1
|
Jin L, Cheng S, Ge M, Ji L. Evidence for the formation of 6PPD-quinone from antioxidant 6PPD by cytochrome P450. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:136273. [PMID: 39471629 DOI: 10.1016/j.jhazmat.2024.136273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Revised: 09/23/2024] [Accepted: 10/23/2024] [Indexed: 11/01/2024]
Abstract
N-(1,3-dimethylbutyl)-N'-phenyl-p-phenylenediamine (6PPD) as a rubber antioxidant has attracted global concern, since its ozone-oxidation product 6PPD-quinone (6PPDQ) was found to be the primary toxicant responsible for urban runoff mortality syndrome in coho salmon. However, the biotransformation fate and associated toxicological mechanism of 6PPD have not received much study yet. In this work, the in vitro assays showed 6PPD can be transformed into 6PPDQ by cytochromes P450 (CYP450) in human liver microsomes (HLMs) with 0.98 % production rate, and the adducts of 6PPDQ with calf thymus DNA and the N-N coupling product between 6PPD and 6PPDQ were further identified after 6PPD incubation in HLMs. Further evidence for the 6PPDQ formation can be obtained from the in vivo assays that the 6PPDQ-DNA adducts and 6PPD-N-N-6PPDQ dimer were detected in mice by oral gavage with 6PPD, and the latter dimer species was detected as well in 6PPD exposure to zebrafish larvae. Especially, the bioaccumulation property and high reactivity of 6PPDQ result in the continuous formation of the significant DNA adducts and 6PPD-N-N-6PPDQ dimer even in case of low production rate of biotransformation of 6PPD to 6PPDQ, which may provide potentially effective biomarkers for such process. DFT computations revealed the formation mechanism of 6PPDQ is the (N)H-abstraction of 6PPD by CYP450, followed by amino radical rebound at the nearby ortho-carbon, yielding a quinol intermediate due to spin delocalization, that might readily undergo further oxidation by CYP450 into 6PPDQ.
Collapse
Affiliation(s)
- Lingmin Jin
- School of Environment and Spatial Informatics, China University of Mining and Technology, Xuzhou 221116, China
| | - Shiyang Cheng
- School of Environment and Spatial Informatics, China University of Mining and Technology, Xuzhou 221116, China; Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, Zhejiang Shuren University, Hangzhou 310015, China.
| | - Mintong Ge
- Interdisciplinary Research Academy, Zhejiang Shuren University, Hangzhou 310015, China
| | - Li Ji
- School of Environment and Spatial Informatics, China University of Mining and Technology, Xuzhou 221116, China.
| |
Collapse
|
2
|
Han Y, Cheng S, Guo F, Xiong J, Ji L. Mechanistic and predictive studies on the oxidation of furans by cytochrome P450: A DFT study. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 279:116460. [PMID: 38781888 DOI: 10.1016/j.ecoenv.2024.116460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 04/27/2024] [Accepted: 05/12/2024] [Indexed: 05/25/2024]
Abstract
Furan-containing compounds distribute widely in food, herbal medicines, industrial synthetic products, and environmental media. These compounds can undergo oxidative metabolism catalyzed by cytochrome P450 enzymes (CYP450) within organisms, which may produce reactive products, possibly reacting with biomolecules to induce toxic effects. In this work, we performed DFT calculations to investigate the CYP450-mediated metabolic mechanism of furan-ring oxidation using 2-methylfuran as a model substrate, meanwhile, we studied the regioselective competition of another hydroxylation reaction involving methyl group of 2-methylfuran. As a result, we found the toxicological-relevant cis-enedione product can be produced from O-addition directly via a concerted manner without formation of an epoxide intermediate as traditionally believed. Moreover, our calculations demonstrate the kinetic and thermodynamic feasibility of both furan-ring oxidation and methyl hydroxylation pathways, although the former pathway is a bit more favorable. We then constructed a linear model to predict the rate-limiting activation energies (ΔE*) of O-addition with 11 diverse furan substates based on their adiabatic ionization potentials (AIPs) and condensation Fukui functions (CFFs). The results show a good predictive ability (R2=0.94, Q2CV=0.87). Therefore, AIP and CFF with clear physichem meanings relevant to the mechanism, emerge as pivotal molecular descriptors to enable the fast prediction of furan-ring oxidation reactivities for quick insight into the toxicological risk of furans, using just ground-state calculations.
