1
|
Mokhosoev IM, Astakhov DV, Terentiev AA, Moldogazieva NT. Human Cytochrome P450 Cancer-Related Metabolic Activities and Gene Polymorphisms: A Review. Cells 2024; 13:1958. [PMID: 39682707 DOI: 10.3390/cells13231958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2024] [Revised: 11/15/2024] [Accepted: 11/18/2024] [Indexed: 12/18/2024] Open
Abstract
BACKGROUND Cytochromes P450 (CYPs) are heme-containing oxidoreductase enzymes with mono-oxygenase activity. Human CYPs catalyze the oxidation of a great variety of chemicals, including xenobiotics, steroid hormones, vitamins, bile acids, procarcinogens, and drugs. FINDINGS In our review article, we discuss recent data evidencing that the same CYP isoform can be involved in both bioactivation and detoxification reactions and convert the same substrate to different products. Conversely, different CYP isoforms can convert the same substrate, xenobiotic or procarcinogen, into either a more or less toxic product. These phenomena depend on the type of catalyzed reaction, substrate, tissue type, and biological species. Since the CYPs involved in bioactivation (CYP3A4, CYP1A1, CYP2D6, and CYP2C8) are primarily expressed in the liver, their metabolites can induce hepatotoxicity and hepatocarcinogenesis. Additionally, we discuss the role of drugs as CYP substrates, inducers, and inhibitors as well as the implication of nuclear receptors, efflux transporters, and drug-drug interactions in anticancer drug resistance. We highlight the molecular mechanisms underlying the development of hormone-sensitive cancers, including breast, ovarian, endometrial, and prostate cancers. Key players in these mechanisms are the 2,3- and 3,4-catechols of estrogens, which are formed by CYP1A1, CYP1A2, and CYP1B1. The catechols can also produce quinones, leading to the formation of toxic protein and DNA adducts that contribute to cancer progression. However, 2-hydroxy- and 4-hydroxy-estrogens and their O-methylated derivatives along with conjugated metabolites play cancer-protective roles. CYP17A1 and CYP11A1, which are involved in the biosynthesis of testosterone precursors, contribute to prostate cancer, whereas conversion of testosterone to 5α-dihydrotestosterone as well as sustained activation and mutation of the androgen receptor are implicated in metastatic castration-resistant prostate cancer (CRPC). CYP enzymatic activities are influenced by CYP gene polymorphisms, although a significant portion of them have no effects. However, CYP polymorphisms can determine poor, intermediate, rapid, and ultrarapid metabolizer genotypes, which can affect cancer and drug susceptibility. Despite limited statistically significant data, associations between CYP polymorphisms and cancer risk, tumor size, and metastatic status among various populations have been demonstrated. CONCLUSIONS The metabolic diversity and dual character of biological effects of CYPs underlie their implications in, preliminarily, hormone-sensitive cancers. Variations in CYP activities and CYP gene polymorphisms are implicated in the interindividual variability in cancer and drug susceptibility. The development of CYP inhibitors provides options for personalized anticancer therapy.
Collapse
Affiliation(s)
| | - Dmitry V Astakhov
- Department of Biochemistry, I.M. Sechenov First Moscow State Medical University (Sechenov University), 119991 Moscow, Russia
| | - Alexander A Terentiev
- Department of Biochemistry and Molecular Biology, N.I. Pirogov Russian National Research Medical University, 117997 Moscow, Russia
| | | |
Collapse
|
2
|
Lu GR, Wang RZ, Zhao XY, Xu JE, Huang CK, Sun W, Chen RJ, Wang Z. The CYP3A inducer dexamethasone affects the pharmacokinetics of sunitinib by accelerating its metabolism in rats. Chem Biol Interact 2024; 403:111228. [PMID: 39244184 DOI: 10.1016/j.cbi.2024.111228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 08/13/2024] [Accepted: 09/04/2024] [Indexed: 09/09/2024]
Abstract
Sunitinib, a novel anti-tumor small molecule targeting VEGFR, is prescribed for advanced RCC and GISTs. Sunitinib is primarily metabolized by the CYP3A enzyme. It is well-known that dexamethasone serves as a potent inducer of this enzyme system. Nonetheless, the effect of dexamethasone on sunitinib metabolism remains unclear. This study examined the effect of dexamethasone on the pharmacokinetics of sunitinib and its metabolite N-desethyl sunitinib in rats. The plasma levels of both compounds were measured using UHPLC-MS/MS. Pharmacokinetic parameters and metabolite ratio values were calculated. Compare to control group, the low-dose dexamethasone group and high-dose dexamethasone group decreased the AUC(0-t) values of sunitinib by 47 % and 45 %, respectively. Meanwhile, the AUC(0-t) values of N-desethyl sunitinib were increased by 2.2-fold and 2.4-fold in low-dose dexamethasone group and high-dose dexamethasone group, respectively. The CL values for sunitinib were both approximately 45 % higher in the two dexamethasone groups. Remarkably, metabolite ratio values increased over 5-fold in both low-dose dexamethasone group and high-dose dexamethasone group, indicating a significant enhancement of sunitinib metabolism by dexamethasone. Moreover, the total levels of sunitinib and its metabolite are also significantly increased. The impact of interactions on sunitinib metabolism, as observed with CYP3A inducers such as dexamethasone, is a crucial consideration for clinical practice. To optimize the dosage and prevent adverse drug events, therapeutic drug monitoring can be employed to avoid the toxicity from such interactions.
Collapse
Affiliation(s)
- Guang-Rong Lu
- Department of Gastroenterology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Rui-Zhen Wang
- Department of Pharmacy, Wenzhou People's Hospital, Wenzhou, Zhejiang, China
| | - Xin-Yu Zhao
- Department of Pharmacy, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Jun-Er Xu
- Alberta Institute, Wenzhou Medical University, Zhejiang, China
| | - Cheng-Ke Huang
- Department of Pharmacy, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Wei Sun
- Department of Pharmacy, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Rui-Jie Chen
- Department of Pharmacy, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Zhe Wang
- Department of Pharmacy, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China.
| |
Collapse
|
3
|
de Visser SP, Wong HPH, Zhang Y, Yadav R, Sastri CV. Tutorial Review on the Set-Up and Running of Quantum Mechanical Cluster Models for Enzymatic Reaction Mechanisms. Chemistry 2024; 30:e202402468. [PMID: 39109881 DOI: 10.1002/chem.202402468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Accepted: 08/07/2024] [Indexed: 10/09/2024]
Abstract
Enzymes turnover substrates into products with amazing efficiency and selectivity and as such have great potential for use in biotechnology and pharmaceutical applications. However, details of their catalytic cycles and the origins surrounding the regio- and chemoselectivity of enzymatic reaction processes remain unknown, which makes the engineering of enzymes and their use in biotechnology challenging. Computational modelling can assist experimental work in the field and establish the factors that influence the reaction rates and the product distributions. A popular approach in modelling is the use of quantum mechanical cluster models of enzymes that take the first- and second coordination sphere of the enzyme active site into consideration. These QM cluster models are widely applied but often the results obtained are dependent on model choice and model selection. Herein, we show that QM cluster models can give highly accurate results that reproduce experimental product distributions and free energies of activation within several kcal mol-1, regarded that large cluster models with >300 atoms are used that include key hydrogen bonding interactions and charged residues. In this tutorial review, we give general guidelines on the set-up and applications of the QM cluster method and discuss its accuracy and reproducibility. Finally, several representative QM cluster model examples on metal-containing enzymes are presented, which highlight the strength of the approach.
Collapse
Affiliation(s)
- Sam P de Visser
- Manchester Institute of Biotechnology, The University of Manchester, 131 Princess Street, Manchester, M1 7DN, United Kingdom
- Department of Chemical Engineering, The University of Manchester, Oxford Road, Manchester, M13 9PL, United Kingdom
- Department of Chemistry, Indian Institute of Technology Guwahati, Assam, 781039, India
| | - Henrik P H Wong
- Manchester Institute of Biotechnology, The University of Manchester, 131 Princess Street, Manchester, M1 7DN, United Kingdom
- Department of Chemical Engineering, The University of Manchester, Oxford Road, Manchester, M13 9PL, United Kingdom
| | - Yi Zhang
- Manchester Institute of Biotechnology, The University of Manchester, 131 Princess Street, Manchester, M1 7DN, United Kingdom
- Department of Chemical Engineering, The University of Manchester, Oxford Road, Manchester, M13 9PL, United Kingdom
| | - Rolly Yadav
- Department of Chemistry, Indian Institute of Technology Guwahati, Assam, 781039, India
| | - Chivukula V Sastri
- Department of Chemistry, Indian Institute of Technology Guwahati, Assam, 781039, India
| |
Collapse
|
4
|
Mori K, Golding BT, Toraya T. The action of coenzyme B12-dependent diol dehydratase on 3,3,3-trifluoro-1,2-propanediol results in elimination of all the fluorides with formation of acetaldehyde. J Biochem 2024; 176:245-254. [PMID: 38987935 DOI: 10.1093/jb/mvae047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 06/13/2024] [Accepted: 06/20/2024] [Indexed: 07/12/2024] Open
Abstract
3,3,3-Trifluoro-1,2-propanediol undergoes complete defluorination in two distinct steps: first, the conversion into 3,3,3-trifluoropropionaldehyde catalyzed by adenosylcobalamin (coenzyme B12)-dependent diol dehydratase; second, non-enzymatic elimination of all three fluorides from this aldehyde to afford malonic semialdehyde (3-oxopropanoic acid), which is decarboxylated to acetaldehyde. Diol dehydratase accepts 3,3,3-trifluoro-1,2-propanediol as a relatively poor substrate, albeit without significant mechanism-based inactivation of the enzyme during catalysis. Optical and electron paramagnetic resonance (EPR) spectra revealed the steady-state formation of cob(II)alamin and a substrate-derived intermediate organic radical (3,3,3-trifluoro-1,2-dihydroxyprop-1-yl). The coenzyme undergoes Co-C bond homolysis initiating a sequence of reaction by the generally accepted pathway via intermediate radicals. However, the greater steric size of trifluoromethyl and especially its negative impact on the stability of an adjacent radical centre compared to a methyl group has implications for the mechanism of the diol dehydratase reaction. Nevertheless, 3,3,3-trifluoropropionaldehyde is formed by the normal diol dehydratase pathway, but then undergoes non-enzymatic conversion into acetaldehyde, probably via 3,3-difluoropropenal and malonic semialdehyde.
Collapse
Affiliation(s)
- Koichi Mori
- Graduate School of Natural Science and Technology, Okayama University, Tsushima-naka, Kita-ku, Okayama 700-8530, Japan
| | - Bernard T Golding
- School of Natural and Environmental Sciences, Bedson Building, Newcastle University, Newcastle upon Tyne NE1 7RU, UK
| | - Tetsuo Toraya
- Graduate School of Natural Science and Technology, Okayama University, Tsushima-naka, Kita-ku, Okayama 700-8530, Japan
| |
Collapse
|
5
|
Claesson A. Use of Structural Alerts for Reactive Metabolites in the Application SpotRM. Chem Res Toxicol 2024; 37:1231-1245. [PMID: 39088358 DOI: 10.1021/acs.chemrestox.4c00205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/03/2024]
Abstract
Reactive metabolite (RM) formation is widely accepted as playing a crucial role in causing idiosyncratic adverse drug reactions (IADRs), where the liver is most affected. An important goal of drug design is to avoid selection of drug candidates giving rise to RMs and therefore risk causing problems later on involving IADRs. The simplest, initial approach is to avoid test structures that have substructures known or strongly suspected to be associated with IADRs. However, as is evident from the many case reports of IADRs, in most cases a clear association with any (bio)chemical mechanism is lacking, which makes it hard to establish any structure-toxicity relationship. Separate studies of RM formation, in vitro and in vivo, have led to likely evidence and to establishing many structural alerts (SAs) that can be used for fast selection/deselection of planned test compounds. As a background to a discussion of the concept, 25 kinase inhibitor drugs with known problems of hepatotoxicity were probed against a set of SAs contained in the application SpotRM. A clear majority of the probed drugs show liabilities as evident by being flagged by more than one of the fairly established types of SAs. At the same time, no clear SAs were found in three drugs, which is discussed in the broader context of usefulness and selection tactics of SAs in drug design.
Collapse
Affiliation(s)
- Alf Claesson
- Awametox AB, Lilldalsvägen 17 A, SE-14461 Rönninge, Sweden
| |
Collapse
|
6
|
Zhang X, Ren X, Zhu T, Zheng W, Shen C, Lu C. A real-world pharmacovigilance study of FDA adverse event reporting system (FAERS) events for sunitinib. Front Pharmacol 2024; 15:1407709. [PMID: 39114350 PMCID: PMC11303340 DOI: 10.3389/fphar.2024.1407709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 07/12/2024] [Indexed: 08/10/2024] Open
Abstract
Background Sunitinib is approved for the treatment of metastatic renal cell carcinoma (mRCC), imatinib-resistant gastrointestinal stromal tumors (GIST), and advanced pancreatic neuroendocrine tumors (PNET). This study aims to investigate the safety profiles of sunitinib through data mining of the US Food and Drug Administration Adverse Event Reporting System (FAERS). Methods The individual case safety reports (ICSRs) on sunitinib from 2006 Q1 to 2024 Q1 were collected from the ASCII data packages in the Food and Drug Administration Adverse Event Reporting System (FAERS). After standardizing the data, a variety of disproportionality analyses, including the reporting odds ratio (ROR), the proportional reporting ratio (PRR), the bayesian confidence propagation neural network (BCPNN), and the multi-item gamma Poisson shrinker (MGPS) were employed to identify the potential safety signals of sunitinib-associated AEs. Results A total of 35,923 ICSRs of sunitinib as the "primary suspected" drug were identified within the reporting period. The search detected 276 disproportionate preferred terms (PTs). The most common AEs, including diarrhea, asthenia, decreased appetite, hypertension, and dysgeusia, were consistent with the drug label and clinical trials. Unexpected significant AEs, such as uveal melanocytic proliferation, salivary gland fistula, yellow skin, eyelash discoloration, scrotal inflammation, were detected. The median onset time of sunitinib-related AEs was 57 days (interquartile range [IQR]16-170 days), with most of the ICSRs developing within the first month (n = 4,582, 39.73%) after sunitinib therapy as initiated. Conclusion The results of our study were consistent with routine clinical observations, and some unexpected AEs signals were also identified for sunitinib, providing valuable evidence for the safe use of sunitinib in the real-world and contributing to the clinical monitoring and risk identification of sunitinib.
Collapse
Affiliation(s)
- Xusheng Zhang
- Department of Pharmacology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Xiuli Ren
- Department of Pharmacology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Tianyu Zhu
- Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Wanjin Zheng
- Department of Pharmacology, Hospital for Skin Diseases, Shandong First Medical University, Jinan, China
- Department of Pharmacology, Shandong Provincial Institute of Dermatology and Venereology, Shandong Academy of Medical Sciences, Jinan, China
| | - Chengwu Shen
- Department of Pharmacology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Cuicui Lu
- Department of Pharmacology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| |
Collapse
|
7
|
Wang Z, Jiang L, Lv X, Yin H, Wang Z, Li W, Liu Y. Higher risk of hepatotoxicity associated with cabozantinib in cancer patients. Crit Rev Oncol Hematol 2024; 196:104298. [PMID: 38364886 DOI: 10.1016/j.critrevonc.2024.104298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 02/05/2024] [Accepted: 02/12/2024] [Indexed: 02/18/2024] Open
Abstract
BACKGROUND The efficacy of cabozantinib has attracted interest in various solid tumors. The primary aim of this study was to evaluate the risk of hepatotoxicity associated with cabozantinib in the patients with cancer. METHODS PubMed, Cochrane, and EMBASE databases were searched for published randomized controlled trials (RCTs) from inception to September 9, 2023. The mainly outcomes were all-grade and grade ≥3 elevation of aspartate aminotransferase (AST) and alanine aminotransferase (ALT), expressed as relative risk (RR) and 95% confidence interval (CI). All data were pooled using fixed-effect or random-effects models according to the heterogeneity of the included RCTs. RESULTS Among the 922 records identified, 8 RCTs incorporating 2613 patients with cancer were included. For patients receiving cabozantinib, the relative risks of all-grade AST elevation (RR, 2.63; 95% CI, 2.16-3.20, P < 0.001), all-grade ALT elevation (RR, 2.89; 95% CI, 2.31-3.60, P < 0.001), grade ≥3 AST elevation (RR, 2.26; 95% CI, 1.34-3.83, P = 0.002), and grade ≥3 ALT elevation (RR, 3.40; 95% CI, 1.65-7.01, P < 0.001) were higher than those of patients who did not receive cabozantinib group. Further subgroup analysis showed that the relative risk of hepatotoxicity associated with cabozantinib was higher than that in the other TKIs (erlotinib, sunitinib, and sorafenib) and the non-TKI drug groups (everolimus, prednisone, mitoxantrone, and paclitaxel). CONCLUSIONS Compared with other solid tumor drugs, such as everolimus, sorafenib, sunitinib, paclitaxel, mitoxantrone-prednisone et al., cabozantinib has a higher risk of hepatotoxicity.
