1
|
Réant BL, Whitehead GFS, Mehta M. Zintl Clusters as a Platform for Lewis Acid Catalysis. Inorg Chem 2024; 63:20117-20125. [PMID: 38814137 PMCID: PMC11523240 DOI: 10.1021/acs.inorgchem.4c00433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 05/02/2024] [Accepted: 05/16/2024] [Indexed: 05/31/2024]
Abstract
Clusters of the main group elements phosphorus and arsenic, commonly categorized as Zintl clusters, have been known for over a century. And, only now is the application of these systems as catalysts for organic synthesis being investigated. In this work, boranes are tethered via an aliphatic linker to Zintl-based clusters and their Lewis acidity is examined experimentally, by the Gutmann-Beckett test and competency in the hydroborative reduction of six organic substrates, as well as computationally, by fluoride ion affinity and hydride ion affinity methods. The effects of tuning the aliphatic linker length, substituents at the boron, and changing the cluster from a seven-atom phosphorus system to a seven-atom arsenic system on reactivity are studied.
Collapse
Affiliation(s)
- Benjamin
L. L. Réant
- Department
of Chemistry, University of Manchester, Oxford Road, Manchester M13 9PL, United Kingdom
| | - George F. S. Whitehead
- Department
of Chemistry, University of Manchester, Oxford Road, Manchester M13 9PL, United Kingdom
| | - Meera Mehta
- Department
of Chemistry, University of Oxford, 12 Mansfield Road, Oxford OX1 3TA, United Kingdom
| |
Collapse
|
2
|
Gong X, Shi X, Deng P, Cheng J. Reactivity of Strontium Hydride Supported by the Superbulky Hydrotris(pyrazolyl)borate Ligand. Inorg Chem 2024; 63:20654-20663. [PMID: 39421973 PMCID: PMC11523258 DOI: 10.1021/acs.inorgchem.4c03296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Revised: 10/05/2024] [Accepted: 10/10/2024] [Indexed: 10/19/2024]
Abstract
Hydrogenolysis of [(TpAd,iPr)Sr{CH(SiMe3)2}] (1) (TpAd,iPr = hydrotris(3-adamantyl-5-isopropyl-pyrazolyl)borate) in hexane solution under 20 atm of H2 allowed for the isolation of strontium hydride [(TpAd,iPr)Sr(μ-H)]2 (2) in good yield. Complex 2 exhibits the dimeric nature in solid state, featuring two different bond modes between the Sr center and TpAd,iPr ligand. Treatment of complex 2 with PhC(H)═NtBu or PhCH2Bpin (Bpin = pinacolateborane) afforded the strontium amide complex [(TpAd,iPr)Sr{N(CH2Ph)(tBu)}] (4) and hydroborate complex [(TpAd,iPr)Sr{μ-HBpin(CH2Ph)}] (5), respectively. Reactions of complex 2 with 2-picoline, 2-phenylquinoline, or 2-phenylpyridine led to the formation of strontium 2-pyridylmethylene/2-picoline complex [(TpAd,iPr)Sr(2-CH2-Py)(2-picoline)] (6), reductively coupling diphenyl-biquinolide complex [{(TpAd,iPr)Sr}2(2,2'-Ph2-4,4'-dihydro-4,4'-biquinolide)] (7), and diphenyl-bipyridyl radical complex [(TpAd,iPr)Sr(6,6'-Ph2-2,2'-bipyridyl)] (8), separately. All of the complexes have been well characterized, including NMR spectrum and single-crystal X-ray analysis.
Collapse
Affiliation(s)
- Xun Gong
- State
Key Laboratory of Polymer Physics and Chemistry, Changchun Institute
of Applied Chemistry, Chinese Academy of
Sciences, No. 5625 Renmin Street, Changchun 130022, China
- School
of Applied Chemistry and Engineering, University
of Science and Technology of China, Hefei, Anhui 230026, China
| | - Xianghui Shi
- State
Key Laboratory of Polymer Physics and Chemistry, Changchun Institute
of Applied Chemistry, Chinese Academy of
Sciences, No. 5625 Renmin Street, Changchun 130022, China
| | - Peng Deng
- State
Key Laboratory of Polymer Physics and Chemistry, Changchun Institute
of Applied Chemistry, Chinese Academy of
Sciences, No. 5625 Renmin Street, Changchun 130022, China
- School
of Applied Chemistry and Engineering, University
of Science and Technology of China, Hefei, Anhui 230026, China
| | - Jianhua Cheng
- State
Key Laboratory of Polymer Physics and Chemistry, Changchun Institute
of Applied Chemistry, Chinese Academy of
Sciences, No. 5625 Renmin Street, Changchun 130022, China
- School
of Applied Chemistry and Engineering, University
of Science and Technology of China, Hefei, Anhui 230026, China
| |
Collapse
|
3
|
Mukhopadhyay S, Sahoo RK, Patro AG, Khuntia AP, Nembenna S. Low-valent germanium and tin hydrides as catalysts for hydroboration, hydrodeoxygenation (HDO), and hydrodesulfurization (HDS) of heterocumulenes. Dalton Trans 2024. [PMID: 39466610 DOI: 10.1039/d3dt04080a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/30/2024]
Abstract
The low-valent germanium and tin hydrides, [LMH; L = {(ArHN)(ArN)-CN-C(NAr)(NHAr); Ar = 2,6-Et2-C6H3}; M = Ge; (Ge-1), Sn (Sn-2)] bearing bis-guanidinato anions are employed as catalysts for chemoselective reduction of heterocumulenes via hydroboration reactions. This protocol demonstrates that a wide range of carbodiimides (CDI), isocyanates, isothiocyanates, and isoselenocyanates undergo partial reduction, yielding the corresponding N-boryl formamidine, N-boryl formamide, N-boryl thioformamide, and N-boryl selenoformamide products, respectively. Isocyanates and isothiocyanates are further converted into N-boryl methyl amines through hydrodeoxygenation (HDO) and hydrodesulfurization (HDS) reactions in the presence of catalyst Ge-1. Additionally, catalyst Sn-2 exhibits excellent inter and intra-molecular chemoselectivity over other functional groups. Based on stoichiometric experiments, a plausible catalytic cycle for chemoselective hydroboration of heterocumulenes is proposed.
Collapse
Affiliation(s)
- Sayantan Mukhopadhyay
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), Homi Bhabha National Institute (HBNI), Bhubaneswar, 752050, India.
| | - Rajata Kumar Sahoo
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), Homi Bhabha National Institute (HBNI), Bhubaneswar, 752050, India.
| | - A Ganesh Patro
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), Homi Bhabha National Institute (HBNI), Bhubaneswar, 752050, India.
| | - Anwesh Prasad Khuntia
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), Homi Bhabha National Institute (HBNI), Bhubaneswar, 752050, India.
| | - Sharanappa Nembenna
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), Homi Bhabha National Institute (HBNI), Bhubaneswar, 752050, India.
| |
Collapse
|
4
|
Rajput S, Sahoo RK, M T N, Nembenna S. Zinc catalyzed chemoselective hydrofunctionalization of cyanamides. Chem Commun (Camb) 2024; 60:11148-11151. [PMID: 39291297 DOI: 10.1039/d4cc03972f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/19/2024]
Abstract
The zinc-catalyzed hydrosilylation and hydroboration of cyanamides have been described. Chemoselective reduction of cyanamides with Ph2SiH2 and partial or complete hydroboration of cyanamides with pinacolborane (HBpin) have been successfully carried out. The active catalyst/intermediate in the catalytic reactions, i.e., the bis-guanidinate zinc amidinate compound, has been isolated and structurally characterized.
Collapse
Affiliation(s)
- Sagrika Rajput
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), Homi Bhabha National Institute (HBNI), Bhubaneswar, 752050, India.
| | - Rajata Kumar Sahoo
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), Homi Bhabha National Institute (HBNI), Bhubaneswar, 752050, India.
| | - Nithya M T
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), Homi Bhabha National Institute (HBNI), Bhubaneswar, 752050, India.
| | - Sharanappa Nembenna
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), Homi Bhabha National Institute (HBNI), Bhubaneswar, 752050, India.
| |
Collapse
|
5
|
Long T, Zhang L, Cao Z. THF-Assisted CO 2 Reduction Catalyzed by Electride Mg 2EP: Insight from DFT Calculations. J Phys Chem A 2024; 128:5344-5350. [PMID: 38940816 DOI: 10.1021/acs.jpca.4c03500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/29/2024]
Abstract
Hydroboration and hydrogenation reductions of CO2 catalyzed by a porphyrinoid-based dimagnesium(I) electride (Mg2EP) were investigated by density functional theory calculations. Herein, the presence of potentially excess electrons located at the Mg-Mg bond endows Mg2EP with the ability to activate small molecules such as CO2, HBpin, and H2, thus opening up the possibility for further CO2 conversion. The Mg2EP-catalyzed hydroboration of CO2 to HCOOBpin is predicted to have relatively higher activity in comparison to the hydrogenation reduction to formic acid (HCOOH). Interestingly, the common solvent molecule tetrahydrofuran as an auxiliary can coordinate with the Mg center to effectively weaken the bonding interaction between the dimagnesium center and the intermediate species from the CO2 conversion, thereby promoting the catalytic cycle for the CO2 hydroboration. The present results suggest that the electride Mg2EP is promising for the molecular catalyst in the CO2 transformation.
Collapse
Affiliation(s)
- Tairen Long
- State Key Laboratory of Physical Chemistry of Solid Surfaces and Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 360015, China
| | - Lin Zhang
- State Key Laboratory of Physical Chemistry of Solid Surfaces and Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 360015, China
| | - Zexing Cao
- State Key Laboratory of Physical Chemistry of Solid Surfaces and Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 360015, China
| |
Collapse
|
6
|
Wang W, Wang Y, Yang Y, Xie S, Wang Q, Chen W, Wang S, Zhang F, Shao Y. Cobalt-Catalyzed Borylative Reduction of Azobenzenes to Hydrazobenzenes via a Diborylated-Hydrazine Intermediate. J Org Chem 2024; 89:9265-9274. [PMID: 38901844 DOI: 10.1021/acs.joc.4c00203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/22/2024]
Abstract
Cobalt-catalyzed borylative reduction of azobenzenes using pinacolborane is developed. The simple cobalt chloride catalyst and reaction conditions make this protocol attractive for hydrazobenzene synthesis. This borylative reduction shows good functional group compatibility and can be readily scaled up to the gram scale. Preliminary mechanistic studies clarified the proton source of the hydrazine products. This cobalt-catalyzed azobenzene borylative reaction provides a practical protocol to prepare synthetically useful diborylated hydrazines.
Collapse
Affiliation(s)
- Wenli Wang
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325035, China
| | - Yuli Wang
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325035, China
| | - Yiying Yang
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325035, China
| | - Shanshan Xie
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325035, China
| | - Qi Wang
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325035, China
| | - Wenwen Chen
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325035, China
| | - Shuo Wang
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325035, China
| | - Fangjun Zhang
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China
| | - Yinlin Shao
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325035, China
- Institute of New Materials & Industrial Technology, Wenzhou University, Wenzhou 325035, China
| |
Collapse
|
7
|
Zhang X, Lu K, Chen X, Su G, Rong X, Ma M. Hydroboration and hydrosilylation of alkenes catalyzed by an unsymmetrical magnesium methyl complex. Org Biomol Chem 2024; 22:5353-5360. [PMID: 38869074 DOI: 10.1039/d4ob00745j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2024]
Abstract
The hydroboration and hydrosilylation of alkenes catalyzed by the unsymmetrical β-diketiminate magnesium methyl complex [(DippXylNacnac)MgMe (THF)] (1) have been reported. When complex 1 was employed as a highly efficient catalyst in the hydroboration of various alkenes with HBpin, only the anti-Markovnikov hydroboration products were obtained in high yields and with high regioselectivities under mild reaction conditions (60 °C). To our surprise, it showed different regioselectivities in the hydrosilylation of a range of alkenes with PhSiH3. Aromatic alkene substrates afforded the corresponding branched Markovnikov hydrosilylation products in high yields and with high regioselectivities; conversely, aliphatic alkenes produced the linear anti-Markovnikov products in moderate yields. This is completely consistent with the corresponding density functional theory (DFT) calculations. In addition, the practical utility was demonstrated via scale-up reactions of boronate esters and a preliminary plausible mechanism of hydroboration and hydrosilylation have been investigated as well.
