1
|
Tan X, Wang Y, Long L, Chen H, Qu L, Cao X, Li H, Chen Z, Luo S, Shi C. A theranostic photosensitizer-conjugated albumin co-loading with resiquimod for cancer-targeted imaging and robust photo-immunotherapy. Pharmacol Res 2024; 210:107489. [PMID: 39510147 DOI: 10.1016/j.phrs.2024.107489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 10/30/2024] [Accepted: 10/31/2024] [Indexed: 11/15/2024]
Abstract
Cancer immunotherapy remains a low immune response rate in clinic because of dominant immunosuppressive tumor microenvironment (TME) and lack of effective drug to specifically remodel the TME. In this work, we introduced a tumor-seeking human serum albumin (HSA) based delivery platform by covalently conjugating with a tumor-targeting near-infrared (NIR) photosensitizer (IR-DBI) and non-covalently loading of immune modulator Resiquimod (R848). HSA exhibited tumor-preferential accumulation after covalent conjugation with IR-DBI. Meanwhile, HSA restricted the rotation of IR-DBI, narrowed the HOMO-LUMO energy gap, significantly enhanced fluorescent intensity and dual-modal phototherapy (PTT/PDT). The enhanced phototherapeutic effect further induced robust ICD effect. More importantly, non-covalent loading of R848 could be released from HSA at tumor sites by laser irradiation-induced heat. The in-situ release of R848 in TME efficiently promoted the maturation of DC cells and repolarized M2 macrophages to M1 macrophages. Consequently, robust photo-induced antitumor immunity was triggered in the different mice models bearing primary and distant tumors or lung metastasis, which was further enhanced by combining with CTLA-4 blockade therapy. Taken together, this work may present a versatile albumin composite which exhibits tumor-preferential accumulation and imaging-guided PDT/PTT/immunotherapy.
Collapse
Affiliation(s)
- Xu Tan
- Institute of Rocket Force Medicine, State Key Laboratory of Trauma and Chemical Poisoning, College of Preventive Medicine, Army Medical University, Gaotanyan Street 30, Chongqing 400038, China
| | - Yu Wang
- Institute of Rocket Force Medicine, State Key Laboratory of Trauma and Chemical Poisoning, College of Preventive Medicine, Army Medical University, Gaotanyan Street 30, Chongqing 400038, China
| | - Lei Long
- Institute of Rocket Force Medicine, State Key Laboratory of Trauma and Chemical Poisoning, College of Preventive Medicine, Army Medical University, Gaotanyan Street 30, Chongqing 400038, China
| | - Hongdan Chen
- Department of Breast and Thyroid Surgery, Chongqing General Hospital, Xingguang Road 118, Chongqing 401121, China
| | - Langfan Qu
- Institute of Rocket Force Medicine, State Key Laboratory of Trauma and Chemical Poisoning, College of Preventive Medicine, Army Medical University, Gaotanyan Street 30, Chongqing 400038, China
| | - Xiaohui Cao
- Institute of Rocket Force Medicine, State Key Laboratory of Trauma and Chemical Poisoning, College of Preventive Medicine, Army Medical University, Gaotanyan Street 30, Chongqing 400038, China
| | - Huijuan Li
- Institute of Rocket Force Medicine, State Key Laboratory of Trauma and Chemical Poisoning, College of Preventive Medicine, Army Medical University, Gaotanyan Street 30, Chongqing 400038, China
| | - Zelin Chen
- Institute of Rocket Force Medicine, State Key Laboratory of Trauma and Chemical Poisoning, College of Preventive Medicine, Army Medical University, Gaotanyan Street 30, Chongqing 400038, China.
| | - Shenglin Luo
- Institute of Combined Injury, State Key Laboratory of Trauma and Chemical Poisoning, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Army Medical University, Gaotanyan Street 30, Chongqing 400038, China.
| | - Chunmeng Shi
- Institute of Rocket Force Medicine, State Key Laboratory of Trauma and Chemical Poisoning, College of Preventive Medicine, Army Medical University, Gaotanyan Street 30, Chongqing 400038, China.
| |
Collapse
|
2
|
Li B, Ayala‐Orozco C, Si T, Zhou L, Wang Z, Martí AA, Tour JM. Divergent Syntheses of Near-Infrared Light-Activated Molecular Jackhammers for Cancer Cell Eradication. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2405965. [PMID: 39400530 PMCID: PMC11615805 DOI: 10.1002/advs.202405965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 08/28/2024] [Indexed: 10/15/2024]
Abstract
Aminocyanines incorporating Cy7 and Cy7.5 moieties function as molecular jackhammers (MJH) through vibronic-driven action (VDA). This mechanism, which couples molecular vibrational and electronic modes, results in picosecond-scale concerted stretching of the entire molecule. When cell-associated and activated by near-infrared light, MJH mechanically disrupts cell membranes, causing rapid necrotic cell death. Unlike photodynamic and photothermal therapies, the ultrafast vibrational action of MJH is unhindered by high concentrations of reactive oxygen species scavengers and induces only a minimal temperature increase. Here, the efficient synthesis of a library of MJH is described using a practical approach to access a key intermediate and facilitating the preparation of various Cy7 and Cy7.5 MJH with diverse side chains in moderate to high yields. Photophysical characterization reveals that structural modifications significantly affect molar extinction coefficients and quantum yields while maintaining desirable absorption and emission wavelengths. The most promising compounds, featuring dimethylaminoethyl and dimethylcarbamoyl substitutions, demonstrate up to sevenfold improvement in phototherapeutic index compared to Cy7.5 amine across multiple cancer cell lines. This synthetic strategy provides a valuable platform for developing potent, light-activated therapeutic agents for cancer treatment, with potentially broad applicability across various cancer types.
Collapse
Affiliation(s)
- Bowen Li
- Department of ChemistryRice UniversityHoustonTX77005USA
| | | | - Tengda Si
- Department of ChemistryRice UniversityHoustonTX77005USA
| | - Lixin Zhou
- Department of ChemistryRice UniversityHoustonTX77005USA
| | - Zicheng Wang
- Department of ChemistryRice UniversityHoustonTX77005USA
| | - Angel A. Martí
- Department of ChemistryRice UniversityHoustonTX77005USA
- Department of BioengineeringRice UniversityHoustonTX77005USA
- Department of Materials Science and NanoengineeringRice UniversityHoustonTX77005USA
| | - James M. Tour
- Department of ChemistryRice UniversityHoustonTX77005USA
- Department of Materials Science and NanoengineeringRice UniversityHoustonTX77005USA
- Smalley‐Curl InstituteRice UniversityHoustonTX77005USA
- NanoCarbon Center and the Rice Advanced Materials InstituteRice UniversityHoustonTX77005USA
| |
Collapse
|
3
|
Guo Y, Li M, Liu X, Wang X, Zhang Z, Liu D, Wang X. A versatile tumor-targeted drug-delivery system based on IR808-modified nanoparticles, its co-loading with PTX and R848 and its extraordinary antitumor efficacy. NANOSCALE 2024; 16:21431-21446. [PMID: 39422582 DOI: 10.1039/d4nr02837f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
Nearly all antitumor drugs can benefit greatly from effective tumor-targeted delivery for improved therapeutic efficacy and reduced toxic side effects. However, the vast majority of tumor-targeting ligands can only target specific tumor cells that highly express the corresponding receptors and thus are only applicable to limited tumor types. Heptamethine cyanines with medium cyclohexene and medium Cl atoms, such as IR780 and IR808, have shown an unusual ability to indiscriminately accumulate into virtually all tumor types. In this study, IR808 was conjugated with DSPE-mPEG2000-NH2, and the resultant DSPE-PEG2000-IR808 (DP-IR808) in combination with TPGS successfully encapsulated paclitaxel (PTX) and immunomodulator R848 into nanoparticles with a small particle size of 150.20 nm, negative charge of -16.50 mV, rod-like morphology, and PTX loading content of 31.6%. The obtained DP-IR808@PTX-R848 NPs rapidly accumulated in 4T1 tumors with a tumor/liver fluorescence ratio of 1.71, and it demonstrated a significant photothermal effect and could be directly used for NIR imaging. The DP-IR808@PTX-R848 NPs achieved a high tumor inhibition rate of 94%, a mean survival time of >90 d, and a tumor-free survival percentage of 57%. To the best of our knowledge, this was the first time that nanoparticles were modified with heptamethylcyanine molecules. The nanoparticles system based on DSPE-PEG-IR808, which integrates tumor-targeted drug delivery, in vivo infrared imaging and photothermal therapy, is expected to become a versatile drug-delivery platform for tumor therapy.
Collapse
Affiliation(s)
- Yaoyao Guo
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China.
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110000, China.
| | - Manzhen Li
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China.
| | - Xinxin Liu
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China.
| | - Xi Wang
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China.
| | - Ziqi Zhang
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China.
| | - Dongchun Liu
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110000, China.
| | - Xiangtao Wang
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China.
| |
Collapse
|
4
|
Wu Q, Zhou Z, Xu L, Zhong H, Xiong B, Ren T, Li Z, Yuan L, Zhang XB. Multivalent supramolecular fluorescent probes for accurate disease imaging. SCIENCE ADVANCES 2024; 10:eadp8719. [PMID: 39423274 PMCID: PMC11488570 DOI: 10.1126/sciadv.adp8719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Accepted: 09/16/2024] [Indexed: 10/21/2024]
Abstract
Optical imaging is a powerful tool for early disease detection and effective treatment planning, but its accuracy is often compromised by the uptake of imaging materials by the mononuclear phagocyte system (MPS). Herein, we leverage multivalent host-guest interactions between cyanine dyes and β-cyclodextrin polymers to develop supramolecular probes with enhanced stability, optical, and transport profiles for accurate in vivo imaging. These multivalent interactions not only ensure the stability of the probes but also enhance fluorescence efficiency by minimizing nonradiative decay. Our self-assembly approach effectively modulates probe size and surface properties, enabling evasion of MPS clearance and promoting prolonged bloodstream circulation, thereby improving the signal-to-background ratio for imaging. The effectiveness of our design is demonstrated by substantial advancements in the early diagnosis of acute kidney injury and by providing high-contrast imaging and precise surgical navigation across various tumor models. Our strategy not only advances optical imaging materials toward clinical translation but also establishes a versatile platform applicable to multiple imaging modalities.
Collapse
Affiliation(s)
| | | | - Li Xu
- State Key Laboratory for Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Haichen Zhong
- State Key Laboratory for Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Bin Xiong
- State Key Laboratory for Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Tianbing Ren
- State Key Laboratory for Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Zhe Li
- State Key Laboratory for Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Lin Yuan
- State Key Laboratory for Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Xiao-Bing Zhang
- State Key Laboratory for Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| |
Collapse
|
5
|
Xu J, Lv Z, Wang L, Wu X, Tan B, Shen XC, Chen H. Tuning Tumor Targeting and Ratiometric Photoacoustic Imaging by Fine-Tuning Torsion Angle for Colorectal Liver Metastasis Diagnosis. Chemistry 2024; 30:e202402019. [PMID: 38923040 DOI: 10.1002/chem.202402019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 06/20/2024] [Accepted: 06/26/2024] [Indexed: 06/28/2024]
Abstract
Photoacoustic (PA) tomography is an emerging biomedical imaging technology for precision cancer medicine. Conventional small-molecule PA probes usually exhibit a single PA signal and poor tumor targeting that lack the imaging reliability. Here, we introduce a series of cyanine/hemicyanine interconversion dyes (denoted Cy-HCy) for PA/fluorescent dual-mode probe development that features optimized ratiometric PA imaging and tunable tumor-targeting ability for precise diagnosis and resection of colorectal cancer (CRC). Importantly, Cy-HCy can be presented in cyanine (inherent tumor targeting and long NIR PA wavelength) and hemicyanine (poor tumor targeting and short NIR PA wavelength) by fine-tuning torsion angle and the ingenious transformation between cyanine and hemicyanine through regulation optically tunable group endows the NIR ratiometric PA and tunable tumor-targeting properties. To demonstrate the applicability of Cy-HCy dyes, we designed the first small-molecule tumor-targeting and NIR ratiometric PA probe Cy-HCy-H2S for precise CRC liver metastasis diagnosis, activated by H2S (a CRC biomarker). Using this probe, we not only visualized the subcutaneous tumor and liver metastatic cancers in CRC mouse models but also realized PA and fluorescence image-guided tumor excision. We expect that Cy-HCy will be generalized for creating a wide variety of inherently tumor-targeting NIR ratiometric PA probes in oncological research and practice.
Collapse
Affiliation(s)
- Jinyuan Xu
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, P. R. China
| | - Zhangkang Lv
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, P. R. China
| | - Liping Wang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, P. R. China
| | - Xingqing Wu
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, P. R. China
| | - Bisui Tan
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, P. R. China
| | - Xing-Can Shen
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, P. R. China
| | - Hua Chen
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, P. R. China
| |
Collapse
|
6
|
Long Q, Zhao X, Gao L, Liu M, Pan F, Gao X, Zhan C, Chen Y, Wang J, Qian J. Effects of Surface IR783 Density on the In Vivo Behavior and Imaging Performance of Liposomes. Pharmaceutics 2024; 16:744. [PMID: 38931866 PMCID: PMC11206891 DOI: 10.3390/pharmaceutics16060744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Revised: 05/16/2024] [Accepted: 05/27/2024] [Indexed: 06/28/2024] Open
Abstract
Background: Nanoparticles conjugated with fluorescent probes have versatile applications, serving not only for targeted fluorescent imaging but also for evaluating the in vivo profiles of designed nanoparticles. However, the relationship between fluorophore density and nanoparticle behavior remains unexplored. Methods: The IR783-modified liposomes (IR783-sLip) were prepared through a modified ethanol injection and extrusion method. The cellular uptake efficiency of IR783-sLip was characterized by flow cytometry and fluorescence microscope imaging. The effects of IR783 density on liposomal in vivo behavior were investigated by pharmacokinetic studies, biodistribution studies, and in vivo imaging. The constitution of protein corona was analyzed by the Western blot assay. Results: Dense IR783 modification improved cellular uptake of liposomes in vitro but hindered their blood retention and tumor imaging performance in vivo. We found a correlation between IR783 density and protein corona absorption, particularly IgM, which significantly impacted the liposome performance. Meanwhile, we observed that increasing IR783 density did not consistently improve the effectiveness of tumor imaging. Conclusions: Increasing the density of modified IR783 on liposomes is not always beneficial for tumor near-infrared (NIR) imaging yield. It is not advisable to prematurely evaluate novel nanomaterials through fluorescence dye conjugation without carefully optimizing the density of the modifications.
