1
|
Liu Y, Chen W, Mu W, Zhou Q, Liu J, Li B, Liu T, Yu T, Hu N, Chen X. Physiological Microenvironment Dependent Self-Cross-Linking of Multifunctional Nanohybrid for Prolonged Antibacterial Therapy via Synergistic Chemodynamic-Photothermal-Biological Processes. NANO LETTERS 2024; 24:6906-6915. [PMID: 38829311 DOI: 10.1021/acs.nanolett.4c00671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2024]
Abstract
Herein, a multifunctional nanohybrid (PL@HPFTM nanoparticles) was fabricated to perform the integration of chemodynamic therapy, photothermal therapy, and biological therapy over the long term at a designed location for continuous antibacterial applications. The PL@HPFTM nanoparticles consisted of a polydopamine/hemoglobin/Fe2+ nanocomplex with comodification of tetrazole/alkene groups on the surface as well as coloading of antimicrobial peptides and luminol in the core. During therapy, the PL@HPFTM nanoparticles would selectively cross-link to surrounding bacteria via tetrazole/alkene cycloaddition under chemiluminescence produced by the reaction between luminol and overexpressed H2O2 at the infected area. The resulting PL@HPFTM network not only significantly damaged bacteria by Fe2+-catalyzed ROS production, effective photothermal conversion, and sustained release of antimicrobial peptides but dramatically enhanced the retention time of these therapeutic agents for prolonged antibacterial therapy. Both in vitro and in vivo results have shown that our PL@HPFTM nanoparticles have much higher bactericidal efficiency and remarkably longer periods of validity than free antibacterial nanoparticles.
Collapse
Affiliation(s)
- Yi Liu
- College of Chemical Engineering, Sichuan University of Science & Engineering, Zigong 643000, People's Republic of China
- Institute of Precision Medicine, Zigong Academy of Big Data and Artificial Intelligence in Medical Science, Zigong Fourth People's Hospital, Zigong 643000, People's Republic of China
- Department of Chemical Engineering, Shaanxi Key Laboratory of Energy Chemical Process Intensification, Institution of Polymer Science in Chemical Engineering, School of Chemical Engineering and Technology, Xi'an Jiao Tong University, Xi'an 710049, People's Republic of China
- Sichuan Clinical Research Center for Clinical Laboratory, Zigong Fourth People's Hospital, Zigong 643000, People's Republic of China
| | - Wei Chen
- Institute of Precision Medicine, Zigong Academy of Big Data and Artificial Intelligence in Medical Science, Zigong Fourth People's Hospital, Zigong 643000, People's Republic of China
- Department of Urology, Zigong Fourth People's Hospital, Zigong 643000, People's Republic of China
- Sichuan Clinical Research Center for Clinical Laboratory, Zigong Fourth People's Hospital, Zigong 643000, People's Republic of China
| | - Wenyun Mu
- Department of Chemical Engineering, Shaanxi Key Laboratory of Energy Chemical Process Intensification, Institution of Polymer Science in Chemical Engineering, School of Chemical Engineering and Technology, Xi'an Jiao Tong University, Xi'an 710049, People's Republic of China
| | - Qian Zhou
- College of Chemical Engineering, Sichuan University of Science & Engineering, Zigong 643000, People's Republic of China
- Department of Chemical Engineering, Shaanxi Key Laboratory of Energy Chemical Process Intensification, Institution of Polymer Science in Chemical Engineering, School of Chemical Engineering and Technology, Xi'an Jiao Tong University, Xi'an 710049, People's Republic of China
| | - Jie Liu
- Department of Chemical Engineering, Shaanxi Key Laboratory of Energy Chemical Process Intensification, Institution of Polymer Science in Chemical Engineering, School of Chemical Engineering and Technology, Xi'an Jiao Tong University, Xi'an 710049, People's Republic of China
| | - Baixue Li
- College of Chemical Engineering, Sichuan University of Science & Engineering, Zigong 643000, People's Republic of China
- Department of Chemical Engineering, Shaanxi Key Laboratory of Energy Chemical Process Intensification, Institution of Polymer Science in Chemical Engineering, School of Chemical Engineering and Technology, Xi'an Jiao Tong University, Xi'an 710049, People's Republic of China
| | - Tao Liu
- Department of Chemical Engineering, Shaanxi Key Laboratory of Energy Chemical Process Intensification, Institution of Polymer Science in Chemical Engineering, School of Chemical Engineering and Technology, Xi'an Jiao Tong University, Xi'an 710049, People's Republic of China
| | - Tingting Yu
- College of Chemical Engineering, Sichuan University of Science & Engineering, Zigong 643000, People's Republic of China
| | - Nan Hu
- College of Chemical Engineering, Sichuan University of Science & Engineering, Zigong 643000, People's Republic of China
| | - Xin Chen
- Department of Chemical Engineering, Shaanxi Key Laboratory of Energy Chemical Process Intensification, Institution of Polymer Science in Chemical Engineering, School of Chemical Engineering and Technology, Xi'an Jiao Tong University, Xi'an 710049, People's Republic of China
| |
Collapse
|
2
|
Chen Y, Qian H, Peng D, Jiang Y, Liu Q, Tan Y, Feng L, Cheng B, Li G. Antimicrobial peptide-modified AIE visual composite wound dressing for promoting rapid healing of infected wounds. Front Bioeng Biotechnol 2024; 11:1338172. [PMID: 38283168 PMCID: PMC10811172 DOI: 10.3389/fbioe.2023.1338172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 12/18/2023] [Indexed: 01/30/2024] Open
Abstract
Wound infection is a major problem faced during wound healing. Therefore, it is necessary to develop wound dressings with excellent antimicrobial properties. Here, a smart response system of PVA-TPE/HA-AMP/SF/ALG wound dressing was prepared by a combination of chemical cross-linking and freeze-drying methods. We grafted AMP onto HA to endow the wound dressing with bacterial resistance and slow release of AMP. At the same time, the system detects bacterial activity in real time for precise antimicrobial activity (through the use of PVA-TPE) and modulates inflammation to reduce bacterial infection (through the use of AMP). In addition, the PVA-TPE/HA-AMP/SF/ALG wound dressing has a good three-dimensional mesh structure, which promotes cell proliferation, enhances collagen deposition and angiogenesis, and thus effectively promotes rapid healing of infected wounds. Moreover, it can induce the expression of inflammatory factors such as VEGF, TNF-α, IFN-γ, IL-4 and TGF-β1 in infected wounds through the Wnt/CAMK/p-PKC signaling pathway, inhibit inflammatory responses, promote wound healing and reduce scar formation. Therefore, the PVA-TPE/HA-AMP/SF/ALG wound dressing smart response system shows great promise in infected wound healing.
Collapse
Affiliation(s)
- Yi Chen
- Department of Cadre Ward, General Hospital of Southern Theater Command, Guangzhou, China
| | - Hongjin Qian
- Department of Cadre Ward, General Hospital of Southern Theater Command, Guangzhou, China
| | - Dandan Peng
- Department of Oncology, General Hospital of Southern Theater Command, Guangzhou, China
| | - Yan Jiang
- Department of Cadre Ward, General Hospital of Southern Theater Command, Guangzhou, China
| | - Qiaolin Liu
- Department of Oncology, General Hospital of Southern Theater Command, Guangzhou, China
| | - Yan Tan
- Department of Cadre Ward, General Hospital of Southern Theater Command, Guangzhou, China
| | - Longbao Feng
- Key Laboratory of Biomaterials of Guangdong Higher Education Institutes, Department of Biomedical Engineering, Guangdong Provincial Engineering and Technological Research Centre for Drug Carrier Development, Jinan University, Guangzhou, China
| | - Biao Cheng
- Department of Burns and Plastic Surgery, General Hospital of Southern Theater Command, Guangzhou, China
| | - Guilan Li
- Department of Neurosurgery, General Hospital of Southern Theater Command, Guangzhou, China
| |
Collapse
|
3
|
Concilio M, Garcia Maset R, Lemonche LP, Kontrimas V, Song J, Rajendrakumar SK, Harrison F, Becer CR, Perrier S. Mechanism of Action of Oxazoline-Based Antimicrobial Polymers Against Staphylococcus aureus: In Vivo Antimicrobial Activity Evaluation. Adv Healthc Mater 2023; 12:e2301961. [PMID: 37522292 PMCID: PMC11468764 DOI: 10.1002/adhm.202301961] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Indexed: 08/01/2023]
Abstract
Antimicrobial-resistant pathogens have reached alarming levels, becoming one of the most pressing global health issues. Hence, new treatments are necessary for the fight against antimicrobial resistance. Synthetic nanoengineered antimicrobial polymers (SNAPs) have emerged as a promising alternative to antimicrobial peptides, overcoming some of their limitations while keeping their key features. Herein, a library of amphiphilic oxazoline-based SNAPs using cationic ring-opening polymerization (CROP) is designed. Amphipathic compounds with 70% cationic content exhibit the highest activity against clinically relevant Staphylococcus aureus isolates, maintaining good biocompatibility in vitro and in vivo. The mechanism of action of the lead compounds against S. aureus is assessed using various microscopy techniques, indicating cell membrane disruption, while the cell wall remains unaffected. Furthermore, a potential interaction of the compounds with bacterial DNA is shown, with possible implications on bacterial division. Finally, one of the compounds exhibits high efficacy in vivo in an insect infection model.