Collapse
Affiliation(s)
- Zhen Wang
- School of Life and Pharmaceutical Sciences, Dalian University of Technology, Panjin 124221, China
| | - Lili Jiang
- School of Life and Pharmaceutical Sciences, Dalian University of Technology, Panjin 124221, China
| | - Xin Lv
- School of Life and Pharmaceutical Sciences, Dalian University of Technology, Panjin 124221, China
| | - Hang Yin
- School of Life and Pharmaceutical Sciences, Dalian University of Technology, Panjin 124221, China
| | - Zhe Wang
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Wenli Li
- School of Life and Pharmaceutical Sciences, Dalian University of Technology, Panjin 124221, China
| | - Yong Liu
- School of Life and Pharmaceutical Sciences, Dalian University of Technology, Panjin 124221, China.
| |
Collapse
|
8
|
Tang M, Wu ZE, Li F. Integrating network pharmacology and drug side-effect data to explore mechanism of liver injury-induced by tyrosine kinase inhibitors. Comput Biol Med 2024; 170:108040. [PMID: 38308871 DOI: 10.1016/j.compbiomed.2024.108040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 12/21/2023] [Accepted: 01/26/2024] [Indexed: 02/05/2024]
Abstract
Tyrosine kinase inhibitors (TKIs) are highly efficient small-molecule anticancer drugs. Despite the specificity and efficacy of TKIs, they can produce off-target effects, leading to severe liver toxicity, and even some of them are labeled as black box hepatotoxicity. Thus, we focused on representative TKIs associated with severe hepatic adverse events, namely lapatinib, pazopanib, regorafenib, and sunitinib as objections of study, then integrated drug side-effect data from United State Food and Drug Administration (U.S. FDA) and network pharmacology to elucidate mechanism underlying TKI-induced liver injury. Based on network pharmacology, we constructed a specific comorbidity module of high risk of serious adverse effects and created drug-disease networks. Enrichment analysis of the networks revealed the depletion of all-trans-retinoic acid and the involvement of down-regulation of the HSP70 family-mediated endoplasmic reticulum (ER) stress as key factors in TKI-induced liver injury. These results were further verified by transcription data. Based on the target prediction results of drugs and reactive metabolites, we also shed light on the association between toxic metabolites and severe hepatic adverse reactions, and thinking HSPA8, HSPA1A, CYP1A1, CYP1A2 and CYP3A4 were potential therapeutic or preventive targets against TKI-induced liver injury. In conclusion, our research provides comprehensive insights into the mechanism underlying severe liver injury caused by TKIs, offering a better understanding of how to enhance patient safety and treatment efficacy.
Collapse
Affiliation(s)
- Miaomiao Tang
- Department of Gastroenterology & Hepatology, Laboratory of Metabolomics and Drug-induced Liver Injury, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, and Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Zhanxuan E Wu
- Department of Gastroenterology & Hepatology, Laboratory of Metabolomics and Drug-induced Liver Injury, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Fei Li
- Department of Gastroenterology & Hepatology, Laboratory of Metabolomics and Drug-induced Liver Injury, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, 610041, China; State Key Laboratory of Respiratory Health and Multimorbidity, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China.
| |
Collapse
|
9
|
Wodtke R, Laube M, Hauser S, Meister S, Ludwig FA, Fischer S, Kopka K, Pietzsch J, Löser R. Preclinical evaluation of an 18F-labeled N ε-acryloyllysine piperazide for covalent targeting of transglutaminase 2. EJNMMI Radiopharm Chem 2024; 9:1. [PMID: 38165538 PMCID: PMC10761660 DOI: 10.1186/s41181-023-00231-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 12/15/2023] [Indexed: 01/03/2024] Open
Abstract
BACKGROUND Transglutaminase 2 (TGase 2) is a multifunctional protein and has a prominent role in various (patho)physiological processes. In particular, its transamidase activity, which is rather latent under physiological conditions, gains importance in malignant cells. Thus, there is a great need of theranostic probes for targeting tumor-associated TGase 2, and targeted covalent inhibitors appear to be particularly attractive as vector molecules. Such an inhibitor, equipped with a radionuclide suitable for noninvasive imaging, would be supportive for answering the general question on the possibility for functional characterization of tumor-associated TGase 2. For this purpose, the recently developed 18F-labeled Nε-acryloyllysine piperazide [18F]7b, which is a potent and selective irreversible inhibitor of TGase 2, was subject to a detailed radiopharmacological characterization herein. RESULTS An alternative radiosynthesis of [18F]7b is presented, which demands less than 300 µg of the respective trimethylammonio precursor per synthesis and provides [18F]7b in good radiochemical yields (17 ± 7%) and high (radio)chemical purities (≥ 99%). Ex vivo biodistribution studies in healthy mice at 5 and 60 min p.i. revealed no permanent enrichment of 18F-activity in tissues with the exception of the bone tissue. In vivo pretreatment with ketoconazole and in vitro murine liver microsome studies complemented by mass spectrometric analysis demonstrated that bone uptake originates from metabolically released [18F]fluoride. Further metabolic transformations of [18F]7b include mono-hydroxylation and glucuronidation. Based on blood sampling data and liver microsome experiments, pharmacokinetic parameters such as plasma and intrinsic clearance were derived, which substantiated the apparently rapid distribution of [18F]7b in and elimination from the organisms. A TGase 2-mediated uptake of [18F]7b in different tumor cell lines could not be proven. Moreover, evaluation of [18F]7b in melanoma tumor xenograft models based on A375-hS100A4 (TGase 2 +) and MeWo (TGase 2 -) cells by ex vivo biodistribution and PET imaging studies were not indicative for a specific targeting. CONCLUSION [18F]7b is a valuable radiometric tool to study TGase 2 in vitro under various conditions. However, its suitability for targeting tumor-associated TGase 2 is strongly limited due its unfavorable pharmacokinetic properties as demonstrated in rodents. Consequently, from a radiochemical perspective [18F]7b requires appropriate structural modifications to overcome these limitations.
Collapse
Affiliation(s)
- Robert Wodtke
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research, Bautzner Landstraße 400, 01328, Dresden, Germany.
| | - Markus Laube
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research, Bautzner Landstraße 400, 01328, Dresden, Germany
| | - Sandra Hauser
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research, Bautzner Landstraße 400, 01328, Dresden, Germany
| | - Sebastian Meister
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research, Bautzner Landstraße 400, 01328, Dresden, Germany
| | - Friedrich-Alexander Ludwig
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research, Permoserstraße 15, 04318, Leipzig, Germany
| | - Steffen Fischer
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research, Permoserstraße 15, 04318, Leipzig, Germany
| | - Klaus Kopka
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research, Bautzner Landstraße 400, 01328, Dresden, Germany
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research, Permoserstraße 15, 04318, Leipzig, Germany
- School of Science, Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, Mommsenstraße 4, 01069, Dresden, Germany
| | - Jens Pietzsch
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research, Bautzner Landstraße 400, 01328, Dresden, Germany
- School of Science, Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, Mommsenstraße 4, 01069, Dresden, Germany
| | - Reik Löser
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research, Bautzner Landstraße 400, 01328, Dresden, Germany.
- School of Science, Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, Mommsenstraße 4, 01069, Dresden, Germany.
| |
Collapse
|
10
|
Sweeney PL, Suri Y, Basu A, Koshkin VS, Desai A. Mechanisms of tyrosine kinase inhibitor resistance in renal cell carcinoma. CANCER DRUG RESISTANCE (ALHAMBRA, CALIF.) 2023; 6:858-873. [PMID: 38239394 PMCID: PMC10792482 DOI: 10.20517/cdr.2023.89] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 11/20/2023] [Accepted: 12/21/2023] [Indexed: 01/22/2024]
Abstract
Renal cell carcinoma (RCC), the most prevalent type of kidney cancer, is a significant cause of cancer morbidity and mortality worldwide. Antiangiogenic tyrosine kinase inhibitors (TKIs), in combination with immune checkpoint inhibitors (ICIs), are among the first-line treatment options for patients with advanced RCC. These therapies target the vascular endothelial growth factor receptor (VEGFR) tyrosine kinase pathway and other kinases crucial to cancer proliferation, survival, and metastasis. TKIs have yielded substantial improvements in progression-free survival (PFS) and overall survival (OS) for patients with advanced RCC. However, nearly all patients eventually progress on these drugs as resistance develops. This review provides an overview of TKI resistance in RCC and explores different mechanisms of resistance, including upregulation of alternative proangiogenic pathways, epithelial-mesenchymal transition (EMT), decreased intracellular drug concentrations due to efflux pumps and lysosomal sequestration, alterations in the tumor microenvironment including bone marrow-derived cells (BMDCs) and tumor-associated fibroblasts (TAFs), and genetic factors such as single nucleotide polymorphisms (SNPs). A comprehensive understanding of these mechanisms opens the door to the development of innovative therapeutic approaches that can effectively overcome TKI resistance, thereby improving outcomes for patients with advanced RCC.
Collapse
Affiliation(s)
- Patrick L. Sweeney
- Deming Department of Medicine, Tulane University School of Medicine, New Orleans, LA 70112, USA
| | - Yash Suri
- University of Arizona College of Medicine, Tucson, AZ 85724, USA
| | - Arnab Basu
- Division of Hematology and Oncology, Department of Medicine, University of Alabama at Birmingham Heersink School of Medicine, Birmingham, AL 35233, USA
| | - Vadim S. Koshkin
- Division of Hematology and Oncology, Department of Medicine, University of California at San Francisco School of Medicine, San Francisco, CA 94143, USA
| | - Arpita Desai
- Division of Hematology and Oncology, Department of Medicine, University of California at San Francisco School of Medicine, San Francisco, CA 94143, USA
| |
Collapse
|
11
|
Zhang Y, Mokkawes T, de Visser SP. Insights into Cytochrome P450 Enzyme Catalyzed Defluorination of Aromatic Fluorides. Angew Chem Int Ed Engl 2023; 62:e202310785. [PMID: 37641517 DOI: 10.1002/anie.202310785] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 08/25/2023] [Accepted: 08/28/2023] [Indexed: 08/31/2023]
Abstract
Density functional calculations establish a novel mechanism of aromatic defluorination by P450 Compound I. This is achieved via either an initial epoxide intermediate or through a 1,2-fluorine shift in an electrophilic intermediate, which highlights that the P450s can defluorinate fluoroarenes. However, in the absence of a proton donor a strong Fe-F bond can be obtained as shown from the calculations.
Collapse
Affiliation(s)
- Yi Zhang
- Manchester Institute of Biotechnology, The University of Manchester, 131 Princess Street, Manchester, M17DN, UK
- Department of Chemical Engineering, The University of Manchester, Oxford Road, Manchester, M13 9PL, UK
| | - Thirakorn Mokkawes
- Manchester Institute of Biotechnology, The University of Manchester, 131 Princess Street, Manchester, M17DN, UK
- Department of Chemical Engineering, The University of Manchester, Oxford Road, Manchester, M13 9PL, UK
| | - Sam P de Visser
- Manchester Institute of Biotechnology, The University of Manchester, 131 Princess Street, Manchester, M17DN, UK
- Department of Chemical Engineering, The University of Manchester, Oxford Road, Manchester, M13 9PL, UK
| |
Collapse
|
12
|
Bowen TJ, Southam AD, Hall AR, Weber RJM, Lloyd GR, Macdonald R, Wilson A, Pointon A, Viant MR. Simultaneously discovering the fate and biochemical effects of pharmaceuticals through untargeted metabolomics. Nat Commun 2023; 14:4653. [PMID: 37537184 PMCID: PMC10400635 DOI: 10.1038/s41467-023-40333-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Accepted: 07/20/2023] [Indexed: 08/05/2023] Open
Abstract
Untargeted metabolomics is an established approach in toxicology for characterising endogenous metabolic responses to xenobiotic exposure. Detecting the xenobiotic and its biotransformation products as part of the metabolomics analysis provides an opportunity to simultaneously gain deep insights into its fate and metabolism, and to associate the internal relative dose directly with endogenous metabolic responses. This integration of untargeted exposure and response measurements into a single assay has yet to be fully demonstrated. Here we assemble a workflow to discover and analyse pharmaceutical-related measurements from routine untargeted UHPLC-MS metabolomics datasets, derived from in vivo (rat plasma and cardiac tissue, and human plasma) and in vitro (human cardiomyocytes) studies that were principally designed to investigate endogenous metabolic responses to drug exposure. Our findings clearly demonstrate how untargeted metabolomics can discover extensive biotransformation maps, temporally-changing relative systemic exposure, and direct associations of endogenous biochemical responses to the internal dose.
Collapse
Affiliation(s)
- Tara J Bowen
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Andrew D Southam
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
- Phenome Centre Birmingham, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Andrew R Hall
- Safety Sciences, Clinical Pharmacology and Safety Sciences, BioPharmaceuticals R&D, AstraZeneca, Cambridge, UK
| | - Ralf J M Weber
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
- Phenome Centre Birmingham, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Gavin R Lloyd
- Phenome Centre Birmingham, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Ruth Macdonald
- Animal Sciences and Technology, Clinical Pharmacology and Safety Sciences, BioPharmaceuticals R&D, AstraZeneca, Cambridge, UK
| | - Amanda Wilson
- Integrated Bioanalysis, Clinical Pharmacology and Safety Sciences, BioPharmaceuticals R&D, AstraZeneca, Cambridge, UK
| | - Amy Pointon
- Safety Sciences, Clinical Pharmacology and Safety Sciences, BioPharmaceuticals R&D, AstraZeneca, Cambridge, UK
| | - Mark R Viant
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK.
- Phenome Centre Birmingham, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK.
| |
Collapse
|
13
|
Hou Z, Li Y, Zheng M, Liu X, Zhang Q, Wang W. Regioselective oxidation of heterocyclic aromatic hydrocarbons catalyzed by cytochrome P450: A case study of carbazole. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 258:114964. [PMID: 37121081 DOI: 10.1016/j.ecoenv.2023.114964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 04/11/2023] [Accepted: 04/26/2023] [Indexed: 05/22/2023]
Abstract
Recently there are increasing interests in accurately evaluating the health effects of heterocyclic PAHs. However, the activation mechanism and possible metabolites of heterocyclic PAHs catalyzed by human CYP1A1 is still elusive to a great extent. Here, leveraged to high level QM/MM calculations, the corresponding activation pathways of a representative heterocyclic PAHs, carbazole, were systematically explored. The first stage is electrophilic addition or hydrogen abstraction from N-H group. Electrophilic addition was evidenced to be more feasible and regioselectivity at C3 and C4 sites were identified. Correlations between energy barriers and key structural/electrostatic parameters reveal that O-Cα distance and Fe-O-Cα angle are the main origin for the catalytic regioselectivity. Electrophilic addition was determined as the rate-determining step and the subsequent possible reactions include epoxidation, NIH shift (the hydrogen migration from the site of hydroxylation to the adjacent carbon) and proton shuttle. The corresponding products are epoxides, ketones and hydroxylated carbazoles, respectively. The main metabolites (hydroxylated carbazoles) are estimated to be more toxic than carbazole. The regioselectivity of carbazole activated by CYP1A1 is different from the environmental processes (gas and aqueous phase). Collectively, these results will inform the in-depth understanding the metabolic processes of heterocyclic PAHs and aid the accurate evaluation of their health effects.
