1
|
Han D, Wang W, Gong J, Ma Y, Li Y. Controlled delivery of mesenchymal stem cells via biodegradable scaffolds for fracture healing. Nanomedicine (Lond) 2024:1-18. [PMID: 39686770 DOI: 10.1080/17435889.2024.2439242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Accepted: 12/04/2024] [Indexed: 12/18/2024] Open
Abstract
Biodegradable controlled delivery systems for mesenchymal stem cells (MSCs) have emerged as novel advancements in the field of regenerative medicine, particularly for accelerating bone fracture healing. This detailed study emphasizes the importance of quick and adequate fracture treatment and the limitations of existing methods. New approaches employing biodegradable scaffolds can be placed within a fracture to serve as a mechanical support and allow controlled release of in situ MSCs and bioactive agents. They are made up of polymers and composites which degrade over time, aiding in natural tissue regrowth. The fabrication methods, including 3D printing, electrospinning, and solvent casting, with particulate leaching that enable precise control over scaffold architecture and properties, are discussed. Progress in controlled drug delivery systems including encapsulation techniques and release kinetics is described, highlighting the potential of such strategies to maintain therapeutic benefits over a prolonged time as well as improving outcomes for fracture repair. MSCs play a role in bone regeneration through differentiation using biodegradable scaffolds, paracrine effects, and regulation of inflammation focusing on fracture healing. Current trends and future directions in scaffold technology and MSC delivery, including smart scaffolds with growth factor incorporation and innovative delivery approaches for fracture healing are also discussed.
Collapse
Affiliation(s)
- Dong Han
- Trauma Orthopedics Department, Yantaishan Hospital, Yantai, China
| | - Weijiao Wang
- Otolaryngology Department, Yantaishan Hospital, Yantai, China
| | - Jinpeng Gong
- Trauma Orthopedics Department, Yantaishan Hospital, Yantai, China
| | - Yupeng Ma
- Trauma Orthopedics Department, Yantaishan Hospital, Yantai, China
| | - Yu Li
- Trauma Orthopedics Department, Yantaishan Hospital, Yantai, China
| |
Collapse
|
2
|
Asri NA, Sezali NAA, Ong HL, Mohd Pisal MH, Lim YH, Fang J. Review on Biodegradable Aliphatic Polyesters: Development and Challenges. Macromol Rapid Commun 2024; 45:e2400475. [PMID: 39445644 DOI: 10.1002/marc.202400475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 10/12/2024] [Indexed: 10/25/2024]
Abstract
Biodegradable polymers are gaining attention as alternatives to non-biodegradable plastics to address environmental issues. With the rising global demand for plastic products, the development of non-toxic, biodegradable plastics is a significant topic of research. Aliphatic polyester, the most common biodegradable polyester, is notable for its semi-crystalline structure and can be synthesized from fossil fuels, microbial fermentation, and plants. Due to great properties like being lightweight, biodegradable, biocompatible, and non-toxic, aliphatic polyesters are used in packaging, medical, agricultural, wearable devices, sensors, and textile applications. The biodegradation rate, crucial for biodegradable polymers, is discussed in this review as it is influenced by their structural properties and environmental conditions. This review discusses currently available biodegradable polyesters, their emerging applications, and the challenges in their commercialization. As research in this area grows, this review emphasizes the innovation in biodegradable aliphatic polyesters and their role in advancing environmental sustainability.
Collapse
Affiliation(s)
- Nur Asnani Asri
- Faculty of Chemical Engineering & Technology, Universiti Malaysia Perlis (UniMAP), Arau, Perlis, 02600, Malaysia
| | - Nur Atirah Afifah Sezali
- Faculty of Chemical Engineering & Technology, Universiti Malaysia Perlis (UniMAP), Arau, Perlis, 02600, Malaysia
| | - Hui Lin Ong
- Faculty of Chemical Engineering & Technology, Universiti Malaysia Perlis (UniMAP), Arau, Perlis, 02600, Malaysia
- Centre of Excellence for Biomass Utilization and Taiwan-Malaysia Innovation Centre for Clean Water and Sustainable Energy (WISE Centre), Universiti Malaysia Perlis (UniMAP), Arau, Perlis, 02600, Malaysia
| | - Mohd Hanif Mohd Pisal
- Faculty of Chemical Engineering & Technology, Universiti Malaysia Perlis (UniMAP), Arau, Perlis, 02600, Malaysia
- Centre of Excellence for Biomass Utilization and Taiwan-Malaysia Innovation Centre for Clean Water and Sustainable Energy (WISE Centre), Universiti Malaysia Perlis (UniMAP), Arau, Perlis, 02600, Malaysia
| | - Ye Heng Lim
- Platinum Phase Sdn. Bhd., Plot 155, Jalan PKNK Utama, Kawasan Perusahaan Taman Ria Jaya, Sungai Petani, Kedah, 08000, Malaysia
| | - Jian Fang
- College of Textile and Clothing Engineering, Soochow University, Suzhou, 215123, China
| |
Collapse
|
3
|
Tekleab G, Klok HA. Synthesis of Amino Acid-Based Aromatic Poly(Ester Urea)s Using 4-Hydroxycinnamic Acid-Derived Diols. Macromol Rapid Commun 2024; 45:e2400507. [PMID: 39311465 DOI: 10.1002/marc.202400507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 09/05/2024] [Indexed: 12/21/2024]
Abstract
Amino acid-based poly(ester urea)s are an attractive class of polymers that are of interest for a variety of biomedical applications. Generally, amino acid-based poly(ester urea)s are prepared by polymerization of diamines, which are obtained from the corresponding amino acids and aliphatic diols. This article presents an alternative synthetic strategy that uses diamine monomers obtained from aromatic, 4-hydroxycinnamic acid-derived diols. A library of structurally related diamine monomers has been prepared by coupling l-leucine to 4-hydroxycinnamic acid-based diols that incorporate alkyl spacers of different lengths. The exploration of 4-hydroxycinnamic acid as a building block is interesting as it can be obtained from various biological resources, such as for example lignin, and thus provides an opportunity to take advantage of (under-utilized) bio-based renewables for the design of new polymer materials. These diamine monomers can be copolymerized in a solvent-free, one-pot, two-step process using dimethyl carbonate as an environmentally sustainable reagent to afford amino acid-based aromatic poly(ester urea) homo- and copolymers with thermal properties that can be tuned by varying the chemical structure of the diamine monomer, or via copolymerization of two different monomers.
Collapse
Affiliation(s)
- Ghezae Tekleab
- École Polytechnique Fédérale de Lausanne (EPFL), Institut des Matériaux and Institut des Sciences et Ingénierie Chimiques, Laboratoire des Polymères, Bâtiment MXD, Station 12, Lausanne, CH-1015, Switzerland
| | - Harm-Anton Klok
- École Polytechnique Fédérale de Lausanne (EPFL), Institut des Matériaux and Institut des Sciences et Ingénierie Chimiques, Laboratoire des Polymères, Bâtiment MXD, Station 12, Lausanne, CH-1015, Switzerland
| |
Collapse
|
4
|
Li W, Li J, Pan C, Lee JS, Kim BS, Gao G. Light-based 3D bioprinting techniques for illuminating the advances of vascular tissue engineering. Mater Today Bio 2024; 29:101286. [PMID: 39435375 PMCID: PMC11492625 DOI: 10.1016/j.mtbio.2024.101286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Revised: 09/21/2024] [Accepted: 10/01/2024] [Indexed: 10/23/2024] Open
Abstract
Vascular tissue engineering faces significant challenges in creating in vitro vascular disease models, implantable vascular grafts, and vascularized tissue/organ constructs due to limitations in manufacturing precision, structural complexity, replicating the composited architecture, and mimicking the mechanical properties of natural vessels. Light-based 3D bioprinting, leveraging the unique advantages of light including high resolution, rapid curing, multi-material adaptability, and tunable photochemistry, offers transformative solutions to these obstacles. With the emergence of diverse light-based 3D bioprinting techniques and innovative strategies, the advances in vascular tissue engineering have been significantly accelerated. This review provides an overview of the human vascular system and its physiological functions, followed by an in-depth discussion of advancements in light-based 3D bioprinting, including light-dominated and light-assisted techniques. We explore the application of these technologies in vascular tissue engineering for creating in vitro vascular disease models recapitulating key pathological features, implantable blood vessel grafts, and tissue analogs with the integration of capillary-like vasculatures. Finally, we provide readers with insights into the future perspectives of light-based 3D bioprinting to revolutionize vascular tissue engineering.
Collapse
Affiliation(s)
- Wei Li
- School of Medical Technology, Beijing Institute of Technology, Beijing 100081, China
| | - Jinhua Li
- School of Medical Technology, Beijing Institute of Technology, Beijing 100081, China
- School of Medical Technology, Beijing Institute of Technology, Zhengzhou Academy of Intelligent Technology, Zhengzhou 450000, China
- Beijing Institute of Technology, Zhuhai, Beijing Institute of Technology (BIT), Zhuhai 519088, China
| | - Chen Pan
- School of Mechanical Engineering, Beijing Institute of Technology, Beijing 100081, China
- School of Mechanical and Equipment Engineering, Hebei University of Engineering, Handan, 050024, China
| | - Jae-Seong Lee
- School of Biomedical Convergence Engineering, Pusan National University, Yangsan 50612, Republic of Korea
- Department of Information Convergence Engineering, Pusan National University, Busan 50612, Republic of Korea
| | - Byoung Soo Kim
- School of Biomedical Convergence Engineering, Pusan National University, Yangsan 50612, Republic of Korea
- Department of Information Convergence Engineering, Pusan National University, Busan 50612, Republic of Korea
| | - Ge Gao
- School of Medical Technology, Beijing Institute of Technology, Beijing 100081, China
- School of Medical Technology, Beijing Institute of Technology, Zhengzhou Academy of Intelligent Technology, Zhengzhou 450000, China
| |
Collapse
|
5
|
Prasannatha B, Ganivada MN, Nalla K, Kanade SR, Jana T. Hierarchical Structures of Amino Acid Derived Polyhydroxyurethanes: Promising Candidates as Drug Carriers and Cell Adhesive Scaffolds. ACS APPLIED BIO MATERIALS 2024; 7:7719-7729. [PMID: 39495894 DOI: 10.1021/acsabm.4c01282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2024]
Abstract
In this study, we examined the self-assembly of a series of biodegradable and biocompatible amino acid-based polyhydroxyurethanes (PHUs), investigating the structural influence of these polymers on their self-assembly and the resulting morphological features. The presence of hydrophilic and hydrophobic segments, along with carbonyl urethane, ester, and hydroxyl groups in the PHU backbone, facilitates intermolecular hydrogen bonding, enabling the formation of self-assemblies with hierarchical nanodimensional morphologies. We determined the critical aggregation concentration (CAC) and found that it largely depends on the PHU's structure. In-depth morphological studies demonstrated that the evolution of morphology proceeds in four steps: (1) the initial formation of micelles, which act as seeds at very low concentrations, (2) the elongation of these micelles into nanorod or nanopalette shapes below the CAC range, (3) the epitaxial growth of nanofibers at the CAC, and (4) the complete formation of fibrous mats above the CAC. Additionally, these hierarchical structures were utilized for the encapsulation and release of the drug doxorubicin (DOX). We observed that 75% of the encapsulated DOX was readily released in a mildly acidic environment, similar to the physiological conditions of cancer cells. Cellular uptake studies confirmed the effective uptake of the drug-loaded nanoassemblies into the cytoplasm of cells. Our studies also confirmed that these self-assembled structures can serve as effective cell adhesive scaffolds for tissue engineering applications.
Collapse
Affiliation(s)
| | | | - Kirankumar Nalla
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Hyderabad 500046, India
| | - Santosh Raja Kanade
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Hyderabad 500046, India
| | - Tushar Jana
- School of Chemistry, University of Hyderabad, Hyderabad 500046, India
| |
Collapse
|
6
|
Wang Z, Sun Y, Li C. Advances in 3D printing technology for preparing bone tissue engineering scaffolds from biodegradable materials. Front Bioeng Biotechnol 2024; 12:1483547. [PMID: 39610936 PMCID: PMC11602280 DOI: 10.3389/fbioe.2024.1483547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Accepted: 10/29/2024] [Indexed: 11/30/2024] Open
Abstract
Introduction Bone tissue engineering (BTE) provides an effective repair solution by implanting osteoblasts or stem cells into biocompatible and biodegradable scaffolds to promote bone regeneration. In recent years, the rapid development of 3D bioprinting has enabled its extensive application in fabricating BTE scaffolds. Based on three-dimensional computer models and specialized "bio-inks," this technology offers new pathways for customizing BTE scaffolds. This study reviews the current status and future prospects of scaffold materials for BTE in 3D bioprinting. Methods This literature review collected recent studies on BTE and 3D bioprinting, analyzing the advantages and limitations of various scaffold materials for 3D printing, including bioceramics, metals, natural polymers, and synthetic polymers. Key characteristics like biocompatibility, mechanical properties, and degradation rates of these materials were systematically compared. Results The study highlights the diverse performances of materials used in BTE scaffolds. Bioceramics exhibit excellent biocompatibility but suffer from brittleness; metals offer high strength but may induce chronic inflammation; natural polymers are biocompatible yet have poor mechanical properties, while synthetic polymers offer strong tunability but may produce acidic by-products during degradation. Additionally, integrating 3D bioprinting with composite materials could enhance scaffold biocompatibility and mechanical properties, presenting viable solutions to current challenges. Discussion This review summarizes recent advances in 3D bioprinting for BTE scaffold applications, exploring the strengths and limitations of various materials and proposing composite material combinations to improve scaffold performance. By optimizing material selection and combinations, 3D bioprinting shows promise for creating customized scaffolds, offering a new technical route for clinical applications of BTE. This research provides a unique perspective and theoretical support for advancing 3D bioprinting technology in bone regeneration, outlining future directions for BTE materials and 3D bioprinting technology development.
Collapse
Affiliation(s)
- Zhen Wang
- College of Mechanical and Electronic Engineering, Shandong University of Science and Technology, Qingdao, China
- State Key Laboratory of Crane Technology, Yanshan University, Hebei, China
- Guangdong Provincial Key Laboratory of Minimally Invasive Surgical Instruments and Manufacturing Technology, Guangdong University of Technology, Guangzhou, China
| | - Yanan Sun
- School of Information Science and Engineering, Yanshan University, Hebei, China
| | - Chen Li
- Guangdong Provincial Key Laboratory of Minimally Invasive Surgical Instruments and Manufacturing Technology, Guangdong University of Technology, Guangzhou, China
| |
Collapse
|
7
|
Lima MDS, de Melo EF, Alves KGB, de Sá F, Alves Júnior S. Development of Functionalized Poly(ε-caprolactone)/Hydroxyapatite Scaffolds via Electrospinning 3D for Enhanced Bone Regeneration. ACS OMEGA 2024; 9:45035-45046. [PMID: 39554400 PMCID: PMC11561599 DOI: 10.1021/acsomega.4c05264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 09/27/2024] [Accepted: 10/04/2024] [Indexed: 11/19/2024]
Abstract
Functionalized scaffolds based on biodegradable polymers are materials used in bone tissue engineering. This study presents the development of functionalized fibrous scaffolds, fabricated from poly(ε-caprolactone) (PCL) and hydroxyapatite (HA). To produce this material, a short-distance electrospinning (ES) system was developed by adapting a 3D printer. The morphology and chemical properties of the scaffolds were evaluated using scanning electron microscopy, X-ray diffraction, Fourier-transform infrared spectroscopy, and thermogravimetric analysis. The results confirmed the porous structure and the presence of hydroxyapatite throughout the entire scaffold area. Mechanical tests indicated good elasticity and tensile strength of the scaffolds, favorable for bone regeneration. In vitro tests showed high levels of cell viability. Furthermore, in vivo experiments using a calvarial defect model in rats demonstrated that the PCL/HA scaffold promoted enhanced bone regeneration. Therefore, the PCL/HA scaffold developed through the adapted electrospinning system shows promise for bone repair.
Collapse
Affiliation(s)
- Maria
José da Silva Lima
- Departamento
de Química Fundamental, Universidade
Federal de Pernambuco, Recife 50670-901, Pernambuco, Brazil
| | - Etelino Feijó de Melo
- Instituto
Federal de Educação, Ciência e Tecnologia de
Pernambuco, Vitória
de Santo Antão 55600-000, Pernambuco, Brazil
| | - Kleber G. B. Alves
- Departamento
de Engenharia Mecânica, Universidade
Federal de Pernambuco, Recife 50670-901, Pernambuco, Brazil
| | - Fabrício
Bezerra de Sá
- Departamento
de Morfologia e Fisiologia Animal, Universidade
Federal Rural de Pernambuco, Recife 52171-900, Pernambuco, Brazil
| | - Severino Alves Júnior
- Departamento
de Química Fundamental, Universidade
Federal de Pernambuco, Recife 50670-901, Pernambuco, Brazil
| |
Collapse
|
8
|
Zhang S, Fang H, Tian H. Recent Advances in Degradable Biomedical Polymers for Prevention, Diagnosis and Treatment of Diseases. Biomacromolecules 2024; 25:7015-7057. [PMID: 39420482 DOI: 10.1021/acs.biomac.4c01193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
Biomedical polymers play a key role in preventing, diagnosing, and treating diseases, showcasing a wide range of applications. Their unique advantages, such as rich source, good biocompatibility, and excellent modifiability, make them ideal biomaterials for drug delivery, biomedical imaging, and tissue engineering. However, conventional biomedical polymers suffer from poor degradation in vivo, increasing the risks of bioaccumulation and potential toxicity. To address these issues, degradable biomedical polymers can serve as an alternative strategy in biomedicine. Degradable biomedical polymers can efficiently relieve bioaccumulation in vivo and effectively reduce patient burden in disease management. This review comprehensively introduces the classification and properties of biomedical polymers and the recent research progress of degradable biomedical polymers in various diseases. Through an in-depth analysis of their classification, properties, and applications, we aim to provide strong guidance for promoting basic research and clinical translation of degradable biomedical polymers.