Collapse
Affiliation(s)
- Ye Han
- School of Environment Science and Spatial Informatics, China University of Mining and Technology, Xuzhou 221116, China
| | - Shiyang Cheng
- School of Environment Science and Spatial Informatics, China University of Mining and Technology, Xuzhou 221116, China.
| | - Fangjie Guo
- School of Management Engineering and Electronic Commerce, Zhejiang Gongshang University, Hangzhou 310018, China
| | - Jibing Xiong
- School of Environment Science and Spatial Informatics, China University of Mining and Technology, Xuzhou 221116, China
| | - Li Ji
- School of Environment Science and Spatial Informatics, China University of Mining and Technology, Xuzhou 221116, China.
| |
Collapse
|
3
|
Ma G, Ma K, Zhang J, Zhao X, Wang Q, Chen Y, Lu J, Wei X, Wang X, Yu H. Mechanistic insight into biotransformation of novel triazine-based flame retardant 1,3,5-tris(2,3-dibromopropyl)-1,3,5-triazinane-2,4,6-trione by human cytochrome P450s. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 348:123883. [PMID: 38548154 DOI: 10.1016/j.envpol.2024.123883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 03/22/2024] [Accepted: 03/25/2024] [Indexed: 04/21/2024]
Abstract
The escalating focus on the environmental occurrence and toxicology of emerging pollutants underscores the imperative need for a profound exploration of their metabolic transformations mediated by human CYP450 enzymes. Such investigations have the potential to unravel the intricate metabolite profiles, substantially altering the toxicological outcomes. In this study, we integrated the computational simulations with in vitro metabolism experiments to investigate the metabolic activity and mechanism of an emerging pollutant, 1,3,5-tris(2,3-dibromopropyl)-1,3,5-triazinane-2,4,6-trione (TDBP-TAZTO), catalyzed by human CYP450s. The results highlight the important contributions of CYP2E1, 3A4 and 2C9 to the biotransformation of TDBP-TAZTO, leading to the identification of four distinct metabolites. The effective binding conformations governing biotransformation reactions of TDBP-TAZTO within active CYP450s are unveiled. Structural instability of primary hydroxyTDBP-TAZTO products suggests three potential outcomes: (1) generation of an alcohol metabolite through successive debromination and reduction reactions, (2) formation of a dihydroxylated metabolite through secondary hydroxylation by CYP450, and (3) production of an N-dealkylated metabolite via decomposition and isomerization reactions in the aqueous environment. The formation of a desaturated debrominated metabolite may arise from H-abstraction and barrier-free Br release during the primary oxidation, potentially competing with the generation of hydroxyTDBP-TAZTO. These findings provide detailed mechanistic insight into TDBP-TAZTO biotransformation by CYP450s, which can enrich our understanding of the metabolic fate and associated health risk of this chemical.
Collapse
Affiliation(s)
- Guangcai Ma
- College of Geography and Environmental Sciences, Zhejiang Normal University, Yingbin Avenue 688, 321004, Jinhua, China
| | - Kan Ma
- College of Geography and Environmental Sciences, Zhejiang Normal University, Yingbin Avenue 688, 321004, Jinhua, China
| | - Jing Zhang
- College of Geography and Environmental Sciences, Zhejiang Normal University, Yingbin Avenue 688, 321004, Jinhua, China
| | - Xianglong Zhao
- College of Geography and Environmental Sciences, Zhejiang Normal University, Yingbin Avenue 688, 321004, Jinhua, China
| | - Qiuyi Wang
- College of Geography and Environmental Sciences, Zhejiang Normal University, Yingbin Avenue 688, 321004, Jinhua, China
| | - Yewen Chen
- College of Geography and Environmental Sciences, Zhejiang Normal University, Yingbin Avenue 688, 321004, Jinhua, China
| | - Jiayu Lu
- College of Geography and Environmental Sciences, Zhejiang Normal University, Yingbin Avenue 688, 321004, Jinhua, China
| | - Xiaoxuan Wei
- College of Geography and Environmental Sciences, Zhejiang Normal University, Yingbin Avenue 688, 321004, Jinhua, China
| | - Xueyu Wang
- College of Geography and Environmental Sciences, Zhejiang Normal University, Yingbin Avenue 688, 321004, Jinhua, China
| | - Haiying Yu
- College of Geography and Environmental Sciences, Zhejiang Normal University, Yingbin Avenue 688, 321004, Jinhua, China; Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, Shuren Street 8, 310015, Hangzhou, China.