Collapse
Affiliation(s)
- Qianqian Long
- School of Pharmacy, Department of Thoracic Medical Oncology, Fudan University Shanghai Cancer Center, Shanghai Medical College, Fudan University, Shanghai 200032, China; (Q.L.); (X.Z.); (M.L.); (F.P.)
| | - Xinmin Zhao
- School of Pharmacy, Department of Thoracic Medical Oncology, Fudan University Shanghai Cancer Center, Shanghai Medical College, Fudan University, Shanghai 200032, China; (Q.L.); (X.Z.); (M.L.); (F.P.)
| | - Lili Gao
- Department of Pathology, Pudong New Area People’s Hospital, Shanghai 201299, China;
| | - Mengyuan Liu
- School of Pharmacy, Department of Thoracic Medical Oncology, Fudan University Shanghai Cancer Center, Shanghai Medical College, Fudan University, Shanghai 200032, China; (Q.L.); (X.Z.); (M.L.); (F.P.)
| | - Feng Pan
- School of Pharmacy, Department of Thoracic Medical Oncology, Fudan University Shanghai Cancer Center, Shanghai Medical College, Fudan University, Shanghai 200032, China; (Q.L.); (X.Z.); (M.L.); (F.P.)
| | - Xihui Gao
- School of Basic Medical Sciences, Fudan University, Shanghai 200032, China; (X.G.); (C.Z.)
| | - Changyou Zhan
- School of Basic Medical Sciences, Fudan University, Shanghai 200032, China; (X.G.); (C.Z.)
| | - Yang Chen
- Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China;
| | - Jialei Wang
- School of Pharmacy, Department of Thoracic Medical Oncology, Fudan University Shanghai Cancer Center, Shanghai Medical College, Fudan University, Shanghai 200032, China; (Q.L.); (X.Z.); (M.L.); (F.P.)
| | - Jun Qian
- School of Pharmacy, Department of Thoracic Medical Oncology, Fudan University Shanghai Cancer Center, Shanghai Medical College, Fudan University, Shanghai 200032, China; (Q.L.); (X.Z.); (M.L.); (F.P.)
| |
Collapse
|
7
|
Park Y, Park MH, Hyun H. Structure-Inherent Tumor-Targeted IR-783 for Near-Infrared Fluorescence-Guided Photothermal Therapy. Int J Mol Sci 2024; 25:5309. [PMID: 38791347 PMCID: PMC11121547 DOI: 10.3390/ijms25105309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Revised: 05/09/2024] [Accepted: 05/13/2024] [Indexed: 05/26/2024] Open
Abstract
IR-783, a commercially available near-infrared (NIR) heptamethine cyanine dye, has been used for selective tumor imaging in breast, prostate, cervical, and brain cancers in vitro and in vivo. Although the molecular mechanism behind the structure-inherent tumor targeting of IR-783 has not been well-demonstrated, IR-783 has unique properties such as a good water solubility and low cytotoxicity compared with other commercial heptamethine cyanine dyes. The goal of this study is to evaluate the phototherapeutic efficacy of IR-783 as a tumor-targeted photothermal agent in human colorectal cancer xenografts. The results demonstrate that IR-783 shows both the subcellular localization in HT-29 cancer cells and preferential accumulation in HT-29 xenografted tumors 24 h after its intravenous administration. Furthermore, the IR-783 dye reveals the superior capability to convert NIR light into heat energy under 808 nm NIR laser irradiation in vitro and in vivo, thereby inducing cancer cell death. Taken together, these findings suggest that water-soluble anionic IR-783 can be used as a bifunctional phototherapeutic agent for the targeted imaging and photothermal therapy (PTT) of colorectal cancer. Therefore, this work provides a simple and effective approach to develop biocompatible, hydrophilic, and tumor-targetable PTT agents for targeted cancer phototherapy.
Collapse
Affiliation(s)
- Yoonbin Park
- Department of Biomedical Sciences, Chonnam National University Medical School, Hwasun 58128, Republic of Korea;
- BioMedical Sciences Graduate Program (BMSGP), Chonnam National University, Hwasun 58128, Republic of Korea
| | - Min Ho Park
- Department of Surgery, Chonnam National University Medical School and Hwasun Hospital, Hwasun 58128, Republic of Korea
| | - Hoon Hyun
- Department of Biomedical Sciences, Chonnam National University Medical School, Hwasun 58128, Republic of Korea;
- BioMedical Sciences Graduate Program (BMSGP), Chonnam National University, Hwasun 58128, Republic of Korea
| |
Collapse
|
8
|
Chen P, Li S, Xu Z, Cabral H. Nanoassemblies of heptamethine cyanine dye-initiated poly(amino acid) enhance ROS generation for effective antitumour phototherapy. NANOSCALE HORIZONS 2024; 9:731-741. [PMID: 38505973 DOI: 10.1039/d3nh00584d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/21/2024]
Abstract
Phototherapy shows great potential for pinpoint tumour treatment. Heptamethine cyanine dyes like IR783 have high potential as agents for antitumour phototherapy due to their inherent tumour targeting ability, though their effectiveness in vivo is unsatisfactory for clinical translation. To overcome this limitation, we present an innovative strategy involving IR783-based polymeric nanoassemblies that improve the dye's performance as an antitumoural photosensitizer. In the formulation, IR783 is modified with cysteamine and used to initiate the ring-opening polymerization (ROP) of the N-carboxyanhydride of benzyl-L-aspartate (BLA), resulting in IR783-installed poly(BLA). Compared to free IR783, the IR783 dye in the polymer adopts a twisted molecular conformation and tuned electron orbital distribution, remarkably enhancing its optical properties. In aqueous environments, the polymers spontaneously assemble into nanostructures with 60 nm diameter, showcasing surface-exposed IR783 dyes that function as ligands for cancer cell and mitochondria targeting. Moreover, the nanoassemblies stabilized the dyes and enhanced the generation of reactive oxygen species (ROS) upon laser irradiation. Thus, in murine tumor models, a single injection of the nanoassemblies with laser irradiation significantly inhibits tumour growth with no detectable off-target toxicity. These findings highlight the potential for improving the performance of heptamethine cyanine dyes in antitumor phototherapy through nano-enabled strategies.
Collapse
Affiliation(s)
- Pengwen Chen
- Department of Bioengineering, Graduate School of Engineering, The University of Tokyo, Bunkyo-ku, Tokyo, 113-8656, Japan.
| | - Shangwei Li
- Department of Bioengineering, Graduate School of Engineering, The University of Tokyo, Bunkyo-ku, Tokyo, 113-8656, Japan.
| | - Zhining Xu
- Polymer Chemistry and Physics Research Group, HUN-REN Research Centre for Natural Sciences, Budapest, H-1117, Hungary
- Faculty of Science, Eötvös Loránd University, Budapest, H-1117, Hungary
| | - Horacio Cabral
- Department of Bioengineering, Graduate School of Engineering, The University of Tokyo, Bunkyo-ku, Tokyo, 113-8656, Japan.
| |
Collapse
|
9
|
Zhao X, Ma Y, Di J, Qiao Y, Yu J, Yin Y, Xi R, Meng M. Synergetic Pyroptosis with Apoptosis Improving Phototherapy of Mitochondria-Targeted Cyanines with Superior Photostability. ACS APPLIED MATERIALS & INTERFACES 2024; 16:12310-12320. [PMID: 38412031 DOI: 10.1021/acsami.3c19205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/29/2024]
Abstract
Pyroptosis has been reported to improve the antitumor effect by evoking a more intense immune response and a therapeutic effect. For phototherapy, several photosensitizers have been found to initiate pyroptosis. However, the effect of pyroptosis associated with apoptosis in enhancing the antitumor therapy needs sufficient characterization, especially under long-term treatment. As a NIR photosensitizer, heptamethine cyanines have been discovered for anticancer phototherapy for deep tissue penetration and inherent tumor-targeted capability. However, they are not quite stable for long-term performance. To investigate the effect of pyroptosis along with apoptosis on the anticancer immune responses and phototherapy, here, we chemically modulate the cyanine IR780 to regulate hydrophobicity, stability, and intracellular targeting. Two photosensitizers, T780T-TPP and T780T-TPP-C12, were finally optimized and showed excellent photostability with high photothermal conversion efficiency. Although the cellular uptake of the two molecules was both mediated by OATP transporters, T780T-TPP induced tumor cell death via pyroptosis and apoptosis and accumulated in tumor accumulation, while T780T-TPP-C12 was prone to accumulate in the liver. Ultimately, via one injection-multiple irradiation treatment protocol, T780T-TPP displayed a significant antitumor effect, even against the growth of large tumors (200 mm3).
Collapse
Affiliation(s)
- Xiujie Zhao
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Key Laboratory of Molecular Drug Research and KLMDASR of Tianjin, Nankai University, Tongyan Road, Haihe Education Park, Tianjin 300350, China
| | - Yan Ma
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Key Laboratory of Molecular Drug Research and KLMDASR of Tianjin, Nankai University, Tongyan Road, Haihe Education Park, Tianjin 300350, China
| | - Jianhao Di
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Key Laboratory of Molecular Drug Research and KLMDASR of Tianjin, Nankai University, Tongyan Road, Haihe Education Park, Tianjin 300350, China
| | - Yanqi Qiao
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Key Laboratory of Molecular Drug Research and KLMDASR of Tianjin, Nankai University, Tongyan Road, Haihe Education Park, Tianjin 300350, China
| | - Jie Yu
- State Key Laboratory of Southern Medicine Utilization, College of Pharmaceutical Science, Yunnan University of Chinese Medicine, Kunming 650500, Yunnan Province, China
| | - Yongmei Yin
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Key Laboratory of Molecular Drug Research and KLMDASR of Tianjin, Nankai University, Tongyan Road, Haihe Education Park, Tianjin 300350, China
| | - Rimo Xi
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Key Laboratory of Molecular Drug Research and KLMDASR of Tianjin, Nankai University, Tongyan Road, Haihe Education Park, Tianjin 300350, China
| | - Meng Meng
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Key Laboratory of Molecular Drug Research and KLMDASR of Tianjin, Nankai University, Tongyan Road, Haihe Education Park, Tianjin 300350, China
| |
Collapse
|
10
|
Xue X, Li Q, Zhang P, Xue Y, Zhao Y, Ye Y, Li J, Li Y, Zhao L, Shao G. PET/NIR Fluorescence Bimodal Imaging for Targeted Tumor Detection. Mol Pharm 2023; 20:6262-6271. [PMID: 37948165 DOI: 10.1021/acs.molpharmaceut.3c00660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2023]
Abstract
Cancer is one of the greatest threats to human health due to late diagnosis and incomplete resection. The bimodal probe combines positron emission tomography (PET) imaging for noninvasive whole-body scanning with intraoperative near-infrared fluorescence (NIRF) surgical guidance for preoperative tumor detection, tumor resection during surgery, and postoperative monitoring. We developed a new PET/NIRF bimodal imaging agent, [68Ga]Ga-DOTA-NPC, covalently coupled to DCDSTCY and DOTA via ethylenediamine and radiolabeled with gallium-68, and investigated it in vitro and in vivo. The probe was found to be preferential for colon cancer cells due to the organic anion-transporting polypeptide1B3 (OATP1B3). PET/NIRF imaging allowed us to confirm [68Ga]Ga-DOTA-NPC as a promising probe for tumor detection, as it provides good biosafety and high-contrast tumor accumulation. Orthotopic and subcutaneous colon tumors were successfully resected under real-time NIRF guidance. [68Ga]Ga-DOTA-NPC provides highly sensitive and unlimited tissue-penetrating PET/NIRF imaging, helping to visualize and differentiate tumors from adjacent tissue.
Collapse
Affiliation(s)
- Xin Xue
- Department of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing 211198, Jiangsu China
| | - Qiyi Li
- Jiangsu Key Laboratory of Drug Design & Optimization, Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing 211100, Jiangsu China
| | - Pengjun Zhang
- Department of Nuclear Medicine, Nanjing First Hospital, Nanjing Medical University, Nanjing 211166, China
| | - Yilin Xue
- Department of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing 211198, Jiangsu China
| | - Yuetong Zhao
- Department of Nuclear Medicine, Nanjing First Hospital, Nanjing Medical University, Nanjing 211166, China
| | - Yuting Ye
- Pathology and PDX Efficacy Center, China Pharmaceutical University, Nanjing 211100, China
| | - Jia Li
- Pathology and PDX Efficacy Center, China Pharmaceutical University, Nanjing 211100, China
| | - Yuyan Li
- Jiangsu Key Laboratory of Drug Design & Optimization, Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing 211100, Jiangsu China
| | - Li Zhao
- Department of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing 211198, Jiangsu China
| | - Guoqiang Shao
- Department of Nuclear Medicine, Nanjing First Hospital, Nanjing Medical University, Nanjing 211166, China
| |
Collapse
|
11
|
Pflug KM, Lee DW, Tripathi A, Bankaitis VA, Burgess K, Sitcheran R. Cyanine Dye Conjugation Enhances Crizotinib Localization to Intracranial Tumors, Attenuating NF-κB-Inducing Kinase Activity and Glioma Progression. Mol Pharm 2023; 20:6140-6150. [PMID: 37939020 DOI: 10.1021/acs.molpharmaceut.3c00496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2023]
Abstract
Glioblastoma (GBM) is a highly aggressive form of brain cancer with a poor prognosis and limited treatment options. The ALK and c-MET inhibitor Crizotinib has demonstrated preclinical therapeutic potential for newly diagnosed GBM, although its efficacy is limited by poor penetration of the blood brain barrier. Here, we identify Crizotinib as a novel inhibitor of nuclear factor-κB (NF-κB)-inducing kinase, which is a key regulator of GBM growth and proliferation. We further show that the conjugation of Crizotinib to a heptamethine cyanine dye, or a near-infrared dye (IR-Crizotinib), attenuated glioma cell proliferation and survival in vitro to a greater extent than unconjugated Crizotinib. Moreover, we observed increased IR-Crizotinib localization to orthotopic mouse xenograft GBM tumors, which resulted in impaired tumor growth in vivo. Overall, IR-Crizotinib exhibited improved intracranial chemotherapeutic delivery and tumor localization with concurrent inhibition of NIK and noncanonical NF-κB signaling, thereby reducing glioma growth in vitro, as well as in vivo, and increasing survival in a preclinical rodent model.
Collapse
Affiliation(s)
- Kathryn M Pflug
- Department of Cellular Biology and Genetics, Texas A&M University Health Science Center , College Station, Texas 77807, United States
| | - Dong W Lee
- Department of Cellular Biology and Genetics, Texas A&M University Health Science Center , College Station, Texas 77807, United States
| | - Ashutosh Tripathi
- Department of Cellular Biology and Genetics, Texas A&M University Health Science Center , College Station, Texas 77807, United States
| | - Vytas A Bankaitis
- Department of Cellular Biology and Genetics, Texas A&M University Health Science Center , College Station, Texas 77807, United States
| | - Kevin Burgess
- Department of Chemistry, Texas A&M University, Box 30012, College Station, Texas 77842, United States
| | - Raquel Sitcheran
- Department of Cellular Biology and Genetics, Texas A&M University Health Science Center , College Station, Texas 77807, United States
| |
Collapse
|
12
|
Su Q, Zhang Y, Zhu S. Site-specific albumin tagging with chloride-containing near-infrared cyanine dyes: molecular engineering, mechanism, and imaging applications. Chem Commun (Camb) 2023; 59:13125-13138. [PMID: 37850230 DOI: 10.1039/d3cc04200f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2023]
Abstract
Near-infrared dyes, particularly cyanine dyes, have shown great potential in biomedical imaging due to their deep tissue penetration, high resolution, and minimal tissue autofluorescence/scattering. These dyes can be adjusted in terms of absorption and emission wavelengths by modifying their chemical structures. The current issues with cyanine dyes include aggregation-induced quenching, poor photostability, and short in vivo circulation time. Encapsulating cyanine dyes with albumin, whether exogenous or endogenous, has been proven to be an effective strategy for improving their brightness and pharmacokinetics. In detail, the chloride-containing (Cl-containing) cyanine dyes have been found to selectively bind to albumin to achieve site-specific albumin tagging, resulting in enhanced optical properties and improved biosafety. This feature article provides an overview of the progress in the covalent binding of Cl-containing cyanine dyes with albumin, including molecular engineering methods, binding sites, and the selective binding mechanism. The improved optical properties of cyanine dyes and albumin complexes have led to cutting-edge applications in biological imaging, such as tumor imaging (diagnostics) and imaging-guided surgery.
Collapse
Affiliation(s)
- Qi Su
- State Key Laboratory of Supramolecular Structure and Materials, Center for Supramolecular Chemical Biology, College of Chemistry, Jilin University, Changchun 130012, P. R. China.
| | - Yuewei Zhang
- Joint Laboratory of Opto-Functional Theranostics in Medicine and Chemistry, First Hospital of Jilin University, Jilin University, Changchun 130021, P. R. China.
- School of Chemistry and Pharmaceutical Engineering, Jilin Institute of Chemical Technology, Jilin 132022, P. R. China
| | - Shoujun Zhu
- State Key Laboratory of Supramolecular Structure and Materials, Center for Supramolecular Chemical Biology, College of Chemistry, Jilin University, Changchun 130012, P. R. China.