Collapse
Affiliation(s)
- Siting Zhang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Huapan Fang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
- Shenzhen Research Institute of Xiamen University, Shenzhen 518000, China
| | - Huayu Tian
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| |
Collapse
|
9
|
Chee HL, M Y, Kim J, Koo JW, Luo P, Ramli MFH, Young JL, Wang F. Mechanical and Dimensional Stability of Gelatin-Based Hydrogels Through 3D Printing-Facilitated Confined Space Assembly. ACS APPLIED MATERIALS & INTERFACES 2024; 16:61105-61114. [PMID: 39460703 DOI: 10.1021/acsami.4c15025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/28/2024]
Abstract
Hydrogels have emerged as promising biomaterials for tissue regeneration; yet, their inherent swelling can cause deformation and reduced mechanical properties, posing challenges for practical applications in biomedical engineering. Traditional methods to reduce hydrogel swelling often involve complex synthesis procedures with limited flexibility. Inspired by nature's efficient designs, we present here the approach to improve hydrogel performance using 3D printing-assisted microstructure engineering. By utilizing polymerization-induced phase separation of hydrogel from copolymerization of gelatin methacrylate and hydroxyethyl methacrylate (poly(GelMA-co-HEMA)) in the confined space during vat photopolymerization (VPP) 3D printing, we replicate the cuttlebone-like microstructure of hydrogels with enhanced mechanical properties and swelling resistance. We demonstrate here a 4-fold increase in elastic modulus compared to bulk polymerization of poly(GelMA-co-HEMA), together with improved mechanical and dimensional stability. This method offers promising opportunities for practical biomedical and tissue engineering applications, overcoming previous limitations in the design and performance.
Collapse
Affiliation(s)
- Heng Li Chee
- Institute of Materials Research and Engineering, Agency for Science, Technology and Research, 2 Fusionopolis Way, Innovis #08-03, Singapore 138634, Singapore
| | - Yashaaswini M
- School of Materials Science and Engineering, Nanyang Technological University (NTU), 50 Nanyang Avenue, Singapore 639798, Singapore
| | - Jaedeok Kim
- Mechanobiology Institute (MBI), National University of Singapore (NUS), 5A Engineering Drive 1, Singapore 117411, Singapore
| | - Jing Wen Koo
- Mechanobiology Institute (MBI), National University of Singapore (NUS), 5A Engineering Drive 1, Singapore 117411, Singapore
| | - Ping Luo
- Institute of Materials Research and Engineering, Agency for Science, Technology and Research, 2 Fusionopolis Way, Innovis #08-03, Singapore 138634, Singapore
| | - M Faris H Ramli
- Mechanobiology Institute (MBI), National University of Singapore (NUS), 5A Engineering Drive 1, Singapore 117411, Singapore
- Department of Biomedical Engineering, College of Design and Engineering, National University of Singapore (NUS), 4 Engineering Drive 3, Singapore 117583, Singapore
| | - Jennifer L Young
- Mechanobiology Institute (MBI), National University of Singapore (NUS), 5A Engineering Drive 1, Singapore 117411, Singapore
- Department of Biomedical Engineering, College of Design and Engineering, National University of Singapore (NUS), 4 Engineering Drive 3, Singapore 117583, Singapore
| | - FuKe Wang
- Institute of Materials Research and Engineering, Agency for Science, Technology and Research, 2 Fusionopolis Way, Innovis #08-03, Singapore 138634, Singapore
| |
Collapse
|
10
|
Zivari-Ghader T, Shokouhi B, Kosari-Nasab M, Davaran S, Hamishehkar H, Farahpour MR, Rashidi MR, Mehrali M. Hypericum Perforatum Callus Extract-Loaded Composite Hydrogel with Diverse Bioactivities for Enhanced Wound Healing and Fibrosis Prevention. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024:e2407112. [PMID: 39498666 DOI: 10.1002/smll.202407112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 10/07/2024] [Indexed: 11/07/2024]
Abstract
Plant Callus are a valuable source of pluripotent stem cells and bioactive phytochemicals. Meanwhile, the Hypericum perforatum callus extract (HPCE) is particularly rich in compounds such as hyperforin, hypericin, quercetin, and other phenolic and flavonoid derivatives. These phytochemicals exhibit strong antibacterial, antioxidant, anti-inflammatory, and anti-fibrotic properties, making them promising for wound healing. One of the most critical challenges following wound healing is the formation of fibrosis, which can compromise the complex structural integrity of skin. To address this issue, a poly(vinyl alcohol)/chitosan/alginate (PCA) wound dressing loaded with HPCE is developed. This hydrogel dressing features a porous structure with suitable mechanical properties and a high swelling capacity, potentially enhancing its effectiveness in promoting tissue regeneration and wound healing. In vitro studies have confirmed its biocompatibility, cell proliferation, and cell adhesion properties. Additionally, the dressing has demonstrated the ability to inhibit the proliferation of certain antibiotic-resistant bacteria. The in vivo studies revealed the anti-inflammatory properties, promotion of angiogenesis, facilitation of re-epithelialization, and stimulation of collagen deposition of the dressing under investigation. Moreover, the immunohistochemistry analysis of the two key markers, p16 and p53, has shown that the application of the dressing helps prevent fibrosis after wound healing.
Collapse
Affiliation(s)
- Tayebeh Zivari-Ghader
- Department of Medicinal Chemistry, Faculty of Pharmacy, Tabriz University of Medical Science, Tabriz, 51664-14766, Iran
| | - Behrooz Shokouhi
- Department of Pathology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, 51664-14766, Iran
| | - Morteza Kosari-Nasab
- Department of Plant, Cell and Molecular Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, 51666-16471, Iran
| | - Soodabeh Davaran
- Department of Medicinal Chemistry, Faculty of Pharmacy, Tabriz University of Medical Science, Tabriz, 51664-14766, Iran
| | - Hamed Hamishehkar
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, 51656-65811, Iran
| | - Mohammad Reza Farahpour
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Urmia Branch, Islamic Azad University, Urmia, 57159-14338, Iran
| | - Mohammad-Reza Rashidi
- Department of Medicinal Chemistry, Faculty of Pharmacy, Tabriz University of Medical Science, Tabriz, 51664-14766, Iran
| | - Mehdi Mehrali
- Department of Civil and Mechanical Engineering, Technical University of Denmark, Kongens Lyngby, 2800, Denmark
| |
Collapse
|
11
|
Zhu Y, Guo S, Ravichandran D, Ramanathan A, Sobczak MT, Sacco AF, Patil D, Thummalapalli SV, Pulido TV, Lancaster JN, Yi J, Cornella JL, Lott DG, Chen X, Mei X, Zhang YS, Wang L, Wang X, Zhao Y, Hassan MK, Chambers LB, Theobald TG, Yang S, Liang L, Song K. 3D-Printed Polymeric Biomaterials for Health Applications. Adv Healthc Mater 2024:e2402571. [PMID: 39498750 DOI: 10.1002/adhm.202402571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 09/17/2024] [Indexed: 11/07/2024]
Abstract
3D printing, also known as additive manufacturing, holds immense potential for rapid prototyping and customized production of functional health-related devices. With advancements in polymer chemistry and biomedical engineering, polymeric biomaterials have become integral to 3D-printed biomedical applications. However, there still exists a bottleneck in the compatibility of polymeric biomaterials with different 3D printing methods, as well as intrinsic challenges such as limited printing resolution and rates. Therefore, this review aims to introduce the current state-of-the-art in 3D-printed functional polymeric health-related devices. It begins with an overview of the landscape of 3D printing techniques, followed by an examination of commonly used polymeric biomaterials. Subsequently, examples of 3D-printed biomedical devices are provided and classified into categories such as biosensors, bioactuators, soft robotics, energy storage systems, self-powered devices, and data science in bioplotting. The emphasis is on exploring the current capabilities of 3D printing in manufacturing polymeric biomaterials into desired geometries that facilitate device functionality and studying the reasons for material choice. Finally, an outlook with challenges and possible improvements in the near future is presented, projecting the contribution of general 3D printing and polymeric biomaterials in the field of healthcare.
Collapse
Affiliation(s)
- Yuxiang Zhu
- Manufacturing Engineering, The School of Manufacturing Systems and Networks (MSN), Ira A. Fulton Schools of Engineering, Arizona State University (ASU), Mesa, AZ, 85212, USA
| | - Shenghan Guo
- Manufacturing Engineering, The School of Manufacturing Systems and Networks (MSN), Ira A. Fulton Schools of Engineering, Arizona State University (ASU), Mesa, AZ, 85212, USA
| | - Dharneedar Ravichandran
- Manufacturing Engineering, The School of Manufacturing Systems and Networks (MSN), Ira A. Fulton Schools of Engineering, Arizona State University (ASU), Mesa, AZ, 85212, USA
| | - Arunachalam Ramanathan
- School of Environmental, Civil, Agricultural, and Mechanical Engineering (ECAM), College of Engineering, University of Georgia, Athens, GA, 30602, USA
| | - M Taylor Sobczak
- School of Environmental, Civil, Agricultural, and Mechanical Engineering (ECAM), College of Engineering, University of Georgia, Athens, GA, 30602, USA
| | - Alaina F Sacco
- School of Chemical, Materials and Biomedical Engineering (CMBE), College of Engineering, University of Georgia, Athens, GA, 30602, USA
| | - Dhanush Patil
- Manufacturing Engineering, The School of Manufacturing Systems and Networks (MSN), Ira A. Fulton Schools of Engineering, Arizona State University (ASU), Mesa, AZ, 85212, USA
| | - Sri Vaishnavi Thummalapalli
- School of Environmental, Civil, Agricultural, and Mechanical Engineering (ECAM), College of Engineering, University of Georgia, Athens, GA, 30602, USA
| | - Tiffany V Pulido
- Department of Immunology, Mayo Clinic Arizona, 13400 E Shea Blvd, Scottsdale, AZ, 85259, USA
| | - Jessica N Lancaster
- Department of Immunology, Mayo Clinic Arizona, 13400 E Shea Blvd, Scottsdale, AZ, 85259, USA
| | - Johnny Yi
- Department of Medical and Surgical Gynecology, Mayo Clinic Arizona, 5777 E Mayo Blvd, Phoenix, AZ, 85054, USA
| | - Jeffrey L Cornella
- Department of Medical and Surgical Gynecology, Mayo Clinic Arizona, 5777 E Mayo Blvd, Phoenix, AZ, 85054, USA
| | - David G Lott
- Division of Laryngology, Department of Otolaryngology, Mayo Clinic Arizona, Phoenix, AZ, USA
| | - Xiangfan Chen
- Manufacturing Engineering, The School of Manufacturing Systems and Networks (MSN), Ira A. Fulton Schools of Engineering, Arizona State University (ASU), Mesa, AZ, 85212, USA
| | - Xuan Mei
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA, 02139, USA
| | - Yu Shrike Zhang
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA, 02139, USA
| | - Linbing Wang
- School of Environmental, Civil, Agricultural, and Mechanical Engineering (ECAM), College of Engineering, University of Georgia, Athens, GA, 30602, USA
| | - Xianqiao Wang
- School of Environmental, Civil, Agricultural, and Mechanical Engineering (ECAM), College of Engineering, University of Georgia, Athens, GA, 30602, USA
| | - Yiping Zhao
- Physics, Franklin College of Arts and Sciences, University of Georgia, Athens, GA, 30602, USA
| | | | - Lindsay B Chambers
- School of Environmental, Civil, Agricultural, and Mechanical Engineering (ECAM), College of Engineering, University of Georgia, Athens, GA, 30602, USA
| | - Taylor G Theobald
- School of Environmental, Civil, Agricultural, and Mechanical Engineering (ECAM), College of Engineering, University of Georgia, Athens, GA, 30602, USA
| | - Sui Yang
- Materials Science and Engineering, School for Engineering of Matter, Transport and Energy (SEMTE) at Arizona State University, Tempe, AZ, 85287, USA
| | | | - Kenan Song
- Manufacturing Engineering, The School of Manufacturing Systems and Networks (MSN), Ira A. Fulton Schools of Engineering, Arizona State University (ASU), Mesa, AZ, 85212, USA
- School of Environmental, Civil, Agricultural, and Mechanical Engineering (ECAM), College of Engineering, University of Georgia, Athens, GA, 30602, USA
| |
Collapse
|
12
|
Liu YY, Intini C, Dobricic M, O'Brien FJ, LLorca J, Echeverry-Rendon M. Collagen-based 3D printed poly (glycerol sebacate) composite scaffold with biomimicking mechanical properties for enhanced cartilage defect repair. Int J Biol Macromol 2024; 280:135827. [PMID: 39306177 DOI: 10.1016/j.ijbiomac.2024.135827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 09/18/2024] [Accepted: 09/18/2024] [Indexed: 09/26/2024]
Abstract
Cartilage defect repair with optimal efficiency remains a significant challenge due to the limited self-repair capability of native tissues. The development of bioactive scaffolds with biomimicking mechanical properties and degradation rates matched with cartilage regeneration while simultaneously driving chondrogenesis, plays a crucial role in enhancing cartilage defect repair. To this end, a novel composite scaffold with hierarchical porosity was manufactured by incorporating a pro-chondrogenic collagen type I/II-hyaluronic acid (CI/II-HyA) matrix to a 3D-printed poly(glycerol sebacate) (PGS) framework. Based on the mechanical enforcement of PGS framework, the composite scaffold exhibited a compressive modulus of 167.0 kPa, similar to that of native cartilage, as well as excellent fatigue resistance, similar to that of native joint tissue. In vitro degradation tests demonstrated that the composite scaffold maintained structural, mass, and mechanical stability during the initial cartilage regeneration period of 4 weeks, while degraded linearly over time. In vitro biological tests with rat-derived mesenchymal stem cell (MSC) revealed that, the composite scaffold displayed increased cell loading efficiency and improved overall cell viability due to the incorporation of CI/II-HyA matrix. Additionally, it also sustained an effective and high-quality MSC chondrogenesis and abundant de-novo cartilage-like matrix deposition up to day 28. Overall, the biomimetic composite scaffold with sufficient mechanical support, matched degradation rate with cartilage regeneration, and effective chondrogenesis stimulation shows great potential to be an ideal candidate for enhancing cartilage defect repair.
Collapse
Affiliation(s)
- Yu-Yao Liu
- IMDEA Materials Institute, 28906 Getafe, Madrid, Spain; Department of Materials Science, Polytechnic University of Madrid/Universidad Politécnica de Madrid, 28040, Madrid, Spain
| | - Claudio Intini
- Tissue Engineering Research Group, Department of Anatomy & Regenerative Medicine, Royal College of Surgeons in Ireland (RCSI), Dublin, Ireland; Trinity Centre for Biomedical Engineering, Trinity College Dublin (TCD), Dublin 2, Ireland; Advanced Materials and Bioengineering Research (AMBER) Centre, RCSI and TCD, Dublin, Ireland
| | - Marko Dobricic
- Tissue Engineering Research Group, Department of Anatomy & Regenerative Medicine, Royal College of Surgeons in Ireland (RCSI), Dublin, Ireland; Trinity Centre for Biomedical Engineering, Trinity College Dublin (TCD), Dublin 2, Ireland; Advanced Materials and Bioengineering Research (AMBER) Centre, RCSI and TCD, Dublin, Ireland
| | - Fergal J O'Brien
- Tissue Engineering Research Group, Department of Anatomy & Regenerative Medicine, Royal College of Surgeons in Ireland (RCSI), Dublin, Ireland; Trinity Centre for Biomedical Engineering, Trinity College Dublin (TCD), Dublin 2, Ireland; Advanced Materials and Bioengineering Research (AMBER) Centre, RCSI and TCD, Dublin, Ireland.
| | - Javier LLorca
- IMDEA Materials Institute, 28906 Getafe, Madrid, Spain; Department of Materials Science, Polytechnic University of Madrid/Universidad Politécnica de Madrid, 28040, Madrid, Spain.
| | | |
Collapse
|
13
|
Bhavsar A, Pati F, Chakraborty P. Supramolecular Conductive Hydrogels for Tissue Engineering Applications. Chembiochem 2024:e202400733. [PMID: 39462202 DOI: 10.1002/cbic.202400733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2024] [Accepted: 10/24/2024] [Indexed: 10/29/2024]
Abstract
Owing to their unique attributes, including reversibility, specificity, directionality, and tunability, supramolecular biomaterials have evolved as an excellent alternative to conventional biomaterials like polymers, ceramics, and metals. Supramolecular hydrogels, in particular, have garnered significant interest because their fibrous architecture, high water content, and interconnected 3D network resemble the extracellular matrix to some extent. Consequently, supramolecular hydrogels have been used to develop biomaterials for tissue engineering. Supramolecular conductive hydrogels combine the advantages of supramolecular soft materials with the electrical properties of metals, making them highly relevant for electrogenic tissue engineering. Given the versatile applications of these hydrogels, it is essential to periodically review high-quality research in this area. In this review, we focus on recent advances in supramolecular conductive hydrogels, particularly their applications in tissue engineering. We discuss the conductive components of these hydrogels and highlight notable reports on their use in cardiac, skin, and neural tissue engineering. Additionally, we outline potential future developments in this field.
