1
|
Bigaj-Józefowska MJ, Zalewski T, Załęski K, Coy E, Frankowski M, Mrówczyński R, Grześkowiak BF. Three musketeers of PDA-based MRI contrasting and therapy. ARTIFICIAL CELLS, NANOMEDICINE, AND BIOTECHNOLOGY 2024; 52:321-333. [PMID: 38795050 DOI: 10.1080/21691401.2024.2356773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 05/13/2024] [Indexed: 05/27/2024]
Abstract
Polydopamine (PDA) stands as a versatile material explored in cancer nanomedicine for its unique properties, offering opportunities for multifunctional drug delivery platforms. This study explores the potential of utilizing a one-pot synthesis to concurrently integrate Fe, Gd and Mn ions into porous PDA-based theranostic drug delivery platforms called Ferritis, Gadolinis and Manganis, respectively. Our investigation spans the morphology, magnetic properties, photothermal characteristics and cytotoxicity profiles of those potent nanoformulations. The obtained structures showcase a spherical morphology, robust magnetic response and promising photothermal behaviour. All of the presented nanoparticles (NPs) display pronounced paramagnetism, revealing contrasting potential for MRI imaging. Relaxivity values, a key determinant of contrast efficacy, demonstrated competitive or superior performance compared to established, used contrasting agents. These nanoformulations also exhibited robust photothermal properties under near infra-red irradiation, showcasing their possible application for photothermal therapy of cancer. Our findings provide insights into the potential of metal-doped PDA NPs for cancer theranostics.
Collapse
Affiliation(s)
| | - Tomasz Zalewski
- NanoBioMedical Centre, Adam Mickiewicz University in Poznań, Poznań, Poland
| | - Karol Załęski
- NanoBioMedical Centre, Adam Mickiewicz University in Poznań, Poznań, Poland
| | - Emerson Coy
- NanoBioMedical Centre, Adam Mickiewicz University in Poznań, Poznań, Poland
| | - Marcin Frankowski
- Faculty of Chemistry, Adam Mickiewicz University in Poznań, Poznań, Poland
| | - Radosław Mrówczyński
- Faculty of Chemistry, Adam Mickiewicz University in Poznań, Poznań, Poland
- Centre for Advanced Technologies, Adam Mickiewicz University in Poznań, Poznań, Poland
| | | |
Collapse
|
2
|
Li H, Jia Y, Bai S, Peng H, Li J. Metal-chelated polydopamine nanomaterials: Nanoarchitectonics and applications in biomedicine, catalysis, and energy storage. Adv Colloid Interface Sci 2024; 334:103316. [PMID: 39442423 DOI: 10.1016/j.cis.2024.103316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 10/13/2024] [Accepted: 10/13/2024] [Indexed: 10/25/2024]
Abstract
Polydopamine (PDA)-based materials inspired by the adhesive proteins of mussels have attracted increasing attention owing to the universal adhesiveness, antioxidant activity, fluorescence quenching ability, excellent biocompatibility, and especially photothermal conversion capability. The high binding ability of PDA to a variety of metal ions offers a paradigm for the exploration of metal-chelated polydopamine nanomaterials with fantastic properties and functions. This review systematically summarizes the latest progress of metal-chelated polydopamine nanomaterials for the applications in biomedicine, catalysis, and energy storage. Different fabrication strategies for metal-chelated polydopamine nanomaterials with various composition, structure, size, and surface chemistry, such as the pre-functionalization method, the one-pot co-assembly method, and the post-modification method, are summarized. Furthermore, emerging applications of metal-chelated polydopamine nanomaterials in the fields ranging from cancer therapy, theranostics, antibacterial, catalysis to energy storage are highlighted. Additionally, the critical remaining challenges and future directions of this area are discussed to promote the further development and practical applications of PDA-based materials.
Collapse
Affiliation(s)
- Hong Li
- College of Chemistry and Chemical Engineering, Xi'an Shiyou University, Xi'an 710065, China.
| | - Yi Jia
- Beijing National Laboratory for Molecular Sciences, CAS Key Lab of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Shiwei Bai
- Beijing National Laboratory for Molecular Sciences, CAS Key Lab of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Haonan Peng
- Key Laboratory of Applied Surface and Colloid Chemistry of Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, China.
| | - Junbai Li
- Beijing National Laboratory for Molecular Sciences, CAS Key Lab of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China..
| |
Collapse
|
3
|
Lone MS, Merino-Chavez OD, Ricks NJ, Hammond MC, Noriega R. Electron Transfer Drives the Photosensitized Polymerization of Contrast Agents by Flavoprotein Tags for Correlative Microscopy. J Am Chem Soc 2024; 146:23797-23805. [PMID: 39150381 DOI: 10.1021/jacs.4c05397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/17/2024]
Abstract
Singlet oxygen generation has long been considered the key feature that allows genetically encoded fluorescent tags to produce polymeric contrast agents for electron microscopy. Optimization of the singlet oxygen sensitization quantum yield has not included the effects of electron-rich monomers on the sensitizer's photocycle. We report that at monomer concentrations employed for staining, quenching by electron transfer is the primary deactivation pathway for photoexcitations. A simple photochemical model including contributions from both processes reproduces the observed reaction rates and indicates that most of the product is driven by pathways that involve electron transfer with monomers─not by the sensitization of singlet oxygen. Realizing the importance of these competing reaction pathways offers a new paradigm to guide the development of genetically encodable tags and suggests opportunities to expand the materials scope and growth conditions for polymeric contrast agents (e.g., biocompatible monomers, O2 poor environments).
Collapse
Affiliation(s)
- Mohd Sajid Lone
- Department of Chemistry, University of Utah, Salt Lake City, Utah 84112, United States
| | - Olga D Merino-Chavez
- Department of Chemistry, University of Utah, Salt Lake City, Utah 84112, United States
- Henry Eyring Center for Cell and Genome Science, University of Utah, Salt Lake City, Utah 84112, United States
| | - Nathan J Ricks
- Department of Chemistry, University of Utah, Salt Lake City, Utah 84112, United States
- Henry Eyring Center for Cell and Genome Science, University of Utah, Salt Lake City, Utah 84112, United States
| | - Ming C Hammond
- Department of Chemistry, University of Utah, Salt Lake City, Utah 84112, United States
- Henry Eyring Center for Cell and Genome Science, University of Utah, Salt Lake City, Utah 84112, United States
| | - Rodrigo Noriega
- Department of Chemistry, University of Utah, Salt Lake City, Utah 84112, United States
| |
Collapse
|
4
|
Neelamraju PM, Gundepudi K, Sanki PK, Busi KB, Mistri TK, Sangaraju S, Dalapati GK, Ghosh KK, Ghosh S, Ball WB, Chakrabortty S. Potential applications for photoacoustic imaging using functional nanoparticles: A comprehensive overview. Heliyon 2024; 10:e34654. [PMID: 39166037 PMCID: PMC11334826 DOI: 10.1016/j.heliyon.2024.e34654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 07/08/2024] [Accepted: 07/14/2024] [Indexed: 08/22/2024] Open
Abstract
This paper presents a comprehensive overview of the potential applications for Photo-Acoustic (PA) imaging employing functional nanoparticles. The exploration begins with an introduction to nanotechnology and nanomaterials, highlighting the advancements in these fields and their crucial role in shaping the future. A detailed discussion of the various types of nanomaterials and their functional properties sets the stage for a thorough examination of the fundamentals of the PA effect. This includes a thorough chronological review of advancements, experimental methodologies, and the intricacies of the source and detection of PA signals. The utilization of amplitude and frequency modulation, design of PA cells, pressure sensor-based signal detection, and quantification methods are explored in-depth, along with additional mechanisms induced by PA signals. The paper then delves into the versatile applications of photoacoustic imaging facilitated by functional nanomaterials. It investigates the influence of nanomaterial shape, size variation, and the role of composition, alloys, and hybrid materials in harnessing the potential of PA imaging. The paper culminates with an insightful discussion on the future scope of this field, focusing specifically on the potential applications of photoacoustic (PA) effect in the domain of biomedical imaging and nanomedicine. Finally, by providing the comprehensive overview, the current work provides a valuable resource underscoring the transformative potential of PA imaging technique in biomedical research and clinical practice.
Collapse
Affiliation(s)
- Pavan Mohan Neelamraju
- Department of Electronics and Communication Engineering, SRM University AP Andhra Pradesh, Andhra Pradesh, 522240, India
| | - Karthikay Gundepudi
- Department of Electronics and Communication Engineering, SRM University AP Andhra Pradesh, Andhra Pradesh, 522240, India
| | - Pradyut Kumar Sanki
- Department of Electronics and Communication Engineering, SRM University AP Andhra Pradesh, Andhra Pradesh, 522240, India
| | - Kumar Babu Busi
- Department of Chemistry, SRM University AP Andhra Pradesh, Andhra Pradesh, 522240, India
| | - Tapan Kumar Mistri
- Department of Chemistry, SRM Institute of Science and Technology, Kattankulathur, Chennai, Tamil Nadu, 603203, India
| | - Sambasivam Sangaraju
- National Water and Energy Center, United Arab Emirates University, Al Ain, 15551, United Arab Emirates
| | - Goutam Kumar Dalapati
- Center for Nanofibers and Nanotechnology, Mechanical Engineering Department, National University of Singapore, Singapore, 117576
| | - Krishna Kanta Ghosh
- Lee Kong Chian School of Medicine, Nanyang Technological University, 59 Nanyang Drive, Singapore, 636921
| | - Siddhartha Ghosh
- Department of Physics, SRM University AP Andhra Pradesh, Andhra Pradesh, 522240, India
| | - Writoban Basu Ball
- Department of Biological Sciences, SRM University AP Andhra Pradesh, Andhra Pradesh, 522240, India
| | | |
Collapse
|
5
|
Terranova ML. Physiological Roles of Eumelanin- and Melanogenesis-Associated Diseases: A Look at the Potentialities of Engineered and Microbial Eumelanin in Clinical Practice. Bioengineering (Basel) 2024; 11:756. [PMID: 39199714 PMCID: PMC11351163 DOI: 10.3390/bioengineering11080756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 07/19/2024] [Accepted: 07/20/2024] [Indexed: 09/01/2024] Open
Abstract
This paper aims to highlight the physiological actions exerted by eumelanin present in several organs/tissues of the human body and to rationalise the often conflicting functional roles played by this biopolymer on the basis of its peculiar properties. Besides pigmentary disorders, a growing number of organ injuries and degenerative pathologies are presently ascribed to the modification of physiological eumelanin levels in terms of alterations in its chemical/structural features, and of a partial loss or uneven distribution of the pigment. The present review analyses the more recent research dedicated to the physiological and pathological actions of eumelanin and provides an insight into some melanogenesis-associated diseases of the skin, eye, ear, and brain, including the most significant neurodegenerative disorders. Also described are the potentialities of therapies based on the localised supply of exogeneous EU and the opportunities that EU produced via synthetic biology offers in order to redesign therapeutical and diagnostic applications.
Collapse
Affiliation(s)
- Maria Letizia Terranova
- Dip.to di Scienze e Tecnologie Chimiche, Università degli Studi di Roma "Tor Vergata", 00133 Roma, Italy
| |
Collapse
|
6
|
Wang L, Song K, Jiang C, Liu S, Huang S, Yang H, Li X, Zhao F. Metal-Coordinated Polydopamine Structures for Tumor Imaging and Therapy. Adv Healthc Mater 2024:e2401451. [PMID: 39021319 DOI: 10.1002/adhm.202401451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Revised: 05/27/2024] [Indexed: 07/20/2024]
Abstract
Meticulously engineered nanomaterials achieve significant advances in the diagnosis and therapy of solid tumors by improving tumor delivery efficiency; and thereby, enhancing imaging and therapeutic efficacy. Currently, polydopamine (PDA) attracts widespread attention because of its biocompatibility, simplicity of preparation, abundant surface groups, and high photothermal conversion efficiency, which can be applied in drug delivery, photothermal therapy, theranostics, and other nanomedicine fields. Inspired by PDA structures that are rich in catechol and amino functional groups that can coordinate with various metal ions, which have charming qualities and characteristics, metal-coordinated PDA structures are exploited for tumor theranostics, but are not thoroughly summarized. Herein, this review summarizes the recent progress in the fabrication of metal-coordinated PDA structures and their availabilities in tumor imaging and therapy, with further in-depth discussion of the challenges and future perspectives of metal-coordinated PDA structures, with the aim that this systematic review can promote interdisciplinary intersections and provide inspiration for the further growth and clinical translation of PDA materials.
Collapse
Affiliation(s)
- Lihua Wang
- Jiangxi Province Key Laboratory of Organic Functional Molecules, Institute of Organic Chemistry, Jiangxi Science and Technology Normal University, Nanchang, 330013, China
| | - Kaiyue Song
- Jiangxi Province Key Laboratory of Organic Functional Molecules, Institute of Organic Chemistry, Jiangxi Science and Technology Normal University, Nanchang, 330013, China
| | - Cong Jiang
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, 200433, China
| | - Shanping Liu
- Library of Jiangxi Science and Technology Normal University, Nanchang, 330013, China
| | - Shaorong Huang
- Institute of Geriatrics, Jiangxi Provincial People's Hospital, the First Affiliated Hospital of Nanchang Medical College, Nanchang, 330006, China
| | - Huang Yang
- Department of Hepatobiliary and Pancreatic Surgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310003, China
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310003, China
| | - Xianglong Li
- Jiangxi Province Key Laboratory of Organic Functional Molecules, Institute of Organic Chemistry, Jiangxi Science and Technology Normal University, Nanchang, 330013, China
| | - Feng Zhao
- Jiangxi Province Key Laboratory of Organic Functional Molecules, Institute of Organic Chemistry, Jiangxi Science and Technology Normal University, Nanchang, 330013, China
| |
Collapse
|
7
|
Yang J, Yan M, Wang Z, Zhang C, Guan M, Sun Z. Optical and MRI Multimodal Tracing of Stem Cells In Vivo. Mol Imaging 2023; 2023:4223485. [PMID: 38148836 PMCID: PMC10751174 DOI: 10.1155/2023/4223485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Revised: 11/01/2023] [Accepted: 12/01/2023] [Indexed: 12/28/2023] Open
Abstract
Stem cell therapy has shown great clinical potential in oncology, injury, inflammation, and cardiovascular disease. However, due to the technical limitations of the in vivo visualization of transplanted stem cells, the therapeutic mechanisms and biosafety of stem cells in vivo are poorly defined, which limits the speed of clinical translation. The commonly used methods for the in vivo tracing of stem cells currently include optical imaging, magnetic resonance imaging (MRI), and nuclear medicine imaging. However, nuclear medicine imaging involves radioactive materials, MRI has low resolution at the cellular level, and optical imaging has poor tissue penetration in vivo. It is difficult for a single imaging method to simultaneously achieve the high penetration, high resolution, and noninvasiveness needed for in vivo imaging. However, multimodal imaging combines the advantages of different imaging modalities to determine the fate of stem cells in vivo in a multidimensional way. This review provides an overview of various multimodal imaging technologies and labeling methods commonly used for tracing stem cells, including optical imaging, MRI, and the combination of the two, while explaining the principles involved, comparing the advantages and disadvantages of different combination schemes, and discussing the challenges and prospects of human stem cell tracking techniques.
