1
|
Sun M, Ma C, Emran MY, Kotb A, Bai J, Zhou M. A fully integrated wireless microfluidic immunosensing system for portable monitoring of Staphylococcus aureus. Talanta 2025; 283:127158. [PMID: 39515059 DOI: 10.1016/j.talanta.2024.127158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 10/25/2024] [Accepted: 11/03/2024] [Indexed: 11/16/2024]
Abstract
The advanced devices that function fully without the need for external accessories are regarded as a pinnacle goal in the design and construction of modern ones. Staphylococcus aureus (S. aureus), a prominent human pathogen, is responsible for causing a wide variety of infections and chronic diseases. Herein, we present the first instance of a fully integrated wireless microfluidic immunosensing system (FIWMIS) capable of conducting point-of-care S. aureus monitoring in real samples of S. aureus-spiked commercial purified drinking water and S. aureus-spiked watermelon juice. The development of the proposed FIWMIS became a reality by conquering significant engineering hurdles in seamlessly integrating a microfluidic unit for liquid sample transport without the need of an external pump, an immunosensing unit for S. aureus monitoring, and an electronic control unit for signal conversion and wireless transmission. Such full integration culminated in a FIWMIS that upholds its pump-free, wireless, and low-cost characteristics for portable monitoring of S. aureus.
Collapse
Affiliation(s)
- Mimi Sun
- Key Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry of Education, Key Laboratory of Nanobiosensing and Nanobioanalysis at Universities of Jilin Province, Analysis and Testing Center, Department of Chemistry, Northeast Normal University, Changchun, Jilin Province, 130024, China
| | - Chongbo Ma
- Key Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry of Education, Key Laboratory of Nanobiosensing and Nanobioanalysis at Universities of Jilin Province, Analysis and Testing Center, Department of Chemistry, Northeast Normal University, Changchun, Jilin Province, 130024, China
| | - Mohammed Y Emran
- Chemistry Department, Faculty of Science, Al-Azhar University, Assiut, 71524, Egypt
| | - Ahmed Kotb
- Chemistry Department, Faculty of Science, Al-Azhar University, Assiut, 71524, Egypt
| | - Jing Bai
- Key Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry of Education, Key Laboratory of Nanobiosensing and Nanobioanalysis at Universities of Jilin Province, Analysis and Testing Center, Department of Chemistry, Northeast Normal University, Changchun, Jilin Province, 130024, China.
| | - Ming Zhou
- Key Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry of Education, Key Laboratory of Nanobiosensing and Nanobioanalysis at Universities of Jilin Province, Analysis and Testing Center, Department of Chemistry, Northeast Normal University, Changchun, Jilin Province, 130024, China.
| |
Collapse
|
2
|
Szalkowski M, Kotulska A, Dudek M, Korczak Z, Majak M, Marciniak L, Misiak M, Prorok K, Skripka A, Schuck PJ, Chan EM, Bednarkiewicz A. Advances in the photon avalanche luminescence of inorganic lanthanide-doped nanomaterials. Chem Soc Rev 2025; 54:983-1026. [PMID: 39660582 DOI: 10.1039/d4cs00177j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2024]
Abstract
Photon avalanche (PA)-where the absorption of a single photon initiates a 'chain reaction' of additional absorption and energy transfer events within a material-is a highly nonlinear optical process that results in upconverted light emission with an exceptionally steep dependence on the illumination intensity. Over 40 years following the first demonstration of photon avalanche emission in lanthanide-doped bulk crystals, PA emission has been achieved in nanometer-scale colloidal particles. The scaling of PA to nanomaterials has resulted in significant and rapid advances, such as luminescence imaging beyond the diffraction limit of light, optical thermometry and force sensing with (sub)micron spatial resolution, and all-optical data storage and processing. In this review, we discuss the fundamental principles underpinning PA and survey the studies leading to the development of nanoscale PA. Finally, we offer a perspective on how this knowledge can be used for the development of next-generation PA nanomaterials optimized for a broad range of applications, including mid-IR imaging, luminescence thermometry, (bio)sensing, optical data processing and nanophotonics.
Collapse
Affiliation(s)
- Marcin Szalkowski
- Institute of Low Temperature and Structure Research, Polish Academy of Sciences, ul. Okolna 2, 50-422 Wroclaw, Poland.
- Nanophotonics Group, Institute of Physics, Faculty of Physics, Astronomy and Informatics, Nicolaus Copernicus University in Toruń, 87-100 Toruń, ul. Grudziądzka 5, Poland
| | - Agata Kotulska
- Institute of Low Temperature and Structure Research, Polish Academy of Sciences, ul. Okolna 2, 50-422 Wroclaw, Poland.
| | - Magdalena Dudek
- Institute of Low Temperature and Structure Research, Polish Academy of Sciences, ul. Okolna 2, 50-422 Wroclaw, Poland.
| | - Zuzanna Korczak
- Institute of Low Temperature and Structure Research, Polish Academy of Sciences, ul. Okolna 2, 50-422 Wroclaw, Poland.
| | - Martyna Majak
- Institute of Low Temperature and Structure Research, Polish Academy of Sciences, ul. Okolna 2, 50-422 Wroclaw, Poland.
| | - Lukasz Marciniak
- Institute of Low Temperature and Structure Research, Polish Academy of Sciences, ul. Okolna 2, 50-422 Wroclaw, Poland.
| | - Malgorzata Misiak
- Institute of Low Temperature and Structure Research, Polish Academy of Sciences, ul. Okolna 2, 50-422 Wroclaw, Poland.
| | - Katarzyna Prorok
- Institute of Low Temperature and Structure Research, Polish Academy of Sciences, ul. Okolna 2, 50-422 Wroclaw, Poland.
| | - Artiom Skripka
- Department of Chemistry, Oregon State University, Corvallis, Oregon 97331, USA
- The Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA.
| | - P James Schuck
- Department of Mechanical Engineering, Columbia University, New York, NY, USA
| | - Emory M Chan
- The Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA.
| | - Artur Bednarkiewicz
- Institute of Low Temperature and Structure Research, Polish Academy of Sciences, ul. Okolna 2, 50-422 Wroclaw, Poland.
| |
Collapse
|
3
|
Zikmundová E, Sklenárová D, Kočí E, Zatloukalová T, Bačová T, Makhneva E, Holub D, Macháčová E, Kopřivová H, Vytisková K, Pořízka P, Novotný K, Skládal P, Farka Z, Kaiser J. Magnetic microbead-based upconversion immunoassay with laser-induced breakdown spectroscopy readout for the detection of prostate-specific antigen. Mikrochim Acta 2024; 191:656. [PMID: 39379735 DOI: 10.1007/s00604-024-06743-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Accepted: 10/02/2024] [Indexed: 10/10/2024]
Abstract
Laser-induced breakdown spectroscopy (LIBS) is a promising technique for the readout of immunochemical assays utilizing indirect detection of labels (Tag-LIBS), typically based on nanoparticles. We have previously demonstrated that Tag-LIBS immunoassay employing yttrium-based photon-upconversion nanoparticles (UCNPs) can reach sensitivity similar to commonly used enzyme and fluorescence immunoassays. In this study, we report on further increasing the sensitivity of UCNP-based Tag-LIBS immunoassay by employing magnetic microbeads (MBs) as the solid phase in the determination of cancer biomarker prostate-specific antigen. Due to the possibility of analyte preconcentration, MBs enabled achieving a limit of detection (LOD) of 4.0 pg·mL-1, representing two orders of magnitude improvement compared with equivalent microtiter plate-based assay (LOD of 460 pg·mL-1). In addition, utilizing MBs opens up the possibility of an internal standardization of the LIBS readout by employing iron spectral lines, which improves the assay robustness by compensating for LIBS signal fluctuations and bead-bound immunocomplexes lost throughout the washing steps. Finally, the practical applicability of the technique was confirmed by the successful analysis of clinical samples, showing a strong correlation with the standard electrochemiluminescence immunoassay. Overall, MB-based Tag-LIBS was confirmed as a promising immunoassay approach, combining fast readout, multiplexing possibilities, and high sensitivity approaching upconversion luminescence scanning while avoiding the requirement of luminescence properties of labels.