Collapse
Affiliation(s)
- Aashwini Bhavsar
- Centre for Interdisciplinary Programs, Indian Institute of Technology Hyderabad, Kandi, 502284, Sangareddy, Telangana, India
| | - Falguni Pati
- Department of Biomedical Engineering, Indian Institute of Technology Hyderabad, Kandi, 502284, Sangareddy, Telangana, India
| | - Priyadarshi Chakraborty
- Department of Chemistry, Indian Institute of Technology Hyderabad, Kandi, 502284, Sangareddy, Telangana, India
| |
Collapse
|
14
|
Yao R, Liu X, Yu H, Hou Z, Chang S, Yang L. Electronic skin based on natural biodegradable polymers for human motion monitoring. Int J Biol Macromol 2024; 278:134694. [PMID: 39142476 DOI: 10.1016/j.ijbiomac.2024.134694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 08/02/2024] [Accepted: 08/11/2024] [Indexed: 08/16/2024]
Abstract
The wearability of the flexible electronic skin (e-skin) allows it to attach to the skin for human motion monitoring, which is essential for studying human motion and especially for assessing how well patients are recovering from rehabilitation therapy. However, the use of non-degradable synthetic materials in e-skin may raise skin safety concerns. Natural biodegradable polymers with advantages such as biodegradability, biocompatibility, sustainability, natural abundance, and low cost have the potential to be alternative materials for constructing flexible e-skin and applying them to human motion monitoring. This review summarizes the applications of natural biodegradable polymers in e-skin for human motion monitoring over the past three years, focusing on the discussion of cellulose, chitosan, silk fibroin, gelatin, and sodium alginate. Finally, we summarize the opportunities and challenges of e-skin based on natural biodegradable polymers. It is hoped that this review will provide insights for the future development of flexible e-skin in the field of human motion monitoring.
Collapse
Affiliation(s)
- Ruiqin Yao
- Research Center for Biomedical Materials, Engineering Research Center of Ministry of Education for Minimally Invasive Gastrointestinal Endoscopic Techniques, Shengjing Hospital of China Medical University, Shenyang 110004, P.R. China; School of Intelligent Medicine, China Medical University, Shenyang 110122, P.R. China
| | - Xun Liu
- Department of General Surgery, Shengjing Hospital of China Medical University, 110004, P.R. China
| | - Honghao Yu
- Department of Spine Surgery, Shengjing Hospital of China Medical University, Shenyang 110004, P.R. China
| | - Zhipeng Hou
- Research Center for Biomedical Materials, Engineering Research Center of Ministry of Education for Minimally Invasive Gastrointestinal Endoscopic Techniques, Shengjing Hospital of China Medical University, Shenyang 110004, P.R. China.
| | - Shijie Chang
- School of Intelligent Medicine, China Medical University, Shenyang 110122, P.R. China.
| | - Liqun Yang
- Research Center for Biomedical Materials, Engineering Research Center of Ministry of Education for Minimally Invasive Gastrointestinal Endoscopic Techniques, Shengjing Hospital of China Medical University, Shenyang 110004, P.R. China.
| |
Collapse
|
15
|
Xie C, Chen Y, Wang L, Liao K, Xue B, Han Y, Li L, Jiang Q. Recent research of peptide-based hydrogel in nervous regeneration. Bioact Mater 2024; 40:503-523. [PMID: 39040568 PMCID: PMC11261279 DOI: 10.1016/j.bioactmat.2024.06.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 06/02/2024] [Accepted: 06/07/2024] [Indexed: 07/24/2024] Open
Abstract
Neurological disorders exert significantly affect the quality of life for patients, necessitating effective strategies for nerve regeneration. Both traditional autologous nerve transplantation and emerging therapeutic approaches encounter scientific challenges due to the complex nature of the nervous system and the unsuitability of the surrounding environment for cell transplantation. Tissue engineering techniques offer a promising path for neurotherapy. Successful neural tissue engineering relies on modulating cell differentiation behavior and tissue repair by developing biomaterials that mimic the natural extracellular matrix (ECM) and establish a three-dimensional microenvironment. Peptide-based hydrogels have emerged as a potent option among these biomaterials due to their ability to replicate the structure and complexity of the ECM. This review aims to explore the diverse range of peptide-based hydrogels used in nerve regeneration with a specific focus on dipeptide hydrogels, tripeptide hydrogels, oligopeptide hydrogels, multidomain peptides (MDPs), and amphiphilic peptide hydrogels (PAs). Peptide-based hydrogels offer numerous advantages, including biocompatibility, structural diversity, adjustable mechanical properties, and degradation without adverse effects. Notably, hydrogels formed from self-assembled polypeptide nanofibers, derived from amino acids, show promising potential in engineering neural tissues, outperforming conventional materials like alginate, poly(ε-caprolactone), and polyaniline. Additionally, the simple design and cost-effectiveness of dipeptide-based hydrogels have enabled the creation of various functional supramolecular structures, with significant implications for nervous system regeneration. These hydrogels are expected to play a crucial role in future neural tissue engineering research. This review aims to highlight the benefits and potential applications of peptide-based hydrogels, contributing to the advancement of neural tissue engineering.
Collapse
Affiliation(s)
- Chunmei Xie
- State Key Laboratory of Mechanics and Control of Mechanical Structures, Nanjing University of Aeronautics and Astronautics, Nanjing, 210016, China
| | - Yueyang Chen
- State Key Laboratory of Mechanics and Control of Mechanical Structures, Nanjing University of Aeronautics and Astronautics, Nanjing, 210016, China
| | - Lang Wang
- State Key Laboratory of Mechanics and Control of Mechanical Structures, Nanjing University of Aeronautics and Astronautics, Nanjing, 210016, China
| | - Kin Liao
- Advanced Digital and Additive Manufacturing Center, Khalifa University of Science and Technology, Po Box 127788, Abu Dhabi, United Arab Emirates
| | - Bin Xue
- National Laboratory of Solid State Microstructures, Department of Physics, Nanjing University, Nanjing, China
| | - Yulong Han
- State Key Laboratory of Mechanics and Control of Mechanical Structures, Nanjing University of Aeronautics and Astronautics, Nanjing, 210016, China
| | - Lan Li
- State Key Laboratory of Pharmaceutical Biotechnology, Division of Sports Medicine and Adult Reconstructive Surgery, Department of Orthopedic Surgery, Drum Tower Hospital Affiliated to Medical School of Nanjing University, Nanjing, China
- Jiangsu Engineering Research Center for 3D Bioprinting, Nanjing, China
- Institute of Medical 3D Printing, Nanjing University, Nanjing, China
| | - Qing Jiang
- State Key Laboratory of Pharmaceutical Biotechnology, Division of Sports Medicine and Adult Reconstructive Surgery, Department of Orthopedic Surgery, Drum Tower Hospital Affiliated to Medical School of Nanjing University, Nanjing, China
- Jiangsu Engineering Research Center for 3D Bioprinting, Nanjing, China
- Institute of Medical 3D Printing, Nanjing University, Nanjing, China
| |
Collapse
|
16
|
Patil SJ, Thorat VM, Koparde AA, Bhosale RR, Bhinge SD, Chavan DD, Tiwari DD. Theranostic Applications of Scaffolds in Current Biomedical Research. Cureus 2024; 16:e71694. [PMID: 39559663 PMCID: PMC11571282 DOI: 10.7759/cureus.71694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Accepted: 10/17/2024] [Indexed: 11/20/2024] Open
Abstract
Theranostics, a remarkable combination of diagnostics and therapeutics, has given rise to tissue/organ-format theranostic scaffolds that integrate targeted therapy and real-time disease monitoring. The scaffold is a 3D structuring template for cell or tissue attachment and growth. These scaffolds offer unprecedented opportunities for personalized medicine and hold great potential for revolutionizing healthcare. Recent advancements in fabrication techniques have enabled the creation of highly intricate and precisely engineered scaffolds with controllable physical and chemical properties, enhancing their therapeutic potential for tissue engineering and regenerative medicine. This paper proposes a new categorization method for scaffolds in tissue engineering based on the relativity of scaffold design-independent parameters. Five types of scaffolds are defined at different levels, highlighting the importance of understanding and analyzing scaffold types. It possesses the ability to seamlessly integrate diagnostics and therapeutics within a single platform, enhancing the efficacy and precision of personalized medicine. Natural scaffolds derived from biomaterials and synthetic scaffolds fabricated by human intervention are discussed, with synthetic scaffolds offering advantages such as tunable mechanical properties and controlled drug delivery, while natural scaffolds provide inherent biocompatibility and bioactivity, making them ideal for promoting cellular responses. The use of synthetic scaffolds shows great promise in advancing regenerative medicine and improving patient outcomes. The transfer of new technologies and changes in society have accelerated the evolution of health monitoring into the era of personal health monitoring. Using emerging health data, cost-effective analytics, wireless sensor networks, mobile smartphones, and easy internet access, the combination of these technologies is expected to accelerate the transition to personal health monitoring outside of traditional healthcare settings. The main objective of this review article is to provide a comprehensive overview of the theranostic applications of scaffolds in current biomedical research, highlighting their dual role in therapy and diagnostics. The review aims to explore the latest advancements in scaffold design, fabrication, and functionalization, emphasizing how these innovations contribute to improved therapeutic efficacy, targeted drug delivery, and the real-time monitoring of disease progression across various medical fields.
Collapse
Affiliation(s)
- Sarika J Patil
- Department of Pharmacology, Krishna Institute of Medical Sciences, Krishna Vishwa Vidyapeeth (Deemed to be University), Karad, IND
| | - Vandana M Thorat
- Department of Pharmacology, Krishna Institute of Medical Sciences, Krishna Vishwa Vidyapeeth (Deemed to be University), Karad, IND
| | - Akshada A Koparde
- Department of Pharmaceutical Chemistry, Krishna Institute of Pharmacy, Krishna Vishwa Vidyapeeth (Deemed to be University), Karad, IND
| | - Rohit R Bhosale
- Department of Pharmaceutics, Krishna Foundation's Jaywant Institute of Pharmacy, Karad, IND
| | - Somnath D Bhinge
- Department of Pharmaceutical Chemistry, Rajarambapu College of Pharmacy, Kasegaon, IND
| | - Dhanashri D Chavan
- Department of Pharmacology, Krishna Institute of Medical Sciences, Krishna Vishwa Vidyapeeth (Deemed to be University), Karad, IND
| | - Devkumar D Tiwari
- Department of Pharmacology, Krishna Institute of Medical Sciences, Krishna Vishwa Vidyapeeth (Deemed to be University), Karad, IND
| |
Collapse
|
17
|
Xu C, Chen Y, Zhao S, Li D, Tang X, Zhang H, Huang J, Guo Z, Liu W. Mechanical Regulation of Polymer Gels. Chem Rev 2024; 124:10435-10508. [PMID: 39284130 DOI: 10.1021/acs.chemrev.3c00498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/26/2024]
Abstract
The mechanical properties of polymer gels devote to emerging devices and machines in fields such as biomedical engineering, flexible bioelectronics, biomimetic actuators, and energy harvesters. Coupling network architectures and interactions has been explored to regulate supportive mechanical characteristics of polymer gels; however, systematic reviews correlating mechanics to interaction forces at the molecular and structural levels remain absent in the field. This review highlights the molecular engineering and structural engineering of polymer gel mechanics and a comprehensive mechanistic understanding of mechanical regulation. Molecular engineering alters molecular architecture and manipulates functional groups/moieties at the molecular level, introducing various interactions and permanent or reversible dynamic bonds as the dissipative energy. Molecular engineering usually uses monomers, cross-linkers, chains, and other additives. Structural engineering utilizes casting methods, solvent phase regulation, mechanochemistry, macromolecule chemical reactions, and biomanufacturing technology to construct and tailor the topological network structures, or heterogeneous modulus compositions. We envision that the perfect combination of molecular and structural engineering may provide a fresh view to extend exciting new perspectives of this burgeoning field. This review also summarizes recent representative applications of polymer gels with excellent mechanical properties. Conclusions and perspectives are also provided from five aspects of concise summary, mechanical mechanism, biofabrication methods, upgraded applications, and synergistic methodology.
Collapse
Affiliation(s)
- Chenggong Xu
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
- College of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yi Chen
- Key Laboratory of Instrumentation Science and Dynamic Measurement, Ministry of Education, North University of China, Taiyuan 030051, China
| | - Siyang Zhao
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
- College of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Deke Li
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
- School of materials engineering, Lanzhou Institute of Technology, Lanzhou 730000, China
| | - Xing Tang
- Hubei Collaborative Innovation Centre for Advanced Organic Chemical Materials and Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubeu University, Wuhan 430062, China
| | - Haili Zhang
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
- Hubei Collaborative Innovation Centre for Advanced Organic Chemical Materials and Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubeu University, Wuhan 430062, China
| | - Jinxia Huang
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Zhiguang Guo
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
- Hubei Collaborative Innovation Centre for Advanced Organic Chemical Materials and Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubeu University, Wuhan 430062, China
| | - Weimin Liu
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
| |
Collapse
|
18
|
Islam MA, Kamarrudin NS, Ijaz MF, Furuki T, Basaruddin KS, Daud R. Soft material drilling: A thermo-mechanical analysis of polyurethane foam for biomimetic bone scaffolds and optimization of process parameters using Taguchi method. Heliyon 2024; 10:e37465. [PMID: 39296242 PMCID: PMC11409127 DOI: 10.1016/j.heliyon.2024.e37465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 08/01/2024] [Accepted: 09/04/2024] [Indexed: 09/21/2024] Open
Abstract
Drilling is a widely employed technique in machining processes, crucial for efficient material removal. However, when applied to living tissues, its invasiveness must be carefully considered. This study investigates drilling processes on polyurethane foam blocks mimicking human bone mechanical properties. Various drill bit types (118° twist, 135° twist, spherical, and conical), drilling speeds (1000-1600 rpm), and feed rates (20-80 mm/min) were examined to assess temperature elevation during drilling. The Taguchi method facilitated systematic experiment design and optimization. Signal-to-noise (S/N) ratio and analysis of variance (ANOVA) identified significant drilling parameters affecting temperature rise. Validation was conducted through confirmation testing. Results indicate that standard twist drill bits with smaller point angles, lower drilling speeds, and higher feed rates effectively minimize temperature elevation during drilling.
Collapse
Affiliation(s)
- Md Ashequl Islam
- Faculty of Mechanical Engineering Technology, Universiti Malaysia Perlis, 02600, Arau, Perlis, Malaysia
| | - Nur Saifullah Kamarrudin
- Faculty of Mechanical Engineering Technology, Universiti Malaysia Perlis, 02600, Arau, Perlis, Malaysia
| | - Muhammad Farzik Ijaz
- Mechanical Engineering Department, College of Engineering, King Saud University, Riyadh, 11421, Saudi Arabia
| | - Tatsuya Furuki
- Department of Mechanical Engineering, Chubu University, 1200, Matsumoto, Japan
| | - Khairul Salleh Basaruddin
- Faculty of Mechanical Engineering Technology, Universiti Malaysia Perlis, 02600, Arau, Perlis, Malaysia
| | - Ruslizam Daud
- Faculty of Mechanical Engineering Technology, Universiti Malaysia Perlis, 02600, Arau, Perlis, Malaysia
| |
Collapse
|
19
|
Shendage SS, Kachare K, Gaikwad K, Naikwade MB, Kashte S, Ghule AV. Bioactive material‑sodium alginate-polyvinyl alcohol composite film scaffold for bone tissue engineering application. Int J Biol Macromol 2024; 276:133860. [PMID: 39009256 DOI: 10.1016/j.ijbiomac.2024.133860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 06/29/2024] [Accepted: 07/11/2024] [Indexed: 07/17/2024]
Abstract
Road accidents and infection-causing diseases during bone surgery are serious problems in orthopedics, and thus, addressing these pressing challenges is crucial. In the present study, the 70S30C calcium silicate bioactive material (BM) is synthesized by a sustainable approach employing a precipitation method using recycled rice husk and eggshells as a precursor of silica and calcium. Further, 70S30C BM is composited with sodium alginate (SA) and polyvinyl alcohol (PVA), and the films were prepared by solvent casting method. The composite films were prepared without the addition of acid, binder, and crosslinking agents. Further, the films were characterized by BET, XRD, ATR-FTIR, SEM, and EDS mapping. The in vitro bioactivity and biodegradation study is performed in the simulated body fluid (SBF). The in vitro haemolysis study is executed using human blood and the results demonstrate haemocompatibility of the composite films. The ex ovo CAM assay also exhibits good neovascularization. The in vitro and in vivo biocompatibility assay proves its non-toxic nature. Further, the in vivo study reveals that the engineered composite film demonstrates accelerated osteogenesis. This work broadens the orthopedic potential of the composite film and offers bioactivity, haemocompatibility, angiogenesis, non-toxicity, and in vivo osteogenesis which would serve as a potential candidate for bone tissue engineering application.