Collapse
Affiliation(s)
- Zexi Hou
- Environment Research Institute, Shandong University, Qingdao 266237, PR China
| | - Yanwei Li
- Environment Research Institute, Shandong University, Qingdao 266237, PR China; Shenzhen Research Institute, Shandong University, Shenzhen 518057, PR China.
| | - Mingna Zheng
- Environment Research Institute, Shandong University, Qingdao 266237, PR China
| | - Xinning Liu
- Environment Research Institute, Shandong University, Qingdao 266237, PR China
| | - Qingzhu Zhang
- Environment Research Institute, Shandong University, Qingdao 266237, PR China
| | - Wenxing Wang
- Environment Research Institute, Shandong University, Qingdao 266237, PR China
| |
Collapse
|
14
|
McGill MR, Kaufman YJ, LoBianco FV, Schleiff MA, Aykin-Burns N, Miller GP. The role of cytochrome P450 3A4-mediated metabolism in sorafenib and lapatinib hepatotoxicity. LIVERS 2023; 3:310-321. [PMID: 38037613 PMCID: PMC10688230 DOI: 10.3390/livers3020022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/02/2023] Open
Abstract
Tyrosine kinase inhibitors (TKIs) are increasingly popular drugs used to treat more than a dozen different diseases, including some forms of cancer. Despite having fewer adverse effects than traditional chemotherapies, they are not without risks. Liver injury is a particular concern. Of the FDA-approved TKIs, approximately 40% cause hepatotoxicity. However, little is known about the underlying pathophysiology. The leading hypothesis is that TKIs are converted by cytochrome P450 3A4 (CYP3A4) to reactive metabolites that damage proteins. Indeed, there is strong evidence for this bioactivation of TKIs in in vitro reactions. However, the actual toxic effects are underexplored. Here, we measured the cytotoxicity of several TKIs in primary mouse hepatocytes, HepaRG cells, and HepG2 cells with and without CYP3A4 modulation. To our surprise, the data indicate that CYP3A4 increases resistance to sorafenib and lapatinib hepatotoxicity. The results have implications for the mechanism of toxicity of these drugs in patients and underline the importance of selecting an appropriate experimental model.
Collapse
Affiliation(s)
- Mitchell R. McGill
- Dept. of Environmental Health Sciences, Fay W. Boozman College of Public Health; Depts. of Pharma-cology & Toxicology and Pathology, College of Medicine; University of Arkansas for Medical Sciences, Little Rock, AR, 72205 USA
| | - Yihong J. Kaufman
- Dept. of Pediatrics, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, AR, 72205 USA
| | - Francesca V. LoBianco
- Dept. of Pharmaceutical Sciences, College of Pharmacy, University of Arkansas for Medical Sciences, Little Rock, AR, 72205 USA
| | - Mary A. Schleiff
- Dept. of Biochemistry and Molecular Biology, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, AR, 72205 USA
| | - Nukhet Aykin-Burns
- Dept. of Pharmaceutical Sciences, College of Pharmacy, University of Arkansas for Medical Sciences, Little Rock, AR, 72205 USA
| | - Grover P. Miller
- Dept. of Biochemistry and Molecular Biology, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, AR, 72205 USA
| |
Collapse
|
15
|
Kukal S, Thakran S, Kanojia N, Yadav S, Mishra MK, Guin D, Singh P, Kukreti R. Genic-intergenic polymorphisms of CYP1A genes and their clinical impact. Gene 2023; 857:147171. [PMID: 36623673 DOI: 10.1016/j.gene.2023.147171] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 12/16/2022] [Accepted: 01/03/2023] [Indexed: 01/08/2023]
Abstract
The humancytochrome P450 1A (CYP1A) subfamily genes, CYP1A1 and CYP1A2, encoding monooxygenases are critically involved in biotransformation of key endogenous substrates (estradiol, arachidonic acid, cholesterol) and exogenous compounds (smoke constituents, carcinogens, caffeine, therapeutic drugs). This suggests their significant involvement in multiple biological pathways with a primary role of maintaining endogenous homeostasis and xenobiotic detoxification. Large interindividual variability exist in CYP1A gene expression and/or catalytic activity of the enzyme, which is primarily due to the existence of polymorphic alleles which encode them. These polymorphisms (mainly single nucleotide polymorphisms, SNPs) have been extensively studied as susceptibility factors in a spectrum of clinical phenotypes. An in-depth understanding of the effects of polymorphic CYP1A genes on the differential metabolic activity and the resulting biological pathways is needed to explain the clinical implications of CYP1A polymorphisms. The present review is intended to provide an integrated understanding of CYP1A metabolic activity with unique substrate specificity and their involvement in physiological and pathophysiological roles. The article further emphasizes on the impact of widely studied CYP1A1 and CYP1A2 SNPs and their complex interaction with non-genetic factors like smoking and caffeine intake on multiple clinical phenotypes. Finally, we attempted to discuss the alterations in metabolism/physiology concerning the polymorphic CYP1A genes, which may underlie the reported clinical associations. This knowledge may provide insights into the disease pathogenesis, risk stratification, response to therapy and potential drug targets for individuals with certain CYP1A genotypes.
Collapse
Affiliation(s)
- Samiksha Kukal
- Genomics and Molecular Medicine Unit, Institute of Genomics and Integrative Biology (IGIB), Council of Scientific and Industrial Research (CSIR), Delhi 110007, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Sarita Thakran
- Genomics and Molecular Medicine Unit, Institute of Genomics and Integrative Biology (IGIB), Council of Scientific and Industrial Research (CSIR), Delhi 110007, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Neha Kanojia
- Genomics and Molecular Medicine Unit, Institute of Genomics and Integrative Biology (IGIB), Council of Scientific and Industrial Research (CSIR), Delhi 110007, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Saroj Yadav
- Genomics and Molecular Medicine Unit, Institute of Genomics and Integrative Biology (IGIB), Council of Scientific and Industrial Research (CSIR), Delhi 110007, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Manish Kumar Mishra
- Genomics and Molecular Medicine Unit, Institute of Genomics and Integrative Biology (IGIB), Council of Scientific and Industrial Research (CSIR), Delhi 110007, India; Department of Biotechnology, Delhi Technological University, Shahbad Daulatpur, Main Bawana Road, Delhi 110042, India
| | - Debleena Guin
- Genomics and Molecular Medicine Unit, Institute of Genomics and Integrative Biology (IGIB), Council of Scientific and Industrial Research (CSIR), Delhi 110007, India; Department of Biotechnology, Delhi Technological University, Shahbad Daulatpur, Main Bawana Road, Delhi 110042, India
| | - Pooja Singh
- Genomics and Molecular Medicine Unit, Institute of Genomics and Integrative Biology (IGIB), Council of Scientific and Industrial Research (CSIR), Delhi 110007, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Ritushree Kukreti
- Genomics and Molecular Medicine Unit, Institute of Genomics and Integrative Biology (IGIB), Council of Scientific and Industrial Research (CSIR), Delhi 110007, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.
| |
Collapse
|
16
|
Stalberga D, Ingvarsson S, Bessa G, Maas L, Vikingsson S, Persson M, Norman C, Gréen H. Metabolism studies of 4'Cl-CUMYL-PINACA, 4'F-CUMYL-5F-PINACA and 4'F-CUMYL-5F-PICA using human hepatocytes and LC-QTOF-MS analysis. Basic Clin Pharmacol Toxicol 2023; 132:263-280. [PMID: 36544361 DOI: 10.1111/bcpt.13829] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 12/05/2022] [Accepted: 12/16/2022] [Indexed: 12/24/2022]
Abstract
4'Cl-cumyl-PINACA (SGT-157), 4'F-cumyl-5F-PINACA (4F-cumyl-5F-PINACA, SGT-65) and 4'F-cumyl-5F-PICA (4F-cumyl-5F-PICA, SGT-64) are a series of new halogenated cumyl synthetic cannabinoid receptor agonists (SCRAs). Due to rapid metabolism, monitoring and screening for SCRAs in biological matrices requires identification of their metabolites. It is an essential tool for estimating their spread and fluctuations in the global illicit market. The purpose of this study was to identify human biotransformations of 4'Cl-cumyl-PINACA, 4'F-cumyl-5F-PINACA and 4'F-cumyl-5F-PICA in vitro and characterize for the first time the metabolic pathways of halogenated cumyl SCRAs. 4'Cl-cumyl-PINACA, 4'F-cumyl-5F-PINACA and 4'F-cumyl-5F-PICA were incubated with human hepatocytes in duplicates for 0, 1, 3 and 5 h. The supernatants were analysed in data-dependent acquisition on a UHPLC-QToF-MS, and the potential metabolites were tentatively identified. A total of 11 metabolites were detected for 4'Cl-cumyl-PINACA, 21 for 4'F-cumyl-5F-PINACA and 10 for 4'F-cumyl-5F-PICA. The main biotransformations were oxidative defluorination, followed by hydroxylation with dehydrogenation, N-dealkylation, dihydrodiol formation and glucuronidation. Hydroxylations were most common at the tail moieties with higher abundancy for indole than indazole compounds. N-dealkylations were more common for fluorinated tail chain compounds than the non-fluorinated 4'Cl-cumyl-PINACA. In conclusion, many metabolites retained halogen groups at the cumyl moieties which, in various combinations, may be suitable as analytical biomarkers.
Collapse
Affiliation(s)
- Darta Stalberga
- Division of Clinical Chemistry and Pharmacology, Department of Biomedical and Clinical Sciences, Faculty of Medicine, Linköping University, Linköping, Sweden
| | - Sarah Ingvarsson
- Department of Forensic Genetics and Forensic Toxicology, National Board of Forensic Medicine, Linköping, Sweden.,Department of Physics, Chemistry and Biology, Linköping University, Linköping, Sweden
| | - Ghidaa Bessa
- Department of Physics, Chemistry and Biology, Linköping University, Linköping, Sweden
| | - Lisa Maas
- Department of Forensic Genetics and Forensic Toxicology, National Board of Forensic Medicine, Linköping, Sweden.,Avans University of Applied Sciences, Breda, Netherlands
| | - Svante Vikingsson
- Division of Clinical Chemistry and Pharmacology, Department of Biomedical and Clinical Sciences, Faculty of Medicine, Linköping University, Linköping, Sweden.,Department of Forensic Genetics and Forensic Toxicology, National Board of Forensic Medicine, Linköping, Sweden.,Center for Forensic Sciences, RTI International, Research Triangle Park, North Carolina, USA
| | - Mattias Persson
- Department of Forensic Genetics and Forensic Toxicology, National Board of Forensic Medicine, Linköping, Sweden
| | - Caitlyn Norman
- Leverhulme Research Centre for Forensic Science, School of Science and Engineering, University of Dundee, Dundee, UK
| | - Henrik Gréen
- Division of Clinical Chemistry and Pharmacology, Department of Biomedical and Clinical Sciences, Faculty of Medicine, Linköping University, Linköping, Sweden.,Department of Forensic Genetics and Forensic Toxicology, National Board of Forensic Medicine, Linköping, Sweden
| |
Collapse
|
17
|
Jin J, Xie Y, Zhang JS, Wang JQ, Dai SJ, He WF, Li SY, Ashby CR, Chen ZS, He Q. Sunitinib resistance in renal cell carcinoma: From molecular mechanisms to predictive biomarkers. Drug Resist Updat 2023; 67:100929. [PMID: 36739809 DOI: 10.1016/j.drup.2023.100929] [Citation(s) in RCA: 52] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Revised: 01/13/2023] [Accepted: 01/14/2023] [Indexed: 01/19/2023]
Abstract
Currently, renal cell carcinoma (RCC) is the most prevalent type of kidney cancer. Targeted therapy has replaced radiation therapy and chemotherapy as the main treatment option for RCC due to the lack of significant efficacy with these conventional therapeutic regimens. Sunitinib, a drug used to treat gastrointestinal tumors and renal cell carcinoma, inhibits the tyrosine kinase activity of a number of receptor tyrosine kinases, including vascular endothelial growth factor receptor (VEGFR), platelet-derived growth factor receptor (PDGFR), c-Kit, rearranged during transfection (RET) and fms-related receptor tyrosine kinase 3 (Flt3). Although sunitinib has been shown to be efficacious in the treatment of patients with advanced RCC, a significant number of patients have primary resistance to sunitinib or acquired drug resistance within the 6-15 months of therapy. Thus, in order to develop more efficacious and long-lasting treatment strategies for patients with advanced RCC, it will be crucial to ascertain how to overcome sunitinib resistance that is produced by various drug resistance mechanisms. In this review, we discuss: 1) molecular mechanisms of sunitinib resistance; 2) strategies to overcome sunitinib resistance and 3) potential predictive biomarkers of sunitinib resistance.
Collapse
Affiliation(s)
- Juan Jin
- Department of Nephrology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Traditional Chinese Medicine), Hangzhou, Zhejiang 310003, China
| | - Yuhao Xie
- Institute for Biotechnology, St. John's University, Queens, NY 11439, USA; Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY 11439, USA
| | - Jin-Shi Zhang
- Urology & Nephrology Center, Department of Nephrology, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang 310014, China
| | - Jing-Quan Wang
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY 11439, USA
| | - Shi-Jie Dai
- Zhejiang Eyoung Pharmaceutical Research and Development Center, Hangzhou, Zhejiang 311258, China
| | - Wen-Fang He
- Department of Nephrology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Traditional Chinese Medicine), Hangzhou, Zhejiang 310003, China
| | - Shou-Ye Li
- Zhejiang Eyoung Pharmaceutical Research and Development Center, Hangzhou, Zhejiang 311258, China
| | - Charles R Ashby
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY 11439, USA
| | - Zhe-Sheng Chen
- Institute for Biotechnology, St. John's University, Queens, NY 11439, USA; Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY 11439, USA.
| | - Qiang He
- Department of Nephrology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Traditional Chinese Medicine), Hangzhou, Zhejiang 310003, China.
| |
Collapse
|
18
|
Yan M, Li W, Li WB, Huang Q, Li J, Cai HL, Gong H, Zhang BK, Wang YK. Metabolic activation of tyrosine kinase inhibitors: recent advance and further clinical practice. Drug Metab Rev 2023; 55:94-106. [PMID: 36453523 DOI: 10.1080/03602532.2022.2149775] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Accepted: 11/16/2022] [Indexed: 12/03/2022]
Abstract
At present, receptor tyrosine kinase signaling-related pathways have been successfully mediated to inhibit tumor proliferation and promote anti-angiogenesis effects for cancer therapy. Tyrosine kinase inhibitors (TKIs), a group of novel chemotherapeutic agents, have been applied to treat diverse malignant tumors effectively. However, the latent toxic and side effects of TKIs, such as hepatotoxicity and cardiotoxicity, limit their use in clinical practice. Metabolic activation has the potential to lead to toxic effects. Numerous TKIs have been demonstrated to be transformed into chemically reactive/potentially toxic metabolites following cytochrome P450-catalyzed activation, which causes severe adverse reactions, including hepatotoxicity, cardiotoxicity, skin toxicity, immune injury, mitochondria injury, and cytochrome P450 inactivation. However, the precise mechanisms of how these chemically reactive/potentially toxic species induce toxicity remain poorly understood. In addition, we present our viewpoints that regulating the production of reactive metabolites may decrease the toxicity of TKIs. Exploring this topic will improve understanding of metabolic activation and its underlying mechanisms, promoting the rational use of TKIs. This review summarizes the updated evidence concerning the reactive metabolites of TKIs and the associated toxicities. This paper provides novel insight into the safe use of TKIs and the prevention and treatment of multiple TKIs adverse effects in clinical practice.
Collapse
Affiliation(s)
- Miao Yan
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, China
- Institute of Clinical Pharmacy, Central South University, Changsha, China
- International Research Center for Precision Medicine, Transformative Technology and Software Services, Changsha, China
| | - Wenqun Li
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, China
- Institute of Clinical Pharmacy, Central South University, Changsha, China
- International Research Center for Precision Medicine, Transformative Technology and Software Services, Changsha, China
| | - Wen-Bo Li
- Department of Plastic and Aesthetic Surgery, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Qi Huang
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, China
| | - Jing Li
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, China
| | - Hua-Lin Cai
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, China
- Institute of Clinical Pharmacy, Central South University, Changsha, China
- International Research Center for Precision Medicine, Transformative Technology and Software Services, Changsha, China
| | - Hui Gong
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, China
- Institute of Clinical Pharmacy, Central South University, Changsha, China
- International Research Center for Precision Medicine, Transformative Technology and Software Services, Changsha, China
| | - Bi-Kui Zhang
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, China
- Institute of Clinical Pharmacy, Central South University, Changsha, China
- International Research Center for Precision Medicine, Transformative Technology and Software Services, Changsha, China
| | - Yi-Kun Wang
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, China
- Institute of Clinical Pharmacy, Central South University, Changsha, China
- International Research Center for Precision Medicine, Transformative Technology and Software Services, Changsha, China
| |
Collapse
|
19
|
Cheke RS, Bagwe P, Bhange S, Kharkar PS. Biologicals and small molecules as target-specific cancer chemotherapeutic agents. MEDICINAL CHEMISTRY OF CHEMOTHERAPEUTIC AGENTS 2023:615-646. [DOI: 10.1016/b978-0-323-90575-6.00018-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
20
|
Biological Role of Pazopanib and Sunitinib Aldehyde Derivatives in Drug-Induced Liver Injury. Metabolites 2022; 12:metabo12090852. [PMID: 36144257 PMCID: PMC9505977 DOI: 10.3390/metabo12090852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Revised: 09/02/2022] [Accepted: 09/09/2022] [Indexed: 11/17/2022] Open
Abstract
Tyrosine kinase inhibitors pazopanib and sunitinib are both used to treat advanced renal cell carcinoma but expose patients to an increased risk of hepatotoxicity. We have previously identified two aldehyde derivatives for pazopanib and sunitinib (P-CHO and S-CHO, respectively) in liver microsomes. In this study, we aimed to decipher their role in hepatotoxicity by treating HepG2 and HepaRG hepatic cell lines with these derivatives and evaluating cell viability, mitochondrial dysfunction, and oxidative stress accumulation. Additionally, plasma concentrations of P-CHO were assessed in a cohort of patients treated with pazopanib. Results showed that S-CHO slightly decreased the viability of HepG2, but to a lesser extent than sunitinib, and affected the maximal respiratory capacity of the mitochondrial chain. P-CHO decreased viability and ATP production in HepG2. Traces of P-CHO were detected in the plasma of patients treated with pazopanib. Overall, these results showed that P-CHO and S-CHO affect hepatocyte integrity and could be involved in the pazopanib and sunitinib hepatotoxicity.