Collapse
Affiliation(s)
- Eva Zikmundová
- Central European Institute of Technology (CEITEC), Brno University of Technology, Purkyňova 656/123, 612 00, Brno, Czech Republic
| | - Dorota Sklenárová
- Department of Biochemistry, Faculty of Science, Masaryk University, Kamenice 5, 625 00, Brno, Czech Republic
| | - Eva Kočí
- Central European Institute of Technology (CEITEC), Brno University of Technology, Purkyňova 656/123, 612 00, Brno, Czech Republic
| | - Terezie Zatloukalová
- Department of Biochemistry, Faculty of Science, Masaryk University, Kamenice 5, 625 00, Brno, Czech Republic
| | - Tereza Bačová
- Faculty of Mechanical Engineering (FME), Brno University of Technology, Technická 2896, 616 69, Brno, Czech Republic
| | - Ekaterina Makhneva
- Department of Biochemistry, Faculty of Science, Masaryk University, Kamenice 5, 625 00, Brno, Czech Republic
| | - Daniel Holub
- Central European Institute of Technology (CEITEC), Brno University of Technology, Purkyňova 656/123, 612 00, Brno, Czech Republic
- Faculty of Mechanical Engineering (FME), Brno University of Technology, Technická 2896, 616 69, Brno, Czech Republic
| | - Eliška Macháčová
- Department of Biochemistry, Faculty of Science, Masaryk University, Kamenice 5, 625 00, Brno, Czech Republic
| | - Hana Kopřivová
- Central European Institute of Technology (CEITEC), Brno University of Technology, Purkyňova 656/123, 612 00, Brno, Czech Republic
| | - Karolína Vytisková
- Central European Institute of Technology (CEITEC), Brno University of Technology, Purkyňova 656/123, 612 00, Brno, Czech Republic
| | - Pavel Pořízka
- Central European Institute of Technology (CEITEC), Brno University of Technology, Purkyňova 656/123, 612 00, Brno, Czech Republic
- Faculty of Mechanical Engineering (FME), Brno University of Technology, Technická 2896, 616 69, Brno, Czech Republic
| | - Karel Novotný
- Department of Biochemistry, Faculty of Science, Masaryk University, Kamenice 5, 625 00, Brno, Czech Republic
- Department of Chemistry, Faculty of Science, Masaryk University, Kamenice 5, 625 00, Brno, Czech Republic
| | - Petr Skládal
- Department of Biochemistry, Faculty of Science, Masaryk University, Kamenice 5, 625 00, Brno, Czech Republic
| | - Zdeněk Farka
- Department of Biochemistry, Faculty of Science, Masaryk University, Kamenice 5, 625 00, Brno, Czech Republic.
| | - Jozef Kaiser
- Central European Institute of Technology (CEITEC), Brno University of Technology, Purkyňova 656/123, 612 00, Brno, Czech Republic
- Faculty of Mechanical Engineering (FME), Brno University of Technology, Technická 2896, 616 69, Brno, Czech Republic
| |
Collapse
|
4
|
Farka Z, Vytisková K, Makhneva E, Zikmundová E, Holub D, Buday J, Prochazka D, Novotný K, Skládal P, Pořízka P, Kaiser J. Comparison of single and double pulse laser-induced breakdown spectroscopy for the detection of biomolecules tagged with photon-upconversion nanoparticles. Anal Chim Acta 2024; 1299:342418. [PMID: 38499415 DOI: 10.1016/j.aca.2024.342418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 01/28/2024] [Accepted: 02/25/2024] [Indexed: 03/20/2024]
Abstract
BACKGROUND Laser-induced breakdown spectroscopy (LIBS) is a well-recognized analytical technique used for elemental analysis. This method is gaining considerable attention also in biological applications thanks to its ability for spatial mapping and elemental imaging. The implementation of LIBS in the biomedical field is based on the detection of metals or other elements that either naturally occur in the samples or are present artificially. The artificial implementation of nanoparticle labels (Tag-LIBS) enables the use of LIBS as a readout technique for immunochemical assays. However, one of the biggest challenges for LIBS to meet immunoassay readout standards is its sensitivity. RESULTS This paper focuses on the improvement of LIBS sensitivity for the readout of nanoparticle-based immunoassays. First, the LIBS setup was optimized on photon-upconversion nanoparticle (UCNP) droplets deposited on the microtiter plate wells. Two collection optics systems were compared, with single pulse (SP) and collinear double pulse (DP) LIBS arrangements. By deploying the second laser pulse, the sensitivity was improved up to 30 times. The optimized SP and DP setups were then employed for the indirect detection of human serum albumin based on immunoassay with UCNP-based labels. Compared to our previous LIBS study, the detection limit was enhanced by two orders of magnitude, from 10 ng mL-1 to 0.29 ng mL-1. In addition, two other immunochemical methods were used for reference, based on the readout of upconversion luminescence of UCNPs and absorbance measurement with enzyme labels. Finally, the selectivity of the assay was tested and the practical potential of Tag-LIBS was demonstrated by the successful analysis of urine samples. SIGNIFICANCE AND NOVELTY In this work, we improved the sensitivity of the Tag-LIBS method by combining new labels based on UCNPs with the improved collection optics and collinear DP configuration. In the instrumental setup optimization, the DP LIBS showed better sensitivity and signal-to-noise ratio than SP. The optimizations allowed the LIBS readout to surpass the sensitivity of enzyme immunoassay, approaching the qualities of upconversion luminescence readout, which is nowadays a state-of-the-art readout technique.
Collapse
Affiliation(s)
- Zdeněk Farka
- Department of Biochemistry, Faculty of Science, Masaryk University, Kamenice 5, 625 00, Brno, Czech Republic.