Collapse
Affiliation(s)
- Shital S Shendage
- Green Nanotechnology Laboratory, Department of Chemistry, Shivaji University, Kolhapur 416004, India
| | - Kranti Kachare
- Green Nanotechnology Laboratory, Department of Chemistry, Shivaji University, Kolhapur 416004, India
| | - Kajal Gaikwad
- Department of Stem Cell and Regenerative Medicine, Centre for Interdisciplinary Research, D. Y. Patil Education Society (Institution Deemed to Be University), Kolhapur, India
| | - Mahesh B Naikwade
- Department of Chemical and Biological Engineering, Gachon University, South Korea
| | - Shivaji Kashte
- Department of Stem Cell and Regenerative Medicine, Centre for Interdisciplinary Research, D. Y. Patil Education Society (Institution Deemed to Be University), Kolhapur, India
| | - Anil Vithal Ghule
- Green Nanotechnology Laboratory, Department of Chemistry, Shivaji University, Kolhapur 416004, India.
| |
Collapse
|
20
|
Zhu T, Hu Y, Cui H, Cui H. 3D Multispheroid Assembly Strategies towards Tissue Engineering and Disease Modeling. Adv Healthc Mater 2024; 13:e2400957. [PMID: 38924326 DOI: 10.1002/adhm.202400957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 06/21/2024] [Indexed: 06/28/2024]
Abstract
Cell spheroids (esp. organoids) as 3D culture platforms are popular models for representing cell-cell and cell-extracellular matrix (ECM) interactions, bridging the gap between 2D cell cultures and natural tissues. 3D cell models with spatially organized multiple cell types are preferred for gaining comprehensive insights into tissue pathophysiology and constructing in vitro tissues and disease models because of the complexities of natural tissues. In recent years, an assembly strategy using cell spheroids (or organoids) as living building blocks has been developed to construct complex 3D tissue models with spatial organization. Here, a comprehensive overview of recent advances in multispheroid assembly studies is provided. The different mechanisms of the multispheroid assembly techniques, i.e., automated directed assembly, noncontact remote assembly, and programmed self-assembly, are introduced. The processing steps, advantages, and technical limitations of the existing methodologies are summarized. Applications of the multispheroid assembly strategies in disease modeling, drug screening, tissue engineering, and organogenesis are reviewed. Finally, this review concludes by emphasizing persistent issues and future perspectives, encouraging researchers to adopt multispheroid assembly techniques for generating advanced 3D cell models that better resemble real tissues.
Collapse
Affiliation(s)
- Tong Zhu
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400044, China
| | - Yan Hu
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400044, China
| | - Haitao Cui
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400044, China
| | - Haijun Cui
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400044, China
| |
Collapse
|
21
|
Poon KC, Segal M, Bahnick AJ, Chan YM, Gao C, Becker ML, Williams CK. Digital Light Processing to Afford High Resolution and Degradable CO 2-Derived Copolymer Elastomers. Angew Chem Int Ed Engl 2024; 63:e202407794. [PMID: 38896057 DOI: 10.1002/anie.202407794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 06/11/2024] [Accepted: 06/17/2024] [Indexed: 06/21/2024]
Abstract
Vat photopolymerization 3D printing has proven very successful for the rapid additive manufacturing (AM) of polymeric parts at high resolution. However, the range of materials that can be printed and their resulting properties remains narrow. Herein, we report the successful AM of a series of poly(carbonate-b-ester-b-carbonate) elastomers, derived from carbon dioxide and bio-derived ϵ-decalactone. By employing a highly active and selective Co(II)Mg(II) polymerization catalyst, an ABA triblock copolymer (Mn=6.3 kg mol-1, ÐM=1.26) was synthesized, formulated into resins which were 3D printed using digital light processing (DLP) and a thiol-ene-based crosslinking system. A series of elastomeric and degradable thermosets were produced, with varying thiol cross-linker length and poly(ethylene glycol) content, to produce complex triply periodic geometries at high resolution. Thermomechanical characterization of the materials reveals printing-induced microphase separation and tunable hydrophilicity. These findings highlight how utilizing DLP can produce sustainable materials from low molar mass polyols quickly and at high resolution. The 3D printing of these functional materials may help to expedite the production of sustainable plastics and elastomers with potential to replace conventional petrochemical-based options.
Collapse
Affiliation(s)
- Kam C Poon
- Department of Chemistry, Chemistry Research Laboratory, University of Oxford, 12 Mansfield Road, Oxford, OX1 3TA, U.K
| | - Maddison Segal
- Thomas Lord Department of Mechanical Engineering & Materials Science, Duke University, Durham, NC 27708, USA
| | | | - Yin Mei Chan
- Department of Chemistry, Duke University, Durham, NC 27708, USA
| | - Chang Gao
- Department of Chemistry, Chemistry Research Laboratory, University of Oxford, 12 Mansfield Road, Oxford, OX1 3TA, U.K
| | - Matthew L Becker
- Thomas Lord Department of Mechanical Engineering & Materials Science, Duke University, Durham, NC 27708, USA
- Department of Chemistry, Duke University, Durham, NC 27708, USA
- Departments of Biomedical Engineering and Orthopaedic Surgery, Duke University, Durham, NC 27708, USA
| | - Charlotte K Williams
- Department of Chemistry, Chemistry Research Laboratory, University of Oxford, 12 Mansfield Road, Oxford, OX1 3TA, U.K
| |
Collapse
|
22
|
Yuan X, Zhu W, Yang Z, He N, Chen F, Han X, Zhou K. Recent Advances in 3D Printing of Smart Scaffolds for Bone Tissue Engineering and Regeneration. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2403641. [PMID: 38861754 DOI: 10.1002/adma.202403641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 05/15/2024] [Indexed: 06/13/2024]
Abstract
The repair and functional reconstruction of bone defects resulting from severe trauma, surgical resection, degenerative disease, and congenital malformation pose significant clinical challenges. Bone tissue engineering (BTE) holds immense potential in treating these severe bone defects, without incurring prevalent complications associated with conventional autologous or allogeneic bone grafts. 3D printing technology enables control over architectural structures at multiple length scales and has been extensively employed to process biomimetic scaffolds for BTE. In contrast to inert and functional bone grafts, next-generation smart scaffolds possess a remarkable ability to mimic the dynamic nature of native extracellular matrix (ECM), thereby facilitating bone repair and regeneration. Additionally, they can generate tailored and controllable therapeutic effects, such as antibacterial or antitumor properties, in response to exogenous and/or endogenous stimuli. This review provides a comprehensive assessment of the progress of 3D-printed smart scaffolds for BTE applications. It begins with an introduction to bone physiology, followed by an overview of 3D printing technologies utilized for smart scaffolds. Notable advances in various stimuli-responsive strategies, therapeutic efficacy, and applications of 3D-printed smart scaffolds are discussed. Finally, the review highlights the existing challenges in the development and clinical implementation of smart scaffolds, as well as emerging technologies in this field.
Collapse
Affiliation(s)
- Xun Yuan
- National Engineering Research Centre for High Efficiency Grinding, College of Mechanical and Vehicle Engineering, Hunan University, Changsha, 410082, China
| | - Wei Zhu
- National Engineering Research Centre for High Efficiency Grinding, College of Mechanical and Vehicle Engineering, Hunan University, Changsha, 410082, China
| | - Zhongyuan Yang
- National Engineering Research Centre for High Efficiency Grinding, College of Mechanical and Vehicle Engineering, Hunan University, Changsha, 410082, China
| | - Ning He
- National Engineering Research Centre for High Efficiency Grinding, College of Mechanical and Vehicle Engineering, Hunan University, Changsha, 410082, China
| | - Feng Chen
- National Engineering Research Centre for High Efficiency Grinding, College of Mechanical and Vehicle Engineering, Hunan University, Changsha, 410082, China
| | - Xiaoxiao Han
- National Engineering Research Centre for High Efficiency Grinding, College of Mechanical and Vehicle Engineering, Hunan University, Changsha, 410082, China
| | - Kun Zhou
- Singapore Centre for 3D Printing, School of Mechanical and Aerospace Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| |
Collapse
|
23
|
ElBakry HA, Ammar MM, Moussa TA. Effect of nanodiamonds surface deposition on hydrophilicity, bulk degradation and in-vitrocell adhesion of 3D-printed polycaprolactone scaffolds for bone tissue engineering. Biomed Mater 2024; 19:055016. [PMID: 38917826 DOI: 10.1088/1748-605x/ad5bac] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 06/25/2024] [Indexed: 06/27/2024]
Abstract
This study was designed to deposit nanodiamonds (NDs) on 3D-printed poly-ϵ-caprolactone (PCL) scaffolds and evaluate their effect on the surface topography, hydrophilicity, degradation, andin-vitrocell adhesion compared to untreated PCL scaffolds. The PCL scaffold specimens were 3D-printed by fused deposition modeling (FDM) technique with specific porosity parameters. The 3D-printed specimens' surfaces were modified by NDs deposition followed by oxygen plasma post-treatment using a plasma focus device and a non-thermal atmospheric plasma jet, respectively. Specimens were evaluated through morphological characterization by field emission scanning electron microscope (FESEM), microstructure characterization by Raman spectroscopy, chemical characterization by Fourier transform infrared (FTIR) spectroscopy, hydrophilicity degree by contact angle and water uptake measurements, andin-vitrodegradation measurements (n= 6). In addition,in-vitrobone marrow mesenchymal stem cells adhesion was evaluated quantitatively by confocal microscopy and qualitatively by FESEM at different time intervals after cell seeding (n= 6). The statistical significance level was set atp⩽ 0.05. The FESEM micrographs, the Raman, and FTIR spectra confirmed the successful surface deposition of NDs on scaffold specimens. The NDs treated specimens showed nano-scale features distributed homogeneously across the surface compared to the untreated ones. Also, the NDs treated specimens revealed a statistically significant smaller contact angle (17.45 ± 1.34 degrees), higher water uptake percentage after 24 h immersion in phosphate buffer saline (PBS) (21.56% ± 1.73), and higher degradation rate after six months of immersion in PBS (43.92 ± 0.77%). Moreover, enhanced cell adhesion at all different time intervals was observed in NDs treated specimens with higher nuclei area fraction percentage (69.87 ± 3.97%) compared to the untreated specimens (11.46 ± 1.34%). Surface deposition of NDs with oxygen-containing functional groups on 3D-printed PCL scaffolds increased their hydrophilicity and degradation rate with significant enhancement of thein-vitrocell adhesion compared to untreated PCL scaffolds.
Collapse
Affiliation(s)
- Hadiah A ElBakry
- Biomaterials Department, Faculty of Dentistry, Cairo University, Cairo, Egypt
- Biomaterials Department, Faculty of Dentistry, Beni-Suef University, Beni-Suef, Egypt
| | - Mohamed M Ammar
- Biomaterials Department, Faculty of oral and dental medicine, Future University in Egypt, Cairo, Egypt
| | - Taheya A Moussa
- Biomaterials Department, Faculty of Dentistry, Cairo University, Cairo, Egypt
| |
Collapse
|
24
|
Ballard A, Patush R, Perez J, Juarez C, Kirillova A. Bioprinting: Mechanical Stabilization and Reinforcement Strategies in Regenerative Medicine. Tissue Eng Part A 2024; 30:387-408. [PMID: 38205634 DOI: 10.1089/ten.tea.2023.0239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2024] Open
Abstract
Bioprinting describes the printing of biomaterials and cell-laden or cell-free hydrogels with various combinations of embedded bioactive molecules. It encompasses the precise patterning of biomaterials and cells to create scaffolds for different biomedical needs. There are many requirements that bioprinting scaffolds face, and it is ultimately the interplay between the scaffold's structure, properties, processing, and performance that will lead to its successful translation. Among the essential properties that the scaffolds must possess-adequate and appropriate application-specific chemical, mechanical, and biological performance-the mechanical behavior of hydrogel-based bioprinted scaffolds is the key to their stable performance in vivo at the site of implantation. Hydrogels that typically constitute the main scaffold material and the medium for the cells and biomolecules are very soft, and often lack sufficient mechanical stability, which reduces their printability and, therefore, the bioprinting potential. The aim of this review article is to highlight the reinforcement strategies that are used in different bioprinting approaches to achieve enhanced mechanical stability of the bioinks and the printed scaffolds. Enabling stable and robust materials for the bioprinting processes will lead to the creation of truly complex and remarkable printed structures that could accelerate the application of smart, functional scaffolds in biomedical settings. Impact statement Bioprinting is a powerful tool for the fabrication of 3D structures and scaffolds for biomedical applications. It has gained tremendous attention in recent years, and the bioink library is expanding to include more and more material combinations. From the practical application perspective, different properties need to be considered, such as the printed structure's chemical, mechanical, and biological performances. Among these, the mechanical behavior of the printed constructs is critical for their successful translation into the clinic. The aim of this review article is to explore the different reinforcement strategies used for the mechanical stabilization of bioinks and bioprinted structures.
Collapse
Affiliation(s)
- Ashleigh Ballard
- Department of Materials Science and Engineering, Iowa State University, Ames, Iowa, USA
| | - Rebecca Patush
- Department of Materials Science and Engineering, Iowa State University, Ames, Iowa, USA
| | - Jenesis Perez
- Department of Materials Science and Engineering, Iowa State University, Ames, Iowa, USA
| | - Carmen Juarez
- Des Moines Area Community College, Ankeny, Iowa, USA
| | - Alina Kirillova
- Department of Materials Science and Engineering, Iowa State University, Ames, Iowa, USA
| |
Collapse
|
25
|
Rybachuk O, Nesterenko Y, Zhovannyk V. Modern advances in spinal cord regeneration: hydrogel combined with neural stem cells. Front Pharmacol 2024; 15:1419797. [PMID: 38994202 PMCID: PMC11236698 DOI: 10.3389/fphar.2024.1419797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 06/11/2024] [Indexed: 07/13/2024] Open
Abstract
Severe spinal cord injuries (SCI) lead to loss of functional activity of the body below the injury site, affect a person's ability to self-care and have a direct impact on performance. Due to the structural features and functional role of the spinal cord in the body, the consequences of SCI cannot be completely overcome at the expense of endogenous regenerative potential and, developing over time, lead to severe complications years after injury. Thus, the primary task of this type of injury treatment is to create artificial conditions for the regenerative growth of damaged nerve fibers through the area of the SCI. Solving this problem is possible using tissue neuroengineering involving the technology of replacing the natural tissue environment with synthetic matrices (for example, hydrogels) in combination with stem cells, in particular, neural/progenitor stem cells (NSPCs). This approach can provide maximum stimulation and support for the regenerative growth of axons of damaged neurons and their myelination. In this review, we consider the currently available options for improving the condition after SCI (use of NSC transplantation or/and replacement of the damaged area of the SCI with a matrix, specifically a hydrogel). We emphasise the expediency and effectiveness of the hydrogel matrix + NSCs complex system used for the reconstruction of spinal cord tissue after injury. Since such a complex approach (a combination of tissue engineering and cell therapy), in our opinion, allows not only to creation of conditions for supporting endogenous regeneration or mechanical reconstruction of the spinal cord, but also to strengthen endogenous regeneration, prevent the spread of the inflammatory process, and promote the restoration of lost reflex, motor and sensory functions of the injured area of spinal cord.
Collapse
Affiliation(s)
- Oksana Rybachuk
- Bogomoletz Institute of Physiology NAS of Ukraine, Kyiv, Ukraine
- Institute of Genetic and Regenerative Medicine, M. D. Strazhesko National Scientific Center of Cardiology, Clinical and Regenerative Medicine, National Academy of Medical Sciences of Ukraine, Kyiv, Ukraine
| | | | | |
Collapse
|
26
|
Clauzel J, Colitti N, Combeau M, Labriji W, Robert L, Brilhault A, Cirillo C, Desmoulin F, Raymond-Letron I, Loubinoux I. In vivo biocompatibility assessment of 3D printed bioresorbable polymers for brain tissue regeneration. A feasibility study. Regen Ther 2024; 26:941-955. [PMID: 39512739 PMCID: PMC11541680 DOI: 10.1016/j.reth.2024.10.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 09/18/2024] [Accepted: 10/10/2024] [Indexed: 11/15/2024] Open
Abstract
Introduction The limited capacity of brain tissue to regenerate after acute injury, hampered by cell death, edema and inflammation, has led to an interest in promising and innovative approaches such as implantable regenerative scaffolds designed to improve brain plasticity. Leveraging the capabilities of bioprinting, these scaffolds can be tailored to match the intricate architecture of the brain. Methods In this methodological study, we performed in vivo biocompatibility assessments after a brain lesion on three distinct bioeliminable or bioresorbable materials: Poly(ethylene glycol) diacrylate (PEGDA), Polycaprolactone (PCL) and a PEGDA mixed with gelatin methacrylate (PEGDA-GelMA). Results A scaffold with a complex shape was printed with patterns, spatial resolution and porosity adapted to cerebral cortex reconstruction. In vivo evaluations were complemented by behavioral monitoring, affirming the safety of these materials. High-resolution T2 MRI imaging effectively captured scaffold structures and demonstrated their non-invasive utility in monitoring degradability. ASL MRI imaging quantified cerebral blood flow and was positively and significantly correlated with lectin immunofluorescent labeling. It may be used to non-invasively monitor progressive revascularization of implants.PEGDA produced an intense foreign-body response, encapsulated by a fibro-inflammatory barrier. On the other hand, PCL provoked a controlled inflammatory reaction and facilitated cell migration into the scaffold, although it induced a fibrotic response around PCL fibers. Conversely, the PEGDA-GelMA composite emerged as a promising candidate for intracerebral implantation. It facilitated the creation of a permissive glial layer, while also inducing neovascularization and attracting neuronal progenitors. Conclusion Behavior, MRI monitoring and histology allowed a thorough following of biomaterial biocompatibility. The collective findings position PEGDA-GelMA as a convincing biomaterial option as a basis for treating severe brain lesions, offering new avenues in the search for effective treatments.