Collapse
Affiliation(s)
| | - Ramón Garcia Maset
- Department of ChemistryUniversity of WarwickCoventryCV4 7ALUK
- Warwick Medical SchoolUniversity of WarwickCoventryCV4 7ALUK
| | | | - Vito Kontrimas
- Department of ChemistryUniversity of WarwickCoventryCV4 7ALUK
- Warwick Medical SchoolUniversity of WarwickCoventryCV4 7ALUK
| | - Ji‐Inn Song
- Department of ChemistryUniversity of WarwickCoventryCV4 7ALUK
| | | | - Freya Harrison
- School of Life SciencesUniversity of WarwickCoventryCV4 7ALUK
| | - C. Remzi Becer
- Department of ChemistryUniversity of WarwickCoventryCV4 7ALUK
| | - Sébastien Perrier
- Department of ChemistryUniversity of WarwickCoventryCV4 7ALUK
- Warwick Medical SchoolUniversity of WarwickCoventryCV4 7ALUK
- Faculty of Pharmacy and Pharmaceutical SciencesMonash UniversityParkvilleVictoria3052Australia
| |
Collapse
|
4
|
Shi J, Zhang Y, Ma B, Yong H, Che D, Pan C, He W, Zhou D, Li M. Enhancing the Gene Transfection of Poly(β-amino ester)/DNA Polyplexes by Modular Manipulation of Amphiphilicity. ACS APPLIED MATERIALS & INTERFACES 2023; 15:42130-42138. [PMID: 37642943 DOI: 10.1021/acsami.3c03802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/31/2023]
Abstract
Poly(β-amino ester)s (PAEs) have been widely developed for gene delivery, and hydrophobic modification can further enhance their gene transfection efficiency. However, systematic manipulation of amphiphilicity of PAEs through copolymerization with hydrophobic monomers is time-consuming and, to some extent, uncontrollable. Here, a modular strategy is developed to manipulate the amphiphilicity of the PAE/DNA polyplexes. A hydrophobic polymer (DD-C12-122) and a hydrophilic polymer (DD-90-122) are synthesized separately and used as a hydrophobic module and a hydrophilic module, respectively. The amphiphilicity of polyplexes could be manipulated by changing the ratio of the hydrophobic module and hydrophilic module. Using the modular strategy, the PAE/DNA polyplexes with the highest gene transfection efficiency and safety profile as well as possible mechanisms are identified. The modular strategy provides a novel way to engineer the hydrophobicity of PAEs to improve their gene transfection and can be easily generalized and potentially extended to other polymeric gene delivery systems.
Collapse
Affiliation(s)
- Jiahao Shi
- School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an 710049, China
| | - Yuhe Zhang
- School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an 710049, China
| | - Bin Ma
- School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an 710049, China
| | - Haiyang Yong
- School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an 710049, China
| | - Delu Che
- Department of Dermatology, The Second Hospital Affiliated to Xi'an Jiaotong University, Xi'an 710061, China
| | - Chaolan Pan
- Department of Dermatology, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai 201102, China
| | - Wei He
- Department of Dermatology, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai 201102, China
| | - Dezhong Zhou
- School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an 710049, China
| | - Ming Li
- Department of Dermatology, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai 201102, China
| |
Collapse
|
5
|
Lin C, Ma Z, Gao Y, Le M, Shi Z, Qi D, Ma JC, Cui ZK, Wang L, Jia YG. Main-Chain Cationic Bile Acid Polymers Mimicking Facially Amphiphilic Antimicrobial Peptides. ACS APPLIED MATERIALS & INTERFACES 2023. [PMID: 37400427 DOI: 10.1021/acsami.3c06424] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/05/2023]
Abstract
Antibiotic-resistant bacterial infections have led to an increased demand for antibacterial agents that do not contribute to antimicrobial resistance. Antimicrobial peptides (AMPs) with the facially amphiphilic structures have demonstrated remarkable effectiveness, including the ability to suppress antibiotic resistance during bacterial treatment. Herein, inspired by the facially amphiphilic structure of AMPs, the facially amphiphilic skeletons of bile acids (BAs) are utilized as building blocks to create a main-chain cationic bile acid polymer (MCBAP) with macromolecular facial amphiphilicity via polycondensation and a subsequent quaternization. The optimal MCBAP displays an effective activity against Gram-positive methicillin-resistant Staphylococcus aureus (MRSA) and Gram-negative Escherichia coli, fast killing efficacy, superior bactericidal stability in vitro, and potent anti-infectious performance in vivo using the MRSA-infected wound model. MCBAP shows the low possibility to develop drug-resistant bacteria after repeated exposure, which may ascribe to the macromolecular facial amphiphilicity promoting bacterial membrane disruption and the generation of reactive oxygen species. The easy synthesis and low cost of MCBAP, the superior antimicrobial performance, and the therapeutic potential in treating MRSA infection altogether demonstrate that BAs are a promising group of building blocks to mimic the facially amphiphilic structure of AMPs in treating MRSA infection and alleviating antibiotic resistance.
Collapse
Affiliation(s)
- Caihong Lin
- School of Materials Science and Engineering, South China University of Technology, Guangzhou 510641, China
- National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou 510006, China
| | - Zunwei Ma
- School of Materials Science and Engineering, South China University of Technology, Guangzhou 510641, China
- National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou 510006, China
| | - Yunpeng Gao
- School of Materials Science and Engineering, South China University of Technology, Guangzhou 510641, China
- National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou 510006, China
| | - Mengqi Le
- National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou 510006, China
| | - Zhifeng Shi
- National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou 510006, China
| | - Dawei Qi
- MediCity Research Laboratory, University of Turku, Turku 20520, Finland
| | - Jian-Chao Ma
- School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Zhong-Kai Cui
- School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Lin Wang
- School of Materials Science and Engineering, South China University of Technology, Guangzhou 510641, China
- National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou 510006, China
- Key Laboratory of Biomedical Engineering of Guangdong Province; Key Laboratory of Biomedical Materials and Engineering of the Ministry of Education; Innovation Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou 510006, China
| | - Yong-Guang Jia
- School of Materials Science and Engineering, South China University of Technology, Guangzhou 510641, China
- National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou 510006, China
- Key Laboratory of Biomedical Engineering of Guangdong Province; Key Laboratory of Biomedical Materials and Engineering of the Ministry of Education; Innovation Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou 510006, China
| |
Collapse
|
6
|
Ma Z, Chen Y, Zuo W, Zhu M. Synthesis and Fabrication of a Betulin-Containing Polyolefin Electrospun Fibrous Mat for Antibacterial Applications. ACS Biomater Sci Eng 2022; 8:5110-5118. [PMID: 36378953 DOI: 10.1021/acsbiomaterials.2c01092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Biocompounds play a significant role in the area of renewable polymers in terms of sustainability, as they can be employed or converted into monomers for polymerization in a manner similar to many petroleum-derived monomers. In this work, betulin, a plant-derived triterpene with antibacterial and antiviral properties, was converted to two kinds of α,ω-diene derivatives with different methylene spacer lengths between the olefin and the ester group via an esterification reaction. Polyolefins were subsequently made by acyclic diene metathesis (ADMET) polymerization of betulin-based α,ω-diene. The polymer consists of rigid betulin and flexible unsaturated aliphatic segments, which was confirmed by NMR spectroscopy and gel permeation chromatography (GPC). The influence of different parameters including temperature, catalysts, and catalyst loading on ADMET polymerization was investigated. These polyolefins with high molar mass (up to 20.0 kg/mol) were obtained in an elevated yield (≥95%). Thermal analysis of these (co)polymers showed excellent thermal stability (up to 360 °C) and tunable glass transition temperatures depending on the nature of betulin and alkene segments. To evaluate the antimicrobial potential of betulin-containing polymers, the fabrication of polyolefin fibrous mats (ca. 400 nm diameter) via the electrospinning technique was successfully achieved. Their morphology and hydrophobicity were studied by scanning electron microscopy (SEM) and water contact angle analyses. The fibrous mats possessed broad-spectrum antibacterial property, providing a feasible strategy to design betulin-based polymeric fibers for many applications in the biomedical field.