Collapse
Affiliation(s)
- Xuguang Zhang
- Department of Chemistry and Material Science, College of Science, Nanjing Forestry University, Nanjing 210037, China.
| | - Kai Lu
- Department of Chemistry and Material Science, College of Science, Nanjing Forestry University, Nanjing 210037, China.
| | - Xi Chen
- Department of Chemistry and Material Science, College of Science, Nanjing Forestry University, Nanjing 210037, China.
| | - Guanxin Su
- Department of Chemistry and Material Science, College of Science, Nanjing Forestry University, Nanjing 210037, China.
| | - Xiaofei Rong
- Department of Chemistry and Material Science, College of Science, Nanjing Forestry University, Nanjing 210037, China.
| | - Mengtao Ma
- Department of Chemistry and Material Science, College of Science, Nanjing Forestry University, Nanjing 210037, China.
| |
Collapse
|
8
|
Sen N, Sarkar P, Meena Y, Tothadi S, Pati SK, Khan S. Synthesis and catalytic application of a donor-free bismuthenium cation. Chem Commun (Camb) 2024; 60:6877-6880. [PMID: 38873969 DOI: 10.1039/d4cc01805b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2024]
Abstract
Herein, we report the synthesis and catalytic application of a new N,N'-dineopentyl-1,2-phenylenediamine-based bismuthenium cation (3). 3 has been synthesized via the treatment of chlorobismuthane LBiCl [L = 1,2-C6H4{N(CH2tBu)}2] (2) with AgSbF6, and was further used as a robust catalyst for the cyanosilylation of ketones under mild reaction conditions. Experimental studies and DFT calculations were performed to understand the mechanistic pathway.
Collapse
Affiliation(s)
- Nilanjana Sen
- Department of Chemistry, Indian Institute of Science Education and Research Pune, Dr Homi Bhabha Road, Pashan, Pune-411008, India.
| | - Pallavi Sarkar
- Theoretical Sciences Unit, School of Advanced Materials (SAMat), Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore-560064, India.
| | - Yadram Meena
- Department of Chemistry, Indian Institute of Science Education and Research Pune, Dr Homi Bhabha Road, Pashan, Pune-411008, India.
| | - Srinu Tothadi
- CSIR-Central Salt and Marine Chemicals Research (AcSIR), Ghaziabad-201002, UP, India
| | - Swapan K Pati
- Theoretical Sciences Unit, School of Advanced Materials (SAMat), Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore-560064, India.
| | - Shabana Khan
- Department of Chemistry, Indian Institute of Science Education and Research Pune, Dr Homi Bhabha Road, Pashan, Pune-411008, India.
| |
Collapse
|
9
|
Rajput S, Sahoo RK, Sarkar N, Nembenna S. Gallium Hydride-Catalyzed Selective Hydroboration of Unsaturated Organic Substrates. Chempluschem 2024; 89:e202300737. [PMID: 38437065 DOI: 10.1002/cplu.202300737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 03/04/2024] [Accepted: 03/04/2024] [Indexed: 03/06/2024]
Abstract
The first examples of tetrasubstituted conjugated bis-guanidinate (CBG) supported monomeric and thermally stable gallium dihalides [LGaX2], (X=Cl (Ga-Cl), I (Ga-I)) and dihydride (Ga-H) [LGaH2] (where L={(ArHN)(ArN)-C=N-C=(NAr)(NHAr)}; Ar=2,6-Et2-C6H3) compounds are reported. The reaction of in situ generated LLi with 1.0 equiv. GaX3 (X=Cl, I) afforded compounds Ga-Cl and Ga-I. The reaction between Ga-Cl and Li[HBEt3] in benzene yielded the dihydride compound Ga-H. All reported compounds (Ga-Cl, Ga-I, and Ga-H) were characterized by NMR, HRMS, and single-crystal X-ray diffraction studies. Ga-H was probed for the hydroboration of carbodiimides (CDI), isocyanates, and isothiocyanates with HBpin. Compound Ga-H was also found effective for the catalytic hydroboration of imines, nitriles, alkynes, esters, and formates, affording the corresponding products in quantitative yields. Stoichiometric reactions with a CDI were performed to establish the catalytic cycle.
Collapse
Affiliation(s)
- Sagrika Rajput
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), Homi Bhabha National Institute (HBNI), Bhubaneswar, 752050, India
| | - Rajata Kumar Sahoo
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), Homi Bhabha National Institute (HBNI), Bhubaneswar, 752050, India
| | - Nabin Sarkar
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), Homi Bhabha National Institute (HBNI), Bhubaneswar, 752050, India
| | - Sharanappa Nembenna
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), Homi Bhabha National Institute (HBNI), Bhubaneswar, 752050, India
| |
Collapse
|
10
|
Duan Y, Zheng Z, Yu Z, Sun S, Lin B, Liu X, Liu P. Catalyst-Free α- trans-Selective Hydroboration and ( E)-Selective Deuterated Semihydrogenation of Alkynyl Sulfones. J Org Chem 2024; 89:8326-8333. [PMID: 38817078 DOI: 10.1021/acs.joc.3c02833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/01/2024]
Abstract
Here, we present a straightforward α-trans-selective hydroboration of alkynyl sulfones with NHC-boranes without the need for a catalyst. This reaction is compatible with a wide range of substrates for efficiently producing structurally diverse α-borylated vinyl sulfones in satisfactory yields. The hydride transfer from NHC-borane 2a to alkynyl triflone 1b is studied by density functional theory (DFT) calculations for trans-hydroboration. Moreover, a regiodivergent deuterated semihydrogenation of alkynyl triflones has also been developed using D2O as the deuterium source. A variety of diversity-oriented D-containing vinyl triflones were prepared in good to excellent yields with excellent deuterium incorporation ratios. Synthetic manipulations of the deuterated products are achieved for the conversion into valuable deuterated molecules, indicating the utility of this protocol.
Collapse
Affiliation(s)
- Yunnan Duan
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province, Generic Drug Research Center of Guizhou Province, School of Pharmacy, Zunyi Medical University, Zunyi 563000, China
| | - Zhouqing Zheng
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province, Generic Drug Research Center of Guizhou Province, School of Pharmacy, Zunyi Medical University, Zunyi 563000, China
| | - Zhiwei Yu
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Shitao Sun
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Bin Lin
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Xiaozu Liu
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province, Generic Drug Research Center of Guizhou Province, School of Pharmacy, Zunyi Medical University, Zunyi 563000, China
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi 563000, China
| | - Peijun Liu
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province, Generic Drug Research Center of Guizhou Province, School of Pharmacy, Zunyi Medical University, Zunyi 563000, China
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi 563000, China
| |
Collapse
|
11
|
Latha AT, P CAS. Air-Stable Iron(III) Salen Complexes for Selective Hydroboration of Ketones and Unactivated Imines without Base Activation. J Org Chem 2024; 89:8376-8384. [PMID: 38847608 DOI: 10.1021/acs.joc.4c00145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/22/2024]
Abstract
Herein, we designed and synthesized a series of air-stable, cost-effective, and readily synthesizable iron(III) salen complexes (Fe-1 and Fe-2) for facilitating the selective hydroboration of ketones and unactivated imines with pinacolborane in the absence of any additive. These catalyst systems exhibited good yields, chemoselectivity, high atom economy, and a broad substrate scope under mild reaction conditions with a minimal catalyst loading of 0.2 mol %. The catalytic efficiency of Fe-1 has been demonstrated through the hydroboration of diverse aromatic, aliphatic, and heterocyclic ketones and imines with a turnover number of up to 1000, highlighting its broad substrate scope. Ketones are chemoselectively hydroborated over other functional groups such as imines, alkenes, esters, nitriles, acids, and alcohols. Besides, the synthetic utility of this strategy has also been showcased by the construction of a natural chiral monoterpenoid carveol. This protocol can be readily scaled up for gram-scale synthesis of alcohols, which underscores the potential industrial applicability of our catalyst system in the synthesis of secondary alcohols on a larger scale.
Collapse
Affiliation(s)
- Anjima T Latha
- Main Group Organometallics Optoelectronic Materials and Catalysis Lab, Department of Chemistry, National Institute of Technology, Calicut 673601, India
| | - Chinna Ayya Swamy P
- Main Group Organometallics Optoelectronic Materials and Catalysis Lab, Department of Chemistry, National Institute of Technology, Calicut 673601, India
| |
Collapse
|
12
|
López-Vargas M, Pérez JM, Echenique-Errandonea E, Forte-Castro A, Rojas S, Seco JM, Rodríguez-Diéguez A, Vitorica-Yrezabal IJ, Fernández I. Synthesis, Characterization, and Catalytic Performance of a New Heterobimetallic Y/Tb Metal-Organic Framework with High Catalytic Activity. ACS OMEGA 2024; 9:26549-26559. [PMID: 38911723 PMCID: PMC11191568 DOI: 10.1021/acsomega.4c03109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 05/18/2024] [Accepted: 05/23/2024] [Indexed: 06/25/2024]
Abstract
A three-dimensional heterobimetallic porous structure with the formula {[Y3.5Tb1.5L6(OH)3(H2O)1.5 (DMF)1.5] n ·1.5H2O·DMF} n (L = 3-amino-4-hydroxybenzoate) (Y/Tb-MOF) has been synthesized and characterized by single crystal and powder X-ray diffraction, scanning electron microscopy with energy dispersive X-ray spectroscopy (SEM-EDX), inductively coupled plasma mass spectrometry (ICP-MS), electrophoretic mobility, and Fourier transform infrared (FTIR) spectroscopy. The structure presents two metal environments: a bioaugmented isosceles wedge (mm2) MO8 and a tricapped trigonal prism (-6m2) MN3O6. These configurations facilitate the creation of channels with a diameter of 10.7 Å, enabling its utilization as an active catalyst where the heterobimetallic nature of the assembly will be explored. This mixed-metal metal-organic framework has been tested in the cycloaddition of epoxides with carbon dioxide as well as in the cyanosilylation and hydroboration reactions of carbonylic substrates. Additionally, a monometallic Tb-MOF analogue has been synthesized for comparative evaluation of their catalytic performances. Both the mixed metal and monometallic variants exhibit outstanding activity in the cyanosilylation and hydroboration of carbonyls and in the synthesis of carbonates under CO2 pressure. However, only the latter exhibits high recyclability.