| | - Karolína Vytisková
- Central European Institute of Technology, Brno University of Technology, Purkyňova 656/123, 612 00, Brno, Czech Republic
| | - Ekaterina Makhneva
- Department of Biochemistry, Faculty of Science, Masaryk University, Kamenice 5, 625 00, Brno, Czech Republic
| | - Eva Zikmundová
- Central European Institute of Technology, Brno University of Technology, Purkyňova 656/123, 612 00, Brno, Czech Republic
| | - Daniel Holub
- Central European Institute of Technology, Brno University of Technology, Purkyňova 656/123, 612 00, Brno, Czech Republic; Faculty of Mechanical Engineering, Brno University of Technology, Technická 2896/2, 616 69, Brno, Czech Republic
| | - Jakub Buday
- Central European Institute of Technology, Brno University of Technology, Purkyňova 656/123, 612 00, Brno, Czech Republic; Faculty of Mechanical Engineering, Brno University of Technology, Technická 2896/2, 616 69, Brno, Czech Republic
| | - David Prochazka
- Central European Institute of Technology, Brno University of Technology, Purkyňova 656/123, 612 00, Brno, Czech Republic; Faculty of Mechanical Engineering, Brno University of Technology, Technická 2896/2, 616 69, Brno, Czech Republic
| | - Karel Novotný
- Department of Biochemistry, Faculty of Science, Masaryk University, Kamenice 5, 625 00, Brno, Czech Republic; Department of Chemistry, Faculty of Science, Masaryk University, Kamenice 5, 625 00, Brno, Czech Republic
| | - Petr Skládal
- Department of Biochemistry, Faculty of Science, Masaryk University, Kamenice 5, 625 00, Brno, Czech Republic
| | - Pavel Pořízka
- Central European Institute of Technology, Brno University of Technology, Purkyňova 656/123, 612 00, Brno, Czech Republic; Faculty of Mechanical Engineering, Brno University of Technology, Technická 2896/2, 616 69, Brno, Czech Republic
| | - Jozef Kaiser
- Central European Institute of Technology, Brno University of Technology, Purkyňova 656/123, 612 00, Brno, Czech Republic; Faculty of Mechanical Engineering, Brno University of Technology, Technická 2896/2, 616 69, Brno, Czech Republic
| |
Collapse
|
5
|
Zhou X, Geng H, Shi P, Wang H, Zhang G, Cui Z, Lv S, Bi S. NIR-driven photoelectrochemical-fluorescent dual-mode biosensor based on bipedal DNA walker for ultrasensitive detection of microRNA. Biosens Bioelectron 2024; 247:115916. [PMID: 38104392 DOI: 10.1016/j.bios.2023.115916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Revised: 11/22/2023] [Accepted: 12/04/2023] [Indexed: 12/19/2023]
Abstract
Optical biosensors have become powerful tools for bioanalysis, but most of them are limited by optic damage, autofluorescence, as well as poor penetration ability of ultraviolet (UV) and visible (Vis) light. Herein, a near-infrared light (NIR)-driven photoelectrochemical (PEC)-fluorescence (FL) dual-mode biosensor has been proposed for ultrasensitive detection of microRNA (miRNA) based on bipedal DNA walker with cascade amplification. Fueled by toehold-mediated strand displacement (TMSD), the bipedal DNA walker triggered by target miRNA-21 is formed through catalytic hairpin assembly (CHA), which can efficiently move along DNA tracks on CdS nanoparticles (CdS NPs)-modified fluorine doped tin oxide (FTO) electrode, resulting in the introduction of upconversion nanoparticles (UCNPs) on electrode surface. Under 980 nm laser irradiation, the UCNPs serve as the energy donor to emit UV/Vis light and excite CdS NPs to generate photocurrent for PEC detection, while the upconversion luminescence (UCL) at 803 nm is monitored for FL detection. This PEC-FL dual-mode biosensor has achieved the ultrasensitive and accurate analysis of miRNA-21 in human serum and different gynecological cancer cells. Overall, the proposed dual-mode biosensor can not only couple the inherent features of each single-mode biosensor but also provide mutual authentication of testing results, which opens up a new avenue for early diagnosis of miRNA-related diseases in clinic.
Collapse
Affiliation(s)
- Xuemin Zhou
- Department of Obstetrics and Gynecology, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, 266000, PR China; Department of Ultrasonic Medicine, Binzhou Medical University Hospital, Binzhou, 256603, PR China
| | - Hongyan Geng
- Department of Obstetrics and Gynecology, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, 266000, PR China; College of Chemistry and Chemical Engineering, Key Laboratory of Shandong Provincial Universities for Functional Molecules and Materials, Qingdao University, Qingdao, 266000, PR China
| | - Pengfei Shi
- College of Chemistry and Chemical Engineering, Key Laboratory of Shandong Provincial Universities for Functional Molecules and Materials, Qingdao University, Qingdao, 266000, PR China; Shandong Provincial Key Laboratory of Detection Technology for Tumor Markers, School of Chemistry and Chemical Engineering, Linyi University, Linyi, 276000, PR China
| | - Huijie Wang
- College of Chemistry and Chemical Engineering, Key Laboratory of Shandong Provincial Universities for Functional Molecules and Materials, Qingdao University, Qingdao, 266000, PR China
| | - Guofang Zhang
- Department of Obstetrics and Gynecology, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, 266000, PR China
| | - Zhumei Cui
- Department of Obstetrics and Gynecology, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, 266000, PR China.
| | - Shuzhen Lv
- Department of Obstetrics and Gynecology, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, 266000, PR China; College of Chemistry and Chemical Engineering, Key Laboratory of Shandong Provincial Universities for Functional Molecules and Materials, Qingdao University, Qingdao, 266000, PR China.
| | - Sai Bi
- Department of Obstetrics and Gynecology, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, 266000, PR China; College of Chemistry and Chemical Engineering, Key Laboratory of Shandong Provincial Universities for Functional Molecules and Materials, Qingdao University, Qingdao, 266000, PR China.
| |
Collapse
|
6
|
Saki Norouzi G, Rahimpour F. Investigating and Optimizing Insulin Partitioning with Conjugated Au Nanoparticles in Aqueous Two-Phase Systems Using Response Surface Methodology. ACS OMEGA 2024; 9:9676-9685. [PMID: 38434876 PMCID: PMC10905728 DOI: 10.1021/acsomega.3c09664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 01/21/2024] [Accepted: 02/08/2024] [Indexed: 03/05/2024]
Abstract
This study investigated the impact of bioconjugation on the partitioning of insulin, a clinically valuable protein, in an aqueous two-phase system. Gold nanoparticles of different sizes were synthesized and conjugated with insulin. Analysis of the conjugated insulin showed that the insulin remains fully active. Conjugated gold nanoparticles (AuNPs/insulin) were used in polyethylene glycol (PEG)-dextran aqueous two-phase systems to investigate the effect of pH, PEG and dextran molecular weights, PEG and dextran concentrations, AuNPs/insulin dosage, and nanoparticle size on the partition coefficient. These systems were chosen for their biocompatibility and low toxicity. Response surface methodology with D-optimal design was used to model and optimize these systems and their affected parameters. At the optimum condition of a pH = 8 system containing 21% PEG 4000, 5% dextran 100,000, and 100 IU AuNPs/insulin, the partition coefficient of AuNPs/insulin was found to be 192.96, which is in agreement with the empirical partition coefficient of 189.2. This is significantly higher than the partition coefficient of free insulin in a similar system. This approach could be used to overcome limitations in the feasibility of aqueous two-phase systems for industrial-scale purification of biomolecules and biopharmaceuticals.
Collapse
Affiliation(s)
- Ghazal Saki Norouzi
- Biotechnology Research Laboratory,
Chemical Engineering Department, Faculty of Petroleum and Chemical
Engineering, Razi University, Kermanshah 67144-14971, Iran
| | - Farshad Rahimpour
- Biotechnology Research Laboratory,
Chemical Engineering Department, Faculty of Petroleum and Chemical
Engineering, Razi University, Kermanshah 67144-14971, Iran
| |
Collapse
|
7
|
Hosseinifard M, Jurga N, Brandmeier JC, Farka Z, Hlaváček A, Gorris HH, Grzyb T, Ekner-Grzyb A. Influence of surface modification and size of lanthanide-doped upconverting nanoparticles on wheat seedlings. CHEMOSPHERE 2024; 347:140629. [PMID: 37949184 DOI: 10.1016/j.chemosphere.2023.140629] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 11/03/2023] [Accepted: 11/04/2023] [Indexed: 11/12/2023]
Abstract
In recent years, nanotechnology has found widespread applications in environmental monitoring, medical applications, plant fertilisers, cosmetics and others. Therefore, it is important to study nanomaterials' influence and subsequent risks to the environment and organisms (from production to disposal). Therefore, in the present study, the toxic effects of two surface modifications (poly (ethylene glycol)-neridronate, PEG-Ner and poly (acrylic acid), PAA) in comparison to unmodified, 26 nm- and 52 nm-sized core@shell lanthanide-doped upconverting nanoparticles (UCNPs, NaYF4:Yb3+,Er3+@NaYF4) were analysed. Wheat seedlings (Triticum aestivum L.) were chosen as a model organism since this species is one of the most widely cultivated crops. The influence of UCNPs (at concentrations of 0, 10, 50, and 100 μg/mL) on germination percentage, germination rate and growth was studied based on morphological parameters such as root number, root and hypocotyl length, and root and hypocotyl mass. In addition, an assay based on Evans blue staining was conducted to analyse damaged cell membranes and cell death. The type, size and concentration of UCNPs influenced the growth but not the germination of wheat. 52-nm-sized ligand-free UCNPs and the 26-nm-sized UCNPs/PAA decreased plant growth. Moreover, the ligand-free 26-nm-sized UCNPs interacted with the root cell membranes of seedlings. No significant changes were observable regarding viability (tetrazolium chloride reduction assay), oxidative stress and electrolyte leakage from root cells in plants incubated with ligand-free 26-nm-sized UCNPs. Overall, we have shown that the ligand-free UCNPs (of both sizes) had the strongest toxic effect; PAA-modified UCNPs were toxic only at smaller sizes and PEG-Ner-modified UCNPs had no toxic impact. Therefore, PEG-Ner was identified as the safest surface compound among the UCNPs investigated in the study, which may neutralise the harmful effects of nanoparticles on plants.