Collapse
Affiliation(s)
- Zhiyuan Ma
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, 2999 North Renmin Road, Shanghai 201620, China
| | - Yuwen Chen
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, 2999 North Renmin Road, Shanghai 201620, China
| | - Weiwei Zuo
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, 2999 North Renmin Road, Shanghai 201620, China
| | - Meifang Zhu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, 2999 North Renmin Road, Shanghai 201620, China
| |
Collapse
|
7
|
Zhou Y, Huang W, Lei E, Yang A, Li Y, Wen K, Wang M, Li L, Chen Z, Zhou C, Bai S, Han J, Song W, Ren X, Zeng X, Pu H, Wan M, Feng X. Cooperative Membrane Damage as a Mechanism for Pentamidine-Antibiotic Mutual Sensitization. ACS Chem Biol 2022; 17:3178-3190. [PMID: 36269311 DOI: 10.1021/acschembio.2c00613] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Most Gram-positive-selective antibiotics have low activity against Gram-negative bacteria due to the presence of an outer membrane barrier. There is, therefore, interest in developing combination therapies that can penetrate the outer membrane (OM) with known antibiotics coupled with membrane-active sensitizing adjuvants. However, two unanswered questions hinder the development of such combination therapies: the sensitization spectrum of the sensitizer and the mechanism of antibiotic-sensitizer mutual potentiation. Here, with pentamidine as an example, we screened a library of 170 FDA-approved antibiotics in combination with pentamidine, a compound known to disturb the OM of Gram-negative bacteria. We found that four antibiotics, minocycline, linezolid, valnemulin, and nadifloxacin, displaced enhanced activity in combination with pentamidine against several multidrug-resistant Gram-negative bacteria. Through a descriptor-based structural-activity analysis and multiple cell-based biochemical assays, we found that hydrophobicity, partial charge, rigidity, and surface rugosity were key factors that affected sensitization via a cooperative membrane damage mechanism in which lipopolysaccharides and phospholipids were identified as sites of synergy. Finally, in vitro experiments showed that the linezolid-pentamidine combination slowed the generation of drug resistance, and there was also potent activity in in vivo experiments. Overall, our results highlight the importance of the physicochemical properties of antibiotics and cooperative membrane damage for synergistic pentamidine-antibiotic drug combinations.
Collapse
Affiliation(s)
- Yu Zhou
- Institute of Chemical Biology and Nanomedicine, State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, and School of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan 410082, China
| | - Wei Huang
- Institute of Chemical Biology and Nanomedicine, State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, and School of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan 410082, China
| | - E Lei
- Institute of Chemical Biology and Nanomedicine, State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, and School of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan 410082, China
| | - Anming Yang
- Institute of Chemical Biology and Nanomedicine, State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, and School of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan 410082, China
| | - Youzhi Li
- Institute of Chemical Biology and Nanomedicine, State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, and School of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan 410082, China
| | - Kang Wen
- Institute of Chemical Biology and Nanomedicine, State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, and School of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan 410082, China
| | - Min Wang
- Institute of Chemical Biology and Nanomedicine, State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, and School of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan 410082, China
| | - Lanxin Li
- Institute of Chemical Biology and Nanomedicine, State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, and School of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan 410082, China
| | - Zheng Chen
- Institute of Chemical Biology and Nanomedicine, State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, and School of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan 410082, China
| | - Cailing Zhou
- Institute of Chemical Biology and Nanomedicine, State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, and School of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan 410082, China.,College of Biology, Hunan University, Changsha, Hunan 410082, China
| | - Silei Bai
- Institute of Chemical Biology and Nanomedicine, State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, and School of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan 410082, China
| | - Jingyu Han
- Institute of Chemical Biology and Nanomedicine, State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, and School of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan 410082, China
| | - Wenwen Song
- Hunan Provincial Key Laboratory of Medical Virology, Hunan University, Changsha, Hunan 410082, China.,College of Biology, Hunan University, Changsha, Hunan 410082, China
| | - Xuanbai Ren
- College of Computer Science and Electronic Engineering, Hunan University, Changsha, Hunan 410082, China
| | - Xiangxiang Zeng
- College of Computer Science and Electronic Engineering, Hunan University, Changsha, Hunan 410082, China
| | - Huangsheng Pu
- College of Advanced Interdisciplinary Studies, National University of Defense Technology, Changsha, Hunan 410073, China
| | - Muyang Wan
- Hunan Provincial Key Laboratory of Medical Virology, Hunan University, Changsha, Hunan 410082, China.,College of Biology, Hunan University, Changsha, Hunan 410082, China
| | - Xinxin Feng
- Institute of Chemical Biology and Nanomedicine, State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, and School of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan 410082, China
| |
Collapse
|
8
|
A scalable and simple lignin-based polymer for ultra-efficient flocculation and sterilization. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.120960] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
9
|
Guar gum propionate-kojic acid films for Escherichia coli biofilm disruption and simultaneous inhibition of planktonic growth. Int J Biol Macromol 2022; 211:57-73. [DOI: 10.1016/j.ijbiomac.2022.05.052] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 05/05/2022] [Accepted: 05/06/2022] [Indexed: 11/21/2022]
|
10
|
Wang Y, Shen B, Zhang Z, Chen Y, Zhu L, Zhang Y, Huang H, Jiang L. Multifunctional fluorescent gold nanoclusters with enhanced aggregation-induced emissions (AIEs) and excellent antibacterial effect for bacterial imaging and wound healing. BIOMATERIALS ADVANCES 2022; 137:212841. [PMID: 35929270 DOI: 10.1016/j.bioadv.2022.212841] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Revised: 04/11/2022] [Accepted: 05/01/2022] [Indexed: 06/15/2023]
Abstract
To explore new alternatives to combat increasing risk of bacterial infection, in this work, a cationic antimicrobial peptide (HHC10) and glutathione (GSH) co-ligand protected ultra-small gold nanoclusters (Au NCs) was constructed by a simple one-pot method. The intrinsic luminescent property of GSH-protected Au NCs (AuxGSH) endowed enhanced aggregation-induced emissions (AIEs) of co-ligand-protected Au NCs (AuxGSH-HHC10), which exhibited a very strong orange luminescence. Based on the AIE effect, for one thing, AuxGSH could be applied to rapidly and selectively detect Gram-positive bacteria. For another, AuxGSH-HHC10 exhibited potential for multicolor imaging of both Gram-negative and Gram-positive bacteria. Besides, as-synthesized AuxGSH-HHC10 could act as potent nanoantibiotics against both Gram-negative and Gram-positive bacteria, which could not only avoid drug tolerance but also be effective toward drug-resistance bacteria. The antibacterial mechanism indicated that the synergetic effect of the generation of reactive oxygen species (ROS), binding with DNA, and broad-spectrum antibacterial activity of HHC10 led to the membrane damage, depolarization, and interference of biological function, thus enhancing the antibacterial effect. More importantly, such an Au NCs could realize excellent therapeutic outcomes for wound healing in vivo, and showed good biocompatibility and biosafety toward health tissues. The results will provide a great potential for the application of Au NCs for imaging-guided antibacterial platform.
Collapse
Affiliation(s)
- Yuxian Wang
- College of Biotechnology and Pharmaceutical Engineering, State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Bowen Shen
- College of Biotechnology and Pharmaceutical Engineering, State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Zhengyi Zhang
- College of Biotechnology and Pharmaceutical Engineering, State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Yao Chen
- College of Biotechnology and Pharmaceutical Engineering, State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Liying Zhu
- School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Yangheng Zhang
- Department of Periodontology, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing 210008, China
| | - He Huang
- College of Pharmaceutical Science, Nanjing Tech University, Nanjing 211816, China; School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210046, China.
| | - Ling Jiang
- College of Food Science and Light Industry, State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing 211816, China.
| |
Collapse
|
11
|
Wan P, Wang Y, Guo W, Song Z, Zhang S, Wu H, Yan W, Deng M, Xiao C. Low-Molecular-Weight Polylysines with Excellent Antibacterial Properties and Low Hemolysis. ACS Biomater Sci Eng 2022; 8:903-911. [PMID: 35050580 DOI: 10.1021/acsbiomaterials.1c01527] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The steady development of bacterial resistance has become a global public health issue, and new antibacterial agents that are active against drug-resistant bacteria and less susceptible to bacterial resistance are urgently needed. Here, a series of low-molecular-weight cationic polylysines (Cx-PLLn) with different hydrophobic end groups (Cx) and degrees of polymerization (PLLn) was synthesized and used in antibacterial applications. All the obtained Cx-PLLn have antibacterial activity. Among them, C6-PLL13 displays the best antibacterial effect for Gram-positive bacteria, that is, Staphylococcus aureus (S. aureus) and methicillin-resistant Staphylococcus aureus (MRSA), and highest selectivity against Gram-positive bacteria. A mechanistic study revealed that the C6-PLL13 destroys the integrity of the bacterial cell membrane and causes effective bacterial death. Owing to this membrane-disrupting property, C6-PLL13 showed rapid bacterial killing kinetics and was not likely to develop resistance after repeat treatment (up to 13 generations). Moreover, C6-PLL13 demonstrated a significant therapeutic effect on an MRSA infection mouse model, which further proved that this synthetic polymer could be used as an effective weapon against bacterial infections.
