H R de A Azevedo
- Laboratório de Química Medicinal, Departamento de Tecnologia Farmacêutica, Faculdade de Farmácia, Universidade Federal Fluminense, Niterói, RJ, Brazil
| | - Luiz A P Flores-Junior
- Laboratório de Química Medicinal, Departamento de Tecnologia Farmacêutica, Faculdade de Farmácia, Universidade Federal Fluminense, Niterói, RJ, Brazil
| | - Eldio G Dos Santos
- Laboratório de Química Medicinal, Departamento de Tecnologia Farmacêutica, Faculdade de Farmácia, Universidade Federal Fluminense, Niterói, RJ, Brazil
| | - Hector F Loponte
- Laboratório de Glicobiologia Estrutural e Funcional, IBCCF, Universidade Federal do Rio de Janeiro, RJ, Brazil
| | - Sergio Pinheiro
- Instituto de Química, Universidade Federal Fluminense, Niterói, RJ, Brazil
| | - Wagner B Dias
- Laboratório de Glicobiologia Estrutural e Funcional, IBCCF, Universidade Federal do Rio de Janeiro, RJ, Brazil
| | - Estela M F Muri
- Laboratório de Química Medicinal, Departamento de Tecnologia Farmacêutica, Faculdade de Farmácia, Universidade Federal Fluminense, Niterói, RJ, Brazil
| | - Adriane R Todeschini
- Laboratório de Glicobiologia Estrutural e Funcional, IBCCF, Universidade Federal do Rio de Janeiro, RJ, Brazil.
| |
Collapse
|
20
|
Ju Kim E. O‐GlcNAc Transferase: Structural Characteristics, Catalytic Mechanism and Small‐Molecule Inhibitors. Chembiochem 2020; 21:3026-3035. [DOI: 10.1002/cbic.202000194] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2020] [Revised: 05/07/2020] [Indexed: 12/21/2022]
Affiliation(s)
- Eun Ju Kim
- Department of Science Education-Chemistry Major Daegu University Gyeongsan-si, GyeongBuk 712-714 South Korea
| |
Collapse
|
21
|
Alteen MG, Gros C, Meek RW, Cardoso DA, Busmann JA, Sangouard G, Deen MC, Tan H, Shen DL, Russell CC, Davies GJ, Robinson PJ, McCluskey A, Vocadlo DJ. A Direct Fluorescent Activity Assay for Glycosyltransferases Enables Convenient High‐Throughput Screening: Application to
O
‐GlcNAc Transferase. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202000621] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Matthew G. Alteen
- Department of Chemistry Simon Fraser University Burnaby BC V5A 1S6 Canada
| | - Christina Gros
- Department of Chemistry Simon Fraser University Burnaby BC V5A 1S6 Canada
| | - Richard W. Meek
- York Structural Biology Laboratory Department of Chemistry University of York York YO10 5DD UK
| | - David A. Cardoso
- Children's Medical Research Institute The University of Sydney Sydney NSW 2145 Australia
| | - Jil A. Busmann
- Department of Molecular Biology and Biochemistry Simon Fraser University Burnaby BC V5A 1S6 Canada
| | - Gontran Sangouard
- Department of Chemistry Simon Fraser University Burnaby BC V5A 1S6 Canada
| | - Matthew C. Deen
- Department of Chemistry Simon Fraser University Burnaby BC V5A 1S6 Canada
| | - Hong‐Yee Tan
- Department of Chemistry Simon Fraser University Burnaby BC V5A 1S6 Canada
| | - David L. Shen
- Department of Molecular Biology and Biochemistry Simon Fraser University Burnaby BC V5A 1S6 Canada
| | - Cecilia C. Russell
- Chemistry, School of Environmental and Life Sciences The University of Newcastle University Drive Callaghan NSW 2308 Australia
| | - Gideon J. Davies
- York Structural Biology Laboratory Department of Chemistry University of York York YO10 5DD UK
| | - Phillip J. Robinson
- Children's Medical Research Institute The University of Sydney Sydney NSW 2145 Australia
| | - Adam McCluskey
- Chemistry, School of Environmental and Life Sciences The University of Newcastle University Drive Callaghan NSW 2308 Australia
| | - David J. Vocadlo
- Department of Chemistry Simon Fraser University Burnaby BC V5A 1S6 Canada
