1
|
Putko P, Romero JA, Pantoja CF, Zweckstetter M, Kazimierczuk K, Zawadzka-Kazimierczuk A. Using temperature coefficients to support resonance assignment of intrinsically disordered proteins. JOURNAL OF BIOMOLECULAR NMR 2024:10.1007/s10858-024-00452-9. [PMID: 39643821 DOI: 10.1007/s10858-024-00452-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 10/22/2024] [Indexed: 12/09/2024]
Abstract
The resonance assignment of large intrinsically disordered proteins (IDPs) is difficult due to the low dispersion of chemical shifts (CSs). Luckily, CSs are often specific for certain residue types, which makes the task easier. Our recent work showed that the CS-based spin-system classification can be improved by applying a linear discriminant analysis (LDA). In this paper, we extend a set of classification parameters by adding temperature coefficients (TCs), i.e., rates of change of chemical shifts with temperature. As demonstrated previously by other groups, the TCs in IDPs depend on a residue type, although the relation is often too complex to be predicted theoretically. Thus, we propose an approach based on experimental data; CSs and TCs values of residues assigned using conventional methods serve as a training set for LDA, which then classifies the remaining resonances. The method is demonstrated on a large fragment (1-239) of highly disordered protein Tau. We noticed that adding TCs to sets of chemical shifts significantly improves the recognition efficiency. For example, it allows distinguishing between lysine and glutamic acid, as well as valine and isoleucine residues based onH N , N, C α and C' data. Moreover, adding TCs to CSs ofH N , N, C α , and C' is more beneficial than adding C β CSs. Our program for LDA analysis is available at https://github.com/gugumatz/LDA-Temp-Coeff .
Collapse
Affiliation(s)
- Paulina Putko
- Centre of New Technologies, University of Warsaw, Banacha 2C, 02-097, Warsaw, Poland
| | - Javier Agustin Romero
- Centre of New Technologies, University of Warsaw, Banacha 2C, 02-097, Warsaw, Poland
| | - Christian F Pantoja
- German Center for Neurodegenerative Diseases (DZNE), 37075, Göttingen, Germany
- Department for NMR-based Structural Biology, Max Planck Institute for Multidisciplinary Sciences, 37077, Göttingen, Germany
| | - Markus Zweckstetter
- German Center for Neurodegenerative Diseases (DZNE), 37075, Göttingen, Germany
- Department for NMR-based Structural Biology, Max Planck Institute for Multidisciplinary Sciences, 37077, Göttingen, Germany
| | | | - Anna Zawadzka-Kazimierczuk
- Biological and Chemical Research Centre, Faculty of Chemistry, University of Warsaw, Żwirki i Wigury 101, 02-089, Warsaw, Poland.
| |
Collapse
|
2
|
Bezerra PR, Vasconcelos AA, Almeida VS, Neves-Martins TC, Mebus-Antunes NC, Almeida FCL. 1H, 15N, and 13C resonance assignments of the N-terminal domain and ser-arg-rich intrinsically disordered region of the nucleocapsid protein of the SARS-CoV-2. BIOMOLECULAR NMR ASSIGNMENTS 2024; 18:219-225. [PMID: 39174826 DOI: 10.1007/s12104-024-10191-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Accepted: 08/17/2024] [Indexed: 08/24/2024]
Abstract
The nucleocapsid (N) protein of SARS-CoV-2 is a multifunctional protein involved in nucleocapsid assembly and various regulatory functions. It is the most abundant protein during viral infection. Its functionality is closely related to its structure, which comprises two globular domains, the N-terminal domain (NTD) and the C-terminal domain (CTD), flanked by intrinsically disordered regions. The linker between the NTD and CTD includes a Serine-Arginine rich (SR) region, which is crucial for the regulation of the N protein's function. Here, we report the near-complete assignment of the construct containing the NTD followed by the SR region (NTD-SR). Additionally, we describe the dynamic nature of the SR region and compare it with all other available chemical shift assignments reported for the SR region.
Collapse
Affiliation(s)
- Peter R Bezerra
- National Center of Nuclear Magnetic Resonance, Institute of Medical Biochemistry (IBqM), Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
- National Center of Nuclear Magnetic Resonance (CNRMN), National Center for Structural Biology and Bioimaging (CENABIO), Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Ariana A Vasconcelos
- National Center of Nuclear Magnetic Resonance, Institute of Medical Biochemistry (IBqM), Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
- National Center of Nuclear Magnetic Resonance (CNRMN), National Center for Structural Biology and Bioimaging (CENABIO), Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Vitor S Almeida
- National Center of Nuclear Magnetic Resonance, Institute of Medical Biochemistry (IBqM), Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
- National Center of Nuclear Magnetic Resonance (CNRMN), National Center for Structural Biology and Bioimaging (CENABIO), Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Thais C Neves-Martins
- National Center of Nuclear Magnetic Resonance, Institute of Medical Biochemistry (IBqM), Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Nathane C Mebus-Antunes
- National Center of Nuclear Magnetic Resonance, Institute of Medical Biochemistry (IBqM), Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Fabio C L Almeida
- National Center of Nuclear Magnetic Resonance, Institute of Medical Biochemistry (IBqM), Federal University of Rio de Janeiro, Rio de Janeiro, Brazil.