Collapse
|
21
|
Latham BD, Oskin DS, Crouch RD, Vergne MJ, Jackson KD. Cytochromes P450 2C8 and 3A Catalyze the Metabolic Activation of the Tyrosine Kinase Inhibitor Masitinib. Chem Res Toxicol 2022; 35:1467-1481. [PMID: 36048877 DOI: 10.1021/acs.chemrestox.2c00057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Masitinib is a small molecule tyrosine kinase inhibitor under investigation for the treatment of amyotrophic lateral sclerosis, mastocytosis, and COVID-19. Hepatotoxicity has been reported in some patients while taking masitinib. The liver injury is thought to involve hepatic metabolism of masitinib by cytochrome P450 (P450) enzymes to form chemically reactive, potentially toxic metabolites. The goal of the current investigation was to determine the P450 enzymes involved in the metabolic activation of masitinib in vitro. In initial studies, masitinib (30 μM) was incubated with pooled human liver microsomes in the presence of NADPH and potassium cyanide to trap reactive iminium ion metabolites as cyano adducts. Masitinib metabolites and cyano adducts were analyzed using reversed-phase liquid chromatography-tandem mass spectrometry. The primary active metabolite, N-desmethyl masitinib (M485), and several oxygenated metabolites were detected along with four reactive metabolite cyano adducts (MCN510, MCN524, MCN526, and MCN538). To determine which P450 enzymes were involved in metabolite formation, reaction phenotyping experiments were conducted by incubation of masitinib (2 μM) with a panel of recombinant human P450 enzymes and by incubation of masitinib with human liver microsomes in the presence of P450-selective chemical inhibitors. In addition, enzyme kinetic assays were conducted to determine the relative kinetic parameters (apparent Km and Vmax) of masitinib metabolism and cyano adduct formation. Integrated analysis of the results from these experiments indicates that masitinib metabolic activation is catalyzed primarily by P450 3A4 and 2C8, with minor contributions from P450 3A5 and 2D6. These findings provide further insight into the pathways involved in the generation of reactive, potentially toxic metabolites of masitinib. Future studies are needed to evaluate the impact of masitinib metabolism on the toxicity of the drug in vivo.
Collapse
Affiliation(s)
- Bethany D Latham
- Division of Pharmacotherapy and Experimental Therapeutics, University of North Carolina at Chapel Hill Eshelman School of Pharmacy, Chapel Hill, North Carolina 27599, United States
| | - D Spencer Oskin
- Department of Pharmaceutical Sciences, Lipscomb University College of Pharmacy and Health Sciences, Nashville, Tennessee 37204, United States
| | - Rachel D Crouch
- Department of Pharmaceutical Sciences, Lipscomb University College of Pharmacy and Health Sciences, Nashville, Tennessee 37204, United States
| | - Matthew J Vergne
- Department of Pharmaceutical Sciences, Lipscomb University College of Pharmacy and Health Sciences, Nashville, Tennessee 37204, United States
| | - Klarissa D Jackson
- Division of Pharmacotherapy and Experimental Therapeutics, University of North Carolina at Chapel Hill Eshelman School of Pharmacy, Chapel Hill, North Carolina 27599, United States
| |
Collapse
|
22
|
Zhao Q, Wu ZE, Li B, Li F. Recent advances in metabolism and toxicity of tyrosine kinase inhibitors. Pharmacol Ther 2022; 237:108256. [DOI: 10.1016/j.pharmthera.2022.108256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 07/20/2022] [Accepted: 07/20/2022] [Indexed: 11/15/2022]
|
23
|
Claesson A, Parkes K. Non-innocuous Consequences of Metabolic Oxidation of Alkyls on Arenes. J Med Chem 2022; 65:11433-11453. [PMID: 36001003 DOI: 10.1021/acs.jmedchem.2c00833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Reactive metabolite (RM) formation is widely accepted as playing a pivotal role in causing adverse idiosyncratic drug reactions, with most attention paid to drug-induced liver injury. Mechanisms of RM formation are determined by the drug's properties in relation to human enzymes transforming the drug. This Perspective focuses on enzymatic oxidation of alkyl groups on aromatics leading to quinone methides and benzylic alcohol sulfates as RMs, a topic that has not received very much attention. Unlike previous overviews, we will include in our Perspective several fulvene-like methides such as 3-methyleneindole. We also speculate that a few older drugs may form non-reported methides of this class. In addition, we report a few guiding DFT calculations of changes in free energy on going from a benzylic alcohol to the corresponding methide. Particularly facile reactions of 2-aminothiazole-5-methanol and 4-aminobenzyl alcohol are noted.
Collapse
Affiliation(s)
- Alf Claesson
- Awametox AB, Lilldalsvägen 17 A, SE-14461 Rönninge, Sweden
| | - Kevin Parkes
- Consultant, 39 Cashio Lane, Letchworth Garden City, Hertfordshire SG6 1AY, U.K
| |
Collapse
|
24
|
Burnham EA, Abouda AA, Bissada JE, Nardone-White DT, Beers JL, Lee J, Vergne MJ, Jackson KD. Interindividual Variability in Cytochrome P450 3A and 1A Activity Influences Sunitinib Metabolism and Bioactivation. Chem Res Toxicol 2022; 35:792-806. [PMID: 35484684 PMCID: PMC9131896 DOI: 10.1021/acs.chemrestox.1c00426] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Sunitinib is an orally administered tyrosine kinase inhibitor associated with idiosyncratic hepatotoxicity; however, the mechanisms of this toxicity remain unclear. We have previously shown that cytochromes P450 1A2 and 3A4 catalyze sunitinib metabolic activation via oxidative defluorination leading to a chemically reactive, potentially toxic quinoneimine, trapped as a glutathione (GSH) conjugate (M5). The goals of this study were to determine the impact of interindividual variability in P450 1A and 3A activity on sunitinib bioactivation to the reactive quinoneimine and sunitinib N-dealkylation to the primary active metabolite N-desethylsunitinib (M1). Experiments were conducted in vitro using single-donor human liver microsomes and human hepatocytes. Relative sunitinib metabolite levels were measured by liquid chromatography-tandem mass spectrometry. In human liver microsomes, the P450 3A inhibitor ketoconazole significantly reduced M1 formation compared to the control. The P450 1A2 inhibitor furafylline significantly reduced defluorosunitinib (M3) and M5 formation compared to the control but had minimal effect on M1. In CYP3A5-genotyped human liver microsomes from 12 individual donors, M1 formation was highly correlated with P450 3A activity measured by midazolam 1'-hydroxylation, and M3 and M5 formation was correlated with P450 1A2 activity estimated by phenacetin O-deethylation. M3 and M5 formation was also associated with P450 3A5-selective activity. In sandwich-cultured human hepatocytes, the P450 3A inducer rifampicin significantly increased M1 levels. P450 1A induction by omeprazole markedly increased M3 formation and the generation of a quinoneimine-cysteine conjugate (M6) identified as a downstream metabolite of M5. The nonselective P450 inhibitor 1-aminobenzotriazole reduced each of these metabolites (M1, M3, and M6). Collectively, these findings indicate that P450 3A activity is a key determinant of sunitinib N-dealkylation to the active metabolite M1, and P450 1A (and potentially 3A5) activity influences sunitinib bioactivation to the reactive quinoneimine metabolite. Accordingly, modulation of P450 activity due to genetic and/or nongenetic factors may impact the risk of sunitinib-associated toxicities.
Collapse
Affiliation(s)
- Elizabeth A Burnham
- Department of Pharmaceutical Sciences, Lipscomb University College of Pharmacy and Health Sciences, Nashville, Tennessee 37204, United States
| | - Arsany A Abouda
- Department of Pharmaceutical Sciences, Lipscomb University College of Pharmacy and Health Sciences, Nashville, Tennessee 37204, United States
| | - Jennifer E Bissada
- Department of Pharmaceutical Sciences, Lipscomb University College of Pharmacy and Health Sciences, Nashville, Tennessee 37204, United States
| | - Dasean T Nardone-White
- Division of Pharmacotherapy and Experimental Therapeutics, University of North Carolina at Chapel Hill Eshelman School of Pharmacy, Chapel Hill, North Carolina 27599, United States
| | - Jessica L Beers
- Division of Pharmacotherapy and Experimental Therapeutics, University of North Carolina at Chapel Hill Eshelman School of Pharmacy, Chapel Hill, North Carolina 27599, United States
| | - Jonghwa Lee
- Division of Pharmacotherapy and Experimental Therapeutics, University of North Carolina at Chapel Hill Eshelman School of Pharmacy, Chapel Hill, North Carolina 27599, United States
| | - Matthew J Vergne
- Department of Pharmaceutical Sciences, Lipscomb University College of Pharmacy and Health Sciences, Nashville, Tennessee 37204, United States
| | - Klarissa D Jackson
- Division of Pharmacotherapy and Experimental Therapeutics, University of North Carolina at Chapel Hill Eshelman School of Pharmacy, Chapel Hill, North Carolina 27599, United States
| |
Collapse
|
25
|
Huynh C, Seeland S, Segrestaa J, Gnerre C, Hogeback J, Meyer Zu Schwabedissen HE, Dingemanse J, Sidharta PN. Absorption, Metabolism, and Excretion of ACT-1004-1239, a First-In-Class CXCR7 Antagonist: In Vitro, Preclinical, and Clinical Data. Front Pharmacol 2022; 13:812065. [PMID: 35431953 PMCID: PMC9006992 DOI: 10.3389/fphar.2022.812065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 01/21/2022] [Indexed: 11/13/2022] Open
Abstract
ACT-1004-1239 is a potent, selective, first-in-class CXCR7 antagonist, which shows a favorable preclinical and clinical profile. Here we report the metabolites and the metabolic pathways of ACT-1004-1239 identified using results from in vitro and in vivo studies. Two complementary in vitro studies (incubation with human liver microsomes in the absence/presence of cytochrome P450- [CYP] specific chemical inhibitors and incubation with recombinant CYPs) were conducted to identify CYPs involved in ACT-1004-1239 metabolism. For the in vivo investigations, a microtracer approach was integrated in the first-in-human study to assess mass balance and absorption, distribution, metabolism, and excretion (ADME) characteristics of ACT-1004-1239. Six healthy male subjects received orally 100 mg non-radioactive ACT-1004-1239 together with 1 μCi 14C-ACT-1004-1239. Plasma, urine, and feces samples were collected up to 240 h post-dose and 14C-drug-related material was measured with accelerator mass spectrometry. This technique was also used to construct radiochromatograms of pooled human samples. Metabolite structure elucidation of human-relevant metabolites was performed using high performance liquid chromatography coupled with high resolution mass spectrometry and facilitated by the use of rat samples. CYP3A4 was identified as the major CYP catalyzing the formation of M1 in vitro. In humans, the cumulative recovery from urine and feces was 84.1% of the dose with the majority being eliminated via the feces (69.6%) and the rest via the urine (14.5%). In human plasma, two major circulating metabolites were identified, i.e., M1 and M23. Elimination via M1 was the only elimination pathway that contributed to ≥25% of ACT-1004-1239 elimination. M1 was identified as a secondary amine metabolite following oxidative N-dealkylation of the parent. M23 was identified as a difluorophenyl isoxazole carboxylic acid metabolite following central amide bond hydrolysis of the parent. Other metabolites observed in humans were A1, A2, and A3. Metabolite A1 was identified as an analog of M1 after oxidative defluorination, whereas both, A2 and A3, were identified as a reduced analog of M1 and parent, respectively, after addition of two hydrogen atoms at the isoxazole ring. In conclusion, CYP3A4 contributes to a relevant extent to ACT-1004-1239 disposition and two major circulating metabolites were observed in humans. Clinical Trial Registration: (https://clinicaltrials.gov/ct2/show/NCT03869320) ClinicalTrials.gov Identifier NCT03869320.
Collapse
Affiliation(s)
- Christine Huynh
- Department of Clinical Pharmacology, Idorsia Pharmaceuticals Ltd., Allschwil, Switzerland.,Department of Pharmaceutical Sciences, Biopharmacy, University of Basel, Basel, Switzerland
| | - Swen Seeland
- Department of Preclinical Drug Metabolism and Pharmacokinetics, Idorsia Pharmaceuticals Ltd., Allschwil, Switzerland
| | - Jerome Segrestaa
- Department of Preclinical Drug Metabolism and Pharmacokinetics, Idorsia Pharmaceuticals Ltd., Allschwil, Switzerland
| | - Carmela Gnerre
- Department of Preclinical Drug Metabolism and Pharmacokinetics, Idorsia Pharmaceuticals Ltd., Allschwil, Switzerland
| | - Jens Hogeback
- A&M Labor für Analytik und Metabolismusforschung Service GmbH, Bergheim, Germany
| | | | - Jasper Dingemanse
- Department of Clinical Pharmacology, Idorsia Pharmaceuticals Ltd., Allschwil, Switzerland
| | - Patricia N Sidharta
- Department of Clinical Pharmacology, Idorsia Pharmaceuticals Ltd., Allschwil, Switzerland
| |
Collapse
|
26
|
Chai L, Zhang H, Guo F, Song R, Yu H, Ji L. Computational Investigation of the Bisphenolic Drug Metabolism by Cytochrome P450: What Factors Favor Intramolecular Phenol Coupling. Chem Res Toxicol 2022; 35:440-449. [PMID: 35230092 DOI: 10.1021/acs.chemrestox.1c00350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Intramolecular phenol coupling reactions of alkaloids can lead to active metabolites catalyzed by the mammalian cytochrome P450 enzyme (P450); however, the mechanistic knowledge of such an "unusual" process is lacking. This work performs density functional theory computations to reveal the P450-mediated metabolic pathway leading from R-reticuline to the morphine precursor salutaridine by exploring possible intramolecular phenol coupling mechanisms involving diradical coupling, radical addition, and electron transfer. The computed results show that the outer-sphere electron transfer with a high barrier (>20.0 kcal/mol) is unlikely to happen. However, for inter-sphere intramolecular phenol coupling, it reveals that intramolecular phenol coupling of R-reticuline proceeds via the diradical mechanism consecutively by compound I and protonated compound II of P450 rather than the radical addition mechanism. The existence of a much higher radical rebound barrier than that of H-abstraction in the quartet high-spin state can endow the R-reticuline phenoxy radical with a sufficient lifetime to enable intramolecular phenol coupling, while the H-abstraction/radical rebound mode with a negligible rebound barrier leading to phenol hydroxylation can only happen in the doublet low-spin state. Therefore, the ratio [coupling]/[hydroxylation] can be approximately reflected by the relative yield of the high-spin and low-spin H-abstraction by P450, which thus can provide a theoretical ratio of 16:1 for R-reticuline, which is in accordance with previous experimental results. Especially, the high rebound barrier of the phenoxy radical derived from the weak electron-donating ability of the phenoxy radical is revealed as an intrinsic nature. Therefore, the revealed intramolecular phenol coupling mechanism can be potentially extended to several other bisphenolic drugs to infer groups of unexpected metabolites in organisms.