| |
Collapse
|
4
|
Jin L, Cheng S, Ding W, Huang J, van Eldik R, Ji L. Insight into chemically reactive metabolites of aliphatic amine pollutants: A de novo prediction strategy and case study of sertraline. ENVIRONMENT INTERNATIONAL 2024; 186:108636. [PMID: 38593692 DOI: 10.1016/j.envint.2024.108636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 04/04/2024] [Accepted: 04/04/2024] [Indexed: 04/11/2024]
Abstract
The uncommon metabolic pathways of organic pollutants are easily overlooked, potentially leading to idiosyncratic toxicity. Prediction of their biotransformation associated with the toxic effects is the very purpose that this work focuses, to develop a de novo method to mechanistically predict the reactive toxicity pathways of uncommon metabolites from start aliphatic amine molecules, which employed sertraline triggered by CYP450 enzymes as a model system, as there are growing concerns about the effects on human health posed by antidepressants in the aquatic environment. This de novo prediction strategy combines computational and experimental methods, involving DFT calculations upon sequential growth, in vitro and in vivo assays, dissecting chemically reactive mechanism relevant to toxicity, and rationalizing the fundamental factors. Significantly, desaturation and debenzylation-aromatization as the emerging metabolic pathways of sertraline have been elucidated, with the detection of DNA adducts of oxaziridine metabolite in mice, highlighting the potential reactive toxicity. Molecular orbital analysis supports the reactivity preference for toxicological-relevant C-N desaturation over N-hydroxylation of sertraline, possibly extended to several other aliphatic amines based on the Bell-Evans-Polanyi principle. It was further validated toward some other wide-concerned aliphatic amine pollutants involving atrazine, ε-caprolactam, 6PPD via in silico and in vitro assays, thereby constituting a complete path for de novo prediction from case study to general applications.
Collapse
Affiliation(s)
- Lingmin Jin
- School of Environment Science and Spatial Informatics, China University of Mining and Technology, Xuzhou 221116, China
| | - Shiyang Cheng
- School of Environment Science and Spatial Informatics, China University of Mining and Technology, Xuzhou 221116, China.
| | - Wen Ding
- School of Environment Science and Spatial Informatics, China University of Mining and Technology, Xuzhou 221116, China
| | - Jingru Huang
- School of Environment Science and Spatial Informatics, China University of Mining and Technology, Xuzhou 221116, China
| | - Rudi van Eldik
- Department of Chemistry and Pharmacy, University of Erlangen-Nuremberg, Egerlandstr. 1, 91058 Erlangen, Germany; Faculty of Chemistry, Nicolaus Copernicus University in Torun, Gagarina 7, 87-100 Torun, Poland
| | - Li Ji
- School of Environment Science and Spatial Informatics, China University of Mining and Technology, Xuzhou 221116, China.
| |
Collapse
|
5
|
Zhang H, Wang X, Song R, Ding W, Li F, Ji L. Emerging Metabolic Profiles of Sulfonamide Antibiotics by Cytochromes P450: A Computational-Experimental Synergy Study on Emerging Pollutants. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:5368-5379. [PMID: 36921339 DOI: 10.1021/acs.est.3c00071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Metabolism, especially by CYP450 enzymes, is the main reason for mediating the toxification and detoxification of xenobiotics in humans, while some uncommon metabolic pathways, especially for emerging pollutants, probably causing idiosyncratic toxicity are easily overlooked. The pollution of sulfonamide antibiotics in aqueous system has attracted increasing public attention. Hydroxylation of the central amine group can trigger a series of metabolic processes of sulfonamide antibiotics in humans; however, this work parallelly reported the coupling and fragmenting initiated by amino H-abstraction of sulfamethoxazole (SMX) catalyzed by human CYP450 enzymes. Elucidation of the emerging metabolic profiles was mapped via a multistep synergy between computations and experiments, involving preliminary DFT computations and in vitro and in vivo assays, profiling adverse effects, and rationalizing the fundamental factors via targeted computations. Especially, the confirmed SMX dimer was shown to potentially act as a metabolism disruptor in humans, while spin aromatic delocalization resulting in the low electron donor ability of amino radicals was revealed as the fundamental factor to enable coupling of sulfonamide antibiotics by CYP450 through the nonconventional nonrebound pathway. This work may further strengthen the synergistic use of computations prior to experiments to avoid wasteful experimental screening efforts in environmental chemistry and toxicology.