- Joint Laboratory of Opto-Functional Theranostics in Medicine and Chemistry, First Hospital of Jilin University, Jilin University, Changchun 130021, P. R. China.
| |
Collapse
|
13
|
Marker S, Espinoza AF, King AP, Woodfield SE, Patel RH, Baidoo K, Nix MN, Ciaramicoli LM, Chang YT, Escorcia FE, Vasudevan SA, Schnermann MJ. Development of Iodinated Indocyanine Green Analogs as a Strategy for Targeted Therapy of Liver Cancer. ACS Med Chem Lett 2023; 14:1208-1215. [PMID: 37736195 PMCID: PMC10510512 DOI: 10.1021/acsmedchemlett.3c00213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Accepted: 08/16/2023] [Indexed: 09/23/2023] Open
Abstract
Liver cancer is one of the leading causes of cancer-related deaths, with a significant increase in incidence worldwide. Novel therapies are needed to address this unmet clinical need. Indocyanine green (ICG) is a broadly used fluorescence-guided surgery (FGS) agent for liver tumor resection and has significant potential for conversion to a targeted therapy. Here, we report the design, synthesis, and investigation of a series of iodinated ICG analogs (I-ICG), which can be used to develop ICG-based targeted radiopharmaceutical therapy. We applied a CRISPR-based screen to identify the solute carrier transporter, OATP1B3, as a likely mechanism for ICG uptake. Our lead I-ICG compound specifically localizes to tumors in mice bearing liver cancer xenografts. This study introduces the chemistry needed to incorporate iodine onto the ICG scaffold and defines the impact of these modifications on key properties, including targeting liver cancer in vitro and in vivo.
Collapse
Affiliation(s)
- Sierra
C. Marker
- Chemical
Biology Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, Maryland 21702, United States
| | - Andres F. Espinoza
- Divisions
of Pediatric Surgery and Surgical Research, Michael E. DeBakey Department
of Surgery, Pediatric Surgical Oncology Laboratory, Texas Children’s
Surgical Oncology Program and Liver Tumor Program, Dan L. Duncan Cancer
Center, Baylor College of Medicine, Houston, Texas 77030, United States
| | - A. Paden King
- Molecular
Imaging Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20852, United States
| | - Sarah E. Woodfield
- Divisions
of Pediatric Surgery and Surgical Research, Michael E. DeBakey Department
of Surgery, Pediatric Surgical Oncology Laboratory, Texas Children’s
Surgical Oncology Program and Liver Tumor Program, Dan L. Duncan Cancer
Center, Baylor College of Medicine, Houston, Texas 77030, United States
| | - Roma H. Patel
- Divisions
of Pediatric Surgery and Surgical Research, Michael E. DeBakey Department
of Surgery, Pediatric Surgical Oncology Laboratory, Texas Children’s
Surgical Oncology Program and Liver Tumor Program, Dan L. Duncan Cancer
Center, Baylor College of Medicine, Houston, Texas 77030, United States
| | - Kwamena Baidoo
- Molecular
Imaging Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20852, United States
| | - Meredith N. Nix
- Chemical
Biology Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, Maryland 21702, United States
| | - Larissa Miasiro Ciaramicoli
- Department
of Chemistry, Pohang University of Science
and Technology (POSTECH), Pohang, Gyeongbuk 37673, Republic of Korea
| | - Young-Tae Chang
- Department
of Chemistry, Pohang University of Science
and Technology (POSTECH), Pohang, Gyeongbuk 37673, Republic of Korea
| | - Freddy E. Escorcia
- Molecular
Imaging Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20852, United States
| | - Sanjeev A. Vasudevan
- Divisions
of Pediatric Surgery and Surgical Research, Michael E. DeBakey Department
of Surgery, Pediatric Surgical Oncology Laboratory, Texas Children’s
Surgical Oncology Program and Liver Tumor Program, Dan L. Duncan Cancer
Center, Baylor College of Medicine, Houston, Texas 77030, United States
| | - Martin J. Schnermann
- Chemical
Biology Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, Maryland 21702, United States
| |
Collapse
|
14
|
Zhou X, Shi C, Long S, Yao Q, Ma H, Chen K, Du J, Sun W, Fan J, Liu B, Wang L, Chen X, Sui L, Yuan K, Peng X. Highly Efficient Photosensitizers with Molecular Vibrational Torsion for Cancer Photodynamic Therapy. ACS CENTRAL SCIENCE 2023; 9:1679-1691. [PMID: 37637741 PMCID: PMC10451034 DOI: 10.1021/acscentsci.3c00611] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Indexed: 08/29/2023]
Abstract
The development of highly effective photosensitizers (PSs) for photodynamic therapy remains a great challenge at present. Most PSs rely on the heavy-atom effect or the spin-orbit charge-transfer intersystem crossing (SOCT-ISC) effect to promote ISC, which brings about additional cytotoxicity, and the latter is susceptible to the interference of solvent environment. Herein, an immanent universal property named photoinduced molecular vibrational torsion (PVT)-enhanced spin-orbit coupling (PVT-SOC) in PSs has been first revealed. PVT is verified to be a widespread intrinsic property of quinoid cyanine (QCy) dyes that occurs on an extremely short time scale (10-10 s) and can be captured by transient spectra. The PVT property can provide reinforced SOC as the occurrence of ISC predicted by the El Sayed rules (1ππ*-3nπ*), which ensures efficient photosensitization ability for QCy dyes. Hence, QTCy7-Ac exhibited the highest singlet oxygen yield (13-fold higher than that of TCy7) and lossless fluorescence quantum yield (ΦF) under near-infrared (NIR) irradiation. The preeminent photochemical properties accompanied by high biosecurity enable it to effectively perform photoablation in solid tumors. The revelation of this property supplies a new route for constructing high-performance PSs for achieving enhanced cancer phototherapy.
Collapse
Affiliation(s)
- Xiao Zhou
- State
Key Laboratory of Fine Chemicals, Dalian
University of Technology, 2 Linggong Road, Dalian 116024, P. R. China
| | - Chao Shi
- College
of Chemistry and Chemical Engineering, Yantai
University, Yantai 264005, P. R. China
| | - Saran Long
- State
Key Laboratory of Fine Chemicals, Dalian
University of Technology, 2 Linggong Road, Dalian 116024, P. R. China
| | - Qichao Yao
- State
Key Laboratory of Fine Chemicals, Dalian
University of Technology, 2 Linggong Road, Dalian 116024, P. R. China
| | - He Ma
- State
Key Laboratory of Fine Chemicals, Dalian
University of Technology, 2 Linggong Road, Dalian 116024, P. R. China
| | - Kele Chen
- State
Key Laboratory of Fine Chemicals, Dalian
University of Technology, 2 Linggong Road, Dalian 116024, P. R. China
| | - Jianjun Du
- State
Key Laboratory of Fine Chemicals, Dalian
University of Technology, 2 Linggong Road, Dalian 116024, P. R. China
| | - Wen Sun
- State
Key Laboratory of Fine Chemicals, Dalian
University of Technology, 2 Linggong Road, Dalian 116024, P. R. China
| | - Jiangli Fan
- State
Key Laboratory of Fine Chemicals, Dalian
University of Technology, 2 Linggong Road, Dalian 116024, P. R. China
| | - Bin Liu
- State
Key Laboratory of Fine Chemicals, College of Materials Science and
Engineering, Shenzhen University, Shenzhen 518060, P. R. China
| | - Lei Wang
- State
Key Laboratory of Fine Chemicals, College of Materials Science and
Engineering, Shenzhen University, Shenzhen 518060, P. R. China
| | - Xiaoqiang Chen
- State
Key Laboratory of Fine Chemicals, College of Materials Science and
Engineering, Shenzhen University, Shenzhen 518060, P. R. China
| | - Laizhi Sui
- State
Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, P. R. China
| | - Kaijun Yuan
- State
Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, P. R. China
| | - Xiaojun Peng
- State
Key Laboratory of Fine Chemicals, Dalian
University of Technology, 2 Linggong Road, Dalian 116024, P. R. China
- State
Key Laboratory of Fine Chemicals, College of Materials Science and
Engineering, Shenzhen University, Shenzhen 518060, P. R. China
| |
Collapse
|
15
|
Muhammad Usama S, Gao Z, Arancillo M, Burgess K. Cytotoxicities of Tumor-Seeking Dyes: Impact on Future Clinical Trials. ChemMedChem 2023; 18:e202200561. [PMID: 36630600 PMCID: PMC10010615 DOI: 10.1002/cmdc.202200561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 01/02/2023] [Accepted: 01/06/2023] [Indexed: 01/13/2023]
Abstract
Heptamethine (Cy7) dyes with meso-Cl substituents injected intravenously (iv) into mice accumulate in tumors and persist there over several days. We believe this occurs via meso-Cl displacement by the only free cysteine residues of albumin; therefore, conjugating tumor-seeking dyes with fragments can increase selective therapeutic delivery to tumors and drug residence. This strategy has elevated significance recently because the first tumor-seeking dye-drug conjugate has moved into clinical trials. Options for further clinical research include modifying the dye, and use of preformed albumin adducts instead of dyes alone. Herein we show correlations of cytotoxicities, lipophilicities, organelle localization, apoptosis, cell-cycle arrest, wound healing/migration assays, and reactivities/affinities with human serum albumin are difficult to observe. However, our studies arrived at an important conclusion: preformed dye-drug-HSA adducts are less cytotoxic, and therefore preferable for subsequent clinical work, relative to direct injection of meso-Cl-containing forms.
Collapse
Affiliation(s)
- Syed Muhammad Usama
- Department of Chemistry, Texas A & M University, Box 30012, College Station, TX 77842, USA
| | - Zhe Gao
- Department of Chemistry, Texas A & M University, Box 30012, College Station, TX 77842, USA
| | - Maritess Arancillo
- Department of Chemistry, Texas A & M University, Box 30012, College Station, TX 77842, USA
| | - Kevin Burgess
- Department of Chemistry, Texas A & M University, Box 30012, College Station, TX 77842, USA
| |
Collapse
|
16
|
Cooper E, Choi PJ, Hwang K, Nam KM, Kim CY, Shaban T, Schweder P, Mee E, Correia J, Turner C, Faull RLM, Denny WA, Noguchi K, Dragunow M, Jose J, Park TIH. Elucidating the cellular uptake mechanisms of heptamethine cyanine dye analogues for their use as an anticancer drug-carrier molecule for the treatment of glioblastoma. Chem Biol Drug Des 2023; 101:696-716. [PMID: 36323652 DOI: 10.1111/cbdd.14171] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 10/24/2022] [Accepted: 10/29/2022] [Indexed: 11/06/2022]
Abstract
The development of chemotherapies for glioblastoma is hindered by their limited bioavailability and toxicity on normal brain function. To overcome these limitations, we investigated the structure-dependent activity of heptamethine cyanine dyes (HMCD), a group of tumour-specific and BBB permeable near-infrared fluorescent dyes, in both commercial (U87MG) and patient-derived GBM cell lines. HMCD analogues with strongly ionisable sulphonic acid groups were not taken up by patient-derived GBM cells, but were taken up by the U87MG cell line. HMCD uptake relies on a combination of transporter uptake through organic anion-transporting polypeptides (OATPs) and endocytosis into GBM cells. The uptake of HMCDs was not affected by p-glycoprotein efflux in GBM cells. Finally, we demonstrate structure-dependent cytotoxic activity at high concentrations (EC50 : 1-100 μM), likely due to mitochondrial damage-induced apoptosis. An in vivo orthotopic glioblastoma model highlights tumour-specific accumulation of our lead HMCD, MHI-148, for up to 7 days following a single intraperitoneal injection. These studies suggest that strongly ionisable groups like sulphonic acids hamper the cellular uptake of HMCDs in patient-derived GBM cell lines, highlighting cell line-specific differences in HMCD uptake. We envisage these findings will help in the design and structural modifications of HMCDs for drug-delivery applications for glioblastoma.
Collapse
Affiliation(s)
- Elizabeth Cooper
- Department of Pharmacology, University of Auckland, Auckland, New Zealand.,Neurosurgical Research Unit, The Centre for Brain Research, University of Auckland, Auckland, New Zealand.,Auckland Cancer Society Research Centre, School of Medical Sciences, University of Auckland, Auckland, New Zealand.,The Hugh Green Biobank, The Centre for Brain Research, University of Auckland, Auckland, New Zealand
| | - Peter J Choi
- Auckland Cancer Society Research Centre, School of Medical Sciences, University of Auckland, Auckland, New Zealand
| | - Kihwan Hwang
- Department of Neurosurgery, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam, Republic of Korea
| | - Kyung M Nam
- Department of Neurosurgery, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam, Republic of Korea
| | - Chae-Yong Kim
- Department of Neurosurgery, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam, Republic of Korea
| | - Tina Shaban
- Auckland Cancer Society Research Centre, School of Medical Sciences, University of Auckland, Auckland, New Zealand
| | - Patrick Schweder
- Department of Neurosurgery, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam, Republic of Korea.,Department of Neurosurgery, Auckland City Hospital, Auckland, New Zealand
| | - Edward Mee
- Neurosurgical Research Unit, The Centre for Brain Research, University of Auckland, Auckland, New Zealand.,Department of Neurosurgery, Auckland City Hospital, Auckland, New Zealand
| | - Jason Correia
- Neurosurgical Research Unit, The Centre for Brain Research, University of Auckland, Auckland, New Zealand.,Department of Neurosurgery, Auckland City Hospital, Auckland, New Zealand
| | - Clinton Turner
- Neurosurgical Research Unit, The Centre for Brain Research, University of Auckland, Auckland, New Zealand.,Department of Anatomical Pathology, Pathology and Laboratory Medicine, Auckland City Hospital, Auckland, New Zealand
| | - Richard L M Faull
- Neurosurgical Research Unit, The Centre for Brain Research, University of Auckland, Auckland, New Zealand
| | - William A Denny
- Auckland Cancer Society Research Centre, School of Medical Sciences, University of Auckland, Auckland, New Zealand
| | - Katsuya Noguchi
- Dojindo Laboratories Co., Ltd, Techno-Research Park, Kumamoto, Japan
| | - Mike Dragunow
- Department of Pharmacology, University of Auckland, Auckland, New Zealand.,Neurosurgical Research Unit, The Centre for Brain Research, University of Auckland, Auckland, New Zealand.,The Hugh Green Biobank, The Centre for Brain Research, University of Auckland, Auckland, New Zealand
| | - Jiney Jose
- Auckland Cancer Society Research Centre, School of Medical Sciences, University of Auckland, Auckland, New Zealand
| | - Thomas I-H Park
- Department of Pharmacology, University of Auckland, Auckland, New Zealand.,Neurosurgical Research Unit, The Centre for Brain Research, University of Auckland, Auckland, New Zealand.,The Hugh Green Biobank, The Centre for Brain Research, University of Auckland, Auckland, New Zealand
| |
Collapse
|
17
|
Veryutin DA, Doroshenko IA, Martynova EA, Sapozhnikova KA, Svirshchevskaya EV, Shibaeva AV, Markova AA, Chistov AA, Borisova NE, Shuvalov MV, Korshun VA, Alferova VA, Podrugina TA. Probing tricarbocyanine dyes for targeted delivery of anthracyclines. Biochimie 2023; 206:12-23. [PMID: 36179940 DOI: 10.1016/j.biochi.2022.09.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 09/20/2022] [Accepted: 09/21/2022] [Indexed: 11/02/2022]
Abstract
Along with bright fluorescence in the near-IR range, heptamethine carbocyanine dyes possess affinity to cancer cells. Thus, these dyes could be utilized as fluorescent labels and vectors for drug delivery as covalent conjugates with cytotoxic compounds. To test the properties, structure-activity relationship, and scope of such conjugates, we synthesized drug-dye dyads of tricarbocyanine dyes with anthracycline drug daunorubicin. We used hydrophilic zwitterionic and hydrophobic positively charged benzoindoline-benzothiazole-based heptamethine dyes as terminal alkyne derivatives and N-acylated or oxime-linked daunorubicin as azido-derivatives. These two alkynes and two azides were coupled to each other by Cu-catalyzed Huisgen-Meldal-Sharpless cycloaddition (click reaction) to afford four conjugates. Molecules based on hydrophobic dyes possess submicromolar cytotoxicity to HCT116 cells. Cytotoxicity, cell penetration, intracellular distribution, apoptosis induction and the effect of antioxidants on toxicity were evaluated. The results show that the structure of the cyanine-anthracycline conjugate (hydrophilicity/hydrophobicity, charge, linker, attachment site) is important for its biological activity, thus, expansion of the chemical space of such conjugates could provide new molecular research tools for diagnostics and therapy.