- National Center of Nuclear Magnetic Resonance (CNRMN), National Center for Structural Biology and Bioimaging (CENABIO), Federal University of Rio de Janeiro, Rio de Janeiro, Brazil.
| |
Collapse
|
3
|
Wang Z, Jiang L, Jia J, Zhu G. Targeted Synthesis of Interpenetration-Free Mesoporous Aromatic Frameworks by Manipulating Catalysts as Templates. Angew Chem Int Ed Engl 2024:e202420746. [PMID: 39603998 DOI: 10.1002/anie.202420746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 11/20/2024] [Accepted: 11/27/2024] [Indexed: 11/29/2024]
Abstract
Reticular chemistry allows the design and synthesis of mesoporous networks by extending the size of the building blocks. However, interpenetration of the nets easily happens against the designed mesoporous networks, thereby falling short of achieving the intended specific surface area and pore size. Controlling the framework interpenetration has always been a challenge in the synthesis section of reticular chemistry. In this work, based on our previously reported type of highly porous aromatic frameworks (named PAF-1), we extended the tetrahedral building blocks to target an iso-reticular mesoporous PAF-333. A series of Ni(0) ligands with different sizes were employed to confirm that suitable-sized catalyst ligands could successfully inhibit skeleton interpenetration in the coupling reaction through the steric hindrance effect. The obtained mesoporous PAF-333 possessed a pore size of approximately 3.2 nm matching well with the value from the predicted non-interpenetrated structure. PAF-333 showed great high-pressure hydrogen and methane storage potential with a 13.4 wt % H2 uptake at 77 K, 100 bar and a 0.537 g g-1 CH4 uptake at 298 K, 98 bar, ranking at the top of the reported porous adsorbents in the gas storage applications.
Collapse
Affiliation(s)
- Zihao Wang
- Key Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry of Education, Faculty of Chemistry, Northeast Normal University, Changchun, 130024, Jilin, China
| | - Li Jiang
- Key Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry of Education, Faculty of Chemistry, Northeast Normal University, Changchun, 130024, Jilin, China
| | - Jiangtao Jia
- Key Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry of Education, Faculty of Chemistry, Northeast Normal University, Changchun, 130024, Jilin, China
| | - Guangshan Zhu
- Key Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry of Education, Faculty of Chemistry, Northeast Normal University, Changchun, 130024, Jilin, China
| |
Collapse
|
4
|
Kazantsev K, Toukach P. Remediation of the NMR data of natural glycans. Int J Biol Macromol 2024; 282:137042. [PMID: 39521218 DOI: 10.1016/j.ijbiomac.2024.137042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 09/05/2024] [Accepted: 10/27/2024] [Indexed: 11/16/2024]
Abstract
Primary structure elucidation in glycobiology is strongly affected by published structure-reporting NMR signals, especially on the 13C nucleus. The glycan NMR simulation accuracy and machine learning outcome depend on the quality of the NMR signal assignment in glycan databases. Within our work on improving the data quality in the Carbohydrate Structure Database (CSDB), we have applied a systematic search for inconsistencies in the published NMR data. The search was based on a bulk comparison between the experimental and simulated 13C NMR chemical shifts and manual analysis of the mismatches. On the basis of this analysis, CSDB was remediated by marking and correcting the NMR errors found in 272 structure elucidation reports published over the past 40 years.
Collapse
Affiliation(s)
- Kirill Kazantsev
- Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky prospect 47, 119991 Moscow, Russia
| | - Philip Toukach
- Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky prospect 47, 119991 Moscow, Russia; National Research University Higher School of Economics, Faculty of Chemistry, Vavilova 7, 117312 Moscow, Russia.