Collapse
Affiliation(s)
- Mireya
E. López-Vargas
- Department
of Chemistry and Physics, Research Centre CIAIMBITAL, University of Almería, Ctra. Sacramento s/n, 04120 Almería, Spain
| | - Juana M. Pérez
- Department
of Chemistry and Physics, Research Centre CIAIMBITAL, University of Almería, Ctra. Sacramento s/n, 04120 Almería, Spain
| | - Estitxu Echenique-Errandonea
- Departamento
de Química Aplicada, Universidad
del País Vasco UPV/EHU, Paseo Manuel Lardizabal, N° 3, 20018 Donostia-San Sebastián, Spain
| | - Arantxa Forte-Castro
- Department
of Chemistry and Physics, Research Centre CIAIMBITAL, University of Almería, Ctra. Sacramento s/n, 04120 Almería, Spain
| | - Sara Rojas
- Department
of Inorganic Chemistry, University of Granada, Av. Fuentenueva s/n, 18071 Granada, Spain
| | - José M. Seco
- Departamento
de Química Aplicada, Universidad
del País Vasco UPV/EHU, Paseo Manuel Lardizabal, N° 3, 20018 Donostia-San Sebastián, Spain
| | | | | | - Ignacio Fernández
- Department
of Chemistry and Physics, Research Centre CIAIMBITAL, University of Almería, Ctra. Sacramento s/n, 04120 Almería, Spain
| |
Collapse
|
13
|
Liang Y, Efremenko I, Diskin-Posner Y, Avram L, Milstein D. Calcium-Ligand Cooperation Promoted Activation of N 2O, Amine, and H 2 as well as Catalytic Hydrogenation of Imines, Quinoline, and Alkenes. Angew Chem Int Ed Engl 2024; 63:e202401702. [PMID: 38533687 DOI: 10.1002/anie.202401702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 03/20/2024] [Accepted: 03/22/2024] [Indexed: 03/28/2024]
Abstract
Bond activation and catalysis using s-block metals are of great significance. Herein, a series of calcium pincer complexes with deprotonated side arms have been prepared using pyridine-based PNP and PNN ligands. The complexes were characterized by NMR and X-ray crystal diffraction. Utilizing the obtained calcium complexes, unprecedented N2O activation by metal-ligand cooperation (MLC) involving dearomatization-aromatization of the pyridine ligand was achieved, generating aromatized calcium diazotate complexes as products. Additionally, the dearomatized calcium complexes were able to activate the N-H bond as well as reversibly activate H2, offering an opportunity for the catalytic hydrogenation of various unsaturated molecules. DFT calculations were applied to analyze the electronic structures of the synthesized complexes and explore possible reaction mechanisms. This study is an important complement to the area of MLC and main-group metal chemistry.
Collapse
Affiliation(s)
- Yaoyu Liang
- Department of Molecular Chemistry and Materials Science, Weizmann Institute of Science, Rehovot, 7610001, Israel
| | - Irena Efremenko
- Department of Molecular Chemistry and Materials Science, Weizmann Institute of Science, Rehovot, 7610001, Israel
| | - Yael Diskin-Posner
- Department of Chemical Research Support, Weizmann Institute of Science, Rehovot, 7610001, Israel
| | - Liat Avram
- Department of Chemical Research Support, Weizmann Institute of Science, Rehovot, 7610001, Israel
| | - David Milstein
- Department of Molecular Chemistry and Materials Science, Weizmann Institute of Science, Rehovot, 7610001, Israel
| |
Collapse
|
14
|
Lugo-Fuentes LI, Lucas-Rosales VA, Sandoval-Mendoza JA, Shang R, Martínez JP, Jiménez-Halla JOC. Different Reaction Modes Operating in ansa-Half-Sandwich Magnesium Catalysts. Chemistry 2024; 30:e202304130. [PMID: 38350013 DOI: 10.1002/chem.202304130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 01/22/2024] [Accepted: 02/13/2024] [Indexed: 02/15/2024]
Abstract
Magnesium-based catalysts are becoming popular for hydroelementation reactions specially using p-block reagents. Based on the seminal report from Schäfer's group (ChemCatChem 2022, 14, e202201007), our study demonstrates that the reaction mechanisms exhibit a far greater degree of complexity than originally presumed. Magnesium has a variety of coordination modes (and access to different hybridizations) which allows this electron-deficient centre to modulate its catalytic power depending on the σ-donor properties of the reagent. DFT calculations demonstrate several reaction channels closely operating in these versatile catalysts. In addition, variations in limiting energy barriers resulting from catalyst modifications were examined as a function of the Hammett constant, thereby predicting enhanced efficiency in reaction conversions.
Collapse
Affiliation(s)
- Leonardo I Lugo-Fuentes
- Departamento de Química, División de Ciencias Naturales y Exactas, Universidad de Guanajuato, Campus Gto, Noria Alta S/N, CP, 36050, Guanajuato, México
| | - Victor A Lucas-Rosales
- Departamento de Química, División de Ciencias Naturales y Exactas, Universidad de Guanajuato, Campus Gto, Noria Alta S/N, CP, 36050, Guanajuato, México
| | - J Antonio Sandoval-Mendoza
- Departamento de Química, División de Ciencias Naturales y Exactas, Universidad de Guanajuato, Campus Gto, Noria Alta S/N, CP, 36050, Guanajuato, México
| | - Rong Shang
- Department of Chemistry, Graduate School of Advanced Science and Engineering, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, 739-8526, Hiroshima, Japan
| | - Juan Pablo Martínez
- Centre of New Technologies, University of Warsaw, Banacha 2C, 02-097, Warszawa
| | - J Oscar C Jiménez-Halla
- Departamento de Química, División de Ciencias Naturales y Exactas, Universidad de Guanajuato, Campus Gto, Noria Alta S/N, CP, 36050, Guanajuato, México
| |
Collapse
|
15
|
Phang YL, Jin JK, Zhang FL, Wang YF. Radical hydroboration for the synthesis of organoboron compounds. Chem Commun (Camb) 2024; 60:4275-4289. [PMID: 38566567 DOI: 10.1039/d4cc00398e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Organoboron compounds demonstrate diverse applications in the fields of organic synthesis, materials science, and medicinal chemistry. Compared to the conventional hydroboration reaction, radical hydroboration serves as an alternative approach for the synthesis of organoborons via different mechanisms. In radical hydroboration, a boryl radical is initially generated from homolytic cleavage of a B-H or a B-B bond, which is then added to an unsaturated double bond to deliver a carbon radical. Subsequent hydrogen atom transfer or reduction of the carbon radical to form a carbanion followed by protonation gave the final product. Over the past few years, numerous efforts have been made for efficient synthesis of boryl radicals and the expansion of substrate scope of the radical hydroboration reaction. Here, we discuss the recent advancement of radical hydroboration and its associated mechanisms. Numerous radical hydroboration strategies employing N-heterocyclic carbene borane, bis(pinacolato)diboron and pinacolborane as the boron source were illustrated. Thermochemical, photochemical and electrochemical strategies for the generation of boryl radicals were also discussed in detail.
Collapse
Affiliation(s)
- Yee Lin Phang
- Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, China.
| | - Ji-Kang Jin
- Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, China.
| | - Feng-Lian Zhang
- Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, China.
| | - Yi-Feng Wang
- Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, China.
| |
Collapse
|
16
|
Kapp L, Wölper C, Siera H, Haberhauer G, Schulz S. Catalytic hydroboration of aldehydes and ketones with an electron-rich acyclic metallasilylene. Chem Sci 2024; 15:4161-4170. [PMID: 38487240 PMCID: PMC10935726 DOI: 10.1039/d3sc06842k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 02/12/2024] [Indexed: 03/17/2024] Open
Abstract
The application of main group metal complexes in catalytic reactions is of increasing interest. Here we show that the electron-rich, acyclic metallasilylene L'(Cl)GaSiL C (L' = HC[C(Me)NDipp]2, Dipp = 2,6-iPr2C6H3; L = PhC(NtBu)2) acts as a precatalyst in the hydroboration of aldehydes with HBPin. Mechanistic studies with iso-valeraldehyde show that silylene C first reacts with the aldehyde with [2 + 1] cycloaddition in an oxidative addition to the oxasilirane 1, followed by formation of the alkoxysilylene LSiOCH[Ga(Cl)L']CH2CHMe2 (2), whose formation formally results from a reductive elimination reaction at the Si center. Alkoxysilylene 2 represents the active hydroboration catalyst and shows the highest catalytic activity with n-hexanal (reaction time: 40 min, yield: >99%, TOF = 150 h-1) at room temperature with a catalytic load of only 1 mol%. Furthermore, the hydroboration reaction catalysed by alkoxysilylene 2 is a living reaction with good chemoselectivity. Quantum chemical calculations not only provide mechanistic insights into the formation of alkoxysilylene 2 but also show that two completely different hydroboration mechanisms are possible.
Collapse
Affiliation(s)
- Leon Kapp
- Institute for Inorganic Chemistry, University of Duisburg-Essen Universitätsstraße 5-7 45117 Essen Germany
| | - Christoph Wölper
- Institute for Inorganic Chemistry, University of Duisburg-Essen Universitätsstraße 5-7 45117 Essen Germany
| | - Hannah Siera
- Institute for Organic Chemistry, University of Duisburg-Essen Universitätsstraße 5-7 45117 Essen Germany
| | - Gebhard Haberhauer
- Institute for Organic Chemistry, University of Duisburg-Essen Universitätsstraße 5-7 45117 Essen Germany
| | - Stephan Schulz
- Institute for Inorganic Chemistry, University of Duisburg-Essen Universitätsstraße 5-7 45117 Essen Germany
- Center for Nanointegration Duisburg-Essen (Cenide), University of Duisburg-Essen Carl-Be Germany
| |
Collapse
|
17
|
Koptseva TS, Skatova AA, Moskalev MV, Rumyantcev RV, Fedushkin IL. Diversity of transformation of heteroallenes on acenaphthene-1,2-diimine aluminum oxide. Dalton Trans 2024; 53:4643-4651. [PMID: 38357860 DOI: 10.1039/d3dt04333a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2024]
Abstract
The reactions of oxide [(dpp-bian)Al(μ2-O)2Al(dpp-bian)] (1) (dpp-bian = 1,2-bis[(2,6-diisopropylphenyl)imino]acenaphthene) with phenyl- or cyclohexylisocyanates result in the formation of carbonimidate derivatives [(dpp-bian)Al(μ-O)(μ-RNCO2)Al(dpp-bian)] (R = Ph, 2; Cy, 3). Addition of N,N'-dicyclohexylcarbodiimide to compound 1 leads to the formation of ureate complex [(dpp-bian)Al(μ-O)(μ-(CyN)2CO)Al(dpp-bian)] (4). The reactions of the oxide 1 with pinacolborane and catecholborane afford oxo-bridged hydride [{(dpp-bian)Al(H)}(μ-O){Al(OBpin)(dpp-bian)}] (5) and compound [{(dpp-bian)Al(OBCat)}2(μ-O)] (7), respectively. Insertion of cyclohexylisocyanate into the Al-H bond of compound 5 gives CO insertion product [{(dpp-bian)Al(OC(H)NCy)}(μ-O){Al(OBpin)(dpp-bian)}] (6). New compounds have been characterized by ESR and IR spectroscopy; their molecular structures have been established by single-crystal X-ray analysis. The oxide 1 serves as a catalyst for the hydroboration of heteroallenes (isocyanates, carbodiimides) with pinacolborane.
Collapse
Affiliation(s)
- Tatyana S Koptseva
- G. A. Razuvaev Institute of Organometallic Chemistry of the Russian Academy of Sciences, Tropinina Str. 49, Nizhny Novgorod, 603137, Russian Federation.
| | - Alexandra A Skatova
- G. A. Razuvaev Institute of Organometallic Chemistry of the Russian Academy of Sciences, Tropinina Str. 49, Nizhny Novgorod, 603137, Russian Federation.
| | - Mikhail V Moskalev
- G. A. Razuvaev Institute of Organometallic Chemistry of the Russian Academy of Sciences, Tropinina Str. 49, Nizhny Novgorod, 603137, Russian Federation.
| | - Roman V Rumyantcev
- G. A. Razuvaev Institute of Organometallic Chemistry of the Russian Academy of Sciences, Tropinina Str. 49, Nizhny Novgorod, 603137, Russian Federation.
| | - Igor L Fedushkin
- G. A. Razuvaev Institute of Organometallic Chemistry of the Russian Academy of Sciences, Tropinina Str. 49, Nizhny Novgorod, 603137, Russian Federation.
| |
Collapse
|
18
|
Yan B, Ma X, Pang Z, Yang Z. Chemoselective Luche-type reduction of α,β-unsaturated ketones by aluminium hydride catalysis. Dalton Trans 2024; 53:4127-4131. [PMID: 38315772 DOI: 10.1039/d3dt03987k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2024]
Abstract
A novel, simple, eco-friendly, non-toxic aluminium catalyst was synthesised for the chemoselective reduction of α,β-unsaturated ketones. A wide range of ketones were achieved with excellent yields, mild conditions, and low catalyst loading. Furthermore, this unprecedented method allowed for the stereoselective reduction of natural ketones.