Collapse
Affiliation(s)
- Lihong Chai
- School of Environment Science and Spatial Informatics, China University of Mining and Technology, Daxue Road 1, Xuzhou 221116, China.,College of Environmental and Resource Sciences, Zhejiang University, Yuhangtang Road 866, Hangzhou 310058, China.,Chair of Analytical Chemistry and Water Chemistry, Technical University of Munich, Lichtenbergstrasse 4, Munich 81377, Germany
| | - Huanni Zhang
- College of Environmental and Resource Sciences, Zhejiang University, Yuhangtang Road 866, Hangzhou 310058, China
| | - Fangjie Guo
- School of Management Engineering and Electronic Commerce, Zhejiang Gongshang University, Hangzhou 310018, China
| | - Runqian Song
- College of Environmental and Resource Sciences, Zhejiang University, Yuhangtang Road 866, Hangzhou 310058, China
| | - Haiying Yu
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China
| | - Li Ji
- School of Environment Science and Spatial Informatics, China University of Mining and Technology, Daxue Road 1, Xuzhou 221116, China.,College of Environmental and Resource Sciences, Zhejiang University, Yuhangtang Road 866, Hangzhou 310058, China.,Graduate School of Agriculture, Kyoto University, Kitashirakawa Oiwake-cho, Sakyo-ku, Kyoto 606-8502, Japan
| |
Collapse
|
27
|
Guo L, Tang T, Fang D, Gong H, Zhang B, Zhou Y, Zhang L, Yan M. An Insight on the Pathways Involved in Crizotinib and Sunitinib Induced Hepatotoxicity in HepG2 Cells and Animal Model. Front Oncol 2022; 12:749954. [PMID: 35155225 PMCID: PMC8832280 DOI: 10.3389/fonc.2022.749954] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 01/13/2022] [Indexed: 11/22/2022] Open
Abstract
Both crizotinib and sunitinib, novel orally-active multikinase inhibitors, exhibit antitumor activity and extend the survival of patients with a malignant tumor. However, some patients may suffer liver injury that can further limit the clinical use of these drugs, however the mechanisms underlying hepatotoxicity are still to be elucidated. Thus, our study was designed to use HepG2 cells in vitro and the ICR mice model in vivo to investigate the mechanisms of hepatotoxicity induced by crizotinib and sunitinib. Male ICR mice were treated orally with crizotinib (70 mg/kg/day) or sunitinib (7.5 mg/kg/day) for four weeks. The results demonstrated that crizotinib and sunitinib caused cytotoxicity in HepG2 cells and chronic liver injury in mice, which were associated with oxidative stress, apoptosis and/or necrosis. Crizotinib- and sunitinib-induced oxidative stress was accompanied by increasing reactive oxygen species and malondialdehyde levels and decreasing the activity of superoxide dismutase and glutathione peroxidase. Notably, the activation of the Kelch-like ECH-associated protein-1/Nuclear factor erythroid-2 related factor 2 signaling pathway was involved in the process of oxidative stress, and partially protected against oxidative stress. Crizotinib and sunitinib induced apoptosis via the mitochondrial pathway, which was characterized by decreasing Bcl2/Bax ratio to dissipate the mitochondrial membrane potential, and increasing apoptotic markers levels. Moreover, the pan-caspase inhibitor Z-VAD-FMK improved the cell viability and alleviated liver damage, which further indicated the presence of apoptosis. Taken together, this study demonstrated that crizotinib- and sunitinib-caused oxidative stress and apoptosis finally impaired hepatic function, which was strongly supported by the histopathological lesions and markedly increased levels of serum alanine aminotransferase, alkaline phosphatase and lactate dehydrogenase.
Collapse
Affiliation(s)
- Lin Guo
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Tingli Tang
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Dongmei Fang
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, China.,School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, China
| | - Hui Gong
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Bikui Zhang
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Yueyin Zhou
- Orthodontic Department of Xiangya Stomatology Hospital, Central South University, Changsha, China
| | - Leiyi Zhang
- Department of General Surgery, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Miao Yan
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
28
|
Studentova H, Volakova J, Spisarova M, Zemankova A, Aiglova K, Szotkowski T, Melichar B. Severe tyrosine-kinase inhibitor induced liver injury in metastatic renal cell carcinoma patients: two case reports assessed for causality using the updated RUCAM and review of the literature. BMC Gastroenterol 2022; 22:49. [PMID: 35123392 PMCID: PMC8818210 DOI: 10.1186/s12876-022-02121-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 01/25/2022] [Indexed: 11/24/2022] Open
Abstract
Background Sunitinib and pazopanib are both oral small molecule multityrosine kinase inhibitors (MTKI) used in the treatment of renal cell carcinoma (RCC). Hepatotoxicity or “liver injury” is the most important adverse effect of pazopanib administration, but little is known about the underlying mechanism. Liver injury may also occur in patients treated with sunitinib, but severe toxicity is extremely rare. Herein we report two new cases of severe liver injury induced by MTKI. Both cases are unique and exceptional. We assessed both cases for drug-induced liver injury (DILI) using the updated score Roussel Uclaf causality assessment method (RUCAM). The literature on potential pathogenic mechanisms and precautionary measures is reviewed.
Case presentation A case of a metastatic RCC (mRCC) patient treated with pazopanib who had manifestation of severe liver injury is presented. These manifestations consisted of grade 4 alanine aminotransferase (ALT) increase and grade 4 hyperbilirubinemia. Alternate causes of acute or chronic liver disease were excluded. The patient gradually recovered from the liver injury and refused any further therapy for mRCC. The patient was diagnosed with acute myeloid leukemia (AML) two years later and eventually succumbed to the disease. The second case describes a mRCC patient treated with sunitinib for 3,5 years and fatal liver failure after 2 weeks of clarithromycin co-medication for acute bronchitis. Conclusions Liver injury has been commonly observed in TKI-treated patients with unpredictable course. Management requires regular routine liver enzyme-monitoring and the collaboration of medical oncologist and hepatologist. There is an unmet medical need for a risk stratification and definition of predictive biomarkers to identify potential genetic polymorphisms or other factors associated with TKI-induced liver injury. Any potential unrecommended concomitant therapy has to be avoided.
Collapse
|
29
|
Tu D, Ning J, Zou L, Wang P, Zhang Y, Tian X, Zhang F, Zheng J, Ge G. Unique Oxidative Metabolism of Bufalin Generates Two Reactive Metabolites That Strongly Inactivate Human Cytochrome P450 3A. J Med Chem 2022; 65:4018-4029. [DOI: 10.1021/acs.jmedchem.1c01875] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Dongzhu Tu
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Jing Ning
- Dalian Key Laboratory of Metabolic Target Characterization and Traditional Chinese Medicine Intervention, College of Integrative Medicine, National & Local Joint Engineering Research Center for Drug Development of Neurodegenerative Disease, College of Pharmacy, Dalian Medical University, Dalian 116044, China
| | - Liwei Zou
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Ping Wang
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Yani Zhang
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Xiangge Tian
- Dalian Key Laboratory of Metabolic Target Characterization and Traditional Chinese Medicine Intervention, College of Integrative Medicine, National & Local Joint Engineering Research Center for Drug Development of Neurodegenerative Disease, College of Pharmacy, Dalian Medical University, Dalian 116044, China
| | - Feng Zhang
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Jiang Zheng
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China
- State Key Laboratory of Functions and Applications of Medicinal Plants, Key Laboratory of Pharmaceutics of Guizhou Province, Guizhou Medical University, Guiyang 550025, China
| | - Guangbo Ge
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| |
Collapse
|
30
|
Han YF, Lv GF, Li Y, Wu LJ, Ouyang XH, Li JH. Transient Chelating Group-Controlled Stereoselective Rh(I)-Catalyzed Silylative Aminocarbonylation of 2-Alkynylanilines: Entry to (Z)-3-(Silylmethylene)indolin-2-ones. Chem Sci 2022; 13:9425-9431. [PMID: 36092994 PMCID: PMC9383873 DOI: 10.1039/d2sc03009h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 07/27/2022] [Indexed: 11/21/2022] Open
Abstract
A new, mild acryl transient chelating group-controlled stereoselective Rh(I)-catalyzed silylative aminocarbonylation of 2-alkynylanilines with CO and silanes for producing (Z)-3-(silylmethylene)indolin-2-ones is presented. By using an acryl transient chelating group 2-alkynylanilines...
Collapse
Affiliation(s)
- Ya-Fei Han
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University Nanchang 330063 China
| | - Gui-Fen Lv
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University Nanchang 330063 China
| | - Yang Li
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University Nanchang 330063 China
| | - Li-Jun Wu
- College of Sciences, Central South University of Forestry and Technology Changsha 410004 China
| | - Xuan-Hui Ouyang
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University Nanchang 330063 China
| | - Jin-Heng Li
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University Nanchang 330063 China
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan Provincial Center for Research & Development of Natural Products, School of Chemical Science and Technology, Yunnan University Kunming Yunnan 650091 China
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University Lanzhou 730000 China
- School of Chemistry and Chemical Engineering, Henan Normal University Xinxiang Henan 453007 China
| |
Collapse
|
31
|
Huang Q, Zhang X, Chen Q, Tian S, Tong W, Zhang W, Chen Y, Ma M, Chen B, Wang B, Wang JB. Discovery of a P450-Catalyzed Oxidative Defluorination Mechanism toward Chiral Organofluorines: Uncovering a Hidden Pathway. ACS Catal 2021. [DOI: 10.1021/acscatal.1c05510] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Qun Huang
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education) and Key Laboratory of Phytochemistry R&D of Hunan Province, College of Chemistry and Chemical Engineering, Hunan Normal University, 410081 Changsha, People’s Republic of China
| | - Xuan Zhang
- State Key Laboratory of Physical Chemistry of Solid Surfaces and Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, 360015 Xiamen, People’s Republic of China
| | - Qianqian Chen
- State Key Laboratory of Physical Chemistry of Solid Surfaces and Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, 360015 Xiamen, People’s Republic of China
| | - Shaixiao Tian
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education) and Key Laboratory of Phytochemistry R&D of Hunan Province, College of Chemistry and Chemical Engineering, Hunan Normal University, 410081 Changsha, People’s Republic of China
| | - Wei Tong
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education) and Key Laboratory of Phytochemistry R&D of Hunan Province, College of Chemistry and Chemical Engineering, Hunan Normal University, 410081 Changsha, People’s Republic of China
| | - Wei Zhang
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education) and Key Laboratory of Phytochemistry R&D of Hunan Province, College of Chemistry and Chemical Engineering, Hunan Normal University, 410081 Changsha, People’s Republic of China
| | - Yingzhuang Chen
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education) and Key Laboratory of Phytochemistry R&D of Hunan Province, College of Chemistry and Chemical Engineering, Hunan Normal University, 410081 Changsha, People’s Republic of China
| | - Ming Ma
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education) and Key Laboratory of Phytochemistry R&D of Hunan Province, College of Chemistry and Chemical Engineering, Hunan Normal University, 410081 Changsha, People’s Republic of China
| | - Bo Chen
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education) and Key Laboratory of Phytochemistry R&D of Hunan Province, College of Chemistry and Chemical Engineering, Hunan Normal University, 410081 Changsha, People’s Republic of China
| | - Binju Wang
- State Key Laboratory of Physical Chemistry of Solid Surfaces and Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, 360015 Xiamen, People’s Republic of China
| | - Jian-bo Wang
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education) and Key Laboratory of Phytochemistry R&D of Hunan Province, College of Chemistry and Chemical Engineering, Hunan Normal University, 410081 Changsha, People’s Republic of China
| |
Collapse
|
32
|
Cacabelos R, Naidoo V, Corzo L, Cacabelos N, Carril JC. Genophenotypic Factors and Pharmacogenomics in Adverse Drug Reactions. Int J Mol Sci 2021; 22:ijms222413302. [PMID: 34948113 PMCID: PMC8704264 DOI: 10.3390/ijms222413302] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 12/05/2021] [Accepted: 12/06/2021] [Indexed: 02/06/2023] Open
Abstract
Adverse drug reactions (ADRs) rank as one of the top 10 leading causes of death and illness in developed countries. ADRs show differential features depending upon genotype, age, sex, race, pathology, drug category, route of administration, and drug–drug interactions. Pharmacogenomics (PGx) provides the physician effective clues for optimizing drug efficacy and safety in major problems of health such as cardiovascular disease and associated disorders, cancer and brain disorders. Important aspects to be considered are also the impact of immunopharmacogenomics in cutaneous ADRs as well as the influence of genomic factors associated with COVID-19 and vaccination strategies. Major limitations for the routine use of PGx procedures for ADRs prevention are the lack of education and training in physicians and pharmacists, poor characterization of drug-related PGx, unspecific biomarkers of drug efficacy and toxicity, cost-effectiveness, administrative problems in health organizations, and insufficient regulation for the generalized use of PGx in the clinical setting. The implementation of PGx requires: (i) education of physicians and all other parties involved in the use and benefits of PGx; (ii) prospective studies to demonstrate the benefits of PGx genotyping; (iii) standardization of PGx procedures and development of clinical guidelines; (iv) NGS and microarrays to cover genes with high PGx potential; and (v) new regulations for PGx-related drug development and PGx drug labelling.
Collapse
Affiliation(s)
- Ramón Cacabelos
- Department of Genomic Medicine, International Center of Neuroscience and Genomic Medicine, EuroEspes Biomedical Research Center, Bergondo, 15165 Corunna, Spain
- Correspondence: ; Tel.: +34-981-780-505
| | - Vinogran Naidoo
- Department of Neuroscience, International Center of Neuroscience and Genomic Medicine, EuroEspes Biomedical Research Center, Bergondo, 15165 Corunna, Spain;
| | - Lola Corzo
- Department of Medical Biochemistry, International Center of Neuroscience and Genomic Medicine, EuroEspes Biomedical Research Center, Bergondo, 15165 Corunna, Spain;
| | - Natalia Cacabelos
- Department of Medical Documentation, International Center of Neuroscience and Genomic Medicine, EuroEspes Biomedical Research Center, Bergondo, 15165 Corunna, Spain;
| | - Juan C. Carril
- Departments of Genomics and Pharmacogenomics, International Center of Neuroscience and Genomic Medicine, EuroEspes Biomedical Research Center, Bergondo, 15165 Corunna, Spain;
| |
Collapse
|
33
|
Affiliation(s)
- Miquel Costas
- Institut de Química Computacional i Catàlisi (IQCC) Universitat de Girona C/Mª Aurèlia Capmany 69 17003 Girona Catalonia Spain
| | - Anna Company
- Institut de Química Computacional i Catàlisi (IQCC) Universitat de Girona C/Mª Aurèlia Capmany 69 17003 Girona Catalonia Spain
| |
Collapse
|
34
|
Schleiff MA, Crosby S, Blue M, Schleiff BM, Boysen G, Miller GP. CYP2C9 and 3A4 play opposing roles in bioactivation and detoxification of diphenylamine NSAIDs. Biochem Pharmacol 2021; 194:114824. [PMID: 34748821 DOI: 10.1016/j.bcp.2021.114824] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 11/01/2021] [Accepted: 11/02/2021] [Indexed: 11/25/2022]
Abstract
Diphenylamine NSAIDs are taken frequently for chronic pain conditions, yet their use may potentiate hepatotoxicity risks through poorly characterized metabolic mechanisms. Our previous work revealed that seven marketed or withdrawn diphenylamine NSAIDs undergo bioactivation into quinone-species metabolites, whose reaction specificities depended on halogenation and the type of acidic group on the diphenylamine. Herein, we identified cytochromes P450 responsible for those bioactivations, determined reaction specificities, and estimated relative contributions of enzymes to overall hepatic bioactivations and detoxifications. A qualitative activity screen revealed CYP2C8, 2C9, 2C19, and 3A4 played roles in drug bioactivation. Subsequent steady-state studies with recombinant CYPs recapitulated the importance of halogenation and acidic group type on bioactivations but importantly, showed patterns unique to each CYP. CYP2C9, 2C19 and 3A4 bioactivated all NSAIDs with CYP2C9 dominating all possible bioactivation pathways. For each CYP, specificities for overall oxidative metabolism were not impacted significantly by differences in NSAID structures but the values themselves differed among the enzymes such that CYP2C9 and 3A4 were more efficient than others. When considering hepatic CYP abundance, CYP2C9 almost exclusively accounted for diphenylamine NSAID bioactivations, whereas CYP3A4 provided a critical counterbalance favoring their overall detoxification. Preference for either outcome would depend on molecular structures favoring metabolism by the CYPs as well as the influence of clinical factors altering their expression and/or activity. While focused on NSAIDs, these findings have broader implications on bioactivation risks given the expansion of the diphenylamine scaffold to other drug classes such as targeted cancer therapeutics.