Collapse
Affiliation(s)
- Dmitry A Veryutin
- Lomonosov Moscow State University, Department of Chemistry, Moscow, Russia; Gause Institute of New Antibiotics, Moscow, Russia; Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Moscow, Russia
| | - Irina A Doroshenko
- Lomonosov Moscow State University, Department of Chemistry, Moscow, Russia
| | | | | | | | | | - Alina A Markova
- Emanuel Institute of Biochemical Physics, Moscow, Russia; Nesmeyanov Institute of Organoelement Compounds, Moscow, Russia
| | - Alexey A Chistov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Moscow, Russia; Orekhovich Research Institute of Biomedical Chemistry, Moscow, Russia
| | - Natalya E Borisova
- Lomonosov Moscow State University, Department of Chemistry, Moscow, Russia
| | - Maxim V Shuvalov
- Lomonosov Moscow State University, Department of Chemistry, Moscow, Russia; Gause Institute of New Antibiotics, Moscow, Russia
| | - Vladimir A Korshun
- Gause Institute of New Antibiotics, Moscow, Russia; Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Moscow, Russia
| | - Vera A Alferova
- Gause Institute of New Antibiotics, Moscow, Russia; Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Moscow, Russia.
| | | |
Collapse
|
18
|
Xu Y, Yu J, Hu J, Sun K, Lu W, Zeng F, Chen J, Liu M, Cai Z, He X, Wei W, Sun B. Tumor-Targeting Near-Infrared Dimeric Heptamethine Cyanine Photosensitizers With an Aromatic Diphenol Linker for Imaging-Guided Cancer Phototherapy. Adv Healthc Mater 2023:e2203080. [PMID: 36745881 DOI: 10.1002/adhm.202203080] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 01/22/2023] [Indexed: 02/08/2023]
Abstract
Phototherapy is considered a promising alternative to conventional tumor treatments due to its noninvasive modality and effective therapeutic effect. However, designing a photosensitizer with satisfactory therapeutic effect and high security remains a considerable challenge. Herein, a series of dimeric heptamethine cyanine photosensitizers with an aromatic diphenol linker at the meso position is developed to improve the photothermal conversion efficiency (PCE). Thanks to the extended conjugate system and high steric hindrance, the screened 26NA-NIR and 44BP-NIR exhibit high PCE (≈35%), bright near-infrared (NIR) fluorescence, excellent reactive oxygen species (ROS) generation capability, and improved photostability. Furthermore, their outstanding performance on imaging-guided PDT-PTT synergistic therapy is demonstrated by in vivo and in vitro experiments. In conclusion, this study designs a series of dimeric heptamethine cyanine photosensitizers and presents two compounds for potential clinical applications. The strategy provides a new method to design NIR photosensitizers for imaging-guided cancer treatment.
Collapse
Affiliation(s)
- Yang Xu
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 210000, China
| | - Jiaying Yu
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 210000, China
| | - Jinzhong Hu
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 210000, China
| | - Kai Sun
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 210000, China
| | - Wenjun Lu
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 210000, China
| | - Fenglian Zeng
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 210000, China
| | - Jian Chen
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 210000, China
| | - Min Liu
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 210000, China
| | - Zhuoer Cai
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 210000, China
| | - Xiaofan He
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 210000, China
| | - Wanying Wei
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 210000, China
| | - Baiwang Sun
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 210000, China
| |
Collapse
|
19
|
Liu H, Yu C, Lyu M, Lyu S, Hu L, Xiao E, Xu P. Novel albumin-binding photodynamic agent EB-Ppa for targeted fluorescent imaging guided tumour photodynamic therapy. RSC Adv 2023; 13:3534-3540. [PMID: 36756591 PMCID: PMC9890653 DOI: 10.1039/d2ra07380c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Accepted: 01/13/2023] [Indexed: 01/27/2023] Open
Abstract
The targeted and novel albumin-binding strategy has been attractive in the field of cancer therapy. Herein, we have developed an organic small molecule-based photosensitizer, Evans Blue-Pyropheophorbide-alpha (EB-Ppa), to treat solid tumors with extremely high photodynamic therapeutic efficiency, which is stable in serum-containing aqueous media and can effectively accumulate in the tumor site due to the enhanced permeability and retention (EPR) effect. Particularly, after the photodynamic therapeutic treatment with EB-Ppa, all breast tumors (4T1 cell line) xenografted in nude mice shrink fast due to the singlet oxygen generated by EB-Ppa with laser irradiation. Furthermore, EB-Ppa shows negligible toxicity in major organs. These results demonstrate that EB-Ppa presents the great potential of photodynamic therapy for efficient tumor treatment.
Collapse
Affiliation(s)
- Huan Liu
- Departments of Radiology, The Second Xiangya Hospital, Central South University Changsha 410011 Hunan P. R. China
| | - Cheng Yu
- Departments of Radiology, The Second Xiangya Hospital, Central South University Changsha 410011 Hunan P. R. China
| | - Min Lyu
- Departments of Radiology, The Second Xiangya Hospital, Central South University Changsha 410011 Hunan P. R. China
| | - Shiyi Lyu
- Departments of Radiology, The Second Xiangya Hospital, Central South University Changsha 410011 Hunan P. R. China
| | - LiNan Hu
- Departments of Radiology, Zhuzhou Central HospitalZhuzhou 412000HunanP. R. China
| | - Enhua Xiao
- Departments of Radiology, The Second Xiangya Hospital, Central South University Changsha 410011 Hunan P. R. China
| | - Pengfei Xu
- Institute of Clinical Pharmacy & Pharmacology, Jining First People's Hospital, Jining Medical UniversityJining 272000P. R. China,Department of Diagnostic Radiology Yong Loo Lin School of Medicine, National University of Singapore119074Singapore
| |
Collapse
|
20
|
Jo G, Kim EJ, Hyun H. Enhanced Tumor Uptake and Retention of Cyanine Dye-Albumin Complex for Tumor-Targeted Imaging and Phototherapy. Int J Mol Sci 2023; 24:ijms24010862. [PMID: 36614318 PMCID: PMC9821771 DOI: 10.3390/ijms24010862] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 12/21/2022] [Accepted: 12/31/2022] [Indexed: 01/05/2023] Open
Abstract
Heptamethine cyanine dyes are widely used for in vivo near-infrared (NIR) fluorescence imaging and NIR laser-induced cancer phototherapy due to their good optical properties. Since most of heptamethine cyanine dyes available commercially are highly hydrophobic, they can usually be used for in vivo applications after formation of complexes with blood plasma proteins, especially serum albumin, to increase aqueous solubility. The complex formation between cyanine dyes and albumin improves the chemical stability and optical property of the hydrophobic cyanine dyes, which is the bottom of their practical use. In this study, the complexes between three different heptamethine cyanine dyes, namely clinically available indocyanine green (ICG), commercially available IR-786 and zwitterionic ZW800-Cl, and bovine serum albumin (BSA), were prepared to explore the effect of cyanine dyes on their tumor uptake and retention. Among the three complexes, IR-786©BSA exhibited increased tumor accumulation with prolonged tumor retention, compared to other complexes. Moreover, IR-786 bound to BSA played an important role in tumor growth suppression due to its cytotoxicity. To achieve complete tumor ablation, the tumor targeted by IR-786©BSA was further exposed to 808 nm laser irradiation for effective photothermal cancer treatment.
Collapse
Affiliation(s)
- Gayoung Jo
- Department of Biomedical Sciences, Chonnam National University Medical School, Hwasun 58128, Republic of Korea
| | - Eun Jeong Kim
- Department of Biomedical Sciences, Chonnam National University Medical School, Hwasun 58128, Republic of Korea
| | - Hoon Hyun
- Department of Biomedical Sciences, Chonnam National University Medical School, Hwasun 58128, Republic of Korea
- BioMedical Sciences Graduate Program (BMSGP), Chonnam National University, Hwasun 58128, Republic of Korea
- Correspondence: ; Tel.: +82-61-379-2652
| |
Collapse
|
21
|
Exner R, Cortezon-Tamarit F, Ge H, Pourzand C, Pascu SI. Unraveling the Chemistry of meso-Cl Tricarbocyanine Dyes in Conjugation Reactions for the Creation of Peptide Bonds. ACS BIO & MED CHEM AU 2022; 2:642-654. [PMID: 36573095 PMCID: PMC9782398 DOI: 10.1021/acsbiomedchemau.2c00053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 10/12/2022] [Accepted: 10/13/2022] [Indexed: 11/10/2022]
Abstract
Tricarbocyanine dyes have become popular tools in life sciences and medicine. Their near-infrared (NIR) fluorescence makes them ideal agents for imaging of thick specimens or in vivo imaging, e.g., in fluorescence-guided surgery. Among other types of cyanine dyes, meso-Cl tricarbocyanine dyes have received a surge of interest, as it emerged that their high reactivity makes them inherently tumor-targeting. As such, significant research efforts have focused on conjugating these to functional moieties. However, the syntheses generally suffer from low yields. Hereby, we report on the reaction of meso-Cl dyes with a small selection of coupling reagents to give the corresponding keto-polymethines, potentially explaining low yields and the prevalence of monofunctionalized cyanine conjugates in the current state of the art of functional near-infrared dyes. We present the synthesis and isolation of the first keto-polymethine-based conjugate and present preliminary investigation in the prostate cancer cell lines PC3 and DU145 by confocal microscopy and discuss changes to optical properties in biological media.
Collapse
Affiliation(s)
- Rüdiger
M. Exner
- Department
of Chemistry, University of Bath, Claverton Down Road, BA2 7AY Bath, U.K.
| | | | - Haobo Ge
- Department
of Chemistry, University of Bath, Claverton Down Road, BA2 7AY Bath, U.K.
| | - Charareh Pourzand
- Department
of Pharmacy and Pharmacology, University
of Bath, Claverton Down
Road, BA2 7AY Bath, U.K.,Centre
of Therapeutic Innovations, University of
Bath, Claverton Down
Road, BA2 7AY Bath, U.K.
| | - Sofia I. Pascu
- Department
of Chemistry, University of Bath, Claverton Down Road, BA2 7AY Bath, U.K.,Centre
of Therapeutic Innovations, University of
Bath, Claverton Down
Road, BA2 7AY Bath, U.K.,
| |
Collapse
|
22
|
Jo G, Kim EJ, Song J, Hyun H. Molecular Tuning of IR-786 for Improved Brown Adipose Tissue Imaging. Int J Mol Sci 2022; 23:ijms232213756. [PMID: 36430234 PMCID: PMC9699178 DOI: 10.3390/ijms232213756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 11/03/2022] [Accepted: 11/08/2022] [Indexed: 11/10/2022] Open
Abstract
To overcome the limitations of brown adipose tissue (BAT) imaging with MRI and PET/CT, near-infrared (NIR) fluorescence imaging has been utilized in living animals because it is highly sensitive, noninvasive, nonradioactive, and cost-effective. To date, only a few NIR fluorescent dyes for detecting BAT have been reported based on the structure-inherent targeting strategy. Among them, IR-786, a commercial cyanine dye, was used firstly for quantitative NIR imaging of BAT perfusion in 2003. Owing to the high cytotoxicity, poor water solubility, and strong nonspecific background uptake of IR-786, the chemical structure of IR-786 should be redesigned to be more hydrophilic and less toxic so that it can show more BAT-specific accumulation. Here, we developed a BAT-specific NIR dye, BF800-AM, by incorporating the tyramine linker in the original structure of IR-786. After modifying the physicochemical properties of IR-786, in vivo results showed significant uptake of the newly designed BF800-AM in the BAT with improved signal-to-background ratio. Additional in vivo studies using mouse tumor models revealed that BF800-AM targeting to BAT is independent of tumor tissues, as distinct from IR-786 showing uptake in both tissues. Therefore, BF800-AM can be used for improved noninvasive visualization of BAT mass and activity in living animals.
Collapse
Affiliation(s)
- Gayoung Jo
- Department of Biomedical Sciences, Chonnam National University Medical School, Hwasun 58128, Korea
| | - Eun Jeong Kim
- Department of Biomedical Sciences, Chonnam National University Medical School, Hwasun 58128, Korea
| | - Juhyun Song
- Department of Anatomy, Chonnam National University Medical School, Hwasun 58128, Korea
- BioMedical Sciences Graduate Program (BMSGP), Chonnam National University, Hwasun 58128, Korea
- Correspondence: (J.S.); (H.H.); Tel.: +82-61-379-2706 (J.S.); +82-61-379-2652 (H.H.)
| | - Hoon Hyun
- Department of Biomedical Sciences, Chonnam National University Medical School, Hwasun 58128, Korea
- BioMedical Sciences Graduate Program (BMSGP), Chonnam National University, Hwasun 58128, Korea
- Correspondence: (J.S.); (H.H.); Tel.: +82-61-379-2706 (J.S.); +82-61-379-2652 (H.H.)
| |
Collapse
|
23
|
Hernandez Vargas S, AghaAmiri S, Ghosh SC, Luciano MP, Borbon LC, Ear PH, Howe JR, Bailey-Lundberg JM, Simonek GD, Halperin DM, Tran Cao HS, Ikoma N, Schnermann MJ, Azhdarinia A. High-Contrast Detection of Somatostatin Receptor Subtype-2 for Fluorescence-Guided Surgery. Mol Pharm 2022; 19:4241-4253. [PMID: 36174110 PMCID: PMC9830638 DOI: 10.1021/acs.molpharmaceut.2c00583] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Dye design can influence the ability of fluorescently labeled imaging agents to generate tumor contrast and has become an area of significant interest in the field of fluorescence-guided surgery (FGS). Here, we show that the charge-balanced near-infrared fluorescent (NIRF) dye FNIR-Tag enhances the imaging properties of a fluorescently labeled somatostatin analogue. In vitro studies showed that the optimized fluorescent conjugate MMC(FNIR-Tag)-TOC bound primarily via somatostatin receptor subtype-2 (SSTR2), whereas its negatively charged counterpart with IRDye 800CW had higher off-target binding. NIRF imaging in cell line- and patient-derived xenograft models revealed markedly higher tumor contrast with MMC(FNIR-Tag)-TOC, which was attributed to increased tumor specificity. Ex vivo staining of surgical biospecimens from primary and metastatic tumors, as well as involved lymph nodes, demonstrated binding to human tumors. Finally, in an orthotopic tumor model, a simulated clinical workflow highlighted our unique ability to use standard preoperative nuclear imaging for selecting patients likely to benefit from SSTR2-targeted FGS. Our findings demonstrate the translational potential of MMC(FNIR-Tag)-TOC for intraoperative imaging and suggest broad utility for using FNIR-Tag in fluorescent probe development.
Collapse
Affiliation(s)
- Servando Hernandez Vargas
- The
Brown Foundation Institute of Molecular Medicine, McGovern Medical
School, The University of Texas Health Science
Center at Houston, Houston, Texas77054, United States
| | - Solmaz AghaAmiri
- The
Brown Foundation Institute of Molecular Medicine, McGovern Medical
School, The University of Texas Health Science
Center at Houston, Houston, Texas77054, United States
| | - Sukhen C. Ghosh
- The
Brown Foundation Institute of Molecular Medicine, McGovern Medical
School, The University of Texas Health Science
Center at Houston, Houston, Texas77054, United States
| | - Michael P. Luciano
- Chemical
Biology Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, Maryland21702, United States
| | - Luis C. Borbon
- Department
of Surgery, University of Iowa Carver College
of Medicine, Iowa City, Iowa52242, United States
| | - Po Hien Ear
- Department
of Surgery, University of Iowa Carver College
of Medicine, Iowa City, Iowa52242, United States
| | - James R. Howe
- Department
of Surgery, University of Iowa Carver College
of Medicine, Iowa City, Iowa52242, United States
| | - Jennifer M. Bailey-Lundberg
- Department
of Anesthesiology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, Texas77030, United States
| | - Gregory D. Simonek
- Center
for Laboratory Animal Medicine and Care, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, Texas77030, United States
| | - Daniel M. Halperin
- Department
of Gastrointestinal Medical Oncology, The
University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd., Houston, Texas77030, United States
| | - Hop S. Tran Cao
- Department
of Surgical Oncology, The University of
Texas MD Anderson Cancer Center, 1515 Holcombe Blvd., Houston, Texas77030, United
States
| | - Naruhiko Ikoma
- Department
of Surgical Oncology, The University of
Texas MD Anderson Cancer Center, 1515 Holcombe Blvd., Houston, Texas77030, United
States
| | - Martin J. Schnermann
- Chemical
Biology Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, Maryland21702, United States
| | - Ali Azhdarinia
- The
Brown Foundation Institute of Molecular Medicine, McGovern Medical
School, The University of Texas Health Science
Center at Houston, Houston, Texas77054, United States,
| |
Collapse
|
24
|
Yi X, Wang Z, Hu X, Yu A. Affinity probes based on small-molecule inhibitors for tumor imaging. Front Oncol 2022; 12:1028493. [PMID: 36387103 PMCID: PMC9647038 DOI: 10.3389/fonc.2022.1028493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Accepted: 10/17/2022] [Indexed: 11/29/2022] Open
Abstract
Methods for molecular imaging of target areas, including optical imaging, radionuclide imaging, magnetic resonance imaging and other imaging technologies, are helpful for the early diagnosis and precise treatment of cancers. In addition to cancer management, small-molecule inhibitors are also used for developing cancer target probes since they act as the tight-binding ligands of overexpressed proteins in cancer cells. This review aims to summarize the structural designs of affinity probes based on small-molecule inhibitors from the aspects of the inhibitor, linker, dye and radionuclide, and discusses the influence of the modification of these structures on affinity and pharmacokinetics. We also present examples of inhibitor affinity probes in clinical applications, and these summaries will provide insights for future research and clinical translations.
