1
|
Rola M, Zielonka J, Smulik-Izydorczyk R, Pięta J, Pierzchała K, Sikora A, Michalski R. Boronate-Based Bioactive Compounds Activated by Peroxynitrite and Hydrogen Peroxide. REDOX BIOCHEMISTRY AND CHEMISTRY 2024; 10:100040. [PMID: 39678628 PMCID: PMC11637410 DOI: 10.1016/j.rbc.2024.100040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2024]
Abstract
Boronates react directly and stoichiometrically with peroxynitrite and hydrogen peroxide. For this reason, boronates have been widely used as peroxynitrite- and hydrogen peroxide-sensitive moieties in various donors of bioactive compounds. So far, numerous boronate-based prodrugs and theranostics have been developed, characterized, and used in biological research. Here, the kinetic aspects of their activation are discussed, and the potential benefits of modifying their original structure with a boronic or boronobenzyl moiety are described.
Collapse
Affiliation(s)
- Monika Rola
- Institute of Applied Radiation Chemistry, Department of Chemistry, Lodz University of Technology, Zeromskiego 116, 90-924 Lodz, Poland
| | - Jacek Zielonka
- Department of Biophysics, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, United States
| | - Renata Smulik-Izydorczyk
- Institute of Applied Radiation Chemistry, Department of Chemistry, Lodz University of Technology, Zeromskiego 116, 90-924 Lodz, Poland
| | - Jakub Pięta
- Institute of Applied Radiation Chemistry, Department of Chemistry, Lodz University of Technology, Zeromskiego 116, 90-924 Lodz, Poland
| | - Karolina Pierzchała
- Institute of Applied Radiation Chemistry, Department of Chemistry, Lodz University of Technology, Zeromskiego 116, 90-924 Lodz, Poland
| | - Adam Sikora
- Institute of Applied Radiation Chemistry, Department of Chemistry, Lodz University of Technology, Zeromskiego 116, 90-924 Lodz, Poland
| | - Radosław Michalski
- Institute of Applied Radiation Chemistry, Department of Chemistry, Lodz University of Technology, Zeromskiego 116, 90-924 Lodz, Poland
| |
Collapse
|
2
|
Kong F, Liu H, Huang J, Qin J. Imaging of ONOO - fluctuations during drug-induced liver/kidney injury in vitro and in vivo via a dicyanoisophorone-based NIR fluorescent probe with a large Stokes shift. J Mater Chem B 2024; 12:10004-10011. [PMID: 39246117 DOI: 10.1039/d4tb01446d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/10/2024]
Abstract
Current clinical indicators for assessing liver/kidney injury are functional rather than injury indicators, which may cause some delays in the diagnosis of drug-induced liver injury (DILI) and kidney injury (DIKI). Therefore, the development of noninvasive and real-time methods for the effective diagnosis of DILI/DIKI is of great benefit to their clinical management. Herein, we constructed a dicyanoisophorone-based near-infrared (NIR) fluorescent probe (PNDP). Upon the addition of ONOO-, the probe exhibits 111.4-fold fluorescence enhancement at 665 nm with a large Stokes shift of 175 nm as well as excellent selectivity, strong anti-interference capability, and a low limit of detection (118.9 nmol L-1). More significantly, the PNDP was successfully employed for the sensitive detection of ONOO- in living cells and DILI/DIKI mice models. In vitro and in vivo bioimaging experiments demonstrated that the PNDP has greater versatility and promising potential for use as a diagnostic agent for the diagnosis of drug-induced hepatotoxicity and nephrotoxicity by monitoring ONOO- fluctuations.
Collapse
Affiliation(s)
- Fei Kong
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Dongchuan Road 800, Shanghai 200240, China
| | - Hengqing Liu
- School of Life Science, Fudan University, Songhu Road 2005, Shanghai 200438, China
| | - Jie Huang
- School of Biomedical Engineering, Guangzhou Medical University, Guangzhou 511436, China
| | - Jingcan Qin
- Department of Radiology, Changhai Hospital, Naval Medical University, Changhai Road 168, Shanghai 200433, China.
| |
Collapse
|
3
|
Cabello MC, Chen G, Melville MJ, Osman R, Kumar GD, Domaille DW, Lippert AR. Ex Tenebris Lux: Illuminating Reactive Oxygen and Nitrogen Species with Small Molecule Probes. Chem Rev 2024; 124:9225-9375. [PMID: 39137397 DOI: 10.1021/acs.chemrev.3c00892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/15/2024]
Abstract
Reactive oxygen and nitrogen species are small reactive molecules derived from elements in the air─oxygen and nitrogen. They are produced in biological systems to mediate fundamental aspects of cellular signaling but must be very tightly balanced to prevent indiscriminate damage to biological molecules. Small molecule probes can transmute the specific nature of each reactive oxygen and nitrogen species into an observable luminescent signal (or even an acoustic wave) to offer sensitive and selective imaging in living cells and whole animals. This review focuses specifically on small molecule probes for superoxide, hydrogen peroxide, hypochlorite, nitric oxide, and peroxynitrite that provide a luminescent or photoacoustic signal. Important background information on general photophysical phenomena, common probe designs, mechanisms, and imaging modalities will be provided, and then, probes for each analyte will be thoroughly evaluated. A discussion of the successes of the field will be presented, followed by recommendations for improvement and a future outlook of emerging trends. Our objectives are to provide an informative, useful, and thorough field guide to small molecule probes for reactive oxygen and nitrogen species as well as important context to compare the ecosystem of chemistries and molecular scaffolds that has manifested within the field.
Collapse
Affiliation(s)
- Maidileyvis C Cabello
- Department of Chemistry, Southern Methodist University, Dallas, Texas 75275-0314, United States
| | - Gen Chen
- Department of Chemistry, Southern Methodist University, Dallas, Texas 75275-0314, United States
| | - Michael J Melville
- Department of Chemistry, Colorado School of Mines, Golden, Colorado 80401, United States
| | - Rokia Osman
- Department of Chemistry, Southern Methodist University, Dallas, Texas 75275-0314, United States
| | - G Dinesh Kumar
- Department of Chemistry, Colorado School of Mines, Golden, Colorado 80401, United States
| | - Dylan W Domaille
- Department of Chemistry, Colorado School of Mines, Golden, Colorado 80401, United States
| | - Alexander R Lippert
- Department of Chemistry, Southern Methodist University, Dallas, Texas 75275-0314, United States
| |
Collapse
|
4
|
Dong H, Tang MY, Shen S, Cao XQ, Zhang XF. A Small-Molecule Fluorescent Probe for the Detection of Mitochondrial Peroxynitrite. Molecules 2023; 28:7976. [PMID: 38138467 PMCID: PMC10745935 DOI: 10.3390/molecules28247976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 11/24/2023] [Accepted: 11/27/2023] [Indexed: 12/24/2023] Open
Abstract
Reactive oxygen species (ROS) are pivotal signaling molecules that control a variety of physiological functions. As a member of the ROS family, peroxynitrite (ONOO-) possesses strong oxidation and nitrification abilities. Abnormally elevated levels of ONOO- can lead to cellular oxidative stress, which may cause several diseases. In this work, based on the rhodamine fluorophore, we designed and synthesized a novel small-molecule fluorescent probe (DH-1) for ONOO-. Upon reaction with ONOO-, DH-1 exhibited a significant fluorescence signal enhancement (approximately 34-fold). Moreover, DH-1 showed an excellent mitochondria-targeting capability. Confocal fluorescence imaging validated its ability to detect ONOO- changes in HeLa and RAW264.7 cells. Notably, we observed the ONOO- generation during the ferroptosis process by taking advantage of the probe. DH-1 displayed good biocompatibility, facile synthesis, and high selectivity, and may have potential applications in the study of ONOO--associated diseases in biosystems.