Collapse
Affiliation(s)
- Jia Yang
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, Yunnan 650500, China
- Yunnan Key Laboratory of Primate Biomedical Research, Kunming, Yunnan 650500, China
| | - Min Yan
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, Yunnan 650500, China
- Yunnan Key Laboratory of Primate Biomedical Research, Kunming, Yunnan 650500, China
| | - Zhong Wang
- Affiliated Mental Health Center of Kunming Medical University, Kunming, Yunnan 650000, China
| | - Cong Zhang
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, Yunnan 650500, China
- Yunnan Key Laboratory of Primate Biomedical Research, Kunming, Yunnan 650500, China
| | - Miao Guan
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, Yunnan 650500, China
| | - Zhenglong Sun
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, Yunnan 650500, China
- Yunnan Key Laboratory of Primate Biomedical Research, Kunming, Yunnan 650500, China
| |
Collapse
|
8
|
Sun J, Han Y, Dong J, Lv S, Zhang R. Melanin/melanin-like nanoparticles: As a naturally active platform for imaging-guided disease therapy. Mater Today Bio 2023; 23:100894. [PMID: 38161509 PMCID: PMC10755544 DOI: 10.1016/j.mtbio.2023.100894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 11/23/2023] [Accepted: 11/29/2023] [Indexed: 01/03/2024] Open
Abstract
The development of biocompatible and efficient nanoplatforms that combine diagnostic and therapeutic functions is of great importance for precise disease treatment. Melanin, an endogenous biopolymer present in living organisms, has attracted increasing attention as a versatile bioinspired functional platform owing to its unique physicochemical properties (e.g., high biocompatibility, strong chelation of metal ions, broadband light absorption, high drug binding properties) and inherent antioxidant, photoprotective, anti-inflammatory, and anti-tumor effects. In this review, the fundamental physicochemical properties and preparation methods of natural melanin and melanin-like nanoparticles were outlined. A systematical description of the recent progress of melanin and melanin-like nanoparticles in single, dual-, and tri-multimodal imaging-guided the visual administration and treatment of osteoarthritis, acute liver injury, acute kidney injury, acute lung injury, brain injury, periodontitis, iron overload, etc. Was then given. Finally, it concluded with a reasoned discussion of current challenges toward clinical translation and future striving directions. Therefore, this comprehensive review provides insight into the current status of melanin and melanin-like nanoparticles research and is expected to optimize the design of novel melanin-based therapeutic platforms and further clinical translation.
Collapse
Affiliation(s)
- Jinghua Sun
- The Molecular Medicine Research Team of First Hospital of Shanxi Medical University, Taiyuan, 030001, China
| | - Yahong Han
- Shanxi Medical University, Taiyuan 030001, China
| | - Jie Dong
- Shanxi Medical University, Taiyuan 030001, China
| | - Shuxin Lv
- Shanxi Medical University, Taiyuan 030001, China
| | - Ruiping Zhang
- The Molecular Medicine Research Team of First Hospital of Shanxi Medical University, Taiyuan, 030001, China
- The Radiology Department of Shanxi Provincial People’ Hospital, Five Hospital of Shanxi Medical University, Taiyuan, 030001, China
| |
Collapse
|
9
|
Menichetti A, Mavridi-Printezi A, Mordini D, Montalti M. Polydopamine-Based Nanoprobes Application in Optical Biosensing. BIOSENSORS 2023; 13:956. [PMID: 37998131 PMCID: PMC10669744 DOI: 10.3390/bios13110956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 10/13/2023] [Accepted: 10/24/2023] [Indexed: 11/25/2023]
Abstract
Polydopamine (PDA), the synthetic counterpart of melanin, is a widely investigated bio-inspired material for its chemical and photophysical properties, and in the last few years, bio-application of PDA and PDA-based materials have had a dramatic increase. In this review, we described PDA application in optical biosensing, exploring its multiple roles as a nanomaterial. In optical sensing, PDA can not only be used for its intrinsic fluorescent and photoacoustic properties as a probe: in some cases, a sample optical signal can be derived by melanin generation in situ or it can be enhanced in another material thanks to PDA modification. The various possibilities of PDA use coupled with its biocompatibility will indeed widen even more its application in optical bioimaging.
Collapse
Affiliation(s)
| | | | | | - Marco Montalti
- Department of Chemistry “Giacomo Ciamician”, University of Bologna, Via Selmi 2, 40126 Bologna, Italy; (A.M.); (A.M.-P.); (D.M.)
| |
Collapse
|
10
|
Ren H, Hu Q, Sun Y, Zhou X, Zhu Y, Dong Q, Chen L, Tang J, Hu H, Shen Y, Zhou Z. Surface chemistry mediates the tumor entrance of nanoparticles probed using single-molecule dual-imaging nanodots. Biomater Sci 2023; 11:7051-7061. [PMID: 37665277 DOI: 10.1039/d3bm01171b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/05/2023]
Abstract
The active transport of nanoparticles into solid tumors through transcytosis has been recognized as a promising way to enhance tumor accumulation and penetration, but the effect of the physicochemical properties of nanoparticles remains unclear. Herein, we develop a type of single-molecule dual imaging nanodot by divergent growth of perylenediimide (PDI)-dye-cored polylysine dendrimers and internal orthogonal conjugation of Gd(III)-based macrocyclic probes for fluorescence imaging and magnetic resonance imaging (MRI) of surface chemistry-dependent tumor entrance. The MRI and fluorescence imaging show that sixth-generation nanodots with acetylated (G6-Ac) and oligo ethylene glycol (G6-OEG) surfaces exhibit similar high tumor accumulation but different intratumor distribution. Cellular uptake and transport experiments suggest that G6-Ac nanodots have lower lysosomal entrapment (61% vs. 83%) and a higher exocytotic rate (47% vs. 29%) than G6-OEG. Therefore, G6-Ac is more likely to undergo intercellular transport through cell transcytosis, and is able to reach a tumor area distant from blood vessels, while G6-OEG mainly enters the tumor through enhanced permeability and retention (EPR) effect-based passive transport, and is not able to deliver to distant tumor areas. This study suggests that it is possible to boost the tumor entrance of nanoparticles by engineering surface chemistry for active transport.
Collapse
Affiliation(s)
- Huiming Ren
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education and Zhejiang Key Laboratory of Smart Biomaterials, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China.
| | - Qiuhui Hu
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education and Zhejiang Key Laboratory of Smart Biomaterials, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China.
- Department of Radiology, Sir Run Run Shaw Hospital (SRRSH) of School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310027, China
| | - Yuji Sun
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education and Zhejiang Key Laboratory of Smart Biomaterials, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China.
| | - Xiaoxuan Zhou
- Department of Radiology, Sir Run Run Shaw Hospital (SRRSH) of School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310027, China
| | - Yincong Zhu
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education and Zhejiang Key Laboratory of Smart Biomaterials, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China.
| | - Qiuyang Dong
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education and Zhejiang Key Laboratory of Smart Biomaterials, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China.
| | - Linying Chen
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education and Zhejiang Key Laboratory of Smart Biomaterials, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China.
| | - Jianbin Tang
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education and Zhejiang Key Laboratory of Smart Biomaterials, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China.
| | - Hongjie Hu
- Department of Radiology, Sir Run Run Shaw Hospital (SRRSH) of School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310027, China
| | - Youqing Shen
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education and Zhejiang Key Laboratory of Smart Biomaterials, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China.
| | - Zhuxian Zhou
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education and Zhejiang Key Laboratory of Smart Biomaterials, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China.
| |
Collapse
|
11
|
Dan Q, Jiang X, Wang R, Dai Z, Sun D. Biogenic Imaging Contrast Agents. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2207090. [PMID: 37401173 PMCID: PMC10477908 DOI: 10.1002/advs.202207090] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 06/08/2023] [Indexed: 07/05/2023]
Abstract
Imaging contrast agents are widely investigated in preclinical and clinical studies, among which biogenic imaging contrast agents (BICAs) are developing rapidly and playing an increasingly important role in biomedical research ranging from subcellular level to individual level. The unique properties of BICAs, including expression by cells as reporters and specific genetic modification, facilitate various in vitro and in vivo studies, such as quantification of gene expression, observation of protein interactions, visualization of cellular proliferation, monitoring of metabolism, and detection of dysfunctions. Furthermore, in human body, BICAs are remarkably helpful for disease diagnosis when the dysregulation of these agents occurs and can be detected through imaging techniques. There are various BICAs matched with a set of imaging techniques, including fluorescent proteins for fluorescence imaging, gas vesicles for ultrasound imaging, and ferritin for magnetic resonance imaging. In addition, bimodal and multimodal imaging can be realized through combining the functions of different BICAs, which helps overcome the limitations of monomodal imaging. In this review, the focus is on the properties, mechanisms, applications, and future directions of BICAs.
Collapse
Affiliation(s)
- Qing Dan
- Shenzhen Key Laboratory for Drug Addiction and Medication SafetyDepartment of UltrasoundInstitute of Ultrasonic MedicinePeking University Shenzhen HospitalShenzhen Peking University‐The Hong Kong University of Science and Technology Medical CenterShenzhen518036P. R. China
| | - Xinpeng Jiang
- Department of Biomedical EngineeringCollege of Future TechnologyPeking UniversityBeijing100871P. R. China
| | - Run Wang
- Shenzhen Key Laboratory for Drug Addiction and Medication SafetyDepartment of UltrasoundInstitute of Ultrasonic MedicinePeking University Shenzhen HospitalShenzhen Peking University‐The Hong Kong University of Science and Technology Medical CenterShenzhen518036P. R. China
| | - Zhifei Dai
- Department of Biomedical EngineeringCollege of Future TechnologyPeking UniversityBeijing100871P. R. China
| | - Desheng Sun
- Shenzhen Key Laboratory for Drug Addiction and Medication SafetyDepartment of UltrasoundInstitute of Ultrasonic MedicinePeking University Shenzhen HospitalShenzhen Peking University‐The Hong Kong University of Science and Technology Medical CenterShenzhen518036P. R. China
| |
Collapse
|
12
|
Ha D, Lee JH, Jeon H, Kang YJ, Jeon J, Lee TH, Hong S, Kim YK, Kang K. Amyloid Fibers Increase Free Radicals of Synthetic Melanin. ACS APPLIED MATERIALS & INTERFACES 2023; 15:38335-38345. [PMID: 37539960 DOI: 10.1021/acsami.3c07909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/05/2023]
Abstract
Functional amyloid fibers are crucial in melanogenesis, but their roles are incompletely understood. In particular, their relationship with intrinsic spin characters of melanin remains unexplored. Here, we show that adding an amyloid scaffold greatly augments the spin density in synthetic melanin. It also brings about concurrent alterations in water dispersibility, bandgaps, and radical scavenging properties of the synthetic melanin, which facilitates its applications in solar water remediation and protection of human keratinocytes from UV irradiation. This work provides implications in the unrevealed role of functional amyloid in melanogenesis and in the origin of the superiority of natural melanin toward its synthetic variants in terms of the spin-related properties.
Collapse
Affiliation(s)
- Daehong Ha
- Department of Applied Chemistry, Kyung Hee University, 1732 Deogyoung-daero, Yongin, Gyeonggi 17104, Republic of Korea
| | - Joo Hyung Lee
- Department of Applied Chemistry, Kyung Hee University, 1732 Deogyoung-daero, Yongin, Gyeonggi 17104, Republic of Korea
| | - Hyeri Jeon
- Department of Chemistry & Nanoscience, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Yoo Jin Kang
- Department of Applied Chemistry, Kyung Hee University, 1732 Deogyoung-daero, Yongin, Gyeonggi 17104, Republic of Korea
| | - Junmo Jeon
- Department of Chemistry, Dongguk University, 30 Pildong-ro, Jung-gu, Seoul 04620, Republic of Korea
| | - Tae Hoon Lee
- Department of Applied Chemistry, Kyung Hee University, 1732 Deogyoung-daero, Yongin, Gyeonggi 17104, Republic of Korea
| | - Seungwoo Hong
- Department of Chemistry & Nanoscience, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Young-Kwan Kim
- Department of Chemistry, Dongguk University, 30 Pildong-ro, Jung-gu, Seoul 04620, Republic of Korea
| | - Kyungtae Kang
- Department of Applied Chemistry, Kyung Hee University, 1732 Deogyoung-daero, Yongin, Gyeonggi 17104, Republic of Korea
| |
Collapse
|
13
|
Mavridi-Printezi A, Menichetti A, Mordini D, Montalti M. Functionalization of and through Melanin: Strategies and Bio-Applications. Int J Mol Sci 2023; 24:9689. [PMID: 37298641 PMCID: PMC10253489 DOI: 10.3390/ijms24119689] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 05/25/2023] [Accepted: 05/29/2023] [Indexed: 06/12/2023] Open
Abstract
A unique feature of nanoparticles for bio-application is the ease of achieving multi-functionality through covalent and non-covalent functionalization. In this way, multiple therapeutic actions, including chemical, photothermal and photodynamic activity, can be combined with different bio-imaging modalities, such as magnetic resonance, photoacoustic, and fluorescence imaging, in a theragnostic approach. In this context, melanin-related nanomaterials possess unique features since they are intrinsically biocompatible and, due to their optical and electronic properties, are themselves very efficient photothermal agents, efficient antioxidants, and photoacoustic contrast agents. Moreover, these materials present a unique versatility of functionalization, which makes them ideal for the design of multifunctional platforms for nanomedicine integrating new functions such as drug delivery and controlled release, gene therapy, or contrast ability in magnetic resonance and fluorescence imaging. In this review, the most relevant and recent examples of melanin-based multi-functionalized nanosystems are discussed, highlighting the different methods of functionalization and, in particular, distinguishing pre-functionalization and post-functionalization. In the meantime, the properties of melanin coatings employable for the functionalization of a variety of material substrates are also briefly introduced, especially in order to explain the origin of the versatility of melanin functionalization. In the final part, the most relevant critical issues related to melanin functionalization that may arise during the design of multifunctional melanin-like nanoplatforms for nanomedicine and bio-application are listed and discussed.