Collapse
Affiliation(s)
| | | | - Xiang Hu
- *Correspondence: Aixi Yu, ; Xiang Hu,
| | - Aixi Yu
- *Correspondence: Aixi Yu, ; Xiang Hu,
| |
Collapse
|
25
|
Xu J, Han T, Wang Y, Zhang F, Li M, Bai L, Wang X, Sun B, Wang X, Du J, Liu K, Zhang J, Zhu S. Ultrabright Renal-Clearable Cyanine-Protein Nanoprobes for High-Quality NIR-II Angiography and Lymphography. NANO LETTERS 2022; 22:7965-7975. [PMID: 36165293 DOI: 10.1021/acs.nanolett.2c03311] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
The renal-clearable aspect of imaging agent with minimum toxicity issues and side effects is essential for clinical translation, yet clinical near-infrared-I/II (NIR-I/II) fluorophores with timely renal-clearance pathways are very limited. Herein, we rationally develop the cyanine-protein composite strategy through covalent bonding of β-lactoglobulin (β-LG) and chloride-cyanine dye to produce a brilliant and stable NIR-I/II fluorophore (e.g., β-LG@IR-780). The β-LG acts as a protecting shell with small molecular weight (18.4 kDa) and ultrasmall size (<5 nm), thus endowing the β-LG@IR-780 with excellent biocompatibility and renal excretion. Our β-LG@IR-780 probe enables noninvasive and precise NIR-II visualization of the physiological and pathological conditions of the vascular and lymphatic drainage system, facilitating intraoperative imaging-guided surgery and postoperative noninvasive monitoring. The minimum accumulation of our probes in the main organs improves the overall biosafety. This study provides a facile methodology for new-generation NIR-II fluorophores and largely improves the brightness and pharmacokinetics of small molecular dyes.
Collapse
Affiliation(s)
- Jiajun Xu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, P.R. China
| | - Tianyang Han
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, P.R. China
| | - Yajun Wang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, P.R. China
| | - Feiran Zhang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, P.R. China
| | - Mengfei Li
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, P.R. China
| | - Lang Bai
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, P.R. China
| | - Xinyu Wang
- China-Japan Union Hospital of Jilin University, Key Laboratory of Lymphatic Surgery Jilin Province, Jilin Engineering Laboratory for Lymphatic Surgery Jilin Province, Changchun 130031, P. R. China
| | - Bin Sun
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, P.R. China
- Joint Laboratory of Opto-Functional Theranostics in Medicine and Chemistry, The First Hospital of Jilin University, Changchun 130021, P.R. China
| | - Xin Wang
- Joint Laboratory of Opto-Functional Theranostics in Medicine and Chemistry, The First Hospital of Jilin University, Changchun 130021, P.R. China
| | - Jianshi Du
- China-Japan Union Hospital of Jilin University, Key Laboratory of Lymphatic Surgery Jilin Province, Jilin Engineering Laboratory for Lymphatic Surgery Jilin Province, Changchun 130031, P. R. China
| | - Kun Liu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, P.R. China
- Joint Laboratory of Opto-Functional Theranostics in Medicine and Chemistry, The First Hospital of Jilin University, Changchun 130021, P.R. China
| | - Junhu Zhang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, P.R. China
- Joint Laboratory of Opto-Functional Theranostics in Medicine and Chemistry, The First Hospital of Jilin University, Changchun 130021, P.R. China
| | - Shoujun Zhu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, P.R. China
- Joint Laboratory of Opto-Functional Theranostics in Medicine and Chemistry, The First Hospital of Jilin University, Changchun 130021, P.R. China
| |
Collapse
|
26
|
Xu M, Li X, Zeng Q, Zhang T. Synthesis and Study on Aggregation Behaviors in Liquid Phase of Three Prepared Cyanine Dyes. LUMINESCENCE 2022; 37:1733-1740. [PMID: 35894773 DOI: 10.1002/bio.4349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 07/18/2022] [Accepted: 07/24/2022] [Indexed: 11/08/2022]
Abstract
Here we investigate the aggregation behaviors of three prepared dyes in the liquid phase to pick out one possessing J-aggregation characteristic which is of significant interest for organic materials used in multiple bio-applications. The self-assembly of dyes usually leads to various forms of aggregates, for example, H-aggregates or J-aggregates and it is easy to distinguish bathochromic J-aggregation from hypsochromic H-aggregation by UV/Vis spectroscopy. Enlightened by the cyanine dyes which have shown a great tendency to self-associate, we designed and synthesized three cyanine dyes: Cy7-Ph, DCy7-Ph, SN-Cy7-Ph, followed by the study of the influence of multiple factors to their aggregation behaviors, including solvent polarity, ionic strength and temperature. Finally, we found that only SN-Cy7-Ph of the three molecules can self-assemble into J-aggregates conveniently and stably in the aqueous phase under normal conditions.
Collapse
Affiliation(s)
- Mengcui Xu
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University Guangzhou 510631, P. R. China.,Guangzhou Key Laboratory of Spectral Analysis and Functional Probes, College of Biophotonics, South China Normal University, Guangzhou, China
| | - Xipeng Li
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University Guangzhou 510631, P. R. China.,Guangzhou Key Laboratory of Spectral Analysis and Functional Probes, College of Biophotonics, South China Normal University, Guangzhou, China
| | - Qin Zeng
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University Guangzhou 510631, P. R. China.,Guangzhou Key Laboratory of Spectral Analysis and Functional Probes, College of Biophotonics, South China Normal University, Guangzhou, China
| | - Tao Zhang
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University Guangzhou 510631, P. R. China.,Guangzhou Key Laboratory of Spectral Analysis and Functional Probes, College of Biophotonics, South China Normal University, Guangzhou, China
| |
Collapse
|
27
|
Tian R, Feng X, Wei L, Dai D, Ma Y, Pan H, Ge S, Bai L, Ke C, Liu Y, Lang L, Zhu S, Sun H, Yu Y, Chen X. A genetic engineering strategy for editing near-infrared-II fluorophores. Nat Commun 2022; 13:2853. [PMID: 35606352 PMCID: PMC9127093 DOI: 10.1038/s41467-022-30304-9] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Accepted: 04/26/2022] [Indexed: 01/03/2023] Open
Abstract
AbstractThe second near-infrared (NIR-II) window is a fundamental modality for deep-tissue in vivo imaging. However, it is challenging to synthesize NIR-II probes with high quantum yields (QYs), good biocompatibility, satisfactory pharmacokinetics, and tunable biological properties. Conventional long-wavelength probes, such as inorganic probes (which often contain heavy metal atoms in their scaffolds) and organic dyes (which contain large π-conjugated groups), exhibit poor biosafety, low QYs, and/or uncontrollable pharmacokinetic properties. Herein, we present a bioengineering strategy that can replace the conventional chemical synthesis methods for generating NIR-II contrast agents. We use a genetic engineering technique to obtain a series of albumin fragments and recombinant proteins containing one or multiple domains that form covalent bonds with chloro-containing cyanine dyes. These albumin variants protect the inserted dyes and remarkably enhance their brightness. The albumin variants can also be genetically edited to develop size-tunable complexes with precisely tailored pharmacokinetics. The proteins can also be conjugated to biofunctional molecules without impacting the complexed dyes. This combination of albumin mutants and clinically-used cyanine dyes can help widen the clinical application prospects of NIR-II fluorophores.
Collapse
|
28
|
Usama SM, Marker SC, Hernandez Vargas S, AghaAmiri S, Ghosh SC, Ikoma N, Tran Cao HS, Schnermann MJ, Azhdarinia A. Targeted Dual-Modal PET/SPECT-NIR Imaging: From Building Blocks and Construction Strategies to Applications. Cancers (Basel) 2022; 14:1619. [PMID: 35406390 PMCID: PMC8996983 DOI: 10.3390/cancers14071619] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 03/17/2022] [Accepted: 03/18/2022] [Indexed: 02/04/2023] Open
Abstract
Molecular imaging is an emerging non-invasive method to qualitatively and quantitively visualize and characterize biological processes. Among the imaging modalities, PET/SPECT and near-infrared (NIR) imaging provide synergistic properties that result in deep tissue penetration and up to cell-level resolution. Dual-modal PET/SPECT-NIR agents are commonly combined with a targeting ligand (e.g., antibody or small molecule) to engage biomolecules overexpressed in cancer, thereby enabling selective multimodal visualization of primary and metastatic tumors. The use of such agents for (i) preoperative patient selection and surgical planning and (ii) intraoperative FGS could improve surgical workflow and patient outcomes. However, the development of targeted dual-modal agents is a chemical challenge and a topic of ongoing research. In this review, we define key design considerations of targeted dual-modal imaging from a topological perspective, list targeted dual-modal probes disclosed in the last decade, review recent progress in the field of NIR fluorescent probe development, and highlight future directions in this rapidly developing field.
Collapse
Affiliation(s)
- Syed Muhammad Usama
- Chemical Biology Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702, USA; (S.M.U.); (S.C.M.)
| | - Sierra C. Marker
- Chemical Biology Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702, USA; (S.M.U.); (S.C.M.)
| | - Servando Hernandez Vargas
- The Brown Foundation Institute of Molecular Medicine, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX 77054, USA; (S.H.V.); (S.A.); (S.C.G.)
| | - Solmaz AghaAmiri
- The Brown Foundation Institute of Molecular Medicine, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX 77054, USA; (S.H.V.); (S.A.); (S.C.G.)
| | - Sukhen C. Ghosh
- The Brown Foundation Institute of Molecular Medicine, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX 77054, USA; (S.H.V.); (S.A.); (S.C.G.)
| | - Naruhiko Ikoma
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd., Houston, TX 77030, USA; (N.I.); (H.S.T.C.)
| | - Hop S. Tran Cao
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd., Houston, TX 77030, USA; (N.I.); (H.S.T.C.)
| | - Martin J. Schnermann
- Chemical Biology Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702, USA; (S.M.U.); (S.C.M.)
| | - Ali Azhdarinia
- The Brown Foundation Institute of Molecular Medicine, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX 77054, USA; (S.H.V.); (S.A.); (S.C.G.)
| |
Collapse
|
29
|
Molecular Tuning of IR-786 for Improved Tumor Imaging and Photothermal Therapy. Pharmaceutics 2022; 14:pharmaceutics14030676. [PMID: 35336050 PMCID: PMC8949487 DOI: 10.3390/pharmaceutics14030676] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 03/16/2022] [Accepted: 03/18/2022] [Indexed: 02/04/2023] Open
Abstract
A tumor-targeted near-infrared (NIR) fluorophore CA800Cl was developed based on commercially available IR-786 by modulating its physicochemical properties. IR-786, a hydrophobic cationic heptamethine cyanine fluorophore, was previously recognized as a mitochondria-targeting NIR agent with excellent optical properties. Owing to the poor tumor specificity of IR-786 itself, in vivo studies on tumor-targeted imaging have not yet been investigated. A chloro-cyclohexene ring and indolium side groups on the heptamethine chain are key structural features that improve tumor targetability, owing to better biodistribution and clearance. Thus, IR-786 should be designed to be more soluble in aqueous solutions so that it can preferentially accumulate in the tumor based on the structure-inherent targeting strategy. In this study, we developed a bifunctional NIR fluorophore CA800Cl by incorporating carboxylate moieties in the basic structure of IR-786. This improved its tumor targetability and water solubility, thereby enabling the use of CA800Cl for enhanced photothermal cancer therapy.
Collapse
|
30
|
Thavornpradit S, Usama SM, Park GK, Dinh J, Choi HS, Burgess K. QuatCy-I 2 and MHI-I 2 in Photodynamic Therapy. ACS Med Chem Lett 2022; 13:470-474. [PMID: 35300076 PMCID: PMC8919274 DOI: 10.1021/acsmedchemlett.1c00640] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Accepted: 02/02/2022] [Indexed: 11/29/2022] Open
Abstract
MHI-I2 (1) and QuatCy-I2 (2) were compared in terms of properties important for early-stage photodynamic therapy preclinical candidates. Thus, experiments were performed to monitor dark cytotoxicities, light/dark cytotoxicity ratios, selectivity of localization in tumors over other organs, and clearance from the plasma.
Collapse
Affiliation(s)
- Sopida Thavornpradit
- Department
of Chemistry, Texas A&M University, Box 30012, College Station, Texas 77842, United
States
| | - Syed Muhammad Usama
- Department
of Chemistry, Texas A&M University, Box 30012, College Station, Texas 77842, United
States
| | - G. Kate Park
- Gordon
Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts 02114, United States
| | - Jason Dinh
- Gordon
Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts 02114, United States
| | - Hak Soo Choi
- Gordon
Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts 02114, United States
| | - Kevin Burgess
- Department
of Chemistry, Texas A&M University, Box 30012, College Station, Texas 77842, United
States
| |
Collapse
|
31
|
Wangngae S, Chansaenpak K, Weeranantanapan O, Piyanuch P, Sumphanapai T, Yamabhai M, Noisa P, Lai RY, Kamkaew A. Effect of morpholine and charge distribution of cyanine dyes on cell internalization and cytotoxicity. Sci Rep 2022; 12:4173. [PMID: 35264603 PMCID: PMC8907291 DOI: 10.1038/s41598-022-07533-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Accepted: 02/21/2022] [Indexed: 12/15/2022] Open
Abstract
To improve the potency of Heptamethine cyanines (Hcyanines) in cancer research, we designed and synthesized two novel Hcyanines based theranostic probes, IR794-Morph and IR794-Morph-Mpip, to enhance cancer cell internalization and targeting. In acidic conditions that resemble to tumour environment, both IR794 derivatives exhibited broad NIR absorption band (704‒794 nm) and fluorescence emission (798‒828 nm) that is suitable for deep seated tumour imaging. Moreover, in vitro study revealed that IR794-Morph-Mpip exhibited better cancer targetability towards various cancer cell lines under physiological and slightly acidic conditions compared to normal cells. IR794-Morph-Mpip was fast internalized into the cancer cells within the first 5 min and mostly localized in lysosomes and mitochondria. In addition, the internalized signal was brighter when the cells were in the hypoxic environment. Furthermore, cellular uptake mechanism of both IR794 dyes, investigated via flow cytometry, revealed that endocytosis through OATPs receptors and clathrin-mediated endocytosis were the main routes. Moreover, IR794-Morph-Mpip, displayed anti-cancer activity towards all tested cancer cell types with IC50 below 7 μM (at 6 h incubation), which is approximately three times lower than that of the normal cells. Therefore, increasing protonated cites in tumour environment of Hcyanines together with incorporating morpholine in the molecule can enhance structure-inherent targeting of these dyes.