Collapse
Affiliation(s)
- Huanni Zhang
- School of Environment Science and Spatial Informatics, China University of Mining and Technology, Xuzhou 221116, China
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Xiaoqing Wang
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research (YIC), Chinese Academy of Sciences (CAS), Shandong Key Laboratory of Coastal Environmental Processes, YICCAS, Yantai 264003, China
| | - Runqian Song
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Wen Ding
- School of Environment Science and Spatial Informatics, China University of Mining and Technology, Xuzhou 221116, China
| | - Fei Li
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research (YIC), Chinese Academy of Sciences (CAS), Shandong Key Laboratory of Coastal Environmental Processes, YICCAS, Yantai 264003, China
| | - Li Ji
- School of Environment Science and Spatial Informatics, China University of Mining and Technology, Xuzhou 221116, China
- International Center for Research on Innovative Biobased Materials (ICRI-BioM)─International Research Agenda, Lodz University of Technology, Zeromskiego 116, Lodz 90-924, Poland
| |
Collapse
|
6
|
Ji L, Zhang H, Ding W, Song R, Han Y, Yu H, Paneth P. Theoretical Kinetic Isotope Effects in Establishing the Precise Biodegradation Mechanisms of Organic Pollutants. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:4915-4929. [PMID: 36926881 DOI: 10.1021/acs.est.2c04755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Compound-specific isotope analysis (CSIA) for natural isotope ratios has been recognized as a promising tool to elucidate biodegradation pathways of organic pollutants by microbial enzymes by relating reported kinetic isotope effects (KIEs) to apparent KIEs (AKIEs) derived from bulk isotope fractionations (εbulk). However, for many environmental reactions, neither are the reference KIE ranges sufficiently narrow nor are the mechanisms elucidated to the point that rate-determining steps have been identified unequivocally. In this work, besides providing reference KIEs and rationalizing AKIEs, good relationships have been explained by DFT computations for diverse biodegradation pathways with known enzymatic models between the theoretical isotope fractionations (εbulk') from intrinsic KIEs on the rate-determining steps and the observed εbulk. (1) To confirm the mechanistic details of previously reported pathway-dependent CSIA, it includes isotope changes in MTBE biodegradation between hydroxylation by CYP450 and SN2 reaction by cobalamin-dependent methyltransferase, the regioselectivity of toluene biodegradation by CYP450, and the rate-determining step in toluene biodegradation by benzylsuccinate synthase. (2) To yield new fundamental insights into some unclear biodegradation pathways, it consists of the oxidative function of toluene dioxygenase in biodegradation of TCE, the epoxidation mode in biodegradation of TCE by toluene 4-monooxygenase, and the weighted average mechanism in biodegradation of cDCE by CYP450.