Collapse
Affiliation(s)
- Mary Alexandra Schleiff
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, United States
| | - Samantha Crosby
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, United States
| | - Madison Blue
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, United States
| | - Benjamin Mark Schleiff
- Independent Researcher, University of Arkansas for Medical Sciences, Little Rock, AR 72205, United States
| | - Gunnar Boysen
- Department of Environmental and Occupational Health, University of Arkansas for Medical Sciences, Little Rock, AR 72205, United States
| | - Grover Paul Miller
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, United States.
| |
Collapse
|
35
|
A new regime of heme-dependent aromatic oxygenase superfamily. Proc Natl Acad Sci U S A 2021; 118:2106561118. [PMID: 34667125 DOI: 10.1073/pnas.2106561118] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/31/2021] [Indexed: 12/14/2022] Open
Abstract
Two histidine-ligated heme-dependent monooxygenase proteins, TyrH and SfmD, have recently been found to resemble enzymes from the dioxygenase superfamily currently named after tryptophan 2,3-dioxygenase (TDO), that is, the TDO superfamily. These latest findings prompted us to revisit the structure and function of the superfamily. The enzymes in this superfamily share a similar core architecture and a histidine-ligated heme. Their primary functions are to promote O-atom transfer to an aromatic metabolite. TDO and indoleamine 2,3-dioxygenase (IDO), the founding members, promote dioxygenation through a two-step monooxygenation pathway. However, the new members of the superfamily, including PrnB, SfmD, TyrH, and MarE, expand its boundaries and mediate monooxygenation on a broader set of aromatic substrates. We found that the enlarged superfamily contains eight clades of proteins. Overall, this protein group is a more sizeable, structure-based, histidine-ligated heme-dependent, and functionally diverse superfamily for aromatics oxidation. The concept of TDO superfamily or heme-dependent dioxygenase superfamily is no longer appropriate for defining this growing superfamily. Hence, there is a pressing need to redefine it as a heme-dependent aromatic oxygenase (HDAO) superfamily. The revised concept puts HDAO in the context of thiol-ligated heme-based enzymes alongside cytochrome P450 and peroxygenase. It will update what we understand about the choice of heme axial ligand. Hemoproteins may not be as stringent about the type of axial ligand for oxygenation, although thiolate-ligated hemes (P450s and peroxygenases) more frequently catalyze oxygenation reactions. Histidine-ligated hemes found in HDAO enzymes can likewise mediate oxygenation when confronted with a proper substrate.
Collapse
|
36
|
Ding Y, Ma H, Xu Y, Yang F, Li Y, Shi F, Lu Y. Potentiation of flutamide-induced hepatotoxicity in mice by Xian-Ling-Gu-Bao through induction of CYP1A2. JOURNAL OF ETHNOPHARMACOLOGY 2021; 278:114299. [PMID: 34090906 DOI: 10.1016/j.jep.2021.114299] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 05/22/2021] [Accepted: 06/02/2021] [Indexed: 06/12/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Xian-Ling-Gu-Bao (XLGB) Fufang is herbal formula widely used to treat osteoporosis and other bone disorders. Because of its commonality in the clinical use, there is a safety concern over the use of XLGB combined with other androgen deprivation therapy (ADT) drugs such as flutamide (FLU) that is associated with reduced bone density. To date, there have been no evaluations on the side effects of the drug-drug interaction between XLGB and FLU. AIM OF THE STUDY The present study was designed to investigate the hepatotoxicity in the context of the combined treatment of XLGB and FLU in a mouse model, and to determine whether the metabolic activation of FLU through induction of CYP1A2 plays a role in the increased hepatoxicity caused by the combination of XLGB and FLU. MATERIALS AND METHODS C57 mice were administered with either XLGB (6,160 mg/kg), FLU (300 mg/kg), or with the combination of the two drugs. Animals were treated with XLGB for 5 days before the combined administration of XLGB and FLU for another 4 days. The serum of mice from single or the combined administration groups was collected for biochemical analysis. The mouse liver was collected to examine liver morphological changes, evaluate liver coefficient, as well as determine the mRNA expression of P450 isozymes (Cyp1a2, Cyp3a11 and Cyp2c37). For metabolism analysis, mice were treated with XLGB, FLU, or the combination of XLGB and FLU for 24 h. The urine samples were collected for the analysis of FLU-NAC conjugate by UPLC-Q-Orbitrap MS. The liver microsomes were prepared from fresh livers to determine the activity of metabolizing enzyme CYP1A2. RESULTS The combined treatment of XLGB and FLU caused loss of mice body weight and elicited significant liver toxicity as evidenced by an increased liver coefficient and serum lactate dehydrogenase (LDH) activity as well as pathological changes of fatty lesion of liver tissue. FLU increased hepatic expression of Cyp1a2 mRNA that was further elevated in the liver of mice when administered with both FLU and XLGB. Treatment of FLU resulted in an increase in the expression of Cyp3a11 mRNA that was negated when mice were co-treated with FLU and XLGB. No significant difference in Cyp2c37 mRNA expression was observed among the different treatment groups as compared to the control. Analysis of metabolic activity showed that the combined administration caused a synergic effect in elevating the activity of the CYP1A2 enzyme. Mass spectrometry analysis identified the presence of FLU reactive metabolite derived FLU-NAC conjugate in the urine of mice treated with FLU. Strikingly, about a two-fold increase of the FLU-NAC conjugate was detected when treated with both FLU and XLGB, indicating an elevated amount of toxic metabolite produced from FLU in the present of XLGB. CONCLUSION FLU and XLGB co-treatment potentiated FLU-induced hepatoxicity. This increased hepatoxicity was mediated through the induction of CYP1A2 activity which in turn enhanced bioactivation of FLU leading to over production of FLU-NAC conjugate and oxidative stress. These results offer warnings about serious side effects of the FLU-XLGB interaction in the clinical practice.
Collapse
Affiliation(s)
- Yannan Ding
- Key Laboratory of Basic Pharmacology of Ministry of Education, Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, 563003, China; Department of Pharmacy, Affiliated Hospital of Zunyi Medical University, Zunyi, 563000, China
| | - Honghong Ma
- Key Laboratory of Basic Pharmacology of Ministry of Education, Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, 563003, China
| | - Yasha Xu
- Key Laboratory of Basic Pharmacology of Ministry of Education, Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, 563003, China
| | - Feng Yang
- Key Laboratory of Basic Pharmacology of Ministry of Education, Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, 563003, China
| | - Yi Li
- Key Laboratory of Basic Pharmacology of Ministry of Education, Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, 563003, China
| | - Fuguo Shi
- Key Laboratory of Basic Pharmacology of Ministry of Education, Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, 563003, China.
| | - Yuanfu Lu
- Key Laboratory of Basic Pharmacology of Ministry of Education, Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, 563003, China.
| |
Collapse
|
37
|
Wang Z, Wang X, Wang Z, Feng Y, Jia Y, Jiang L, Xia Y, Cao J, Liu Y. Comparison of Hepatotoxicity Associated With New BCR-ABL Tyrosine Kinase Inhibitors vs Imatinib Among Patients With Chronic Myeloid Leukemia: A Systematic Review and Meta-analysis. JAMA Netw Open 2021; 4:e2120165. [PMID: 34292334 PMCID: PMC8299317 DOI: 10.1001/jamanetworkopen.2021.20165] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
IMPORTANCE Although BCR-ABL fusion oncoprotein tyrosine kinase inhibitors (BCR-ABL TKIs) can substantially improve the survival rate of chronic myeloid leukemia (CML), they are clinically accompanied by severe hepatotoxicity. OBJECTIVE To compare the relative risk (RR) of hepatotoxicity of new-generation BCR-ABL TKIs with that of imatinib, and to provide an overall assessment of the clinical benefit. DATA SOURCES PubMed, Embase, Cochrane library databases, and ClinicalTrials.gov were searched for clinical trials published between January 2000 and April 2020. STUDY SELECTION Study selection was conducted independently by 2 investigators according to the inclusion and exclusion criteria published previously in the protocol: only randomized phase 2 or phase 3 clinical trials that compared bosutinib, dasatinib, nilotinib, or ponatinib with imatinib were included. Among the 2666 records identified, 9 studies finally fulfilled the established criteria. DATA EXTRACTION AND SYNTHESIS Two investigators extracted study characteristics and data independently using a standardized data extraction form. Data were extracted according to Preferred Reporting Items for Systematic Reviews and Meta-analyses (PRISMA) reporting guidelines. When substantial heterogeneity was observed, pooled estimates were calculated based on the random-effect model; otherwise, the fixed-effect model was used. MAIN OUTCOMES AND MEASURES Data extracted included study characteristics, baseline patient information, interventions and data on all-grade and high-grade (grades 3 and 4) elevation of alanine aminotransferase (ALT) and aspartate aminotransferase (AST) levels, overall survival, and major molecular response (MMR). The RRs and 95% CIs were calculated using the inverse variance method. RESULTS Nine trials involving 3475 patients were analyzed; the median (range) age was 49 (18-91) years; 2059 (59.2%) were male patients. Increased risks were observed for each new-generation TKI except for dasatinib. Patients receiving new-generation TKIs were more likely to experience all grades of ALT elevation (pooled RR, 2.89; 95% CI, 1.78-4.69; P < .001) and grades 3 and 4 ALT elevation (pooled RR, 4.36; 95% CI, 2.00-9.50; P < .001) compared with those receiving imatinib. Patients receiving new-generation TKIs were also more likely to experience all grades of AST elevation (pooled RR, 2.20; 95% CI, 1.63-2.98; P < .001) and grades 3 and 4 AST elevation (pooled RR, 2.65; 95% CI, 1.59-4.42; P < .001) compared with those receiving imatinib. New-generation TKIs were associated with a significantly higher rate of MMR at 1 year compared with imatinib (pooled RR, 1.59; 95% CI, 1.44-1.75; P < .001). No statistical difference in overall survival at 1 year was found between new-generation TKIs and imatinib (pooled RR, 1.00; 95% CI, 1.00-1.01; P = .33). CONCLUSIONS AND RELEVANCE When compared to imatinib, bosutinib, nilotinib, and ponatinib had higher relative risks of hepatotoxicity. Treatment with new-generation TKIs was associated with a higher MMR rate at 1 year but not with 1-year overall survival.
Collapse
MESH Headings
- Adolescent
- Adult
- Aged
- Aged, 80 and over
- Alanine Transaminase/blood
- Aniline Compounds/adverse effects
- Aspartate Aminotransferases/blood
- Chemical and Drug Induced Liver Injury/etiology
- Dasatinib/adverse effects
- Female
- Humans
- Imatinib Mesylate/adverse effects
- Imidazoles/adverse effects
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/blood
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/drug therapy
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/genetics
- Male
- Middle Aged
- Nitriles/adverse effects
- Oncogene Proteins v-abl/drug effects
- Protein Kinase Inhibitors/adverse effects
- Protein-Tyrosine Kinases/antagonists & inhibitors
- Proto-Oncogene Proteins c-bcr/drug effects
- Pyridazines/adverse effects
- Pyrimidines/adverse effects
- Quinolines/adverse effects
- Risk
- Young Adult
Collapse
Affiliation(s)
- Zhe Wang
- School of Life and Pharmaceutical Sciences, Dalian University of Technology, Panjin, China
| | - Xiaoyu Wang
- School of Life and Pharmaceutical Sciences, Dalian University of Technology, Panjin, China
| | - Zhen Wang
- School of Life and Pharmaceutical Sciences, Dalian University of Technology, Panjin, China
| | - Yuyi Feng
- School of Life and Pharmaceutical Sciences, Dalian University of Technology, Panjin, China
| | - Yaqin Jia
- School of Life and Pharmaceutical Sciences, Dalian University of Technology, Panjin, China
| | - Lili Jiang
- School of Life and Pharmaceutical Sciences, Dalian University of Technology, Panjin, China
| | - Yangliu Xia
- School of Life and Pharmaceutical Sciences, Dalian University of Technology, Panjin, China
| | - Jun Cao
- Department of Occupational and Environmental Health, Dalian Medical University, Dalian, China
| | - Yong Liu
- School of Life and Pharmaceutical Sciences, Dalian University of Technology, Panjin, China
| |
Collapse
|
38
|
Dorian A, Landgreen EJ, Petras HR, Shepherd JJ, Williams FJ. Iron-Catalyzed Halogen Exchange of Trifluoromethyl Arenes*. Chemistry 2021; 27:10839-10843. [PMID: 34137084 DOI: 10.1002/chem.202101324] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Indexed: 11/10/2022]
Abstract
The facile production of ArCF2 X and ArCX3 from ArCF3 using catalytic iron(III)halides is reported, which constitutes the first iron-catalyzed halogen exchange for non-aromatic C-F bonds. Theoretical calculations suggest direct activation of C-F bonds by iron coordination. ArCX3 and ArCF2 X products of the reaction are synthetically valuable due to their diversification potential. In particular, chloro- and bromodifluoromethyl arenes (ArCF2 Cl, ArCF2 Br respectively) provide access to a myriad of difluoromethyl arene derivatives (ArCF2 R). To optimize for mono-halogen exchange, a statistical method called Design of Experiments was used. Optimized parameters were successfully applied to electron rich and electron deficient aromatic substrates, and to the late stage diversification of flufenoxuron, a commercial insecticide. These methods are highly practical, being run at convenient temperatures and using inexpensive common reagents.
Collapse
Affiliation(s)
- Andreas Dorian
- Department of Chemistry, University of Alberta, Edmonton, Alberta, T6G 2G2, Canada
| | - Emily J Landgreen
- Department of Chemistry, University of Iowa, Iowa City, Iowa, 52242, USA
| | - Hayley R Petras
- Department of Chemistry, University of Iowa, Iowa City, Iowa, 52242, USA
| | - James J Shepherd
- Department of Chemistry, University of Iowa, Iowa City, Iowa, 52242, USA
| | | |
Collapse
|
39
|
Flynn NR, Ward MD, Schleiff MA, Laurin CMC, Farmer R, Conway SJ, Boysen G, Swamidass SJ, Miller GP. Bioactivation of Isoxazole-Containing Bromodomain and Extra-Terminal Domain (BET) Inhibitors. Metabolites 2021; 11:metabo11060390. [PMID: 34203690 PMCID: PMC8232216 DOI: 10.3390/metabo11060390] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 06/04/2021] [Accepted: 06/08/2021] [Indexed: 12/15/2022] Open
Abstract
The 3,5-dimethylisoxazole motif has become a useful and popular acetyl-lysine mimic employed in isoxazole-containing bromodomain and extra-terminal (BET) inhibitors but may introduce the potential for bioactivations into toxic reactive metabolites. As a test, we coupled deep neural models for quinone formation, metabolite structures, and biomolecule reactivity to predict bioactivation pathways for 32 BET inhibitors and validate the bioactivation of select inhibitors experimentally. Based on model predictions, inhibitors were more likely to undergo bioactivation than reported non-bioactivated molecules containing isoxazoles. The model outputs varied with substituents indicating the ability to scale their impact on bioactivation. We selected OXFBD02, OXFBD04, and I-BET151 for more in-depth analysis. OXFBD’s bioactivations were evenly split between traditional quinones and novel extended quinone-methides involving the isoxazole yet strongly favored the latter quinones. Subsequent experimental studies confirmed the formation of both types of quinones for OXFBD molecules, yet traditional quinones were the dominant reactive metabolites. Modeled I-BET151 bioactivations led to extended quinone-methides, which were not verified experimentally. The differences in observed and predicted bioactivations reflected the need to improve overall bioactivation scaling. Nevertheless, our coupled modeling approach predicted BET inhibitor bioactivations including novel extended quinone methides, and we experimentally verified those pathways highlighting potential concerns for toxicity in the development of these new drug leads.
Collapse
Affiliation(s)
- Noah R. Flynn
- Department of Pathology and Immunology, Washington University-St. Louis, St. Louis, MO 63130, USA; (N.R.F.); (M.D.W.); (R.F.)
| | - Michael D. Ward
- Department of Pathology and Immunology, Washington University-St. Louis, St. Louis, MO 63130, USA; (N.R.F.); (M.D.W.); (R.F.)
| | - Mary A. Schleiff
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA;
| | | | - Rohit Farmer
- Department of Pathology and Immunology, Washington University-St. Louis, St. Louis, MO 63130, USA; (N.R.F.); (M.D.W.); (R.F.)
| | - Stuart J. Conway
- Department of Chemistry, University of Oxford, Oxford OX1 3TA, UK; (C.M.C.L.); (S.J.C.)
| | - Gunnar Boysen
- Department of Environmental and Occupational Health, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA;
| | - S. Joshua Swamidass
- Department of Pathology and Immunology, Washington University-St. Louis, St. Louis, MO 63130, USA; (N.R.F.); (M.D.W.); (R.F.)