Collapse
Affiliation(s)
| | | | | | - Marco Montalti
- Department of Chemistry “Giacomo Ciamician”, University of Bologna, Via Selmi 2, 40126 Bologna, Italy; (A.M.-P.); (A.M.); (D.M.)
| |
Collapse
|
14
|
Zeng Y, Dou T, Ma L, Ma J. Biomedical Photoacoustic Imaging for Molecular Detection and Disease Diagnosis: "Always-On" and "Turn-On" Probes. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2202384. [PMID: 35773244 PMCID: PMC9443455 DOI: 10.1002/advs.202202384] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 05/25/2022] [Indexed: 05/05/2023]
Abstract
Photoacoustic (PA) imaging is a nonionizing, noninvasive imaging technique that combines optical and ultrasonic imaging modalities to provide images with excellent contrast, spatial resolution, and penetration depth. Exogenous PA contrast agents are created to increase the sensitivity and specificity of PA imaging and to offer diagnostic information for illnesses. The existing PA contrast agents are categorized into two groups in this review: "always-on" and "turn-on," based on their ability to be triggered by target molecules. The present state of these probes, their merits and limitations, and their future development, is explored.
Collapse
Affiliation(s)
- Yun Zeng
- School of Life Science and Technology, Xidian University and Engineering Research Center of Molecular and Neuro Imaging, Ministry of Education, Xi'an, Shaanxi Province, 710126, P. R. China
- International Joint Research Center for Advanced Medical Imaging and Intelligent Diagnosis and Treatment and Xi'an Key Laboratory of Intelligent Sensing and Regulation of trans-Scale Life Information, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi Province, 7100126, P. R. China
| | - Taotao Dou
- Neurosurgery Department, Ninth Affiliated Hospital of Medical College of Xi'an Jiaotong University, Xi'an, Shaanxi Province, 710054, P. R. China
| | - Lei Ma
- Vascular Intervention Department, Ninth Affiliated Hospital of Medical College of Xi'an Jiaotong University, Xi'an, Shaanxi Province, 710054, P. R. China
| | - Jingwen Ma
- Radiology Department, CT and MRI Room, Ninth Affiliated Hospital of Medical College of Xi'an Jiaotong University, Xi'an, Shaanxi Province, 710054, P. R. China
| |
Collapse
|
15
|
Heil C, Patil A, Dhinojwala A, Jayaraman A. Computational Reverse-Engineering Analysis for Scattering Experiments (CREASE) with Machine Learning Enhancement to Determine Structure of Nanoparticle Mixtures and Solutions. ACS CENTRAL SCIENCE 2022; 8:996-1007. [PMID: 35912348 PMCID: PMC9335921 DOI: 10.1021/acscentsci.2c00382] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
We present a new open-source, machine learning (ML) enhanced computational method for experimentalists to quickly analyze high-throughput small-angle scattering results from multicomponent nanoparticle mixtures and solutions at varying compositions and concentrations to obtain reconstructed 3D structures of the sample. This new method is an improvement over our original computational reverse-engineering analysis for scattering experiments (CREASE) method (ACS Materials Au2021, 1 (2 (2), ), 140-156), which takes as input the experimental scattering profiles and outputs a 3D visualization and structural characterization (e.g., real space pair-correlation functions, domain sizes, and extent of mixing in binary nanoparticle mixtures) of the nanoparticle mixtures. The new gene-based CREASE method reduces the computational running time by >95% as compared to the original CREASE and performs better in scenarios where the original CREASE method performed poorly. Furthermore, the ML model linking features of nanoparticle solutions (e.g., concentration, nanoparticles' tendency to aggregate) to a computed scattering profile is generic enough to analyze scattering profiles for nanoparticle solutions at conditions (nanoparticle chemistry and size) beyond those that were used for the ML training. Finally, we demonstrate application of this new gene-based CREASE method for analysis of small-angle X-ray scattering results from a nanoparticle solution with unknown nanoparticle aggregation and small-angle neutron scattering results from a binary nanoparticle assembly with unknown mixing/segregation among the nanoparticles.
Collapse
Affiliation(s)
- Christian
M. Heil
- Department
of Chemical and Biomolecular Engineering, University of Delaware, 150 Academy Street, Newark, Delaware 19716, United
States
| | - Anvay Patil
- School
of Polymer Science and Polymer Engineering, The University of Akron, 170 University Avenue, Akron, Ohio 44325, United
States
| | - Ali Dhinojwala
- School
of Polymer Science and Polymer Engineering, The University of Akron, 170 University Avenue, Akron, Ohio 44325, United
States
| | - Arthi Jayaraman
- Department
of Chemical and Biomolecular Engineering, University of Delaware, 150 Academy Street, Newark, Delaware 19716, United
States
- Department
of Materials Science and Engineering, University
of Delaware, 201 DuPont
Hall, Newark, Delaware 19716, United States
| |
Collapse
|
16
|
Lv S, Sun J, Guo C, Qin Y, Zhang R. PAI/MRI Visualization of Tumor Derived Cellular Microvesicles with Endogenous Biopolymer Nanoparticles Modification. Int J Nanomedicine 2022; 17:2883-2890. [PMID: 35795080 PMCID: PMC9252299 DOI: 10.2147/ijn.s367721] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 06/07/2022] [Indexed: 12/24/2022] Open
Abstract
Background Tumor derived cellular microvesicles (TDMVs), as excellent drug delivery vehicles in vivo, play an important role in the treatment of cancers. However, it is difficult to obtain intuitional biodistribution behavior and internalization mechanisms of TDMVs in vivo. Thus, it is very urgent and important to establish a stable and reliable visualization technology to track the biological behavior and function of TDMVs. As an endogenous biopolymer, melanin possesses natural biocompatibility and biodegradability, and various biological imaging could be realized by modifying it. Therefore, melanin-based nanoparticles are excellent candidates for in vivo visualization of TDMVs. Methods In this work, the biodistribution and metabolic behavior of TDMVs were visualized by dual-modality imaging with PAI and MRI after incubation with gadolinium ion-chelated melanin nanoparticles. Results In this study, MRI and PAI dual-modality imaging of the in vivo distribution behavior of TDMVs was achieved with the help of MNP-Gd. The good targeting ability of TDMVs at the homologous tumor site was observed, and their distribution and metabolism behavior in the whole body were studied at the meantime. The results indicated that TDMVs preferentially accumulated in syngeneic tumor sites and liver regions after intravenous injection and were eventually metabolized by the kidneys over time. Conclusion This work proposed a novel dual-modal imaging strategy for the visualization of TDMVs, which is of great significance for further understanding the biological mechanisms of extracellular vesicles.
Collapse
Affiliation(s)
- Shuxin Lv
- The Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Taiyuan, 030032, People's Republic of China
| | - Jinghua Sun
- The Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Taiyuan, 030032, People's Republic of China
| | - Chunyan Guo
- The Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Taiyuan, 030032, People's Republic of China
| | - Yufei Qin
- The Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Taiyuan, 030032, People's Republic of China
| | - Ruiping Zhang
- The Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Taiyuan, 030032, People's Republic of China
| |
Collapse
|
17
|
Yim W, Borum RM, Zhou J, Mantri Y, Wu Z, Zhou J, Jin Z, Creyer M, Jokerst JV. Ultrasmall gold nanorod-polydopamine hybrids for enhanced photoacoustic imaging and photothermal therapy in second near-infrared window. Nanotheranostics 2022; 6:79-90. [PMID: 34976582 PMCID: PMC8671965 DOI: 10.7150/ntno.63634] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Accepted: 06/19/2021] [Indexed: 12/13/2022] Open
Abstract
Gold nanorods (GNRs) have attracted great interest for photo-mediated biomedicines due to their tunable and high optical absorption, high photothermal conversion efficiency and facile surface modifiability. GNRs that have efficient absorption in second near-infrared (NIR-II) window hold further promise in bio-applications due to low background signal from tissue and deep tissue penetration. However, bare GNRs readily undergo shape deformation (termed as 'melting effect') during the laser illumination losing their unique localized surface plasmon resonance (LSPR) properties, which subsequently leads to PA signal attenuation and decreased photothermal efficiency. Polydopamine (PDA) is a robust synthetic melanin that has broad absorption and high photothermal conversion. Herein, we coated GNRs with PDA to prepare photothermally robust GNR@PDA hybrids for enhanced photo-mediated theranostic agents. Ultrasmall GNRs (SGNRs) and conventional large GNRs (LGNRs) that possess similar LSPR characteristics as well as GNR@PDA hybrids were compared side-by-side in terms of the size-dependent photoacoustic (PA) imaging, photothermal therapy (PTT), and structural stability. In vitro experiments further demonstrated that SGNR@PDA showed 95% ablation of SKOV3 ovarian cancer cells, which is significantly higher than that of LGNRs (66%) and SGNRs (74%). Collectively, our PDA coating strategy represents a rational design for enhanced PA imaging and efficient PTT via a nanoparticle, i.e., nanotheranostics.
Collapse
Affiliation(s)
- Wonjun Yim
- Materials Science and Engineering Program, University of California San Diego, La Jolla, California, 92093, United States
| | - Raina M. Borum
- Department of Nanoengineering, University of California San Diego, La Jolla, California, 92093, United States
| | - Jiajing Zhou
- Department of Nanoengineering, University of California San Diego, La Jolla, California, 92093, United States
| | - Yash Mantri
- Department of Bioengineering, University of California San Diego, La Jolla, California, 92093, United States
| | - Zhuohong Wu
- Department of Nanoengineering, University of California San Diego, La Jolla, California, 92093, United States
| | - Jingcheng Zhou
- Department of Nanoengineering, University of California San Diego, La Jolla, California, 92093, United States
| | - Zhicheng Jin
- Department of Nanoengineering, University of California San Diego, La Jolla, California, 92093, United States
| | - Matthew Creyer
- Department of Nanoengineering, University of California San Diego, La Jolla, California, 92093, United States
| | - Jesse V. Jokerst
- Materials Science and Engineering Program, University of California San Diego, La Jolla, California, 92093, United States
- Department of Nanoengineering, University of California San Diego, La Jolla, California, 92093, United States
- Department of Radiology, University of California San Diego, La Jolla, California, 92093, United States
| |
Collapse
|
18
|
Lu C, Xu X, Zhang T, Wang Z, Chai Y. Facile synthesis of superparamagnetic nickel-doped iron oxide nanoparticles as high-performance T1 contrast agents for magnetic resonance imaging. J Mater Chem B 2022; 10:1623-1633. [DOI: 10.1039/d1tb02572d] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Small-sized iron oxide nanoparticles (IONPs) are excellent alternative to clinical gadolinium-based contrast agents (GBCAs) in T1-weighted magnetic resonance imaging (MRI) due to their biosafety. However, the relaxation efficiency and contrast...
Collapse
|
19
|
Heil C, Jayaraman A. Computational Reverse-Engineering Analysis for Scattering Experiments of Assembled Binary Mixture of Nanoparticles. ACS MATERIALS AU 2021; 1:140-156. [PMID: 36855396 PMCID: PMC9888618 DOI: 10.1021/acsmaterialsau.1c00015] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
In this paper, we describe a computational method for analyzing results from scattering experiments on dilute solutions of supraparticles, where each supraparticle is created by the assembly of nanoparticle mixtures. Taking scattering intensity profiles and nanoparticle mixture composition and size distributions in each supraparticle as input, this computational approach called computational reverse engineering analysis for scattering experiments (CREASE) uses a genetic algorithm to output information about the structure of the assembled nanoparticles (e.g., real space pair correlation function, extent of nanoparticle mixing/segregation, sizes of domains) within a supraparticle. We validate this method by taking as input in silico scattering intensity profiles from coarse-grained molecular simulations of a binary mixture of nanoparticles, forming a close-packed structure and testing if our computational method can correctly reproduce the nanoparticle structure observed in those simulations. We test the strengths and limitations of our method using a variety of in silico scattering intensity profiles obtained from simulations of a spherical or a cubic supraparticle comprising binary nanoparticle mixtures with varying chemistries, with and without dispersity in sizes, that exhibit well-mixed to strongly segregated structures. The strengths of the presented method include its capability to analyze scattering intensity profiles even when the wavevector q range is limited, to handily provide all of the pairwise radial distribution functions, and to correctly determine the extent of segregation/mixing of the nanoparticles assembled in complex geometries.