- Department of Molecular Biology and Biochemistry Simon Fraser University Burnaby BC V5A 1S6 Canada
| |
Collapse
|
22
|
Alteen MG, Gros C, Meek RW, Cardoso DA, Busmann JA, Sangouard G, Deen MC, Tan H, Shen DL, Russell CC, Davies GJ, Robinson PJ, McCluskey A, Vocadlo DJ. A Direct Fluorescent Activity Assay for Glycosyltransferases Enables Convenient High‐Throughput Screening: Application toO‐GlcNAc Transferase. Angew Chem Int Ed Engl 2020; 59:9601-9609. [DOI: 10.1002/anie.202000621] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 02/13/2020] [Indexed: 12/27/2022]
Affiliation(s)
- Matthew G. Alteen
- Department of ChemistrySimon Fraser University Burnaby BC V5A 1S6 Canada
| | - Christina Gros
- Department of ChemistrySimon Fraser University Burnaby BC V5A 1S6 Canada
| | - Richard W. Meek
- York Structural Biology LaboratoryDepartment of ChemistryUniversity of York York YO10 5DD UK
| | - David A. Cardoso
- Children's Medical Research InstituteThe University of Sydney Sydney NSW 2145 Australia
| | - Jil A. Busmann
- Department of Molecular Biology and BiochemistrySimon Fraser University Burnaby BC V5A 1S6 Canada
| | - Gontran Sangouard
- Department of ChemistrySimon Fraser University Burnaby BC V5A 1S6 Canada
| | - Matthew C. Deen
- Department of ChemistrySimon Fraser University Burnaby BC V5A 1S6 Canada
| | - Hong‐Yee Tan
- Department of ChemistrySimon Fraser University Burnaby BC V5A 1S6 Canada
| | - David L. Shen
- Department of Molecular Biology and BiochemistrySimon Fraser University Burnaby BC V5A 1S6 Canada
| | - Cecilia C. Russell
- Chemistry, School of Environmental and Life SciencesThe University of Newcastle University Drive Callaghan NSW 2308 Australia
| | - Gideon J. Davies
- York Structural Biology LaboratoryDepartment of ChemistryUniversity of York York YO10 5DD UK
| | - Phillip J. Robinson
- Children's Medical Research InstituteThe University of Sydney Sydney NSW 2145 Australia
| | - Adam McCluskey
- Chemistry, School of Environmental and Life SciencesThe University of Newcastle University Drive Callaghan NSW 2308 Australia
| | - David J. Vocadlo
- Department of ChemistrySimon Fraser University Burnaby BC V5A 1S6 Canada
- Department of Molecular Biology and BiochemistrySimon Fraser University Burnaby BC V5A 1S6 Canada
| |
Collapse
|
23
|
Pravata VM, Gundogdu M, Bartual SG, Ferenbach AT, Stavridis M, Õunap K, Pajusalu S, Žordania R, Wojcik MH, van Aalten DMF. A missense mutation in the catalytic domain of O-GlcNAc transferase links perturbations in protein O-GlcNAcylation to X-linked intellectual disability. FEBS Lett 2019; 594:717-727. [PMID: 31627256 PMCID: PMC7042088 DOI: 10.1002/1873-3468.13640] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 06/25/2019] [Accepted: 10/07/2019] [Indexed: 01/01/2023]
Abstract
X‐linked intellectual disabilities (XLID) are common developmental disorders. The enzyme O‐GlcNAc transferase encoded by OGT, a recently discovered XLID gene, attaches O‐GlcNAc to nuclear and cytoplasmic proteins. As few missense mutations have been described, it is unclear what the aetiology of the patient phenotypes is. Here, we report the discovery of a missense mutation in the catalytic domain of OGT in an XLID patient. X‐ray crystallography reveals that this variant leads to structural rearrangements in the catalytic domain. The mutation reduces in vitro OGT activity on substrate peptides/protein. Mouse embryonic stem cells carrying the mutation reveal reduced O‐GlcNAcase (OGA) and global O‐GlcNAc levels. These data suggest a direct link between changes in the O‐GlcNAcome and intellectual disability observed in patients carrying OGT mutations.