- Correspondence: (S.J.S.); (G.P.M.)
| | - Grover P. Miller
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA;
- Correspondence: (S.J.S.); (G.P.M.)
| |
Collapse
|
40
|
Quagliariello V, Berretta M, Buccolo S, Iovine M, Paccone A, Cavalcanti E, Taibi R, Montopoli M, Botti G, Maurea N. Polydatin Reduces Cardiotoxicity and Enhances the Anticancer Effects of Sunitinib by Decreasing Pro-Oxidative Stress, Pro-Inflammatory Cytokines, and NLRP3 Inflammasome Expression. Front Oncol 2021; 11:680758. [PMID: 34178667 PMCID: PMC8226180 DOI: 10.3389/fonc.2021.680758] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Accepted: 05/21/2021] [Indexed: 01/18/2023] Open
Abstract
Renal cell carcinoma (RCC) represents the main renal tumors and are highly metastatic. Sunitinib, a recently-approved, multi-targeted Tyrosine Kinases Inhibitor (TKi), prolongs survival in patients with metastatic renal cell carcinoma and gastrointestinal stromal tumors, however a dose related cardiotoxicity was well described. Polydatin (3,4',5-trihydroxystilbene-3-β-d-glucoside) is a monocrystalline compound isolated from Polygonum cuspidatum with consolidated anti-oxidant and anti-inflammatory properties, however no studies investigated on its putative cardioprotective and chemosensitizing properties during incubation with sunitinib. We investigated on the effects of polydatin on the oxidative stress, NLRP3 inflammasome and Myd88 expression, highlighting on the production of cytokines and chemokines (IL-1β, IL-6, IL-8, CXCL-12 and TGF-β) during treatment with sunitinib. Exposure of cardiomyocytes and cardiomyoblasts (AC-16 and H9C2 cell lines) and human renal adenocarcinoma cells (769-P and A498) to polydatin combined to plasma-relevant concentrations of sunitinib reduces significantly iROS, MDA and LTB4 compared to only sunitinib-treated cells (P<0.001). In renal cancer cells and cardiomyocytes polydatin reduces expression of pro-inflammatory cytokines and chemokines involved in myocardial damages and chemoresistance and down-regulates the signaling pathway of NLRP3 inflammasome, MyD88 and NF-κB. Data of the present study, although in vitro, indicate that polydatin, besides reducing oxidative stress, reduces key chemokines involved in cancer cell survival, chemoresistance and cardiac damages of sunitinib through downregulation of NLRP3-MyD88 pathway, applying as a potential nutraceutical agent in preclinical studies of preventive cardio-oncology.
Collapse
Affiliation(s)
- Vincenzo Quagliariello
- Division of Cardiology, Istituto Nazionale Tumori –IRCCS- Fondazione G. Pascale, Napoli, Italy
| | - Massimiliano Berretta
- Department of Clinical and Experimental Medicine, University of Messina, Messina, Italy
| | - Simona Buccolo
- Division of Cardiology, Istituto Nazionale Tumori –IRCCS- Fondazione G. Pascale, Napoli, Italy
| | - Martina Iovine
- Division of Cardiology, Istituto Nazionale Tumori –IRCCS- Fondazione G. Pascale, Napoli, Italy
| | - Andrea Paccone
- Division of Cardiology, Istituto Nazionale Tumori –IRCCS- Fondazione G. Pascale, Napoli, Italy
| | - Ernesta Cavalcanti
- Laboratory Medicine Unit, Istituto Nazionale Tumori- IRCCS-Fondazione G. Pascale, Napoli, Italy
| | - Rosaria Taibi
- Department of Pharmacological Sciences, Gruppo Oncologico Ricercatori Italiani, GORI, Pordenone, Italy
| | - Monica Montopoli
- Department of Pharmaceutical and Pharmacological Sciences, Università degli Studi di Padova, Padova, Italy
| | - Gerardo Botti
- Scientific Direction, Istituto Nazionale Tumori- IRCCS- Fondazione G. Pascale, Napoli, Italy
| | - Nicola Maurea
- Division of Cardiology, Istituto Nazionale Tumori –IRCCS- Fondazione G. Pascale, Napoli, Italy
| |
Collapse
|
41
|
Schleiff MA, Payakachat S, Schleiff BM, Swamidass SJ, Boysen G, Miller GP. Impacts of diphenylamine NSAID halogenation on bioactivation risks. Toxicology 2021; 458:152832. [PMID: 34107285 DOI: 10.1016/j.tox.2021.152832] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2021] [Revised: 05/26/2021] [Accepted: 06/04/2021] [Indexed: 12/14/2022]
Abstract
Diphenylamine NSAIDs are highly prescribed therapeutics for chronic pain despite causing symptomatic hepatotoxicity through mitochondrial damage in five percent of patients taking them. Differences in toxicity are attributed to structural modifications to the diphenylamine scaffold rather than its inherent toxicity. We hypothesize that marketed diphenylamine NSAID substituents affect preference and efficiency of bioactivation pathways and clearance. We parsed the FDA DILIrank hepatotoxicity database and modeled marketed drug bioactivation into quinone-species metabolites to identify a family of seven clinically relevant diphenylamine NSAIDs. These drugs fell into two subgroups, i.e., acetic acid and propionic acid diphenylamines, varying in hepatotoxicity risks and modeled bioactivation propensities. We carried out steady-state kinetic studies to assess bioactivation pathways by trapping quinone-species metabolites with dansyl glutathione. Analysis of the glutathione adducts by mass spectrometry characterized structures while dansyl fluorescence provided quantitative yields for their formation. Resulting kinetics identified four possible bioactivation pathways among the drugs, but reaction preference and efficiency depended upon structural modifications to the diphenylamine scaffold. Strikingly, diphenylamine dihalogenation promotes formation of quinone metabolites through four distinct metabolic pathways with high efficiency, whereas those without aromatic halogen atoms were metabolized less efficiently through two or fewer metabolic pathways. Overall metabolism of the drugs was comparable with bioactivation accounting for 4-13% of clearance. Lastly, we calculated daily bioload exposure of quinone-species metabolites based on bioactivation efficiency, bioavailability, and maximal daily dose. The results revealed stratification into the two subgroups; propionic acid diphenylamines had an average four-fold greater daily bioload compared to acetic acid diphenylamines. However, the lack of sufficient study on the hepatotoxicity for all drugs prevents further correlative analyses. These findings provide critical insights on the impact of diphenylamine bioactivation as a precursor to hepatotoxicity and thus, provide a foundation for better risk assessment in drug discovery and development.
Collapse
Affiliation(s)
- Mary Alexandra Schleiff
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, United States
| | - Sasin Payakachat
- College of Medicine, University of Arkansas for Medical Sciences, Little Rock, AR 72205, United States
| | | | - S Joshua Swamidass
- Department of Pathology and Immunology, Washington University, St. Louis, MO 63130, United States
| | - Gunnar Boysen
- Department of Environmental and Occupational Health, University of Arkansas for Medical Sciences, Little Rock, AR 72205, United States
| | - Grover Paul Miller
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, United States.
| |
Collapse
|
42
|
Wang J, Cui X, Cheng C, Wang Y, Sun W, Huang CK, Chen RJ, Wang Z. Effects of CYP3A inhibitors ketoconazole, voriconazole, and itraconazole on the pharmacokinetics of sunitinib and its main metabolite in rats. Chem Biol Interact 2021; 338:109426. [PMID: 33617800 DOI: 10.1016/j.cbi.2021.109426] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2020] [Revised: 02/10/2021] [Accepted: 02/16/2021] [Indexed: 11/20/2022]
Abstract
Sunitinib is a small molecule inhibitor of multiple receptor tyrosine kinases such as platelet derived growth factor receptor, vascular endothelial growth factor receptor, kit receptor and other receptors. The US Food and Drug Administration (FDA) has approved sunitinib for the treatment of advanced renal cell carcinoma and gastrointestinal stromal tumors. It has been reported that sunitinib was mainly metabolized by CYP3A but its pharmacokinetic interactions have not been revealed. In this study, we investigated whether CYP3A inhibitors (ketoconazole, voriconazole, and itraconazole) could influence the pharmacokinetics of sunitinib and its equipotent metabolite N-desethyl sunitinib in a drug-drug interaction study in Sprague Dawley (SD) rats. The results showed that ketoconazole and voriconazole significantly increased the exposure of sunitinib, decreased the exposure of N-desethyl sunitinib, and inhibited the metabolism of sunitinib in rats. However, itraconazole showed only a weak effect on pharmacokinetics and metabolism. Coadministration of sunitinib with ketoconazole and voriconazole should be avoided if possible or if not, there should be therapeutic drug monitoring of the levels of sunitinib and N-desethyl sunitinib. Therefore, drug-drug interaction should be considered when sunitinib is administered in conjunction with CYP3A inhibitors, which might lead to toxicity.
Collapse
Affiliation(s)
- Jun Wang
- Department of Pharmacy, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Xiao Cui
- Department of Pharmacy, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Chen Cheng
- Department of Pharmacy, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Yi Wang
- Department of Pharmacy, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Wei Sun
- Department of Pharmacy, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Cheng-Ke Huang
- Department of Pharmacy, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Rui-Jie Chen
- Department of Pharmacy, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China.
| | - Zhe Wang
- Department of Pharmacy, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China.
| |
Collapse
|
43
|
Guo L, Gong H, Tang TL, Zhang BK, Zhang LY, Yan M. Crizotinib and Sunitinib Induce Hepatotoxicity and Mitochondrial Apoptosis in L02 Cells via ROS and Nrf2 Signaling Pathway. Front Pharmacol 2021; 12:620934. [PMID: 33597889 PMCID: PMC7883288 DOI: 10.3389/fphar.2021.620934] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2020] [Accepted: 01/04/2021] [Indexed: 12/11/2022] Open
Abstract
Considerable attention has been raised on crizotinib- and sunitinib-induced hepatotoxicity, but the underlying mechanisms need further examination. In addition, limited therapeutic strategies exist to reduce the liver damage caused by crizotinib and sunitinib. This study investigated the mechanisms of crizotinib- and sunitinib-induced hepatotoxicity and the potential mitigation through ROS and Nrf2 signaling. Firstly, crizotinib and sunitinib reduced cell viability in human liver cells (L02 cells) and triggered dramatic liver injury in mice. Subsequently, we found that crizotinib and sunitinib activated the oxidative stress response (decreased level of GPx and SOD, and increased MDA content) in vivo. Crizotinib and sunitinib also stimulated hepatocyte mitochondrial apoptosis and necrosis in L02 cells in a dose-dependent manner. In vivo studies further confirmed that crizotinib and sunitinib decreased mitochondrial membrane potential and activated apoptosis-associated proteins (cleaved-PARP, cleaved caspase3, cytochrome c, Bcl2 and Bax). Furthermore, mechanistic investigations demonstrated that crizotinib and sunitinib accumulated ROS and inhibited Nrf2 signaling, and that ROS scavenger NAC and Nrf2 agonist tBHQ alleviated the extent of cell damage and the mitochondrial apoptosis during crizotinib- and sunitinib-induced hepatotoxicity in L02 cells. Collectively, these findings indicated that NAC and tBHQ play the crucial roles in crizotinib- and sunitinib-induced mitochondrial apoptosis via the regulation of oxidative stress.
Collapse
Affiliation(s)
- Lin Guo
- Department of Pharmacy, Second Xiangya Hospital, Central South University, Changsha, China
| | - Hui Gong
- Department of Pharmacy, Second Xiangya Hospital, Central South University, Changsha, China
| | - Ting-Li Tang
- Department of Pharmacy, Second Xiangya Hospital, Central South University, Changsha, China
| | - Bi-Kui Zhang
- Department of Pharmacy, Second Xiangya Hospital, Central South University, Changsha, China
| | - Lei-Yi Zhang
- Department of General Surgery, Second Xiangya Hospital, Central South University, Changsha, China
| | - Miao Yan
- Department of Pharmacy, Second Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
44
|
Imano H, Kato R, Ijiri Y, Hayashi T. Activation of inflammasomes by tyrosine kinase inhibitors of vascular endothelial growth factor receptor: Implications for VEGFR TKIs-induced immune related adverse events. Toxicol In Vitro 2020; 71:105063. [PMID: 33271325 DOI: 10.1016/j.tiv.2020.105063] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 11/17/2020] [Accepted: 11/28/2020] [Indexed: 11/25/2022]
Abstract
Vascular endothelial growth factor (VEGF) promotes tumor angiogenesis through stimulating the proliferation and survival of endothelial cells. The severe adverse events caused by VEGF inhibitors might include immune-related ones; however, details of the mechanism have not been elucidated. We tested whether axitinib, pazopanib, sorafenib, and sunitinib, which are tyrosine kinase inhibitors (TKIs) of VEGF receptor used for the therapy of renal cell carcinoma can activate inflammasomes in differentiated THP-1 cells, a human macrophage cell line. We also performed similar studies with semaxanib. In this study, semaxanib and sorafenib activated the inflammasome of differentiated THP-1 cells. Although pazopanib increased the production of IL-1β, inflammasomes were not activated because caspase-1 was not activated in differentiated THP-1 cells. Our results support the hypothesis that activation of inflammasomes contributes to the idiosyncratic reactions associated with semaxanib and sorafenib. Although pazopanib did not activate inflammasomes, it did cause increased IL-1β production, which may facilitate the induction of idiosyncratic reactions.
Collapse
Affiliation(s)
- Hideki Imano
- Department of Cardiovascular Pharmacotherapy and Toxicology, Osaka University of Pharmaceutical Sciences, Osaka 569-1094, Japan
| | - Ryuji Kato
- Department of Cardiovascular Pharmacotherapy and Toxicology, Osaka University of Pharmaceutical Sciences, Osaka 569-1094, Japan.
| | - Yoshio Ijiri
- Department of Cardiovascular Pharmacotherapy and Toxicology, Osaka University of Pharmaceutical Sciences, Osaka 569-1094, Japan
| | - Tetsuya Hayashi
- Department of Cardiovascular Pharmacotherapy and Toxicology, Osaka University of Pharmaceutical Sciences, Osaka 569-1094, Japan
| |
Collapse
|
45
|
Schleiff MA, Flynn NR, Payakachat S, Schleiff BM, Pinson AO, Province DW, Swamidass SJ, Boysen G, Miller GP. Significance of Multiple Bioactivation Pathways for Meclofenamate as Revealed through Modeling and Reaction Kinetics. Drug Metab Dispos 2020; 49:133-141. [PMID: 33239334 PMCID: PMC7841419 DOI: 10.1124/dmd.120.000254] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Accepted: 11/05/2020] [Indexed: 12/20/2022] Open
Abstract
Meclofenamate is a nonsteroidal anti-inflammatory drug used in the treatment of mild-to-moderate pain yet poses a rare risk of hepatotoxicity through an unknown mechanism. Nonsteroidal anti-inflammatory drug (NSAID) bioactivation is a common molecular initiating event for hepatotoxicity. Thus, we hypothesized a similar mechanism for meclofenamate and leveraged computational and experimental approaches to identify and characterize its bioactivation. Analyses employing our XenoNet model indicated possible pathways to meclofenamate bioactivation into 19 reactive metabolites subsequently trapped into glutathione adducts. We describe the first reported bioactivation kinetics for meclofenamate and relative importance of those pathways using human liver microsomes. The findings validated only four of the many bioactivation pathways predicted by modeling. For experimental studies, dansyl glutathione was a critical trap for reactive quinone metabolites and provided a way to characterize adduct structures by mass spectrometry and quantitate yields during reactions. Of the four quinone adducts, we were able to characterize structures for three of them. Based on kinetics, the most efficient bioactivation pathway led to the monohydroxy para-quinone-imine followed by the dechloro-ortho-quinone-imine. Two very inefficient pathways led to the dihydroxy ortho-quinone and a likely multiply adducted quinone. When taken together, bioactivation pathways for meclofenamate accounted for approximately 13% of total metabolism. In sum, XenoNet facilitated prediction of reactive metabolite structures, whereas quantitative experimental studies provided a tractable approach to validate actual bioactivation pathways for meclofenamate. Our results provide a foundation for assessing reactive metabolite load more accurately for future comparative studies with other NSAIDs and drugs in general.