Collapse
Affiliation(s)
- Marjanossadat Hosseinifard
- Adam Mickiewicz University, Poznań, Institute of Experimental Biology, Faculty of Biology, Department of Plant Ecophysiology, Poznań, Poland; University of Tehran, Faculty of Agricultural Technology (Aburaihan), Department of Agronomy and Plant Breeding Sciences, Imam Reza Boulevard, Tehran, Iran
| | - Natalia Jurga
- Adam Mickiewicz University, Poznań, Faculty of Chemistry, Department of Rare Earths, Poznań, Poland
| | - Julian C Brandmeier
- Masaryk University, Faculty of Science, Department of Biochemistry, Brno, Czech Republic; University of Regensburg, Institute of Analytical Chemistry, Chemo- and Biosensors, Regensburg, Germany
| | - Zdeněk Farka
- Masaryk University, Faculty of Science, Department of Biochemistry, Brno, Czech Republic
| | - Antonín Hlaváček
- Institute of Analytical Chemistry of the Czech Academy of Sciences, Brno, Czech Republic
| | - Hans H Gorris
- Masaryk University, Faculty of Science, Department of Biochemistry, Brno, Czech Republic
| | - Tomasz Grzyb
- Adam Mickiewicz University, Poznań, Faculty of Chemistry, Department of Rare Earths, Poznań, Poland
| | - Anna Ekner-Grzyb
- Adam Mickiewicz University, Poznań, Institute of Experimental Biology, Faculty of Biology, Department of Plant Ecophysiology, Poznań, Poland.
| |
Collapse
|
8
|
Drozdowski A, Jurga N, Przybylska D, Brandmeier JC, Farka Z, Gorris HH, Grzyb T. Bright photon upconversion in LiYbF 4:Tm 3+@LiYF 4 nanoparticles and their application for singlet oxygen generation and in immunoassay for SARS-CoV-2 nucleoprotein. J Colloid Interface Sci 2023; 649:49-57. [PMID: 37336153 PMCID: PMC10257885 DOI: 10.1016/j.jcis.2023.06.034] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Revised: 06/02/2023] [Accepted: 06/06/2023] [Indexed: 06/21/2023]
Abstract
Photon upconversion is an intensively investigated phenomenon in the materials sciences due to its unique applications, mainly in biomedicine for disease prevention and treatment. This study reports the synthesis and properties of tetragonal LiYbF4:Tm3+@LiYF4 core@shell nanoparticles (NPs) and their applications. The NPs had sizes ranging from 18.5 to 23.7 nm. As a result of the energy transfer between Yb3+ and Tm3+ ions, the synthesized NPs show intense emission in the ultraviolet (UV) range up to 347 nm under 975 nm excitation. The bright emission in the UV range allows for singlet oxygen generation in the presence of hematoporphyrin on the surface of NPs. Our studies show that irradiation with a 975 nm laser of the functionalized NPs allows for the production of amounts of singlet oxygen easily detectable by Singlet Oxygen Sensor Green. The high emission intensity of NPs at 800 nm allowed the application of the synthesized NPs in an upconversion-linked immunosorbent assay (ULISA) for highly sensitive detection of the nucleoprotein from SARS-CoV-2, the causative agent of Covid-19. This article proves that LiYbF4:Tm3+@LiYF4 core@shell nanoparticles can be perfect alternatives for the most commonly studied upconverting NPs based on the NaYF4 host compound and are good candidates for biomedical applications.
Collapse
Affiliation(s)
- Adrian Drozdowski
- Department of Rare Earths, Faculty of Chemistry, Adam Mickiewicz University in Poznań, Uniwersytetu Poznańskiego 8, Poznań 61-614, Poland
| | - Natalia Jurga
- Department of Rare Earths, Faculty of Chemistry, Adam Mickiewicz University in Poznań, Uniwersytetu Poznańskiego 8, Poznań 61-614, Poland
| | - Dominika Przybylska
- Department of Rare Earths, Faculty of Chemistry, Adam Mickiewicz University in Poznań, Uniwersytetu Poznańskiego 8, Poznań 61-614, Poland
| | - Julian C Brandmeier
- Department of Biochemistry, Faculty of Science, Masaryk University, Kamenice 5, Brno 625 00, Czech Republic; Institute of Analytical Chemistry, Chemo- and Biosensors, University of Regensburg, Regensburg 93053, Germany
| | - Zdeněk Farka
- Department of Biochemistry, Faculty of Science, Masaryk University, Kamenice 5, Brno 625 00, Czech Republic
| | - Hans H Gorris
- Department of Biochemistry, Faculty of Science, Masaryk University, Kamenice 5, Brno 625 00, Czech Republic
| | - Tomasz Grzyb
- Department of Rare Earths, Faculty of Chemistry, Adam Mickiewicz University in Poznań, Uniwersytetu Poznańskiego 8, Poznań 61-614, Poland.
| |
Collapse
|
9
|
Nahorniak M, Oleksa V, Vasylyshyn T, Pop-Georgievski O, Rydvalová E, Filipová M, Horák D. Cytotoxicity Evaluation of Photosensitizer-Conjugated Hexagonal Upconverting Nanoparticles. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:nano13091535. [PMID: 37177080 PMCID: PMC10180129 DOI: 10.3390/nano13091535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 04/28/2023] [Accepted: 05/02/2023] [Indexed: 05/15/2023]
Abstract
In this report, we synthesized hexagonal NaYF4:Yb,Er upconverting nanoparticles (UCNPs) of 171 nm in size with a narrow particle size distribution. To address their colloidal stabi-lity in aqueous media and to incorporate a photosensitizer that can produce reactive singlet oxygen (1O2) to kill tumor cells, UCNPs were conjugated with 6-bromohexanoic acid-functionalized Rose Bengal (RB) and coated with PEG-alendronate (PEG-Ale). The particles were thoroughly characterized by transmission electron microscopy, dynamic light scattering, ATR FTIR, X-ray photoelectron spectroscopy, thermogravimetric analysis, and spectrofluorometry, and 1O2 formation was detected using a 9,10-diphenylanthracene spectrophotometric probe. Cytotoxicity determination on rat mesenchymal stem cells by using the MTT assay showed that neutralization of the large positive surface charge of neat UCNPs with PEG-Ale and the bound RB sensitizer significantly reduced the concentration-dependent cytotoxicity. The presented strategy shows great potential for the use of these particles as a novel agent for the photodynamic therapy of tumors.