Collapse
Affiliation(s)
- Pengqi Wan
- Department of Chemistry, Northeast Normal University, Changchun, Jilin 130024, P. R. China.,Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, P. R. China
| | - Yongjie Wang
- Department of Spinal Surgery, The First Hospital of Jilin University, Changchun, Jilin 130022, China
| | - Wei Guo
- Department of Chemistry, Northeast Normal University, Changchun, Jilin 130024, P. R. China.,Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, P. R. China
| | - Zhengwei Song
- Ministry of Education, Key Laboratory of Green Preparation and Application for Functional Materials, Hubei Key Laboratory of Polymer Materials, School of Materials Science & Engineering, Hubei University, Wuhan, Hubei 430062, P. R. China
| | - Shaokun Zhang
- Department of Spinal Surgery, The First Hospital of Jilin University, Changchun, Jilin 130022, China
| | - Hong Wu
- Department of Ophthalmology, The Second Hospital of Jilin University, Changchun, Jilin 130041, P. R. China
| | - Wei Yan
- Ministry of Education, Key Laboratory of Green Preparation and Application for Functional Materials, Hubei Key Laboratory of Polymer Materials, School of Materials Science & Engineering, Hubei University, Wuhan, Hubei 430062, P. R. China
| | - Mingxiao Deng
- Department of Chemistry, Northeast Normal University, Changchun, Jilin 130024, P. R. China
| | - Chunsheng Xiao
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, P. R. China.,Jilin Biomedical Polymers Engineering Laboratory, Changchun, Jilin 130022, P. R. China
| |
Collapse
|
12
|
Chen J, Bao C, Han R, Li GZ, Zheng Z, Wang Y, Zhang Q. From poly(vinylimidazole) to cationic glycopolymers and glyco-particles: effective antibacterial agents with enhanced biocompatibility and selectivity. Polym Chem 2022. [DOI: 10.1039/d1py01711j] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Cationic glycopolymers have attracted great attention as a new type of antibacterial material.
Collapse
Affiliation(s)
- Jing Chen
- Institute of Polymer Ecomaterials, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, P. R. China
| | - Chunyang Bao
- Institute of Polymer Ecomaterials, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, P. R. China
| | - Rui Han
- School of Materials Science and Engineering, Xihua University, Chengdu 610039, China
| | - Guang-Zhao Li
- School of Materials Science and Engineering, Xihua University, Chengdu 610039, China
| | - Zhaoquan Zheng
- Institute of Polymer Ecomaterials, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, P. R. China
| | - Yan Wang
- Institute of Polymer Ecomaterials, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, P. R. China
| | - Qiang Zhang
- Institute of Polymer Ecomaterials, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, P. R. China
| |
Collapse
|
13
|
Barman R, Ray D, Aswal VK, Ghosh S. Chain-folding regulated self-assembly, outstanding bactericidal activity and biofilm eradication by biomimetic amphiphilic polymers. Polym Chem 2022. [DOI: 10.1039/d2py00625a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Chain-folding regulated hierarchical self-assembly of cationic host defense peptide mimicking amphiphilic polyurethanes exhibit excellent antibacterial activity and biofilm killing.
Collapse
Affiliation(s)
- Ranajit Barman
- School of Applied and Interdisciplinary Sciences, Indian Association for the Cultivation of Science, 2A and 2B Raja S. C. Mullick Road, Kolkata, Pin-700032, India
| | - Debes Ray
- Solid State Physics Division, Bhabha Atomic Research Centre, Mumbai 400085, India
| | - V. K. Aswal
- Solid State Physics Division, Bhabha Atomic Research Centre, Mumbai 400085, India
| | - Suhrit Ghosh
- School of Applied and Interdisciplinary Sciences, Indian Association for the Cultivation of Science, 2A and 2B Raja S. C. Mullick Road, Kolkata, Pin-700032, India
| |
Collapse
|
14
|
Nasri N, Rusli A, Teramoto N, Jaafar M, Ku Ishak KM, Shafiq MD, Abdul Hamid ZA. Past and Current Progress in the Development of Antiviral/Antimicrobial Polymer Coating towards COVID-19 Prevention: A Review. Polymers (Basel) 2021; 13:4234. [PMID: 34883737 PMCID: PMC8659939 DOI: 10.3390/polym13234234] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 11/04/2021] [Accepted: 11/08/2021] [Indexed: 01/10/2023] Open
Abstract
The astonishing outbreak of SARS-CoV-2 coronavirus, known as COVID-19, has attracted numerous research interests, particularly regarding fabricating antimicrobial surface coatings. This initiative is aimed at overcoming and minimizing viral and bacterial transmission to the human. When contaminated droplets from an infected individual land onto common surfaces, SARS-CoV-2 coronavirus is able to survive on various surfaces for up to 9 days. Thus, the possibility of virus transmission increases after touching or being in contact with contaminated surfaces. Herein, we aim to provide overviews of various types of antiviral and antimicrobial coating agents, such as antimicrobial polymer-based coating, metal-based coating, functional nanomaterial, and nanocomposite-based coating. The action mode for each type of antimicrobial agent against pathogens is elaborated. In addition, surface properties of the designed antiviral and antimicrobial polymer coating with their influencing factors are discussed in this review. This paper also exhibits several techniques on surface modification to improve surface properties. Various developed research on the development of antiviral/antimicrobial polymer coating to curb the COVID-19 pandemic are also presented in this review.
Collapse
Affiliation(s)
- Nazihah Nasri
- School of Materials & Mineral Resources Engineering, Universiti Sains Malaysia, Engineering Campus, Nibong Tebal 14300, Pulau Pinang, Malaysia; (N.N.); (A.R.); (M.J.); (K.M.K.I.); (M.D.S.)
| | - Arjulizan Rusli
- School of Materials & Mineral Resources Engineering, Universiti Sains Malaysia, Engineering Campus, Nibong Tebal 14300, Pulau Pinang, Malaysia; (N.N.); (A.R.); (M.J.); (K.M.K.I.); (M.D.S.)
| | - Naozumi Teramoto
- Department of Applied Chemistry, Faculty of Engineering, Chiba Institute of Technology, 2-17-1 Tsudanuma, Narashino 275-0016, Chiba, Japan;
| | - Mariatti Jaafar
- School of Materials & Mineral Resources Engineering, Universiti Sains Malaysia, Engineering Campus, Nibong Tebal 14300, Pulau Pinang, Malaysia; (N.N.); (A.R.); (M.J.); (K.M.K.I.); (M.D.S.)
| | - Ku Marsilla Ku Ishak
- School of Materials & Mineral Resources Engineering, Universiti Sains Malaysia, Engineering Campus, Nibong Tebal 14300, Pulau Pinang, Malaysia; (N.N.); (A.R.); (M.J.); (K.M.K.I.); (M.D.S.)
| | - Mohamad Danial Shafiq
- School of Materials & Mineral Resources Engineering, Universiti Sains Malaysia, Engineering Campus, Nibong Tebal 14300, Pulau Pinang, Malaysia; (N.N.); (A.R.); (M.J.); (K.M.K.I.); (M.D.S.)
| | - Zuratul Ain Abdul Hamid
- School of Materials & Mineral Resources Engineering, Universiti Sains Malaysia, Engineering Campus, Nibong Tebal 14300, Pulau Pinang, Malaysia; (N.N.); (A.R.); (M.J.); (K.M.K.I.); (M.D.S.)
| |
Collapse
|
15
|
Xu W, Chen Y, Zhang B, Xu W, Niu J, Liu Y. Supramolecular Assembly of β-Cyclodextrin-Modified Polymer by Electrospinning with Sustained Antibacterial Activity. Biomacromolecules 2021; 22:4434-4445. [PMID: 34495641 DOI: 10.1021/acs.biomac.1c01007] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Supramolecular assembly loading drug as biomedical materials is a research hotspot. Herein, we reported a supramolecular electrospun assembly constructed via the hydrophobic and hydrogen bonding interaction. The obtained results showed that the assembly by supramolecular electrospinning not only increased the interactions of multiple antibacterial active species including antibiotics, cationic polymers, and silver to form a flexible membrane with good mechanical strength but also indicated the dual effects of rapid doxycycline and polyethyleneimine release as well as a sustained Ag release. Interestingly, the assembly showed not only good degradability but also a high bacteriostatic efficacy toward Escherichia coli (E. coli) up to 99.9%. More importantly, the in vivo wound healing assay indicated that the assembly could promote the healing of uninfected, E. coli-infected, and even methicillin-resistant staphylococcus aureus-infected wounds. The current research provides a novel approach to construct a supramolecular assembly by electrospinning mechanically induced strong noncovalent interaction.
Collapse
Affiliation(s)
- Wenshi Xu
- College of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin 300071, P. R. China
| | - Yong Chen
- College of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin 300071, P. R. China
| | - Bing Zhang
- College of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin 300071, P. R. China
| | - Wenwen Xu
- College of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin 300071, P. R. China
| | - Jie Niu
- College of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin 300071, P. R. China
| | - Yu Liu
- College of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin 300071, P. R. China
| |
Collapse
|
16
|
Synthesis of N-Methylmorpholinium Derivatives Possessing a 1,3,4-Oxadiazole Core as Feasible Antibacterial Agents against Plant Bacterial Diseases. J CHEM-NY 2021. [DOI: 10.1155/2021/5415950] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
To develop a kind of quaternary ammonium compounds that can safely apply in agriculture for managing the plant bacterial diseases, herein, a series of N-methylmorpholinium derivatives possessing a classical 1,3,4-oxadiazole core were prepared and the antibacterial activities both in vitro and in vivo were screened. Bioassay results revealed that compounds 3l and 3i showed the strongest antibacterial activity toward pathogens Xanthomonas oryzae pv. oryzae and X. axonopodis pv. citri with the lowest EC50 values of 1.40 and 0.90 μg/mL, respectively. Phytotoxicity test trials indicated that target compounds bearing a bulky N-methylmorpholinium pendant are safe for plants. The following in vivo bioassays showed that compound 3l could control the rice bacterial blight disease, thereby affording good control efficiencies of 55.95% (curative activity) and 53.09% (protective activity) at the dose of 200 μg/mL. Preliminary antibacterial mechanism studies suggested that target compounds had strong interactions with the cell membrane of bacteria via scanning electron microscopy imaging. Additionally, this kind of framework also displayed certain antifungal activity toward Fusarium oxysporum and Phytophthora cinnamomi. Given the above privileged characteristics, this kind of 1,3,4-oxadiazole-tailored N-methylmorpholinium derivatives could stimulate the design of safe quaternary ammonium bactericides for controlling plant bacterial diseases.