Collapse
Affiliation(s)
- Ben Yan
- School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, P. R. China.
| | - Xiaoli Ma
- School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, P. R. China.
| | - Ziyuan Pang
- School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, P. R. China.
| | - Zhi Yang
- School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, P. R. China.
| |
Collapse
|
19
|
Parveen D, Yadav RK, Roy DK. Recent progress in beryllium organometallic chemistry. Chem Commun (Camb) 2024; 60:1663-1673. [PMID: 38260953 DOI: 10.1039/d3cc04844f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
Beryllium possesses a unique amalgamation of characteristics, its electronegativity included, that not only make it a vital component in a wide range of technical sectors and consumer industries, but also make it an interesting candidate for forming covalently bonded compounds. However, the extremely toxic nature of beryllium, which can cause chronic beryllium disease, has limited the exploration of its chemistry, making beryllium one of the least studied (non-radioactive) elements. The development of selective chelating ligands, sterically encumbered substituents and, moreover, the boom of N-heterocyclic carbenes in organometallic chemistry and main group chemistry has revived the interest in beryllium chemistry. Therefore, some quite remarkable progress in the coordination and organometallic chemistry of beryllium has been made in the last two decades. For example, low oxidation state beryllium compounds, antiaromatic/aromatic beryllium compounds, where beryllium is involved in π-electron delocalization, and the isolation of beryllium-beryllium bonded species have all been achieved. This article provides an oversight over the recent developments in the organometallic chemistry of beryllium.
Collapse
Affiliation(s)
- Darakshan Parveen
- Department of Chemistry, Indian Institute of Technology Indore, Madhya Pradesh, 453552, India.
| | - Rahul Kumar Yadav
- Department of Chemistry, Indian Institute of Technology Indore, Madhya Pradesh, 453552, India.
| | - Dipak Kumar Roy
- Department of Chemistry, Indian Institute of Technology Indore, Madhya Pradesh, 453552, India.
| |
Collapse
|
20
|
Chen Z, Nie B, Li X, Liu T, Li C, Huang J. Ligand-controlled regiodivergent Ni-catalyzed trans-hydroboration/carboboration of internal alkynes with B 2pin 2. Chem Sci 2024; 15:2236-2242. [PMID: 38332812 PMCID: PMC10848681 DOI: 10.1039/d3sc04184k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 01/04/2024] [Indexed: 02/10/2024] Open
Abstract
Unprecedented regioselective trans-hydroboration and carboboration of unbiased electronically internal alkynes were realized via a nickel catalysis system with the aid of the directing group strategy. Furthermore, the excellent α- and β-regioselectivity could be accurately switched by the nitrogen ligand (terpy) and phosphine ligand (Xantphos). Mechanistic studies provided an insight into the rational reaction process, that underwent the cis-to-trans isomerization of alkenyl nickel species. This transformation not only expands the scope of transition-metal-catalyzed boration of internal alkynes but also, more particularly, portrays the vast prospects of the directing group strategy in the selective functionalization of unactivated alkynes.
Collapse
Affiliation(s)
- Zunsheng Chen
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases (Gannan Medical University), Ministry of Education, School of Pharmacy, Gannan Medical University Ganzhou 341000 P. R. China
| | - Biao Nie
- State Key Laboratory of Anti-Infective Drug Development, Sunshine Lake Pharma Company, Ltd Dongguan 523871 P. R. China
| | - Xiaoning Li
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases (Gannan Medical University), Ministry of Education, School of Pharmacy, Gannan Medical University Ganzhou 341000 P. R. China
| | - Teng Liu
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases (Gannan Medical University), Ministry of Education, School of Pharmacy, Gannan Medical University Ganzhou 341000 P. R. China
| | - Chunsheng Li
- School of Chemistry and Chemical Engineering, Zhaoqing University Zhaoqing 526060 P. R. China
| | - Jiuzhong Huang
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases (Gannan Medical University), Ministry of Education, School of Pharmacy, Gannan Medical University Ganzhou 341000 P. R. China
| |
Collapse
|
21
|
Peng SS, Zhang GS, Shao XB, Song XR, Qi SC, Tan P, Liu XQ, Yan J, Sun LB. Stable Mg Single-Atom Solid Base Catalysts Anchored on Metal-Organic Framework-Derived Nitrogen-Doped Carbon. Inorg Chem 2024; 63:1607-1612. [PMID: 38194295 DOI: 10.1021/acs.inorgchem.3c03566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2024]
Abstract
Solid base catalysts are widely used in the chemical industry owing to their advantages of environmental friendliness and easy separation. However, their application is limited by basic site aggregation and poor stability. In this study, we report the preparation of magnesium (Mg) single-atom catalysts with high activity and stability by a sublimation-trapping strategy. The Mg net was sublimated as Mg vapor at 620 °C, subsequently transported through argon, and finally trapped on the defects of nitrogen-doped carbon derived from metal-organic framework ZIF-8, producing Mg1/NC. Because of the atomically dispersed Mg sites, the obtained Mg1/NC exhibits high catalytic activity and stability for Knoevenagel condensation of benzaldehyde with malononitrile, which is a typical base-catalyzed reaction. The Mg1/NC catalyst achieves a high efficiency with a turnover frequency of 49.6 h-1, which is much better than that of the traditional counterpart MgO/NC (7.7 h-1). In particular, the activity of Mg1/NC shows no decrease after five catalytic cycles, while that of MgO/NC declines due to the instability of basic sites.
Collapse
Affiliation(s)
- Song-Song Peng
- State Key Laboratory of Materials-Oriented Chemical Engineering, Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), College of Chemical Engineering, Nanjing Tech University, 30 South Puzhu Road, Nanjing 211816, China
| | - Guo-Song Zhang
- State Key Laboratory of Materials-Oriented Chemical Engineering, Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), College of Chemical Engineering, Nanjing Tech University, 30 South Puzhu Road, Nanjing 211816, China
| | - Xiang-Bin Shao
- State Key Laboratory of Materials-Oriented Chemical Engineering, Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), College of Chemical Engineering, Nanjing Tech University, 30 South Puzhu Road, Nanjing 211816, China
| | - Xing-Ru Song
- State Key Laboratory of Materials-Oriented Chemical Engineering, Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), College of Chemical Engineering, Nanjing Tech University, 30 South Puzhu Road, Nanjing 211816, China
| | - Shi-Chao Qi
- State Key Laboratory of Materials-Oriented Chemical Engineering, Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), College of Chemical Engineering, Nanjing Tech University, 30 South Puzhu Road, Nanjing 211816, China
| | - Peng Tan
- State Key Laboratory of Materials-Oriented Chemical Engineering, Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), College of Chemical Engineering, Nanjing Tech University, 30 South Puzhu Road, Nanjing 211816, China
| | - Xiao-Qin Liu
- State Key Laboratory of Materials-Oriented Chemical Engineering, Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), College of Chemical Engineering, Nanjing Tech University, 30 South Puzhu Road, Nanjing 211816, China
| | - Juntao Yan
- College of Chemistry and Environmental Engineering, Wuhan Polytechnic University, Wuhan 430023, China
| | - Lin-Bing Sun
- State Key Laboratory of Materials-Oriented Chemical Engineering, Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), College of Chemical Engineering, Nanjing Tech University, 30 South Puzhu Road, Nanjing 211816, China
| |
Collapse
|
22
|
Kumar R, Mahata B, Gayathridevi S, Vipin Raj K, Vanka K, Sen SS. Lanthanide Mimicking by Magnesium for Oxazolidinone Synthesis. Chemistry 2024; 30:e202303478. [PMID: 37897110 DOI: 10.1002/chem.202303478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 10/26/2023] [Accepted: 10/27/2023] [Indexed: 10/29/2023]
Abstract
In the last decade, magnesium complexes have emerged as a viable alternative to transition-metal catalysts for the hydrofunctionalization of unsaturated bonds. However, their potential for advanced catalytic reactions has not been thoroughly investigated. To address this gap, we have developed a novel magnesium amide compound (3) using a PNP framework that is both bulky and flexible. Our research demonstrates that compound 3 can effectively catalyze the synthesis of biologically significant oxazolidinone derivatives. This synthesis involves a tandem reaction of hydroalkoxylation and cyclohydroamination of isocyanate using propargyl alcohol. Furthermore, we conducted comprehensive theoretical calculations to gain insights into the reaction mechanism. It is important to note that these types of transformations have not been reported for magnesium and would significantly enhance the catalytic portfolio of the 7th most abundant element.
Collapse
Affiliation(s)
- Rohit Kumar
- Inorganic Chemistry and Catalysis Division, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pashan, Pune, 411008, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Biplab Mahata
- Inorganic Chemistry and Catalysis Division, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pashan, Pune, 411008, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - S Gayathridevi
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
- Physical and Materials Chemistry Division, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pashan, Pune, 411008, India
| | - K Vipin Raj
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
- Physical and Materials Chemistry Division, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pashan, Pune, 411008, India
| | - Kumar Vanka
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
- Physical and Materials Chemistry Division, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pashan, Pune, 411008, India
| | - Sakya S Sen
- Inorganic Chemistry and Catalysis Division, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pashan, Pune, 411008, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| |
Collapse
|
23
|
Mandal C, Joshi S, Das S, Mishra S, Mukherjee D. 2-Anilidomethylpyridine-Derived Three-Coordinate Zinc Hydride: The Journey Unveils Anilide Backbone's Reactive Nature. Inorg Chem 2024; 63:739-751. [PMID: 38127496 DOI: 10.1021/acs.inorgchem.3c03673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2023]
Abstract
Low-coordinate heteroleptic zinc hydrides are catalytically important but rare and synthetically challenging. We herein report three-coordinate monomeric zinc hydride on a 2-anilidomethylpyridine framework (NNL). The synthetic success comes through systematically screening a few different routes from different precursors. During the process, the ligand's anilide backbone interestingly appears to be more reactive than Zn's terminal site to electrophilic Lewis and Brønsted acids. The proligand NNLH reacts with [Zn{N(SiMe3)2}2] and ZnEt2 to give [(NNL)ZnA] (A = N(SiMe3)2 (1), Et(2)). Both are inert to PhSiH3 and H2 but react with HBpin only through the internal Zn-Nanilide bond to give the borylated ligand NNLBpin (3). The reactions of 1 and 2 with Ph3EOH (E = C, Si) afford a series of divergent compounds like [(NNLH)Zn(OSiPh3)2] (4), [Zn3(OSiPh3)4Et2] (5), and [EtZn(OCPh3)] (6). But in all cases, it is invariably the Zn-Nanilide bond protonated by the -OH with equal or higher preference than the terminal Zn-N or Zn-C bonds. A DFT analysis rationalizes the origin of such a reactivity pattern. Realizing that an acid-free route might be the key, reacting [(NNL)Li] with ZnBr2 gives [(NNL)Zn(μ-Br)]2 (7), which on successively treating with KOSiPh3 and PhSiH3 gives the desired [(NNL)ZnH] (8) as a three-coordinate monomer with a terminal Zn-H bond. Estimating the ligand steric in 8 shows the openness in Zn's coordination sphere, a desired criterion for efficient catalysis. This and a positive influence of the pyridyl sidearm is reflected in 8's superior activity in hydroborating PhC(O)Me by HBpin in comparison to Jones' two-coordinate anilido zinc hydride.