Collapse
Affiliation(s)
| | | | - Shili Shen
- Institute of Optical Functional Materials for Biomedical Imaging, School of Chemistry and Pharmaceutical Engineering, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian 271016, China (X.-Q.C.)
| | | | - Xiao-Fan Zhang
- Institute of Optical Functional Materials for Biomedical Imaging, School of Chemistry and Pharmaceutical Engineering, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian 271016, China (X.-Q.C.)
| |
Collapse
|
5
|
Pierzchała K, Pięta J, Pięta M, Rola M, Zielonka J, Sikora A, Marcinek A, Michalski R. Boronate-Based Oxidant-Responsive Derivatives of Acetaminophen as Proinhibitors of Myeloperoxidase. Chem Res Toxicol 2023; 36:1398-1408. [PMID: 37534491 PMCID: PMC10445283 DOI: 10.1021/acs.chemrestox.3c00140] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Indexed: 08/04/2023]
Abstract
Myeloperoxidase (MPO) is an important component of the human innate immune system and the main source of a strong oxidizing and chlorinating species, hypochlorous acid (HOCl). Inadvertent, misplaced, or excessive generation of HOCl by MPO is associated with multiple human inflammatory diseases. Therefore, there is a considerable interest in the development of MPO inhibitors. Here, we report the synthesis and characterization of a boronobenzyl derivative of acetaminophen (AMBB), which can function as a proinhibitor of MPO and release acetaminophen, the inhibitor of chlorination cycle of MPO, in the presence of inflammatory oxidants, i.e., hydrogen peroxide, hypochlorous acid, or peroxynitrite. We demonstrate that the AMBB proinhibitor undergoes conversion to acetaminophen by all three oxidants, with the involvement of the primary phenolic product intermediate, with relatively long half-life at pH 7.4. The determined rate constants of the reaction of the AMBB proinhibitor with hydrogen peroxide, hypochlorous acid, or peroxynitrite are equal to 1.67, 1.6 × 104, and 1.0 × 106 M-1 s-1, respectively. AMBB showed lower MPO inhibitory activity (IC50 > 0.3 mM) than acetaminophen (IC50 = 0.14 mM) toward MPO-dependent HOCl generation. Finally, based on the determined reaction kinetics and the observed inhibitory effects of two plasma components, uric acid and albumin, on the extent of AMBB oxidation by ONOO- and HOCl, we conclude that ONOO- is the most likely potential activator of AMBB in human plasma.
Collapse
Affiliation(s)
- Karolina Pierzchała
- Institute
of Applied Radiation Chemistry, Department of Chemistry, Lodz University of Technology, Zeromskiego 116, 90-924 Lodz, Poland
| | - Jakub Pięta
- Institute
of Applied Radiation Chemistry, Department of Chemistry, Lodz University of Technology, Zeromskiego 116, 90-924 Lodz, Poland
| | - Marlena Pięta
- Institute
of Applied Radiation Chemistry, Department of Chemistry, Lodz University of Technology, Zeromskiego 116, 90-924 Lodz, Poland
| | - Monika Rola
- Institute
of Applied Radiation Chemistry, Department of Chemistry, Lodz University of Technology, Zeromskiego 116, 90-924 Lodz, Poland
| | - Jacek Zielonka
- Department
of Biophysics and Free Radical Research Center, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, Wisconsin 53226, United States
| | - Adam Sikora
- Institute
of Applied Radiation Chemistry, Department of Chemistry, Lodz University of Technology, Zeromskiego 116, 90-924 Lodz, Poland
| | - Andrzej Marcinek
- Institute
of Applied Radiation Chemistry, Department of Chemistry, Lodz University of Technology, Zeromskiego 116, 90-924 Lodz, Poland
| | - Radosław Michalski
- Institute
of Applied Radiation Chemistry, Department of Chemistry, Lodz University of Technology, Zeromskiego 116, 90-924 Lodz, Poland
| |
Collapse
|
6
|
Liu Z, Mo S, Hao Z, Hu L. Recent Progress of Spectroscopic Probes for Peroxynitrite and Their Potential Medical Diagnostic Applications. Int J Mol Sci 2023; 24:12821. [PMID: 37629002 PMCID: PMC10454944 DOI: 10.3390/ijms241612821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 07/31/2023] [Accepted: 08/09/2023] [Indexed: 08/27/2023] Open
Abstract
Peroxynitrite (ONOO-) is a crucial reactive oxygen species that plays a vital role in cellular signal transduction and homeostatic regulation. Determining and visualizing peroxynitrite accurately in biological systems is important for understanding its roles in physiological and pathological activity. Among the various detection methods, fluorescent probe-based spectroscopic detection offers real-time and minimally invasive detection, high sensitivity and selectivity, and easy structural and property modification. This review categorizes fluorescent probes by their fluorophore structures, highlighting their chemical structures, recognition mechanisms, and response behaviors in detail. We hope that this review could help trigger novel ideas for potential medical diagnostic applications of peroxynitrite-related molecular diseases.
Collapse
Affiliation(s)
| | | | | | - Liming Hu
- Beijing Key Laboratory of Environmental and Viral Oncology, Faculty of Environment and Life, Beijing University of Technology, Beijing 100124, China (S.M.); (Z.H.)
| |
Collapse
|
7
|
Radwan B, Rocchetti S, Matuszyk E, Sternak M, Stodulski M, Pawlowski R, Mlynarski J, Brzozowski K, Chlopicki S, Baranska M. EdU sensing: The Raman way of following endothelial cell proliferation in vitro and ex vivo. Biosens Bioelectron 2022; 216:114624. [PMID: 35995027 DOI: 10.1016/j.bios.2022.114624] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 07/25/2022] [Accepted: 08/03/2022] [Indexed: 11/02/2022]
Abstract
Endothelial cells line the lumen of all vessels in the body and maintain vascular homeostasis. In particular, endothelial cell regeneration in response to insult sustain functional endothelial layer. EdU (5-ethynyl-2'-deoxyuridine) is an alkyne-tagged proliferation probe that incorporates into newly synthesized DNA and is used for fluorescence imaging of cell proliferation with the use of "click chemistry" reaction with a fluorescent azide. Here, we utilized EdU as a click-free Raman probe for tracking endothelial cell proliferation. Raman imaging of EdU was performed in live endothelial cells, showing an advantage over fluorescence imaging of EdU, as this technique did not require sample fixation and permeabilization. To validate Raman-based imaging of EdU to study endothelial cell proliferation, we showed that when endothelial cells were treated with cycloheximide or doxorubicin to impair the proliferation of endothelial cells, the Raman-based signal of EdU was diminished. Furthermore, endothelial cells proliferation detected using EdU-labelled Raman imaging was compared with fluorescence imaging. Finally, the method of Raman-based EdU imaging was used in the isolated murine aorta ex vivo. Altogether, our results show that Raman-based imaging of EdU provides a novel alternative for fluorescence-based assay to assess endothelial proliferation and regeneration.
Collapse
Affiliation(s)
- Basseem Radwan
- Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University, 14 Bobrzynskiego Str, 30-348, Krakow, Poland; Faculty of Chemistry, Jagiellonian University, 2 Gronostajowa Str, 30-387, Krakow, Poland
| | - Stefano Rocchetti
- Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University, 14 Bobrzynskiego Str, 30-348, Krakow, Poland
| | - Ewelina Matuszyk
- Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University, 14 Bobrzynskiego Str, 30-348, Krakow, Poland
| | - Magdalena Sternak
- Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University, 14 Bobrzynskiego Str, 30-348, Krakow, Poland
| | - Maciej Stodulski
- Institute of Organic Chemistry, Polish Academy of Sciences, 44/52 Kasprzaka Str, 01-224, Warsaw, Poland
| | - Robert Pawlowski
- Institute of Organic Chemistry, Polish Academy of Sciences, 44/52 Kasprzaka Str, 01-224, Warsaw, Poland
| | - Jacek Mlynarski
- Institute of Organic Chemistry, Polish Academy of Sciences, 44/52 Kasprzaka Str, 01-224, Warsaw, Poland
| | - Krzysztof Brzozowski
- Faculty of Chemistry, Jagiellonian University, 2 Gronostajowa Str, 30-387, Krakow, Poland
| | - Stefan Chlopicki
- Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University, 14 Bobrzynskiego Str, 30-348, Krakow, Poland; Jagiellonian University, 30-348, Krakow, Poland
| | - Malgorzata Baranska
- Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University, 14 Bobrzynskiego Str, 30-348, Krakow, Poland; Faculty of Chemistry, Jagiellonian University, 2 Gronostajowa Str, 30-387, Krakow, Poland.
| |
Collapse
|
8
|
Xu W, Tan L, Zeng J, Yang Q, Zhou Y, Zhou L. Molecular engineering for construction of a novel ONOO−- activated multicolor fluorescent nanoprobe for early diagnosis and assessing treatment of arthritis in vivo. Biosens Bioelectron 2022; 209:114242. [DOI: 10.1016/j.bios.2022.114242] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 03/21/2022] [Accepted: 04/01/2022] [Indexed: 11/27/2022]
|
9
|
Michalski R, Smulik-Izydorczyk R, Pięta J, Rola M, Artelska A, Pierzchała K, Zielonka J, Kalyanaraman B, Sikora AB. The Chemistry of HNO: Mechanisms and Reaction Kinetics. Front Chem 2022; 10:930657. [PMID: 35864868 PMCID: PMC9294461 DOI: 10.3389/fchem.2022.930657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 06/06/2022] [Indexed: 11/23/2022] Open
Abstract
Azanone (HNO, also known as nitroxyl) is the protonated form of the product of one-electron reduction of nitric oxide (•NO), and an elusive electrophilic reactive nitrogen species of increasing pharmacological significance. Over the past 20 years, the interest in the biological chemistry of HNO has increased significantly due to the numerous beneficial pharmacological effects of its donors. Increased availability of various HNO donors was accompanied by great progress in the understanding of HNO chemistry and chemical biology. This review is focused on the chemistry of HNO, with emphasis on reaction kinetics and mechanisms in aqueous solutions.