Collapse
Affiliation(s)
- Christian
M. Heil
- Department
of Chemical and Biomolecular Engineering, University of Delaware, 150 Academy Street, Newark, Delaware 19716, United
States
| | - Arthi Jayaraman
- Department
of Chemical and Biomolecular Engineering, University of Delaware, 150 Academy Street, Newark, Delaware 19716, United
States
- Department
of Materials Science and Engineering, University
of Delaware, 201 DuPont Hall, Newark, Delaware 19716, United
States
| |
Collapse
|
20
|
Nkanga CI, Chung YH, Shukla S, Zhou J, Jokerst JV, Steinmetz NF. The in vivo fate of tobacco mosaic virus nanoparticle theranostic agents modified by the addition of a polydopamine coat. Biomater Sci 2021; 9:7134-7150. [PMID: 34591046 PMCID: PMC8600448 DOI: 10.1039/d1bm01113h] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Plant virus nanoparticles (VNPs) have multiple advantages over their synthetic counterparts including the cost-effective large-scale manufacturing of uniform particles that are easy to functionalize. Tobacco mosaic virus (TMV) is one of the most promising VNP scaffolds, reflecting its high aspect ratio and ability to carry and/or display multivalent therapeutic ligands and contrast agents. Here we investigated the circulation, protein corona, immunogenicity, and organ distribution/clearance of TMV particles internally co-labeled with cyanine 5 (Cy5) and chelated gadolinium (Gd) for dual tracking by fluorescence imaging and optical emission spectrometry, with or without an external coating of polydopamine (PDA) to confer photothermal and photoacoustic capabilities. The PDA-coated particles (Gd-Cy5-TMV-PDA) showed a shorter plasma circulation time and broader distribution to organs of the reticuloendothelial system (liver, lungs, and spleen) than uncoated Gd-Cy5-TMV particles (liver and spleen only). The Gd-Cy5-TMV-PDA particles were surrounded by 2-10-fold greater protein corona (containing mainly immunoglobulins) compared to Gd-Cy5-TMV particles. However, the enzyme-linked immunosorbent assay (ELISA) revealed that PDA-coated particles bind 2-fold lesser to anti-TMV antibodies elicited by particle injection than uncoated particles, suggesting that the PDA coat enables evasion from systemic antibody surveillance. Gd-Cy5-TMV-PDA particles were cleared from organs after 8 days compared to 5 days for the uncoated particles. The slower tissue clearance of the coated particles makes them ideal for theranostic applications by facilitating sustained local delivery in addition to multimodal imaging and photothermal capabilities. We have demonstrated the potential of PDA-coated proteinaceous nanoparticles for multiple biomedical applications.
Collapse
Affiliation(s)
- Christian Isalomboto Nkanga
- Department of NanoEngineering, University of California San Diego, 9500 Gilman Dr., La Jolla, CA 92039, USA.
| | - Young Hun Chung
- Department of Bioengineering, University of California San Diego, 9500 Gilman Dr., La Jolla, CA 92039, USA
| | - Sourabh Shukla
- Department of NanoEngineering, University of California San Diego, 9500 Gilman Dr., La Jolla, CA 92039, USA.
| | - Jingcheng Zhou
- Department of NanoEngineering, University of California San Diego, 9500 Gilman Dr., La Jolla, CA 92039, USA.
| | - Jesse V Jokerst
- Department of NanoEngineering, University of California San Diego, 9500 Gilman Dr., La Jolla, CA 92039, USA.
- Materials Science and Engineering Program, University of California San Diego, 9500 Gilman Dr., La Jolla, CA 92039, USA
- Department of Radiology, University of California San Diego, 9500 Gilman Dr., La Jolla, CA 92039, USA
| | - Nicole F Steinmetz
- Department of NanoEngineering, University of California San Diego, 9500 Gilman Dr., La Jolla, CA 92039, USA.
- Department of Bioengineering, University of California San Diego, 9500 Gilman Dr., La Jolla, CA 92039, USA
- Department of Radiology, University of California San Diego, 9500 Gilman Dr., La Jolla, CA 92039, USA
- Center for Nano-ImmunoEngineering, University of California San Diego, 9500 Gilman Dr., La Jolla, CA 92039, USA
- Moores Cancer Center, University of California San Diego, 9500 Gilman Dr., La Jolla, CA 92039, USA
- Institute for Materials Discovery and Design, University of California San Diego, 9500 Gilman Dr., La Jolla, CA 92039, USA
| |
Collapse
|
21
|
James S, Neuhaus K, Murphy M, Leahy M. Contrast agents for photoacoustic imaging: a review of stem cell tracking. Stem Cell Res Ther 2021; 12:511. [PMID: 34563237 PMCID: PMC8467005 DOI: 10.1186/s13287-021-02576-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Accepted: 08/31/2021] [Indexed: 12/14/2022] Open
Abstract
With the advent of stem cell therapy for spinal cord injuries, stroke, burns, macular degeneration, heart diseases, diabetes, rheumatoid arthritis and osteoarthritis; the need to track the survival, migration pathways, spatial destination and differentiation of transplanted stem cells in a clinical setting has gained increased relevance. Indeed, getting regulatory approval to use these therapies in the clinic depends on biodistribution studies. Although optoacoustic imaging (OAI) or photoacoustic imaging can detect functional information of cell activities in real-time, the selection and application of suitable contrast agents is essential to achieve optimal sensitivity and contrast for sensing at clinically relevant depths and can even provide information about molecular activity. This review explores OAI methodologies in conjunction with the specific application of exogenous contrast agents in comparison to other imaging modalities and describes the properties of exogenous contrast agents for quantitative and qualitative monitoring of stem cells. Specific characteristics such as biocompatibility, the absorption coefficient, and surface functionalization are compared and how the labelling efficiency translates to both short and long-term visualization of mesenchymal stem cells is explored. An overview of novel properties of recently developed optoacoustic contrast agents and their capability to detect disease and recovery progression in clinical settings is provided which includes newly developed exogenous contrast agents to monitor stem cells in real-time for multimodal sensing.
Collapse
Affiliation(s)
- Soorya James
- Tissue Optics and Microcirculation Imaging facility,School of Physics, National University of Ireland, Galway, University Road, Galway, Ireland
| | - Kai Neuhaus
- Tissue Optics and Microcirculation Imaging facility,School of Physics, National University of Ireland, Galway, University Road, Galway, Ireland
| | - Mary Murphy
- The Regenerative Medicine Institute, National University of Ireland, Galway, University Road, Galway, Ireland
| | - Martin Leahy
- Tissue Optics and Microcirculation Imaging facility,School of Physics, National University of Ireland, Galway, University Road, Galway, Ireland
- ICFO-Institut de Ciències Fotòniques, The Barcelona Institute of Science and Technology, Castelldefels, Spain
| |
Collapse
|
22
|
Xu M, Yim W, Zhou J, Zhou J, Jin Z, Moore C, Borum R, Jorns A, Jokerst JV. The Application of Organic Nanomaterials for Bioimaging, Drug Delivery, and Therapy: Spanning Various Domains. IEEE NANOTECHNOLOGY MAGAZINE 2021. [DOI: 10.1109/mnano.2021.3081758] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
23
|
Liu Z, Liang G, Zhan W. In situ Activatable Peptide-based Nanoprobes for Tumor Imaging. Chem Res Chin Univ 2021. [DOI: 10.1007/s40242-021-1181-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
24
|
Hu Y, Zhang J, Miao Y, Wen X, Wang J, Sun Y, Chen Y, Lin J, Qiu L, Guo K, Chen H, Ye D. Enzyme‐Mediated In Situ Self‐Assembly Promotes In Vivo Bioorthogonal Reaction for Pretargeted Multimodality Imaging. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202103307] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Yuxuan Hu
- State Key Laboratory of Analytical Chemistry for Life Science Chemistry and Biomedicine Innovation Center (ChemBIC) School of Chemistry and Chemical Engineering Nanjing University Nanjing 210023 China
| | - Junya Zhang
- State Key Laboratory of Analytical Chemistry for Life Science Chemistry and Biomedicine Innovation Center (ChemBIC) School of Chemistry and Chemical Engineering Nanjing University Nanjing 210023 China
| | - Yinxing Miao
- NHC Key Laboratory of Nuclear Medicine Jiangsu Key Laboratory of Molecular Nuclear Medicine Jiangsu Institute of Nuclear Medicine Wuxi 214063 China
| | - Xidan Wen
- State Key Laboratory of Analytical Chemistry for Life Science Chemistry and Biomedicine Innovation Center (ChemBIC) School of Chemistry and Chemical Engineering Nanjing University Nanjing 210023 China
| | - Jian Wang
- State Key Laboratory of Materials-Oriented Chemical Engineering College of Biotechnology and Pharmaceutical Engineering Nanjing Tech University Nanjing 211800 China
| | - Yidan Sun
- State Key Laboratory of Analytical Chemistry for Life Science Chemistry and Biomedicine Innovation Center (ChemBIC) School of Chemistry and Chemical Engineering Nanjing University Nanjing 210023 China
| | - Yinfei Chen
- NHC Key Laboratory of Nuclear Medicine Jiangsu Key Laboratory of Molecular Nuclear Medicine Jiangsu Institute of Nuclear Medicine Wuxi 214063 China
| | - Jianguo Lin
- NHC Key Laboratory of Nuclear Medicine Jiangsu Key Laboratory of Molecular Nuclear Medicine Jiangsu Institute of Nuclear Medicine Wuxi 214063 China
| | - Ling Qiu
- NHC Key Laboratory of Nuclear Medicine Jiangsu Key Laboratory of Molecular Nuclear Medicine Jiangsu Institute of Nuclear Medicine Wuxi 214063 China
| | - Kai Guo
- State Key Laboratory of Materials-Oriented Chemical Engineering College of Biotechnology and Pharmaceutical Engineering Nanjing Tech University Nanjing 211800 China
| | - Hong‐Yuan Chen
- State Key Laboratory of Analytical Chemistry for Life Science Chemistry and Biomedicine Innovation Center (ChemBIC) School of Chemistry and Chemical Engineering Nanjing University Nanjing 210023 China
| | - Deju Ye
- State Key Laboratory of Analytical Chemistry for Life Science Chemistry and Biomedicine Innovation Center (ChemBIC) School of Chemistry and Chemical Engineering Nanjing University Nanjing 210023 China
| |
Collapse
|
25
|
Hu Y, Zhang J, Miao Y, Wen X, Wang J, Sun Y, Chen Y, Lin J, Qiu L, Guo K, Chen HY, Ye D. Enzyme-Mediated In Situ Self-Assembly Promotes In Vivo Bioorthogonal Reaction for Pretargeted Multimodality Imaging. Angew Chem Int Ed Engl 2021; 60:18082-18093. [PMID: 34010512 DOI: 10.1002/anie.202103307] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Revised: 05/01/2021] [Indexed: 12/13/2022]
Abstract
Pretargeted imaging has emerged as a promising approach to advance nuclear imaging of malignant tumors. Herein, we combine the enzyme-mediated fluorogenic reaction and in situ self-assembly with the inverse electron demand Diels-Alder (IEDDA) reaction to develop an activatable pretargeted strategy for multimodality imaging. The trans-cyclooctene (TCO) bearing small-molecule probe, P-FFGd-TCO, can be activated by alkaline phosphatase and in situ self-assembles into nanoaggregates (FMNPs-TCO) retained on the membranes, permitting to (1) amplify near-infrared (NIR) fluorescence (FL) and magnetic resonance imaging (MRI) signals, and (2) enrich TCOs to promote IEDDA ligation. The Gallium-68 (68 Ga) labeled tetrazine can readily conjugate the tumor-retained FMNPs-TCO to enhance radioactivity uptake in tumors. Strong NIR FL, MRI, and positron emission tomography (PET) signals are concomitantly achieved, allowing for pretargeted multimodality imaging of ALP activity in HeLa tumor-bearing mice.
Collapse
Affiliation(s)
- Yuxuan Hu
- State Key Laboratory of Analytical Chemistry for Life Science, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Junya Zhang
- State Key Laboratory of Analytical Chemistry for Life Science, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Yinxing Miao
- NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi, 214063, China
| | - Xidan Wen
- State Key Laboratory of Analytical Chemistry for Life Science, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Jian Wang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, 211800, China
| | - Yidan Sun
- State Key Laboratory of Analytical Chemistry for Life Science, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Yinfei Chen
- NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi, 214063, China
| | - Jianguo Lin
- NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi, 214063, China
| | - Ling Qiu
- NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi, 214063, China
| | - Kai Guo
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, 211800, China
| | - Hong-Yuan Chen
- State Key Laboratory of Analytical Chemistry for Life Science, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Deju Ye
- State Key Laboratory of Analytical Chemistry for Life Science, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| |
Collapse
|
26
|
García-Pardo J, Novio F, Nador F, Cavaliere I, Suárez-García S, Lope-Piedrafita S, Candiota AP, Romero-Gimenez J, Rodríguez-Galván B, Bové J, Vila M, Lorenzo J, Ruiz-Molina D. Bioinspired Theranostic Coordination Polymer Nanoparticles for Intranasal Dopamine Replacement in Parkinson's Disease. ACS NANO 2021; 15:8592-8609. [PMID: 33885286 PMCID: PMC8558863 DOI: 10.1021/acsnano.1c00453] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Accepted: 04/12/2021] [Indexed: 05/07/2023]
Abstract
Dopamine (DA) is one of the main neurotransmitters found in the central nervous system and has a vital role in the function of dopaminergic (DArgic) neurons. A progressive loss of this specific subset of cells is one of the hallmarks of age-related neurodegenerative disorders such as Parkinson's disease (PD). Symptomatic therapy for PD has been centered in the precursor l-DOPA administration, an amino acid precursor of DA that crosses the blood-brain barrier (BBB) while DA does not, although this approach presents medium- to long-term side effects. To overcome this limitation, DA-nanoencapsulation therapies are actively being searched as an alternative for DA replacement. However, overcoming the low yield of encapsulation and/or poor biodistribution/bioavailability of DA is still a current challenge. Herein, we report the synthesis of a family of neuromelanin bioinspired polymeric nanoparticles. Our system is based on the encapsulation of DA within nanoparticles through its reversible coordination complexation to iron metal nodes polymerized with a bis-imidazol ligand. Our methodology, in addition to being simple and inexpensive, results in DA loading efficiencies of up to 60%. In vitro, DA nanoscale coordination polymers (DA-NCPs) exhibited lower toxicity, degradation kinetics, and enhanced uptake by BE(2)-M17 DArgic cells compared to free DA. Direct infusion of the particles in the ventricle of rats in vivo showed a rapid distribution within the brain of healthy rats, leading to an increase in striatal DA levels. More importantly, after 4 days of nasal administrations with DA-NCPs equivalent to 200 μg of the free drug per day, the number and duration of apomorphine-induced rotations was significantly lower from that in either vehicle or DA-treated rats performed for comparison purposes. Overall, this study demonstrates the advantages of using nanostructured DA for DA-replacement therapy.