Collapse
Affiliation(s)
- Chhotan Mandal
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur 741246, West Bengal, India
| | - Shalini Joshi
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur 721302, West Bengal, India
| | - Sanjay Das
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur 741246, West Bengal, India
| | - Sabyashachi Mishra
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur 721302, West Bengal, India
| | - Debabrata Mukherjee
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur 741246, West Bengal, India
| |
Collapse
|
24
|
Krupa B, Szyling J, Walkowiak J. Pt(PPh 3) 4 and Pt(PPh 3) 4@IL catalyzed hydroboration of ketones. Sci Rep 2023; 13:20237. [PMID: 37981660 PMCID: PMC10658173 DOI: 10.1038/s41598-023-47518-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 11/14/2023] [Indexed: 11/21/2023] Open
Abstract
An efficient method for the reduction of various ketones via [Pt(PPh3)4]-catalyzed hydroboration with HBpin has been successfully developed for the first time. The protocol is suitable for symmetrical and unsymmetrical derivatives possessing electron donating or withdrawing functional groups. O-borylated products were easily converted to 2° alcohols via hydrolysis with high isolated yields. According to the low-temperature NMR spectroscopy, a reaction mechanism was proposed. Additionally, effective immobilization of the catalyst in the ionic liquid [BMIM][NTf2] was applied to increase the productivity of the process by carrying out reactions under the repetitive batch mode, obtaining higher TON values and limiting the amount of expensive Pt used. The catalyst stability and almost neglectable leaching were confirmed by ICP-MS analysis of the extracted mixture. A simple separation method via extraction with n-heptane, efficient catalyst immobilization, and the commercial availability of the Pt complex, make this protocol an attractive method for the hydroboration of ketones.
Collapse
Affiliation(s)
- Barbara Krupa
- Center for Advanced Technology, Adam Mickiewicz University, Uniwersytetu Poznanskiego 10, 61-614, Poznan, Poland
- Faculty of Chemistry, Adam Mickiewicz University, Uniwersytetu Poznanskiego 8, 61-614, Poznan, Poland
| | - Jakub Szyling
- Center for Advanced Technology, Adam Mickiewicz University, Uniwersytetu Poznanskiego 10, 61-614, Poznan, Poland
| | - Jędrzej Walkowiak
- Center for Advanced Technology, Adam Mickiewicz University, Uniwersytetu Poznanskiego 10, 61-614, Poznan, Poland.
| |
Collapse
|
25
|
Sokolnicki T, Alharbi MM, van Ingen Y, Rahim S, Pramanik M, Roldan A, Walkowiak J, Melen RL. Reactivity of a series of triaryl borates, B(OAr x) 3, in hydroboration catalysis. Dalton Trans 2023; 52:16118-16122. [PMID: 37901910 DOI: 10.1039/d3dt03333c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2023]
Abstract
In this paper, we compare the reactivity of a series of triaryl borates B(OArx)3 as catalysts for the hydroboration of alkenes and alkynes. It was observed that commercially available B(OPh)3 performed the poorest, whereas catalysts with o-F atoms appeared to perform much better.
Collapse
Affiliation(s)
- Tomasz Sokolnicki
- Cardiff Catalysis Institute, Cardiff University, Translational Research Hub, Maindy Road, Cathays, Cardiff, CF24 4HQ Wales, UK.
- Adam Mickiewicz University, Faculty of Chemistry, Uniwersytetu Poznanskiego 8, 61-614, Poznan, Poland.
- Adam Mickiewicz University, Center for Advanced Technology, Uniwersytetu Poznanskiego 10, 61-614, Poznan, Poland
| | - Mashael M Alharbi
- Cardiff Catalysis Institute, Cardiff University, Translational Research Hub, Maindy Road, Cathays, Cardiff, CF24 4HQ Wales, UK.
- Department of Chemistry, King Faisal University, College of Science, P.O. Box 400, Al-Ahsa 31982, Saudi Arabia
| | - Yara van Ingen
- Cardiff Catalysis Institute, Cardiff University, Translational Research Hub, Maindy Road, Cathays, Cardiff, CF24 4HQ Wales, UK.
| | - Shahnaz Rahim
- Cardiff Catalysis Institute, Cardiff University, Translational Research Hub, Maindy Road, Cathays, Cardiff, CF24 4HQ Wales, UK.
- Department of Chemistry, Abdul Wali Khan University, Mardan, Pakistan
| | - Milan Pramanik
- Cardiff Catalysis Institute, Cardiff University, Translational Research Hub, Maindy Road, Cathays, Cardiff, CF24 4HQ Wales, UK.
| | - Alberto Roldan
- Cardiff Catalysis Institute, Cardiff University, Translational Research Hub, Maindy Road, Cathays, Cardiff, CF24 4HQ Wales, UK.
| | - Jędrzej Walkowiak
- Adam Mickiewicz University, Center for Advanced Technology, Uniwersytetu Poznanskiego 10, 61-614, Poznan, Poland
| | - Rebecca L Melen
- Cardiff Catalysis Institute, Cardiff University, Translational Research Hub, Maindy Road, Cathays, Cardiff, CF24 4HQ Wales, UK.
| |
Collapse
|
26
|
Kong RY, Parry JB, Anello GR, Ong ME, Lancaster KM. Accelerating σ-Bond Metathesis at Sn(II) Centers. J Am Chem Soc 2023; 145:24136-24144. [PMID: 37870565 DOI: 10.1021/jacs.3c07997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2023]
Abstract
Molecular main-group hydride catalysts are attractive as cheap and Earth-abundant alternatives to transition-metal analogues. In the case of the latter, specific steric and electronic tuning of the metal center through ligand choice has enabled the iterative and rational development of superior catalysts. Analogously, a deeper understanding of electronic structure-activity relationships for molecular main-group hydrides should facilitate the development of superior main-group hydride catalysts. Herein, we report a modular Sn-Ni bimetallic system in which we systematically vary the ancillary ligand on Ni, which, in turn, tunes the Sn center. This tuning is probed using Sn L1 XAS as a measure of electron density at the Sn center. We demonstrate that increased electron density at Sn centers accelerates the rate of σ-bond metathesis, and we employ this understanding to develop a highly active Sn-based catalyst for the hydroboration of CO2 using pinacolborane. Additionally, we demonstrate that engineering London dispersion interactions within the secondary coordination sphere of Sn allows for further rate acceleration. These results show that the electronics of main-group catalysts can be controlled without the competing effects of geometry perturbations and that this manifests in substantial reactivity differences.
Collapse
Affiliation(s)
- Richard Y Kong
- Department of Chemistry and Chemical Biology, Cornell University, Baker Laboratory, 162 Sciences Drive, Ithaca, New York 14853, United States
| | - Joseph B Parry
- Department of Chemistry and Chemical Biology, Cornell University, Baker Laboratory, 162 Sciences Drive, Ithaca, New York 14853, United States
| | - Guy R Anello
- Department of Chemistry and Chemical Biology, Cornell University, Baker Laboratory, 162 Sciences Drive, Ithaca, New York 14853, United States
| | - Matthew E Ong
- Department of Chemistry and Chemical Biology, Cornell University, Baker Laboratory, 162 Sciences Drive, Ithaca, New York 14853, United States
| | - Kyle M Lancaster
- Department of Chemistry and Chemical Biology, Cornell University, Baker Laboratory, 162 Sciences Drive, Ithaca, New York 14853, United States
| |
Collapse
|
27
|
Kumar R, Meher RK, Sharma J, Sau A, Panda TK. Amidophosphine Boranes as Hydroboration Reagents for Nitriles, Alkynes, and Carboxylic Acids. Org Lett 2023; 25:7923-7927. [PMID: 37883234 DOI: 10.1021/acs.orglett.3c03194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2023]
Abstract
We report here the hydroboration of nitriles, alkynes, and carboxylic acids using amidophosphine boranes {(BH3)(PPh2)-NC(CH3)3}, {(BH3)2(PPh)2N(CH2)C6H5}, and {(BH3)2(PPh2)2N-(BH3)CH2C6H4N} as reducing agents. These compounds were synthesized to replace more commonly used borane reagents. Solid amidophosphine boranes, which were synthesized with ease, demonstrated excellent reactivity and functional group tolerance toward a wide variety of nitriles, alkynes, and carboxylic acids, affording the corresponding ammonium salts, alkenes, and alcohols in good yield.
Collapse
Affiliation(s)
- Ravi Kumar
- Department of Chemistry, Indian Institute of Technology Hyderabad, Kandi-502 284, Sangareddy, Telangana, India
| | - Rohan Kumar Meher
- Department of Chemistry, Indian Institute of Technology Hyderabad, Kandi-502 284, Sangareddy, Telangana, India
| | - Jyoti Sharma
- Department of Chemistry, Indian Institute of Technology Hyderabad, Kandi-502 284, Sangareddy, Telangana, India
| | - Abhijit Sau
- Department of Chemistry, Indian Institute of Technology Hyderabad, Kandi-502 284, Sangareddy, Telangana, India
| | - Tarun K Panda
- Department of Chemistry, Indian Institute of Technology Hyderabad, Kandi-502 284, Sangareddy, Telangana, India
| |
Collapse
|
28
|
Han HJ, Park SY, Jeon SE, Kwak JS, Lee JH, Jaladi AK, Hwang H, An DK. Grignard Reagent-Catalyzed Hydroboration of Esters, Nitriles, and Imines. Molecules 2023; 28:7090. [PMID: 37894569 PMCID: PMC10609653 DOI: 10.3390/molecules28207090] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 10/10/2023] [Accepted: 10/11/2023] [Indexed: 10/29/2023] Open
Abstract
The reduction in esters, nitriles, and imines requires harsh conditions (highly reactive reagents, high temperatures, and pressures) or complex metal-ligand catalytic systems. Catalysts comprising earth-abundant and less toxic elements are desirable from the perspective of green chemistry. In this study, we developed a green hydroboration protocol for the reduction in esters, nitriles, and imines at room temperature (25 °C) using pinacolborane as the reducing agent and a commercially available Grignard reagent as the catalyst. Screening of various alkyl magnesium halides revealed MeMgCl as the optimal catalyst for the reduction. The hydroboration and subsequent hydrolysis of various esters yielded corresponding alcohols over a short reaction time (~0.5 h). The hydroboration of nitriles and imines produced various primary and secondary amines in excellent yields. Chemoselective reduction and density functional theory calculations are also performed. The proposed green hydroboration protocol eliminates the requirements for complex ligand systems and elevated temperatures, providing an effective method for the reduction in esters, nitriles, and imines at room temperature.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Duk Keun An
- Department of Chemistry, Institute for Molecular Science and Fusion Technology, Kangwon National University, Chuncheon 24341, Republic of Korea; (H.J.H.); (S.Y.P.); (S.E.J.); (J.S.K.); (J.H.L.); (A.K.J.); (H.H.)
| |
Collapse
|
29
|
van IJzendoorn B, Whittingham JBM, Whitehead GFS, Kaltsoyannis N, Mehta M. A robust Zintl cluster for the catalytic reduction of pyridines, imines and nitriles. Dalton Trans 2023; 52:13787-13796. [PMID: 37721024 DOI: 10.1039/d3dt02896h] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/19/2023]
Abstract
Despite p-block clusters being known for over a century, their application as catalysts to mediate organic transformations is underexplored. Here, the boron functionalized [P7] cluster [(BBN)P7]2- ([1]2-; BBN = 9-borabicyclo[3.3.1]nonane) is applied in the dearomatized reduction of pyridines, as well as the hydroboration of imines and nitriles. These transformations afford amine products, which are important precursors to pharmaceuticals, agrochemicals, and polymers. Catalyst [1]2- has high stability in these reductions: recycling nine times in quinoline hydroboration led to virtually no loss in catalyst performance. The catalyst can also be recycled between two different organic transformations, again with no loss in catalyst competency. The mechanism for pyridine reduction was probed experimentally using variable time normalization analysis, and computationally using density functional theory. This work demonstrates that Zintl clusters can mediate the reduction of nitrogen containing substrates in a transition metal-free manner.