| |
Collapse
|
5
|
Aleksis R, Montrazi ET, Frydman L. Heteronuclear Polarization Transfer under Steady-State Conditions: The INEPT-SSFP Experiment. J Phys Chem Lett 2024; 15:10644-10650. [PMID: 39412220 PMCID: PMC11514021 DOI: 10.1021/acs.jpclett.4c02016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 09/17/2024] [Accepted: 09/19/2024] [Indexed: 10/25/2024]
Abstract
NMR finds a wide range of applications, ranging from fundamental chemistry to medical imaging. The technique, however, has an inherently low signal-to-noise ratio (SNR)─particularly when dealing with nuclei having low natural abundances and/or low γs. In these cases, sensitivity is often enhanced by methods that, similar to INEPT, transfer polarization from neighboring 1Hs via J-couplings. In 1958, Carr proposed an alternative approach to increase NMR sensitivity, which involves generating and continuously detecting a steady-state transverse magnetization, by applying a train of pulses on an ensemble of noninteracting spins. This study broadens Carr's steady-state free precession (SSFP) framework to encompass the possibility of adding onto it coherent polarization transfers, allowing one to combine the SNR-enhancing benefits of both INEPT and SSFP into a single experiment. Herein, the derivation of the ensuing INEPT-SSFP (ISSFP) sequences is reported. Their use in 13C NMR and MRI experiments leads to ca. 300% improvements in SNR/ unit time over conventional J-driven polarization transfer experiments, and sensitivity gains of over 50% over 13C SSFP performed in combination with 1H decoupling and NOE. These enhancements match well with numerical simulations and analytical evaluations. The conditions needed to optimize these new methods in both spectroscopic and imaging studies are discussed; we also examine their limitations, and the valuable vistas that, in both analytical and molecular imaging NMR, could be opened by this development.
Collapse
Affiliation(s)
- Rihards Aleksis
- Department of Chemical and Biological
Physics, Weizmann Institute, 7610001 Rehovot, Israel
| | - Elton T. Montrazi
- Department of Chemical and Biological
Physics, Weizmann Institute, 7610001 Rehovot, Israel
| | - Lucio Frydman
- Department of Chemical and Biological
Physics, Weizmann Institute, 7610001 Rehovot, Israel
| |
Collapse
|
6
|
Knödlstorfer S, Schiavina M, Rodella MA, Ledolter K, Konrat R, Pierattelli R, Felli IC. Disentangling the Complexity in Protein Complexes Using Complementary Isotope-Labeling and Multiple-Receiver NMR Spectroscopy. J Am Chem Soc 2024; 146:27983-27987. [PMID: 39374115 PMCID: PMC11523233 DOI: 10.1021/jacs.4c09176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Revised: 09/30/2024] [Accepted: 09/30/2024] [Indexed: 10/09/2024]
Abstract
Intrinsically disordered proteins are abundant in eukaryotic systems, but they remain largely elusive pharmacological targets. NMR spectroscopy proved to be a suitable method to study these proteins and their interaction with one another or with drug candidates. Although NMR can give atomistic information about these interplays, molecular complexity due to severe spectral overlap, limited sample stability, and quantity remain an issue and hamper widespread applications. Here, we propose an approach to simultaneously map protein-protein binding sites onto two interacting partners by employing a complementary isotope-labeling strategy and a multiple receiver NMR detection scheme. With one partner being 15N,2H labeled and the interacting one being 13C,1H-labeled, we exploited proton and carbon detection to obtain clean and easily readable information. The method is illustrated with an application to the 50 kDa ternary protein complex formed between the prominent oncogenic transcription factor complex Myc/MAX and the tumor suppressor BRCA1.
Collapse
Affiliation(s)
- Sonja Knödlstorfer
- Department
of Structural and Computational Biology, Max Perutz Laboratories, University of Vienna, Campus Vienna Biocenter, 5, 1030 Vienna, Austria
- Vienna
Doctoral School in Chemistry (DoSChem), University of Vienna, Währingerstraße 38, 1090 Vienna, Austria
| | - Marco Schiavina
- Magnetic
Resonance Center and Department of Chemistry “Ugo Schiff”, University of Florence, Via Luigi Sacconi 6, 50019 Sesto Fiorentino, Florence, Italy
| | - Maria Anna Rodella
- Magnetic
Resonance Center and Department of Chemistry “Ugo Schiff”, University of Florence, Via Luigi Sacconi 6, 50019 Sesto Fiorentino, Florence, Italy
| | - Karin Ledolter
- Department
of Structural and Computational Biology, Max Perutz Laboratories, University of Vienna, Campus Vienna Biocenter, 5, 1030 Vienna, Austria
| | - Robert Konrat
- Department
of Structural and Computational Biology, Max Perutz Laboratories, University of Vienna, Campus Vienna Biocenter, 5, 1030 Vienna, Austria
- Christian
Doppler Laboratory for High-Content Structural Biology and Biotechnology,
Department of Structural and Computational Biology, Max Perutz Laboratories, University of Vienna, Campus Vienna Biocenter, 5, 1030 Vienna, Austria
| | - Roberta Pierattelli
- Magnetic
Resonance Center and Department of Chemistry “Ugo Schiff”, University of Florence, Via Luigi Sacconi 6, 50019 Sesto Fiorentino, Florence, Italy
| | - Isabella C. Felli
- Magnetic
Resonance Center and Department of Chemistry “Ugo Schiff”, University of Florence, Via Luigi Sacconi 6, 50019 Sesto Fiorentino, Florence, Italy
| |
Collapse
|
7
|
Querci L, Piccioli M, Ciofi-Baffoni S, Banci L. Structural aspects of iron‑sulfur protein biogenesis: An NMR view. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2024; 1871:119786. [PMID: 38901495 DOI: 10.1016/j.bbamcr.2024.119786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 05/15/2024] [Accepted: 06/10/2024] [Indexed: 06/22/2024]
Abstract
Over the last decade, structural aspects involving iron‑sulfur (Fe/S) protein biogenesis have played an increasingly important role in understanding the high mechanistic complexity of mitochondrial and cytosolic machineries maturing Fe/S proteins. In this respect, solution NMR has had a significant impact because of its ability to monitor transient protein-protein interactions, which are abundant in the networks of pathways leading to Fe/S cluster biosynthesis and transfer, as well as thanks to the developments of paramagnetic NMR in both terms of new methodologies and accurate data interpretation. Here, we review the use of solution NMR in characterizing the structural aspects of human Fe/S proteins and their interactions in the framework of Fe/S protein biogenesis. We will first present a summary of the recent advances that have been achieved by paramagnetic NMR and then we will focus our attention on the role of solution NMR in the field of human Fe/S protein biogenesis.