Collapse
Affiliation(s)
- Veronica M Pravata
- Division of Gene Regulation and Expression, School of Life Sciences, University of Dundee, UK
| | - Mehmet Gundogdu
- Division of Gene Regulation and Expression, School of Life Sciences, University of Dundee, UK
| | - Sergio G Bartual
- Division of Gene Regulation and Expression, School of Life Sciences, University of Dundee, UK
| | - Andrew T Ferenbach
- Division of Gene Regulation and Expression, School of Life Sciences, University of Dundee, UK
| | - Marios Stavridis
- Division of Cell and Developmental Biology, School of Life Sciences, University of Dundee, UK
| | - Katrin Õunap
- Department of Clinical Genetics, United Laboratories, Tartu University Hospital, Estonia.,Department of Clinical Genetics, Institute of Clinical Medicine, University of Tartu, Estonia
| | - Sander Pajusalu
- Department of Clinical Genetics, United Laboratories, Tartu University Hospital, Estonia.,Department of Clinical Genetics, Institute of Clinical Medicine, University of Tartu, Estonia
| | - Riina Žordania
- Department of Clinical Genetics, United Laboratories, Tartu University Hospital, Estonia
| | - Monica H Wojcik
- Divisions of Newborn Medicine and Genetics and Genomics, Department of Medicine, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA.,Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Daan M F van Aalten
- Division of Gene Regulation and Expression, School of Life Sciences, University of Dundee, UK
| |
Collapse
|
24
|
Gorelik A, Bartual SG, Borodkin VS, Varghese J, Ferenbach AT, van Aalten DMF. Genetic recoding to dissect the roles of site-specific protein O-GlcNAcylation. Nat Struct Mol Biol 2019; 26:1071-1077. [PMID: 31695185 PMCID: PMC6858883 DOI: 10.1038/s41594-019-0325-8] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Accepted: 10/02/2019] [Indexed: 12/11/2022]
Abstract
Modification of specific Ser and Thr residues of nucleocytoplasmic proteins with O-GlcNAc, catalyzed by O-GlcNAc transferase (OGT), is an abundant posttranslational event essential for proper animal development and is dysregulated in various diseases. Due to the rapid concurrent removal by the single O-GlcNAcase (OGA), precise functional dissection of site-specific O-GlcNAc modification in vivo is currently not possible without affecting the entire O-GlcNAc proteome. Exploiting the fortuitous promiscuity of OGT, we show that S-GlcNAc is a hydrolytically stable and accurate structural mimic of O-GlcNAc that can be encoded in mammalian systems with CRISPR-Cas9 in an otherwise unperturbed O-GlcNAcome. Using this approach, we target an elusive Ser 405 O-GlcNAc site on OGA, showing that this site-specific modification affects OGA stability.