Collapse
Affiliation(s)
- Mary Alexandra Schleiff
- Departments of Biochemistry and Molecular Biology (M.A.S, G.P.M.) and Environmental and Occupational Health (G.B.), University of Arkansas for Medical Sciences, Little Rock, Arizona (M.A.S.); Department of Pathology and Immunology, Washington University, St. Louis, Missouri (N.R.F., S.J.S.); Department of Chemistry, Hendrix College, Conway, Arizona (S.P.); and Independent Researcher (B.M.S.) and Department of Chemistry and Biochemistry (A.O.P., D.W.P.), Harding University, Searcy, Arkansas
| | - Noah R Flynn
- Departments of Biochemistry and Molecular Biology (M.A.S, G.P.M.) and Environmental and Occupational Health (G.B.), University of Arkansas for Medical Sciences, Little Rock, Arizona (M.A.S.); Department of Pathology and Immunology, Washington University, St. Louis, Missouri (N.R.F., S.J.S.); Department of Chemistry, Hendrix College, Conway, Arizona (S.P.); and Independent Researcher (B.M.S.) and Department of Chemistry and Biochemistry (A.O.P., D.W.P.), Harding University, Searcy, Arkansas
| | - Sasin Payakachat
- Departments of Biochemistry and Molecular Biology (M.A.S, G.P.M.) and Environmental and Occupational Health (G.B.), University of Arkansas for Medical Sciences, Little Rock, Arizona (M.A.S.); Department of Pathology and Immunology, Washington University, St. Louis, Missouri (N.R.F., S.J.S.); Department of Chemistry, Hendrix College, Conway, Arizona (S.P.); and Independent Researcher (B.M.S.) and Department of Chemistry and Biochemistry (A.O.P., D.W.P.), Harding University, Searcy, Arkansas
| | - Benjamin Mark Schleiff
- Departments of Biochemistry and Molecular Biology (M.A.S, G.P.M.) and Environmental and Occupational Health (G.B.), University of Arkansas for Medical Sciences, Little Rock, Arizona (M.A.S.); Department of Pathology and Immunology, Washington University, St. Louis, Missouri (N.R.F., S.J.S.); Department of Chemistry, Hendrix College, Conway, Arizona (S.P.); and Independent Researcher (B.M.S.) and Department of Chemistry and Biochemistry (A.O.P., D.W.P.), Harding University, Searcy, Arkansas
| | - Anna O Pinson
- Departments of Biochemistry and Molecular Biology (M.A.S, G.P.M.) and Environmental and Occupational Health (G.B.), University of Arkansas for Medical Sciences, Little Rock, Arizona (M.A.S.); Department of Pathology and Immunology, Washington University, St. Louis, Missouri (N.R.F., S.J.S.); Department of Chemistry, Hendrix College, Conway, Arizona (S.P.); and Independent Researcher (B.M.S.) and Department of Chemistry and Biochemistry (A.O.P., D.W.P.), Harding University, Searcy, Arkansas
| | - Dennis W Province
- Departments of Biochemistry and Molecular Biology (M.A.S, G.P.M.) and Environmental and Occupational Health (G.B.), University of Arkansas for Medical Sciences, Little Rock, Arizona (M.A.S.); Department of Pathology and Immunology, Washington University, St. Louis, Missouri (N.R.F., S.J.S.); Department of Chemistry, Hendrix College, Conway, Arizona (S.P.); and Independent Researcher (B.M.S.) and Department of Chemistry and Biochemistry (A.O.P., D.W.P.), Harding University, Searcy, Arkansas
| | - S Joshua Swamidass
- Departments of Biochemistry and Molecular Biology (M.A.S, G.P.M.) and Environmental and Occupational Health (G.B.), University of Arkansas for Medical Sciences, Little Rock, Arizona (M.A.S.); Department of Pathology and Immunology, Washington University, St. Louis, Missouri (N.R.F., S.J.S.); Department of Chemistry, Hendrix College, Conway, Arizona (S.P.); and Independent Researcher (B.M.S.) and Department of Chemistry and Biochemistry (A.O.P., D.W.P.), Harding University, Searcy, Arkansas
| | - Gunnar Boysen
- Departments of Biochemistry and Molecular Biology (M.A.S, G.P.M.) and Environmental and Occupational Health (G.B.), University of Arkansas for Medical Sciences, Little Rock, Arizona (M.A.S.); Department of Pathology and Immunology, Washington University, St. Louis, Missouri (N.R.F., S.J.S.); Department of Chemistry, Hendrix College, Conway, Arizona (S.P.); and Independent Researcher (B.M.S.) and Department of Chemistry and Biochemistry (A.O.P., D.W.P.), Harding University, Searcy, Arkansas
| | - Grover P Miller
- Departments of Biochemistry and Molecular Biology (M.A.S, G.P.M.) and Environmental and Occupational Health (G.B.), University of Arkansas for Medical Sciences, Little Rock, Arizona (M.A.S.); Department of Pathology and Immunology, Washington University, St. Louis, Missouri (N.R.F., S.J.S.); Department of Chemistry, Hendrix College, Conway, Arizona (S.P.); and Independent Researcher (B.M.S.) and Department of Chemistry and Biochemistry (A.O.P., D.W.P.), Harding University, Searcy, Arkansas
| |
Collapse
|
46
|
Hakkola J, Hukkanen J, Turpeinen M, Pelkonen O. Inhibition and induction of CYP enzymes in humans: an update. Arch Toxicol 2020; 94:3671-3722. [PMID: 33111191 PMCID: PMC7603454 DOI: 10.1007/s00204-020-02936-7] [Citation(s) in RCA: 180] [Impact Index Per Article: 36.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Accepted: 10/12/2020] [Indexed: 12/17/2022]
Abstract
The cytochrome P450 (CYP) enzyme family is the most important enzyme system catalyzing the phase 1 metabolism of pharmaceuticals and other xenobiotics such as herbal remedies and toxic compounds in the environment. The inhibition and induction of CYPs are major mechanisms causing pharmacokinetic drug–drug interactions. This review presents a comprehensive update on the inhibitors and inducers of the specific CYP enzymes in humans. The focus is on the more recent human in vitro and in vivo findings since the publication of our previous review on this topic in 2008. In addition to the general presentation of inhibitory drugs and inducers of human CYP enzymes by drugs, herbal remedies, and toxic compounds, an in-depth view on tyrosine-kinase inhibitors and antiretroviral HIV medications as victims and perpetrators of drug–drug interactions is provided as examples of the current trends in the field. Also, a concise overview of the mechanisms of CYP induction is presented to aid the understanding of the induction phenomena.
Collapse
Affiliation(s)
- Jukka Hakkola
- Research Unit of Biomedicine, Pharmacology and Toxicology, University of Oulu, POB 5000, 90014, Oulu, Finland.,Biocenter Oulu, University of Oulu, Oulu, Finland.,Medical Research Center Oulu, University of Oulu and Oulu University Hospital, Oulu, Finland
| | - Janne Hukkanen
- Biocenter Oulu, University of Oulu, Oulu, Finland.,Research Unit of Internal Medicine, Medical Research Center Oulu, University of Oulu and Oulu University Hospital, Oulu, Finland
| | - Miia Turpeinen
- Research Unit of Biomedicine, Pharmacology and Toxicology, University of Oulu, POB 5000, 90014, Oulu, Finland.,Administration Center, Medical Research Center Oulu, University of Oulu and Oulu University Hospital, Oulu, Finland
| | - Olavi Pelkonen
- Research Unit of Biomedicine, Pharmacology and Toxicology, University of Oulu, POB 5000, 90014, Oulu, Finland.
| |
Collapse
|
47
|
Abstract
Fluorochemicals are a widely distributed class of compounds and have been utilized across a wide range of industries for decades. Given the environmental toxicity and adverse health threats of some fluorochemicals, the development of new methods for their decomposition is significant to public health. However, the carbon-fluorine (C-F) bond is among the most chemically robust bonds; consequently, the degradation of fluorinated hydrocarbons is exceptionally difficult. Here, metalloenzymes that catalyze the cleavage of this chemically challenging bond are reviewed. These enzymes include histidine-ligated heme-dependent dehaloperoxidase and tyrosine hydroxylase, thiolate-ligated heme-dependent cytochrome P450, and four nonheme oxygenases, namely, tetrahydrobiopterin-dependent aromatic amino acid hydroxylase, 2-oxoglutarate-dependent hydroxylase, Rieske dioxygenase, and thiol dioxygenase. While much of the literature regarding the aforementioned enzymes highlights their ability to catalyze C-H bond activation and functionalization, in many cases, the C-F bond cleavage has been shown to occur on fluorinated substrates. A copper-dependent laccase-mediated system representing an unnatural radical defluorination approach is also described. Detailed discussions on the structure-function relationships and catalytic mechanisms provide insights into biocatalytic defluorination, which may inspire drug design considerations and environmental remediation of halogenated contaminants.
Collapse
Affiliation(s)
- Yifan Wang
- Department of Chemistry, University of Texas at San Antonio, 1 UTSA Circle, San Antonio, TX 78249, USA.
| | | |
Collapse
|
48
|
Goto T, Yamazoe Y, Tohkin M. Applications of a grid-based CYP3A4 Template system to understand the interacting mechanisms of large-size ligands; part 4 of CYP3A4 Template study. Drug Metab Pharmacokinet 2020; 35:485-496. [PMID: 32967779 DOI: 10.1016/j.dmpk.2020.06.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 06/11/2020] [Accepted: 06/29/2020] [Indexed: 01/08/2023]
Abstract
Catalytic interactions of CYP3A4 with large-size ligands have been studied on the Template established in our previous studies using polyaromatic hydrocarbon and steroid ligands (DMPK 34: 113-125 and 351-364 2019 and in press 2020). Typical CYP3A4-substrates including erythromycin, cyclosporin A (ca.1200 Da), ivermectin B1a and taxanes were applied successfully and regioselective metabolisms of these ligands were reconstituted faithfully on Template. These results suggest the applicability of CYP3A4 Template throughout broadened sizes of CYP3A4 ligands. Macrolide antibiotics showed distinct degrees of tight sittings in Width-gauge, a tool for accommodation measure. The observed differences were associated with different inhibitory/inactivation potentials of troleandomycin, erythromycin, clarithromycin and azithromycin, suggesting CYP3A4 Template also as a tool for drug-interaction mechanisms. Slight expansion of Template area was made at near Site of oxidation from simulation results of antitumor agent, rilpivirine, in the present study. Ligand entry from left side of Template is also suggested from macrolide interactions. Broadened applicability of the refined CYP3A4 Template were assured with experiments with various large-size ligands.
Collapse
Affiliation(s)
- Takahiro Goto
- Regulation and Prequalification, Access to Medicines and Health Products, World Health Organization, Avenue Appia 20, 1211, Geneva 27, Switzerland; Regulatory Science, Graduate School of Pharmaceutical Sciences, Nagoya City University, 3-1, Tanabe-dori, Mizuho-ku, Nagoya, 467-8603, Japan
| | - Yasushi Yamazoe
- Division of Drug Metabolism and Molecular Toxicology, Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3 Aramaki-Aoba, Aoba-ku, Sendai, 980-8578, Japan; Division of Risk Assessment, National Institute of Health Sciences, Tonomachi 3-25-26, Kawasaki-ku, Kanagawa, 210-9501, Japan.
| | - Masahiro Tohkin
- Regulatory Science, Graduate School of Pharmaceutical Sciences, Nagoya City University, 3-1, Tanabe-dori, Mizuho-ku, Nagoya, 467-8603, Japan
| |
Collapse
|
49
|
Nekvindova J, Mrkvicova A, Zubanova V, Hyrslova Vaculova A, Anzenbacher P, Soucek P, Radova L, Slaby O, Kiss I, Vondracek J, Spicakova A, Bohovicova L, Fabian P, Kala Z, Palicka V. Hepatocellular carcinoma: Gene expression profiling and regulation of xenobiotic-metabolizing cytochromes P450. Biochem Pharmacol 2020; 177:113912. [PMID: 32173367 DOI: 10.1016/j.bcp.2020.113912] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2019] [Accepted: 03/10/2020] [Indexed: 12/18/2022]
Abstract
Hepatocellular carcinoma (HCC) remains a highly prevalent and deadly disease, being among the top causes of cancer-related deaths worldwide. Despite the fact that the liver is the major site of biotransformation, studies on drug metabolizing enzymes in HCC are scarce. It is known that malignant transformation of hepatocytes leads to a significant alteration of their metabolic functions and overall deregulation of gene expression. Advanced stages of the disease are thus frequently associated with liver failure, and severe alteration of drug metabolism. However, the impact of dysregulation of metabolic enzymes on therapeutic efficacy and toxicity in HCC patients is largely unknown. Here we demonstrate a significant down-regulation in European Caucasian patients of cytochromes P450 (CYPs), the major xenobiotic-metabolizing enzymes, in HCC tumour samples as compared to their surrounding non-cancerous (reference) tissue. Moreover, we report for the first time the association of the unique CYP profiles with specific transcriptome changes, and interesting correlations with expression levels of nuclear receptors and with the histological grade of the tumours. Integrated analysis has suggested certain co-expression profiles of CYPs with lncRNAs that need to be further characterized. Patients with large tumours with down-regulated CYPs could be more vulnerable to drug toxicity; on the other hand, such tumours would eliminate drugs more slowly and should be more sensitive to pharmacotherapy (except in the case of pro-drugs where activation is necessary).
Collapse
Affiliation(s)
- Jana Nekvindova
- Department of Clinical Biochemistry and Diagnostics, University Hospital Hradec Kralove, Czech Republic.
| | - Alena Mrkvicova
- Department of Clinical Biochemistry and Diagnostics, University Hospital Hradec Kralove, Czech Republic; Department of Medical Biochemistry, Charles University, Faculty of Medicine in Hradec Kralove, Czech Republic.
| | - Veronika Zubanova
- Department of Clinical Biochemistry and Diagnostics, University Hospital Hradec Kralove, Czech Republic.
| | - Alena Hyrslova Vaculova
- Department of Cytokinetics, Institute of Biophysics of the Czech Academy of Sciences, Brno, Czech Republic.
| | - Pavel Anzenbacher
- Department of Pharmacology, Faculty of Medicine and Dentistry, Palacky University, Olomouc, Czech Republic.
| | - Pavel Soucek
- Center for Toxicology and Health Safety, National Institute of Public Health, Prague, Czech Republic; Biomedical Centre, Faculty of Medicine in Pilsen, Charles University, Pilsen, Czech Republic.
| | - Lenka Radova
- Central European Institute of Technology, Masaryk University, Brno, Czech Republic.
| | - Ondrej Slaby
- Central European Institute of Technology, Masaryk University, Brno, Czech Republic; Department of Biology, Faculty of Medicine, Masaryk University, 62500 Brno, Czech Republic.
| | - Igor Kiss
- Department of Comprehensive Cancer Care, Masaryk Memorial Cancer Institute and Masaryk University, Brno, Czech Republic.
| | - Jan Vondracek
- Department of Cytokinetics, Institute of Biophysics of the Czech Academy of Sciences, Brno, Czech Republic.
| | - Alena Spicakova
- Department of Pharmacology, Faculty of Medicine and Dentistry, Palacky University, Olomouc, Czech Republic.
| | - Lucia Bohovicova
- Department of Comprehensive Cancer Care, Masaryk Memorial Cancer Institute and Masaryk University, Brno, Czech Republic.
| | - Pavel Fabian
- Department of Oncological and Experimental Pathology, Cancer Institute, Brno, Czech Republic.
| | - Zdenek Kala
- Department of Surgery, University Hospital Brno, Czech Republic.
| | - Vladimir Palicka
- Department of Clinical Biochemistry and Diagnostics, University Hospital Hradec Kralove, Czech Republic.
| |
Collapse
|
50
|
Shi Q, Yang X, Ren L, Mattes WB. Recent advances in understanding the hepatotoxicity associated with protein kinase inhibitors. Expert Opin Drug Metab Toxicol 2020; 16:217-226. [DOI: 10.1080/17425255.2020.1727886] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Qiang Shi
- Division of Systems Biology, National Center for Toxicological Research, US Food and Drug Administration, Jefferson, AR, USA
| | - Xi Yang
- Division of Cardiovascular and Renal Products, Office of New Drugs I, Center for Drug Evaluation and Research, US Food and Drug Administration, Silver Spring, MD, USA
| | - Lijun Ren
- Division of Systems Biology, National Center for Toxicological Research, US Food and Drug Administration, Jefferson, AR, USA
| | - William B. Mattes
- Division of Systems Biology, National Center for Toxicological Research, US Food and Drug Administration, Jefferson, AR, USA
| |
Collapse
|