Collapse
Affiliation(s)
- Leonardo Querci
- Magnetic Resonance Center CERM, University of Florence, Via Luigi Sacconi 6, Sesto Fiorentino, 50019 Florence, Italy; Department of Chemistry, University of Florence, Via della Lastruccia 3, Sesto Fiorentino, 50019 Florence, Italy
| | - Mario Piccioli
- Magnetic Resonance Center CERM, University of Florence, Via Luigi Sacconi 6, Sesto Fiorentino, 50019 Florence, Italy; Department of Chemistry, University of Florence, Via della Lastruccia 3, Sesto Fiorentino, 50019 Florence, Italy
| | - Simone Ciofi-Baffoni
- Magnetic Resonance Center CERM, University of Florence, Via Luigi Sacconi 6, Sesto Fiorentino, 50019 Florence, Italy; Department of Chemistry, University of Florence, Via della Lastruccia 3, Sesto Fiorentino, 50019 Florence, Italy.
| | - Lucia Banci
- Magnetic Resonance Center CERM, University of Florence, Via Luigi Sacconi 6, Sesto Fiorentino, 50019 Florence, Italy; Department of Chemistry, University of Florence, Via della Lastruccia 3, Sesto Fiorentino, 50019 Florence, Italy; Consorzio Interuniversitario Risonanze Magnetiche di Metalloproteine (CIRMMP), Via Luigi Sacconi 6, Sesto Fiorentino, 50019 Florence, Italy.
| |
Collapse
|
8
|
Huang T, Chai X, Li S, Liu B, Zhan J, Wang X, Xiao X, Zhu Q, Liu C, Zeng D, Jiang B, Zhou X, He L, Gong Z, Liu M, Zhang X. Rapid Targeted Screening and Identification of Active Ingredients in Herbal Extracts through Ligand-Detected NMR and Database Matching. Anal Chem 2024. [PMID: 39263786 DOI: 10.1021/acs.analchem.4c02255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/13/2024]
Abstract
Herbal extracts are rich sources of active compounds that can be used for drug screening due to their diverse and unique chemical structures. However, traditional methods for screening these compounds are notably laborious and time-consuming. In this manuscript, we introduce a new high-throughput approach that combines nuclear magnetic resonance (NMR) spectroscopy with a tailored database and algorithm to rapidly identify bioactive components in herbal extracts. This method distinguishes characteristic signals and structural motifs of active constituents in the raw extracts through a relaxation-weighted technique, particularly utilizing the perfect echo Carr-Purcell-Meiboom-Gill (peCPMG) sequence, complemented by precise 2D spectroscopic strategies. The cornerstone of our approach is a customized database designed to filter potential compounds based on defined parameters, such as the presence of CHn segments and unique chemical shifts, thereby expediting the identification of promising compounds. This innovative technique was applied to identifying substances interacting with choline kinase α (ChoKα1), resulting in the discovery of four new inhibitors. Our findings demonstrate a powerful tool for unraveling the complex chemical landscape of herbal extracts, considerably facilitating the search for new pharmaceutical candidates. This approach offers an efficient alternative to traditional methods in the quest for drug discovery from natural sources.