Collapse
Affiliation(s)
- Julien Clauzel
- ToNIC, Toulouse NeuroImaging Center, Université de Toulouse, Inserm, UPS, Toulouse, France
| | - Nina Colitti
- ToNIC, Toulouse NeuroImaging Center, Université de Toulouse, Inserm, UPS, Toulouse, France
| | - Maylis Combeau
- ToNIC, Toulouse NeuroImaging Center, Université de Toulouse, Inserm, UPS, Toulouse, France
| | - Wafae Labriji
- ToNIC, Toulouse NeuroImaging Center, Université de Toulouse, Inserm, UPS, Toulouse, France
| | - Lorenne Robert
- ToNIC, Toulouse NeuroImaging Center, Université de Toulouse, Inserm, UPS, Toulouse, France
| | - Adrien Brilhault
- ToNIC, Toulouse NeuroImaging Center, Université de Toulouse, Inserm, UPS, Toulouse, France
| | - Carla Cirillo
- ToNIC, Toulouse NeuroImaging Center, Université de Toulouse, Inserm, UPS, Toulouse, France
| | - Franck Desmoulin
- ToNIC, Toulouse NeuroImaging Center, Université de Toulouse, Inserm, UPS, Toulouse, France
| | - Isabelle Raymond-Letron
- LabHPEC, Université de Toulouse, ENVT, Toulouse, France
- Institut Restore, Université de Toulouse, CNRS U-5070, EFS, ENVT, Inserm U1301, Toulouse, France
| | - Isabelle Loubinoux
- ToNIC, Toulouse NeuroImaging Center, Université de Toulouse, Inserm, UPS, Toulouse, France
| |
Collapse
|
27
|
Wang X, Yang X, Xiao X, Li X, Chen C, Sun D. Biomimetic design of platelet-rich plasma controlled release bacterial cellulose/hydroxyapatite composite hydrogel for bone tissue engineering. Int J Biol Macromol 2024; 269:132124. [PMID: 38723802 DOI: 10.1016/j.ijbiomac.2024.132124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 04/30/2024] [Accepted: 05/04/2024] [Indexed: 05/30/2024]
Abstract
Bacterial cellulose (BC) hydrogel is renowned in the field of tissue engineering for its high biocompatibility, excellent mechanical strength, and eco-friendliness. Herein, we present a biomimetic mineralization method for preparing BC/hydroxyapatite (HAP) composite hydrogel scaffolds with different mineralization time and ion concentration of the mineralized solution. Spherical HAP reinforcement enhanced bone mineralization, thereby imparting increased bioactivity to BC matrix materials. Subsequently, platelet-rich plasma (PRP) was introduced into the scaffold. The PRP-loaded hydrogel enhanced the release of growth factors, which promoted cell adhesion, growth, and bone healing. After 3 weeks of MC3T3-E1 cell-induced osteogenesis, PRP positively affected cell differentiation in BC/HAP@PRP scaffolds. Overall, these scaffolds exhibited excellent biocompatibility, mineralized nodule formation, and controlled release in vitro, demonstrating great potential for application in bone tissue repair.
Collapse
Affiliation(s)
- Xiangmei Wang
- Institute of Chemicobiology and Functional Materials, School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, 200 Xiao Ling Wei, Nanjing 210094, China
| | - Xiaoli Yang
- Institute of Chemicobiology and Functional Materials, School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, 200 Xiao Ling Wei, Nanjing 210094, China
| | - Xin Xiao
- Institute of Chemicobiology and Functional Materials, School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, 200 Xiao Ling Wei, Nanjing 210094, China
| | - Xueqian Li
- Institute of Chemicobiology and Functional Materials, School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, 200 Xiao Ling Wei, Nanjing 210094, China
| | - Chuntao Chen
- Institute of Chemicobiology and Functional Materials, School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, 200 Xiao Ling Wei, Nanjing 210094, China.
| | - Dongping Sun
- Institute of Chemicobiology and Functional Materials, School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, 200 Xiao Ling Wei, Nanjing 210094, China.
| |
Collapse
|
28
|
Xu C, Wang Z, Hu Y, Chen Y. Thin-Film Composite Membrane Compaction: Exploring the Interplay among Support Compressive Modulus, Structural Characteristics, and Overall Transport Efficiency. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:8587-8596. [PMID: 38683942 PMCID: PMC11097391 DOI: 10.1021/acs.est.4c01639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 04/16/2024] [Accepted: 04/17/2024] [Indexed: 05/02/2024]
Abstract
Water scarcity has driven the demand for water production from unconventional sources and the reuse of industrial wastewater. Pressure-driven membranes, notably thin-film composite (TFC) membranes, stand as energy-efficient alternatives to the water scarcity challenge and various wastewater treatments. While pressure drives solvent movement, it concurrently triggers membrane compaction and flux deterioration. This necessitates a profound comprehension of the intricate interplay among compressive modulus, structural properties, and transport efficacy amid the compaction process. In this study, we present an all-encompassing compaction model for TFC membranes, applying authentic structural and mechanical variables, achieved by coupling viscoelasticity with Monte Carlo flux calculations based on the resistance-in-series model. Through validation against experimental data for multiple commercial membranes, we evaluated the influence of diverse physical parameters. We find that support polymers with a higher compressive modulus (lower compliance), supports with higher densities of "finger-like" pores, and "sponge-like" pores with optimum void fractions will be preferred to mitigate compaction. More importantly, we uncover a trade-off correlation between steady-state permeability and the modulus for identical support polymers displaying varying porosities. This model holds the potential as a valuable guide in shaping the design and optimization for further TFC applications and extending its utility to biological scaffolds and hydrogels with thin-film coatings in tissue engineering.
Collapse
Affiliation(s)
- Chunyan Xu
- School
of Resources & Environmental Engineering, Anhui University, Hefei, Anhui 230012, China
- School
of Civil & Environmental Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332-0100, United States
| | - Zhongzhen Wang
- School
of Chemical & Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332-0100, United States
| | - Yuhang Hu
- School
of Chemical & Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332-0100, United States
- Woodruff
School of Mechanical Engineering, Georgia
Institute of Technology, Atlanta, Georgia 30332-0100, United States
| | - Yongsheng Chen
- School
of Civil & Environmental Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332-0100, United States
| |
Collapse
|
29
|
Qiu B, Cheng Q, Chen R, Liu C, Qin J, Jiang Q. Mussel-Mimetic Hydrogel Coating with Anticoagulant and Antiinflammatory Properties on a Poly(lactic acid) Vascular Stent. Biomacromolecules 2024; 25:3098-3111. [PMID: 38606583 DOI: 10.1021/acs.biomac.4c00201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/13/2024]
Abstract
Biodegradable stents are the most promising alternatives for the treatment of cardiovascular disease nowadays, and the strategy of preparing functional coatings on the surface is highly anticipated for addressing adverse effects such as in-stent restenosis and stent thrombosis. Yet, inadequate mechanical stability and biomultifunctionality limit their clinical application. In this study, we developed a multicross-linking hydrogel on the polylactic acid substrates by dip coating that boasts impressive antithrombotic ability, antibacterial capability, mechanical stability, and self-healing ability. Gelatin methacryloyl, carboxymethyl chitosan, and oxidized sodium alginate construct a double-cross-linking hydrogel through the dynamic Schiff base chemical and in situ blue initiation reaction. Inspired by the adhesion mechanism employed by mussels, a triple-cross-linked hydrogel is formed with the addition of tannic acid to increase the adhesion and antibiofouling properties. The strength and hydrophilicity of hydrogel coating are regulated by changing the composition ratio and cross-linking degree. It has been demonstrated in tests in vitro that the hydrogel coating significantly reduces the adhesion of proteins, MC3T3-E1 cells, platelets, and bacteria by 85% and minimizes the formation of blood clots. The hydrogel coating also exhibits excellent antimicrobial in vitro and antiinflammatory properties in vivo, indicating its potential value in vascular intervention and other biomedical fields.
Collapse
Affiliation(s)
- Biwei Qiu
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Qianqian Cheng
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Rukun Chen
- Department of Cardiology, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200336, China
- Faculty of Medicine, University of Southampton, University Road, Southampton SO17 1BJ, United Kingdom
| | - Chunling Liu
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Jinchao Qin
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Qixia Jiang
- Department of Cardiology, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200336, China
| |
Collapse
|
30
|
Jia B, Huang H, Dong Z, Ren X, Lu Y, Wang W, Zhou S, Zhao X, Guo B. Degradable biomedical elastomers: paving the future of tissue repair and regenerative medicine. Chem Soc Rev 2024; 53:4086-4153. [PMID: 38465517 DOI: 10.1039/d3cs00923h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/12/2024]
Abstract
Degradable biomedical elastomers (DBE), characterized by controlled biodegradability, excellent biocompatibility, tailored elasticity, and favorable network design and processability, have become indispensable in tissue repair. This review critically examines the recent advances of biodegradable elastomers for tissue repair, focusing mainly on degradation mechanisms and evaluation, synthesis and crosslinking methods, microstructure design, processing techniques, and tissue repair applications. The review explores the material composition and cross-linking methods of elastomers used in tissue repair, addressing chemistry-related challenges and structural design considerations. In addition, this review focuses on the processing methods of two- and three-dimensional structures of elastomers, and systematically discusses the contribution of processing methods such as solvent casting, electrostatic spinning, and three-/four-dimensional printing of DBE. Furthermore, we describe recent advances in tissue repair using DBE, and include advances achieved in regenerating different tissues, including nerves, tendons, muscle, cardiac, and bone, highlighting their efficacy and versatility. The review concludes by discussing the current challenges in material selection, biodegradation, bioactivation, and manufacturing in tissue repair, and suggests future research directions. This concise yet comprehensive analysis aims to provide valuable insights and technical guidance for advances in DBE for tissue engineering.
Collapse
Affiliation(s)
- Ben Jia
- School of Civil Aviation, Northwestern Polytechnical University, Xi'an, 710072, China
| | - Heyuan Huang
- School of Aeronautics, Northwestern Polytechnical University, Xi'an, 710072, China.
| | - Zhicheng Dong
- School of Civil Aviation, Northwestern Polytechnical University, Xi'an, 710072, China
| | - Xiaoyang Ren
- School of Aeronautics, Northwestern Polytechnical University, Xi'an, 710072, China.
| | - Yanyan Lu
- School of Aeronautics, Northwestern Polytechnical University, Xi'an, 710072, China.
| | - Wenzhi Wang
- School of Aeronautics, Northwestern Polytechnical University, Xi'an, 710072, China.
| | - Shaowen Zhou
- Department of Periodontology, College of Stomatology, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Xin Zhao
- State Key Laboratory for Mechanical Behavior of Materials, and Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China.
| | - Baolin Guo
- State Key Laboratory for Mechanical Behavior of Materials, and Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China.
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an 710049, China
| |
Collapse
|
31
|
Jia B, Zhang B, Li J, Qin J, Huang Y, Huang M, Ming Y, Jiang J, Chen R, Xiao Y, Du J. Emerging polymeric materials for treatment of oral diseases: design strategy towards a unique oral environment. Chem Soc Rev 2024; 53:3273-3301. [PMID: 38507263 DOI: 10.1039/d3cs01039b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/22/2024]
Abstract
Oral diseases are prevalent but challenging diseases owing to the highly movable and wet, microbial and inflammatory environment. Polymeric materials are regarded as one of the most promising biomaterials due to their good compatibility, facile preparation, and flexible design to obtain multifunctionality. Therefore, a variety of strategies have been employed to develop materials with improved therapeutic efficacy by overcoming physicobiological barriers in oral diseases. In this review, we summarize the design strategies of polymeric biomaterials for the treatment of oral diseases. First, we present the unique oral environment including highly movable and wet, microbial and inflammatory environment, which hinders the effective treatment of oral diseases. Second, a series of strategies for designing polymeric materials towards such a unique oral environment are highlighted. For example, multifunctional polymeric materials are armed with wet-adhesive, antimicrobial, and anti-inflammatory functions through advanced chemistry and nanotechnology to effectively treat oral diseases. These are achieved by designing wet-adhesive polymers modified with hydroxy, amine, quinone, and aldehyde groups to provide strong wet-adhesion through hydrogen and covalent bonding, and electrostatic and hydrophobic interactions, by developing antimicrobial polymers including cationic polymers, antimicrobial peptides, and antibiotic-conjugated polymers, and by synthesizing anti-inflammatory polymers with phenolic hydroxy and cysteine groups that function as immunomodulators and electron donors to reactive oxygen species to reduce inflammation. Third, various delivery systems with strong wet-adhesion and enhanced mucosa and biofilm penetration capabilities, such as nanoparticles, hydrogels, patches, and microneedles, are constructed for delivery of antibiotics, immunomodulators, and antioxidants to achieve therapeutic efficacy. Finally, we provide insights into challenges and future development of polymeric materials for oral diseases with promise for clinical translation.
Collapse
Affiliation(s)
- Bo Jia
- Department of Oral and Maxillofacial Surgery, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangdong, China
| | - Beibei Zhang
- Department of Gynaecology and Obstetrics, Shanghai Key Laboratory of Anesthesiology and Brain Functional Modulation, Clinical Research Center for Anesthesiology and Perioperative Medicine, Translational Research Institute of Brain and Brain-Like Intelligence, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai 200434, China.
- Department of Polymeric Materials, School of Materials Science and Engineering, Key Laboratory of Advanced Civil Engineering Materials of Ministry of Education, Tongji University, 4800 Caoan Road, Shanghai 201804, China
| | - Jianhua Li
- Department of Polymeric Materials, School of Materials Science and Engineering, Key Laboratory of Advanced Civil Engineering Materials of Ministry of Education, Tongji University, 4800 Caoan Road, Shanghai 201804, China
| | - Jinlong Qin
- Department of Gynaecology and Obstetrics, Shanghai Key Laboratory of Anesthesiology and Brain Functional Modulation, Clinical Research Center for Anesthesiology and Perioperative Medicine, Translational Research Institute of Brain and Brain-Like Intelligence, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai 200434, China.
- Department of Polymeric Materials, School of Materials Science and Engineering, Key Laboratory of Advanced Civil Engineering Materials of Ministry of Education, Tongji University, 4800 Caoan Road, Shanghai 201804, China
| | - Yisheng Huang
- Department of Oral and Maxillofacial Surgery, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangdong, China
| | - Mingshu Huang
- Department of Oral and Maxillofacial Surgery, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangdong, China
| | - Yue Ming
- Department of Oral and Maxillofacial Surgery, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangdong, China
| | - Jingjing Jiang
- Department of Polymeric Materials, School of Materials Science and Engineering, Key Laboratory of Advanced Civil Engineering Materials of Ministry of Education, Tongji University, 4800 Caoan Road, Shanghai 201804, China
| | - Ran Chen
- Department of Polymeric Materials, School of Materials Science and Engineering, Key Laboratory of Advanced Civil Engineering Materials of Ministry of Education, Tongji University, 4800 Caoan Road, Shanghai 201804, China
| | - Yufen Xiao
- Department of Gynaecology and Obstetrics, Shanghai Key Laboratory of Anesthesiology and Brain Functional Modulation, Clinical Research Center for Anesthesiology and Perioperative Medicine, Translational Research Institute of Brain and Brain-Like Intelligence, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai 200434, China.
- Department of Polymeric Materials, School of Materials Science and Engineering, Key Laboratory of Advanced Civil Engineering Materials of Ministry of Education, Tongji University, 4800 Caoan Road, Shanghai 201804, China
| | - Jianzhong Du
- Department of Gynaecology and Obstetrics, Shanghai Key Laboratory of Anesthesiology and Brain Functional Modulation, Clinical Research Center for Anesthesiology and Perioperative Medicine, Translational Research Institute of Brain and Brain-Like Intelligence, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai 200434, China.
- Department of Polymeric Materials, School of Materials Science and Engineering, Key Laboratory of Advanced Civil Engineering Materials of Ministry of Education, Tongji University, 4800 Caoan Road, Shanghai 201804, China
| |
Collapse
|
32
|
Sestito JM, Harris TAL, Wang Y. Structural descriptor and surrogate modeling for design of biodegradable scaffolds. J Mech Behav Biomed Mater 2024; 152:106415. [PMID: 38301521 DOI: 10.1016/j.jmbbm.2024.106415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 12/29/2023] [Accepted: 01/20/2024] [Indexed: 02/03/2024]
Abstract
Biodegradable scaffolds are important to regenerative medicine in that they provide an amicable environment for tissue regrowth. However, establishing structure-property (SP) relationships for scaffold design is challenging due to the complexity of the three-dimensional porous scaffold geometry. The complexity requires high-dimensional geometric descriptors. The training of such a SP surrogate model will need a large amount of experimental or simulation data. In this work, a schema of constructing SP relationship surrogates is developed to predict the degraded mechanical properties from the initial scaffold geometry. A new structure descriptor, the extended surfacelet transform (EST), is proposed to capture important details of pores associated with the degradation of scaffolds. The efficiency is further enhanced with principal component analysis to reduce the high-dimensional EST data into a low-dimensional representation. The schema also includes a kinetic Monte Carlo biodegradation model to simulate the biodegradation of polymer scaffolds and to generate the training data for the formation of SP relationships. The schema is demonstrated with the design of polycaprolactone biodegradable scaffolds by connecting the initial scaffold geometry to the degraded compressive modulus.