Collapse
Affiliation(s)
- Radosław Michalski
- Institute of Applied Radiation Chemistry, Lodz University of Technology, Lodz, Poland
| | | | - Jakub Pięta
- Institute of Applied Radiation Chemistry, Lodz University of Technology, Lodz, Poland
| | - Monika Rola
- Institute of Applied Radiation Chemistry, Lodz University of Technology, Lodz, Poland
| | - Angelika Artelska
- Institute of Applied Radiation Chemistry, Lodz University of Technology, Lodz, Poland
| | - Karolina Pierzchała
- Institute of Applied Radiation Chemistry, Lodz University of Technology, Lodz, Poland
| | - Jacek Zielonka
- Department of Biophysics, Medical College of Wisconsin, Milwaukee, WI, United States
| | | | - Adam Bartłomiej Sikora
- Institute of Applied Radiation Chemistry, Lodz University of Technology, Lodz, Poland
- *Correspondence: Adam Bartłomiej Sikora,
| |
Collapse
|
10
|
Fang X, Jin X, Ma X, Guan L, Chen W, She M. Rational construction of deep-red fluorescent probe for rapid detection of HClO and its application in bioimaging and paper-based sensing. Anal Bioanal Chem 2022; 414:5887-5897. [PMID: 35676562 DOI: 10.1007/s00216-022-04154-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 05/20/2022] [Accepted: 05/25/2022] [Indexed: 01/04/2023]
Abstract
Hypochlorous acid (HClO), the core bactericidal substance of the human immune system, plays a vital role in many physiological and pathological processes in the human body. In this work, we designed and synthesized a novel deep-red fluorescent probe TCF-ClO for the determination of hypochlorous acid through theoretical analysis. The results showed that probe TCF-ClO exhibited excellent characteristics of long-wavelength emission (635 nm), fast response (< 1 min), and low detection limit (24 nM). In addition, it had been successfully used for imaging of HClO in living HeLa cells. More importantly, the TCF-ClO composited paper-based sensing material was successfully constructed. The RGB/gray value was obtained from a mobile phone and computer, which could achieve the quantitative detection of HClO, with a linear detection range of 0-50 μM and a detection limit of 1.09 μM (RGB mode)/3.38 μM (gray mode). The function of the paper-based sensor extended from qualitative to quantitative detection of HClO, and it is expected to become a portable device widely used in the environmental area.
Collapse
Affiliation(s)
- Xingliang Fang
- Shaanxi Key Laboratory of Photoelectric Functional Materials and Devices, School of Materials and Chemical Engineering, Xi'an Technological University, Xi'an 710021, People's Republic of China
| | - Xilang Jin
- Shaanxi Key Laboratory of Photoelectric Functional Materials and Devices, School of Materials and Chemical Engineering, Xi'an Technological University, Xi'an 710021, People's Republic of China.
| | - Xuehao Ma
- Shaanxi Key Laboratory of Photoelectric Functional Materials and Devices, School of Materials and Chemical Engineering, Xi'an Technological University, Xi'an 710021, People's Republic of China
| | - Li Guan
- School of Chemistry and Chemical Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, People's Republic of China
| | - Weixing Chen
- Shaanxi Key Laboratory of Photoelectric Functional Materials and Devices, School of Materials and Chemical Engineering, Xi'an Technological University, Xi'an 710021, People's Republic of China
| | - Mengyao She
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education; Biomedicine Key Laboratory of Shaanxi Province; Lab of Tissue Engineering, the College of Life Sciences, Faculty of Life Science & Medicine, Northwest University, Xi'an, Shaanxi Province, 710069, People's Republic of China.
| |
Collapse
|
11
|
Pierzchała K, Pięta M, Rola M, Świerczyńska M, Artelska A, Dębowska K, Podsiadły R, Pięta J, Zielonka J, Sikora A, Marcinek A, Michalski R. Fluorescent probes for monitoring myeloperoxidase-derived hypochlorous acid: a comparative study. Sci Rep 2022; 12:9314. [PMID: 35660769 PMCID: PMC9166712 DOI: 10.1038/s41598-022-13317-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 05/18/2022] [Indexed: 11/17/2022] Open
Abstract
MPO-derived oxidants including HOCl contribute to tissue damage and the initiation and propagation of inflammatory diseases. The search for small molecule inhibitors of myeloperoxidase, as molecular tools and potential drugs, requires the application of high throughput screening assays based on monitoring the activity of myeloperoxidase. In this study, we have compared three classes of fluorescent probes for monitoring myeloperoxidase-derived hypochlorous acid, including boronate-, aminophenyl- and thiol-based fluorogenic probes and we show that all three classes of probes are suitable for this purpose. However, probes based on the coumarin fluorophore turned out to be not reliable indicators of the inhibitors’ potency. We have also determined the rate constants of the reaction between HOCl and the probes and they are equal to 1.8 × 104 M−1s−1 for coumarin boronic acid (CBA), 1.1 × 104 M−1s−1 for fluorescein based boronic acid (FLBA), 3.1 × 104 M−1s−1 for 7-(p-aminophenyl)-coumarin (APC), 1.6 × 104 M−1s−1 for 3’-(p-aminophenyl)-fluorescein (APF), and 1 × 107 M−1s−1 for 4-thiomorpholino-7-nitrobenz-2-oxa-1,3-diazole (NBD-TM). The high reaction rate constant of NBD-TM with HOCl makes this probe the most reliable tool to monitor HOCl formation in the presence of compounds showing HOCl-scavenging activity.
Collapse
Affiliation(s)
- Karolina Pierzchała
- Department of Chemistry, Institute of Applied Radiation Chemistry, Lodz University of Technology, Zeromskiego 116, 90-924, Lodz, Poland
| | - Marlena Pięta
- Department of Chemistry, Institute of Applied Radiation Chemistry, Lodz University of Technology, Zeromskiego 116, 90-924, Lodz, Poland
| | - Monika Rola
- Department of Chemistry, Institute of Applied Radiation Chemistry, Lodz University of Technology, Zeromskiego 116, 90-924, Lodz, Poland
| | - Małgorzata Świerczyńska
- Department of Chemistry, Institute of Polymer and Dye Technology, Lodz University of Technology, Stefanowskiego 12/16, 90-924, Lodz, Poland
| | - Angelika Artelska
- Department of Chemistry, Institute of Applied Radiation Chemistry, Lodz University of Technology, Zeromskiego 116, 90-924, Lodz, Poland
| | - Karolina Dębowska
- Department of Chemistry, Institute of Applied Radiation Chemistry, Lodz University of Technology, Zeromskiego 116, 90-924, Lodz, Poland
| | - Radosław Podsiadły
- Department of Chemistry, Institute of Polymer and Dye Technology, Lodz University of Technology, Stefanowskiego 12/16, 90-924, Lodz, Poland
| | - Jakub Pięta
- Department of Chemistry, Institute of Applied Radiation Chemistry, Lodz University of Technology, Zeromskiego 116, 90-924, Lodz, Poland
| | - Jacek Zielonka
- Department of Biophysics and Free Radical Research Center, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI, 53226, USA.
| | - Adam Sikora
- Department of Chemistry, Institute of Applied Radiation Chemistry, Lodz University of Technology, Zeromskiego 116, 90-924, Lodz, Poland
| | - Andrzej Marcinek
- Department of Chemistry, Institute of Applied Radiation Chemistry, Lodz University of Technology, Zeromskiego 116, 90-924, Lodz, Poland
| | - Radosław Michalski
- Department of Chemistry, Institute of Applied Radiation Chemistry, Lodz University of Technology, Zeromskiego 116, 90-924, Lodz, Poland.