Collapse
|
17
|
Bhat R, Foster LL, Rani G, Vemparala S, Kuroda K. The function of peptide-mimetic anionic groups and salt bridges in the antimicrobial activity and conformation of cationic amphiphilic copolymers. RSC Adv 2021; 11:22044-22056. [PMID: 35480841 PMCID: PMC9034112 DOI: 10.1039/d1ra02730a] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Accepted: 06/15/2021] [Indexed: 12/19/2022] Open
Abstract
Herein we report the synthesis of ternary statistical methacrylate copolymers comprising cationic ammonium (amino-ethyl methacrylate: AEMA), carboxylic acid (propanoic acid methacrylate: PAMA) and hydrophobic (ethyl methacrylate: EMA) side chain monomers, to study the functional role of anionic groups on their antimicrobial and hemolytic activities as well as the conformation of polymer chains. The hydrophobic monomer EMA was maintained at 40 mol% in all the polymers, with different percentages of cationic ammonium (AEMA) and anionic carboxylate (PAMA) side chains, resulting in different total net charge for the polymers. The antimicrobial and hemolytic activities of the copolymer were determined by the net charge of +3 or larger, suggesting that there was no distinct effect of the anionic carboxylate groups on the antimicrobial and hemolytic activities of the copolymers. However, the pH titration and atomic molecular dynamics simulations suggest that anionic groups may play a strong role in controlling the polymer conformation. This was achieved via formation of salt bridges between cationic and anionic groups, transiently crosslinking the polymer chain allowing dynamic switching between compact and extended conformations. These results suggest that inclusion of functional groups in general, other than the canonical hydrophobic and cationic groups in antimicrobial agents, may have broader implications in acquiring functional structures required for adequate antimicrobial activity. In order to explain the implications, we propose a molecular model in which formation of intra-chain, transient salt bridges, due to the presence of both anionic and cationic groups along the polymer, may function as "adhesives" which facilitate compact packing of the polymer chain to enable functional group interaction but without rigidly locking down the overall polymer structure, which may adversely affect their functional roles.
Collapse
Affiliation(s)
- Rajani Bhat
- Department of Biologic and Materials Sciences & Prosthodontics, School of Dentistry, University of Michigan Ann Arbor Michigan 48109 USA
| | - Leanna L Foster
- Macromolecular Science and Engineering Center, University of Michigan Ann Arbor Michigan 48109 USA
| | - Garima Rani
- TIFR Centre for Interdisciplinary Sciences, Tata Institute of Fundamental Research Hyderabad 500046 India
| | - Satyavani Vemparala
- The Institute of Mathematical Sciences, C. I. T. Campus Taramani Chennai 600113 India
- Homi Bhabha National Institute, Training School Complex Anushakti Nagar Mumbai 400094 India
| | - Kenichi Kuroda
- Department of Biologic and Materials Sciences & Prosthodontics, School of Dentistry, University of Michigan Ann Arbor Michigan 48109 USA
- Macromolecular Science and Engineering Center, University of Michigan Ann Arbor Michigan 48109 USA
| |
Collapse
|
18
|
Vishwakarma A, Dang F, Ferrell A, Barton HA, Joy A. Peptidomimetic Polyurethanes Inhibit Bacterial Biofilm Formation and Disrupt Surface Established Biofilms. J Am Chem Soc 2021; 143:9440-9449. [PMID: 34133169 DOI: 10.1021/jacs.1c02324] [Citation(s) in RCA: 76] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Over 80% of all chronic bacterial infections in humans are associated with biofilms, which are surface-associated bacterial communities encased within a secreted exopolysaccharide matrix that can provide resistance to environmental and chemical insults. Biofilm formation triggers broad adaptive changes in the bacteria, allowing them to be almost 1000-fold more resistant to conventional antibiotic treatments and host immune responses. The failure of antibiotics to eliminate biofilms leads to persistent chronic infections and can promote the development of antibiotic-resistant strains. Therefore, there is an urgent need to develop agents that effectively prevent biofilm formation and eradicate established biofilms. Herein, we present water-soluble synthetic peptidomimetic polyurethanes that can disrupt surface established biofilms of Pseudomonas aeruginosa, Staphylococcus aureus, and Escherichia coli, all of which show tolerance to the conventional antibiotics polymyxin B and ciprofloxacin. Furthermore, while these polyurethanes show poor antimicrobial activity against planktonic bacteria, they prevent surface attachment and stimulate bacterial surface motility to inhibit biofilm formation of both Gram-positive and Gram-negative bacteria at subinhibitory concentrations, without being toxic to mammalian cells. Our results show that these polyurethanes show promise as a platform for the development of therapeutics that target biofilms and modulate surface interactions of bacteria for the treatment of chronic biofilm-associated infections and as antibiofilm agents.
Collapse
|
19
|
Zhang L, Ma Z, Wang R, Zhu M. Synthesis and Characterization of Methacrylate-Functionalized Betulin Derivatives as Antibacterial Comonomer for Dental Restorative Resins. ACS Biomater Sci Eng 2021; 7:3132-3140. [PMID: 34114805 DOI: 10.1021/acsbiomaterials.1c00563] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Secondary caries is the primary cause of composite restoration failures, resulting from marginal leakage and bacterial accumulation in the oral environment. Antibacterial dental composites, especially antibacterial monomers, have emerged as a promising strategy to inhibit secondary caries, which is pivotal to prolonging the lifespan of dental restorations. In this work, monomethacrylate- and dimethacrylate-functionalized betulin derivatives (M1Bet and M2Bet) were synthesized via an esterification reaction and served as antibacterial comonomers to develop novel dental resin formulations, in which M1Bet and M2Bet were incorporated to partially or completely replace bisphenol A glycerolate dimethacrylate (Bis-GMA). The control resin was a mixture based on Bis-GMA and tri(ethyleneglycol) dimethacrylate (TEGDMA) with a weight ratio of 50:50 (5B5T). The effect of the resin compositions and the chemical structures of M1Bet and M2Bet on the rheology behavior, optical property, polymerization kinetics, mechanical performance, cell viability, and antibacterial activity of dental resins were systematically investigated. Among all materials, the 1M2Bet4B5T resin with 10 wt % substitution of Bis-GMA by M2Bet exhibited comparable viscosity, higher light transmittance, improved degree of conversion, and mechanical properties compared with 5B5T. After incubation for 24 h, this optimal resin also possessed the best antibacterial activity against Streptococcus mutans, which had a significantly lower bacterial concentration (1.53 × 109 CFU/mL) than 5B5T (9.03 × 109 CFU/mL). Introducing betulin-based comonomers into dental resins is a potential strategy to develop antibacterial dental materials without sacrificing physical-mechanical properties.
Collapse
Affiliation(s)
- Lusi Zhang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
| | - Zhiyuan Ma
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
| | - Ruili Wang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
| | - Meifang Zhu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
| |
Collapse
|
20
|
Tantisuwanno C, Dang F, Bender K, Spencer JD, Jennings ME, Barton HA, Joy A. Synergism between Rifampicin and Cationic Polyurethanes Overcomes Intrinsic Resistance of Escherichia coli. Biomacromolecules 2021; 22:2910-2920. [PMID: 34085824 DOI: 10.1021/acs.biomac.1c00306] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Antibiotic-resistant Gram-negative bacteria are emergent pathogens, causing millions of infections worldwide. While there are several classes of antibiotics that are effective against Gram-positive bacteria, the outer membrane (OM) of Gram-negative bacteria excludes high-molecular-weight hydrophobic antibiotics, making these species intrinsically resistant to several classes of antibiotics, including polyketides, aminocoumarins, and macrolides. The overuse of antibiotics such as β-lactams has also promoted the spread of resistance genes throughout Gram-negative bacteria, including the production of extended spectrum β-lactamases (ESBLs). The combination of innate and acquired resistance makes it extremely challenging to identify antibiotics that are effective against Gram-negative bacteria. In this study, we have demonstrated the synergistic effect of outer membrane-permeable cationic polyurethanes with rifampicin, a polyketide that would otherwise be excluded by the OM, on different strains of E. coli, including a clinically isolated uropathogenic multidrug-resistant (MDR) E. coli. Rifampicin combined with a low-dose treatment of a cationic polyurethane reduced the MIC in E. coli of rifampicin by up to 64-fold. The compositions of cationic polyurethanes were designed to have low hemolysis and low cell cytotoxicity while maintaining high antibacterial activity. Our results demonstrate the potential to rescue the large number of available OM-excluded antibiotics to target normally resistant Gram-negative bacteria via synergistic action with these cationic polyurethanes, acting as a novel antibiotic adjuvant class.