Collapse
Affiliation(s)
- Tao Huang
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement of Science and Technology, Chinese Academy of Sciences, Wuhan 430071, China
| | - Xin Chai
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement of Science and Technology, Chinese Academy of Sciences, Wuhan 430071, China
| | - Shuangli Li
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement of Science and Technology, Chinese Academy of Sciences, Wuhan 430071, China
| | - Biao Liu
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement of Science and Technology, Chinese Academy of Sciences, Wuhan 430071, China
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430071, China
| | - Jianhua Zhan
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement of Science and Technology, Chinese Academy of Sciences, Wuhan 430071, China
| | - Xiaohua Wang
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement of Science and Technology, Chinese Academy of Sciences, Wuhan 430071, China
| | - Xiong Xiao
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement of Science and Technology, Chinese Academy of Sciences, Wuhan 430071, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qinjun Zhu
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement of Science and Technology, Chinese Academy of Sciences, Wuhan 430071, China
| | - Caixiang Liu
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement of Science and Technology, Chinese Academy of Sciences, Wuhan 430071, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Danyun Zeng
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement of Science and Technology, Chinese Academy of Sciences, Wuhan 430071, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Bin Jiang
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement of Science and Technology, Chinese Academy of Sciences, Wuhan 430071, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430071, China
- Optics Valley Laboratory, Wuhan 430074, China
| | - Xin Zhou
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement of Science and Technology, Chinese Academy of Sciences, Wuhan 430071, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430071, China
- Optics Valley Laboratory, Wuhan 430074, China
| | - Lichun He
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement of Science and Technology, Chinese Academy of Sciences, Wuhan 430071, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhou Gong
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement of Science and Technology, Chinese Academy of Sciences, Wuhan 430071, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Maili Liu
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement of Science and Technology, Chinese Academy of Sciences, Wuhan 430071, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430071, China
- Optics Valley Laboratory, Wuhan 430074, China
| | - Xu Zhang
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement of Science and Technology, Chinese Academy of Sciences, Wuhan 430071, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430071, China
- Optics Valley Laboratory, Wuhan 430074, China
| |
Collapse
|
9
|
Chen SP, Taylor SM, Huang S, Zheng B. Application of Odd-Order Derivatives in Fourier Transform Nuclear Magnetic Resonance Spectroscopy toward Quantitative Deconvolution. ACS OMEGA 2024; 9:36518-36530. [PMID: 39220516 PMCID: PMC11360015 DOI: 10.1021/acsomega.4c04536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 07/28/2024] [Accepted: 07/31/2024] [Indexed: 09/04/2024]
Abstract
When Fourier transform (FT) spectrum peaks are overlapped, primary maxima of odd-order derivatives can be used to evaluate their independent intensities. We studied the feasibility of higher odd-order derivatives on Lorentzian peak shape and magnitude peak shape. Simulation studies for FT nuclear magnetic resonance (NMR) spectroscopy demonstrated good results toward quantitative deconvolution of overlapping FT spectrum peaks. Although it is not so desirable to deconvolute special line shapes such as Gaussian, Voigt, and Tsallis profiles, the odd-order derivatives exhibit a bright future compared to even-order derivatives. An application example of practical NMR spectroscopy with ethylbenzene isomers is presented. White Gaussian noises were added to the simulated spectra at two different signal-to-noise ratios (20 and 40). Kauppinen's denoising and smoothing algorithms can effectively remove interference of the noise and help to have good deconvoluting results using the odd-order derivatives. We compared features of our approach with popular deconvolution sharpening algorithms and conducted a comparison study with Kauppinen's Fourier self-deconvolution. Our approach has a better dynamic range of peak intensities and is not sensitive to the sampling rates. Other common deconvolution methods are also discussed briefly.
Collapse
Affiliation(s)
- Shu-Ping Chen
- Nexus
Scitech Centre of Canada, 17 White Oak Crescent, Richmond Hill, Ontario L4B 3R7, Canada
- Fujian
Superimposegraph Co., Ltd, Floor 20-1402. 338, Hualin Road, Fuzhou, Fujian 350013, China
| | - Sandra M. Taylor
- Department
of Civil Engineering, Camosun College (Interurban
Campus), Victoria, British Columbia V9E 2C1, Canada
| | - Sai Huang
- Fujian
Superimposegraph Co., Ltd, Floor 20-1402. 338, Hualin Road, Fuzhou, Fujian 350013, China
| | - Baoling Zheng
- Fujian
Superimposegraph Co., Ltd, Floor 20-1402. 338, Hualin Road, Fuzhou, Fujian 350013, China
| |
Collapse
|
10
|
Yu B, Wang X, Tan KN, Iwahara J. Influence of an Intrinsically Disordered Region on Protein Domains Revealed by NMR-Based Electrostatic Potential Measurements. J Am Chem Soc 2024; 146:14922-14926. [PMID: 38771003 PMCID: PMC11227116 DOI: 10.1021/jacs.4c03254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
Many human proteins possess intrinsically disordered regions containing consecutive aspartate or glutamate residues ("D/E repeats"). Approximately half of them are DNA/RNA-binding proteins. In this study, using nuclear magnetic resonance (NMR) spectroscopy, we investigated the electrostatic properties of D/E repeats and their influence on folded domains within the same protein. Local electrostatic potentials were directly measured for the HMGB1 protein, its isolated D/E repeats, and DNA-binding domains by NMR. The data provide quantitative information about the electrostatic interactions between distinct segments of HMGB1. Due to the interactions between the D/E repeats and the DNA-binding domains, local electrostatic potentials of the DNA-binding domains within the full-length HMGB1 protein were largely negative despite the presence of many positively charged residues. Our NMR data on counterions and electrostatic potentials show that the D/E repeats and DNA have similar electrostatic properties and compete for the DNA-binding domains. The competition promotes dissociation of the protein-DNA complex and influences the molecular behavior of the HMGB1 protein. These effects may be general among the DNA/RNA-binding proteins with D/E repeats.