Collapse
Affiliation(s)
- Sirilak Wangngae
- School of Chemistry, Institute of Science, Suranaree University of Technology, Nakhon Ratchasima, 30000, Thailand
| | - Kantapat Chansaenpak
- National Nanotechnology Center, National Science and Technology Development Agency, Thailand Science Park, Pathum Thani, 12120, Thailand
| | - Oratai Weeranantanapan
- School of Preclinical Sciences, Institute of Science, Suranaree University of Technology, Nakhon Ratchasima, 30000, Thailand
| | - Pornthip Piyanuch
- National Nanotechnology Center, National Science and Technology Development Agency, Thailand Science Park, Pathum Thani, 12120, Thailand
| | - Thitima Sumphanapai
- School of Biotechnology, Institute of Agricultural Technology, Suranaree University of Technology, Nakhon Ratchasima, 30000, Thailand
| | - Montarop Yamabhai
- School of Biotechnology, Institute of Agricultural Technology, Suranaree University of Technology, Nakhon Ratchasima, 30000, Thailand
| | - Parinya Noisa
- School of Biotechnology, Institute of Agricultural Technology, Suranaree University of Technology, Nakhon Ratchasima, 30000, Thailand
| | - Rung-Yi Lai
- School of Chemistry, Institute of Science, Suranaree University of Technology, Nakhon Ratchasima, 30000, Thailand
| | - Anyanee Kamkaew
- School of Chemistry, Institute of Science, Suranaree University of Technology, Nakhon Ratchasima, 30000, Thailand.
| |
Collapse
|
32
|
Wangngae S, Siriwibool S, Chansaenpak K, Wet-Osot S, Lai RY, Kamkaew A. Near-Infrared Fluorescent Heptamethine Cyanine Dyes for COX-2 Targeted Photodynamic Cancer Therapy. ChemMedChem 2022; 17:e202100780. [PMID: 35128814 DOI: 10.1002/cmdc.202100780] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 02/04/2022] [Indexed: 11/07/2022]
Abstract
We designed and synthesized two heptamethine cyanine based theranostic probes that aimed to target COX-2 in cancer cells. One is I-IR799-CXB which I-IR799 was conjugated to COX-2 specific inhibitor, celecoxib, and another is I-IR799-IMC , where the non-selective COX inhibitor, indomethacin, was used. I-IR799 is a heptamethine cyanine derivative that can be activated by near infrared light for photodynamic therapy (PDT) purposes. I-IR799-CXB and I-IR799-IMC were tested for their cancer targeting and photodynamic efficiency towards liver hepatocellular carcinoma cells (HepG2) compared to normal liver cell, alpha mouse liver 12 cells (AML12). Interestingly, after conjugation, I-IR799-IMC exhibited superior tumour targetability and PDT efficiency than I-IR799-CXB .
Collapse
Affiliation(s)
- Sirilak Wangngae
- Suranaree University of Technology Institute of Science, Chemistry, THAILAND
| | | | | | - Sirawit Wet-Osot
- Royal Thai Government Ministry of Public Health, Medical Sciences, THAILAND
| | - Rung-Yi Lai
- Suranaree University of Technology Institute of Science, Chemistry, THAILAND
| | - Anyanee Kamkaew
- Suranaree University of Technology, Chemistry, 111 University Av., Academic Building 2, Thailand, 30000, Muang, THAILAND
| |
Collapse
|
33
|
Kang H, Shamim M, Yin X, Adluru E, Fukuda T, Yokomizo S, Chang H, Park SH, Cui Y, Moy AJ, Kashiwagi S, Henary M, Choi HS. Tumor-Associated Immune-Cell-Mediated Tumor-Targeting Mechanism with NIR-II Fluorescence Imaging. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2106500. [PMID: 34913533 PMCID: PMC8881361 DOI: 10.1002/adma.202106500] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 12/02/2021] [Indexed: 05/12/2023]
Abstract
The strategy of structure-inherent tumor targeting (SITT) with cyanine-based fluorophores is receiving more attention because no chemical conjugation of targeting moieties is required. However, the targeting mechanism behind SITT has not yet been well explained. Here, it is demonstrated that heptamethine-cyanine-based fluorophores possess not only targetability of tumor microenvironments without the need for additional targeting ligands but also second near-infrared spectral window (NIR-II) imaging capabilities, i.e., minimum scattering and ultralow autofluorescence. The new SITT mechanism suggests that bone-marrow-derived and/or tissue-resident/tumor-associated immune cells can be a principal target for cancer detection due to their abundance in tumoral tissues. Among the tested, SH1 provides ubiquitous tumor targetability and a high tumor-to-background ratio (TBR) ranging from 9.5 to 47 in pancreatic, breast, and lung cancer mouse models upon a single bolus intravenous injection. Furthermore, SH1 can be used to detect small cancerous tissues smaller than 2 mm in diameter in orthotopic lung cancer models. Thus, SH1 could be a promising cancer-targeting agent and have a bright future for intraoperative optical imaging and image-guided cancer surgery.
Collapse
Affiliation(s)
| | - Md Shamim
- Department of Chemistry, Center of Diagnostics and Therapeutics, Georgia State University, Atlanta, GA 30303, United States
| | - Xiaoran Yin
- Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, United States; Department of Oncology, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, 710004, China
| | - Eeswar Adluru
- Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, United States
| | - Takeshi Fukuda
- Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, United States; Department of Obstetrics and Gynecology, Osaka City University Graduate School of Medicine, 1-4-3, Asahimachi, Abeno-ku, Osaka, 545-8585, Japan
| | - Shinya Yokomizo
- Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, United States; Department of Radiological Sciences, Tokyo Metropolitan University, 7-2-10 Higashi-Ogu, Arakawa, Tokyo 116-8551, Japan
| | - Hyejin Chang
- Division of Science Education, Kangwon National University, Chuncheon 24341, South Korea
| | - Seung Hun Park
- Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, United States
| | - Yanan Cui
- Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, United States; School of Pharmacy, Jining Medical College, Rizhao, Shandong, 276826, China
| | - Austin J. Moy
- Trifoil Imaging, 9449 De Soto Ave, Chatsworth, CA 91311, United States
| | - Satoshi Kashiwagi
- Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, United States
| | | | | |
Collapse
|
34
|
Samani ZR, Mehranpour A. An efficient route to the synthesis of novel zwitterionic pyridinium-cyanopropenides with 3-heteroaryl-substituted trimethinium salts. RSC Adv 2022; 12:16229-16234. [PMID: 35733684 PMCID: PMC9150544 DOI: 10.1039/d2ra02465a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Accepted: 05/24/2022] [Indexed: 11/21/2022] Open
Abstract
In this study, eight new zwitterionic derivatives were synthesized using a simple design method from the reaction of various 2-substituted 1,3-bis(dimethylamino)-trimethinium salts with malononitrile or ethyl 2-cyanoacetate in excellent yields in the presence of triethylamine in ethanol at reflux. The molecular structures of the new compounds were confirmed by IR, UV/vis, mass, 1H, and 13C NMR spectra as well as by elemental analyses. Synthesis of new zwitterionic derivatives via the reaction of 2-substituted 1,3-bis(dimethylamino)-trimethinium salts with malononitrile or ethyl cyanoacetate in the presence of Et3N in ethanol at reflux.![]()
Collapse
Affiliation(s)
- Ziba Rafiee Samani
- Department of Chemistry, Faculty of Sciences, Persian Gulf University, Bushehr, 75169, Iran
| | | |
Collapse
|
35
|
Zhao X, Zhao H, Wang S, Fan Z, Ma Y, Yin Y, Wang W, Xi R, Meng M. A Tumor-Targeting Near-Infrared Heptamethine Cyanine Photosensitizer with Twisted Molecular Structure for Enhanced Imaging-Guided Cancer Phototherapy. J Am Chem Soc 2021; 143:20828-20836. [PMID: 34860505 DOI: 10.1021/jacs.1c09155] [Citation(s) in RCA: 84] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
In recent years, cancer phototherapy has been extensively studied as noninvasive cancer treatment. To present efficient recognition toward cancer cells, most photosensitizers (PSs) are required to couple with tumor-targeted ligands. Interestingly, the heptamethine cyanine IR780 displays an intrinsic tumor-targeted feature even without modification. However, the photothermal efficacy and photostability of IR780 are not sufficient enough for clinical use. Herein, we involve a twisted structure of tetraphenylethene (TPE) between two molecules of IR780 to improve the photothermal conversion efficiency (PCE). The obtained molecule T780T shows strong near-infrared (NIR) fluorescence and improved PCE (38.5%) in the dispersed state. Also, the photothermal stability and ROS generation capability of T780T at the NIR range (808 nm) are both promoted. In the aqueous phase, the T780T was formulated into uniform nanoaggregates (∼200 nm) with extremely low fluorescence and PTT response, which would reduce in vivo imaging background and side effect of PTT response in normal tissues. After intravenous injection into tumor-bearing mice, the T780T nanoaggregates display high tumor accumulation and thus remarkably inhibit the tumor growth. Moreover, the enhanced photostability of the T780T allows for twice irradiation after one injection and leads to more significant tumor inhibition. In summary, our study presents a tumor-targeted small-molecule PS for efficient cancer therapy and brings a new design of heptamethine cyanine PS for potential clinical applications.
Collapse
Affiliation(s)
- Xiujie Zhao
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and KLMDASR of Tianjin, Nankai University, Tongyan Road, Haihe Education Park, Tianjin 300350, China
| | - Hongjie Zhao
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and KLMDASR of Tianjin, Nankai University, Tongyan Road, Haihe Education Park, Tianjin 300350, China
| | - Shuo Wang
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and KLMDASR of Tianjin, Nankai University, Tongyan Road, Haihe Education Park, Tianjin 300350, China
| | - Zhiwen Fan
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and KLMDASR of Tianjin, Nankai University, Tongyan Road, Haihe Education Park, Tianjin 300350, China
| | - Yan Ma
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and KLMDASR of Tianjin, Nankai University, Tongyan Road, Haihe Education Park, Tianjin 300350, China
| | - Yongmei Yin
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and KLMDASR of Tianjin, Nankai University, Tongyan Road, Haihe Education Park, Tianjin 300350, China
| | - Wei Wang
- Institute of Chemistry & Center for Pharmacy, University of Bergen, Bergen 5020, Norway
| | - Rimo Xi
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and KLMDASR of Tianjin, Nankai University, Tongyan Road, Haihe Education Park, Tianjin 300350, China
| | - Meng Meng
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and KLMDASR of Tianjin, Nankai University, Tongyan Road, Haihe Education Park, Tianjin 300350, China
| |
Collapse
|
36
|
Long L, Tan X, Liu Z, Liu Y, Cao X, Shi C. Effects of Human Serum Albumin on the Fluorescence Intensity and Tumor Imaging Properties of IR-780 Dye. Photochem Photobiol 2021; 98:935-944. [PMID: 34687567 DOI: 10.1111/php.13547] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 09/23/2021] [Accepted: 10/21/2021] [Indexed: 11/29/2022]
Abstract
IR-780 is a lipophilic dye with excellent optical and tumor imaging properties for early tumor diagnostics. Although the mechanism of tumor targeting has not been fully identified, the view that serum albumin plays an important role in tumor accumulation has been recognized. Here, the mechanism of the interaction between IR-780 and HSA was studied to explore the effect of albumin on its tumor targeting properties. Data demonstrate that IR-780 can be tightly adsorbed by HSA at a ratio of 1:1 to form a noncovalent complex, which exhibits significant improvement in the near-infrared fluorescence imaging and tumor diagnosis capacity. During this process, the endogenous fluorescence and esterase activity of HSA are both partially inhibited by IR-780, and the α-helical content of HSA slightly increases. Molecular docking simulation displays that the binding site of IR-780 on HSA is between subdomains IIA and IIB. These results indicate that HSA is an important factor to mediate the optical performance of IR-780, giving it higher tumor diagnosis capability.
Collapse
Affiliation(s)
- Lei Long
- Laboratory of Trauma, Burns and Combined Injury, Department of Preventive Medicine, Third Military Medical University, Chongqing, China
| | - Xu Tan
- Laboratory of Trauma, Burns and Combined Injury, Department of Preventive Medicine, Third Military Medical University, Chongqing, China
| | - Zujuan Liu
- Laboratory of Trauma, Burns and Combined Injury, Department of Preventive Medicine, Third Military Medical University, Chongqing, China
| | - Yunsheng Liu
- Laboratory of Trauma, Burns and Combined Injury, Department of Preventive Medicine, Third Military Medical University, Chongqing, China
| | - Xiaohui Cao
- Laboratory of Trauma, Burns and Combined Injury, Department of Preventive Medicine, Third Military Medical University, Chongqing, China
| | - Chunmeng Shi
- Laboratory of Trauma, Burns and Combined Injury, Department of Preventive Medicine, Third Military Medical University, Chongqing, China
| |
Collapse
|
37
|
Abstract
Fluorescent dyes attached to kinase inhibitors (KIs) can be used to probe kinases in vitro, in cells, and in vivo. Ideal characteristics of the dyes vary with their intended applications. Fluorophores used in vitro may inform on kinase active site environments, hence the dyes used should be small and have minimal impact on modes of binding. These probes may have short wavelength emissions since blue fluorophores are perfectly adequate in this context. Thus, for instance, KI fragments that mimic nucleobases may be modified to be fluorescent with minimal perturbation to the kinase inhibitor structure. However, progressively larger dyes, that emit at longer wavelengths, are required for cellular and in vivo work. In cells, it is necessary to have emissions above autofluorescence of biomolecules, and near infrared dyes are needed to enable excitation and observation through tissue in vivo. This review is organized to describe probes intended for applications in vitro, in cells, then in vivo. The readers will observe that the probes featured tend to become larger and responsive to the near infared end of the spectrum as the review progresses. Readers may also be surprised to realize that relatively few dyes have been used for fluorophore-kinase inhibitor conjugates, and the area is open for innovations in the types of fluorophores used.
Collapse
Affiliation(s)
- Syed Muhammad Usama
- Department of Chemistry, Texas A&M University, Box 30012, College Station, TX 77842, USA.
| | | | | |
Collapse
|
38
|
Sargiacomo C, Stonehouse S, Moftakhar Z, Sotgia F, Lisanti MP. MitoTracker Deep Red (MTDR) Is a Metabolic Inhibitor for Targeting Mitochondria and Eradicating Cancer Stem Cells (CSCs), With Anti-Tumor and Anti-Metastatic Activity In Vivo. Front Oncol 2021; 11:678343. [PMID: 34395247 PMCID: PMC8361836 DOI: 10.3389/fonc.2021.678343] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 06/17/2021] [Indexed: 12/21/2022] Open
Abstract
MitoTracker Deep Red (MTDR) is a relatively non-toxic, carbocyanine-based, far-red, fluorescent probe that is routinely used to chemically mark and visualize mitochondria in living cells. Previously, we used MTDR at low nano-molar concentrations to stain and metabolically fractionate breast cancer cells into Mito-high and Mito-low cell sub-populations, by flow-cytometry. Functionally, the Mito-high cell population was specifically enriched in cancer stem cell (CSC) activity, i) showing increased levels of ESA cell surface expression and ALDH activity, ii) elevated 3D anchorage-independent growth, iii) larger overall cell size (>12-μm) and iv) Paclitaxel-resistance. The Mito-high cell population also showed enhanced tumor-initiating activity, in an in vivo preclinical animal model. Here, we explored the hypothesis that higher nano-molar concentrations of MTDR could also be used to therapeutically target and eradicate CSCs. For this purpose, we employed an ER(+) cell line (MCF7) and two triple negative cell lines (MDA-MB-231 and MDA-MB-468), as model systems. Remarkably, MTDR inhibited 3D mammosphere formation in MCF7 and MDA-MB-468 cells, with an IC-50 between 50 to 100 nM; similar results were obtained in MDA-MB-231 cells. In addition, we now show that MTDR exhibited near complete inhibition of mitochondrial oxygen consumption rates (OCR) and ATP production, in all three breast cancer cell lines tested, at a level of 500 nM. However, basal glycolytic rates in MCF7 and MDA-MB-468 cells remained unaffected at levels of MTDR of up to 1 μM. We conclude that MTDR can be used to specifically target and eradicate CSCs, by selectively interfering with mitochondrial metabolism, by employing nano-molar concentrations of this chemical entity. In further support of this notion, MTDR significantly inhibited tumor growth and prevented metastasis in vivo, in a xenograft model employing MDA-MB-231 cells, with little or no toxicity observed. In contrast, Abemaciclib, an FDA-approved CDK4/6 inhibitor, failed to inhibit metastasis. Therefore, in the future, MTDR could be modified and optimized via medicinal chemistry, to further increase its potency and efficacy, for its ultimate clinical use in the metabolic targeting of CSCs for their eradication.