Collapse
Affiliation(s)
| | - Francis Dang
- Department of Polymer Science, The University of Akron, Akron, Ohio 44325, United States
| | - Kristin Bender
- Center for Clinical and Translational Research, The Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, Ohio 43215, United States
| | - John D Spencer
- Center for Clinical and Translational Research, The Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, Ohio 43215, United States
| | - Matthew E Jennings
- Biology Department, Centenary College of Louisiana, Shreveport, Louisiana 71104, United States
| | - Hazel A Barton
- Department of Biology, The University of Akron, Akron, Ohio 44325, United States
| | - Abraham Joy
- Department of Polymer Science, The University of Akron, Akron, Ohio 44325, United States
| |
Collapse
|
21
|
Jones JB, Liu L, Rank LA, Wetzel D, Woods EC, Biok N, Anderson SE, Lee MR, Liu R, Huth S, Sandhu BK, Gellman SH, McBride SM. Cationic Homopolymers Inhibit Spore and Vegetative Cell Growth of Clostridioides difficile. ACS Infect Dis 2021; 7:1236-1247. [PMID: 33739823 PMCID: PMC8130196 DOI: 10.1021/acsinfecdis.0c00843] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
A wide range of synthetic polymers have been explored for antimicrobial activity. These materials usually contain both cationic and hydrophobic subunits because these two characteristics are prominent among host-defense peptides. Here, we describe a series of nylon-3 polymers containing only cationic subunits and their evaluation against the gastrointestinal, spore-forming pathogen Clostridioides difficile. Despite their highly hydrophilic nature, these homopolymers showed efficacy against both the vegetative and spore forms of the bacterium, including an impact on C. difficile spore germination. The polymer designated P34 demonstrated the greatest efficacy against C. difficile strains, along with low propensities to lyse human red blood cells or intestinal epithelial cells. To gain insight into the mechanism of P34 action, we evaluated several cell-surface mutant strains of C. difficile to determine the impacts on growth, viability, and cell morphology. The results suggest that P34 interacts with the cell wall, resulting in severe cell bending and death in a concentration-dependent manner. The unexpected finding that nylon-3 polymers composed entirely of cationic subunits display significant activities toward C. difficile should expand the range of other polymers considered for antibacterial applications.
Collapse
Affiliation(s)
- Joshua B. Jones
- Department of Microbiology and Immunology, Emory University School of Medicine, Emory Antibiotic Resistance Center, Atlanta, GA, USA
| | - Lei Liu
- Department of Chemistry and Department of Medicine, University of Wisconsin, Madison, WI, USA
| | | | - Daniela Wetzel
- Department of Microbiology and Immunology, Emory University School of Medicine, Emory Antibiotic Resistance Center, Atlanta, GA, USA
| | - Emily C. Woods
- Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Naomi Biok
- Department of Chemistry and Department of Medicine, University of Wisconsin, Madison, WI, USA
| | | | - Myung-ryul Lee
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Runhui Liu
- State Key Laboratory of Bioreactor Engineering, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, China
| | - Sean Huth
- Department of Chemistry, Princeton University, Princeton, NJ, USA
| | - Brindar K. Sandhu
- Department of Microbiology and Immunology, Emory University School of Medicine, Emory Antibiotic Resistance Center, Atlanta, GA, USA
| | - Samuel H. Gellman
- Department of Chemistry and Department of Medicine, University of Wisconsin, Madison, WI, USA
| | - Shonna M. McBride
- Department of Microbiology and Immunology, Emory University School of Medicine, Emory Antibiotic Resistance Center, Atlanta, GA, USA
| |
Collapse
|
22
|
Wei S, Xu P, Yao Z, Cui X, Lei X, Li L, Dong Y, Zhu W, Guo R, Cheng B. A composite hydrogel with co-delivery of antimicrobial peptides and platelet-rich plasma to enhance healing of infected wounds in diabetes. Acta Biomater 2021; 124:205-218. [PMID: 33524559 DOI: 10.1016/j.actbio.2021.01.046] [Citation(s) in RCA: 114] [Impact Index Per Article: 38.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 01/26/2021] [Accepted: 01/26/2021] [Indexed: 01/05/2023]
Abstract
Diabetic wound healing remains a major challenge due to its vulnerability to bacterial infection, as well as the less vascularization and prolonged inflammatory phase. In this study, we developed a hydrogel system for the treatment of chronic infected wounds, which can regulate inflammatory (through the use of antimicrobial peptides) and enhance collagen deposition and angiogenesis (through the addition of platelet-rich plasma (PRP)). Based on the formation of Schiff base linkage, the ODEX/HA-AMP/PRP hydrogel was prepared by mixing oxidized dextran (ODEX), antimicrobial peptide-modified hyaluronic acid (HA-AMP) and PRP under physiological conditions, which exhibited obvious inhibition zones against three pathogenic bacterial strains (E. coli, S. aureus and P. aeruginosa) and slow release ability of antimicrobials and growth factors. Moreover, CCK-8, live/dead fluorescent staining and scratch test confirmed that ODEX/HA-AMP/PRP hydrogel could facilitate the proliferation and migration of L929 fibroblast cells. More importantly, in vivo experiments further demonstrated that the prepared hydrogels could significantly improve wound healing in a diabetic mouse infection by regulating inflammation, accelerating collagen deposition and angiogenesis. In addition, prepared hydrogel showed a significant antibacterial activity against S. aureus and P. aeruginosa, inhibited pro-inflammatory factors (TNF-α, IL-1β and IL-6), enhanced anti-inflammatory factors (TGF-β1) and vascular endothelial growth factor (VEGF) production. The findings of this study suggested that the composite hydrogel with AMP and PRP controlled release ability could be used as a promising candidate for chronic wound healing and infection-related wound healing.
Collapse
Affiliation(s)
- Shikun Wei
- The Graduate School of Southern Medical University, Guangzhou 510515, China; The Second People's Hospital of Panyu Guangzhou, Guangzhou 510120, China
| | - Pengcheng Xu
- The Graduate School of Southern Medical University, Guangzhou 510515, China
| | - Zexin Yao
- Department of Burn and Plastic Surgery, General Hospital of Southern Theater Command, PLA, Guangzhou 510010, China; The Guangdong Pharmaceutical University, Guangzhou, China
| | - Xiao Cui
- The Guangdong Provincial Hospital of Chinese Medicine, Guangzhou 510010, China
| | - Xiaoxuan Lei
- Department of Oral and Maxillofacial Surgery/Pathology, Amsterdam UMC and Academic Center for Dentistry Amsterdam (ACTA), Vrije Universiteit Amsterdam, Amsterdam Movement Science, Amsterdam, The Netherlands
| | - Linlin Li
- Department of Burn and Plastic Surgery, General Hospital of Southern Theater Command, PLA, Guangzhou 510010, China
| | - Yunqing Dong
- Department of Burn and Plastic Surgery, General Hospital of Southern Theater Command, PLA, Guangzhou 510010, China
| | - Weidong Zhu
- Department of Burn and Plastic Surgery, General Hospital of Southern Theater Command, PLA, Guangzhou 510010, China
| | - Rui Guo
- Key Laboratory of Biomaterials of Guangdong Higher Education Institutes, Guangdong Provincial Engineering and Technological Research Center for Drug Carrier Development, Department of Biomedical Engineering, Jinan University, Guangzhou 510632, China.
| | - Biao Cheng
- The Graduate School of Southern Medical University, Guangzhou 510515, China; Department of Burn and Plastic Surgery, General Hospital of Southern Theater Command, PLA, Guangzhou 510010, China.