Collapse
Affiliation(s)
- Bono van IJzendoorn
- Department of Chemistry, University of Manchester, Oxford Road, Manchester, M13 9PL, UK.
| | | | - George F S Whitehead
- Department of Chemistry, University of Manchester, Oxford Road, Manchester, M13 9PL, UK.
| | - Nikolas Kaltsoyannis
- Department of Chemistry, University of Manchester, Oxford Road, Manchester, M13 9PL, UK.
| | - Meera Mehta
- Department of Chemistry, University of Manchester, Oxford Road, Manchester, M13 9PL, UK.
| |
Collapse
|
30
|
Wei Y, Liang Y, Luo R, Ouyang L. Recent advances of Cp*Ir complexes for transfer hydrogenation: focus on formic acid/formate as hydrogen donors. Org Biomol Chem 2023; 21:7484-7497. [PMID: 37661697 DOI: 10.1039/d3ob01034a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/05/2023]
Abstract
Transfer hydrogenation reactions offer synthetically powerful strategies to deliver various hydrogenated compounds with the advantages of efficiency, atom economy, and practicability. On one hand, formic acid/formate function as promising hydrogen sources owing to their readily obtainable, inexpensive, and easy to handle nature. On the other hand, Cp*Ir complexes show high activities in transfer hydrogenation. This review highlights progress achieved for transfer hydrogenation of CO, CC, and CN bonds of a variety of unsaturated substrates, as well as amides focusing on Cp*Ir complexes as catalysts and formic acid/formate as hydrogen sources.
Collapse
Affiliation(s)
- YiFei Wei
- School of Pharmaceutical Sciences, Gannan Medical University, Ganzhou 341000, Jiangxi Province, P. R. China.
| | - Yuqiu Liang
- School of Pharmaceutical Sciences, Gannan Medical University, Ganzhou 341000, Jiangxi Province, P. R. China.
| | - Renshi Luo
- School of Pharmaceutical Sciences, Gannan Medical University, Ganzhou 341000, Jiangxi Province, P. R. China.
- College of Chemistry and Environmental Engineering, Shaoguan University, Shaoguan 512005, P. R. China.
| | - Lu Ouyang
- School of Pharmaceutical Sciences, Gannan Medical University, Ganzhou 341000, Jiangxi Province, P. R. China.
| |
Collapse
|
31
|
Kumar Someswara Ashwathappa P, Higashi T, Desrosiers V, Omaña AA, Fontaine FG. Metal-Free Directed Site-Selective Csp 3 -H Borylation of Saturated Cyclic Amines. Angew Chem Int Ed Engl 2023; 62:e202309295. [PMID: 37535392 DOI: 10.1002/anie.202309295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 08/01/2023] [Accepted: 08/02/2023] [Indexed: 08/04/2023]
Abstract
The borylation of Csp3 -H bonds is a challenging transformation that is typically restricted to transition metal catalysis. Herein, we report the site-selective metal-free Csp3 -H borylation of saturated cyclic amines. It is possible to selectively borylate piperidine derivatives at the α or β positions according to the reaction conditions. The mechanism was supported by NMR spectroscopy, calorimetry experiments and density functional theory (DFT) computations. It suggests that the piperidine is dehydrogenated by complexation with BBr3 to produce an enamine intermediate, which is in turn borylated at either the α or β position according to the reaction conditions.
Collapse
Affiliation(s)
| | - Takuya Higashi
- Department of Chemistry and Biotechnology, Graduate School of Engineering, The University of Tokyo, Bunkyo-Ku, Tokyo 113-8656, Japan
| | - Vincent Desrosiers
- Département de Chimie, Université Laval, 1045 Avenue de la Médecine, Québec, Québec G1 V 0 A6, Canada
| | - Alvaro A Omaña
- Département de Chimie, Université Laval, 1045 Avenue de la Médecine, Québec, Québec G1 V 0 A6, Canada
| | - Frédéric-Georges Fontaine
- Département de Chimie, Université Laval, 1045 Avenue de la Médecine, Québec, Québec G1 V 0 A6, Canada
| |
Collapse
|
32
|
Fiorentini F, Diment WT, Deacy AC, Kerr RWF, Faulkner S, Williams CK. Understanding catalytic synergy in dinuclear polymerization catalysts for sustainable polymers. Nat Commun 2023; 14:4783. [PMID: 37553344 PMCID: PMC10409799 DOI: 10.1038/s41467-023-40284-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 07/20/2023] [Indexed: 08/10/2023] Open
Abstract
Understanding the chemistry underpinning intermetallic synergy and the discovery of generally applicable structure-performances relationships are major challenges in catalysis. Additionally, high-performance catalysts using earth-abundant, non-toxic and inexpensive elements must be prioritised. Here, a series of heterodinuclear catalysts of the form Co(III)M(I/II), where M(I/II) = Na(I), K(I), Ca(II), Sr(II), Ba(II) are evaluated for three different polymerizations, by assessment of rate constants, turn over frequencies, polymer selectivity and control. This allows for comparisons of performances both within and between catalysts containing Group I and II metals for CO2/propene oxide ring-opening copolymerization (ROCOP), propene oxide/phthalic anhydride ROCOP and lactide ring-opening polymerization (ROP). The data reveal new structure-performance correlations that apply across all the different polymerizations: catalysts featuring s-block metals of lower Lewis acidity show higher rates and selectivity. The epoxide/heterocumulene ROCOPs both show exponential activity increases (vs. Lewis acidity, measured by the pKa of [M(OH2)m]n+), whilst the lactide ROP activity and CO2/epoxide selectivity show linear increases. Such clear structure-activity/selectivity correlations are very unusual, yet are fully rationalised by the polymerization mechanisms and the chemistry of the catalytic intermediates. The general applicability across three different polymerizations is significant for future exploitation of catalytic synergy and provides a framework to improve other catalysts.
Collapse
Affiliation(s)
| | - Wilfred T Diment
- Department of Chemistry, University of Oxford, OX1 3TA, Oxford, United Kingdom
| | - Arron C Deacy
- Department of Chemistry, University of Oxford, OX1 3TA, Oxford, United Kingdom
| | - Ryan W F Kerr
- Department of Chemistry, University of Oxford, OX1 3TA, Oxford, United Kingdom
| | - Stephen Faulkner
- Department of Chemistry, University of Oxford, OX1 3TA, Oxford, United Kingdom
| | | |
Collapse
|
33
|
Yang D, Zhang S, Zeng G, Chen ZX. Metal-free catalytic hydroboration of imine with pinacolborane using a pincer-type phosphorus compound: mechanistic insight and improvement of the reaction. Phys Chem Chem Phys 2023. [PMID: 37378853 DOI: 10.1039/d3cp01709e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/29/2023]
Abstract
A mechanistic study of the catalytic hydroboration of imine using a pincer-type phosphorus compound 1NP was performed through the combination of DFT and DLPNO-CCSD(T) calculations. The reaction proceeds through a phosphorus-ligand cooperative catalytic cycle, where the phosphorus center and triamide ligand work in a synergistic manner. First, the pinB-H bond activation by 1NP occurs through the cooperative functions of the phosphorus center and the triamide ligand, leading to a phosphorus-hydride intermediate 2NP. This is the rate-determining step, with the Gibbs energy barrier and Gibbs reaction energy of 25.3 and -17.0 kcal mol-1, respectively. Subsequently, the hydroboration of phenylmethanimine takes place through a concerted transition state through the cooperative function of the phosphorus center and the triamide ligand. It leads to the final hydroborated product 4 with the regeneration of 1NP. Our computational results reveal that the experimentally isolated intermediate 3NP is a resting state of the reaction. It is formed through the B-N bond activation of 4 by 1NP, rather than via the insertion of the CN double bond of phenylmethanimine into the P-H bond of 2NP. However, this side reaction can be suppressed by utilizing a planar phosphorus compound AcrDipp-1NP as the catalyst, which features steric-demanding substituents on the chelated N atom of the ligand.
Collapse
Affiliation(s)
- Deshuai Yang
- Institute of Theoretical and Computational Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, People's Republic of China.
- Kuang Yaming Honors School, Nanjing University, Nanjing 210023, People's Republic of China.
| | - Shuoqi Zhang
- Kuang Yaming Honors School, Nanjing University, Nanjing 210023, People's Republic of China.
| | - Guixiang Zeng
- Kuang Yaming Honors School, Nanjing University, Nanjing 210023, People's Republic of China.
| | - Zhao-Xu Chen
- Institute of Theoretical and Computational Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, People's Republic of China.
| |
Collapse
|
34
|
Liang Y, Luo J, Diskin-Posner Y, Milstein D. Designing New Magnesium Pincer Complexes for Catalytic Hydrogenation of Imines and N-Heteroarenes: H 2 and N-H Activation by Metal-Ligand Cooperation as Key Steps. J Am Chem Soc 2023; 145:9164-9175. [PMID: 37068165 PMCID: PMC10141328 DOI: 10.1021/jacs.3c01091] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/19/2023]
Abstract
Utilization of main-group metals as alternatives to transition metals in homogeneous catalysis has become a hot research area in recent years. However, their application in catalytic hydrogenation is less common due to the difficulty in heterolytic cleavage of the H-H bond. Employing aromatization/de-aromatization metal-ligand cooperation (MLC) highly enhances the H2 activation process, offering an efficient approach for the hydrogenation of unsaturated molecules catalyzed by main-group metals. Herein, we report a series of new magnesium pincer complexes prepared using PNNH-type pincer ligands. The complexes were characterized by NMR and X-ray single-crystal diffraction. Reversible activation of H2 and N-H bonds by MLC employing these pincer complexes was developed. Using the new magnesium complexes, homogeneously catalyzed hydrogenation of aldimines and ketimines was achieved, affording secondary amines in excellent yields. Control experiments and DFT studies reveal that a pathway involving MLC is favorable for the hydrogenation reactions. Moreover, the efficient catalysis was extended to the selective hydrogenation of quinolines and other N-heteroarenes, presenting the first example of hydrogenation of N-heteroarenes homogeneously catalyzed by early main-group metal complexes. This study provides a new strategy for hydrogenation of C═N bonds catalyzed by magnesium compounds and enriches the research of main-group metal catalysis.
Collapse
Affiliation(s)
- Yaoyu Liang
- Department of Molecular Chemistry and Materials Science, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Jie Luo
- Department of Molecular Chemistry and Materials Science, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Yael Diskin-Posner
- Department of Chemical Research Support, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - David Milstein
- Department of Molecular Chemistry and Materials Science, Weizmann Institute of Science, Rehovot 7610001, Israel
| |
Collapse
|
35
|
Kumar R, Sharma V, Banerjee S, Vanka K, Sen SS. Controlled reduction of isocyanates to formamides using monomeric magnesium. Chem Commun (Camb) 2023; 59:2255-2258. [PMID: 36748261 DOI: 10.1039/d3cc00036b] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
This work describes a transition metal-free methodology involving an efficient and controlled reduction of isocyanates to only formamide derivatives using pinacolborane (HBpin) as the hydrogenating agent and a bis(phosphino)carbazole ligand stabilized magnesium methyl complex (1) as the catalyst. A large number of substrates undergo selective hydroboration and give exclusively N-boryl formamides.