Collapse
Affiliation(s)
- Javier García-Pardo
- Catalan
Institute of Nanoscience and Nanotechnology (ICN2), CSIC and BIST, Campus UAB, 08193 Bellaterra, Barcelona, Spain
- Institut
de Biotecnologia i de Biomedicina (IBB), Universitat Autònoma de Barcelona, 08193 Bellaterra, Barcelona, Spain
- Departament
de Bioquímica i Biologia Molecular, Unitat de Bioquímica
de Biociències, Edifici C, Universitat
Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Spain
| | - Fernando Novio
- Catalan
Institute of Nanoscience and Nanotechnology (ICN2), CSIC and BIST, Campus UAB, 08193 Bellaterra, Barcelona, Spain
- Departament
de Química, Universitat Autònoma
de Barcelona (UAB), Campus UAB, 08193 Cerdanyola del Vallès, Barcelona, Spain
| | - Fabiana Nador
- Catalan
Institute of Nanoscience and Nanotechnology (ICN2), CSIC and BIST, Campus UAB, 08193 Bellaterra, Barcelona, Spain
| | - Ivana Cavaliere
- Catalan
Institute of Nanoscience and Nanotechnology (ICN2), CSIC and BIST, Campus UAB, 08193 Bellaterra, Barcelona, Spain
| | - Salvio Suárez-García
- Catalan
Institute of Nanoscience and Nanotechnology (ICN2), CSIC and BIST, Campus UAB, 08193 Bellaterra, Barcelona, Spain
| | - Silvia Lope-Piedrafita
- Centro
de Investigacion Biomédica en Red en Bioingeniería,
Biomateriales y Nanomedicina (CIBER-BBN), 08193 Cerdanyola del Vallés, Spain
- Servei de Ressonància Magnètica
Nuclear, Institut de Neurociències,
Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, 08193 Cerdanyola
del Vallès, Spain
| | - Ana Paula Candiota
- Institut
de Biotecnologia i de Biomedicina (IBB), Universitat Autònoma de Barcelona, 08193 Bellaterra, Barcelona, Spain
- Departament
de Bioquímica i Biologia Molecular, Unitat de Bioquímica
de Biociències, Edifici C, Universitat
Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Spain
- Centro
de Investigacion Biomédica en Red en Bioingeniería,
Biomateriales y Nanomedicina (CIBER-BBN), 08193 Cerdanyola del Vallés, Spain
| | - Jordi Romero-Gimenez
- Neurodegenerative
Diseases Research Group, Vall d’Hebron Research Institute (VHIR)-Center
for Networked Biomedical Research on Neurodegenerative Diseases (CIBERNED), Edifici Collserola Hospital Universitari Vall d’Hebron, Passeig de la Vall d’Hebron,
129, 08035 Barcelona, Spain
| | - Beatriz Rodríguez-Galván
- Neurodegenerative
Diseases Research Group, Vall d’Hebron Research Institute (VHIR)-Center
for Networked Biomedical Research on Neurodegenerative Diseases (CIBERNED), Edifici Collserola Hospital Universitari Vall d’Hebron, Passeig de la Vall d’Hebron,
129, 08035 Barcelona, Spain
| | - Jordi Bové
- Neurodegenerative
Diseases Research Group, Vall d’Hebron Research Institute (VHIR)-Center
for Networked Biomedical Research on Neurodegenerative Diseases (CIBERNED), Edifici Collserola Hospital Universitari Vall d’Hebron, Passeig de la Vall d’Hebron,
129, 08035 Barcelona, Spain
| | - Miquel Vila
- Servei de Ressonància Magnètica
Nuclear, Institut de Neurociències,
Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, 08193 Cerdanyola
del Vallès, Spain
- Neurodegenerative
Diseases Research Group, Vall d’Hebron Research Institute (VHIR)-Center
for Networked Biomedical Research on Neurodegenerative Diseases (CIBERNED), Edifici Collserola Hospital Universitari Vall d’Hebron, Passeig de la Vall d’Hebron,
129, 08035 Barcelona, Spain
- ICREA-Institució
Catalana de Recerca i Estudis Avancats, 08010 Barcelona, Spain
| | - Julia Lorenzo
- Institut
de Biotecnologia i de Biomedicina (IBB), Universitat Autònoma de Barcelona, 08193 Bellaterra, Barcelona, Spain
- Departament
de Bioquímica i Biologia Molecular, Unitat de Bioquímica
de Biociències, Edifici C, Universitat
Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Spain
| | - Daniel Ruiz-Molina
- Catalan
Institute of Nanoscience and Nanotechnology (ICN2), CSIC and BIST, Campus UAB, 08193 Bellaterra, Barcelona, Spain
| |
Collapse
|
27
|
Li Z, Cao H, Xu Y, Li X, Han X, Fan Y, Jiang Q, Sun Y, Zhang X. Bioinspired polysaccharide hybrid hydrogel promoted recruitment and chondrogenic differentiation of bone marrow mesenchymal stem cells. Carbohydr Polym 2021; 267:118224. [PMID: 34119177 DOI: 10.1016/j.carbpol.2021.118224] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 05/13/2021] [Accepted: 05/16/2021] [Indexed: 01/05/2023]
Abstract
Cartilage regeneration by biomimetic cartilage matrix with synchronously recruited stem cells was one of ideal strategies. Inspired by catechol for proteins adhesion, dopamine modified polysaccharide hybrid hydrogel (HD-C) was prepared by integrating collagen I (Col I) and hyaluronic acid derivatives (HA-DN) with sulfhydryl modified polysaccharide hybrid hydrogel (HS-C) as control. Because of double-crosslinking architecture, HD-C hydrogel was endowed with a more compact pore structure, higher mechanical properties and water retention ability in comparison with those of HS-C hydrogel. Meanwhile, it significantly promoted the proliferation and spread of rabbit bone marrow stem cells (rBMSCs), and accelerated cartilaginous matrix secretion. RT-PCR results also verified higher related gene expression of chondrogenesis (Sox 9, Agg and Col II). Moreover, HD-C hydrogel could enhance the enrichment and migration of rBMSCs in vitro by potential functional protein adsorption mechanisms, and this phenomenon was further confirmed by more rBMSCs migration in short-term joint implantation experiments in vivo.
Collapse
Affiliation(s)
- Zhulian Li
- National Engineering Research Center for Biomaterials, Sichuan University, 29 Wangjiang Road, Chengdu, Sichuan 610064, PR China; College of Biomedical Engineering, Sichuan University, 29 Wangjiang Road, Chengdu 610064, PR China
| | - Hongfu Cao
- National Engineering Research Center for Biomaterials, Sichuan University, 29 Wangjiang Road, Chengdu, Sichuan 610064, PR China; College of Biomedical Engineering, Sichuan University, 29 Wangjiang Road, Chengdu 610064, PR China
| | - Yang Xu
- National Engineering Research Center for Biomaterials, Sichuan University, 29 Wangjiang Road, Chengdu, Sichuan 610064, PR China; College of Biomedical Engineering, Sichuan University, 29 Wangjiang Road, Chengdu 610064, PR China
| | - Xing Li
- National Engineering Research Center for Biomaterials, Sichuan University, 29 Wangjiang Road, Chengdu, Sichuan 610064, PR China; College of Biomedical Engineering, Sichuan University, 29 Wangjiang Road, Chengdu 610064, PR China
| | - XiaoWen Han
- National Engineering Research Center for Biomaterials, Sichuan University, 29 Wangjiang Road, Chengdu, Sichuan 610064, PR China; College of Biomedical Engineering, Sichuan University, 29 Wangjiang Road, Chengdu 610064, PR China
| | - Yujiang Fan
- National Engineering Research Center for Biomaterials, Sichuan University, 29 Wangjiang Road, Chengdu, Sichuan 610064, PR China; College of Biomedical Engineering, Sichuan University, 29 Wangjiang Road, Chengdu 610064, PR China
| | - Qing Jiang
- College of Materials Science and Engineering, Sichuan University, 29 Wangjiang Road, Chengdu 610064, PR China.
| | - Yong Sun
- National Engineering Research Center for Biomaterials, Sichuan University, 29 Wangjiang Road, Chengdu, Sichuan 610064, PR China; College of Biomedical Engineering, Sichuan University, 29 Wangjiang Road, Chengdu 610064, PR China.
| | - Xingdong Zhang
- National Engineering Research Center for Biomaterials, Sichuan University, 29 Wangjiang Road, Chengdu, Sichuan 610064, PR China; College of Biomedical Engineering, Sichuan University, 29 Wangjiang Road, Chengdu 610064, PR China
| |
Collapse
|
28
|
Beik J, Alamzadeh Z, Mirrahimi M, Sarikhani A, Ardakani TS, Asadi M, Irajirad R, Mirrahimi M, Mahabadi VP, Eslahi N, Bulte JWM, Ghaznavi H, Shakeri-Zadeh A. Multifunctional Theranostic Graphene Oxide Nanoflakes as MR Imaging Agents with Enhanced Photothermal and Radiosensitizing Properties. ACS APPLIED BIO MATERIALS 2021; 4:4280-4291. [PMID: 35006840 DOI: 10.1021/acsabm.1c00104] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The integration of multiple therapeutic and diagnostic functions into a single nanoplatform for image-guided cancer therapy has been an emerging trend in nanomedicine. We show here that multifunctional theranostic nanostructures consisting of superparamagnetic iron oxide (SPIO) and gold nanoparticles (AuNPs) scaffolded within graphene oxide nanoflakes (GO-SPIO-Au NFs) can be used for dual photo/radiotherapy by virtue of the near-infrared (NIR) absorbance of GO for photothermal therapy (PTT) and the Z element radiosensitization of AuNPs for enhanced radiation therapy (RT). At the same time, this nanoplatform can also be detected by magnetic resonance (MR) imaging because of the presence of SPIO NPs. Using a mouse carcinoma model, GO-SPIO-Au NF-mediated combined PTT/RT exhibited a 1.85-fold and 1.44-fold higher therapeutic efficacy compared to either NF-mediated PTT or RT alone, respectively, resulting in a complete eradication of tumors. As a sensitive multifunctional theranostic platform, GO-SPIO-Au NFs appear to be a promising nanomaterial for enhanced cancer imaging and therapy.
Collapse
Affiliation(s)
- Jaber Beik
- Finetech in Medicine Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Zahra Alamzadeh
- Finetech in Medicine Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Mehri Mirrahimi
- Finetech in Medicine Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Abolfazl Sarikhani
- Finetech in Medicine Research Center, Iran University of Medical Sciences, Tehran, Iran
| | | | - Mohamadreza Asadi
- Finetech in Medicine Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Rasoul Irajirad
- Finetech in Medicine Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Mehraban Mirrahimi
- Biology Department, School of Science, Tehran University of Medical Sciences, Tehran, Iran
| | - Vahid Pirhajati Mahabadi
- Neuroscience Research Center, Iran University of Medical Sciences, Tehran, Iran.,Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Neda Eslahi
- Endometriosis Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Jeff W M Bulte
- The Russell H. Morgan Department of Radiology and Radiological Science, Division of MR Research, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, United States.,Cellular Imaging Section and Vascular Biology Program, Institute for Cell Engineering, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, United States
| | - Habib Ghaznavi
- Pharmacology Research Center, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Ali Shakeri-Zadeh
- Finetech in Medicine Research Center, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
29
|
Harizaj A, Descamps B, Mangodt C, Stremersch S, Stoppa A, Balcaen L, Brans T, De Rooster H, Devriendt N, Fraire JC, Bolea-Fernandez E, De Wever O, Willaert W, Vanhaecke F, Stevens CV, De Smedt SC, Roman B, Vanhove C, Lentacker I, Braeckmans K. Cytosolic delivery of gadolinium via photoporation enables improved in vivo magnetic resonance imaging of cancer cells. Biomater Sci 2021; 9:4005-4018. [PMID: 33899850 DOI: 10.1039/d1bm00479d] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Longitudinal in vivo monitoring of transplanted cells is crucial to perform cancer research or to assess the treatment outcome of cell-based therapies. While several bio-imaging techniques can be used, magnetic resonance imaging (MRI) clearly stands out in terms of high spatial resolution and excellent soft-tissue contrast. However, MRI suffers from low sensitivity, requiring cells to be labeled with high concentrations of contrast agents. An interesting option is to label cells with clinically approved gadolinium chelates which generate a hyperintense MR signal. However, spontaneous uptake of the label via pinocytosis results in its endosomal sequestration, leading to quenching of the T1-weighted relaxation. To avoid this quenching effect, delivery of gadolinium chelates directly into the cytosol via electroporation or hypotonic cell swelling have been proposed. However, these methods are also accompanied by several drawbacks such as a high cytotoxicity, and changes in gene expression and phenotype. Here, we demonstrate that nanoparticle-sensitized laser induced photoporation forms an attractive alternative to efficiently deliver the contrast agent gadobutrol into the cytosol of both HeLa and SK-OV-3 IP1 cells. After intracellular delivery by photoporation the quenching effect is clearly avoided, leading to a strong increase in the hyperintense T1-weighted MR signal. Moreover, when compared to nucleofection as a state-of-the-art electroporation platform, photoporation has much less impact on cell viability, which is extremely important for reliable cell tracking studies. Additional experiments confirm that photoporation does not induce any change in the long-term viability or the migratory capacity of the cells. Finally, we show that gadolinium 'labeled' SK-OV-3 IP1 cells can be imaged in vivo by MRI with high soft-tissue contrast and spatial resolution, revealing indications of potential tumor invasion or angiogenesis.
Collapse
Affiliation(s)
- Aranit Harizaj
- Laboratory of General Biochemistry and Physical Pharmacy, Faculty of Pharmaceutical Science, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Yim W, Zhou J, Mantri Y, Creyer MN, Moore CA, Jokerst JV. Gold Nanorod-Melanin Hybrids for Enhanced and Prolonged Photoacoustic Imaging in the Near-Infrared-II Window. ACS APPLIED MATERIALS & INTERFACES 2021; 13:14974-14984. [PMID: 33761255 PMCID: PMC8061782 DOI: 10.1021/acsami.1c00993] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Photoacoustic (PA) imaging holds great promise as a noninvasive imaging modality. Gold nanorods (GNRs) with absorption in the second near-infrared (NIR-II) window have emerged as excellent PA probes because of their tunable optical absorption, surface modifiability, and low toxicity. However, pristine GNRs often undergo shape transition upon laser illumination due to thermodynamic instability, leading to a reduced PA signal after a few seconds of imaging. Here, we report monodisperse GNR-melanin nanohybrids where a tunable polydopamine (PDA) coating was conformally coated on GNRs. GNR@PDAs showed a threefold higher PA signal than pristine GNRs due to the increased optical absorption, cross-sectional area, and thermal confinement. More importantly, the PA signal of GNR@PDAs only decreased by 29% during the 5 min of laser illumination in the NIR-II window, while significant attenuation (77%) was observed for GNRs. The GNR@PDAs maintained 87% of its original PA signal in vivo even after 10 min of laser illumination. This PDA-enabled strategy affords a rational design for robust PA imaging probes and provides more opportunities for other types of photomediated biomedicines, such as photothermal and photodynamic regimens.