Collapse
Affiliation(s)
- Jesse M Sestito
- College of Engineering, Valparaiso University, Valparaiso, IN, 46383, USA.
| | - Tequila A L Harris
- George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Yan Wang
- George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| |
Collapse
|
33
|
Kelly C, Adams SB. 3D Printing Materials and Technologies for Orthopaedic Applications. J Orthop Trauma 2024; 38:S9-S12. [PMID: 38502597 DOI: 10.1097/bot.0000000000002765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 01/05/2024] [Indexed: 03/21/2024]
Abstract
SUMMARY 3D printing technologies have evolved tremendously over the last decade for uses in orthopaedic surgical applications, including being used to manufacture implants for spine, upper extremity, foot and ankle, oncologic, and traumatic reconstructions. Materials used for 3D-printed orthopaedic devices include metals, degradable and nondegradable polymers, and ceramic composites. There are 2 primary advantages for use of 3D printing technologies for orthopaedics: first, the ability to create complex porous lattices that allow for osseointegration and improved implant stability and second, the enablement of complex geometric designs allowing for patient-specific devices based on preoperative imaging. Given continually evolving technology, and the relatively early stage of the materials and 3D printers themselves, the possibilities for continued innovation in orthopaedics are great.
Collapse
Affiliation(s)
| | - Samuel B Adams
- Department of Orthopedic Surgery, Duke University Medical Center, Durham, NC
| |
Collapse
|
34
|
Liang K, Ding C, Li J, Yao X, Yu J, Wu H, Chen L, Zhang M. A Review of Advanced Abdominal Wall Hernia Patch Materials. Adv Healthc Mater 2024; 13:e2303506. [PMID: 38055999 DOI: 10.1002/adhm.202303506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 12/05/2023] [Indexed: 12/08/2023]
Abstract
Tension-free abdominal wall hernia patch materials (AWHPMs) play an important role in the repair of abdominal wall defects (AWDs), which have a recurrence rate of <1%. Nevertheless, there are still significant challenges in the development of tailored, biomimetic, and extracellular matrix (ECM)-like AWHPMs that satisfy the clinical demands of abdominal wall repair (AWR) while effectively handling post-operative complications associated with abdominal hernias, such as intra-abdominal visceral adhesion and abnormal healing. This extensive review presents a comprehensive guide to the high-end fabrication and the precise selection of these advanced AWHPMs. The review begins by briefly introducing the structures, sources, and properties of AWHPMs, and critically evaluates the advantages and disadvantages of different types of AWHPMs for AWR applications. The review subsequently summarizes and elaborates upon state-of-the-art AWHPM fabrication methods and their key characteristics (e.g., mechanical, physicochemical, and biological properties in vitro/vivo). This review uses compelling examples to demonstrate that advanced AWHPMs with multiple functionalities (e.g., anti-deformation, anti-inflammation, anti-adhesion, pro-healing properties, etc.) can meet the fundamental clinical demands required to successfully repair AWDs. In particular, there have been several developments in the enhancement of biomimetic AWHPMs with multiple properties, and additional breakthroughs are expected in the near future.
Collapse
Affiliation(s)
- Kaiwen Liang
- College of Material Engineering, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, P. R. China
| | - Cuicui Ding
- College of Ecological Environment and Urban Construction, Fujian University of Technology, Fuzhou, Fujian, 350118, P. R. China
| | - Jingyi Li
- School of Basic Medicine, Fujian Medical University, Fuzhou, Fujian, 350122, P. R. China
| | - Xiao Yao
- College of Ecological Environment and Urban Construction, Fujian University of Technology, Fuzhou, Fujian, 350118, P. R. China
| | - Jingjing Yu
- College of Ecological Environment and Urban Construction, Fujian University of Technology, Fuzhou, Fujian, 350118, P. R. China
| | - Hui Wu
- College of Material Engineering, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, P. R. China
| | - Lihui Chen
- College of Material Engineering, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, P. R. China
| | - Min Zhang
- College of Material Engineering, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, P. R. China
- National Forestry & Grassland Administration Key Laboratory for Plant Fiber Functional Materials, Fuzhou, Fujian, 350000, P. R. China
| |
Collapse
|
35
|
Karamzadeh V, Shen ML, Ravanbakhsh H, Sohrabi‐Kashani A, Okhovatian S, Savoji H, Radisic M, Juncker D. High-Resolution Additive Manufacturing of a Biodegradable Elastomer with A Low-Cost LCD 3D Printer. Adv Healthc Mater 2024; 13:e2303708. [PMID: 37990819 PMCID: PMC11468968 DOI: 10.1002/adhm.202303708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 11/11/2023] [Indexed: 11/23/2023]
Abstract
Artificial organs and organs-on-a-chip (OoC) are of great clinical and scientific interest and have recently been made by additive manufacturing, but depend on, and benefit from, biocompatible, biodegradable, and soft materials. Poly(octamethylene maleate (anhydride) citrate (POMaC) meets these criteria and has gained popularity, and as in principle, it can be photocured and is amenable to vat-photopolymerization (VP) 3D printing, but only low-resolution structures have been produced so far. Here, a VP-POMaC ink is introduced and 3D printing of 80 µm positive features and complex 3D structures is demonstrated using low-cost (≈US$300) liquid-crystal display (LCD) printers. The ink includes POMaC, a diluent and porogen additive to reduce viscosity within the range of VP, and a crosslinker to speed up reaction kinetics. The mechanical properties of the cured ink are tuned to match the elastic moduli of different tissues simply by varying the porogen concentration. The biocompatibility is assessed by cell culture which yielded 80% viability and the potential for tissue engineering illustrated with a 3D-printed gyroid seeded with cells. VP-POMaC and low-cost LCD printers make the additive manufacturing of high resolution, elastomeric, and biodegradable constructs widely accessible, paving the way for a myriad of applications in tissue engineering and 3D cell culture as demonstrated here, and possibly in OoC, implants, wearables, and soft robotics.
Collapse
Affiliation(s)
- Vahid Karamzadeh
- Biomedical Engineering DepartmentMcGill UniversityMontrealQCH3A 0G4Canada
- McGill Genome CentreMcGill UniversityMontrealQCH3A 0G4Canada
| | - Molly L. Shen
- Biomedical Engineering DepartmentMcGill UniversityMontrealQCH3A 0G4Canada
- McGill Genome CentreMcGill UniversityMontrealQCH3A 0G4Canada
| | - Hossein Ravanbakhsh
- Biomedical Engineering DepartmentMcGill UniversityMontrealQCH3A 0G4Canada
- McGill Genome CentreMcGill UniversityMontrealQCH3A 0G4Canada
- Department of Biomedical EngineeringThe University of AkronAkronOH44325USA
| | - Ahmad Sohrabi‐Kashani
- Biomedical Engineering DepartmentMcGill UniversityMontrealQCH3A 0G4Canada
- McGill Genome CentreMcGill UniversityMontrealQCH3A 0G4Canada
| | - Sargol Okhovatian
- Institute of Biomaterials and Biomedical EngineeringUniversity of TorontoTorontoONM1C 1A4Canada
| | - Houman Savoji
- Institute of Biomedical EngineeringDepartment of Pharmacology and PhysiologyFaculty of MedicineUniversity of MontrealMontrealQCH3C 3J7Canada
- Research CenterCentre Hospitalier Universitaire Sainte‐JustineMontrealQCH3T 1C5Canada
- Montreal TransMedTech InstituteMontrealQCH3C 3A7Canada
| | - Milica Radisic
- Institute of Biomaterials and Biomedical EngineeringUniversity of TorontoTorontoONM1C 1A4Canada
| | - David Juncker
- Biomedical Engineering DepartmentMcGill UniversityMontrealQCH3A 0G4Canada
- McGill Genome CentreMcGill UniversityMontrealQCH3A 0G4Canada
| |
Collapse
|
36
|
Gao Y, Zhong M, Yu J, Zhao Z, Yu C, Yu Q, Yao F, Li J, Zhang H. Large-Scale Fabrication of Freestanding Polymer Ultrathin Porous Membranes for Transparent Transwell Coculture Systems. ACS NANO 2024; 18:8168-8179. [PMID: 38437515 DOI: 10.1021/acsnano.3c11946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/06/2024]
Abstract
Advancements in cell coculture systems with porous membranes have facilitated the simulation of human-like in vitro microenvironments for diverse biomedical applications. However, conventional Transwell membranes face limitations in low porosity (ca. 6%) and optical opacity due to their large thickness (ca. 10 μm). In this study, we demonstrated a one-step, large-scale fabrication of freestanding polymer ultrathin porous (PUP) membranes with thicknesses of hundreds of nanometers. PUP membranes were produced by using a gap-controlled bar-coating process combined with polymer blend phase separation. They are 20 times thinner than Transwell membranes, possessing 3-fold higher porosity and exhibiting high transparency. These membranes demonstrate outstanding molecular permeability and significantly reduce the cell-cell distance, thereby facilitating efficient signal exchange pathways between cells. This research enables the establishment of a cutting-edge in vitro cell coculture system, enhancing optical transparency, and streamlining the large-scale manufacturing of porous membranes.
Collapse
Affiliation(s)
- Yi Gao
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China
| | - Mengyao Zhong
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China
| | - Jiajun Yu
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China
| | - Zhongming Zhao
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China
| | - Chaojie Yu
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China
| | - Qingyu Yu
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China
- Tianjin Key Laboratory of Biomedical Materials, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300192, China
| | - Fanglian Yao
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering, Ministry of Education, Tianjin University, Tianjin 300350, China
| | - Junjie Li
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering, Ministry of Education, Tianjin University, Tianjin 300350, China
| | - Hong Zhang
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering, Ministry of Education, Tianjin University, Tianjin 300350, China
| |
Collapse
|
37
|
Mahjoubnia A, Cai D, Wu Y, King SD, Torkian P, Chen AC, Talaie R, Chen SY, Lin J. Digital light 4D printing of bioresorbable shape memory elastomers for personalized biomedical implantation. Acta Biomater 2024; 177:165-177. [PMID: 38354873 PMCID: PMC10948293 DOI: 10.1016/j.actbio.2024.02.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 01/16/2024] [Accepted: 02/06/2024] [Indexed: 02/16/2024]
Abstract
Four-dimensional (4D) printing unlocks new potentials for personalized biomedical implantation, but still with hurdles of lacking suitable materials. Herein, we demonstrate a bioresorbable shape memory elastomer (SME) with high elasticity at both below and above its phase transition temperature (Ttrans). This SME can be digital light 3D printed by co-polymerizing glycerol dodecanoate acrylate prepolymer (pre-PGDA) with acrylic acid monomer to form crosslinked Poly(glycerol dodecanoate acrylate) (PGDA)-Polyacrylic acid (PAA), or PGDA-PAA network. The printed complex, free-standing 3D structures with high-resolution features exhibit shape programming properties at a physiological temperature. By tuning the pre-PGDA weight ratios between 55 wt% and 70 wt%, Ttrans varies between 39.2 and 47.2 ℃ while Young's moduli (E) range 40-170 MPa below Ttrans with fractural strain (εf) of 170 %-200 %. Above Ttrans, E drops to 1-1.82 MPa which is close to those of soft tissue. Strikingly, εf of 130-180 % is still maintained. In vitro biocompatibility test on the material shows > 90 % cell proliferation and great cell attachment. In vivo vascular grafting trials underline the geometrical and mechanical adaptability of these 4D printed constructs in regenerating the aorta tissue. Biodegradation of the implants shows the possibility of their full replacement by natural tissue over time. To highlight its potential for personalized medicine, a patient-specific left atrial appendage (LAA) occluder was printed and implanted endovascularly into an in vitro heart model. STATEMENT OF SIGNIFICANCE: 4D printed shape-memory elastomer (SME) implants particularly designed and manufactured for a patient are greatly sought-after in minimally invasive surgery (MIS). Traditional shape-memory polymers used in these implants often suffer from issues like unsuitable transition temperatures, poor biocompatibility, limited 3D design complexity, and low toughness, making them unsuitable for MIS. Our new SME, with an adjustable transition temperature and enhanced toughness, is both biocompatible and naturally degradable, particularly in cardiovascular contexts. This allows implants, like biomedical scaffolds, to be programmed at room temperature and then adapt to the body's physiological conditions post-implantation. Our studies, including in vivo vascular grafts and in vitro device implantation, highlight the SME's effectiveness in aortic tissue regeneration and its promising applications in MIS.
Collapse
Affiliation(s)
- Alireza Mahjoubnia
- Department of Mechanical and Aerospace Engineering, University of Missouri, Columbia, 65211, USA
| | - Dunpeng Cai
- Department of Surgery, School of Medicine, University of Missouri, Columbia, 65211, USA
| | - Yuchao Wu
- Department of Mechanical and Aerospace Engineering, University of Missouri, Columbia, 65211, USA
| | - Skylar D King
- Department of Surgery, School of Medicine, University of Missouri, Columbia, 65211, USA
| | - Pooya Torkian
- Vascular and Interventional Radiology, Department of Radiology, University of Minnesota, Minneapolis, 55455, USA
| | - Andy C Chen
- Department of Surgery, School of Medicine, University of Missouri, Columbia, 65211, USA; North Oconee High School, Bogart, GA 30622, USA
| | - Reza Talaie
- Vascular and Interventional Radiology, Department of Radiology, University of Minnesota, Minneapolis, 55455, USA
| | - Shi-You Chen
- Department of Surgery, School of Medicine, University of Missouri, Columbia, 65211, USA.
| | - Jian Lin
- Department of Mechanical and Aerospace Engineering, University of Missouri, Columbia, 65211, USA.
| |
Collapse
|
38
|
El-Husseiny HM, Mady EA, Doghish AS, Zewail MB, Abdelfatah AM, Noshy M, Mohammed OA, El-Dakroury WA. Smart/stimuli-responsive chitosan/gelatin and other polymeric macromolecules natural hydrogels vs. synthetic hydrogels systems for brain tissue engineering: A state-of-the-art review. Int J Biol Macromol 2024; 260:129323. [PMID: 38242393 DOI: 10.1016/j.ijbiomac.2024.129323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 12/30/2023] [Accepted: 01/05/2024] [Indexed: 01/21/2024]
Abstract
Currently, there are no viable curative treatments that can enhance the central nervous system's (CNS) recovery from trauma or illness. Bioengineered injectable smart/stimuli-responsive hydrogels (SSRHs) that mirror the intricacy of the CNS milieu and architecture have been suggested as a way to get around these restrictions in combination with medication and cell therapy. Additionally, the right biophysical and pharmacological stimuli are required to boost meaningful CNS regeneration. Recent research has focused heavily on developing SSRHs as cutting-edge delivery systems that can direct the regeneration of brain tissue. In the present article, we have discussed the pathology of brain injuries, and the applicable strategies employed to regenerate the brain tissues. Moreover, the most promising SSRHs for neural tissue engineering (TE) including alginate (Alg.), hyaluronic acid (HA), chitosan (CH), gelatin, and collagen are used in natural polymer-based hydrogels and thoroughly discussed in this review. The ability of these hydrogels to distribute bioactive substances or cells in response to internal and external stimuli is highlighted with particular attention. In addition, this article provides a summary of the most cutting-edge techniques for CNS recovery employing SSRHs for several neurodegenerative diseases.