| |
Collapse
|
12
|
Grzelakowska A, Modrzejewska J, Kolińska J, Szala M, Zielonka M, Dębowska K, Zakłos-Szyda M, Sikora A, Zielonka J, Podsiadły R. Water-soluble cationic boronate probe based on coumarin imidazolium scaffold: Synthesis, characterization, and application to cellular peroxynitrite detection. Free Radic Biol Med 2022; 179:34-46. [PMID: 34923103 DOI: 10.1016/j.freeradbiomed.2021.12.260] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2021] [Revised: 12/07/2021] [Accepted: 12/14/2021] [Indexed: 02/08/2023]
Abstract
Peroxynitrite (ONOO-) has been implicated in numerous pathologies associated with an inflammatory component, but its selective and sensitive detection in biological settings remains a challenge. Here, the development of a new water-soluble and cationic boronate probe based on a coumarin-imidazolium scaffold (CI-Bz-BA) for the fluorescent detection of ONOO- in cells is reported. The chemical reactivity of the CI-Bz-BA probe toward selected oxidants known to react with the boronate moiety was characterized, and the suitability of the probe for the direct detection of ONOO- in cell-free and cellular system is reported. Oxidation of the probe results in the formation of the primary hydroxybenzyl product (CI-Bz-OH), followed by the spontaneous elimination of the quinone methide moiety to produce the secondary phenol (CI-OH), which is accompanied by a red shift in the fluorescence emission band from 405 nm to 481 nm. CI-Bz-BA reacts with ONOO- stoichiometrically with a rate constant of ∼1 × 106 M-1s-1 to form, in addition to the major phenolic product CI-OH, the minor nitrated product CI-Bz-NO2, which is not formed by other oxidants tested or via myeloperoxidase-catalyzed oxidation/nitration. Both CI-OH and CI-Bz-NO2 products were also formed in the presence of cogenerated fluxes of nitric oxide and superoxide radical anion produced during decomposition of a SIN-1 donor. Using RAW 264.7 cells, we demonstrate the ability of the probe to report endogenously produced ONOO-via fluorescence measurements, including plate reader real time monitoring and two-photon fluorescence imaging. Liquid chromatography/mass spectrometry analyses of cell extracts and media confirmed the formation of both CI-OH and CI-Bz-NO2 in macrophages activated to produce ONOO-. We propose the use of a combination of real-time monitoring of probe oxidation using fluorimetry and fluorescence microscopy with liquid chromatography/mass spectrometry-based product identification for rigorous detection and quantitative analyses of ONOO- in biological systems.
Collapse
Affiliation(s)
- Aleksandra Grzelakowska
- Institute of Polymer and Dye Technology, Faculty of Chemistry, Lodz University of Technology, Stefanowskiego 16, 90-537, Lodz, Poland.
| | - Julia Modrzejewska
- Institute of Polymer and Dye Technology, Faculty of Chemistry, Lodz University of Technology, Stefanowskiego 16, 90-537, Lodz, Poland.
| | - Jolanta Kolińska
- Institute of Polymer and Dye Technology, Faculty of Chemistry, Lodz University of Technology, Stefanowskiego 16, 90-537, Lodz, Poland.
| | - Marcin Szala
- Institute of Polymer and Dye Technology, Faculty of Chemistry, Lodz University of Technology, Stefanowskiego 16, 90-537, Lodz, Poland.
| | - Monika Zielonka
- Department of Biophysics, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI, 53226, United States.
| | - Karolina Dębowska
- Institute of Applied Radiation Chemistry, Faculty of Chemistry, Lodz University of Technology, Żeromskiego 116, 90-924, Lodz, Poland.
| | - Małgorzata Zakłos-Szyda
- Institute of Molecular and Industrial Biotechnology, Faculty of Biotechnology and Food Sciences, Lodz University of Technology, Stefanowskiego 2/22, 90-537, Lodz, Poland.
| | - Adam Sikora
- Institute of Applied Radiation Chemistry, Faculty of Chemistry, Lodz University of Technology, Żeromskiego 116, 90-924, Lodz, Poland.
| | - Jacek Zielonka
- Department of Biophysics, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI, 53226, United States.
| | - Radosław Podsiadły
- Institute of Polymer and Dye Technology, Faculty of Chemistry, Lodz University of Technology, Stefanowskiego 16, 90-537, Lodz, Poland.
| |
Collapse
|
13
|
Smulik-Izydorczyk R, Dębowska K, Rostkowski M, Adamus J, Michalski R, Sikora A. Kinetics of Azanone (HNO) Reactions with Thiols: Effect of pH. Cell Biochem Biophys 2021; 79:845-856. [PMID: 33950351 PMCID: PMC8558164 DOI: 10.1007/s12013-021-00986-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/10/2021] [Indexed: 11/04/2022]
Abstract
HNO (nitroxyl, IUPAC name azanone) is an electrophilic reactive nitrogen species of growing pharmacological and biological significance. Here, we present data on the pH-dependent kinetics of azanone reactions with the low molecular thiols glutathione and N-acetylcysteine, as well as with important serum proteins: bovine serum albumin and human serum albumin. The competition kinetics method used is based on two parallel HNO reactions: with RSH/RS- or with O2. The results provide evidence that the reaction of azanone with the anionic form of thiols (RS-) is favored over reactions with the protonated form (RSH). The data are supported with quantum mechanical calculations. A comprehensive discussion of the HNO reaction with thiolates is provided.
Collapse
Affiliation(s)
| | - Karolina Dębowska
- Institute of Applied Radiation Chemistry, Lodz University of Technology, Lodz, Poland
| | - Michał Rostkowski
- Institute of Applied Radiation Chemistry, Lodz University of Technology, Lodz, Poland
| | - Jan Adamus
- Institute of Applied Radiation Chemistry, Lodz University of Technology, Lodz, Poland
| | - Radosław Michalski
- Institute of Applied Radiation Chemistry, Lodz University of Technology, Lodz, Poland
| | - Adam Sikora
- Institute of Applied Radiation Chemistry, Lodz University of Technology, Lodz, Poland.
| |
Collapse
|
14
|
Li M, Lei P, Song S, Shuang S, Wang R, Dong C. A butterfly-shaped ESIPT molecule with solid-state fluorescence for the detection of latent fingerprints and exogenous and endogenous ONOO - by caging of the phenol donor. Talanta 2021; 233:122593. [PMID: 34215082 DOI: 10.1016/j.talanta.2021.122593] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 05/31/2021] [Accepted: 06/05/2021] [Indexed: 01/02/2023]
Abstract
The latent fingerprints (LFPs) at the crime scene are unique and stable, which are considered as an important clue in criminal justice and forensic identification. Herein, a butterfly-shaped molecule DPTS with solid fluorescence plus excited-state intramolecular proton transfer (ESIPT) properties was used to develop for enhancing the visualization of the LFPs. Considering the solid fluorescence of DPTS, the color and efficiency of DPTS with a large Stokes shift (216 nm) can be tuned by changing the morphology of its aggregates, and gradually red-shifted (green-yellow-red) with increasing water content. Furthermore, its effectiveness for the detection of LFPs was demonstrated on various different substrates including paper box, tinfoil and weighting paper. The emissive fingerprint of DPTS obtained gave good fluorescence images with high contrast and resolution such as the core, delta, bifurcation, ridge termination, independent ridge and pores. Caging of the phenol donor of DPTS with a sensitive biomarker group provided DPTS-ONOO-, which had high sensitive with detection limit of 5 nM and the quantification limit of 21 nM toward ONOO-. Modularly derived DPTS-ONOO- was synthesized and demonstrated specific fluorescence imaging of exogenous and endogenous peroxynitrite (ONOO-) in living macrophage cells.
Collapse
Affiliation(s)
- Minglu Li
- Institute of Environmental Science, College of Chemistry and Chemical Engineering, Shanxi University, Taiyuan, 030006, PR China
| | - Peng Lei
- Institute of Environmental Science, College of Chemistry and Chemical Engineering, Shanxi University, Taiyuan, 030006, PR China
| | - Shengmei Song
- Institute of Environmental Science, College of Chemistry and Chemical Engineering, Shanxi University, Taiyuan, 030006, PR China.
| | - Shaomin Shuang
- Institute of Environmental Science, College of Chemistry and Chemical Engineering, Shanxi University, Taiyuan, 030006, PR China
| | - Ruibing Wang
- State Key Laboratory of Quality Research in Chinese Medicine, and Institute of Chinese Medical Sciences, University of Macau, Taipa, Macau, 999078, PR China
| | - Chuan Dong
- Institute of Environmental Science, College of Chemistry and Chemical Engineering, Shanxi University, Taiyuan, 030006, PR China.
| |
Collapse
|
15
|
Grzelakowska A, Zielonka M, Dębowska K, Modrzejewska J, Szala M, Sikora A, Zielonka J, Podsiadły R. Two-photon fluorescent probe for cellular peroxynitrite: Fluorescence detection, imaging, and identification of peroxynitrite-specific products. Free Radic Biol Med 2021; 169:24-35. [PMID: 33862158 DOI: 10.1016/j.freeradbiomed.2021.04.011] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 03/18/2021] [Accepted: 04/08/2021] [Indexed: 12/22/2022]
Abstract
A new naphthalene-based boronate probe, NAB-BE, for the fluorescence-based detection of inflammatory oxidants, including peroxynitrite, hypochlorous acid, and hydrogen peroxide, is reported. The chemical reactivity and fluorescence properties of the probe and the products are described. The major, phenolic oxidation product, NAB-OH, is formed in case of all three oxidants tested. This product shows green fluorescence, with a maximum at 512 nm, and can be excited either at 340 nm or in the near infrared region (745 nm) for two-photon fluorescence imaging. Peroxynitrite is the fastest of the oxidants tested and, in addition to the phenolic product, leads to the formation of a nitrated product, NAB-NO2, which can serve as a fingerprint for peroxynitrite. The probe was applied to detect peroxynitrite in activated macrophages using fluorimetry and two-photon fluorescence microscopy, and both NAB-OH and NAB-NO2 products were detected in cell extracts by liquid chromatography-mass spectrometry. The combined use of fluorometric high-throughput analyses, fluorescence imaging, and liquid chromatography-mass spectrometry-based product identification and quantitation is proposed for most comprehensive and rigorous characterization of oxidants in biological systems.