Collapse
Affiliation(s)
- Wonjun Yim
- Materials Science and Engineering Program, University of California San Diego, 9500 Gilman Dr., La Jolla, California 92093, United States
| | - Jiajing Zhou
- Department of Nanoengineering, University of California San Diego, 9500 Gilman Dr., La Jolla, California 92093, United States
| | - Yash Mantri
- Department of Bioengineering, University of California San Diego, 9500 Gilman Dr., La Jolla, California 92093, United States
| | - Matthew N Creyer
- Department of Nanoengineering, University of California San Diego, 9500 Gilman Dr., La Jolla, California 92093, United States
| | - Colman A Moore
- Department of Nanoengineering, University of California San Diego, 9500 Gilman Dr., La Jolla, California 92093, United States
| | - Jesse V Jokerst
- Materials Science and Engineering Program, University of California San Diego, 9500 Gilman Dr., La Jolla, California 92093, United States
- Department of Bioengineering, University of California San Diego, 9500 Gilman Dr., La Jolla, California 92093, United States
- Department of Radiology, University of California San Diego, 9500 Gilman Dr., La Jolla, California 92093, United States
| |
Collapse
|
31
|
Wu D, Zhou J, Creyer MN, Yim W, Chen Z, Messersmith PB, Jokerst JV. Phenolic-enabled nanotechnology: versatile particle engineering for biomedicine. Chem Soc Rev 2021; 50:4432-4483. [PMID: 33595004 PMCID: PMC8106539 DOI: 10.1039/d0cs00908c] [Citation(s) in RCA: 144] [Impact Index Per Article: 48.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Phenolics are ubiquitous in nature and have gained immense research attention because of their unique physiochemical properties and widespread industrial use. In recent decades, their accessibility, versatile reactivity, and relative biocompatibility have catalysed research in phenolic-enabled nanotechnology (PEN) particularly for biomedical applications which have been a major benefactor of this emergence, as largely demonstrated by polydopamine and polyphenols. Therefore, it is imperative to overveiw the fundamental mechanisms and synthetic strategies of PEN for state-of-the-art biomedical applications and provide a timely and comprehensive summary. In this review, we will focus on the principles and strategies involved in PEN and summarize the use of the PEN synthetic toolkit for particle engineering and the bottom-up synthesis of nanohybrid materials. Specifically, we will discuss the attractive forces between phenolics and complementary structural motifs in confined particle systems to synthesize high-quality products with controllable size, shape, composition, as well as surface chemistry and function. Additionally, phenolic's numerous applications in biosensing, bioimaging, and disease treatment will be highlighted. This review aims to provide guidelines for new scientists in the field and serve as an up-to-date compilation of what has been achieved in this area, while offering expert perspectives on PEN's use in translational research.
Collapse
Affiliation(s)
- Di Wu
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China.
| | | | | | | | | | | | | |
Collapse
|
32
|
Okoshi T, Iwasaki T, Takahashi S, Iwasaki Y, Kishikawa K, Kohri M. Control of Structural Coloration by Natural Sunlight Irradiation on a Melanin Precursor Polymer Inspired by Skin Tanning. Biomacromolecules 2021; 22:1730-1738. [PMID: 33730848 DOI: 10.1021/acs.biomac.1c00161] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Natural melanin affects the reflection and absorption of light, and it is known as an important element in producing bright structural colors in nature. In this study, we prepared core-shell particles using a melanin precursor polymer, that is, polytyrosine (PTy), as a shell layer by the oxidative polymerization of tyrosine ethyl ester (Ty) in the presence of cerium oxide (CeO2) core particles. Inspired by skin tanning, irradiating the CeO2@PTy core-shell particles with UV or natural sunlight caused melanization by extending the π-conjugated length of PTy, producing colloidal particles with the ability to absorb light. The pellet samples consisting of CeO2@PTy particles appeared whitish because of multiple scattered light. In contrast, the light absorption capacity of CeO2@PTy UV or CeO2@PTy Sun particles after light irradiation suppressed scattered light, dramatically improving the visibility of the structural color of the pellet samples made from these particles. Thus, a new method has been developed to control the visualization of structural colors to the human eye by irradiating the melanin precursor polymer with light.
Collapse
Affiliation(s)
- Taku Okoshi
- Department of Applied Chemistry and Biotechnology, Graduate School of Engineering, Chiba University, 1-33 Yayoi-cho, Inage-ku, Chiba 263-8522, Japan
| | - Takeshi Iwasaki
- Department of Applied Chemistry and Biotechnology, Graduate School of Engineering, Chiba University, 1-33 Yayoi-cho, Inage-ku, Chiba 263-8522, Japan.,Banknote Department, Head Office, National Printing Bureau, 2-2-5 Toranomon, Minato-ku, Tokyo 105-8445, Japan
| | - Shimon Takahashi
- Department of Applied Chemistry and Biotechnology, Graduate School of Engineering, Chiba University, 1-33 Yayoi-cho, Inage-ku, Chiba 263-8522, Japan
| | - Yasuhiko Iwasaki
- ORDIST, Kansai University, 3-3-35 Yamate-cho, Suita-shi, Osaka 564-0836, Japan.,Faculty of Chemistry, Materials and Bioengineering, Kansai University, 3-3-35 Yamate-cho, Suita-shi, Osaka 564-0836, Japan
| | - Keiki Kishikawa
- Department of Applied Chemistry and Biotechnology, Graduate School of Engineering, Chiba University, 1-33 Yayoi-cho, Inage-ku, Chiba 263-8522, Japan
| | - Michinari Kohri
- Department of Applied Chemistry and Biotechnology, Graduate School of Engineering, Chiba University, 1-33 Yayoi-cho, Inage-ku, Chiba 263-8522, Japan
| |
Collapse
|
33
|
|
34
|
Yang P, Zhu F, Zhang Z, Cheng Y, Wang Z, Li Y. Stimuli-responsive polydopamine-based smart materials. Chem Soc Rev 2021; 50:8319-8343. [DOI: 10.1039/d1cs00374g] [Citation(s) in RCA: 128] [Impact Index Per Article: 42.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
This review provides in-depth insight into the structural engineering of PDA-based materials to enhance their responsive feature and the use of them in construction of PDA-based stimuli-responsive smart materials.
Collapse
Affiliation(s)
- Peng Yang
- College of Polymer Science and Engineering
- State Key Laboratory of Polymer Materials Engineering
- Sichuan University
- Chengdu 610065
- China
| | - Fang Zhu
- College of Polymer Science and Engineering
- State Key Laboratory of Polymer Materials Engineering
- Sichuan University
- Chengdu 610065
- China
| | - Zhengbiao Zhang
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials
- Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application
- College of Chemistry, Chemical Engineering and Materials Science
- Collaborative Innovation Center of Suzhou Nano Science and Technology
- Soochow University
| | - Yiyun Cheng
- Shanghai Key Laboratory of Regulatory Biology
- School of Life Sciences
- East China Normal University
- Shanghai 200241
- P. R. China
| | - Zhao Wang
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials
- Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application
- College of Chemistry, Chemical Engineering and Materials Science
- Collaborative Innovation Center of Suzhou Nano Science and Technology
- Soochow University
| | - Yiwen Li
- College of Polymer Science and Engineering
- State Key Laboratory of Polymer Materials Engineering
- Sichuan University
- Chengdu 610065
- China
| |
Collapse
|
35
|
Li L, Xing Z, Tang Q, Yang L, Dai L, Wang H, Yan T, Xu W, Ma H, Wei Q. Enzyme-Free Colorimetric Immunoassay for Protein Biomarker Enabled by Loading and Disassembly Behaviors of Polydopamine Nanoparticles. ACS APPLIED BIO MATERIALS 2020; 3:8841-8848. [DOI: 10.1021/acsabm.0c01167] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Li Li
- Collaborative Innovation Center for Green Chemical Manufacturing and Accurate Detection, Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, P. R. China
| | - Zhenyuan Xing
- Collaborative Innovation Center for Green Chemical Manufacturing and Accurate Detection, Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, P. R. China
| | - Qiaorong Tang
- Collaborative Innovation Center for Green Chemical Manufacturing and Accurate Detection, Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, P. R. China
| | - Lei Yang
- Collaborative Innovation Center for Green Chemical Manufacturing and Accurate Detection, Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, P. R. China
| | - Li Dai
- Collaborative Innovation Center for Green Chemical Manufacturing and Accurate Detection, Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, P. R. China
| | - Huan Wang
- Collaborative Innovation Center for Green Chemical Manufacturing and Accurate Detection, Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, P. R. China
| | - Tao Yan
- Collaborative Innovation Center for Green Chemical Manufacturing and Accurate Detection, Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, P. R. China
| | - Weiying Xu
- Collaborative Innovation Center for Green Chemical Manufacturing and Accurate Detection, Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, P. R. China
| | - Hongmin Ma
- Collaborative Innovation Center for Green Chemical Manufacturing and Accurate Detection, Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, P. R. China
| | - Qin Wei
- Collaborative Innovation Center for Green Chemical Manufacturing and Accurate Detection, Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, P. R. China
| |
Collapse
|
36
|
Mavridi-Printezi A, Guernelli M, Menichetti A, Montalti M. Bio-Applications of Multifunctional Melanin Nanoparticles: From Nanomedicine to Nanocosmetics. NANOMATERIALS (BASEL, SWITZERLAND) 2020; 10:E2276. [PMID: 33212974 PMCID: PMC7698489 DOI: 10.3390/nano10112276] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 11/05/2020] [Accepted: 11/12/2020] [Indexed: 12/13/2022]
Abstract
Bioinspired nanomaterials are ideal components for nanomedicine, by virtue of their expected biocompatibility or even complete lack of toxicity. Natural and artificial melanin-based nanoparticles (MNP), including polydopamine nanoparticles (PDA NP), excel for their extraordinary combination of additional optical, electronic, chemical, photophysical, and photochemical properties. Thanks to these features, melanin plays an important multifunctional role in the design of new platforms for nanomedicine where this material works not only as a mechanical support or scaffold, but as an active component for imaging, even multimodal, and simple or synergistic therapy. The number of examples of bio-applications of MNP increased dramatically in the last decade. Here, we review the most recent ones, focusing on the multiplicity of functions that melanin performs in theranostics platforms with increasing complexity. For the sake of clarity, we start analyzing briefly the main properties of melanin and its derivative as well as main natural sources and synthetic methods, moving to imaging application from mono-modal (fluorescence, photoacoustic, and magnetic resonance) to multi-modal, and then to mono-therapy (drug delivery, anti-oxidant, photothermal, and photodynamic), and finally to theranostics and synergistic therapies, including gene- and immuno- in combination to photothermal and photodynamic. Nanomedicine aims not only at the treatment of diseases, but also to their prevention, and melanin in nature performs a protective action, in the form of nanopigment, against UV-Vis radiations and oxidants. With these functions being at the border between nanomedicine and cosmetics nanotechnology, recently examples of applications of artificial MNP in cosmetics are increasing, paving the road to the birth of the new science of nanocosmetics. In the last part of this review, we summarize and discuss these important recent results that establish evidence of the interconnection between nanomedicine and cosmetics nanotechnology.
Collapse
Affiliation(s)
- Alexandra Mavridi-Printezi
- Department of Chemistry “Giacomo Ciamician”, University of Bologna, Via Selmi 2, 40126 Bologna, Italy; (A.M.-P.); (M.G.); (A.M.)
| | - Moreno Guernelli
- Department of Chemistry “Giacomo Ciamician”, University of Bologna, Via Selmi 2, 40126 Bologna, Italy; (A.M.-P.); (M.G.); (A.M.)
| | - Arianna Menichetti
- Department of Chemistry “Giacomo Ciamician”, University of Bologna, Via Selmi 2, 40126 Bologna, Italy; (A.M.-P.); (M.G.); (A.M.)
| | - Marco Montalti
- Department of Chemistry “Giacomo Ciamician”, University of Bologna, Via Selmi 2, 40126 Bologna, Italy; (A.M.-P.); (M.G.); (A.M.)
- Tecnopolo di Rimini, Via Campana 71, 47922 Rimini, Italy
| |
Collapse
|
37
|
Wang S, Zhao Y, Xu Y. Recent advances in applications of multimodal ultrasound-guided photoacoustic imaging technology. Vis Comput Ind Biomed Art 2020; 3:24. [PMID: 33083889 PMCID: PMC7575676 DOI: 10.1186/s42492-020-00061-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Accepted: 10/02/2020] [Indexed: 12/28/2022] Open
Abstract
Photoacoustic imaging (PAI) is often performed simultaneously with ultrasound imaging and can provide functional and cellular information regarding the tissues in the anatomical markers of the imaging. This paper describes in detail the basic principles of photoacoustic/ultrasound (PA/US) imaging and its application in recent years. It includes near-infrared-region PA, photothermal, photodynamic, and multimode imaging techniques. Particular attention is given to the relationship between PAI and ultrasonic imaging; the latest high-frequency PA/US imaging of small animals, which involves not only B-mode, but also color Doppler mode, power Doppler mode, and nonlinear imaging mode; the ultrasonic model combined with PAI, including the formation of multimodal imaging; the preclinical imaging methods; and the most effective detection methods for clinical research for the future.