Collapse
Affiliation(s)
- Li Ji
- School of Environment Science and Spatial Informatics, China University of Mining and Technology, Daxue Road 1, Xuzhou 221116, China
| | - Huanni Zhang
- School of Environment Science and Spatial Informatics, China University of Mining and Technology, Daxue Road 1, Xuzhou 221116, China
- College of Environmental and Resource Sciences, Zhejiang University, Yuhangtang Road 866, Hangzhou 310058, China
| | - Wen Ding
- School of Environment Science and Spatial Informatics, China University of Mining and Technology, Daxue Road 1, Xuzhou 221116, China
| | - Runqian Song
- School of Environment Science and Spatial Informatics, China University of Mining and Technology, Daxue Road 1, Xuzhou 221116, China
- College of Environmental and Resource Sciences, Zhejiang University, Yuhangtang Road 866, Hangzhou 310058, China
| | - Ye Han
- School of Environment Science and Spatial Informatics, China University of Mining and Technology, Daxue Road 1, Xuzhou 221116, China
| | - Haiying Yu
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China
| | - Piotr Paneth
- Institute of Applied Radiation Chemistry, Faculty of Chemistry, Lodz University of Technology, Zeromskiego 116, Lodz 90-924, Poland
| |
Collapse
|
7
|
Foster M, Rainey M, Watson C, Dodds JN, Kirkwood KI, Fernández FM, Baker ES. Uncovering PFAS and Other Xenobiotics in the Dark Metabolome Using Ion Mobility Spectrometry, Mass Defect Analysis, and Machine Learning. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:9133-9143. [PMID: 35653285 PMCID: PMC9474714 DOI: 10.1021/acs.est.2c00201] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
The identification of xenobiotics in nontargeted metabolomic analyses is a vital step in understanding human exposure. Xenobiotic metabolism, transformation, excretion, and coexistence with other endogenous molecules, however, greatly complicate the interpretation of features detected in nontargeted studies. While mass spectrometry (MS)-based platforms are commonly used in metabolomic measurements, deconvoluting endogenous metabolites from xenobiotics is also often challenged by the lack of xenobiotic parent and metabolite standards as well as the numerous isomers possible for each small molecule m/z feature. Here, we evaluate a xenobiotic structural annotation workflow using ion mobility spectrometry coupled with MS (IMS-MS), mass defect filtering, and machine learning to uncover potential xenobiotic classes and species in large metabolomic feature lists. Xenobiotic classes examined included those of known high toxicities, including per- and polyfluoroalkyl substances (PFAS), polycyclic aromatic hydrocarbons (PAHs), polychlorinated biphenyls (PCBs), polybrominated diphenyl ethers (PBDEs), and pesticides. Specifically, when the workflow was applied to identify PFAS in the NIST SRM 1957 and 909c human serum samples, it greatly reduced the hundreds of detected liquid chromatography (LC)-IMS-MS features by utilizing both mass defect filtering and m/z versus IMS collision cross sections relationships. These potential PFAS features were then compared to the EPA CompTox entries, and while some matched within specific m/z tolerances, there were still many unknowns illustrating the importance of nontargeted studies for detecting new molecules with known chemical characteristics. Additionally, this workflow can also be utilized to evaluate other xenobiotics and enable more confident annotations from nontargeted studies.
Collapse
Affiliation(s)
- MaKayla Foster
- Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27695, United States
| | - Markace Rainey
- School of Chemistry and Biochemistry, Georgia Institute of Technology, 901 Atlantic Drive NW, Atlanta, Georgia 30332, United States
| | - Chandler Watson
- School of Chemistry and Biochemistry, Georgia Institute of Technology, 901 Atlantic Drive NW, Atlanta, Georgia 30332, United States
| | - James N Dodds
- Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27695, United States
| | - Kaylie I Kirkwood
- Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27695, United States
| | - Facundo M Fernández
- School of Chemistry and Biochemistry, Georgia Institute of Technology, 901 Atlantic Drive NW, Atlanta, Georgia 30332, United States
| | - Erin S Baker
- Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27695, United States
- Comparative Medicine Institute, North Carolina State University, Raleigh, North Carolina 27695, United States
| |
Collapse
|
8
|
Yadav R, Awasthi N, Kumar D. Biotransformation of BPA via epoxidation catalyzed by Cytochrome P450. INORG CHEM COMMUN 2022. [DOI: 10.1016/j.inoche.2022.109321] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
9
|