Collapse
Affiliation(s)
- Mykhailo Nahorniak
- Institute of Macromolecular Chemistry, Czech Academy of Sciences, 160 00 Prague, Czech Republic
| | - Viktoriia Oleksa
- Institute of Macromolecular Chemistry, Czech Academy of Sciences, 160 00 Prague, Czech Republic
| | - Taras Vasylyshyn
- Institute of Macromolecular Chemistry, Czech Academy of Sciences, 160 00 Prague, Czech Republic
| | - Ognen Pop-Georgievski
- Institute of Macromolecular Chemistry, Czech Academy of Sciences, 160 00 Prague, Czech Republic
| | - Eliška Rydvalová
- Institute of Macromolecular Chemistry, Czech Academy of Sciences, 160 00 Prague, Czech Republic
| | - Marcela Filipová
- Institute of Macromolecular Chemistry, Czech Academy of Sciences, 160 00 Prague, Czech Republic
| | - Daniel Horák
- Institute of Macromolecular Chemistry, Czech Academy of Sciences, 160 00 Prague, Czech Republic
| |
Collapse
|
10
|
Rose Bengal-Modified Upconverting Nanoparticles: Synthesis, Characterization, and Biological Evaluation. Life (Basel) 2022; 12:life12091383. [PMID: 36143419 PMCID: PMC9502678 DOI: 10.3390/life12091383] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 08/26/2022] [Accepted: 08/29/2022] [Indexed: 12/02/2022] Open
Abstract
High-quality upconverting NaYF4:Yb3+,Er3+ nanoparticles (UCNPs; 26 nm in diameter) based on lanthanides were synthesized by a high-temperature coprecipitation method. The particles were modified by bisphosphonate-terminated poly(ethylene glycol) (PEG) and Rose Bengal (RB) photosensitizer. The particles were thoroughly characterized using transmission electron microscopy, dynamic light scattering, thermogravimetric analysis, FTIR, and X-ray photoelectron and upconversion luminescence spectroscopy in terms of morphology, hydrodynamic size, composition, and energy transfer to the photosensitizer. Moreover, the singlet oxygen generation from RB-containing UCNPs was investigated using 9,10-diphenylanthracene probe under 980 nm excitation. The cytotoxicity of UCNPs before and after conjugation with RB was evaluated on highly sensitive rat mesenchymal stem cells (rMSCs) and significant differences were found. Correspondingly, consi-derable variations in viability were revealed between the irradiated and non-irradiated rat glioma cell line (C6) exposed to RB-conjugated UCNPs. While the viability of rMSCs was not affected by the presence of UCNPs themselves, the cancer C6 cells were killed after the irradiation at 980 nm due to the reactive oxygen species (ROS) production, thus suggesting the potential of RB-conjugated PEG-modified UCNPs for applications in photodynamic therapy of cancer.
Collapse
|
11
|
Kuusinen S, Ekman M, Raiko K, Hannula H, Lyytikäinen A, Lahtinen S, Soukka T. Complement C1q in plasma induces nonspecific binding of poly(acrylic acid)-coated upconverting nanoparticle antibody conjugates. Anal Bioanal Chem 2022; 414:3741-3749. [PMID: 35332370 PMCID: PMC9035425 DOI: 10.1007/s00216-022-04021-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 03/09/2022] [Accepted: 03/14/2022] [Indexed: 11/11/2022]
Abstract
Upconverting nanoparticles are attractive reporters for immunoassays, because their high specific activity and lack of autofluorescence background enable their detection at extremely low concentrations. However, the sensitivity achieved with heterogeneous sandwich immunoassays using nanoparticle reporters is generally limited by the nonspecific binding of nanoparticle antibody conjugates to solid supports. In this study, we characterized plasma components associated with elevated nonspecific binding of poly(acrylic acid)-coated upconverting nanoparticles in heterogeneous two-step sandwich immunoassays. Plasma was consecutively fractionated using various chromatographic methods by selecting after each step the fractions producing the highest nonspecific binding of upconverting nanoparticle conjugates in an immunoassay for cardiac troponin I. Finally, the proteins in the fractions associated with highest amount of nonspecific binding were separated by gel electrophoresis and identified with mass spectrometry. The results indicated that complement component C1q was present in the fractions associated with the highest signal from nonspecific binding. The interference was not limited to only poly(acrylic acid)-coated nanoparticles or certain antibody combination, but occurred more generally. The interference was removed by increasing the ionic strength of the assay buffer in the sample incubation step or by adding a negatively charged blocker to bind on positively charged C1q, suggesting that the interaction is mostly electrostatic. Hence, we assume that the interference is likely to affect various negatively charged nanoparticles. The identification of complement component C1q as the major interfering protein allows for more rational design of countermeasures in future immunoassay development utilizing nanoparticle reporters.
Collapse
Affiliation(s)
- Saara Kuusinen
- Department of Life Technologies, Faculty of Technology, University of Turku, Kiinamyllynkatu 10, 20520, Turku, Finland.
| | - Miikka Ekman
- Department of Life Technologies, Faculty of Technology, University of Turku, Kiinamyllynkatu 10, 20520, Turku, Finland
| | - Kirsti Raiko
- Department of Life Technologies, Faculty of Technology, University of Turku, Kiinamyllynkatu 10, 20520, Turku, Finland
| | - Heidi Hannula
- Department of Life Technologies, Faculty of Technology, University of Turku, Kiinamyllynkatu 10, 20520, Turku, Finland
| | - Annika Lyytikäinen
- Department of Life Technologies, Faculty of Technology, University of Turku, Kiinamyllynkatu 10, 20520, Turku, Finland
| | - Satu Lahtinen
- Department of Life Technologies, Faculty of Technology, University of Turku, Kiinamyllynkatu 10, 20520, Turku, Finland
| | - Tero Soukka
- Department of Life Technologies, Faculty of Technology, University of Turku, Kiinamyllynkatu 10, 20520, Turku, Finland
| |
Collapse
|
12
|
Jethva P, Momin M, Khan T, Omri A. Lanthanide-Doped Upconversion Luminescent Nanoparticles-Evolving Role in Bioimaging, Biosensing, and Drug Delivery. MATERIALS (BASEL, SWITZERLAND) 2022; 15:2374. [PMID: 35407706 PMCID: PMC8999924 DOI: 10.3390/ma15072374] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 03/19/2022] [Accepted: 03/21/2022] [Indexed: 12/17/2022]
Abstract
Upconverting luminescent nanoparticles (UCNPs) are "new generation fluorophores" with an evolving landscape of applications in diverse industries, especially life sciences and healthcare. The anti-Stokes emission accompanied by long luminescence lifetimes, multiple absorptions, emission bands, and good photostability, enables background-free and multiplexed detection in deep tissues for enhanced imaging contrast. Their properties such as high color purity, high resistance to photobleaching, less photodamage to biological samples, attractive physical and chemical stability, and low toxicity are affected by the chemical composition; nanoparticle crystal structure, size, shape and the route; reagents; and procedure used in their synthesis. A wide range of hosts and lanthanide ion (Ln3+) types have been used to control the luminescent properties of nanosystems. By modification of these properties, the performance of UCNPs can be designed for anticipated end-use applications such as photodynamic therapy (PDT), high-resolution displays, bioimaging, biosensors, and drug delivery. The application landscape of inorganic nanomaterials in biological environments can be expanded by bridging the gap between nanoparticles and biomolecules via surface modifications and appropriate functionalization. This review highlights the synthesis, surface modification, and biomedical applications of UCNPs, such as bioimaging and drug delivery, and presents the scope and future perspective on Ln-doped UCNPs in biomedical applications.