Collapse
Affiliation(s)
- Binhan Yu
- Department of Biochemistry and Molecular Biology, Sealy Center for Structural Biology and Molecular Biophysics, University of Texas Medical Branch, Galveston, Texas 77555-1068, USA
| | - Xi Wang
- Department of Biochemistry and Molecular Biology, Sealy Center for Structural Biology and Molecular Biophysics, University of Texas Medical Branch, Galveston, Texas 77555-1068, USA
| | | | - Junji Iwahara
- Department of Biochemistry and Molecular Biology, Sealy Center for Structural Biology and Molecular Biophysics, University of Texas Medical Branch, Galveston, Texas 77555-1068, USA
| |
Collapse
|
11
|
Mallis RJ, Lee JJ, den Berg AV, Brazin KN, Viennet T, Zmuda J, Cross M, Radeva D, Rodriguez‐Mias R, Villén J, Gelev V, Reinherz EL, Arthanari H. Efficient and economic protein labeling for NMR in mammalian expression systems: Application to a preT-cell and T-cell receptor protein. Protein Sci 2024; 33:e4950. [PMID: 38511503 PMCID: PMC10955624 DOI: 10.1002/pro.4950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 02/05/2024] [Accepted: 02/16/2024] [Indexed: 03/22/2024]
Abstract
Protein nuclear magnetic resonance (NMR) spectroscopy relies on the ability to isotopically label polypeptides, which is achieved through heterologous expression in various host organisms. Most commonly, Escherichia coli is employed by leveraging isotopically substituted ammonium and glucose to uniformly label proteins with 15N and 13C, respectively. Moreover, E. coli can grow and express proteins in uniformly deuterium-substituted water (D2O), a strategy useful for experiments targeting high molecular weight proteins. Unfortunately, many proteins, particularly those requiring specific posttranslational modifications like disulfide bonding or glycosylation for proper folding and/or function, cannot be readily expressed in their functional forms using E. coli-based expression systems. One such class of proteins includes T-cell receptors and their related preT-cell receptors. In this study, we present an expression system for isotopic labeling of proteins using a nonadherent human embryonic kidney cell line, Expi293F, and a specially designed media. We demonstrate the application of this platform to the β subunit common to both receptors. In addition, we show that this expression system and media can be used to specifically label amino acids Phe, Ile, Val, and Leu in this system, utilizing an amino acid-specific labeling protocol that allows targeted incorporation at high efficiency without significant isotopic scrambling. We demonstrate that this system can also be used to express proteins with fluorinated amino acids. We were routinely able to obtain an NMR sample with a concentration of 200 μM from 30 mL of culture media, utilizing less than 20 mg of the labeled amino acids.