Collapse
Affiliation(s)
- Shanshan Wang
- VisualSonics Business Department, FUJIFILM (China) Investment Co. Ltd., Beijing, 100026, China.
| | - Yunfeng Zhao
- VisualSonics Business Department, FUJIFILM (China) Investment Co. Ltd., Shanghai, 200120, China
| | - Ye Xu
- VisualSonics Business Department, FUJIFILM (China) Investment Co. Ltd., Shanghai, 200120, China
| |
Collapse
|
38
|
Cai W, Sun J, Sun Y, Zhao X, Guo C, Dong J, Peng X, Zhang R. NIR-II FL/PA dual-modal imaging long-term tracking of human umbilical cord-derived mesenchymal stem cells labeled with melanin nanoparticles and visible HUMSC-based liver regeneration for acute liver failure. Biomater Sci 2020; 8:6592-6602. [PMID: 33231594 DOI: 10.1039/d0bm01221a] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Acetaminophen (APAP) has been widely used for relieving pain and fever, whilst overdose would lead to the occurrence of acute liver failure (ALF). Currently, few effective treatments are available for ALF in clinic, especially for severe, advanced- or end-stage patients who need liver transplantation. Human umbilical cord-derived mesenchymal stem cells (hUMSCs), as one of the mesenchymal stem cells, not only contribute to relieving hepatotoxicity and promoting hepatocyte regeneration due to their self-renewing, multi-differentiation potential, anti-inflammatory, immunomodulatory and paracrine properties, but possess lower immunomodulatory effects, faster self-renewal properties and noncontroversial ethical concerns, which may play a better role in the treatment of ALF. In this work, hUMSCs were rapidly labeled with near-infrared II fluorescent dye-modified melanin nanoparticles (MNP-PEG-H2), which could realize long-term tracking of hUMSCs by NIR-II fluorescent (FL)/photoacoustic (PA) dual-modal imaging and could visualize hUMSC-based liver regeneration in ALF. The nanoparticles exhibited good dispersibility and biocompatibility, high labeling efficiency for hUMSCs and excellent NIR-II FL/PA imaging performance. Moreover, the MNP-PEG-H2 labeled hUMSCs could be continuously traced in vivo for up to 21 days. After intravenous delivery, the NIR-II FL and PA images revealed that labeled hUMSCs were able to engraft in the injured liver and repair damaged tissue in ALF mice. Therefore, the hUMSCs labeled with endogenous melanin nanoparticles solve the key tracing problem of MSC-based regenerative medicine and realize the visualization of the treatment process, which may provide an efficient, safe and potential choice for ALF.
Collapse
Affiliation(s)
- Wenwen Cai
- Imaging Department, The Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Taiyuan 030032, China.
| | | | | | | | | | | | | | | |
Collapse
|
39
|
Cavallini C, Vitiello G, Adinolfi B, Silvestri B, Armanetti P, Manini P, Pezzella A, d’Ischia M, Luciani G, Menichetti L. Melanin and Melanin-Like Hybrid Materials in Regenerative Medicine. NANOMATERIALS (BASEL, SWITZERLAND) 2020; 10:E1518. [PMID: 32756369 PMCID: PMC7466405 DOI: 10.3390/nano10081518] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Revised: 07/21/2020] [Accepted: 07/30/2020] [Indexed: 02/07/2023]
Abstract
Melanins are a group of dark insoluble pigments found widespread in nature. In mammals, the brown-black eumelanins and the reddish-yellow pheomelanins are the main determinants of skin, hair, and eye pigmentation and play a significant role in photoprotection as well as in many biological functions ensuring homeostasis. Due to their broad-spectrum light absorption, radical scavenging, electric conductivity, and paramagnetic behavior, eumelanins are widely studied in the biomedical field. The continuing advancements in the development of biomimetic design strategies offer novel opportunities toward specifically engineered multifunctional biomaterials for regenerative medicine. Melanin and melanin-like coatings have been shown to increase cell attachment and proliferation on different substrates and to promote and ameliorate skin, bone, and nerve defect healing in several in vivo models. Herein, the state of the art and future perspectives of melanins as promising bioinspired platforms for natural regeneration processes are highlighted and discussed.
Collapse
Affiliation(s)
- Chiara Cavallini
- Institute of Clinical Physiology, National Research Council, via Giuseppe Moruzzi 1, 56124 Pisa, Italy; (P.A.); (L.M.)
| | - Giuseppe Vitiello
- Department of Chemical, Materials and Production Engineering (DICMaPI), University of Naples Federico II, Piazzale V. Tecchio 80, 80125 Napoli, Italy; (G.V.); (B.S.)
| | - Barbara Adinolfi
- Institute of Applied Physics “Nello Carrara”, National Research Council, via Madonna del Piano 10, 50019 Sesto Fiorentino, FI, Italy;
| | - Brigida Silvestri
- Department of Chemical, Materials and Production Engineering (DICMaPI), University of Naples Federico II, Piazzale V. Tecchio 80, 80125 Napoli, Italy; (G.V.); (B.S.)
| | - Paolo Armanetti
- Institute of Clinical Physiology, National Research Council, via Giuseppe Moruzzi 1, 56124 Pisa, Italy; (P.A.); (L.M.)
| | - Paola Manini
- Department of Chemical Sciences, University of Naples Federico II, via Cintia 21, I-80126 Napoli, Italy; (P.M.); (A.P.); (M.d.)
| | - Alessandro Pezzella
- Department of Chemical Sciences, University of Naples Federico II, via Cintia 21, I-80126 Napoli, Italy; (P.M.); (A.P.); (M.d.)
| | - Marco d’Ischia
- Department of Chemical Sciences, University of Naples Federico II, via Cintia 21, I-80126 Napoli, Italy; (P.M.); (A.P.); (M.d.)
| | - Giuseppina Luciani
- Department of Chemical, Materials and Production Engineering (DICMaPI), University of Naples Federico II, Piazzale V. Tecchio 80, 80125 Napoli, Italy; (G.V.); (B.S.)
| | - Luca Menichetti
- Institute of Clinical Physiology, National Research Council, via Giuseppe Moruzzi 1, 56124 Pisa, Italy; (P.A.); (L.M.)
| |
Collapse
|
40
|
Li Z, Hu J, Yang L, Zhang X, Liu X, Wang Z, Li Y. Integrated POSS-dendrimer nanohybrid materials: current status and future perspective. NANOSCALE 2020; 12:11395-11415. [PMID: 32432308 DOI: 10.1039/d0nr02394a] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Polyhedral oligomeric silsesquioxane (POSS)-dendrimer hybrid materials have attracted great interest in the past ten years. The integration of inorganic POSS and organic dendrimer blocks in a single-phase material offers numerous possibilities to access desirable mechanical, optical, and biomedical properties for various applications. In this review article, we describe several kinds of POSS-dendrimer hybrid materials (POSS as the core, surface functionality, repeating unit of dendrimers and the POSS-dendron conjugates) with an emphasis on their synthetic strategies, tunable macroscopic properties, and potential applications. Moreover, the current trends, challenges and future directions of POSS-dendrimer hybrid materials are elaborated.
Collapse
Affiliation(s)
- Zhan Li
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China.
| | - Junfei Hu
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China.
| | - Lei Yang
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China.
| | - Xueqian Zhang
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China.
| | - Xianhu Liu
- National Engineering Research Center for Advanced Polymer Processing Technology, Zhengzhou University, Zhengzhou 450002, China
| | - Zhao Wang
- Pritzker School of Engineering, University of Chicago, Chicago, IL 60637, USA.
| | - Yiwen Li
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China.
| |
Collapse
|
41
|
Wang Z, Zou Y, Li Y, Cheng Y. Metal-Containing Polydopamine Nanomaterials: Catalysis, Energy, and Theranostics. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2020; 16:e1907042. [PMID: 32220006 DOI: 10.1002/smll.201907042] [Citation(s) in RCA: 166] [Impact Index Per Article: 41.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 01/10/2020] [Accepted: 01/30/2020] [Indexed: 06/10/2023]
Abstract
Polydopamine (PDA) is a major type of artificial melanin material with many interesting properties such as antioxidant activity, free-radical scavenging, high photothermal conversion efficiency, and strong metal-ion chelation. The high affinity of PDA to a wide range of metals/metal ions has offered a new class of functional metal-containing polydopamine (MPDA) nanomaterials with promising functions and extensive applications. Understanding and controlling the metal coordination environment is vital to achieve desirable functions for which such materials can be exploited. MPDA nanomaterials with metal/metal ions as the active functions are reviewed, including their synthesis and metal coordination environment and their applications in catalysis, batteries, solar cells, capacitors, medical imaging, cancer therapy, antifouling, and antibacterial coating. The current trends, limitations, and future directions of this area are also explored.
Collapse
Affiliation(s)
- Zhao Wang
- Institute for Molecular Engineering, University of Chicago, Chicago, IL, 60637, USA
| | - Yuan Zou
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Yiwen Li
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Yiyun Cheng
- Shanghai Key Laboratory of Regulatory Biology, School of Life Sciences, East China Normal University, Shanghai, 200241, P. R. China
| |
Collapse
|
42
|
Chen M, Zhang X, Liu J, Liu F, Zhang R, Wei P, Feng H, Tu M, Qin A, Lam JWY, Ding D, Tang BZ. Evoking Photothermy by Capturing Intramolecular Bond Stretching Vibration-Induced Dark-State Energy. ACS NANO 2020; 14:4265-4275. [PMID: 32160460 DOI: 10.1021/acsnano.9b09625] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Development of highly effective approaches to desirable photothermal conversion agents is particularly valuable. Herein, we report a concept, namely, bond stretching vibration-induced photothermy, that serves as a mechanism to construct advanced photothermal conversion agents. As a proof-of-concept, two compounds (DCP-TPA and DCP-PTPA) with donor-acceptor (D-A) structures were synthesized. The bond stretching vibration of the pyrazine-containing unit in these molecules is vigorous and insensitive to the external environmental restraint, which efficiently transforms the absorbed photons to dark-state heat energy. The nanoparticles (NPs) of DCP-TPA and DCP-PTPA show rather high photothermal conversion efficiency (52% and 59%) and stronger photoacoustic (PA) signal than commercial methylene blue and reported high-performance semiconducting polymer nanoparticles. The DCP-PTPA NPs perform better than DCP-TPA NPs in terms of photothermal conversion, PA signal production, and in vivo PA tumor imaging because of the increased bond stretching vibration in the former molecule.
Collapse
Affiliation(s)
- Ming Chen
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Division of Life Science and State Key Laboratory of Molecular Neuroscience, and Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
- College of Chemistry and Materials Science, Jinan University, Guangzhou 510632, China
| | - Xiaoyan Zhang
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials, Ministry of Education, and College of Life Science, Nankai University, Tianjin 300071, China
| | - Junkai Liu
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Division of Life Science and State Key Laboratory of Molecular Neuroscience, and Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Feng Liu
- College of Chemistry and Materials Science, Jinan University, Guangzhou 510632, China
| | - Ruoyao Zhang
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Division of Life Science and State Key Laboratory of Molecular Neuroscience, and Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Peifa Wei
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Division of Life Science and State Key Laboratory of Molecular Neuroscience, and Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Haitao Feng
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Division of Life Science and State Key Laboratory of Molecular Neuroscience, and Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Mei Tu
- College of Chemistry and Materials Science, Jinan University, Guangzhou 510632, China
| | - Anjun Qin
- Center for Aggregation-Induced Emission, SCUT-HKUST Joint Research Institute, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou 510640, China
| | - Jacky W Y Lam
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Division of Life Science and State Key Laboratory of Molecular Neuroscience, and Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Dan Ding
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials, Ministry of Education, and College of Life Science, Nankai University, Tianjin 300071, China
- Center for Aggregation-Induced Emission, SCUT-HKUST Joint Research Institute, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou 510640, China
| | - Ben Zhong Tang
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Division of Life Science and State Key Laboratory of Molecular Neuroscience, and Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
- Center for Aggregation-Induced Emission, SCUT-HKUST Joint Research Institute, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou 510640, China
| |
Collapse
|
43
|
Li G, Wang S, Deng D, Xiao Z, Dong Z, Wang Z, Lei Q, Gao S, Huang G, Zhang E, Zeng G, Wen Z, Wu S, Liu Z. Fluorinated Chitosan To Enhance Transmucosal Delivery of Sonosensitizer-Conjugated Catalase for Sonodynamic Bladder Cancer Treatment Post-intravesical Instillation. ACS NANO 2020; 14:1586-1599. [PMID: 32011860 DOI: 10.1021/acsnano.9b06689] [Citation(s) in RCA: 143] [Impact Index Per Article: 35.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Sonodynamic therapy (SDT) is a noninvasive ultrasound-triggered therapeutic strategy for site-specific treatment of tumors with great depth penetration. The design of nano-sonosensitizers suitable for SDT treatment of bladder cancer (BCa) post-intravesical instillation has not yet been reported. Herein, a transmucosal oxygen-self-production SDT nanoplatform is developed to achieve highly efficient SDT against BCa. In this system, fluorinated chitosan (FCS) is synthesized as a highly effective nontoxic transmucosal delivery carrier to assemble with meso-tetra(4-carboxyphenyl)porphine-conjugated catalase (CAT-TCPP). The formed CAT-TCPP/FCS nanoparticles after intravesical instillation into the bladder cavity exhibit excellent transmucosal and intratumoral penetration capacities and could efficiently relieve hypoxia in tumor tissues by the catalase-catalyzed O2 generation from tumor endogenous H2O2 to further improve the therapeutic efficacy of SDT to ablate orthotopic bladder tumors under ultrasound. Our work presents a nano-sonosensitizer formulation with FCS to enhance transmucosal delivery and intratumoral diffusion and CAT to improve tumor oxygenation, promising for instillation-based SDT to treat bladder tumors without the concern of systemic toxicity.