Collapse
Affiliation(s)
- Rohit Kumar
- Inorganic Chemistry and Catalysis Division, CSIR-National Chemical Laboratory, Dr Homi Bhabha Road, Pashan, Pune 411008, India. .,Academy of Scientific and Innovative Research (AcSIR), New Ghaziabad 201002, India
| | - Vishal Sharma
- Inorganic Chemistry and Catalysis Division, CSIR-National Chemical Laboratory, Dr Homi Bhabha Road, Pashan, Pune 411008, India. .,Academy of Scientific and Innovative Research (AcSIR), New Ghaziabad 201002, India
| | - Subhrashis Banerjee
- Academy of Scientific and Innovative Research (AcSIR), New Ghaziabad 201002, India.,Physical and Material Chemistry Division, CSIR-National Chemical Laboratory, Dr Homi Bhabha Road, Pashan, Pune 411008, India
| | - Kumar Vanka
- Academy of Scientific and Innovative Research (AcSIR), New Ghaziabad 201002, India.,Physical and Material Chemistry Division, CSIR-National Chemical Laboratory, Dr Homi Bhabha Road, Pashan, Pune 411008, India
| | - Sakya S Sen
- Inorganic Chemistry and Catalysis Division, CSIR-National Chemical Laboratory, Dr Homi Bhabha Road, Pashan, Pune 411008, India. .,Academy of Scientific and Innovative Research (AcSIR), New Ghaziabad 201002, India
| |
Collapse
|
36
|
Fang F, Zhang J. Notable Catalytic Activity of Transition Metal Thiolate Complexes against Hydrosilylation and Hydroboration of Carbon-Heteroatom Bonds. Chem Asian J 2023; 18:e202201181. [PMID: 36545848 DOI: 10.1002/asia.202201181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 12/19/2022] [Accepted: 12/21/2022] [Indexed: 12/24/2022]
Abstract
Chemists tend to use transition metal hydride complexes rather than thiolate complexes to catalyse chemical transformations because the hydride complexes possess diverse catalytic reactivity, although most of them are air/moisture-sensitive and difficult to prepare. By comparing the catalytic performances of pincer ligated group 10 metal thiolate and hydride complexes in catalysing the hydroboration and hydrosilylation of C=O and C=N bonds, we demonstrate in this review that transition metal thiolate complexes are much better catalysts than the corresponding hydride complexes in catalysing this type of reactions. Many hydroboration and hydrosilylation reactions catalysed by pincer ligated group 10 metal hydride complexes can also be catalysed by the corresponding thiolate complexes and the thiolate systems are far more active. Therefore, the applications of transition metal thiolate complexes in the catalytic hydroboration and hydrosilylation of unsaturated carbon-heteroatom bonds deserve special attention in future work.
Collapse
Affiliation(s)
- Fei Fang
- School of Chemistry and Materials Engineering, Xinxiang University Xinxiang, Henan, 453003, P. R. China
| | - Jie Zhang
- Henan Key Laboratory of Boron Chemistry and, Advanced Energy Materials, School of Chemistry and Chemical Engineering, Henan Normal University Xinxiang, Henan, 453007, P. R. China
| |
Collapse
|
37
|
Prey SE, Herok C, Fantuzzi F, Bolte M, Lerner HW, Engels B, Wagner M. Multifaceted behavior of a doubly reduced arylborane in B-H-bond activation and hydroboration catalysis. Chem Sci 2023; 14:849-860. [PMID: 36755708 PMCID: PMC9890859 DOI: 10.1039/d2sc05518j] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Accepted: 12/02/2022] [Indexed: 12/12/2022] Open
Abstract
Alkali-metal salts of 9,10-dimethyl-9,10-dihydro-9,10-diboraanthrancene (M2[DBA-Me2]; M+ = Li+, Na+, K+) activate the H-B bond of pinacolborane (HBpin) in THF already at room temperature. For M+ = Na+, K+, the addition products M2[4] are formed, which contain one new H-B and one new B-Bpin bond; for M+ = Li+, the H- ion is instantaneously transferred from the DBA-Me2 unit to another equivalent of HBpin to afford Li[5]. Although Li[5] might commonly be considered a [Bpin]- adduct of neutral DBA-Me2, it donates a [Bpin]+ cation to Li[SiPh3], generating the silyl borane Ph3Si-Bpin; Li2[DBA-Me2] with an aromatic central B2C4 ring acts as the leaving group. Furthermore, Li2[DBA-Me2] catalyzes the hydroboration of various unsaturated substrates with HBpin in THF. Quantum-chemical calculations complemented by in situ NMR spectroscopy revealed two different mechanistic scenarios that are governed by the steric demand of the substrate used: in the case of the bulky Ph(H)C[double bond, length as m-dash]NtBu, the reaction requires elevated temperatures of 100 °C, starts with H-Bpin activation which subsequently generates Li[BH4], so that the mechanism eventually turns into "hidden borohydride catalysis". Ph(H)C[double bond, length as m-dash]NPh, Ph2C[double bond, length as m-dash]O, Ph2C[double bond, length as m-dash]CH2, and iPrN[double bond, length as m-dash]C[double bond, length as m-dash]NiPr undergo hydroboration already at room temperature. Here, the active hydroboration catalyst is the [4 + 2] cycloadduct between the respective substrate and Li2[DBA-Me2]: in the key step, attack of HBpin on the bridging unit opens the bicyclo[2.2.2]octadiene scaffold and gives the activated HBpin adduct of the Lewis-basic moiety that was previously coordinated to the DBA-B atom.
Collapse
Affiliation(s)
- Sven E. Prey
- Institut für Anorganische und Analytische Chemie, Goethe-Universität FrankfurtFrankfurt am Main D-60438Germany
| | - Christoph Herok
- Institut für Physikalische und Theoretische Chemie, Julius-Maximilians-Universität Würzburg Würzburg D-97074 Germany
| | - Felipe Fantuzzi
- Institut für Physikalische und Theoretische Chemie, Julius-Maximilians-Universität Würzburg Würzburg D-97074 Germany .,School of Chemistry and Forensic Science, University of Kent Canterbury CT2 7NH UK
| | - Michael Bolte
- Institut für Anorganische und Analytische Chemie, Goethe-Universität Frankfurt Frankfurt am Main D-60438 Germany
| | - Hans-Wolfram Lerner
- Institut für Anorganische und Analytische Chemie, Goethe-Universität Frankfurt Frankfurt am Main D-60438 Germany
| | - Bernd Engels
- Institut für Physikalische und Theoretische Chemie, Julius-Maximilians-Universität Würzburg Würzburg D-97074 Germany
| | - Matthias Wagner
- Institut für Anorganische und Analytische Chemie, Goethe-Universität Frankfurt Frankfurt am Main D-60438 Germany
| |
Collapse
|
38
|
Sarkar N, Kumar Sahoo R, Nembenna S. Aluminium-Catalyzed Selective Hydroboration of Esters and Epoxides to Alcohols: C-O Bond Activation. Chemistry 2023; 29:e202203023. [PMID: 36226774 DOI: 10.1002/chem.202203023] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Indexed: 11/07/2022]
Abstract
In this work, the molecular aluminium dihydride complex bearing an N, N'-chelated conjugated bis-guanidinate (CBG) ligand is used as a catalyst for reducing a wide range of aryl and alkyl esters with good tolerance of alkene (C=C), alkyne (C≡C), halides (Cl, Br, I and F), nitrile (C≡N), and nitro (NO2 ) functionalities. Further, we investigated the catalytic application of aluminium dihydride in the C-O bond cleavage of alkyl and aryl epoxides into corresponding branched Markovnikov ring-opening products. In addition, the chemoselective intermolecular reduction of esters over other reducible functional groups, such as amides and alkenes, has been established. Intermediates are isolated and characterized by NMR and HRMS studies, which confirm the probable catalytic cycles for the hydroboration of esters and epoxides.
Collapse
Affiliation(s)
- Nabin Sarkar
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), Homi Bhabha National Institute (HBNI), Bhubaneswar, 752050, India
| | - Rajata Kumar Sahoo
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), Homi Bhabha National Institute (HBNI), Bhubaneswar, 752050, India
| | - Sharanappa Nembenna
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), Homi Bhabha National Institute (HBNI), Bhubaneswar, 752050, India
| |
Collapse
|
39
|
Sahoo RK, Sarkar N, Nembenna S. Intermediates, Isolation and Mechanistic Insights into Zinc Hydride-Catalyzed 1,2-Regioselective Hydrofunctionalization of N-Heteroarenes. Inorg Chem 2023; 62:304-317. [PMID: 36571301 DOI: 10.1021/acs.inorgchem.2c03389] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The conjugated bis-guanidinate-supported zinc hydride [{LZnH}2; L = {(ArHN) (ArN)-C═N-C═(NAr) (NHAr); Ar = 2,6-Et2-C6H3}] (I)-catalyzed highly demanding exclusive 1,2-regioselective hydroboration and hydrosilylation of N-heteroarenes is demonstrated with excellent yields. This protocol is compatible with many pyridines and N-heteroarene derivatives, including electron-donating and -withdrawing substituents. Catalytic intermediates, such as [(LZnH) (4-methylpyridine)] IIA, [(L'ZnH) (4-methylpyridine) IIA', where L' = CH{(CMe) (2,6-Et2C6H3N)}2)], LZn(1,2-DhiQ) (isoquinoline) III, [L'Zn(1,2-DhiQ) (isoquinoline)] III', and LZn(1,2-(3-MeDHQ)) (3-methylquinoline) V, were isolated and thoroughly characterized by NMR, HRMS, and IR analyses. Furthermore, X-ray single-crystal diffraction studies confirmed the molecular structures of compounds IIA', III, and III'. The NMR data proved that the intermediate III or III' reacted with HBpin and gave a selective 1,2-addition hydroborated product. Stoichiometric experiments suggest that V and III independently reacted with silane, yielding selective 1,2-addition of mono- and bis-hydrosilylated products, respectively. Based on the isolation of intermediates and a series of stoichiometric experiments, plausible catalytic cycles were established. Furthermore, the intermolecular chemoselective hydroboration reaction over other reducible functionalities was studied.
Collapse
Affiliation(s)
- Rajata Kumar Sahoo
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), Homi Bhabha National Institute (HBNI), Bhubaneswar, Odisha 752 050, India
| | - Nabin Sarkar
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), Homi Bhabha National Institute (HBNI), Bhubaneswar, Odisha 752 050, India
| | - Sharanappa Nembenna
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), Homi Bhabha National Institute (HBNI), Bhubaneswar, Odisha 752 050, India
| |
Collapse
|
40
|
Review of FRET biosensing and its application in biomolecular detection. Am J Transl Res 2023; 15:694-709. [PMID: 36915763 PMCID: PMC10006758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 01/05/2023] [Indexed: 03/16/2023]
Abstract
Life science research is advancing rapidly in the 21st century. Many innovative technologies and methodologies are being applied in various fields of the life sciences to reveal how macromolecules interact with each other. The technology of using fluorescent molecules in biomedical research has contributed immensely to progress in this field. Fluorescence-based optical biosensors, which show high specificity, exhibit huge potential for clinical diagnosis and treatment of many of the life-changing diseases. Fluorescence resonance energy transfer (FRET), is a technique that has been widely employed in biosensing ever since its discovery. It is a classic fluorescence technique, and an important biosensing research tool extensively utilized in the fields of toxicology, pharmacology, and biomedicine; many biosensor designs are based on FRET. Radiometric imaging of biological molecules, biomolecular interactions, and cellular processes are extensively performed using FRET biosensors. This review focuses on the selection of FRET donors and acceptors used for biosensing, and presents an overview of different FRET technologies. Furthermore, it highlights the progress in the application for FRET in nucleic acid and protein biosensing, and provides a viewpoint for future developmental trends using FRET technology.