Collapse
Affiliation(s)
- Robert J. Mallis
- Laboratory of ImmunobiologyDana‐Farber Cancer InstituteBostonMassachusettsUSA
- Department of Medical OncologyDana‐Farber Cancer InstituteBostonMassachusettsUSA
- Department of DermatologyHarvard Medical SchoolBostonMassachusettsUSA
| | - Jonathan J. Lee
- Laboratory of ImmunobiologyDana‐Farber Cancer InstituteBostonMassachusettsUSA
- Department of Medical OncologyDana‐Farber Cancer InstituteBostonMassachusettsUSA
| | | | - Kristine N. Brazin
- Laboratory of ImmunobiologyDana‐Farber Cancer InstituteBostonMassachusettsUSA
- Department of Medical OncologyDana‐Farber Cancer InstituteBostonMassachusettsUSA
- Department of MedicineHarvard Medical SchoolBostonMassachusettsUSA
| | - Thibault Viennet
- Department of Cancer BiologyDana‐Farber Cancer InstituteBostonMassachusettsUSA
- Department of Biological Chemistry and Molecular PharmacologyHarvard Medical SchoolBostonMassachusettsUSA
| | | | | | - Denitsa Radeva
- Faculty of Chemistry and PharmacySofia UniversitySofiaBulgaria
| | | | - Judit Villén
- Department of Genome SciencesUniversity of WashingtonSeattleWashingtonUSA
| | - Vladimir Gelev
- Faculty of Chemistry and PharmacySofia UniversitySofiaBulgaria
| | - Ellis L. Reinherz
- Laboratory of ImmunobiologyDana‐Farber Cancer InstituteBostonMassachusettsUSA
- Department of Medical OncologyDana‐Farber Cancer InstituteBostonMassachusettsUSA
- Department of MedicineHarvard Medical SchoolBostonMassachusettsUSA
| | - Haribabu Arthanari
- Department of Cancer BiologyDana‐Farber Cancer InstituteBostonMassachusettsUSA
- Department of Biological Chemistry and Molecular PharmacologyHarvard Medical SchoolBostonMassachusettsUSA
| |
Collapse
|
12
|
Karamanos TK, Matthews S. Biomolecular NMR in the AI-assisted structural biology era: Old tricks and new opportunities. BIOCHIMICA ET BIOPHYSICA ACTA. PROTEINS AND PROTEOMICS 2024; 1872:140949. [PMID: 37572958 DOI: 10.1016/j.bbapap.2023.140949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 08/07/2023] [Accepted: 08/09/2023] [Indexed: 08/14/2023]
Abstract
Over the last 40 years nuclear magnetic resonance (NMR) spectroscopy has established itself as one of the most versatile techniques for the characterization of biomolecules, especially proteins. Given the molecular size limitations of NMR together with recent advances in cryo-electron microscopy and artificial intelligence-assisted protein structure prediction, the bright future of NMR in structural biology has been put into question. In this mini review we argue the contrary. We discuss the unique opportunities solution NMR offers to the protein chemist that distinguish it from all other experimental or computational methods, and how it can benefit from machine learning.
Collapse
Affiliation(s)
| | - Stephen Matthews
- Department of Life Sciences, Faculty of Natural Sciences, Imperial College London.
| |
Collapse
|
13
|
Schiavina M, Bracaglia L, Rodella MA, Kümmerle R, Konrat R, Felli IC, Pierattelli R. Optimal 13C NMR investigation of intrinsically disordered proteins at 1.2 GHz. Nat Protoc 2024; 19:406-440. [PMID: 38087081 DOI: 10.1038/s41596-023-00921-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 09/20/2023] [Indexed: 02/12/2024]
Abstract
Nuclear magnetic resonance (NMR) spectroscopy is a powerful technique for characterizing biomolecules such as proteins and nucleic acids at atomic resolution. Increased magnetic field strengths drive progress in biomolecular NMR applications, leading to improved performance, e.g., higher resolution. A new class of NMR spectrometers with a 28.2 T magnetic field (1.2 GHz 1H frequency) has been commercially available since the end of 2019. The availability of ultra-high-field NMR instrumentation makes it possible to investigate more complex systems using NMR. This is especially true for highly flexible intrinsically disordered proteins (IDPs) and highly flexible regions (IDRs) of complex multidomain proteins. Indeed, the investigation of these proteins is frequently hampered by the crowding of NMR spectra. The advantages, however, are accompanied by challenges that the user must overcome when conducting experiments at such a high field (e.g., large spectral widths, radio frequency bandwidth, performance of decoupling schemes). This protocol presents strategies and tricks for optimising high-field NMR experiments for IDPs/IDRs based on the analysis of the relaxation properties of the investigated protein. The protocol, tested on three IDPs of different molecular weight and structural complexity, focuses on 13C-detected NMR at 1.2 GHz. A set of experiments, including some multiple receiver experiments, and tips to implement versions tailored for IDPs/IDRs are described. However, the general approach and most considerations can also be applied to experiments that acquire 1H or 15N nuclei and to experiments performed at lower field strengths.
Collapse
Affiliation(s)
- Marco Schiavina
- Department of Chemistry 'Ugo Schiff' and Magnetic Resonance Center (CERM), University of Florence, Florence, Italy.
| | - Lorenzo Bracaglia
- Department of Chemistry 'Ugo Schiff' and Magnetic Resonance Center (CERM), University of Florence, Florence, Italy
| | - Maria Anna Rodella
- Department of Chemistry 'Ugo Schiff' and Magnetic Resonance Center (CERM), University of Florence, Florence, Italy
| | | | - Robert Konrat
- Department of Computational and Structural Biology, Max Perutz Labs, University of Vienna, Vienna, Austria
| | - Isabella C Felli
- Department of Chemistry 'Ugo Schiff' and Magnetic Resonance Center (CERM), University of Florence, Florence, Italy.