Collapse
Affiliation(s)
- Palak Jethva
- SVKM’s Dr. Bhanuben Nanavati College of Pharmacy, Mumbai 400 056, India;
| | - Munira Momin
- Department of Pharmaceutics, SVKM’s Dr. Bhanuben Nanavati College of Pharmacy, Mumbai 400 056, India;
| | - Tabassum Khan
- Department of Pharmaceutical Chemistry, SVKM’s Dr. Bhanuben Nanavati College of Pharmacy, Mumbai 400 056, India
| | - Abdelwahab Omri
- The Novel Drug & Vaccine Delivery Systems Facility, Department of Chemistry and Biochemistry, Laurentian University, Sudbury, ON P3E2C6, Canada
| |
Collapse
|
13
|
Hlaváček A, Farka Z, Mickert MJ, Kostiv U, Brandmeier JC, Horák D, Skládal P, Foret F, Gorris HH. Bioconjugates of photon-upconversion nanoparticles for cancer biomarker detection and imaging. Nat Protoc 2022; 17:1028-1072. [PMID: 35181766 DOI: 10.1038/s41596-021-00670-7] [Citation(s) in RCA: 55] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Accepted: 11/19/2021] [Indexed: 02/07/2023]
Abstract
The detection of cancer biomarkers in histological samples and blood is of paramount importance for clinical diagnosis. Current methods are limited in terms of sensitivity, hindering early detection of disease. We have overcome the shortcomings of currently available staining and fluorescence labeling methods by taking an integrative approach to establish photon-upconversion nanoparticles (UCNP) as a powerful platform for cancer detection. These nanoparticles are readily synthesized in different sizes to yield efficient and tunable short-wavelength light emission under near-infrared excitation, which eliminates optical background interference of the specimen. Here we present a protocol for the synthesis of UCNPs by high-temperature co-precipitation or seed-mediated growth by thermal decomposition, surface modification by silica or poly(ethylene glycol) that renders the particles resistant to nonspecific binding, and the conjugation of streptavidin or antibodies for biological detection. To detect blood-based biomarkers, we present an upconversion-linked immunosorbent assay for the analog and digital detection of the cancer marker prostate-specific antigen. When applied to immunocytochemistry analysis, UCNPs enable the detection of the breast cancer marker human epidermal growth factor receptor 2 with a signal-to-background ratio 50-fold higher than conventional fluorescent labels. UCNP synthesis takes 4.5 d, the preparation of the antibody-silica-UCNP conjugate takes 3 d, the streptavidin-poly(ethylene glycol)-UCNP conjugate takes 2-3 weeks, upconversion-linked immunosorbent assay takes 2-4 d and immunocytochemistry takes 8-10 h. The procedures can be performed after standard laboratory training in nanomaterials research.
Collapse
Affiliation(s)
- Antonín Hlaváček
- Institute of Analytical Chemistry of the Czech Academy of Sciences, Brno, Czech Republic.
| | - Zdeněk Farka
- Department of Biochemistry, Faculty of Science, Masaryk University, Brno, Czech Republic. .,CEITEC MU, Masaryk University, Brno, Czech Republic.
| | | | - Uliana Kostiv
- Institute of Macromolecular Chemistry of the Czech Academy of Sciences, Prague, Czech Republic
| | - Julian C Brandmeier
- Department of Biochemistry, Faculty of Science, Masaryk University, Brno, Czech Republic.,Institute of Analytical Chemistry, Chemo- and Biosensors, University of Regensburg, Regensburg, Germany
| | - Daniel Horák
- Institute of Macromolecular Chemistry of the Czech Academy of Sciences, Prague, Czech Republic
| | - Petr Skládal
- Department of Biochemistry, Faculty of Science, Masaryk University, Brno, Czech Republic.,CEITEC MU, Masaryk University, Brno, Czech Republic
| | - František Foret
- Institute of Analytical Chemistry of the Czech Academy of Sciences, Brno, Czech Republic
| | - Hans H Gorris
- Department of Biochemistry, Faculty of Science, Masaryk University, Brno, Czech Republic.
| |
Collapse
|
14
|
Lin Q, Guo Q, Zhu M, Zhang J, Chen B, Wu T, Jiang W, Tang W. Application of Nanomedicine in Inner Ear Diseases. Front Bioeng Biotechnol 2022; 9:809443. [PMID: 35223817 PMCID: PMC8873591 DOI: 10.3389/fbioe.2021.809443] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Accepted: 12/29/2021] [Indexed: 11/13/2022] Open
Abstract
The treatment of inner ear disorders always remains a challenge for researchers. The presence of various physiological barriers, primarily the blood–labyrinth barrier (BLB), limits the accessibility of the inner ear and hinders the efficacy of various drug therapies. Yet despite recent advances in the cochlea for repair and regeneration, there are currently no pharmacological or biological interventions for hearing loss. Current research focuses on the localized drug-, gene-, and cell-based therapies. Drug delivery based on nanotechnology represents an innovative strategy to improve inner ear treatments. Materials with specific nanostructures not only exhibit a unique ability to encapsulate and transport therapeutics to the inner ear but also endow specific targeting properties to auditory hair cells as well as the stabilization and sustained drug release. Along with this, some alternative routes, like intratympanic drug delivery, can also offer a better means to access the inner ear without exposure to the BLB. This review discusses a variety of nano-based drug delivery systems to the ear for treating inner ear diseases. The main factors affecting the curative efficacy of nanomaterials are also discussed. With a deeper understanding of the link between these crucial factors and the clinical effect of nanomaterials, it paves the way for the optimization of the therapeutic activity of nanocarriers.
Collapse
Affiliation(s)
- Qianyu Lin
- Department of Molecular Pathology, Application Center for Precision Medicine, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Center for Precision Medicine, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Qiong Guo
- Department of Molecular Pathology, Application Center for Precision Medicine, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Center for Precision Medicine, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Mingchao Zhu
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing, China
| | - Juanli Zhang
- Henan Institute of Medical Device Inspection, Zhengzhou, China
| | - Bei Chen
- Department of Otology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Tingting Wu
- Department of Molecular Pathology, Application Center for Precision Medicine, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Center for Precision Medicine, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Wei Jiang
- Department of Molecular Pathology, Application Center for Precision Medicine, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Center for Precision Medicine, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, China
- *Correspondence: Wei Jiang, ; Wenxue Tang,
| | - Wenxue Tang
- Department of Molecular Pathology, Application Center for Precision Medicine, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Center for Precision Medicine, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, China
- *Correspondence: Wei Jiang, ; Wenxue Tang,
| |
Collapse
|
15
|
Oleksa V, Macková H, Engstová H, Patsula V, Shapoval O, Velychkivska N, Ježek P, Horák D. Poly(N,N-dimethylacrylamide)-coated upconverting NaYF 4:Yb,Er@NaYF 4:Nd core-shell nanoparticles for fluorescent labeling of carcinoma cells. Sci Rep 2021; 11:21373. [PMID: 34725396 PMCID: PMC8560758 DOI: 10.1038/s41598-021-00845-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Accepted: 10/19/2021] [Indexed: 01/24/2023] Open
Abstract
Upconverting luminescent lanthanide-doped nanoparticles (UCNP) belong to promising new materials that absorb infrared light able to penetrate in the deep tissue level, while emitting photons in the visible or ultraviolet region, which makes them favorable for bioimaging and cell labeling. Here, we have prepared upconverting NaYF4:Yb,Er@NaYF4:Nd core-shell nanoparticles, which were coated with copolymers of N,N-dimethylacrylamide (DMA) and 2-(acryloylamino)-2-methylpropane-1-sulfonic acid (AMPS) or tert-butyl [2-(acryloylamino)ethyl]carbamate (AEC-Boc) with negative or positive charges, respectively. The copolymers were synthesized by a reversible addition-fragmentation chain transfer (RAFT) polymerization, reaching Mn ~ 11 kDa and containing ~ 5 mol% of reactive groups. All copolymers contained bisphosphonate end-groups to be firmly anchored on the surface of NaYF4:Yb,Er@NaYF4:Nd core-shell nanoparticles. To compare properties of polymer coatings, poly(ethylene glycol)-coated and neat UCNP were used as a control. UCNP with various charges were then studied as labels of carcinoma cells, including human hepatocellular carcinoma HepG2, human cervical cancer HeLa, and rat insulinoma INS-1E cells. All the particles proved to be biocompatible (nontoxic); depending on their ξ-potential, the ability to penetrate the cells differed. This ability together with the upconversion luminescence are basic prerequisites for application of particles in photodynamic therapy (PDT) of various tumors, where emission of nanoparticles in visible light range at ~ 650 nm excites photosensitizer.