Collapse
Affiliation(s)
- Andrii Gorelik
- Centre for Gene Regulation and Expression, School of Life Sciences, University of Dundee, Dundee, UK
| | - Sergio Galan Bartual
- Centre for Gene Regulation and Expression, School of Life Sciences, University of Dundee, Dundee, UK
| | - Vladimir S Borodkin
- Centre for Gene Regulation and Expression, School of Life Sciences, University of Dundee, Dundee, UK
| | - Joby Varghese
- MRC Protein Phosphorylation and Ubiquitylation Unit, School of Life Sciences, University of Dundee, Dundee, UK
| | - Andrew T Ferenbach
- Centre for Gene Regulation and Expression, School of Life Sciences, University of Dundee, Dundee, UK
| | - Daan M F van Aalten
- Centre for Gene Regulation and Expression, School of Life Sciences, University of Dundee, Dundee, UK.
| |
Collapse
|
25
|
Akella NM, Ciraku L, Reginato MJ. Fueling the fire: emerging role of the hexosamine biosynthetic pathway in cancer. BMC Biol 2019; 17:52. [PMID: 31272438 PMCID: PMC6610925 DOI: 10.1186/s12915-019-0671-3] [Citation(s) in RCA: 223] [Impact Index Per Article: 44.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023] Open
Abstract
Altered metabolism and deregulated cellular energetics are now considered a hallmark of all cancers. Glucose, glutamine, fatty acids, and amino acids are the primary drivers of tumor growth and act as substrates for the hexosamine biosynthetic pathway (HBP). The HBP culminates in the production of an amino sugar uridine diphosphate N-acetylglucosamine (UDP-GlcNAc) that, along with other charged nucleotide sugars, serves as the basis for biosynthesis of glycoproteins and other glycoconjugates. These nutrient-driven post-translational modifications are highly altered in cancer and regulate protein functions in various cancer-associated processes. In this review, we discuss recent progress in understanding the mechanistic relationship between the HBP and cancer.
Collapse
Affiliation(s)
- Neha M Akella
- Department of Biochemistry and Molecular Biology, Drexel University College of Medicine, Philadelphia, PA, 19102, USA
| | - Lorela Ciraku
- Department of Biochemistry and Molecular Biology, Drexel University College of Medicine, Philadelphia, PA, 19102, USA
| | - Mauricio J Reginato
- Department of Biochemistry and Molecular Biology, Drexel University College of Medicine, Philadelphia, PA, 19102, USA.
| |
Collapse
|
26
|
Ryan P, Xu M, Davey AK, Danon JJ, Mellick GD, Kassiou M, Rudrawar S. O-GlcNAc Modification Protects against Protein Misfolding and Aggregation in Neurodegenerative Disease. ACS Chem Neurosci 2019; 10:2209-2221. [PMID: 30985105 DOI: 10.1021/acschemneuro.9b00143] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Post-translational modifications (PTMs) of proteins are becoming the focus of intense research due to their implications in a broad spectrum of neurodegenerative diseases. Various PTMs have been identified to alter the toxic profiles of proteins which play critical roles in disease etiology. In Alzheimer's disease (AD), dysregulated phosphorylation is reported to promote pathogenic processing of the microtubule-associated tau protein. Among the PTMs, the enzymatic addition of N-acetyl-d-glucosamine (GlcNAc) residues to Ser/Thr residues is reported to deliver protective effects against the pathogenic processing of both amyloid precursor protein (APP) and tau. Modification of tau with as few as one single O-GlcNAc residue inhibits its toxic self-assembly. This modification also has the same effect on the assembly of the Parkinson's disease (PD) associated α-synuclein (ASyn) protein. In fact, O-GlcNAcylation ( O-linked GlcNAc modification) affects the processing of numerous proteins implicated in AD, PD, amyotrophic lateral sclerosis (ALS), and Huntington's disease (HD) in a similar manner. As such, manipulation of a protein's O-GlcNAcylation status has been proposed to offer therapeutic routes toward addressing multiple neurodegenerative pathologies. Here we review the various effects that O-GlcNAc modification, and its modulated expression, have on pathogenically significant proteins involved in neurodegenerative disease.