Collapse
Affiliation(s)
| | | | | | - Federica Sotgia
- Translational Medicine, School of Science, Engineering and Environment (SEE), University of Salford, Greater Manchester, United Kingdom
| | - Michael P. Lisanti
- Translational Medicine, School of Science, Engineering and Environment (SEE), University of Salford, Greater Manchester, United Kingdom
| |
Collapse
|
39
|
Hübner R, Paretzki A, von Kiedrowski V, Maspero M, Cheng X, Davarci G, Braun D, Damerow H, Judmann B, Filippou V, Dallanoce C, Schirrmacher R, Wängler B, Wängler C. PESIN Conjugates for Multimodal Imaging: Can Multimerization Compensate Charge Influences on Cell Binding Properties? A Case Study. Pharmaceuticals (Basel) 2021; 14:ph14060531. [PMID: 34199635 PMCID: PMC8226452 DOI: 10.3390/ph14060531] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 05/27/2021] [Accepted: 05/28/2021] [Indexed: 11/16/2022] Open
Abstract
Recently, anionic charges were found to negatively influence the in vitro gastrin-releasing peptide receptor (GRPR) binding parameters of dually radioisotope and fluorescent dye labeled GRPR-specific peptide dimers. From this, the question arose if this adverse impact on in vitro GRP receptor affinities could be mitigated by a higher valency of peptide multimerization. For this purpose, we designed two different hybrid multimodal imaging units (MIUs), comprising either one or two click chemistry-compatible functional groups and reacted them with PESIN (PEG3-BBN7-14, PEG = polyethylene glycol) dimers to obtain a dually labeled peptide homodimer or homotetramer. Using this approach, other dually labeled peptide monomers, dimers, and tetramers can also be obtained, and the chelator and fluorescent dye can be adapted to specific requirements. The MIUs, as well as their peptidic conjugates, were evaluated in terms of their photophysical properties, radiolabeling efficiency with 68Ga and 64Cu, hydrophilicity, and achievable GRP receptor affinities. Here, the hydrophilicity and the GRP receptor binding affinities were found to be especially strongly influenced by the number of negative charges and peptide copies, showing logD (1-octanol-water-distribution coefficient) and IC50 (half maximal inhibitory concentration) values of -2.2 ± 0.1 and 59.1 ± 1.5 nM for the homodimer, and -1.9 ± 0.1 and 99.8 ± 3.2 nM for the homotetramer, respectively. From the obtained data, it can be concluded that the adverse influence of negatively charged building blocks on the in vitro GRP receptor binding properties of dually labeled PESIN multimers can, at least partly, be compensated for by the number of introduced peptide binding motives and the used molecular design.
Collapse
Affiliation(s)
- Ralph Hübner
- Biomedical Chemistry, Department of Clinical Radiology and Nuclear Medicine, Medical Faculty Mannheim of Heidelberg University, Theodor-Kutzer-Ufer 1-3, 68167 Mannheim, Germany; (M.M.); (D.B.); (H.D.); (B.J.)
- Institute of Inorganic Chemistry, University Stuttgart, Pfaffenwaldring 55, 70550 Stuttgart, Germany; (A.P.); (V.F.)
- Correspondence: (R.H.); (C.W.)
| | - Alexa Paretzki
- Institute of Inorganic Chemistry, University Stuttgart, Pfaffenwaldring 55, 70550 Stuttgart, Germany; (A.P.); (V.F.)
| | - Valeska von Kiedrowski
- Molecular Imaging and Radiochemistry, Department of Clinical Radiology and Nuclear Medicine, Medical Faculty Mannheim of Heidelberg University, Theodor-Kutzer-Ufer 1-3, 68167 Mannheim, Germany; (V.v.K.); (X.C.); (G.D.); (B.W.)
| | - Marco Maspero
- Biomedical Chemistry, Department of Clinical Radiology and Nuclear Medicine, Medical Faculty Mannheim of Heidelberg University, Theodor-Kutzer-Ufer 1-3, 68167 Mannheim, Germany; (M.M.); (D.B.); (H.D.); (B.J.)
- Department of Pharmaceutical Sciences, Medicinal Chemistry Section “Pietro Pratesi”, University of Milan, Via L. Mangiagalli 25, 20133 Milan, Italy;
| | - Xia Cheng
- Molecular Imaging and Radiochemistry, Department of Clinical Radiology and Nuclear Medicine, Medical Faculty Mannheim of Heidelberg University, Theodor-Kutzer-Ufer 1-3, 68167 Mannheim, Germany; (V.v.K.); (X.C.); (G.D.); (B.W.)
| | - Güllü Davarci
- Molecular Imaging and Radiochemistry, Department of Clinical Radiology and Nuclear Medicine, Medical Faculty Mannheim of Heidelberg University, Theodor-Kutzer-Ufer 1-3, 68167 Mannheim, Germany; (V.v.K.); (X.C.); (G.D.); (B.W.)
| | - Diana Braun
- Biomedical Chemistry, Department of Clinical Radiology and Nuclear Medicine, Medical Faculty Mannheim of Heidelberg University, Theodor-Kutzer-Ufer 1-3, 68167 Mannheim, Germany; (M.M.); (D.B.); (H.D.); (B.J.)
- Molecular Imaging and Radiochemistry, Department of Clinical Radiology and Nuclear Medicine, Medical Faculty Mannheim of Heidelberg University, Theodor-Kutzer-Ufer 1-3, 68167 Mannheim, Germany; (V.v.K.); (X.C.); (G.D.); (B.W.)
| | - Helen Damerow
- Biomedical Chemistry, Department of Clinical Radiology and Nuclear Medicine, Medical Faculty Mannheim of Heidelberg University, Theodor-Kutzer-Ufer 1-3, 68167 Mannheim, Germany; (M.M.); (D.B.); (H.D.); (B.J.)
| | - Benedikt Judmann
- Biomedical Chemistry, Department of Clinical Radiology and Nuclear Medicine, Medical Faculty Mannheim of Heidelberg University, Theodor-Kutzer-Ufer 1-3, 68167 Mannheim, Germany; (M.M.); (D.B.); (H.D.); (B.J.)
- Molecular Imaging and Radiochemistry, Department of Clinical Radiology and Nuclear Medicine, Medical Faculty Mannheim of Heidelberg University, Theodor-Kutzer-Ufer 1-3, 68167 Mannheim, Germany; (V.v.K.); (X.C.); (G.D.); (B.W.)
| | - Vasileios Filippou
- Institute of Inorganic Chemistry, University Stuttgart, Pfaffenwaldring 55, 70550 Stuttgart, Germany; (A.P.); (V.F.)
| | - Clelia Dallanoce
- Department of Pharmaceutical Sciences, Medicinal Chemistry Section “Pietro Pratesi”, University of Milan, Via L. Mangiagalli 25, 20133 Milan, Italy;
| | - Ralf Schirrmacher
- Department of Oncology, Division of Oncological Imaging, University of Alberta, 11560 University Avenue, Edmonton, AB T6G 1Z2, Canada;
| | - Björn Wängler
- Molecular Imaging and Radiochemistry, Department of Clinical Radiology and Nuclear Medicine, Medical Faculty Mannheim of Heidelberg University, Theodor-Kutzer-Ufer 1-3, 68167 Mannheim, Germany; (V.v.K.); (X.C.); (G.D.); (B.W.)
| | - Carmen Wängler
- Biomedical Chemistry, Department of Clinical Radiology and Nuclear Medicine, Medical Faculty Mannheim of Heidelberg University, Theodor-Kutzer-Ufer 1-3, 68167 Mannheim, Germany; (M.M.); (D.B.); (H.D.); (B.J.)
- Correspondence: (R.H.); (C.W.)
| |
Collapse
|
40
|
Cooper E, Choi PJ, Denny WA, Jose J, Dragunow M, Park TIH. The Use of Heptamethine Cyanine Dyes as Drug-Conjugate Systems in the Treatment of Primary and Metastatic Brain Tumors. Front Oncol 2021; 11:654921. [PMID: 34141613 PMCID: PMC8204086 DOI: 10.3389/fonc.2021.654921] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Accepted: 04/01/2021] [Indexed: 12/24/2022] Open
Abstract
Effective cancer therapeutics for brain tumors must be able to cross the blood-brain barrier (BBB) to reach the tumor in adequate quantities and overcome the resistance conferred by the local tumor microenvironment. Clinically approved chemotherapeutic agents have been investigated for brain neoplasms, but despite their effectiveness in peripheral cancers, failed to show therapeutic success in brain tumors. This is largely due to their poor bioavailability and specificity towards brain tumors. A targeted delivery system might improve the efficacy of the candidate compounds by increasing the retention time in the tumor tissue, and minimizing the numerous side effects associated with the non-specific distribution of the chemotherapy agent. Heptamethine cyanine dyes (HMCDs) are a class of near-infrared fluorescence (NIRF) compounds that have recently emerged as promising agents for drug delivery. Initially explored for their use in imaging and monitoring neoplasms, their tumor-targeting properties have recently been investigated for their use as drug carrier systems. This review will explore the recent developments in the tumour-targeting properties of a specific group of NIRF cyanine dyes and the preclinical evidence for their potential as drug-delivery systems in the treatment of primary and metastatic brain tumors.
Collapse
Affiliation(s)
- Elizabeth Cooper
- Department of Pharmacology, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
- Auckland Cancer Society Research Centre, School of Medical Sciences, University of Auckland, Auckland, New Zealand
| | - Peter J. Choi
- Auckland Cancer Society Research Centre, School of Medical Sciences, University of Auckland, Auckland, New Zealand
| | - William A. Denny
- Auckland Cancer Society Research Centre, School of Medical Sciences, University of Auckland, Auckland, New Zealand
| | - Jiney Jose
- Auckland Cancer Society Research Centre, School of Medical Sciences, University of Auckland, Auckland, New Zealand
| | - Mike Dragunow
- Department of Pharmacology, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
- Neurosurgical Research Unit, The Centre for Brain Research, University of Auckland, Auckland, New Zealand
- Hugh Green Biobank, The Centre for Brain Research, University of Auckland, Auckland, New Zealand
| | - Thomas I.-H. Park
- Department of Pharmacology, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
- Neurosurgical Research Unit, The Centre for Brain Research, University of Auckland, Auckland, New Zealand
| |
Collapse
|
41
|
Lange N, Szlasa W, Saczko J, Chwiłkowska A. Potential of Cyanine Derived Dyes in Photodynamic Therapy. Pharmaceutics 2021; 13:818. [PMID: 34072719 PMCID: PMC8229084 DOI: 10.3390/pharmaceutics13060818] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 05/28/2021] [Accepted: 05/28/2021] [Indexed: 12/26/2022] Open
Abstract
Photodynamic therapy (PDT) is a method of cancer treatment that leads to the disintegration of cancer cells and has developed significantly in recent years. The clinically used photosensitizers are primarily porphyrin, which absorbs light in the red spectrum and their absorbance maxima are relatively short. This review presents group of compounds and their derivatives that are considered to be potential photosensitizers in PDT. Cyanine dyes are compounds that typically absorb light in the visible to near-infrared-I (NIR-I) spectrum range (750-900 nm). This meta-analysis comprises the current studies on cyanine dye derivatives, such as indocyanine green (so far used solely as a diagnostic agent), heptamethine and pentamethine dyes, squaraine dyes, merocyanines and phthalocyanines. The wide array of the cyanine derivatives arises from their structural modifications (e.g., halogenation, incorporation of metal atoms or organic structures, or synthesis of lactosomes, emulsions or conjugation). All the following modifications aim to increase solubility in aqueous media, enhance phototoxicity, and decrease photobleaching. In addition, the changes introduce new features like pH-sensitivity. The cyanine dyes involved in photodynamic reactions could be incorporated into sets of PDT agents.
Collapse
Affiliation(s)
- Natalia Lange
- Faculty of Medicine, Wroclaw Medical University, Mikulicza-Radeckiego 5, 50-345 Wroclaw, Poland; (N.L.); (W.S.)
| | - Wojciech Szlasa
- Faculty of Medicine, Wroclaw Medical University, Mikulicza-Radeckiego 5, 50-345 Wroclaw, Poland; (N.L.); (W.S.)
| | - Jolanta Saczko
- Department of Molecular and Cellular Biology, Faculty of Pharmacy, Wroclaw Medical University, Borowska 211A, 50-556 Wroclaw, Poland;
| | - Agnieszka Chwiłkowska
- Department of Molecular and Cellular Biology, Faculty of Pharmacy, Wroclaw Medical University, Borowska 211A, 50-556 Wroclaw, Poland;
| |
Collapse
|
42
|
Lucero MY, East AK, Reinhardt CJ, Sedgwick AC, Su S, Lee MC, Chan J. Development of NIR-II Photoacoustic Probes Tailored for Deep-Tissue Sensing of Nitric Oxide. J Am Chem Soc 2021; 143:7196-7202. [PMID: 33905646 PMCID: PMC8274393 DOI: 10.1021/jacs.1c03004] [Citation(s) in RCA: 89] [Impact Index Per Article: 29.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Photoacoustic (PA) imaging has emerged as a reliable in vivo technique for diverse biomedical applications ranging from disease screening to analyte sensing. Most contemporary PA imaging agents employ NIR-I light (650-900 nm) to generate an ultrasound signal; however, there is significant interference from endogenous biomolecules such as hemoglobin that are PA active in this window. Transitioning to longer excitation wavelengths (i.e., NIR-II) reduces the background and facilitates the detection of low abundance targets (e.g., nitric oxide, NO). In this study, we employed a two-phase tuning approach to develop APNO-1080, a NIR-II NO-responsive probe for deep-tissue PA imaging. First, we performed Hammett and Brønsted analyses to identify a highly reactive and selective aniline-based trigger that reacts with NO via N-nitrosation chemistry. Next, we screened a panel of NIR-II platforms to identify chemical structures that have a low propensity to aggregate since this can diminish the PA signal. In a head-to-head comparison with a NIR-I analogue, APNO-1080 was 17.7-fold more sensitive in an in vitro tissue phantom assay. To evaluate the deep-tissue imaging capabilities of APNO-1080 in vivo, we performed PA imaging in an orthotopic breast cancer model and a heterotopic lung cancer model. Relative to control mice not bearing tumors, the normalized turn-on response was 1.3 ± 0.12 and 1.65 ± 0.07, respectively.
Collapse
Affiliation(s)
- Melissa Y Lucero
- Department of Chemistry and Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Amanda K East
- Department of Chemistry and Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Christopher J Reinhardt
- Department of Chemistry and Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Adam C Sedgwick
- Department of Chemistry and Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Shengzhang Su
- Department of Chemistry and Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Michael C Lee
- Department of Chemistry and Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Jefferson Chan
- Department of Chemistry and Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| |
Collapse
|
43
|
Abstract
Active targeting uses molecular fragments that bind receptors overexpressed on cell surfaces to deliver cargoes, and this selective delivery to diseased over healthy tissue is valuable in diagnostic imaging and therapy. For instance, targeted near-infrared (near-IR) dyes can mark tissue to be excised in surgery, and radiologists can use active targeting to concentrate agents for positron emission tomography (PET) in tumor tissue to monitor tumor metastases. Selective delivery to diseased tissue is also valuable in some treatments wherein therapeutic indexes (toxic/effective doses) are key determinants of efficacy. However, active targeting will only work for cells expressing the pivotal cell surface receptor that is targeted. That is a problem because tumors, even ones derived from the same organ, are not homogeneous, patient-to-patient variability is common, and heterogeneity can occur even in the same patient, so monotherapy with one actively targeted agent is unlikely to be uniformly effective. A particular category of fluorescent heptamethine cyanine-7 (Cy-7) dyes, here called tumor seeking dyes, offer a way to circumvent this problem because they selectively accumulate in any solid tumor. Furthermore, they persist in tumor tissue for several days, sometimes longer than 72 h. Consequently, tumor seeking dyes are near-IR fluorescent targeting agents that, unlike mAbs (monoclonal antibodies), accumulate in any solid lesion, thus overcoming tumor heterogeneity, and persist there for long periods, circumventing the rapid clearance problems that bedevil low molecular mass drugs. Small molecule imaging agents and drugs attached to tumor-seeking dyes have high therapeutic indices and long residence times in cancer cells and tumor tissue. All this sounds too good to be true. We believe most of this is true, but the controversy is associated with how and why these characteristics arise. Prior to our studies, the prevailing hypothesis, often repeated, was that tumor seeking dyes are uptaken by organic anion transporting polypeptides (OATPs) overexpressed on cancer cells. This Account summarizes evidence indicating tumor seeking Cy-7 dyes have exceptional accumulation and persistence properties because they covalently bind to albumin in vivo. That adduct formation provides a convenient way to form albumin-bound pharmaceuticals labeled with near-IR fluorophores which can be tracked in vivo. This understanding may facilitate more rapid developments of generally applicable actively targeted reagents.