Zhang H, Song R, Guo F, Chai L, Wang W, Zeng J, Yu H, Ji L. Using Physical Organic Chemistry Knowledge to Predict Unusual Metabolites of Synthetic Phenolic Antioxidants by Cytochrome P450. Chem Res Toxicol 2022; 35:840-848. [PMID: 35416036 DOI: 10.1021/acs.chemrestox.2c00021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Biotransformation, especially by human CYP450 enzymes, plays a crucial role in regulating the toxicity of organic compounds in organisms, but is poorly understood for most emerging pollutants, as their numerous "unusual" biotransformation reactions cannot retrieve examples from the textbooks. Therefore, in order to predict the unknown metabolites with altering toxicological profiles, there is a realistic need to develop efficient methods to reveal the "unusual" metabolic mechanism of emerging pollutants. Combining experimental work with computational predictions has been widely accepted as an effective approach in studying complex metabolic reactions; however, the full quantum chemical computations may not be easily accessible for most environmentalists. Alternatively, this work practiced using the concepts from physical organic chemistry for studying the interrelationships between structure and reactivity of organic molecules, to reveal the "unusual" metabolic mechanism of synthetic phenolic antioxidants catalyzed by CYP450, for which the simple pencil-and-paper and property-computation methods based on physical organic chemistry were performed. The phenol-coupling product of butylated hydroxyanisole (BHA) (based on spin aromatic delocalization) and ipso-addition quinol metabolite of butylated hydroxytoluene (BHT) (based on hyperconjugative effect) were predicted as two "unusual" metabolites, which were further confirmed by our in vitro analysis. We hope this easily handled approach will promote environmentalists to attach importance to physical organic chemistry, with an eye to being able to use the knowledge gained to efficiently predict the fates of substantial unknown synthesized organic compounds in the future.
Collapse
Affiliation(s)
- Huanni Zhang
- College of Environmental and Resource Sciences, Zhejiang University, Yuhangtang Road 866, Hangzhou 310058, China.,School of Environment Science and Spatial Informatics, China University of Mining and Technology, Daxue Road 1, Xuzhou 221116, China
| | - Runqian Song
- College of Environmental and Resource Sciences, Zhejiang University, Yuhangtang Road 866, Hangzhou 310058, China.,School of Environment Science and Spatial Informatics, China University of Mining and Technology, Daxue Road 1, Xuzhou 221116, China
| | - Fangjie Guo
- School of Management Engineering and Electronic Commerce, Zhejiang Gongshang University, Hangzhou 310018, China
| | - Lihong Chai
- Chair of Analytical Chemistry and Water Chemistry, Technical University of Munich, Lichtenbergstrasse 4, 81377 Munich, Germany
| | - Wuwei Wang
- School of Environment Science and Spatial Informatics, China University of Mining and Technology, Daxue Road 1, Xuzhou 221116, China
| | - Jingyi Zeng
- School of Environment Science and Spatial Informatics, China University of Mining and Technology, Daxue Road 1, Xuzhou 221116, China
| | - Haiying Yu
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China
| | - Li Ji
- School of Environment Science and Spatial Informatics, China University of Mining and Technology, Daxue Road 1, Xuzhou 221116, China
| |
Collapse
|
10
|
Han C, Zhu W, Ma G, Chen Y, Li X, Wei X, Yu H. Computational insight into biotransformation of halophenols by cytochrome P450: Mechanism and reactivity for epoxidation. CHEMOSPHERE 2022; 286:131708. [PMID: 34352543 DOI: 10.1016/j.chemosphere.2021.131708] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Revised: 07/11/2021] [Accepted: 07/27/2021] [Indexed: 06/13/2023]
Abstract
Halophenols (XPs) have aroused great interests due to their high toxicity and low biodegradability. Previous experimental studies have shown that XPs can be catalytically transformed into epoxides and haloquinones by cytochrome P450 enzymes (CYPs). However, these metabolites have never been detected directly. Moreover, the effects of the reaction site and the type and number of halogen substituents on the biotransformation reactivity of halophenols still remain unknown. In this work, we performed density functional theory (DFT) calculations to simulate the CYP-mediated biotransformation of 36 XPs with mono-, di-, and tri-halogen (F, Cl, and Br) substitutions to unravel the mechanism and relevant kinetics of XPs epoxidation. The whole epoxidation process consists of initial rate-determining O-addition and subsequent ring-closure steps. The simulation results show that the epoxidation in low-spin (LS) state is kinetically preferred over that in high-spin (HS) state, and the formation of epoxide metabolite is strongly exothermic. For all XPs, the epoxidation reactivity follows the order of ortho/para O-addition > meta O-addition. Moreover, the O-addition with higher energy barriers roughly corresponds to chlorophenols and fluorophenols with more halogen atoms. Compared with dichlorophenols, the additional ortho-Cl substitution on trichlorophenols can slightly increase the energy barriers of meta O-addition. By contrast, the additional inclusion of an ortho-Cl to monochlorophenols enhances the meta O-addition reactivity of dichlorophenols. Overall, the present work clarifies the biotransformation routes of XPs to produce epoxides, and identifies the key factors affecting the epoxidation reactivity, which are beneficial in understanding comprehensively the metabolic fate and toxicity of XPs.