Collapse
Affiliation(s)
- Aleksandra Grzelakowska
- Institute of Polymer and Dye Technology, Faculty of Chemistry, Lodz University of Technology, Stefanowskiego 12/16, 90-924, Lodz, Poland.
| | - Monika Zielonka
- Department of Biophysics, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI, 53226, United States.
| | - Karolina Dębowska
- Institute of Applied Radiation Chemistry, Faculty of Chemistry, Lodz University of Technology, Zeromskiego 116, 90-924, Lodz, Poland.
| | - Julia Modrzejewska
- Institute of Polymer and Dye Technology, Faculty of Chemistry, Lodz University of Technology, Stefanowskiego 12/16, 90-924, Lodz, Poland.
| | - Marcin Szala
- Institute of Polymer and Dye Technology, Faculty of Chemistry, Lodz University of Technology, Stefanowskiego 12/16, 90-924, Lodz, Poland.
| | - Adam Sikora
- Institute of Applied Radiation Chemistry, Faculty of Chemistry, Lodz University of Technology, Zeromskiego 116, 90-924, Lodz, Poland.
| | - Jacek Zielonka
- Department of Biophysics, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI, 53226, United States.
| | - Radosław Podsiadły
- Institute of Polymer and Dye Technology, Faculty of Chemistry, Lodz University of Technology, Stefanowskiego 12/16, 90-924, Lodz, Poland.
| |
Collapse
|
16
|
Dong L, Fu M, Liu L, Han HH, Zang Y, Chen GR, Li J, He XP, Vidal S. Supramolecular Assembly of TPE-Based Glycoclusters with Dicyanomethylene-4H-pyran (DM) Fluorescent Probes Improve Their Properties for Peroxynitrite Sensing and Cell Imaging. Chemistry 2020; 26:14445-14452. [PMID: 32864796 DOI: 10.1002/chem.202002772] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Indexed: 11/11/2022]
Abstract
Two red-emitting dicyanomethylene-4H-pyran (DM) based fluorescent probes were designed and used for peroxynitrite (ONOO- ) detection. Nevertheless, the aggregation-caused quenching effect diminished the fluorescence and restricted their further applications. To overcome this problem, tetraphenylethylene (TPE) based glycoclusters were used to self-assemble with these DM probes to obtain supramolecular water-soluble glyco-dots. This self-assembly strategy enhanced the fluorescence intensity, leading to an enhanced selectivity and activity of the resulting glyco-dot comparing to DM probes alone in PBS buffer. The glyco-dots also exhibited better results during fluorescence sensing of intracellular ONOO- than the probes alone, thereby offering scope for the development of other similar supramolecular glyco-systems for chemical biological studies.
Collapse
Affiliation(s)
- Lei Dong
- Key Laboratory for Advanced Materials and Joint International Research, Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, School of Chemistry and Molecular Engineering, Frontiers Center for Materiobiology and Dynamic Chemistry, East China University of Science and Technology, 130 Meilong Rd., Shanghai, 200237, P. R. China.,Institut de Chimie et Biochimie Moléculaires et Supramoléculaires, Laboratoire de Chimie Organique 2-Glycochimie, UMR 5246, CNRS, Université Claude Bernard Lyon 1, Université de Lyon, 1, Rue Victor Grignard, 69622, Villeurbanne, France
| | - Mengqi Fu
- Key Laboratory for Advanced Materials and Joint International Research, Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, School of Chemistry and Molecular Engineering, Frontiers Center for Materiobiology and Dynamic Chemistry, East China University of Science and Technology, 130 Meilong Rd., Shanghai, 200237, P. R. China
| | - Lifang Liu
- Key Laboratory for Advanced Materials and Joint International Research, Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, School of Chemistry and Molecular Engineering, Frontiers Center for Materiobiology and Dynamic Chemistry, East China University of Science and Technology, 130 Meilong Rd., Shanghai, 200237, P. R. China
| | - Hai-Hao Han
- Key Laboratory for Advanced Materials and Joint International Research, Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, School of Chemistry and Molecular Engineering, Frontiers Center for Materiobiology and Dynamic Chemistry, East China University of Science and Technology, 130 Meilong Rd., Shanghai, 200237, P. R. China
| | - Yi Zang
- National Center for Drug Screening, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 189, Guo Shoujing Rd., Shanghai, 201203, P. R. China
| | - Guo-Rong Chen
- Key Laboratory for Advanced Materials and Joint International Research, Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, School of Chemistry and Molecular Engineering, Frontiers Center for Materiobiology and Dynamic Chemistry, East China University of Science and Technology, 130 Meilong Rd., Shanghai, 200237, P. R. China
| | - Jia Li
- National Center for Drug Screening, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 189, Guo Shoujing Rd., Shanghai, 201203, P. R. China
| | - Xiao-Peng He
- Key Laboratory for Advanced Materials and Joint International Research, Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, School of Chemistry and Molecular Engineering, Frontiers Center for Materiobiology and Dynamic Chemistry, East China University of Science and Technology, 130 Meilong Rd., Shanghai, 200237, P. R. China
| | - Sébastien Vidal
- Institut de Chimie et Biochimie Moléculaires et Supramoléculaires, Laboratoire de Chimie Organique 2-Glycochimie, UMR 5246, CNRS, Université Claude Bernard Lyon 1, Université de Lyon, 1, Rue Victor Grignard, 69622, Villeurbanne, France
| |
Collapse
|
17
|
Liu Y, Jiao C, Wei Y, Lu W, Zhang P, Wang Y. A highly specific rhodamine B based turn-on fluorescent probe for nitric oxide and application in living cells. Tetrahedron 2020. [DOI: 10.1016/j.tet.2020.131622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
18
|
Zhao C, Chen J, Zhong R, Chen DS, Shi J, Song J. Materialien mit Selektivität für oxidative Molekülspezies für die Diagnostik und Therapie. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.201915833] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Caiyan Zhao
- MOE Key Laboratory for Analytical Science of Food Safety and Biology Institution College of Chemistry Fuzhou University Fuzhou 350108 China
- Center for Nanomedicine Brigham and Women's Hospital Harvard Medical School Boston Massachusetts 02115 USA
| | - Jingxiao Chen
- Center for Nanomedicine Brigham and Women's Hospital Harvard Medical School Boston Massachusetts 02115 USA
- Key Laboratory of Carbohydrate Chemistry and Biotechnology Ministry of Education School of Pharmaceutical Sciences Jiangnan University Wuxi 214122 PR China
| | - Ruibo Zhong
- Center for Nanomedicine Brigham and Women's Hospital Harvard Medical School Boston Massachusetts 02115 USA
| | - Dean Shuailin Chen
- Center for Nanomedicine Brigham and Women's Hospital Harvard Medical School Boston Massachusetts 02115 USA
| | - Jinjun Shi
- Center for Nanomedicine Brigham and Women's Hospital Harvard Medical School Boston Massachusetts 02115 USA
| | - Jibin Song
- MOE Key Laboratory for Analytical Science of Food Safety and Biology Institution College of Chemistry Fuzhou University Fuzhou 350108 China
| |
Collapse
|
19
|
Zhao C, Chen J, Zhong R, Chen DS, Shi J, Song J. Oxidative‐Species‐Selective Materials for Diagnostic and Therapeutic Applications. Angew Chem Int Ed Engl 2020; 60:9804-9827. [DOI: 10.1002/anie.201915833] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 02/15/2020] [Indexed: 12/19/2022]
Affiliation(s)
- Caiyan Zhao
- MOE Key Laboratory for Analytical Science of Food Safety and Biology Institution College of Chemistry Fuzhou University Fuzhou 350108 China
- Center for Nanomedicine Brigham and Women's Hospital Harvard Medical School Boston Massachusetts 02115 USA
| | - Jingxiao Chen
- Center for Nanomedicine Brigham and Women's Hospital Harvard Medical School Boston Massachusetts 02115 USA
- Key Laboratory of Carbohydrate Chemistry and Biotechnology Ministry of Education School of Pharmaceutical Sciences Jiangnan University Wuxi 214122 PR China
| | - Ruibo Zhong
- Center for Nanomedicine Brigham and Women's Hospital Harvard Medical School Boston Massachusetts 02115 USA
| | - Dean Shuailin Chen
- Center for Nanomedicine Brigham and Women's Hospital Harvard Medical School Boston Massachusetts 02115 USA
| | - Jinjun Shi
- Center for Nanomedicine Brigham and Women's Hospital Harvard Medical School Boston Massachusetts 02115 USA
| | - Jibin Song
- MOE Key Laboratory for Analytical Science of Food Safety and Biology Institution College of Chemistry Fuzhou University Fuzhou 350108 China
| |
Collapse
|
20
|
Sikora A, Zielonka J, Dębowska K, Michalski R, Smulik-Izydorczyk R, Pięta J, Podsiadły R, Artelska A, Pierzchała K, Kalyanaraman B. Boronate-Based Probes for Biological Oxidants: A Novel Class of Molecular Tools for Redox Biology. Front Chem 2020; 8:580899. [PMID: 33102447 PMCID: PMC7545953 DOI: 10.3389/fchem.2020.580899] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Accepted: 08/12/2020] [Indexed: 01/21/2023] Open
Abstract
Boronate-based molecular probes are emerging as one of the most effective tools for detection and quantitation of peroxynitrite and hydroperoxides. This review discusses the chemical reactivity of boronate compounds in the context of their use for detection of biological oxidants, and presents examples of the practical use of those probes in selected chemical, enzymatic, and biological systems. The particular reactivity of boronates toward nucleophilic oxidants makes them a distinct class of probes for redox biology studies. We focus on the recent progress in the design and application of boronate-based probes in redox studies and perspectives for further developments.