Collapse
Affiliation(s)
- Viktoriia Oleksa
- Institute of Macromolecular Chemistry of the Czech Academy of Sciences, Heyrovského nám. 2, 162 06, Prague 6, Czech Republic
- Department of Physical and Macromolecular Chemistry, Faculty of Science, Charles University, Hlavova 8, 128 40, Prague 2, Czech Republic
| | - Hana Macková
- Institute of Macromolecular Chemistry of the Czech Academy of Sciences, Heyrovského nám. 2, 162 06, Prague 6, Czech Republic
| | - Hana Engstová
- Institute of Physiology of the Czech Academy of Sciences, Vídeňská 1083, 142 20, Prague 4, Czech Republic
| | - Vitalii Patsula
- Institute of Macromolecular Chemistry of the Czech Academy of Sciences, Heyrovského nám. 2, 162 06, Prague 6, Czech Republic
| | - Oleksandr Shapoval
- Institute of Macromolecular Chemistry of the Czech Academy of Sciences, Heyrovského nám. 2, 162 06, Prague 6, Czech Republic
| | - Nadiia Velychkivska
- Institute of Macromolecular Chemistry of the Czech Academy of Sciences, Heyrovského nám. 2, 162 06, Prague 6, Czech Republic
| | - Petr Ježek
- Institute of Physiology of the Czech Academy of Sciences, Vídeňská 1083, 142 20, Prague 4, Czech Republic
| | - Daniel Horák
- Institute of Macromolecular Chemistry of the Czech Academy of Sciences, Heyrovského nám. 2, 162 06, Prague 6, Czech Republic.
| |
Collapse
|
16
|
Shatan AB, Patsula V, Dydowiczová A, Gunár K, Velychkivska N, Hromádková J, Petrovský E, Horák D. Cationic Polymer-Coated Magnetic Nanoparticles with Antibacterial Properties: Synthesis and In Vitro Characterization. Antibiotics (Basel) 2021; 10:1077. [PMID: 34572658 PMCID: PMC8471980 DOI: 10.3390/antibiotics10091077] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 08/31/2021] [Accepted: 09/01/2021] [Indexed: 12/04/2022] Open
Abstract
Uniformly sized magnetite nanoparticles (Dn = 16 nm) were prepared by a thermal decomposition of Fe(III) oleate in octadec-1-ene and stabilized by oleic acid. The particles were coated with Sipomer PAM-200 containing both phosphate and methacrylic groups available for the attachment to the iron oxide and at the same time enabling (co)polymerization of 2-(dimethylamino)ethyl methacrylate and/or 2-tert-butylaminoethyl methacrylate at two molar ratios. The poly[2-(dimethylamino)ethyl methacrylate] (PDMAEMA) and poly[2-(dimethylamino)ethyl methacrylate-co-2-tert-butylaminoethyl methacrylate] [P(DMAEMA-TBAEMA)] polymers and the particles were characterized by 1H NMR spectroscopy, size-exclusion chromatography, transmission electron microscopy, dynamic light scattering, thermogravimetric analysis, magnetometry, and ATR FTIR and atomic absorption spectroscopy. The antimicrobial effect of cationic polymer-coated magnetite nanoparticles tested on both Escherichia coli and Staphylococcus aureus bacteria was found to be time- and dose-responsive. The P(DMAEMA-TBAEMA)-coated magnetite particles possessed superior biocidal properties compared to those of P(DMAEMA)-coated one.
Collapse
Affiliation(s)
- Anastasiia B. Shatan
- Institute of Macromolecular Chemistry, Czech Academy of Sciences, Heyrovského nám. 2, 162 06 Prague 6, Czech Republic; (A.B.S.); (V.P.); (A.D.); (K.G.); (N.V.); (J.H.)
- Department of Physical and Macromolecular Chemistry, Faculty of Science, Charles University, Hlavova 8, 128 40 Prague 2, Czech Republic
| | - Vitalii Patsula
- Institute of Macromolecular Chemistry, Czech Academy of Sciences, Heyrovského nám. 2, 162 06 Prague 6, Czech Republic; (A.B.S.); (V.P.); (A.D.); (K.G.); (N.V.); (J.H.)
| | - Aneta Dydowiczová
- Institute of Macromolecular Chemistry, Czech Academy of Sciences, Heyrovského nám. 2, 162 06 Prague 6, Czech Republic; (A.B.S.); (V.P.); (A.D.); (K.G.); (N.V.); (J.H.)
| | - Kristýna Gunár
- Institute of Macromolecular Chemistry, Czech Academy of Sciences, Heyrovského nám. 2, 162 06 Prague 6, Czech Republic; (A.B.S.); (V.P.); (A.D.); (K.G.); (N.V.); (J.H.)
| | - Nadiia Velychkivska
- Institute of Macromolecular Chemistry, Czech Academy of Sciences, Heyrovského nám. 2, 162 06 Prague 6, Czech Republic; (A.B.S.); (V.P.); (A.D.); (K.G.); (N.V.); (J.H.)
| | - Jiřina Hromádková
- Institute of Macromolecular Chemistry, Czech Academy of Sciences, Heyrovského nám. 2, 162 06 Prague 6, Czech Republic; (A.B.S.); (V.P.); (A.D.); (K.G.); (N.V.); (J.H.)
| | - Eduard Petrovský
- Institute of Geophysics, Czech Academy of Sciences, Boční II/1401, 141 31 Prague 4, Czech Republic;
| | - Daniel Horák
- Institute of Macromolecular Chemistry, Czech Academy of Sciences, Heyrovského nám. 2, 162 06 Prague 6, Czech Republic; (A.B.S.); (V.P.); (A.D.); (K.G.); (N.V.); (J.H.)
| |
Collapse
|
17
|
Monteiro MJ, Cunningham MF. Polymer Colloids: Synthesis Fundamentals to Applications. Biomacromolecules 2021; 21:4377-4378. [PMID: 33161722 DOI: 10.1021/acs.biomac.0c01462] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
This special issue of Biomacromolecules highlights research from The International Polymer Colloid Group (IPCG), which was founded in 1972 as a forum for the exchange of ideas and emerging research activities for scientists and engineers from both academia and industry who study or use polymer colloids. The increasing relevance of polymeric structures with colloidal dimensions to biomacromolecules research provided the impetus for organizing this special issue. The IPCG is composed of over 120 researchers from over 20 countries who are elected to membership. Activities comprise annual symposia including a biennial International Polymer Colloid Group Research Conference and a semiannual newsletter that incorporates a summary of recent (including unpublished) research results from our members.