Collapse
Affiliation(s)
- Guangzhi Li
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices , Soochow University , Suzhou 215123 , China
- Institute of Urology, The Affiliated Luohu Hospital of Shenzhen University , Shenzhen University , Shenzhen 518000 , China
- Department of Nephrology, The Second Hospital and Center for Renal Diseases, Advanced Institute for Medical Sciences , Dalian Medical University , Dalian 116044 , China
| | - Shupeng Wang
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices , Soochow University , Suzhou 215123 , China
- School of Material Science and Engineering , Beijing Institute of Technology , Beijing 100081 , China
| | - Dashi Deng
- Institute of Urology, The Affiliated Luohu Hospital of Shenzhen University , Shenzhen University , Shenzhen 518000 , China
| | - Zhisheng Xiao
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices , Soochow University , Suzhou 215123 , China
| | - Ziliang Dong
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices , Soochow University , Suzhou 215123 , China
| | - Zhiping Wang
- Department of Urology , The Second Hospital of Lanzhou University , Lanzhou 730030 , China
| | - Qifang Lei
- Institute of Urology, The Affiliated Luohu Hospital of Shenzhen University , Shenzhen University , Shenzhen 518000 , China
- Department of Nephrology, The Second Hospital and Center for Renal Diseases, Advanced Institute for Medical Sciences , Dalian Medical University , Dalian 116044 , China
| | - Shan Gao
- Institute of Urology, The Affiliated Luohu Hospital of Shenzhen University , Shenzhen University , Shenzhen 518000 , China
| | - Guixiao Huang
- Institute of Urology, The Affiliated Luohu Hospital of Shenzhen University , Shenzhen University , Shenzhen 518000 , China
| | - Enpu Zhang
- Institute of Urology, The Affiliated Luohu Hospital of Shenzhen University , Shenzhen University , Shenzhen 518000 , China
| | - Guohua Zeng
- Department of Urology, Minimally Invasive Surgery Center , The First Affiliated Hospital of Guangzhou Medical University , Guangzhou 510120 , China
| | - Zhong Wen
- Department of Urology, Minimally Invasive Surgery Center , The First Affiliated Hospital of Guangzhou Medical University , Guangzhou 510120 , China
| | - Song Wu
- Institute of Urology, The Affiliated Luohu Hospital of Shenzhen University , Shenzhen University , Shenzhen 518000 , China
- Department of Urology , The Second Hospital of Lanzhou University , Lanzhou 730030 , China
| | - Zhuang Liu
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices , Soochow University , Suzhou 215123 , China
| |
Collapse
|
44
|
Zou Y, Wu T, Li N, Guo X, Li Y. Photothermal-enhanced synthetic melanin inks for near-infrared imaging. POLYMER 2020. [DOI: 10.1016/j.polymer.2019.122042] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
45
|
Meng T, Fan B, Li Q, Peng X, Xu J, Zhang R. Matrix metalloproteinase-initiated aggregation of melanin nanoparticles as highly efficient contrast agent for enhanced tumor accumulation and dual-modal imaging. J Mater Chem B 2020; 8:9888-9898. [DOI: 10.1039/d0tb01651a] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
MMP2-initiated size-changeable melanin nanoparticles significantly increase the T1-weighted MRI and PA signals in vivo due to enhanced tumor accumulations.
Collapse
Affiliation(s)
- Tingwei Meng
- School of Basic Medical Sciences
- Department of Biochemistry and Molecular Biology
- Shanxi Medical University
- Taiyuan 030001
- People's Republic of China
| | - Bo Fan
- Department of Pharmacy
- Shanxi Medical University
- Taiyuan 030001
- People's Republic of China
| | - Qian Li
- Department of Pharmacy
- Shanxi Medical University
- Taiyuan 030001
- People's Republic of China
| | - Xiaoyang Peng
- School of Basic Medical Sciences
- Department of Biochemistry and Molecular Biology
- Shanxi Medical University
- Taiyuan 030001
- People's Republic of China
| | - Jun Xu
- First Hospital of Shanxi Medical University
- Taiyuan 030001
- People's Republic of China
| | - Ruiping Zhang
- Imaging Department of the Affiliated Bethune Hospital of Shanxi Medical University
- Taiyuan 030001
- People's Republic of China
| |
Collapse
|
46
|
Abstract
Cell therapy is revolutionizing modern medicine. To promote this emerging therapy, the ability to image and track therapeutic cells is critical to monitor the progress of the treatment. Ultrasound imaging is promising in tracking therapeutic cells but suffers from poor contrast against local tissues. Therefore, it is critical to increase the ultrasound contrast of therapeutic cells over local tissue at the injection site. Here, we describe a method to increase the ultrasound intensity of therapeutic cells with nanoparticles to make the injected therapeutic cells more visible.
Collapse
Affiliation(s)
- Fang Chen
- Department of Nanoengineering, Materials Science and Engineering Program, University of California, San Diego, CA, USA.
- Department of Ophthalmology, Stanford University, Stanford, CA, USA.
| | - Jesse V Jokerst
- Department of Nanoengineering, Materials Science and Engineering Program, University of California, San Diego, CA, USA
- Department of Radiology, University of California, San Diego, CA, USA
| |
Collapse
|
47
|
Chen C, Ni X, Jia S, Liang Y, Wu X, Kong D, Ding D. Massively Evoking Immunogenic Cell Death by Focused Mitochondrial Oxidative Stress using an AIE Luminogen with a Twisted Molecular Structure. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2019; 31:e1904914. [PMID: 31696981 DOI: 10.1002/adma.201904914] [Citation(s) in RCA: 280] [Impact Index Per Article: 56.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 10/04/2019] [Indexed: 05/06/2023]
Abstract
Immunogenic cell death (ICD) provides momentous theoretical principle for modern cancer immunotherapy. However, the currently available ICD inducers are still very limited and photosensitizer-based ones can hardly induce sufficient ICD to achieve satisfactory cancer immunotherapy by themselves. Herein, an organic photosensitizer (named TPE-DPA-TCyP) with a twisted molecular structure, strong aggregation-induced emission activity, and specific ability is reported for effectively inducing focused mitochondrial oxidative stress of cancer cells, which can serve as a much superior ICD inducer to the popularly used ones, including chlorin e6 (Ce6), pheophorbide A, and oxaliplatin. Furthermore, more effective in vivo ICD immunogenicity of TPE-DPA-TCyP than Ce6 is also demonstrated using a prophylactic tumor vaccination model. The underlying mechanism of the effectiveness and robustness of TPE-DPA-TCyP in inducing antitumor immunity and immune-memory effect in vivo is verified by immune cell analyses. This study thus reveals that inducing focused mitochondrial oxidative stress is a highly effective strategy to evoke abundant and large-scale ICD.
Collapse
Affiliation(s)
- Chao Chen
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials, Ministry of Education, and College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Xiang Ni
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials, Ministry of Education, and College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Shaorui Jia
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials, Ministry of Education, and College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Yong Liang
- Department of Clinical Laboratory, Huai'an Hospital Affiliated to Xuzhou Medical University and Huai'an Second Hospital, Huai'an, 223002, Jiangsu, China
| | - Xiaoli Wu
- School of Life Sciences, Tianjin University, Tianjin, 300072, China
| | - Deling Kong
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials, Ministry of Education, and College of Life Sciences, Nankai University, Tianjin, 300071, China
- Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Cancer Institute, Xuzhou Medical University, Xuzhou, 221002, Jiangsu, China
| | - Dan Ding
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials, Ministry of Education, and College of Life Sciences, Nankai University, Tianjin, 300071, China
- Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Cancer Institute, Xuzhou Medical University, Xuzhou, 221002, Jiangsu, China
| |
Collapse
|
48
|
Lemaster JE, Jeevarathinam AS, Kumar A, Chandrasekar B, Chen F, Jokerst JV. Synthesis of Ultrasmall Synthetic Melanin Nanoparticles by UV Irradiation in Acidic and Neutral Conditions. ACS APPLIED BIO MATERIALS 2019; 2:4667-4674. [PMID: 31930189 PMCID: PMC6953903 DOI: 10.1021/acsabm.9b00747] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Synthetic melanin nanoparticles have value in metal chelation, photoprotection, and biocompatibility. Applications of these materials have been reported in optics, biomedicine, and electronics. However, precise size control has remained relatively difficult-especially for materials below 1000 nm. In this paper we describe the synthesis of ultrasmall synthetic nanoparticles with size of 9.4-31.4 nm in weakly acidic and neutral conditions via UV-irradiation. Size control of these particles was possible by varying the pH from 6.4-10.0. We then used UV-vis, FTIR, and nuclear magnetic resonance to investigate the mechanism of UV-induced polymerization. The data show that reactive oxygen species from UV irradiation oxidizes intermediates of the reaction and accelerates the formation of these synthetic melanin structures.
Collapse
Affiliation(s)
- Jeanne E. Lemaster
- Department of NanoEngineering, University of California San Diego, 9500 Gilman Drive, La Jolla, California 92093, United States
| | | | - Ajay Kumar
- Department of NanoEngineering, University of California San Diego, 9500 Gilman Drive, La Jolla, California 92093, United States
| | - Bhargavi Chandrasekar
- Department of NanoEngineering, University of California San Diego, 9500 Gilman Drive, La Jolla, California 92093, United States
| | - Fang Chen
- Department of NanoEngineering, University of California San Diego, 9500 Gilman Drive, La Jolla, California 92093, United States
- Department of Radiology, University of California San Diego, 9500 Gilman Drive, La Jolla, California 92093, United States
| | - Jesse V. Jokerst
- Department of NanoEngineering, University of California San Diego, 9500 Gilman Drive, La Jolla, California 92093, United States
- Materials Science and Engineering Program, University of California San Diego, 9500 Gilman Drive, La Jolla, California 92093, United States
- Department of Radiology, University of California San Diego, 9500 Gilman Drive, La Jolla, California 92093, United States
| |
Collapse
|
49
|
Zheng T, Zhou T, Feng X, Shen J, Zhang M, Sun Y. Enhanced Plasmon-Induced Resonance Energy Transfer (PIRET)-Mediated Photothermal and Photodynamic Therapy Guided by Photoacoustic and Magnetic Resonance Imaging. ACS APPLIED MATERIALS & INTERFACES 2019; 11:31615-31626. [PMID: 31359757 DOI: 10.1021/acsami.9b09296] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Phototherapy, including photothermal and photodynamic therapy, has attracted extensive attention due to its noninvasive nature, low toxicity, and high anticancer efficiency. The charge-separation mechanism of plasmon-induced resonance energy transfer (PIRET) has been increasingly employed to design nanotheranotic agents. Herein, we developed a novel and smart PIRET-mediated nanoplatform for enhanced, imaging-guided phototherapy. Prussian blue (PB) was incorporated into a Au@Cu2O nanostructure, which was then assembled with poly(allylamine) (PAH)-modified black phosphorus quantum dots (Au@PB@Cu2O@BPQDs/PAH nanocomposites). The hybrid nanosystem exhibited great absorption in the near-infrared region, as well as the ability to self-supply O2 by catalyzing hydrogen peroxide and convert O2 into singlet oxygen (1O2) under 650 nm laser light (0.5 W/cm2) irradiation. In vitro and in vivo assays showed that the generated heat and toxic 1O2 from Au@PB@Cu2O@BPQDs/PAH nanocomposites could effectively kill the cancer cells and suppress tumor growth. Moreover, the unique properties of the PB-modified nanosystem allowed for synergistic therapy with the aid of T1-weighed magnetic resonance imaging (T1-weighted magnetic resonance imaging) and photoacoustic imaging. This study presented a suitable way to fabricate smart PIRET-based nanosystems with enhanced photothermal therapy/photodynamic therapy efficacy and dual-modality imaging functionality. The great biocompatibility and low toxicity ensured their high potential for use in cancer therapy.
Collapse
Affiliation(s)
- Tao Zheng
- Department of Health Technology , Technical University of Denmark , Kongens Lyngby DK-2800 , Denmark
| | - Tongchang Zhou
- Department of Health Technology , Technical University of Denmark , Kongens Lyngby DK-2800 , Denmark
| | - Xiaotong Feng
- Department of Health Technology , Technical University of Denmark , Kongens Lyngby DK-2800 , Denmark
| | - Jian Shen
- Jiangsu Collaborative Innovation Center for Biomedical Functional Materials, School of Chemistry and Materials Science , Nanjing Normal University , Nanjing 210023 , P. R. China
| | - Ming Zhang
- Department of Health Technology , Technical University of Denmark , Kongens Lyngby DK-2800 , Denmark
- Jiangsu Collaborative Innovation Center for Biomedical Functional Materials, School of Chemistry and Materials Science , Nanjing Normal University , Nanjing 210023 , P. R. China
| | - Yi Sun
- Department of Health Technology , Technical University of Denmark , Kongens Lyngby DK-2800 , Denmark
| |
Collapse
|
50
|
Yang L, Gu B, Chen Z, Yue Y, Wang W, Zhang H, Liu X, Ren S, Yang W, Li Y. Synthetic Biopigment Supercapacitors. ACS APPLIED MATERIALS & INTERFACES 2019; 11:30360-30367. [PMID: 31361116 DOI: 10.1021/acsami.9b10956] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Biomass-based energy storage devices have drawn increasing attention owing to their renewability and sustainability, particularly that the heteroatom-doped carbons derived from natural polymers are regarded as the promising candidates in discovering advanced electrode materials for supercapacitors. This work has developed a facile one-pot fabrication strategy toward synthetic pheomelanin nanoparticles with controllable size and chemical composition (i.e., sulfur content) via the copolymerization of dopamine and cysteine. The resulting synthetic pigment materials possess outstanding thermal stability and are able to directly transform into monodispersed S,N-codoped carbon spheres with unaltered morphology. Compared with conventional polydopamine-based carbon spheres, the present carbonized pheomelanin nanoparticles with electroactive sulfur atoms could possess lower charge-transfer resistance and consequently higher specific capacitance (e.g., 243 F g-1 at 1 A g-1). This research continues to inspire researchers to develop new kinds of energy storage materials based on synthetic biopigment materials.
Collapse
Affiliation(s)
- Lei Yang
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering , Sichuan University , Chengdu 610065 , China
| | - Bingni Gu
- Key Laboratory of Advanced Technologies of Materials (Ministry of Education), School of Materials Science and Engineering , Southwest Jiaotong University , Chengdu 610031 , China
| | - Zhan Chen
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering , Sichuan University , Chengdu 610065 , China
| | - Yong Yue
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering , Sichuan University , Chengdu 610065 , China
| | - Wenxuan Wang
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering , Sichuan University , Chengdu 610065 , China
| | - Haitao Zhang
- Key Laboratory of Advanced Technologies of Materials (Ministry of Education), School of Materials Science and Engineering , Southwest Jiaotong University , Chengdu 610031 , China
| | - Xianhu Liu
- National Engineering Research Center for Advanced Polymer Processing Technology , Zhengzhou University , Zhengzhou 450002 , China
| | - Shijie Ren
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering , Sichuan University , Chengdu 610065 , China
| | - Weiqing Yang
- Key Laboratory of Advanced Technologies of Materials (Ministry of Education), School of Materials Science and Engineering , Southwest Jiaotong University , Chengdu 610031 , China
| | - Yiwen Li
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering , Sichuan University , Chengdu 610065 , China
| |
Collapse
|