Collapse
Affiliation(s)
- Hussein M El-Husseiny
- Laboratory of Veterinary Surgery, Department of Veterinary Medicine, Faculty of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai Cho, Fuchu-shi, Tokyo 183-8509, Japan; Department of Surgery, Anesthesiology, and Radiology, Faculty of Veterinary Medicine, Benha University, Moshtohor, Toukh, Elqaliobiya 13736, Egypt.
| | - Eman A Mady
- Laboratory of Veterinary Physiology, Department of Veterinary Medicine, Faculty of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai Cho, Fuchu-shi, Tokyo 183-8509, Japan; Department of Animal Hygiene, Behavior and Management, Faculty of Veterinary Medicine, Benha University, Moshtohor, Toukh, Elqaliobiya 13736, Egypt.
| | - Ahmed S Doghish
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt; Department of Biochemistry, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City, Cairo, Egypt.
| | - Moataz B Zewail
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Badr University in Cairo, Badr City, Cairo 11829, Egypt
| | - Amr M Abdelfatah
- Department of Pharmaceutical Analytical Chemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Mina Noshy
- Clinical Pharmacy Department, Faculty of Pharmacy, King Salman International University (KSIU), South Sinai, Ras Sudr 46612, Egypt
| | - Osama A Mohammed
- Department of Pharmacology, College of Medicine, University of Bisha, Bisha 61922, Saudi Arabia
| | - Walaa A El-Dakroury
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Badr University in Cairo, Badr City, Cairo 11829, Egypt
| |
Collapse
|
39
|
Pudełko-Prażuch I, Balasubramanian M, Ganesan SM, Marecik S, Walczak K, Pielichowska K, Chatterjee S, Kandaswamy R, Pamuła E. Characterization and In Vitro Evaluation of Porous Polymer-Blended Scaffolds Functionalized with Tricalcium Phosphate. J Funct Biomater 2024; 15:57. [PMID: 38535250 PMCID: PMC10970789 DOI: 10.3390/jfb15030057] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 02/16/2024] [Accepted: 02/22/2024] [Indexed: 11/11/2024] Open
Abstract
Bone tissue is one of the most transplanted tissues. The ageing population and bone diseases are the main causes of the growing need for novel treatments offered by bone tissue engineering. Three-dimensional (3D) scaffolds, as artificial structures that fulfil certain characteristics, can be used as a temporary matrix for bone regeneration. In this study, we aimed to fabricate 3D porous polymer scaffolds functionalized with tricalcium phosphate (TCP) particles for applications in bone tissue regeneration. Different combinations of poly(lactic acid) (PLA), poly(ethylene glycol) (PEG with molecular weight of 600 or 2000 Da) and poly(ε-caprolactone) (PCL) with TCP were blended by a gel-casting method combined with rapid heating. Porous composite scaffolds with pore sizes from 100 to 1500 µm were obtained. ATR-FTIR, DSC, and wettability tests were performed to study scaffold composition, thermal properties, and hydrophilicity, respectively. The samples were observed with the use of optical and scanning electron microscopes. The addition of PCL to PLA increased the hydrophobicity of the composite scaffolds and reduced their susceptibility to degradation, whereas the addition of PEG increased the hydrophilicity and degradation rates but concomitantly resulted in enhanced creation of rounded mineral deposits. The scaffolds were not cytotoxic according to an indirect test in L929 fibroblasts, and they supported adhesion and growth of MG-63 cells when cultured in direct contact.
Collapse
Affiliation(s)
- Iwona Pudełko-Prażuch
- Department of Biomaterials and Composites, Faculty of Materials Science and Ceramics, AGH University of Krakow, Al. Mickiewicza 30, 30-059 Krakow, Poland; (I.P.-P.); (S.M.); (K.W.); (K.P.)
| | - Mareeswari Balasubramanian
- Department of Rubber and Plastics Technology, Madras Institute of Technology Campus, Anna University, Chromepet, Chennai 600 044, Tamil Nadu, India; (M.B.); (S.M.G.)
| | - Sundara Moorthi Ganesan
- Department of Rubber and Plastics Technology, Madras Institute of Technology Campus, Anna University, Chromepet, Chennai 600 044, Tamil Nadu, India; (M.B.); (S.M.G.)
| | - Stanisław Marecik
- Department of Biomaterials and Composites, Faculty of Materials Science and Ceramics, AGH University of Krakow, Al. Mickiewicza 30, 30-059 Krakow, Poland; (I.P.-P.); (S.M.); (K.W.); (K.P.)
| | - Kamila Walczak
- Department of Biomaterials and Composites, Faculty of Materials Science and Ceramics, AGH University of Krakow, Al. Mickiewicza 30, 30-059 Krakow, Poland; (I.P.-P.); (S.M.); (K.W.); (K.P.)
| | - Kinga Pielichowska
- Department of Biomaterials and Composites, Faculty of Materials Science and Ceramics, AGH University of Krakow, Al. Mickiewicza 30, 30-059 Krakow, Poland; (I.P.-P.); (S.M.); (K.W.); (K.P.)
| | - Suvro Chatterjee
- Department of Biotechnology, Golapbag Campus, University of Burdwan, Burdwan 713 104, West Bengal, India;
| | - Ravichandran Kandaswamy
- Department of Rubber and Plastics Technology, Madras Institute of Technology Campus, Anna University, Chromepet, Chennai 600 044, Tamil Nadu, India; (M.B.); (S.M.G.)
| | - Elżbieta Pamuła
- Department of Biomaterials and Composites, Faculty of Materials Science and Ceramics, AGH University of Krakow, Al. Mickiewicza 30, 30-059 Krakow, Poland; (I.P.-P.); (S.M.); (K.W.); (K.P.)
| |
Collapse
|
40
|
Thangavel P, Saravanakumar I, Sundaram MK, Rathinam B, Muthuvijayan V. Preparation and characterization of a jelly fig (Ficus awkeotsang Makino) polysaccharide-based bioactive 3D scaffold for improved vascularization and skin tissue engineering applications. Int J Biol Macromol 2024; 259:129199. [PMID: 38176487 DOI: 10.1016/j.ijbiomac.2024.129199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Revised: 12/26/2023] [Accepted: 01/01/2024] [Indexed: 01/06/2024]
Abstract
Jelly fig polysaccharides (JFP) were extracted from Ficus awkeotsang Makino achenes. The yield of JFP was approximately 10-15 %. FT-IR spectrum of the extracted JFP confirmed that it was made of low methoxyl pectin (LMP). 3D scaffolds of JFP (JFP scaffold) were fabricated using ionic crosslinking of 2 % (w/v) JFP solution with Ca2+ ions and freeze-drying. The JFP scaffold showed 73.46 ± 1.97 % porosity and a 12-fold swelling capacity. The porous morphology was also observed in SEM micrographs. JFP scaffolds were completely degraded in 14 days when incubated in 1 mg/mL lysozyme solution, compared to the 50 % degradation observed in PBS alone. The antioxidant activity of the JFP and JFP scaffold was approximately 40 %. The hemolytic assay of the JFP scaffold showed <5 % (3.0 ± 0.4) RBC lysis. The cytocompatibility of the JFP scaffold was evaluated using L929 mouse fibroblasts and human dermal fibroblasts (HDF). The in vitro studies using L929 cells showed that the JFP scaffold is cytocompatible. HDF cells cultured in the presence of JFP scaffolds show a higher fold cell viability, proliferation, and migration. Collagen expression and deposition were also studied, and no significant changes occurred with JFP scaffold treatment. In vivo CAM assay showed an increase in the number and thickness of blood vessels by 1.185-fold and 1.19-fold, respectively. These results confirm the angiogenic property of the JFP scaffold. These biocompatible and bioactive properties of the JFP scaffold could be beneficial for tissue engineering and regenerative medicine applications.
Collapse
Affiliation(s)
- Ponrasu Thangavel
- Tissue Engineering and Biomaterials Laboratory, Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai 600036, India.
| | - Iniyan Saravanakumar
- Tissue Engineering and Biomaterials Laboratory, Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai 600036, India
| | - Manoj Kumar Sundaram
- Tissue Engineering and Biomaterials Laboratory, Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai 600036, India
| | - Balamurugan Rathinam
- Department of Chemical and Materials Engineering, National Yunlin University of Science and Technology, Yunlin, Douliu 64002, Taiwan
| | - Vignesh Muthuvijayan
- Tissue Engineering and Biomaterials Laboratory, Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai 600036, India.
| |
Collapse
|
41
|
Wang H, Huddleston S, Yang J, Ameer GA. Enabling Proregenerative Medical Devices via Citrate-Based Biomaterials: Transitioning from Inert to Regenerative Biomaterials. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2306326. [PMID: 38043945 DOI: 10.1002/adma.202306326] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 10/03/2023] [Indexed: 12/05/2023]
Abstract
Regenerative medicine aims to restore tissue and organ function without the use of prosthetics and permanent implants. However, achieving this goal has been elusive, and the field remains mostly an academic discipline with few products widely used in clinical practice. From a materials science perspective, barriers include the lack of proregenerative biomaterials, a complex regulatory process to demonstrate safety and efficacy, and user adoption challenges. Although biomaterials, particularly biodegradable polymers, can play a major role in regenerative medicine, their suboptimal mechanical and degradation properties often limit their use, and they do not support inherent biological processes that facilitate tissue regeneration. As of 2020, nine synthetic biodegradable polymers used in medical devices are cleared or approved for use in the United States of America. Despite the limitations in the design, production, and marketing of these devices, this small number of biodegradable polymers has dominated the resorbable medical device market for the past 50 years. This perspective will review the history and applications of biodegradable polymers used in medical devices, highlight the need and requirements for regenerative biomaterials, and discuss the path behind the recent successful introduction of citrate-based biomaterials for manufacturing innovative medical products aimed at improving the outcome of musculoskeletal surgeries.
Collapse
Affiliation(s)
- Huifeng Wang
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, 60208, USA
- Center for Advanced Regenerative Engineering, Northwestern University, Evanston, IL, 60208, USA
| | - Samantha Huddleston
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, 60208, USA
- Center for Advanced Regenerative Engineering, Northwestern University, Evanston, IL, 60208, USA
| | - Jian Yang
- Biomedical Engineering Program, School of Engineering, Westlake University, Hangzhou, Zhejiang, 310030, China
- Research Center for Industries of the Future, Westlake University, Hangzhou, Zhejiang, 310030, China
| | - Guillermo A Ameer
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, 60208, USA
- Center for Advanced Regenerative Engineering, Northwestern University, Evanston, IL, 60208, USA
- Department of Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
- Chemistry of Life Processes Institute, Northwestern University, Evanston, IL, 60208, USA
- Simpson Querrey Institute, Northwestern University, Chicago, IL, 60611, USA
- International Institute for Nanotechnology, Northwestern University, Evanston, IL, 60208, USA
| |
Collapse
|
42
|
Shamshina JL, Berton P. Ionic Liquids as Designed, Multi-Functional Plasticizers for Biodegradable Polymeric Materials: A Mini-Review. Int J Mol Sci 2024; 25:1720. [PMID: 38338998 PMCID: PMC10855424 DOI: 10.3390/ijms25031720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 01/21/2024] [Accepted: 01/26/2024] [Indexed: 02/12/2024] Open
Abstract
Measures to endorse the adoption of eco-friendly biodegradable plastics as a response to the scale of plastic pollution has created a demand for innovative products from materials from Nature. Ionic liquids (ILs) have the ability to disrupt the hydrogen bonding network of biopolymers, increase the mobility of biopolymer chains, reduce friction, and produce materials with various morphologies and mechanical properties. Due to these qualities, ILs are considered ideal for plasticizing biopolymers, enabling them to meet a wide range of specifications for biopolymeric materials. This mini-review discusses the effect of different IL-plasticizers on the processing, tensile strength, and elasticity of materials made from various biopolymers (e.g., starch, chitosan, alginate, cellulose), and specifically covers IL-plasticized packaging materials and materials for biomedical and electrochemical applications. Furthermore, challenges (cost, scale, and eco-friendliness) and future research directions in IL-based plasticizers for biopolymers are discussed.
Collapse
Affiliation(s)
- Julia L. Shamshina
- Fiber and Biopolymer Research Institute, Department of Plant and Soil Science, Texas Tech University, Lubbock, TX 79409, USA
| | - Paula Berton
- Chemical and Petroleum Engineering Department, Schulich School of Engineering, University of Calgary, Calgary, AB T2N 1N4, Canada
| |
Collapse
|
43
|
James BD, Ward CP, Hahn ME, Thorpe SJ, Reddy CM. Minimizing the Environmental Impacts of Plastic Pollution through Ecodesign of Products with Low Environmental Persistence. ACS SUSTAINABLE CHEMISTRY & ENGINEERING 2024; 12:1185-1194. [PMID: 38273987 PMCID: PMC10806995 DOI: 10.1021/acssuschemeng.3c05534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 11/30/2023] [Accepted: 12/01/2023] [Indexed: 01/27/2024]
Abstract
While plastic pollution threatens ecosystems and human health, the use of plastic products continues to increase. Limiting its harm requires design strategies for plastic products informed by the threats that plastics pose to the environment. Thus, we developed a sustainability metric for the ecodesign of plastic products with low environmental persistence and uncompromised performance. To do this, we integrated the environmental degradation rate of plastic into established material selection strategies, deriving material indices for environmental persistence. By comparing indices for the environmental impact of on-the-market plastics and proposed alternatives, we show that accounting for the environmental persistence of plastics in design could translate to societal benefits of hundreds of millions of dollars for a single consumer product. Our analysis identifies the materials and their properties that deserve development, adoption, and investment to create functional and less environmentally impactful plastic products.
Collapse
Affiliation(s)
- Bryan D. James
- Department
of Marine Chemistry and Geochemistry, Woods
Hole Oceanographic Institution; Woods Hole, Massachusetts 02543, United States
- Department
of Biology, Woods Hole Oceanographic Institution; Woods Hole, Massachusetts 02543, United States
| | - Collin P. Ward
- Department
of Marine Chemistry and Geochemistry, Woods
Hole Oceanographic Institution; Woods Hole, Massachusetts 02543, United States
| | - Mark E. Hahn
- Department
of Biology, Woods Hole Oceanographic Institution; Woods Hole, Massachusetts 02543, United States
| | - Steven J. Thorpe
- Department
of Materials Science and Engineering, University
of Toronto; Toronto, Ontario M5S 3E4, Canada
| | - Christopher M. Reddy
- Department
of Marine Chemistry and Geochemistry, Woods
Hole Oceanographic Institution; Woods Hole, Massachusetts 02543, United States
| |
Collapse
|
44
|
Kaewchuchuen J, Matthew SAL, Phuagkhaopong S, Bimbo LM, Seib FP. Functionalising silk hydrogels with hetero- and homotypic nanoparticles. RSC Adv 2024; 14:3525-3535. [PMID: 38259992 PMCID: PMC10801455 DOI: 10.1039/d3ra07634b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 01/02/2024] [Indexed: 01/24/2024] Open
Abstract
Despite many reports detailing silk hydrogels, the development of composite silk hydrogels with homotypic and heterotypic silk nanoparticles and their impact on material mechanics and biology have remained largely unexplored. We hypothesise that the inclusion of nanoparticles into silk-based hydrogels enables the formation of homotropic and heterotropic material assemblies. The aim was to explore how well these systems allow tuning of mechanics and cell adhesion to ultimately control the cell-material interface. We utilised nonporous silica nanoparticles as a standard reference and compared them to nanoparticles derived from Bombyx mori silk and Antheraea mylitta (tasar) silk (approximately 100-150 nm in size). Initially, physically cross-linked B. mori silk hydrogels were prepared containing silica, B. mori silk nanoparticles, or tasar silk nanoparticles at concentrations of either 0.05% or 0.5% (w/v). The initial modulus (stiffness) of these nanoparticle-functionalised silk hydrogels was similar. Stress relaxation was substantially faster for nanoparticle-modified silk hydrogels than for unmodified control hydrogels. Increasing the concentrations of B. mori silk and silica nanoparticles slowed stress relaxation, while the opposite trend was observed for hydrogels modified with tasar nanoparticles. Cell attachment was similar for all hydrogels, but proliferation during the initial 24 h was significantly improved with the nanoparticle-modified hydrogels. Overall, this study demonstrates the manufacture and utilisation of homotropic and heterotropic silk hydrogels.
Collapse
Affiliation(s)
- Jirada Kaewchuchuen
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde 161 Cathedral Street Glasgow G4 0RE UK
| | - Saphia A L Matthew
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde 161 Cathedral Street Glasgow G4 0RE UK
| | - Suttinee Phuagkhaopong
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde 161 Cathedral Street Glasgow G4 0RE UK
- Department of Pharmacology, Faculty of Medicine, Chulalongkorn University Bangkok Thailand
| | - Luis M Bimbo
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde 161 Cathedral Street Glasgow G4 0RE UK
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Coimbra 3000-548 Coimbra Portugal
- CNC - Center for Neuroscience and Cell Biology, Rua Larga, University of Coimbra 3004-504 Coimbra Portugal
- CIBB - Center for Innovative Biomedicine and Biotechnology, Rua Larga, University of Coimbra 3004-504 Coimbra Portugal
| | - F Philipp Seib
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde 161 Cathedral Street Glasgow G4 0RE UK
- Fraunhofer Institute for Molecular Biology & Applied Ecology Branch Bioresources, Ohlebergsweg 12 35392 Giessen Germany
- Friedrich Schiller University Jena, Institute of Pharmacy Lessingstr. 8 07743 Jena Germany +49 3641 9 499 00
| |
Collapse
|
45
|
Halder T, Barot H, Kumar B, Kaushik V, Patel H, Bhut H, Saha B, Poddar S, Acharya N. An Insight into Biodegradable Polymers and their Biomedical Applications for Wound Healing. Curr Pharm Des 2024; 30:2425-2444. [PMID: 38982925 DOI: 10.2174/0113816128295935240425101509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 03/31/2024] [Indexed: 07/11/2024]
Abstract
Biodegradable polymers, encompassing both natural and synthetic polymers, have demonstrated efficacy as carriers for synthetic drugs, natural bioactive molecules, and inorganic metals. This is due to their ability to control the release of these substances. As a result, various advanced materials, such as nanoparticle- loaded hydrogels, nanofibrous scaffolds, and nanocomposites, have been developed. These materials have shown promise in enhancing processes, such as cell proliferation, vascular angiogenesis, hair growth, and wound healing management. Natural polymers, including hyaluronic acid, collagen, chitosan, gelatin, and alginate, as well as synthetic polymers like polylactic acid, polyglycolic acid, polylactic co-glycolic acid, and PCA, have significant potential for promoting wound healing. This study examines the advancements in biodegradable polymers for wound healing, specifically focusing on each polymer and its distinctive formulations. It also discusses the in vitro experiments conducted using different cell lines, as well as the in vivo studies that explore the numerous uses of these polymers in wound healing. The discussion also included the exploration of modifications or combinations of several polymers, as well as surface changes, in order to produce synergistic effects and address the limitations of individual polymers. The goal was to expedite the healing process of different chronic wounds. Due to this, there have been notable advancements in the technological use of polymeric mixes, including biodegradable polymer-based scaffolds, which have accelerated the process of wound healing.