Collapse
Affiliation(s)
- Michael J Monteiro
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Michael F Cunningham
- Department of Chemical Engineering, Queen's University, Kinston, Ontario, Canada K7L 3N6
| |
Collapse
|
18
|
Kostiv U, Natile MM, Jirák D, Půlpánová D, Jiráková K, Vosmanská M, Horák D. PEG-Neridronate-Modified NaYF 4:Gd 3+,Yb 3+,Tm 3+/NaGdF 4 Core-Shell Upconverting Nanoparticles for Bimodal Magnetic Resonance/Optical Luminescence Imaging. ACS OMEGA 2021; 6:14420-14429. [PMID: 34124464 PMCID: PMC8190901 DOI: 10.1021/acsomega.1c01313] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Accepted: 05/05/2021] [Indexed: 05/04/2023]
Abstract
Upconverting nanoparticles are attracting extensive interest as a multimodal imaging tool. In this work, we report on the synthesis and characterization of gadolinium-enriched upconverting nanoparticles for bimodal magnetic resonance and optical luminescence imaging. NaYF4:Gd3+,Yb3+,Tm3+ core upconverting nanoparticles were obtained by a thermal coprecipitation of lanthanide oleate precursors in the presence of oleic acid as a stabilizer. With the aim of improving the upconversion emission and increasing the amount of Gd3+ ions on the nanoparticle surface, a 2.5 nm NaGdF4 shell was grown by the epitaxial layer-by-layer strategy, resulting in the 26 nm core-shell nanoparticles. Both core and core-shell nanoparticles were coated with poly(ethylene glycol) (PEG)-neridronate (PEG-Ner) to have stable and well-dispersed upconverting nanoparticles in a biological medium. FTIR spectroscopy and thermogravimetric analysis indicated the presence of ∼20 wt % of PEG-Ner on the nanoparticle surface. The addition of inert NaGdF4 shell resulted in a total 26-fold enhancement of the emission under 980 nm excitation and also affected the T 1 and T 2 relaxation times. Both r 1 and r 2 relaxivities of PEG-Ner-modified nanoparticles were much higher compared to those of non-PEGylated particles, thus manifesting their potential as a diagnostic tool for magnetic resonance imaging. Together with the enhanced luminescence efficiency, upconverting nanoparticles might represent an efficient probe for bimodal in vitro and in vivo imaging of cells in regenerative medicine, drug delivery, and/or photodynamic therapy.
Collapse
Affiliation(s)
- Uliana Kostiv
- Department
of Polymer Particles, Institute of Macromolecular
Chemistry, Czech Academy of Sciences, Heyrovského nám. 2, Prague 6, Prague 162 06, Czech Republic
| | - Marta Maria Natile
- Institute
of Condensed Matter Chemistry and Technologies for Energy, National
Research Council (CNR) and Department of Chemical Sciences, University of Padova, via F. Marzolo 1, Padova 35131, Italy
| | - Daniel Jirák
- Radiodiagnostic
and Interventional Radiology Department, Institute for Clinical and Experimental Medicine, Vídeňská 1958/9, Prague 4, Prague 140 21, Czech Republic
- Faculty
of Health Studies, Technical University
of Liberec, Studentská
1402/2, Liberec 461 17, Czech Republic
| | - Denisa Půlpánová
- Faculty
of Health Studies, Technical University
of Liberec, Studentská
1402/2, Liberec 461 17, Czech Republic
| | - Klára Jiráková
- Department
of Histology and Embryology, Third Faculty of Medicine, Charles University, Ruská 87, Prague 10, Prague 100 00, Czech Republic
| | - Magda Vosmanská
- University
of Chemistry and Technology Prague, Technická 5, Prague 6, Prague 166 28, Czech Republic
| | - Daniel Horák
- Department
of Polymer Particles, Institute of Macromolecular
Chemistry, Czech Academy of Sciences, Heyrovského nám. 2, Prague 6, Prague 162 06, Czech Republic
| |
Collapse
|
19
|
Vozlič M, Černič T, Gyergyek S, Majaron B, Ponikvar-Svet M, Kostiv U, Horák D, Lisjak D. Formation of phosphonate coatings for improved chemical stability of upconverting nanoparticles under physiological conditions. Dalton Trans 2021; 50:6588-6597. [PMID: 33899872 DOI: 10.1039/d1dt00304f] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Upconverting nanoparticles (UCNPs) are being extensively investigated for applications in bioimaging because of their ability to emit ultraviolet, visible, and near-infrared light. NaYF4 is one of the most suitable host matrices for producing high-intensity upconversion fluorescence; however, UCNPs based on NaYF4 are not chemically stable in aqueous media. To prevent dissolution, their surfaces should be modified. We studied the formation of protective phosphonate coatings made of ethylenediamine(tetramethylenephosphonic acid), alendronic acid, and poly(ethylene glycol)-neridronate on cubic NaYF4 nanoparticles and hexagonal Yb3+,Er3+-doped upconverting NaYF4 nanoparticles (β-UCNPs). The effects of synthesis temperature and ultrasonic agitation on the quality of the coatings were studied. The formation of the coatings was investigated by transmission electron microscopy, zeta-potential measurements, and infrared spectroscopy. The quality of the phosphonate coatings was examined with respect to preventing the dissolution of the NPs in phosphate-buffered saline (PBS). The dissolution tests were carried out under physiological conditions (37 °C and pH 7.4) for 3 days and were followed by measurements of the dissolved fluoride with an ion-selective electrode. We found that the protection of the phosphonate coatings can be significantly increased by synthesizing them at 80 °C. At the same time, the coatings obtained at this temperature suppressed the surface quenching of the upconversion fluorescence in β-UCNPs.
Collapse
Affiliation(s)
- Maša Vozlič
- JoŽef Stefan Institute, Department for Materials Synthesis, Jamova 39, 1000 Ljubljana, Slovenia and Faculty of Pharmacy, University of Ljubljana, Aškerčeva 7, 1000 Ljubljana, Slovenia.
| | - Tina Černič
- JoŽef Stefan Institute, Department for Materials Synthesis, Jamova 39, 1000 Ljubljana, Slovenia and JoŽef Stefan International Postgraduate School, Jamova 39, 1000 Ljubljana, Slovenia
| | - Sašo Gyergyek
- JoŽef Stefan Institute, Department for Materials Synthesis, Jamova 39, 1000 Ljubljana, Slovenia
| | - Boris Majaron
- JoŽef Stefan Institute, Department of Complex Matter, Jamova 39, 1000 Ljubljana, Slovenia and Faculty of Mathematics and Physics, University of Ljubljana, Jadranska 19, 1000 Ljubljana, Slovenia
| | - Maja Ponikvar-Svet
- JoŽef Stefan Institute, Department of Inorganic Chemistry and Technology, Jamova 39, 1000 Ljubljana, Slovenia
| | - Uliana Kostiv
- Institute of Macromolecular Chemistry of the Czech Academy of Sciences, Heyrovského nám. 2, 162 06 Prague 6, Czech Republic
| | - Daniel Horák
- Institute of Macromolecular Chemistry of the Czech Academy of Sciences, Heyrovského nám. 2, 162 06 Prague 6, Czech Republic
| | - Darja Lisjak
- JoŽef Stefan International Postgraduate School, Jamova 39, 1000 Ljubljana, Slovenia
| |
Collapse
|
20
|
Peltomaa R, Benito-Peña E, Gorris HH, Moreno-Bondi MC. Biosensing based on upconversion nanoparticles for food quality and safety applications. Analyst 2021; 146:13-32. [PMID: 33205784 DOI: 10.1039/d0an01883j] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Food safety and quality regulations inevitably call for sensitive and accurate analytical methods to detect harmful contaminants in food and to ensure safe food for the consumer. Both novel and well-established biorecognition elements, together with different transduction schemes, enable the simple and rapid analysis of various food contaminants. Upconversion nanoparticles (UCNPs) are inorganic nanocrystals that convert near-infrared light into shorter wavelength emission. This unique photophysical feature, along with narrow emission bandwidths and large anti-Stokes shift, render UCNPs excellent optical labels for biosensing because they can be detected without optical background interferences from the sample matrix. In this review, we show how this exciting technique has evolved into biosensing platforms for food quality and safety monitoring and highlight recent applications in the field.
Collapse
Affiliation(s)
- Riikka Peltomaa
- Department of Biochemistry/Biotechnology, University of Turku, Kiinamyllynkatu 10, 20520, Turku, Finland
| | | | | | | |
Collapse
|