Collapse
Affiliation(s)
- Syed Muhammad Usama
- Department of Chemistry, Texas A&M University, Box 30012, College Station, Texas 77842, United States
| | - Kevin Burgess
- Department of Chemistry, Texas A&M University, Box 30012, College Station, Texas 77842, United States
| |
Collapse
|
44
|
Exner RM, Cortezon‐Tamarit F, Pascu SI. Explorations into the Effect of meso-Substituents in Tricarbocyanine Dyes: A Path to Diverse Biomolecular Probes and Materials. Angew Chem Int Ed Engl 2021; 60:6230-6241. [PMID: 32959963 PMCID: PMC7985877 DOI: 10.1002/anie.202008075] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2020] [Revised: 07/22/2020] [Indexed: 12/13/2022]
Abstract
Polymethine cyanine dyes have been widely recognized as promising chemical tools for a range of life science and biomedical applications, such as fluorescent staining of DNA and proteins in gel electrophoresis, fluorescence guided surgery, or as ratiometric probes for probing biochemical pathways. The photophysical properties of such dyes can be tuned through the synthetic modification of the conjugated backbone, for example, by altering aromatic cores or by varying the length of the conjugated polymethine chain. Alternative routes to shaping the absorption, emission, and photostability of dyes of this family are centered around the chemical modifications on the polymethine chain. This Minireview aims to discuss strategies for the introduction of substituents in the meso-position, their effect on the photophysical properties of these dyes and some structure-activity correlations which could help overcome common limitations in the state of the art in the synthesis.
Collapse
Affiliation(s)
- Rüdiger M. Exner
- Department of ChemistryUniversity of BathClaverton DownBathBA2 7AYUK
| | | | - Sofia I. Pascu
- Department of ChemistryUniversity of BathClaverton DownBathBA2 7AYUK
| |
Collapse
|
45
|
Irwin RW, Escobedo AR, Shih JC. Near-Infrared Monoamine Oxidase Inhibitor Biodistribution in a Glioma Mouse Model. Pharm Res 2021; 38:461-471. [PMID: 33709330 DOI: 10.1007/s11095-021-03012-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Accepted: 02/04/2021] [Indexed: 11/29/2022]
Abstract
PURPOSE The biodistribution imaging kinetics of near-infrared monoamine oxidase inhibitor (NMI) are reported here. METHODS NMI was administered intravenously or orally to mice and detected by NIR fluorescence optical imaging within minutes and the longitudinal signal distribution was measured for up to 1 week after a single dose. RESULTS NMI rapidly reached 3.7-fold higher ventral and 3.2-fold higher brain region fluorescent signal intensity compared to oral route at 24 h. Similar patterns of NMI biodistribution were found in mice with or without intracranial implanted GL26 brain tumors. NMI was highly associated with tumors in contrast to adjacent non-tumor brain, confirming diagnostic utility. NMI 5 mg/kg imaging signal in brain at 48 h was optimal (tumor/non-tumor ratio > 3.5) with minimum off-target distribution. Intravenous NMI imaging signal peaked between 24 h and 48 h for lung, liver, kidney, blood, brain, and most other tissues. Clearance (signal weaker, but still present) from most tissues occurred by day 7. Intravenous low dose (0.5 mg/kg) minimally labeled tumor and other tissues, 5 mg/kg showed optimal imaging signal in glioma at a dose we previously reported as efficacious, and 50 mg/kg was tolerable but saturated the tissue signals beyond tumor specificity. Gel electrophoresis showed two major bands present in brain tumor and tissue protein lysates. CONCLUSIONS Intravenous 5 mg/kg was optimal dose to target brain tumor and identified off-target organs of concern: lungs, liver, and kidneys. These results demonstrate the biodistribution and optimal dose range of NMI for treatment and diagnostic monitoring of glioma.
Collapse
Affiliation(s)
- Ronald W Irwin
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, California, USA
| | - Alesi R Escobedo
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, California, USA
| | - Jean C Shih
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, California, USA. .,USC-Taiwan Center for Translational Research, Los Angeles, California, USA.
| |
Collapse
|
46
|
Li Y, Zhou Y, Yue X, Dai Z. Cyanine conjugates in cancer theranostics. Bioact Mater 2021; 6:794-809. [PMID: 33024900 PMCID: PMC7528000 DOI: 10.1016/j.bioactmat.2020.09.009] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 09/11/2020] [Accepted: 09/11/2020] [Indexed: 12/11/2022] Open
Abstract
Cyanine is a meritorious fluorogenic core for the construction of fluorescent probes and its phototherapeutic potential has been enthusiastically explored as well. Alternatively, the covalent conjugation of cyanine with other potent therapeutic agents not only boosts its therapeutic efficacy but also broadens its therapeutic modality. Herein, we summarize miscellaneous cyanine-therapeutic agent conjugates in cancer theranostics from literature published between 2014 and 2020. The application scenarios of such theranostic cyanine conjugates covered common cancer therapeutic modalities, including chemotherapy, phototherapy and targeted therapy. Besides, cyanine conjugates that serve as nanocarriers for drug delivery are introduced as well. In an additional section, we analyze the potential of these conjugates for clinical translation. Overall, this review is aimed to stimulate research interest in exploring unattempted therapeutic agents and novel conjugation strategies and hopefully, accelerate clinical translation in this field.
Collapse
Affiliation(s)
- Yang Li
- Department of Biomedical Engineering, College of Engineering, Peking University, Beijing 100871, China
| | - Yiming Zhou
- Department of Biomedical Engineering, College of Engineering, Peking University, Beijing 100871, China
| | - Xiuli Yue
- School of Environment, Harbin Institute of Technology, Harbin 150001, China
| | - Zhifei Dai
- Department of Biomedical Engineering, College of Engineering, Peking University, Beijing 100871, China
| |
Collapse
|
47
|
Yi X, Cao Z, Yuan Y, Li W, Cui X, Chen Z, Hu X, Yu A. Design and synthesis of a novel mitochondria-targeted osteosarcoma theranostic agent based on a PIM1 kinase inhibitor. J Control Release 2021; 332:434-447. [PMID: 33662457 DOI: 10.1016/j.jconrel.2021.02.028] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 02/17/2021] [Accepted: 02/24/2021] [Indexed: 12/22/2022]
Abstract
Osteosarcoma (OS) is the most common malignancy of the skeletal system, with a poor prognosis and high rate of recurrence. Adequate surgical margin and adjuvant chemotherapy improve the overall survival and limb salvage rate of osteosarcoma patients. Previous studies have showed that OS exhibits an increase in the expression of proviral integration site for Moloney murine leukemia virus 1 (PIM1) kinase, and high levels of PIM1 are also associated with poor OS prognosis and metastasis. We exploited the overexpression of proto-oncogenic PIM1 in OS towards the development of a novel near-infrared imaging and targeted therapeutic agent, namely QCAi-Cy7d by conjugating a PIM1 small molecule inhibitor and heptamethine cyanine dye, for simultaneous guiding surgery and chemotherapy. QCAi-Cy7d showed targeted imaging and anticancer activities against OS in vitro and vivo without any obvious toxicity, and its antitumoral activity was much greater than the parent PIMI inhibitor. These results demonstrated the potential of new conjugate of PIM1 inhibitor and near-infrared imaging, supporting structure-based design and development of theranostic agents for precise tumor imaging and targeted treatment.
Collapse
Affiliation(s)
- Xinzeyu Yi
- Department of Orthopedics Trauma and Microsurgery, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Zhi Cao
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery Ministry of Education Hubei Province Engineering and Technology Research Center for Fluorinated Pharmaceuticals, Wuhan University School of Pharmaceutical Sciences, Wuhan 430071, China
| | - Ying Yuan
- Department of Orthopedics Trauma and Microsurgery, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Wen Li
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery Ministry of Education Hubei Province Engineering and Technology Research Center for Fluorinated Pharmaceuticals, Wuhan University School of Pharmaceutical Sciences, Wuhan 430071, China
| | - Xinyue Cui
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery Ministry of Education Hubei Province Engineering and Technology Research Center for Fluorinated Pharmaceuticals, Wuhan University School of Pharmaceutical Sciences, Wuhan 430071, China
| | - Zilin Chen
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery Ministry of Education Hubei Province Engineering and Technology Research Center for Fluorinated Pharmaceuticals, Wuhan University School of Pharmaceutical Sciences, Wuhan 430071, China.
| | - Xiang Hu
- Department of Orthopedics Trauma and Microsurgery, Zhongnan Hospital of Wuhan University, Wuhan 430071, China.
| | - Aixi Yu
- Department of Orthopedics Trauma and Microsurgery, Zhongnan Hospital of Wuhan University, Wuhan 430071, China.
| |
Collapse
|
48
|
Exner RM, Cortezon‐Tamarit F, Pascu SI. Explorations into the Effect of
meso
‐Substituents in Tricarbocyanine Dyes: A Path to Diverse Biomolecular Probes and Materials. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202008075] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Rüdiger M. Exner
- Department of Chemistry University of Bath Claverton Down Bath BA2 7AY UK
| | | | - Sofia I. Pascu
- Department of Chemistry University of Bath Claverton Down Bath BA2 7AY UK
| |
Collapse
|
49
|
Sun C, Du W, Wang B, Dong B, Wang B. Research progress of near-infrared fluorescence probes based on indole heptamethine cyanine dyes in vivo and in vitro. BMC Chem 2020; 14:21. [PMID: 32259133 PMCID: PMC7106836 DOI: 10.1186/s13065-020-00677-3] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2019] [Accepted: 03/16/2020] [Indexed: 12/22/2022] Open
Abstract
Near-infrared (NIR) fluorescence imaging is a noninvasive technique that provides numerous advantages for the real-time in vivo monitoring of biological information in living subjects without the use of ionizing radiation. Near-infrared fluorescent (NIRF) dyes are widely used as fluorescent imaging probes. These fluorescent dyes remarkably decrease the interference caused by the self-absorption of substances and autofluorescence, increase detection selectivity and sensitivity, and reduce damage to the human body. Thus, they are beneficial for bioassays. Indole heptamethine cyanine dyes are widely investigated in the field of near-infrared fluorescence imaging. They are mainly composed of indole heterocyclics, heptamethine chains, and N-substituent side chains. With indole heptamethine cyanine dyes as the parent, introducing reactive groups to the parent compounds or changing their structures can make fluorescent probes have different functions like labeling protein and tumor, detecting intracellular metal cations, which has become the hotspot in the field of fluorescence imaging of biological research. Therefore, this study reviewed the applications of indole heptamethine cyanine fluorescent probes to metal cation detection, pH, molecules, tumor imaging, and protein in vivo. The distribution, imaging results, and metabolism of the probes in vivo and in vitro were described. The biological application trends and existing problems of fluorescent probes were discussed.
Collapse
Affiliation(s)
- Chunlong Sun
- College of Biological and Environmental Engineering & Shandong Key Laboratory of Eco-Environmental Science for the Yellow River Delta & Shandong Provincial Engineering and Technology Research Center for Wild Plant Resources Development and Application of Yellow River Delta, Binzhou University, Binzhou, 256603 China
| | - Wen Du
- College of Biological and Environmental Engineering & Shandong Key Laboratory of Eco-Environmental Science for the Yellow River Delta & Shandong Provincial Engineering and Technology Research Center for Wild Plant Resources Development and Application of Yellow River Delta, Binzhou University, Binzhou, 256603 China
| | - Baoqin Wang
- College of Biological and Environmental Engineering & Shandong Key Laboratory of Eco-Environmental Science for the Yellow River Delta & Shandong Provincial Engineering and Technology Research Center for Wild Plant Resources Development and Application of Yellow River Delta, Binzhou University, Binzhou, 256603 China
| | - Bin Dong
- College of Biological and Environmental Engineering & Shandong Key Laboratory of Eco-Environmental Science for the Yellow River Delta & Shandong Provincial Engineering and Technology Research Center for Wild Plant Resources Development and Application of Yellow River Delta, Binzhou University, Binzhou, 256603 China
| | - Baogui Wang
- College of Biological and Environmental Engineering & Shandong Key Laboratory of Eco-Environmental Science for the Yellow River Delta & Shandong Provincial Engineering and Technology Research Center for Wild Plant Resources Development and Application of Yellow River Delta, Binzhou University, Binzhou, 256603 China
| |
Collapse
|
50
|
Yang X, Zhao D, Li Y, Li Y, Cui W, Li Y, Li H, Li X, Wang D. Potential monoamine oxidase A inhibitor suppressing paclitaxel-resistant non-small cell lung cancer metastasis and growth. Thorac Cancer 2020; 11:2858-2866. [PMID: 32875729 PMCID: PMC7529581 DOI: 10.1111/1759-7714.13617] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 07/23/2020] [Accepted: 07/25/2020] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND High expression of monoamine oxidase A (MAOA) in non-small cell lung cancer (NSCLC) is related to epithelial-mesenchymal transition (EMT) and the development of clinicopathological features of NSCLC. Nevertheless, the role of MAOA in drug resistance still remains unclear. Hence, the aim of this article was to evaluate a previously synthesized MAOA inhibitor (G11) on inhibiting paclitaxel-resistant NSCLC metastasis and growth. METHODS First, MAOA expression level was evaluated in several NSCLC cell lines. An MTT assay was used to validate the inhibitory effect of G11 on NSCLC cells in vitro. Second, gene expression in G11-treated H460/PTX cells was analyzed by microarray gene expression. Third, transwell assay was performed to assess the invasion and metastasis of G11-treated A549/PTX and H460/PTX cells and western blot assay used to analyze vital protein expression level in G11-treated H460/PTX cells. Finally, the antimetastatic effect of G11 was tested in an NSCLC in vivo model. RESULTS Our data revealed that G11 significantly inhibited the viability of paclitaxel (PTX)-resistant NSCLC cell lines (A549/PTX and H460/PTX). G11 dramatically reduced the expression of MAOA in A549/PTX and H460/PTX cells, which exhibited relatively high MAOA expression levels. Additionally, G11 was found to hinder A549/PTX and H460/PTX cell migration and invasion. Furthermore, the in vivo study indicated that the coadministration of G11 and paclitaxel significantly suppressed tumor metastasis in H460/PTX lung metastasis models. CONCLUSIONS These findings indicated G11 showed a moderate inhibitory effect on paclitaxel-resistant NSCLC metastasis and growth, and support further investigation on MAOA potentially as a promising therapeutic target for paclitaxel-resistant NSCLC treatment. KEY POINTS SIGNIFICANT FINDINGS OF THE STUDY: Inhibition of MAOA might contribute to the suppression of metastasis and growth in PTX-resistant NSCLC cells. What this study adds This study explored the potential function of MAOA in drug-resistant NSCLC and might consider MAOA as a promising target for the treatment of drug-resistant NSCLC.
Collapse
Affiliation(s)
- Xiaoguang Yang
- School of Pharmaceutical EngineeringShenyang Pharmaceutical UniversityShenyangChina
| | - Dongxue Zhao
- School of Pharmaceutical EngineeringShenyang Pharmaceutical UniversityShenyangChina
| | - Yanfeng Li
- School of Pharmaceutical EngineeringShenyang Pharmaceutical UniversityShenyangChina
| | - Yanyu Li
- School of Pharmaceutical EngineeringShenyang Pharmaceutical UniversityShenyangChina
| | - Wei Cui
- Department of pharmacology, School of Life Science and BiopharmaceuticalShenyang Pharmaceutical UniversityShenyangChina
| | - Yuxin Li
- Department of pharmacology, School of Life Science and BiopharmaceuticalShenyang Pharmaceutical UniversityShenyangChina
| | - Han Li
- Department of pharmacology, School of Life Science and BiopharmaceuticalShenyang Pharmaceutical UniversityShenyangChina
| | - Xinyu Li
- Department of pharmacology, School of Life Science and BiopharmaceuticalShenyang Pharmaceutical UniversityShenyangChina
| | - Dun Wang
- School of Pharmaceutical EngineeringShenyang Pharmaceutical UniversityShenyangChina
| |
Collapse
|