Collapse
Affiliation(s)
- Adam Sikora
- Faculty of Chemistry, Institute of Applied Radiation Chemistry, Lodz University of Technology, Lodz, Poland
| | - Jacek Zielonka
- Department of Biophysics and Free Radical Research Center, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Karolina Dębowska
- Faculty of Chemistry, Institute of Applied Radiation Chemistry, Lodz University of Technology, Lodz, Poland
| | - Radosław Michalski
- Faculty of Chemistry, Institute of Applied Radiation Chemistry, Lodz University of Technology, Lodz, Poland
| | - Renata Smulik-Izydorczyk
- Faculty of Chemistry, Institute of Applied Radiation Chemistry, Lodz University of Technology, Lodz, Poland
| | - Jakub Pięta
- Faculty of Chemistry, Institute of Applied Radiation Chemistry, Lodz University of Technology, Lodz, Poland
| | - Radosław Podsiadły
- Faculty of Chemistry, Institute of Polymer and Dye Technology, Lodz University of Technology, Lodz, Poland
| | - Angelika Artelska
- Faculty of Chemistry, Institute of Applied Radiation Chemistry, Lodz University of Technology, Lodz, Poland
| | - Karolina Pierzchała
- Faculty of Chemistry, Institute of Applied Radiation Chemistry, Lodz University of Technology, Lodz, Poland
| | - Balaraman Kalyanaraman
- Department of Biophysics and Free Radical Research Center, Medical College of Wisconsin, Milwaukee, WI, United States
| |
Collapse
|
21
|
Jiao C, Liu Y, Pang J, Lu W, Zhang P, Wang Y. A simple lysosome-targeted probe for detection of hypochlorous acid in living cells. J Photochem Photobiol A Chem 2020. [DOI: 10.1016/j.jphotochem.2020.112399] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
22
|
Möller MN, Rios N, Trujillo M, Radi R, Denicola A, Alvarez B. Detection and quantification of nitric oxide-derived oxidants in biological systems. J Biol Chem 2019; 294:14776-14802. [PMID: 31409645 PMCID: PMC6779446 DOI: 10.1074/jbc.rev119.006136] [Citation(s) in RCA: 96] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The free radical nitric oxide (NO•) exerts biological effects through the direct and reversible interaction with specific targets (e.g. soluble guanylate cyclase) or through the generation of secondary species, many of which can oxidize, nitrosate or nitrate biomolecules. The NO•-derived reactive species are typically short-lived, and their preferential fates depend on kinetic and compartmentalization aspects. Their detection and quantification are technically challenging. In general, the strategies employed are based either on the detection of relatively stable end products or on the use of synthetic probes, and they are not always selective for a particular species. In this study, we describe the biologically relevant characteristics of the reactive species formed downstream from NO•, and we discuss the approaches currently available for the analysis of NO•, nitrogen dioxide (NO2•), dinitrogen trioxide (N2O3), nitroxyl (HNO), and peroxynitrite (ONOO-/ONOOH), as well as peroxynitrite-derived hydroxyl (HO•) and carbonate anion (CO3•-) radicals. We also discuss the biological origins of and analytical tools for detecting nitrite (NO2-), nitrate (NO3-), nitrosyl-metal complexes, S-nitrosothiols, and 3-nitrotyrosine. Moreover, we highlight state-of-the-art methods, alert readers to caveats of widely used techniques, and encourage retirement of approaches that have been supplanted by more reliable and selective tools for detecting and measuring NO•-derived oxidants. We emphasize that the use of appropriate analytical methods needs to be strongly grounded in a chemical and biochemical understanding of the species and mechanistic pathways involved.
Collapse
Affiliation(s)
- Matías N Möller
- Laboratorio de Fisicoquímica Biológica, Facultad de Ciencias, Universidad de la República, 11400 Montevideo, Uruguay
- Centro de Investigaciones Biomédicas (CEINBIO), Universidad de la República, Montevideo, Uruguay
| | - Natalia Rios
- Centro de Investigaciones Biomédicas (CEINBIO), Universidad de la República, Montevideo, Uruguay
- Departamento de Bioquímica, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| | - Madia Trujillo
- Centro de Investigaciones Biomédicas (CEINBIO), Universidad de la República, Montevideo, Uruguay
- Departamento de Bioquímica, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| | - Rafael Radi
- Centro de Investigaciones Biomédicas (CEINBIO), Universidad de la República, Montevideo, Uruguay
- Departamento de Bioquímica, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| | - Ana Denicola
- Laboratorio de Fisicoquímica Biológica, Facultad de Ciencias, Universidad de la República, 11400 Montevideo, Uruguay
- Centro de Investigaciones Biomédicas (CEINBIO), Universidad de la República, Montevideo, Uruguay
| | - Beatriz Alvarez
- Centro de Investigaciones Biomédicas (CEINBIO), Universidad de la República, Montevideo, Uruguay
- Laboratorio de Enzimología, Facultad de Ciencias, Universidad de la República, 11400 Montevideo, Uruguay
| |
Collapse
|
23
|
Hou T, Zhang K, Kang X, Guo X, Du L, Chen X, Yu L, Yue J, Ge H, Liu Y, Asiri AM, Alamry KA, Yu H, Wang S. Sensitive detection and imaging of endogenous peroxynitrite using a benzo[d]thiazole derived cyanine probe. Talanta 2019; 196:345-351. [DOI: 10.1016/j.talanta.2018.12.083] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Revised: 12/19/2018] [Accepted: 12/25/2018] [Indexed: 12/31/2022]
|
24
|
Smulik-Izydorczyk R, Rostkowski M, Gerbich A, Jarmoc D, Adamus J, Leszczyńska A, Michalski R, Marcinek A, Kramkowski K, Sikora A. Decomposition of Piloty's acid derivatives – Toward the understanding of factors controlling HNO release. Arch Biochem Biophys 2019; 661:132-144. [DOI: 10.1016/j.abb.2018.11.012] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Revised: 10/11/2018] [Accepted: 11/14/2018] [Indexed: 01/21/2023]
|
25
|
Prolo C, Rios N, Piacenza L, Álvarez MN, Radi R. Fluorescence and chemiluminescence approaches for peroxynitrite detection. Free Radic Biol Med 2018; 128:59-68. [PMID: 29454880 DOI: 10.1016/j.freeradbiomed.2018.02.017] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/29/2017] [Revised: 02/07/2018] [Accepted: 02/12/2018] [Indexed: 12/23/2022]
Abstract
In the last two decades, there has been a significant advance in understanding the biochemistry of peroxynitrite, an endogenously-produced oxidant and nucleophile. Its relevance as a mediator in several pathologic states and the aging process together with its transient character and low steady-state concentration, motivated the development of a variety of techniques for its unambiguous detection and estimation. Among these, fluorescence and chemiluminescence approaches have represented important tools with enhanced sensitivity but usual limited specificity. In this review, we analyze selected examples of molecular probes that permit the detection of peroxynitrite by fluorescence and chemiluminescence, disclosing their mechanism of reaction with either peroxynitrite or peroxynitrite-derived radicals. Indeed, probes have been divided into 1) redox probes that yield products by a free radical mechanism, and 2) electrophilic probes that evolve to products secondary to the nucleophilic attack by peroxynitrite. Overall, boronate-based compounds are emerging as preferred probes for the sensitive and specific detection and quantitation. Moreover, novel strategies involving genetically-modified fluorescent proteins with the incorporation of unnatural amino acids have been recently described as peroxynitrite sensors. This review analyzes the most commonly used fluorescence and chemiluminescence approaches for peroxynitrite detection and provides some guidelines for appropriate experimental design and data interpretation, including how to estimate peroxynitrite formation rates in cells.