Collapse
Affiliation(s)
- Tripti Halder
- Faculty of Pharmacy, DIT University, Dehradun, Uttarakhand, 248009, India
- Institute of Pharmacy, Nirma University, Ahmedabad 382481, Gujarat, India
| | - Harshit Barot
- Institute of Pharmacy, Nirma University, Ahmedabad 382481, Gujarat, India
| | - Bhavna Kumar
- Faculty of Pharmacy, DIT University, Dehradun, Uttarakhand, 248009, India
| | - Vishakha Kaushik
- Department of Physics, School of Physical Sciences, DIT University, Dehradun, Uttarakhand, 248009, India
| | - Hiren Patel
- Institute of Pharmacy, Nirma University, Ahmedabad 382481, Gujarat, India
| | - Hastik Bhut
- Institute of Pharmacy, Nirma University, Ahmedabad 382481, Gujarat, India
| | - Bijit Saha
- Jodas Expoim Pvt Ltd, Kukatpally, Telangana, Hyderabad 500072, India
| | - Sibani Poddar
- Faculty of Pharmacy, DIT University, Dehradun, Uttarakhand, 248009, India
| | - Niyati Acharya
- Institute of Pharmacy, Nirma University, Ahmedabad 382481, Gujarat, India
| |
Collapse
|
46
|
Graham M, Klinge S. Multiscale homogenisation of diffusion in enzymatically-calcified hydrogels. J Mech Behav Biomed Mater 2024; 149:106244. [PMID: 37988844 DOI: 10.1016/j.jmbbm.2023.106244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 11/10/2023] [Accepted: 11/13/2023] [Indexed: 11/23/2023]
Abstract
Hydrogels are a promising class of material in biomedical and industrial applications, where both the mechanical and diffusion properties play an important role. The wide range of polymers that can be used and the different production methods allows these properties to be specifically tuned to a high degree for their application. Producing tough hydrogels with high stiffness has been a long-standing challenge that has recently been addressed by mineralisation methods. Those methods modify the hydrogel into one with a supporting mineral microstructure that is highly heterogeneous. This work investigates methods to determine the macroscopic diffusion behaviour of heterogeneous gels by a homogenisation method implemented in a finite element framework. This is applied to two recently developed materials by calcifying poly-dimethyl-acrylamide (PDMA) and polyacrylamide hydrogels (PAAm). The former has porous, spherical inclusions obstructing diffusion, while the latter has spherical pores enabling it. For both gels the unobstructed volume can be used as the primary parameter to tune the diffusivity. In PDMA the porosity of the obstructions is shown by multiscale analysis to give a strong, non-linear dependence of the diffusivity on the solute molecule radius. The framework is extended to other materials and comparisons are made to experimental works from the literature.
Collapse
Affiliation(s)
- Marc Graham
- Department Structural Mechanics and Analysis, TU Berlin, Str. des 17. Juni 135, Berlin, 10623, Germany.
| | - Sandra Klinge
- Department Structural Mechanics and Analysis, TU Berlin, Str. des 17. Juni 135, Berlin, 10623, Germany
| |
Collapse
|
47
|
Khan AR, Grewal NS, Jun Z, Tawfiq FMO, Tchier F, Muhammad Zulqarnain R, Zhang HJ. Raising the Bar: Progress in 3D-Printed Hybrid Bone Scaffolds for Clinical Applications: A Review. Cell Transplant 2024; 33:9636897241273562. [PMID: 39517106 PMCID: PMC11549696 DOI: 10.1177/09636897241273562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 07/06/2024] [Accepted: 07/15/2024] [Indexed: 11/16/2024] Open
Abstract
Damage to bones resulting from trauma and tumors poses a significant challenge to human health. Consequently, current research in bone damage healing centers on developing three-dimensional (3D) scaffolding materials that facilitate and enhance the regeneration of fractured bone tissues. In this context, the careful selection of materials and preparation processes is essential for creating demanding scaffolds for bone tissue engineering. This is done to optimize the regeneration of fractured bones. This study comprehensively analyses the latest scientific advancements and difficulties in developing scaffolds for bone tissue creation. Initially, we clarified the composition and process by which bone tissue repairs itself. The review summarizes the primary uses of materials, both inorganic and organic, in scaffolds for bone tissue engineering. In addition, we present a comprehensive study of the most recent advancements in the mainstream techniques used to prepare scaffolds for bone tissue engineering. We also examine the distinct advantages of each method in great detail. This article thoroughly examines potential paths and obstacles in bone tissue engineering scaffolds for clinical applications.
Collapse
Affiliation(s)
- Ahsan Riaz Khan
- Department of Interventional and Vascular Surgery, Shanghai Tenth People’s Hospital, School of Medicine, Tongji University, Shanghai, China
- National United Engineering Laboratory for Biomedical Material Modification, Branden Industrial Park, Qihe Economic & Development Zone, Dezhou, China
| | - Navdeep Singh Grewal
- Department of Mechanical Engineering, Guru Kashi University, Talwandi Sabo, India
| | - Zhang Jun
- Research Center for Translational Medicine, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Ferdous M. O. Tawfiq
- Mathematics Department, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Fairouz Tchier
- Mathematics Department, College of Science, King Saud University, Riyadh, Saudi Arabia
| | | | - Hai-Jun Zhang
- Department of Interventional and Vascular Surgery, Shanghai Tenth People’s Hospital, School of Medicine, Tongji University, Shanghai, China
- National United Engineering Laboratory for Biomedical Material Modification, Branden Industrial Park, Qihe Economic & Development Zone, Dezhou, China
| |
Collapse
|
48
|
Olmos-Juste R, Larrañaga-Jaurrieta G, Larraza I, Ramos-Diez S, Camarero-Espinosa S, Gabilondo N, Eceiza A. Alginate-waterborne polyurethane 3D bioprinted scaffolds for articular cartilage tissue engineering. Int J Biol Macromol 2023; 253:127070. [PMID: 37748588 DOI: 10.1016/j.ijbiomac.2023.127070] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 09/21/2023] [Accepted: 09/22/2023] [Indexed: 09/27/2023]
Abstract
Articular cartilage defects comprise a spectrum of diseases associated with degeneration or damage of the connective tissue present in particular joints, presenting progressive osteoarthritis if left untreated. In vitro tissue regeneration is an innovative treatment for articular cartilage injuries that is attracting not only clinical attention, but also great interest in the development of novel biomaterials, since this procedure involves the formation of a neotissue with the help of material support. In this work, functional alginate and waterborne polyurethane (WBPU) scaffolds have been developed for articular cartilage regeneration using 3D bioprinting technology. The particular properties of alginate-WBPU blends, like mechanical strength, elasticity and moistening, mimic the original cartilage tissue characteristics, being ideal for this application. To fabricate the scaffolds, mature chondrocytes were loaded into different alginate-WBPU inks with rheological properties suitable for 3D bioprinting. Bioinks with high alginate content showed better 3D printing performance, as well as structural integrity and cell viability, being most suitable for scaffolds fabrication. After 28 days of in vitro cartilage formation experiments, scaffolds containing 3.2 and 6.4 % alginate resulted in the maintenance of cell number in the range of 104 chondrocytes/scaffold in differentiated phenotypes, capable of synthesizing specialized extracellular matrix (ECM) up to 6 μg of glycosaminoglycans (GAG) and thus, showing a potential application of these scaffolds for in vitro regeneration of articular cartilage tissue.
Collapse
Affiliation(s)
- R Olmos-Juste
- 'Materials + Technologies' Research Group (GMT), Department of Chemical and Environmental Engineering, Engineering College of Gipuzkoa, University of the Basque Country UPV / EHU, Plaza Europa 1, Donostia / San Sebastian 20018, Gipuzkoa, Spain
| | - G Larrañaga-Jaurrieta
- POLYMAT, University of the Basque Country UPV / EHU, Avenida Tolosa 72, Donostia / San Sebastián 20018, Gipuzkoa, Spain; Regenerative Medicine Lab, CICbiomaGUNE, Donostia / San Sebastián 20014, Gipuzkoa, Spain
| | - I Larraza
- 'Materials + Technologies' Research Group (GMT), Department of Chemical and Environmental Engineering, Engineering College of Gipuzkoa, University of the Basque Country UPV / EHU, Plaza Europa 1, Donostia / San Sebastian 20018, Gipuzkoa, Spain
| | - S Ramos-Diez
- POLYMAT, University of the Basque Country UPV / EHU, Avenida Tolosa 72, Donostia / San Sebastián 20018, Gipuzkoa, Spain
| | - S Camarero-Espinosa
- POLYMAT, University of the Basque Country UPV / EHU, Avenida Tolosa 72, Donostia / San Sebastián 20018, Gipuzkoa, Spain; Ikerbasque, Basque Foundation for Science, Euskadi Pl., 5, 48009, Bilbao, Spain
| | - N Gabilondo
- 'Materials + Technologies' Research Group (GMT), Department of Chemical and Environmental Engineering, Engineering College of Gipuzkoa, University of the Basque Country UPV / EHU, Plaza Europa 1, Donostia / San Sebastian 20018, Gipuzkoa, Spain.
| | - A Eceiza
- 'Materials + Technologies' Research Group (GMT), Department of Chemical and Environmental Engineering, Engineering College of Gipuzkoa, University of the Basque Country UPV / EHU, Plaza Europa 1, Donostia / San Sebastian 20018, Gipuzkoa, Spain.
| |
Collapse
|
49
|
Wu L, Li J, Wang Y, Zhao X, He Y, Mao H, Tang W, Liu R, Luo K, Gu Z. Engineered Hierarchical Microdevices Enable Pre-Programmed Controlled Release for Postsurgical and Unresectable Cancer Treatment. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2305529. [PMID: 37549042 DOI: 10.1002/adma.202305529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 07/24/2023] [Indexed: 08/09/2023]
Abstract
Drug treatment is required for both resectable and unresectable cancers to strive for any meaningful improvement in patient outcomes. However, the clinical benefit of receiving conventional systemic administrations is often less than satisfactory. Drug delivery systems are preferable substitutes but still fail to meet diverse clinical demands due to the difficulty in programming drug release profiles. Herein, a microfabrication concept, termed "Hierarchical Multiple Polymers Immobilization" (HMPI), is introduced and biodegradable-polymer-based hierarchical microdevices (HMDs) that can pre-program any desired controlled release profiles are engineered. Based on the first-line medication of pancreatic and breast cancer, controlled release of single gemcitabine and the doxorubicin/paclitaxel combination in situ for multiple courses is implemented, respectively. Preclinical models of postsurgical pancreatic, postsurgical breast, and unresectable breast cancer are established, and the designed HMDs are demonstrated as well-tolerable and effective treatments for inhibiting tumor growth, recurrence, and metastasis. The proposed HMPI strategy allows the creation of tailorable and high-resolution hierarchical microstructures for pre-programming controlled release according to clinical medication schedules, which may provide promising alternative treatments for postsurgical and unresectable tumor control.
Collapse
Affiliation(s)
- Lihuang Wu
- Research Institute for Biomaterials, Tech Institute for Advanced Materials Bioinspired Biomedical Materials & Devices Center, College of Materials Science and Engineering, Jiangsu Collaborative Innovation Center for Advanced Inorganic Function Composites, Suqian Advanced Materials Industry Technology Innovation Center, Nanjing Tech University, Nanjing, 211816, China
| | - Junhua Li
- Research Institute for Biomaterials, Tech Institute for Advanced Materials Bioinspired Biomedical Materials & Devices Center, College of Materials Science and Engineering, Jiangsu Collaborative Innovation Center for Advanced Inorganic Function Composites, Suqian Advanced Materials Industry Technology Innovation Center, Nanjing Tech University, Nanjing, 211816, China
| | - Yuqi Wang
- Research Institute for Biomaterials, Tech Institute for Advanced Materials Bioinspired Biomedical Materials & Devices Center, College of Materials Science and Engineering, Jiangsu Collaborative Innovation Center for Advanced Inorganic Function Composites, Suqian Advanced Materials Industry Technology Innovation Center, Nanjing Tech University, Nanjing, 211816, China
| | - Xinyue Zhao
- Research Institute for Biomaterials, Tech Institute for Advanced Materials Bioinspired Biomedical Materials & Devices Center, College of Materials Science and Engineering, Jiangsu Collaborative Innovation Center for Advanced Inorganic Function Composites, Suqian Advanced Materials Industry Technology Innovation Center, Nanjing Tech University, Nanjing, 211816, China
| | - Yiyan He
- Research Institute for Biomaterials, Tech Institute for Advanced Materials Bioinspired Biomedical Materials & Devices Center, College of Materials Science and Engineering, Jiangsu Collaborative Innovation Center for Advanced Inorganic Function Composites, Suqian Advanced Materials Industry Technology Innovation Center, Nanjing Tech University, Nanjing, 211816, China
| | - Hongli Mao
- Research Institute for Biomaterials, Tech Institute for Advanced Materials Bioinspired Biomedical Materials & Devices Center, College of Materials Science and Engineering, Jiangsu Collaborative Innovation Center for Advanced Inorganic Function Composites, Suqian Advanced Materials Industry Technology Innovation Center, Nanjing Tech University, Nanjing, 211816, China
- NJTech-BARTY Joint Research Center for Innovative Medical Technology, Nanjing Tech University, Nanjing, 210009, China
| | - Wenbo Tang
- Faculty of Hepatopancreatobiliary Surgery, the First Medical Center, Chinese PLA General Hospital, Beijing, 100039, China
| | - Rong Liu
- Faculty of Hepatopancreatobiliary Surgery, the First Medical Center, Chinese PLA General Hospital, Beijing, 100039, China
| | - Kui Luo
- Department of Radiology, Huaxi MR Research Center (HMRRC), National Clinical Research Center for Geriatrics, Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Zhongwei Gu
- Research Institute for Biomaterials, Tech Institute for Advanced Materials Bioinspired Biomedical Materials & Devices Center, College of Materials Science and Engineering, Jiangsu Collaborative Innovation Center for Advanced Inorganic Function Composites, Suqian Advanced Materials Industry Technology Innovation Center, Nanjing Tech University, Nanjing, 211816, China
- Faculty of Hepatopancreatobiliary Surgery, the First Medical Center, Chinese PLA General Hospital, Beijing, 100039, China
- Department of Radiology, Huaxi MR Research Center (HMRRC), National Clinical Research Center for Geriatrics, Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| |
Collapse
|
50
|
Dibazar ZE, Zarei M, Mohammadikhah M, Oudah SK, Elyasi M, Kokabi H, Shahgolzari M, Asl LD, Azizy M. Crosslinking strategies for biomimetic hydrogels in bone tissue engineering. Biophys Rev 2023; 15:2027-2040. [PMID: 38192345 PMCID: PMC10771399 DOI: 10.1007/s12551-023-01141-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 09/03/2023] [Indexed: 01/10/2024] Open
Abstract
Bone tissue engineering has become a popular area of study for making biomimetic hydrogels to treat bone diseases. In this work, we looked at biocompatible hydrogels that can be injected into bone defects that require the smallest possible surgery. Mineral ions can be attached to polymer chains to make useful hydrogels that help bones heal faster. These ions are very important for the balance of the body. In the chemically-triggered sector, advanced hydrogels cross-linked by different molecular agents have many advantages, such as being selective, able to form gels, and having mechanical properties that can be modified. In addition, different photo-initiators can be used to make photo cross linkable hydrogels react quickly and moderately under certain light bands. Enzyme-triggered hydrogels are another type of hydrogel that can be used to repair bone tissue because they are biocompatible and gel quickly. We also look at some of the important factors mentioned above that could change how well bone tissue engineering works as a therapy. Finally, this review summarizes the problems that still need to be solved to make clinically relevant hydrogels.
Collapse
Affiliation(s)
- Zahra Ebrahimvand Dibazar
- Department of Oral and Maxillo Facial Medicine, Faculty of Dentistry, Tabriz Azad University of Medical Sciences, Tabriz, 5165687386 Iran
| | - Mahdi Zarei
- Student Research Committee, Tabriz university of medical sciences, Tabriz, Iran
| | - Meysam Mohammadikhah
- Department of Oral and Maxillofacial Surgery, School of Dentistry, Alborz University of Medical Sciences, Karaj, Iran
| | - Shamam Kareem Oudah
- College of Pharmacy, National University of Science and Technology, Dhi Qar, Iraq
| | - Milad Elyasi
- Otolaryngology department, Shahid Beheshti University of medical sciences, Tehran, Iran
| | - Hadi Kokabi
- Department of Periodontics, School of Dentistry, Hamadan University of Medical Sciences, Hamadan, 65175-4171 Iran
| | - Mehdi Shahgolzari
- Dental Research Center, Hamadan University of Medical Sciences, Hamadan, 65175-4171 Iran
| | - Leila Delnabi Asl
- Department of Internal Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mahdi Azizy
- Department of Oral and Maxillofacial Surgery, School of Dentistry, Alborz University of Medical Sciences, Karaj, Iran
| |
Collapse
|