Collapse
Affiliation(s)
- Cenyang Han
- College of Geography and Environmental Sciences, Zhejiang Normal University, Yingbin Avenue 688, 321004, Jinhua, China
| | - Wenyou Zhu
- School of Materials and Chemical Engineering, Xuzhou University of Technology, Xuzhou, Jiangsu, 221018, China
| | - Guangcai Ma
- College of Geography and Environmental Sciences, Zhejiang Normal University, Yingbin Avenue 688, 321004, Jinhua, China.
| | - Yewen Chen
- College of Geography and Environmental Sciences, Zhejiang Normal University, Yingbin Avenue 688, 321004, Jinhua, China
| | - Xinqi Li
- College of Geography and Environmental Sciences, Zhejiang Normal University, Yingbin Avenue 688, 321004, Jinhua, China
| | - Xiaoxuan Wei
- College of Geography and Environmental Sciences, Zhejiang Normal University, Yingbin Avenue 688, 321004, Jinhua, China
| | - Haiying Yu
- College of Geography and Environmental Sciences, Zhejiang Normal University, Yingbin Avenue 688, 321004, Jinhua, China.
| |
Collapse
|
11
|
Chai L, Zhang H, Song R, Yang H, Yu H, Paneth P, Kepp KP, Akamatsu M, Ji L. Precision Biotransformation of Emerging Pollutants by Human Cytochrome P450 Using Computational-Experimental Synergy: A Case Study of Tris(1,3-dichloro-2-propyl) Phosphate. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:14037-14050. [PMID: 34663070 DOI: 10.1021/acs.est.1c03036] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Precision biotransformation is an envisioned strategy offering detailed insights into biotransformation pathways in real environmental settings using experimentally guided high-accuracy quantum chemistry. Emerging pollutants, whose metabolites are easily overlooked but may cause idiosyncratic toxicity, are important targets of such a strategy. We demonstrate here that complex metabolic reactions of tris(1,3-dichloro-2-propyl) phosphate (TDCIPP) catalyzed by human CYP450 enzymes can be mapped via a three-step synergy strategy: (i) screening the possible metabolites via high-throughout (moderate-accuracy) computations; (ii) analyzing the proposed metabolites in vitro by human liver microsomes and recombinant human CYP450 enzymes; and (iii) rationalizing the experimental data via precise mechanisms using high-level targeted computations. Through the bilateral dialogues from qualitative to semi-quantitative to quantitative levels, we show how TDCIPP metabolism especially by CYP3A4 generates bis(1,3-dichloro-2-propyl) phosphate (BDCIPP) as an O-dealkylation metabolite and bis(1,3-dichloro-2-propyl) 3-chloro-1-hydroxy-2-propyl phosphate (alcoholβ-dehalogen) as a dehalogenation/reduction metabolite via the initial rate-determining H-abstraction from αC- and βC-positions. The relative yield ratio [dehalogenation/reduction]/[O-dealkylation] is derived from the relative barriers of H-abstraction at the βC- and αC-positions by CYP3A4, estimated as 0.002 to 0.23, viz., an in vitro measured ratio of 0.04. Importantly, alcoholβ-dehalogen formation points to a new mechanism involving successive oxidation and reduction functions of CYP450, with its precursor aldehydeβ-dehalogen being a key intermediate detected by trapping assays and rationalized by computations. We conclude that the proposed three-step synergy strategy may meet the increasing challenge of elucidating biotransformation mechanisms of substantial synthesized organic compounds in the future.