Collapse
Affiliation(s)
- Carolina Prolo
- Departamento de Bioquímica, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay; Center for Free Radical and Biomedical Research, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| | - Natalia Rios
- Departamento de Bioquímica, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay; Center for Free Radical and Biomedical Research, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| | - Lucia Piacenza
- Departamento de Bioquímica, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay; Center for Free Radical and Biomedical Research, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| | - María Noel Álvarez
- Departamento de Bioquímica, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay; Center for Free Radical and Biomedical Research, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| | - Rafael Radi
- Departamento de Bioquímica, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay; Center for Free Radical and Biomedical Research, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay.
| |
Collapse
|
26
|
Hardy M, Zielonka J, Karoui H, Sikora A, Michalski R, Podsiadły R, Lopez M, Vasquez-Vivar J, Kalyanaraman B, Ouari O. Detection and Characterization of Reactive Oxygen and Nitrogen Species in Biological Systems by Monitoring Species-Specific Products. Antioxid Redox Signal 2018; 28:1416-1432. [PMID: 29037049 PMCID: PMC5910052 DOI: 10.1089/ars.2017.7398] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Accepted: 10/15/2017] [Indexed: 12/31/2022]
Abstract
SIGNIFICANCE Since the discovery of the superoxide dismutase enzyme, the generation and fate of short-lived oxidizing, nitrosating, nitrating, and halogenating species in biological systems has been of great interest. Despite the significance of reactive oxygen species (ROS) and reactive nitrogen species (RNS) in numerous diseases and intracellular signaling, the rigorous detection of ROS and RNS has remained a challenge. Recent Advances: Chemical characterization of the reactions of selected ROS and RNS with electron paramagnetic resonance (EPR) spin traps and fluorescent probes led to the establishment of species-specific products, which can be used for specific detection of several forms of ROS and RNS in cell-free systems and in cultured cells in vitro and in animals in vivo. Profiling oxidation products from the ROS and RNS probes provides a rigorous method for detection of those species in biological systems. CRITICAL ISSUES Formation and detection of species-specific products from the probes enables accurate characterization of the oxidative environment in cells. Measurement of the total signal (fluorescence, chemiluminescence, etc.) intensity does not allow for identification of the ROS/RNS formed. It is critical to identify the products formed by using chromatographic or other rigorous techniques. Product analyses should be accompanied by monitoring of the intracellular probe level, another factor controlling the yield of the product(s) formed. FUTURE DIRECTIONS More work is required to characterize the chemical reactivity of the ROS/RNS probes, and to develop new probes/detection approaches enabling real-time, selective monitoring of the specific products formed from the probes. Antioxid. Redox Signal. 28, 1416-1432.
Collapse
Affiliation(s)
- Micael Hardy
- Aix Marseille Univ, CNRS, ICR, Marseille, France
| | - Jacek Zielonka
- Department of Biophysics, Medical College of Wisconsin, Milwaukee, Wisconsin
- Free Radical Research Center, Medical College of Wisconsin, Milwaukee, Wisconsin
- Cancer Center, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Hakim Karoui
- Aix Marseille Univ, CNRS, ICR, Marseille, France
| | - Adam Sikora
- Institute of Applied Radiation Chemistry, Lodz University of Technology, Lodz, Poland
| | - Radosław Michalski
- Institute of Applied Radiation Chemistry, Lodz University of Technology, Lodz, Poland
| | - Radosław Podsiadły
- Faculty of Chemistry, Institute of Polymer and Dye Technology, Lodz University of Technology, Lodz, Poland
| | - Marcos Lopez
- Translational Biomedical Research Group, Biotechnology Laboratories, Cardiovascular Foundation of Colombia, Santander, Colombia
- Graduate Program of Biomedical Sciences, Faculty of Health, Universidad del Valle, Cali, Colombia
| | - Jeannette Vasquez-Vivar
- Department of Biophysics, Medical College of Wisconsin, Milwaukee, Wisconsin
- Free Radical Research Center, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Balaraman Kalyanaraman
- Department of Biophysics, Medical College of Wisconsin, Milwaukee, Wisconsin
- Free Radical Research Center, Medical College of Wisconsin, Milwaukee, Wisconsin
- Cancer Center, Medical College of Wisconsin, Milwaukee, Wisconsin
| | | |
Collapse
|
27
|
Zhang W, Huo F, Yin C. Recent advances of dicyano-based materials in biology and medicine. J Mater Chem B 2018; 6:6919-6929. [DOI: 10.1039/c8tb02205d] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
We highlight the development of dicyano-based fluorescent materials in biology and medicine.
Collapse
Affiliation(s)
- Weijie Zhang
- Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education
- Key Laboratory of Materials for Energy
- Conversion and Storage of Shanxi Province
- Institute of Molecular Science
- Shanxi University
| | - Fangjun Huo
- Research Institute of Applied Chemistry
- Shanxi University
- Taiyuan 030006
- China
| | - Caixia Yin
- Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education
- Key Laboratory of Materials for Energy
- Conversion and Storage of Shanxi Province
- Institute of Molecular Science
- Shanxi University
| |
Collapse
|
28
|
Yan F, Fan K, Bai Z, Zhang R, Zu F, Xu J, Li X. Fluorescein applications as fluorescent probes for the detection of analytes. Trends Analyt Chem 2017. [DOI: 10.1016/j.trac.2017.08.013] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
29
|
A kinetic study on the reactivity of azanone ( HNO ) toward its selected scavengers: Insight into its chemistry and detection. Nitric Oxide 2017; 69:61-68. [DOI: 10.1016/j.niox.2017.05.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Revised: 05/09/2017] [Accepted: 05/16/2017] [Indexed: 12/29/2022]
|
30
|
Yudhistira T, Mulay SV, Lee KJ, Kim Y, Park HS, Churchill DG. Thiomaleimide Functionalization for Selective Biological Fluorescence Detection of Peroxynitrite as Tested in HeLa and RAW 264.7 Cells. Chem Asian J 2017; 12:1927-1934. [DOI: 10.1002/asia.201700527] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2017] [Revised: 05/08/2017] [Indexed: 01/22/2023]
Affiliation(s)
- Tesla Yudhistira
- Molecular Logic Gate Laboratory; Department of Chemistry; Korea Advanced Institute of Science and Technology (KAIST); Daejeon 305-701 Republic of Korea
| | - Sandip V. Mulay
- Molecular Logic Gate Laboratory; Department of Chemistry; Korea Advanced Institute of Science and Technology (KAIST); Daejeon 305-701 Republic of Korea
- Center for Catalytic Hydrocarbon Functionalizations; Institute for Basic Science (IBS); Daejeon 305-701 Republic of Korea
| | - Kyung Jin Lee
- Molecular Synthetic Biology Laboratory; Department of Chemistry; Korea Advanced Institute of Science and Technology (KAIST); Daejeon 305-701 Republic of Korea
| | - Youngsam Kim
- Molecular Logic Gate Laboratory; Department of Chemistry; Korea Advanced Institute of Science and Technology (KAIST); Daejeon 305-701 Republic of Korea
- Center for Catalytic Hydrocarbon Functionalizations; Institute for Basic Science (IBS); Daejeon 305-701 Republic of Korea
| | - Hee-Sung Park
- Molecular Synthetic Biology Laboratory; Department of Chemistry; Korea Advanced Institute of Science and Technology (KAIST); Daejeon 305-701 Republic of Korea
| | - David G. Churchill
- Molecular Logic Gate Laboratory; Department of Chemistry; Korea Advanced Institute of Science and Technology (KAIST); Daejeon 305-701 Republic of Korea
- Center for Catalytic Hydrocarbon Functionalizations; Institute for Basic Science (IBS); Daejeon 305-701 Republic of Korea
| |
Collapse
|
31
|
Cui Y, Zhang M, Du FS, Li ZC. Facile Synthesis of H 2O 2-Cleavable Poly(ester-amide)s by Passerini Multicomponent Polymerization. ACS Macro Lett 2017; 6:11-15. [PMID: 35632872 DOI: 10.1021/acsmacrolett.6b00833] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
We report the straightforward synthesis of two types of H2O2-cleavable poly(ester-amide)s (P1 and P2) via the Passerini multicomponent polymerization (P-MCP) of 4-formylbenzeneboronic acid pinacol ester with 1,6-diisocyanohexane and 1,6-hexanedioic acid or a polyethylene glycol (PEG) dicarboxylic acid. The H2O2-cleavable phenylboronic acid ester was integrated into the polymer backbone by the in situ formed benzyl ester bond. GPC and 1H NMR confirmed the complete H2O2-triggered degradation of these polymers in aqueous medium by a mechanism of sequential oxidation of phenylboronic acid ester and self-immolative elimination. Compared with the hydrophobic polymer P1, the PEG-based water-soluble polymer P2 degraded much faster even at a lower H2O2 concentration. Cytocompatible nanoparticles of polymer P1 loaded with fluorescent Nile red were fabricated, and controlled release of Nile red in response to H2O2 was achieved, thus, demonstrating the utility of these polymers as potential H2O2-responsive delivery vehicles.