| |
Collapse
|
23
|
Cell-bound nanoparticles for tissue targeting and immunotherapy: Engineering of the particle–membrane interface. Curr Opin Colloid Interface Sci 2021. [DOI: 10.1016/j.cocis.2020.101408] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
24
|
Rank LA, Agrawal A, Liu L, Zhu Y, Mustafi M, Weisshaar JC, Gellman SH. Diverse Impacts on Prokaryotic and Eukaryotic Membrane Activities from Hydrophobic Subunit Variation Among Nylon-3 Copolymers. ACS Chem Biol 2021; 16:176-184. [PMID: 33305582 PMCID: PMC8130050 DOI: 10.1021/acschembio.0c00855] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Synthetic, sequence-random polymers that feature a wide range of backbone and side chain structures have been reported to function as mimics of natural host-defense peptides, inhibiting bacterial growth while exerting little or no toxicity toward eukaryotic cells. The common themes among these materials are net positive charge, which is thought to confer preferential action toward prokaryotic vs eukaryotic cells, and the presence of hydrophobic components, which are thought to mediate membrane disruption. This study is based on a set of new binary cationic-hydrophobic nylon-3 copolymers that was designed to ask whether factors beyond net charge and net hydrophobicity influence the biological activity profile. In previous work, we found that nonpolar subunits preorganized by a ring led to copolymers with a diminished tendency to disrupt human cell membranes (as measured via lysis of red blood cells) relative to copolymers containing more flexible nonpolar subunits. An alternative mode of conformational restriction, involving geminal substitution, also minimized hemolysis. Here, we asked whether combining a cyclic constraint and geminal substitution would be synergistic; the combination was achieved by introducing backbone methyl groups to previously described cyclopentyl and cyclohexyl subunits. The new cyclic subunits containing two quaternary backbone carbons (i.e, two sites of geminal substitution) were comparable or slightly superior in terms of antibacterial potency but markedly superior in terms of low hemolytic activity, relative to cyclic subunits lacking the quaternary carbons. However, new cyclic units containing only one quaternary carbon were very hemolytic, which was unanticipated. Variations in net hydrophobicity cannot explain the trend in hemolysis, in contrast to the standard perspective in this field. The impact of each new polymer on live E. coli cells was evaluated via fluorescence microscopy. All new polymers moved rapidly across the outer membrane without large-scale disruption of barrier function. Increasing the number of quaternary carbons in the nonpolar subunit correlated with an increased propensity to permeabilize the cytoplasmic membrane of E. coli cells. Collectively, these findings show that relationships between nonpolar subunit identity and biological activity are influenced by factors in addition to hydrophobicity and charge. We propose that the variation of subunit conformational properties may be one such factor.
Collapse
Affiliation(s)
- Leslie A. Rank
- Department of Chemistry, University of Wisconsin – Madison, 1101 University Ave, Madison, Wisconsin 53706, United States
| | - Anurag Agrawal
- Department of Chemistry, University of Wisconsin – Madison, 1101 University Ave, Madison, Wisconsin 53706, United States
| | - Lei Liu
- Department of Chemistry, University of Wisconsin – Madison, 1101 University Ave, Madison, Wisconsin 53706, United States
| | - Yanyu Zhu
- Department of Chemistry, University of Wisconsin – Madison, 1101 University Ave, Madison, Wisconsin 53706, United States
| | - Mainak Mustafi
- Department of Chemistry, University of Wisconsin – Madison, 1101 University Ave, Madison, Wisconsin 53706, United States
| | - James C. Weisshaar
- Department of Chemistry, University of Wisconsin – Madison, 1101 University Ave, Madison, Wisconsin 53706, United States
- Molecular Biophysics Program, University of Wisconsin – Madison, 1101 University Ave, Madison, Wisconsin 53706, United States
| | - Samuel H. Gellman
- Department of Chemistry, University of Wisconsin – Madison, 1101 University Ave, Madison, Wisconsin 53706, United States
| |
Collapse
|
25
|
Zhao S, Huang W, Wang C, Wang Y, Zhang Y, Ye Z, Zhang J, Deng L, Dong A. Screening and Matching Amphiphilic Cationic Polymers for Efficient Antibiosis. Biomacromolecules 2020; 21:5269-5281. [PMID: 33226784 DOI: 10.1021/acs.biomac.0c01330] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The amphiphilic cationic polymers that mimic antimicrobial peptides have received increasing attention due to their excellent antibacterial activity. However, the relationship between the structure of cationic polymers and its antibacterial effect remains unclear. In our current work, a series of PEG blocked amphiphilic cationic polymers composed of hydrophobic alkyl-modified and quaternary ammonium salt (QAS) moieties have been prepared. The structure-antibacterial activity relationship of these cationic polymers was investigated against E. coli and S. aureus, including PEGylation, random structure, molecular weights, and the content and lengths of the hydrophobic alkyl side chains. The results indicated that PEGylated random amphiphilic cationic copolymer (mPB35/T57) showed stronger antibacterial activity and better biocompatibility than the random copolymer without PEG (PB33/T56). Furthermore, mPB35/T57 with appropriate mole fraction of alkyl side chains (falkyl = 0.38), degree of polymerization (DP = 92), and four-carbon hydrophobic alkyl moieties was found to have the optimal structure that revealed the best antibacterial activities against both E. coli (MIC = 8 μg/mL, selectivity > 250) and S. aureus (MIC = 4 μg/mL, selectivity > 500). More importantly, mPB35/T57 could effectively eradicate E. coli biofilms by killing the bacteria embedded in the biofilms. Therefore, the structure of mPB35/T57 provided valuable information for improving the antibacterial activity of cationic polymers.
Collapse
Affiliation(s)
- Shuyue Zhao
- Department of Polymer Science and Technology, Key Laboratory of Systems Bioengineering of the Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China.,Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, China
| | - Wenjun Huang
- Department of Polymer Science and Technology, Key Laboratory of Systems Bioengineering of the Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China.,Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, China
| | - Changrong Wang
- Department of Polymer Science and Technology, Key Laboratory of Systems Bioengineering of the Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China.,Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, China
| | - Yaping Wang
- Department of Polymer Science and Technology, Key Laboratory of Systems Bioengineering of the Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - YuFeng Zhang
- Department of Polymer Science and Technology, Key Laboratory of Systems Bioengineering of the Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Zhanpeng Ye
- Department of Polymer Science and Technology, Key Laboratory of Systems Bioengineering of the Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Jianhua Zhang
- Department of Polymer Science and Technology, Key Laboratory of Systems Bioengineering of the Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Liandong Deng
- Department of Polymer Science and Technology, Key Laboratory of Systems Bioengineering of the Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Anjie Dong
- Department of Polymer Science and Technology, Key Laboratory of Systems Bioengineering of the Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China.,Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, China
| |
Collapse
|
26
|
Zhong W, Chang Y, Lin Y, Zhang A. Synthesis and antifungal activities of hydrophilic cationic polymers against Rhizoctonia solani. Fungal Biol 2020; 124:735-741. [DOI: 10.1016/j.funbio.2020.04.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Revised: 04/24/2020] [Accepted: 04/26/2020] [Indexed: 12/30/2022]
|
27
|
Zhou M, Qian Y, Xie J, Zhang W, Jiang W, Xiao X, Chen S, Dai C, Cong Z, Ji Z, Shao N, Liu L, Wu Y, Liu R. Poly(2‐Oxazoline)‐Based Functional Peptide Mimics: Eradicating MRSA Infections and Persisters while Alleviating Antimicrobial Resistance. Angew Chem Int Ed Engl 2020; 59:6412-6419. [DOI: 10.1002/anie.202000505] [Citation(s) in RCA: 103] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Indexed: 01/04/2023]
Affiliation(s)
- Min Zhou
- State Key Laboratory of Bioreactor EngineeringKey Laboratory for Ultrafine Materials of Ministry of EducationResearch Center for Biomedical Materials of Ministry of EducationSchool of Materials Science and EngineeringEast China University of Science and Technology Shanghai 200237 China
| | - Yuxin Qian
- State Key Laboratory of Bioreactor EngineeringKey Laboratory for Ultrafine Materials of Ministry of EducationResearch Center for Biomedical Materials of Ministry of EducationSchool of Materials Science and EngineeringEast China University of Science and Technology Shanghai 200237 China
| | - Jiayang Xie
- State Key Laboratory of Bioreactor EngineeringKey Laboratory for Ultrafine Materials of Ministry of EducationResearch Center for Biomedical Materials of Ministry of EducationSchool of Materials Science and EngineeringEast China University of Science and Technology Shanghai 200237 China
| | - Wenjing Zhang
- State Key Laboratory of Bioreactor EngineeringKey Laboratory for Ultrafine Materials of Ministry of EducationResearch Center for Biomedical Materials of Ministry of EducationSchool of Materials Science and EngineeringEast China University of Science and Technology Shanghai 200237 China
| | - Weinan Jiang
- State Key Laboratory of Bioreactor EngineeringKey Laboratory for Ultrafine Materials of Ministry of EducationResearch Center for Biomedical Materials of Ministry of EducationSchool of Materials Science and EngineeringEast China University of Science and Technology Shanghai 200237 China
| | - Ximian Xiao
- State Key Laboratory of Bioreactor EngineeringKey Laboratory for Ultrafine Materials of Ministry of EducationResearch Center for Biomedical Materials of Ministry of EducationSchool of Materials Science and EngineeringEast China University of Science and Technology Shanghai 200237 China