Collapse
|
41
|
Koptseva TS, Skatova AA, Ketkov SY, Rychagova EA, Rumyantcev RV, Fedushkin IL. Hydroboration of a Diolate Complex Obtained by Carbon Dioxide Capture with Acenaphthenediimine Aluminum Hydride. Organometallics 2022. [DOI: 10.1021/acs.organomet.2c00547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Tatyana S. Koptseva
- G.A. Razuvaev Institute of Organometallic Chemistry, Russian Academy of Sciences, Tropinina 49, Nizhny Novgorod 603137, Russian Federation
| | - Alexandra A. Skatova
- G.A. Razuvaev Institute of Organometallic Chemistry, Russian Academy of Sciences, Tropinina 49, Nizhny Novgorod 603137, Russian Federation
| | - Sergey Yu. Ketkov
- G.A. Razuvaev Institute of Organometallic Chemistry, Russian Academy of Sciences, Tropinina 49, Nizhny Novgorod 603137, Russian Federation
| | - Elena A. Rychagova
- G.A. Razuvaev Institute of Organometallic Chemistry, Russian Academy of Sciences, Tropinina 49, Nizhny Novgorod 603137, Russian Federation
| | - Roman V. Rumyantcev
- G.A. Razuvaev Institute of Organometallic Chemistry, Russian Academy of Sciences, Tropinina 49, Nizhny Novgorod 603137, Russian Federation
| | - Igor L. Fedushkin
- G.A. Razuvaev Institute of Organometallic Chemistry, Russian Academy of Sciences, Tropinina 49, Nizhny Novgorod 603137, Russian Federation
| |
Collapse
|
42
|
Wirtz L, Ghulam KY, Morgenstern B, Schäfer A. Constrained Geometry
ansa
‐Half‐Sandwich Complexes of Magnesium – Versatile
s
‐Block Catalysts. ChemCatChem 2022. [DOI: 10.1002/cctc.202201007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Lisa Wirtz
- Faculty of Natural Science and Technology Department of Chemistry Saarland University Campus Saarbrücken 66123 Saarbrücken Germany
| | - Kinza Yasmin Ghulam
- Faculty of Natural Science and Technology Department of Chemistry Saarland University Campus Saarbrücken 66123 Saarbrücken Germany
| | - Bernd Morgenstern
- Faculty of Natural Science and Technology Department of Chemistry Saarland University Campus Saarbrücken 66123 Saarbrücken Germany
| | - André Schäfer
- Faculty of Natural Science and Technology Department of Chemistry Saarland University Campus Saarbrücken 66123 Saarbrücken Germany
| |
Collapse
|
43
|
Liang Y, Das UK, Luo J, Diskin-Posner Y, Avram L, Milstein D. Magnesium Pincer Complexes and Their Applications in Catalytic Semihydrogenation of Alkynes and Hydrogenation of Alkenes: Evidence for Metal-Ligand Cooperation. J Am Chem Soc 2022; 144:19115-19126. [PMID: 36194894 PMCID: PMC9585592 DOI: 10.1021/jacs.2c08491] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The development of catalysts for environmentally benign organic transformations is a very active area of research. Most of the catalysts reported so far are based on transition-metal complexes. In recent years, examples of catalysis by main-group metal compounds have been reported. Herein, we report a series of magnesium pincer complexes, which were characterized by NMR and X-ray single-crystal diffraction. Reversible activation of H2 via aromatization/dearomatization metal-ligand cooperation was studied. Utilizing the obtained complexes, the unprecedented homogeneous main-group metal catalyzed semihydrogenation of alkynes and hydrogenation of alkenes were demonstrated under base-free conditions, affording Z-alkenes and alkanes as products, respectively, with excellent yields and selectivities. Control experiments and DFT studies reveal the involvement of metal-ligand cooperation in the hydrogenation reactions. This study not only provides a new approach for the semihydrogenation of alkynes and hydrogenation of alkenes catalyzed by magnesium but also offers opportunities for the hydrogenation of other compounds catalyzed by main-group metal complexes.
Collapse
Affiliation(s)
- Yaoyu Liang
- Department of Molecular Chemistry and Materials Science, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Uttam Kumar Das
- Department of Molecular Chemistry and Materials Science, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Jie Luo
- Department of Molecular Chemistry and Materials Science, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Yael Diskin-Posner
- Department of Chemical Research Support, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Liat Avram
- Department of Chemical Research Support, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - David Milstein
- Department of Molecular Chemistry and Materials Science, Weizmann Institute of Science, Rehovot 7610001, Israel
| |
Collapse
|
44
|
Zhang G, Zeng H, Zheng S, Neary MC, Dub PA. Markovnikov alcohols via epoxide hydroboration by molecular alkali metal catalysts. iScience 2022; 25:105119. [PMID: 36185366 PMCID: PMC9515598 DOI: 10.1016/j.isci.2022.105119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 08/29/2022] [Accepted: 09/08/2022] [Indexed: 11/28/2022] Open
Affiliation(s)
- Guoqi Zhang
- Department of Sciences, John Jay College and PhD in Chemistry Program, the Graduate Center of City University of New York, New York, NY 10019, USA
- Corresponding author
| | - Haisu Zeng
- Department of Sciences, John Jay College and PhD in Chemistry Program, the Graduate Center of City University of New York, New York, NY 10019, USA
- Department of Chemistry, Hunter College, City University of New York, New York, NY 10065, USA
| | - Shengping Zheng
- Department of Chemistry, Hunter College, City University of New York, New York, NY 10065, USA
| | - Michelle C. Neary
- Department of Chemistry, Hunter College, City University of New York, New York, NY 10065, USA
| | - Pavel A. Dub
- Chemistry Division, Los Alamos National Laboratory, Los Alamos, NM 87545, USA
- Corresponding author
| |
Collapse
|
45
|
Kuciński K, Hreczycho G. Silicon-nitrogen bond formation via dealkynative coupling of amines with bis(trimethylsilyl)acetylene mediated by KHMDS. Chem Commun (Camb) 2022; 58:11386-11389. [PMID: 36128699 DOI: 10.1039/d2cc04413g] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The catalytic synthesis of silylamines mediated by s- and p-block catalysts is largely underdeveloped. Herein, commercially available potassium bis(trimethylsilyl)amide serves as an efficient alternative to transition metal complexes. N-H/Si-C dealkynative coupling was achieved by means of user-friendly main-group catalysis with ample substrate scope and high chemoselectivity.
Collapse
Affiliation(s)
- Krzysztof Kuciński
- Faculty of Chemistry, Adam Mickiewicz University in Poznań, Ul. Uniwersytetu Poznańskiego 8, 61-614 Poznań, Poland.
| | - Grzegorz Hreczycho
- Faculty of Chemistry, Adam Mickiewicz University in Poznań, Ul. Uniwersytetu Poznańskiego 8, 61-614 Poznań, Poland.
| |
Collapse
|
46
|
Wang J, Yao W, Hu D, Qi X, Zhang JQ, Ren H. NaOH/BEt3 Catalyzed Regioselective Hydroboration of Epoxides with HBpin to Secondary Alcohols. European J Org Chem 2022. [DOI: 10.1002/ejoc.202200759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Jiali Wang
- Taizhou University Advanced Research Institute and Department of Chemistry, CHINA
| | - Wubin Yao
- Taizhou University Advanced Research Institute and Department of Chemistry, CHINA
| | - Dandan Hu
- Taizhou University Advanced Research Institute and Department of Chemistry, CHINA
| | - Xinxin Qi
- Zhejiang Sci-Tech University Department of Chemistry CHINA
| | - Jun-Qi Zhang
- Taizhou University Advanced Research Institute and Department of Chemistry, CHINA
| | - Hongjun Ren
- Taizhou University Advanced Research Institute and Department of Chemistry 1139 Shifu Avenue 318012 Taizhou CHINA
| |
Collapse
|
47
|
Kumar R, Dutta S, Sharma V, Singh PP, Gonnade RG, Koley D, Sen SS. Monomeric Magnesium Catalyzed Alkene and Alkyne Hydroboration. Chemistry 2022; 28:e202201896. [DOI: 10.1002/chem.202201896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Indexed: 11/10/2022]
Affiliation(s)
- Rohit Kumar
- Inorganic Chemistry and Catalysis Division CSIR-National Chemical Laboratory Dr. Homi Bhabha Road, Pashan Pune 411008 India
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad 201002 India
| | - Sayan Dutta
- Department of Chemical Sciences Indian Institute of Science Education and Research (IISER) Kolkata Mohanpur 741246 India
| | - Vishal Sharma
- Inorganic Chemistry and Catalysis Division CSIR-National Chemical Laboratory Dr. Homi Bhabha Road, Pashan Pune 411008 India
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad 201002 India
| | - Praval P. Singh
- Department of Chemical Sciences Indian Institute of Science Education and Research (IISER) Kolkata Mohanpur 741246 India
| | - Rajesh G. Gonnade
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad 201002 India
- Physical and Materials Chemistry Catalysis Division CSIR-National Chemical Laboratory Dr. Homi Bhabha Road, Pashan Pune 411008 India
| | - Debasis Koley
- Department of Chemical Sciences Indian Institute of Science Education and Research (IISER) Kolkata Mohanpur 741246 India
| | - Sakya S. Sen
- Inorganic Chemistry and Catalysis Division CSIR-National Chemical Laboratory Dr. Homi Bhabha Road, Pashan Pune 411008 India
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad 201002 India
| |
Collapse
|
48
|
Liu X, Shen Y, Lu C, Jian Y, Xia S, Gao Z, Zheng Y, An Y, Wang Y. Visible-light-driven PhSSPh-catalysed regioselective hydroborylation of α,β-unsaturated carbonyl compounds with NHC-boranes. Chem Commun (Camb) 2022; 58:8380-8383. [PMID: 35792097 DOI: 10.1039/d2cc02846h] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
A photo-induced transition-metal-free regioselective hydroborylation of α,β-unsaturated carbonyl compounds is developed. The PhSSPh reagent was employed as the photocatalyst, and NHC-BH3 was used as the boron source. This transformation shows a broad substrate scope and provides a wide range of α-borylcarbonyl molecules in good to excellent yields.
Collapse
Affiliation(s)
- Xinghua Liu
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing 211816, P. R. China.
| | - Yujing Shen
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing 211816, P. R. China.
| | - Cheng Lu
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing 211816, P. R. China.
| | - Yongchan Jian
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing 211816, P. R. China.
| | - Shuangshuang Xia
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing 211816, P. R. China.
| | - Zhaoliang Gao
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing 211816, P. R. China.
| | - Yihan Zheng
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing 211816, P. R. China.
| | - Yuanyuan An
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing 211816, P. R. China.
| | - Yubin Wang
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing 211816, P. R. China.
| |
Collapse
|
49
|
Zhang G, Li S, Zeng H, Zheng S, Neary MC. Diplumbane-catalysed solvent- and additive-free hydroboration of ketones and aldehydes. RSC Adv 2022; 12:19086-19090. [PMID: 35865571 PMCID: PMC9241624 DOI: 10.1039/d2ra03731a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Accepted: 06/22/2022] [Indexed: 12/24/2022] Open
Abstract
A new diplumbane, namely [Pb(CH2SiMe3)3]2, was synthesized and structurally characterized. This group 14 element compound was found to catalyse the hydroboration of ketones and aldehydes under mild conditions without the use of additives and solvents, leading to the synthesis of a range of alcohols in high yields after hydrolysis.
Collapse
Affiliation(s)
- Guoqi Zhang
- Department of Sciences, John Jay College, PhD Program in Chemistry, The Graduate Center, The City University of New York New York NY 10019 USA
| | - Sihan Li
- Department of Sciences, John Jay College, PhD Program in Chemistry, The Graduate Center, The City University of New York New York NY 10019 USA
- Department of Chemistry, Hunter College, The City University of New York New York 10065 NY USA
| | - Haisu Zeng
- Department of Sciences, John Jay College, PhD Program in Chemistry, The Graduate Center, The City University of New York New York NY 10019 USA
- Department of Chemistry, Hunter College, The City University of New York New York 10065 NY USA
| | - Shengping Zheng
- Department of Chemistry, Hunter College, The City University of New York New York 10065 NY USA
| | - Michelle C Neary
- Department of Chemistry, Hunter College, The City University of New York New York 10065 NY USA
| |
Collapse
|
50
|
Kuciński K, Hreczycho G. Transition metal‐free catalytic C−H silylation of terminal alkynes with bis(trimethylsilyl)acetylene initiated by KHMDS. ChemCatChem 2022. [DOI: 10.1002/cctc.202200794] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Krzysztof Kuciński
- Adam Mickiewicz University in Poznań Faculty of Chemistry Umultowska 89b 61-614 Poznań POLAND
| | - Grzegorz Hreczycho
- Adam Mickiewicz University: Uniwersytet im Adama Mickiewicza w Poznaniu Faculty of Chemistry POLAND
| |
Collapse
|