Collapse
Affiliation(s)
- Yang Cui
- Beijing National Laboratory
for Molecular Sciences (BNLMS), Key Laboratory of Polymer Chemistry
and Physics of Ministry of Education, Department of Polymer Science
and Engineering, College of Chemistry and Molecular Engineering, Center
for Soft Matter Science and Engineering, Peking University, Beijing 100871, China
| | - Mei Zhang
- Beijing National Laboratory
for Molecular Sciences (BNLMS), Key Laboratory of Polymer Chemistry
and Physics of Ministry of Education, Department of Polymer Science
and Engineering, College of Chemistry and Molecular Engineering, Center
for Soft Matter Science and Engineering, Peking University, Beijing 100871, China
| | - Fu-Sheng Du
- Beijing National Laboratory
for Molecular Sciences (BNLMS), Key Laboratory of Polymer Chemistry
and Physics of Ministry of Education, Department of Polymer Science
and Engineering, College of Chemistry and Molecular Engineering, Center
for Soft Matter Science and Engineering, Peking University, Beijing 100871, China
| | - Zi-Chen Li
- Beijing National Laboratory
for Molecular Sciences (BNLMS), Key Laboratory of Polymer Chemistry
and Physics of Ministry of Education, Department of Polymer Science
and Engineering, College of Chemistry and Molecular Engineering, Center
for Soft Matter Science and Engineering, Peking University, Beijing 100871, China
| |
Collapse
|
32
|
Ríos N, Prolo C, Álvarez MN, Piacenza L, Radi R. Peroxynitrite Formation and Detection in Living Cells. Nitric Oxide 2017. [DOI: 10.1016/b978-0-12-804273-1.00021-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
33
|
Rios N, Piacenza L, Trujillo M, Martínez A, Demicheli V, Prolo C, Álvarez MN, López GV, Radi R. Sensitive detection and estimation of cell-derived peroxynitrite fluxes using fluorescein-boronate. Free Radic Biol Med 2016; 101:284-295. [PMID: 27641237 DOI: 10.1016/j.freeradbiomed.2016.08.033] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2016] [Revised: 08/30/2016] [Accepted: 08/31/2016] [Indexed: 01/09/2023]
Abstract
The specific and sensitive detection of peroxynitrite (ONOO-/ONOOH) in biological systems is a great challenge due to its high reactivity towards several biomolecules. Herein, we validated the advantages of using fluorescein-boronate (Fl-B) as a highly sensitive fluorescent probe for the direct detection of peroxynitrite under biologically-relevant conditions in two different cell models. The synthesis of Fl-B was achieved by a very simply two-step conversion synthetic route with high purity (>99%) and overall yield (∼42%). Reactivity analysis of Fl-B with relevant biological oxidants including hydrogen peroxide (H2O2), hypochlorous acid (HOCl) and peroxynitrite were performed. The rate constant for the reaction of peroxynitrite with Fl-B was 1.7×106M-1s-1, a million times faster than the rate constant measured for H2O2 (k=1.7M-1s-1) and 2,700 faster than HOCl (6.2×102M-1s-1) at 37°C and pH 7.4. The reaction of Fl-B with peroxynitrite was significant even in the presence of physiological concentrations of CO2, a well-known peroxynitrite reactant. Experimental and simulated kinetic analyses confirm that the main oxidation process of Fl-B takes place with peroxynitrite itself via a direct bimolecular reaction and not with peroxynitrite-derived radicals. Fl-B was successfully applied for the detection of endogenously-generated peroxynitrite by endothelial cells and in macrophage-phagocyted parasites. Moreover, the generated data allowed estimating the actual intracellular flux of peroxynitrite. For instance, ionomycin-stimulated endothelial cells generated peroxynitrite at a rate of ∼ 0.1μMs-1, while immunostimulated macrophages do so in the order of ∼1μMs-1 inside T. cruzi-infected phagosomes. Fl-B revealed not to be toxic in concentrations up to 1mM for 24h. Cellular peroxynitrite detection was achieved by conventional laboratory fluorescence-based methods including flow cytometry and epi-fluorescence microscopy. Fl-B was shown to be more sensitive than the coumarin boronate due to a higher molar absorption coefficient and quantum yield. Overall, our results show that Fl-B is a kinetically selective and highly sensitive probe for the direct detection of cell-derived peroxynitrite.
Collapse
Affiliation(s)
- Natalia Rios
- Departamento de Bioquímica, Facultad de Medicina, Universidad de la República, Av. Gral. Flores 2125, Montevideo 11800, Uruguay; Center for Free Radical and Biomedical Research, Facultad de Medicina, Universidad de la República, Av. Gral. Flores 2125, Montevideo 11800, Uruguay; Departamento de Química Orgánica, Facultad de Ciencias-Facultad de Química, Universidad de la República, Iguá 4225, Montevideo 11400, Uruguay
| | - Lucía Piacenza
- Departamento de Bioquímica, Facultad de Medicina, Universidad de la República, Av. Gral. Flores 2125, Montevideo 11800, Uruguay; Center for Free Radical and Biomedical Research, Facultad de Medicina, Universidad de la República, Av. Gral. Flores 2125, Montevideo 11800, Uruguay
| | - Madia Trujillo
- Departamento de Bioquímica, Facultad de Medicina, Universidad de la República, Av. Gral. Flores 2125, Montevideo 11800, Uruguay; Center for Free Radical and Biomedical Research, Facultad de Medicina, Universidad de la República, Av. Gral. Flores 2125, Montevideo 11800, Uruguay
| | - Alejandra Martínez
- Departamento de Bioquímica, Facultad de Medicina, Universidad de la República, Av. Gral. Flores 2125, Montevideo 11800, Uruguay; Center for Free Radical and Biomedical Research, Facultad de Medicina, Universidad de la República, Av. Gral. Flores 2125, Montevideo 11800, Uruguay
| | - Verónica Demicheli
- Departamento de Bioquímica, Facultad de Medicina, Universidad de la República, Av. Gral. Flores 2125, Montevideo 11800, Uruguay; Center for Free Radical and Biomedical Research, Facultad de Medicina, Universidad de la República, Av. Gral. Flores 2125, Montevideo 11800, Uruguay
| | - Carolina Prolo
- Departamento de Bioquímica, Facultad de Medicina, Universidad de la República, Av. Gral. Flores 2125, Montevideo 11800, Uruguay; Center for Free Radical and Biomedical Research, Facultad de Medicina, Universidad de la República, Av. Gral. Flores 2125, Montevideo 11800, Uruguay
| | - María Noel Álvarez
- Departamento de Bioquímica, Facultad de Medicina, Universidad de la República, Av. Gral. Flores 2125, Montevideo 11800, Uruguay; Center for Free Radical and Biomedical Research, Facultad de Medicina, Universidad de la República, Av. Gral. Flores 2125, Montevideo 11800, Uruguay
| | - Gloria V López
- Center for Free Radical and Biomedical Research, Facultad de Medicina, Universidad de la República, Av. Gral. Flores 2125, Montevideo 11800, Uruguay; Departamento de Química Orgánica, Facultad de Ciencias-Facultad de Química, Universidad de la República, Iguá 4225, Montevideo 11400, Uruguay
| | - Rafael Radi
- Departamento de Bioquímica, Facultad de Medicina, Universidad de la República, Av. Gral. Flores 2125, Montevideo 11800, Uruguay; Center for Free Radical and Biomedical Research, Facultad de Medicina, Universidad de la República, Av. Gral. Flores 2125, Montevideo 11800, Uruguay.
| |
Collapse
|
34
|
Hanna RD, Naro Y, Deiters A, Floreancig PE. Alcohol, Aldehyde, and Ketone Liberation and Intracellular Cargo Release through Peroxide-Mediated α-Boryl Ether Fragmentation. J Am Chem Soc 2016; 138:13353-13360. [PMID: 27636404 PMCID: PMC7075644 DOI: 10.1021/jacs.6b07890] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
α-Boryl ethers, carbonates, and acetals, readily prepared from the corresponding alcohols that are accessed through ketone diboration, react rapidly with hydrogen peroxide to release alcohols, aldehydes, and ketones through the collapse of hemiacetal intermediates. Experiments with α-boryl acetals containing a latent fluorophore clearly demonstrate that cargo can be released inside cells in the presence of exogenous or endogenous hydrogen peroxide. These experiments show that this protocol can be used for drug activation in an oxidative environment without generating toxic byproducts.
Collapse
Affiliation(s)
- Ramsey D. Hanna
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Yuta Naro
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Alexander Deiters
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Paul E. Floreancig
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| |
Collapse
|