| | - Sheng Chen
- State Key Laboratory of Bioreactor EngineeringKey Laboratory for Ultrafine Materials of Ministry of EducationResearch Center for Biomedical Materials of Ministry of EducationSchool of Materials Science and EngineeringEast China University of Science and Technology Shanghai 200237 China
| | - Chengzhi Dai
- State Key Laboratory of Bioreactor EngineeringKey Laboratory for Ultrafine Materials of Ministry of EducationResearch Center for Biomedical Materials of Ministry of EducationSchool of Materials Science and EngineeringEast China University of Science and Technology Shanghai 200237 China
| | - Zihao Cong
- State Key Laboratory of Bioreactor EngineeringKey Laboratory for Ultrafine Materials of Ministry of EducationResearch Center for Biomedical Materials of Ministry of EducationSchool of Materials Science and EngineeringEast China University of Science and Technology Shanghai 200237 China
| | - Zhemin Ji
- State Key Laboratory of Bioreactor EngineeringKey Laboratory for Ultrafine Materials of Ministry of EducationResearch Center for Biomedical Materials of Ministry of EducationSchool of Materials Science and EngineeringEast China University of Science and Technology Shanghai 200237 China
| | - Ning Shao
- State Key Laboratory of Bioreactor EngineeringKey Laboratory for Ultrafine Materials of Ministry of EducationResearch Center for Biomedical Materials of Ministry of EducationSchool of Materials Science and EngineeringEast China University of Science and Technology Shanghai 200237 China
| | - Longqiang Liu
- State Key Laboratory of Bioreactor EngineeringKey Laboratory for Ultrafine Materials of Ministry of EducationResearch Center for Biomedical Materials of Ministry of EducationSchool of Materials Science and EngineeringEast China University of Science and Technology Shanghai 200237 China
| | - Yuequn Wu
- State Key Laboratory of Bioreactor EngineeringKey Laboratory for Ultrafine Materials of Ministry of EducationResearch Center for Biomedical Materials of Ministry of EducationSchool of Materials Science and EngineeringEast China University of Science and Technology Shanghai 200237 China
| | - Runhui Liu
- State Key Laboratory of Bioreactor EngineeringKey Laboratory for Ultrafine Materials of Ministry of EducationResearch Center for Biomedical Materials of Ministry of EducationSchool of Materials Science and EngineeringEast China University of Science and Technology Shanghai 200237 China
| |
Collapse
|
28
|
Zhou M, Qian Y, Xie J, Zhang W, Jiang W, Xiao X, Chen S, Dai C, Cong Z, Ji Z, Shao N, Liu L, Wu Y, Liu R. Poly(2‐Oxazoline)‐Based Functional Peptide Mimics: Eradicating MRSA Infections and Persisters while Alleviating Antimicrobial Resistance. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202000505] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Min Zhou
- State Key Laboratory of Bioreactor EngineeringKey Laboratory for Ultrafine Materials of Ministry of EducationResearch Center for Biomedical Materials of Ministry of EducationSchool of Materials Science and EngineeringEast China University of Science and Technology Shanghai 200237 China
| | - Yuxin Qian
- State Key Laboratory of Bioreactor EngineeringKey Laboratory for Ultrafine Materials of Ministry of EducationResearch Center for Biomedical Materials of Ministry of EducationSchool of Materials Science and EngineeringEast China University of Science and Technology Shanghai 200237 China
| | - Jiayang Xie
- State Key Laboratory of Bioreactor EngineeringKey Laboratory for Ultrafine Materials of Ministry of EducationResearch Center for Biomedical Materials of Ministry of EducationSchool of Materials Science and EngineeringEast China University of Science and Technology Shanghai 200237 China
| | - Wenjing Zhang
- State Key Laboratory of Bioreactor EngineeringKey Laboratory for Ultrafine Materials of Ministry of EducationResearch Center for Biomedical Materials of Ministry of EducationSchool of Materials Science and EngineeringEast China University of Science and Technology Shanghai 200237 China
| | - Weinan Jiang
- State Key Laboratory of Bioreactor EngineeringKey Laboratory for Ultrafine Materials of Ministry of EducationResearch Center for Biomedical Materials of Ministry of EducationSchool of Materials Science and EngineeringEast China University of Science and Technology Shanghai 200237 China
| | - Ximian Xiao
- State Key Laboratory of Bioreactor EngineeringKey Laboratory for Ultrafine Materials of Ministry of EducationResearch Center for Biomedical Materials of Ministry of EducationSchool of Materials Science and EngineeringEast China University of Science and Technology Shanghai 200237 China
| | - Sheng Chen
- State Key Laboratory of Bioreactor EngineeringKey Laboratory for Ultrafine Materials of Ministry of EducationResearch Center for Biomedical Materials of Ministry of EducationSchool of Materials Science and EngineeringEast China University of Science and Technology Shanghai 200237 China
| | - Chengzhi Dai
- State Key Laboratory of Bioreactor EngineeringKey Laboratory for Ultrafine Materials of Ministry of EducationResearch Center for Biomedical Materials of Ministry of EducationSchool of Materials Science and EngineeringEast China University of Science and Technology Shanghai 200237 China
| | - Zihao Cong
- State Key Laboratory of Bioreactor EngineeringKey Laboratory for Ultrafine Materials of Ministry of EducationResearch Center for Biomedical Materials of Ministry of EducationSchool of Materials Science and EngineeringEast China University of Science and Technology Shanghai 200237 China
| | - Zhemin Ji
- State Key Laboratory of Bioreactor EngineeringKey Laboratory for Ultrafine Materials of Ministry of EducationResearch Center for Biomedical Materials of Ministry of EducationSchool of Materials Science and EngineeringEast China University of Science and Technology Shanghai 200237 China
| | - Ning Shao
- State Key Laboratory of Bioreactor EngineeringKey Laboratory for Ultrafine Materials of Ministry of EducationResearch Center for Biomedical Materials of Ministry of EducationSchool of Materials Science and EngineeringEast China University of Science and Technology Shanghai 200237 China
| | - Longqiang Liu
- State Key Laboratory of Bioreactor EngineeringKey Laboratory for Ultrafine Materials of Ministry of EducationResearch Center for Biomedical Materials of Ministry of EducationSchool of Materials Science and EngineeringEast China University of Science and Technology Shanghai 200237 China
| | - Yuequn Wu
- State Key Laboratory of Bioreactor EngineeringKey Laboratory for Ultrafine Materials of Ministry of EducationResearch Center for Biomedical Materials of Ministry of EducationSchool of Materials Science and EngineeringEast China University of Science and Technology Shanghai 200237 China
| | - Runhui Liu
- State Key Laboratory of Bioreactor EngineeringKey Laboratory for Ultrafine Materials of Ministry of EducationResearch Center for Biomedical Materials of Ministry of EducationSchool of Materials Science and EngineeringEast China University of Science and Technology Shanghai 200237 China
| |
Collapse
|
29
|
Xu J, Pu L, Ma J, Kumar SK, Duan H. Antibacterial properties of synthesized cyclic and linear cationic copolymers. Polym Chem 2020. [DOI: 10.1039/d0py00755b] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Antibacterial activities of cationic cyclic copolymers compared to those of their linear counterparts were investigated.
Collapse
Affiliation(s)
- Jinbao Xu
- Guangdong Provincial Key Laboratory of Functional Soft Condensed Matter
- School of Materials and Energy
- Guangdong University of Technology
- Guangzhou 510006
- P. R. China
| | - Lu Pu
- School of Chemical and Biomedical Engineering
- Nanyang Technological University
- Singapore 637457
| | - Jielin Ma
- School of Chemical and Biomedical Engineering
- Nanyang Technological University
- Singapore 637457
| | - Sagar Kundan Kumar
- School of Chemical and Biomedical Engineering
- Nanyang Technological University
- Singapore 637457
| | - Hongwei Duan
- School of Chemical and Biomedical Engineering
- Nanyang Technological University
- Singapore 637457
| |
Collapse
|
30
|
Abstract
Synthesis, aqueous aggregation, hydrophobic guest encapsulation, non-covalent encapsulation stability and glutathione responsive degradation of amphiphilic hyperbranched polydisulfides have been reported.
Collapse
Affiliation(s)
- Raju Bej
- School of Applied and Interdisciplinary Sciences
- Indian Association for the Cultivation of Science
- Kolkata
- India
| | - Priya Rajdev
- Technical Research Center
- Indian Association for the Cultivation of Science
- Kolkata
- India
| | - Ranajit Barman
- School of Applied and Interdisciplinary Sciences
- Indian Association for the Cultivation of Science
- Kolkata
- India
| | - Suhrit Ghosh
- School of Applied and Interdisciplinary Sciences
- Indian Association for the Cultivation of Science
- Kolkata
- India
- Technical Research Center
| |
Collapse
|
31
|
Barman R, Mondal T, Sarkar J, Sikder A, Ghosh S. Self-Assembled Polyurethane Capsules with Selective Antimicrobial Activity against Gram-Negative E. coli. ACS Biomater Sci Eng 2019; 6:654-663. [DOI: 10.1021/acsbiomaterials.9b00932] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Ranajit Barman
- School of Applied and Interdisciplinary Science, Indian Association for the Cultivation of Science, 2A and 2B Raja S. C. Mullick Road, Kolkata 700032, India
| | - Tathagata Mondal
- School of Applied and Interdisciplinary Science, Indian Association for the Cultivation of Science, 2A and 2B Raja S. C. Mullick Road, Kolkata 700032, India
| | - Jayita Sarkar
- School of Applied and Interdisciplinary Science, Indian Association for the Cultivation of Science, 2A and 2B Raja S. C. Mullick Road, Kolkata 700032, India
| | - Amrita Sikder
- School of Applied and Interdisciplinary Science, Indian Association for the Cultivation of Science, 2A and 2B Raja S. C. Mullick Road, Kolkata 700032, India
| | - Suhrit Ghosh
- School of Applied and Interdisciplinary Science, Indian Association for the Cultivation of Science, 2A and 2B Raja S. C. Mullick Road, Kolkata 700032, India
| |
Collapse
|