Collapse
Affiliation(s)
- Philip Ryan
- Menzies Health Institute Queensland, Griffith University, Gold Coast 4222, Australia
- School of Pharmacy and Pharmacology, Griffith University, Gold Coast, 4222, Australia
- Quality Use of Medicines Network, Griffith University, Gold Coast, 4222, Australia
| | - Mingming Xu
- Griffith Institute for Drug Discovery, Griffith University, Nathan, 4111, Australia
| | - Andrew K. Davey
- Menzies Health Institute Queensland, Griffith University, Gold Coast 4222, Australia
- School of Pharmacy and Pharmacology, Griffith University, Gold Coast, 4222, Australia
- Quality Use of Medicines Network, Griffith University, Gold Coast, 4222, Australia
| | | | - George D. Mellick
- Quality Use of Medicines Network, Griffith University, Gold Coast, 4222, Australia
| | - Michael Kassiou
- School of Chemistry, The University of Sydney, NSW 2006, Australia
| | - Santosh Rudrawar
- Menzies Health Institute Queensland, Griffith University, Gold Coast 4222, Australia
- School of Pharmacy and Pharmacology, Griffith University, Gold Coast, 4222, Australia
- Quality Use of Medicines Network, Griffith University, Gold Coast, 4222, Australia
- Griffith Institute for Drug Discovery, Griffith University, Nathan, 4111, Australia
- School of Chemistry, The University of Sydney, NSW 2006, Australia
| |
Collapse
|
27
|
Makwana V, Ryan P, Patel B, Dukie SA, Rudrawar S. Essential role of O-GlcNAcylation in stabilization of oncogenic factors. Biochim Biophys Acta Gen Subj 2019; 1863:1302-1317. [PMID: 31034911 DOI: 10.1016/j.bbagen.2019.04.002] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2018] [Revised: 04/01/2019] [Accepted: 04/03/2019] [Indexed: 12/14/2022]
Abstract
A reversible post-translational protein modification which involves addition of N-acetylglucosamine (GlcNAc) onto hydroxyl groups of serine and/or threonine residues which is known as O-GlcNAcylation, has emerged as a potent competitor of phosphorylation. This glycosyltransfer reaction is catalyzed by the enzyme O-linked β-N-acetylglucosamine transferase (OGT). This enzyme uses uridine diphosphate N-acetylglucosamine (UDP-GlcNAc), the end product of hexosamine biosynthetic pathway, to modify numerous nuclear and cytosolic proteins. O-GlcNAcylation influences cancer cell metabolism in such a way that hyper-O-GlcNAcylation is considered as a prominent trait of many cancers, and is proposed as a major factor enabling cancer cell proliferation and progression. Growing evidence supports a connection between O-GlcNAcylation and major oncogenic factors, including for example, c-MYC, HIF-1α, and NF-κB. A comprehensive study of the roles of O-GlcNAc modification of oncogenic factors is warranted as a thorough understanding may help drive advances in cancer diagnosis and therapy. The focus of this article is to highlight the interplay between oncogenic factors and O-GlcNAcylation along with OGT in cancer cell proliferation and survival. The prospects for OGT inhibitors will also be discussed.
Collapse
Affiliation(s)
- Vivek Makwana
- School of Pharmacy and Pharmacology, Griffith University, Gold Coast, Queensland 4222, Australia
| | - Philip Ryan
- School of Pharmacy and Pharmacology, Griffith University, Gold Coast, Queensland 4222, Australia
| | - Bhautikkumar Patel
- School of Pharmacy and Pharmacology, Griffith University, Gold Coast, Queensland 4222, Australia
| | - Shailendra-Anoopkumar Dukie
- School of Pharmacy and Pharmacology, Griffith University, Gold Coast, Queensland 4222, Australia; Menzies Health Institute Queensland, Griffith University, Gold Coast, Queensland 4222, Australia; Quality Use of Medicines Network, Griffith University, Gold Coast 4222, Australia.
| | - Santosh Rudrawar
- School of Pharmacy and Pharmacology, Griffith University, Gold Coast, Queensland 4222, Australia; Menzies Health Institute Queensland, Griffith University, Gold Coast, Queensland 4222, Australia; Quality Use of Medicines Network, Griffith University, Gold Coast 4222, Australia.
| |
Collapse
|