Collapse
Affiliation(s)
- Lihong Chai
- School of Environment Science and Spatial Informatics, China University of Mining and Technology, Daxue Road 1, Xuzhou 221116, China
- College of Environmental and Resource Sciences, Zhejiang University, Yuhangtang Road 866, Hangzhou 310058, China
| | - Huanni Zhang
- College of Environmental and Resource Sciences, Zhejiang University, Yuhangtang Road 866, Hangzhou 310058, China
| | - Runqian Song
- College of Environmental and Resource Sciences, Zhejiang University, Yuhangtang Road 866, Hangzhou 310058, China
| | - Haohan Yang
- School of Environment Science and Spatial Informatics, China University of Mining and Technology, Daxue Road 1, Xuzhou 221116, China
| | - Haiying Yu
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China
| | - Piotr Paneth
- Institute of Applied Radiation Chemistry, Faculty of Chemistry, Lodz University of Technology, Zeromskiego 116, 90-924 Lodz, Poland
| | - Kasper P Kepp
- DTU Chemistry, Technical University of Denmark, Building 206, Kgs. Lyngby DK-2800, Denmark
| | - Miki Akamatsu
- Graduate School of Agriculture, Kyoto University, Kitashirakawa Oiwake-cho, Sakyo-ku, Kyoto 606-8502, Japan
| | - Li Ji
- School of Environment Science and Spatial Informatics, China University of Mining and Technology, Daxue Road 1, Xuzhou 221116, China
- College of Environmental and Resource Sciences, Zhejiang University, Yuhangtang Road 866, Hangzhou 310058, China
- Graduate School of Agriculture, Kyoto University, Kitashirakawa Oiwake-cho, Sakyo-ku, Kyoto 606-8502, Japan
| |
Collapse
|
12
|
Zhu L, Huo X, Zhou J, Zhang Q, Wang W. Metabolic activation mechanism of 2,2',3,3',6,6'-hexachlorobiphenyl (PCB136) by cytochrome P450 2B6: A QM/MM approach. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 776:145579. [PMID: 33652317 DOI: 10.1016/j.scitotenv.2021.145579] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Revised: 01/28/2021] [Accepted: 01/28/2021] [Indexed: 06/12/2023]
Abstract
Cytochrome P450 enzymes (CYPs) play an essential role in the bio-transformation of polychlorinated biphenyls (PCBs). The present work implemented quantum mechanic/molecular mechanic methods (QM/MM) and density functional theory (DFT) to study the metabolic activation of 2,2',3,3',6,6'-hexachlorobiphenyl (PCB136) catalyzed by CYP2B6. Electrophilic additions at the Cα and Cβ positions generate different active intermediates. The electrophilic addition energy barrier of Cβ is 10.9 kcal/mol higher than that of Cα, and Cα is the preferred site for the electrophilic addition reaction. Based on the previous experimental studies, this work investigated the mechanism of converting active intermediates into OH-PCB136, which has high toxicity in a non-enzymatic environment. Structural analysis via the electrostatic and noncovalent interactions indicates that Phe108, Ile114, Phe115, Phe206, Phe297, Ala298, Leu363, Val367, TIP32475 and TIP32667 play crucial roles in substrate recognition and metabolism. The analysis suggests that the halogen-π interactions are important factors for the metabolism of CYP2B6 to halogenated environmental pollutants. This work improved the understanding of the metabolism and activation process of chiral PCBs, and can be used as a guide to improve the microbial degradation efficiency of PCB136.
Collapse
Affiliation(s)
- Ledong Zhu
- Environment Research Institute, Shandong University, Qingdao 266237, PR China
| | - Xinxi Huo
- Environment Research Institute, Shandong University, Qingdao 266237, PR China; Office of Supervisory and Audit, Shandong University, Qingdao 266237, PR China
| | - Jie Zhou
- Environment Research Institute, Shandong University, Qingdao 266237, PR China
| | - Qingzhu Zhang
- Environment Research Institute, Shandong University, Qingdao 266237, PR China.
| | - Wenxing Wang
- Environment Research Institute, Shandong University, Qingdao 266237, PR China
| |
Collapse
|