| | - Roberta Pierattelli
- Department of Chemistry 'Ugo Schiff' and Magnetic Resonance Center (CERM), University of Florence, Florence, Italy.
| |
Collapse
|
14
|
Querci L, Grifagni D, Trindade IB, Silva JM, Louro RO, Cantini F, Piccioli M. Paramagnetic NMR to study iron sulfur proteins: 13C detected experiments illuminate the vicinity of the metal center. JOURNAL OF BIOMOLECULAR NMR 2023; 77:247-259. [PMID: 37853207 PMCID: PMC10687126 DOI: 10.1007/s10858-023-00425-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 09/25/2023] [Indexed: 10/20/2023]
Abstract
The robustness of NMR coherence transfer in proximity of a paramagnetic center depends on the relaxation properties of the nuclei involved. In the case of Iron-Sulfur Proteins, different pulse schemes or different parameter sets often provide complementary results. Tailored versions of HCACO and CACO experiments significantly increase the number of observed Cα/C' connectivities in highly paramagnetic systems, by recovering many resonances that were lost due to paramagnetic relaxation. Optimized 13C direct detected experiments can significantly extend the available assignments, improving the overall knowledge of these systems. The different relaxation properties of Cα and C' nuclei are exploited in CACO vs COCA experiments and the complementarity of the two experiments is used to obtain structural information. The two [Fe2S2]+ clusters containing NEET protein CISD3 and the one [Fe4S4]2+ cluster containing HiPIP protein PioC have been taken as model systems. We show that tailored experiments contribute to decrease the blind sphere around the cluster, to extend resonance assignment of cluster bound cysteine residues and to retrieve details on the topology of the iron-bound ligand residues.
Collapse
Affiliation(s)
- Leonardo Querci
- Magnetic Resonance Center and Department of Chemistry, University of Florence, Via L. Sacconi 6, 50019, Sesto Fiorentino, Italy
| | - Deborah Grifagni
- Magnetic Resonance Center and Department of Chemistry, University of Florence, Via L. Sacconi 6, 50019, Sesto Fiorentino, Italy
| | - Inês B Trindade
- Instituto de Tecnologia Química e Biológica António Xavier (ITQB-NOVA), Universidade Nova de Lisboa, Av. da República (EAN), 2780-157, Oeiras, Portugal
- Division of Biology and Biological Engineering, California Institute of Technology, CA 91125, Pasadena, USA
| | - José Malanho Silva
- Magnetic Resonance Center and Department of Chemistry, University of Florence, Via L. Sacconi 6, 50019, Sesto Fiorentino, Italy
| | - Ricardo O Louro
- Instituto de Tecnologia Química e Biológica António Xavier (ITQB-NOVA), Universidade Nova de Lisboa, Av. da República (EAN), 2780-157, Oeiras, Portugal
| | - Francesca Cantini
- Magnetic Resonance Center and Department of Chemistry, University of Florence, Via L. Sacconi 6, 50019, Sesto Fiorentino, Italy
| | - Mario Piccioli
- Magnetic Resonance Center and Department of Chemistry, University of Florence, Via L. Sacconi 6, 50019, Sesto Fiorentino, Italy.
| |
Collapse
|
15
|
Elena-Real CA, Mier P, Sibille N, Andrade-Navarro MA, Bernadó P. Structure-function relationships in protein homorepeats. Curr Opin Struct Biol 2023; 83:102726. [PMID: 37924569 DOI: 10.1016/j.sbi.2023.102726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 10/06/2023] [Accepted: 10/09/2023] [Indexed: 11/06/2023]
Abstract
Homorepeats (or polyX), protein segments containing repetitions of the same amino acid, are abundant in proteomes from all kingdoms of life and are involved in crucial biological functions as well as several neurodegenerative and developmental diseases. Mainly inserted in disordered segments of proteins, the structure/function relationships of homorepeats remain largely unexplored. In this review, we summarize present knowledge for the most abundant homorepeats, highlighting the role of the inherent structure and the conformational influence exerted by their flanking regions. Recent experimental and computational methods enable residue-specific investigations of these regions and promise novel structural and dynamic information for this elusive group of proteins. This information should increase our knowledge about the structural bases of phenomena such as liquid-liquid phase separation and trinucleotide repeat disorders.
Collapse
Affiliation(s)
- Carlos A Elena-Real
- Centre de Biologie Structurale (CBS), Université de Montpellier, INSERM, CNRS. 29 rue de Navacelles, 34090 Montpellier, France. https://twitter.com/carloselenareal
| | - Pablo Mier
- Institute of Organismic and Molecular Evolution, Faculty of Biology, Johannes Gutenberg University Mainz. Hans-Dieter-Hüsch-Weg 15, 55128 Mainz, Germany
| | - Nathalie Sibille
- Centre de Biologie Structurale (CBS), Université de Montpellier, INSERM, CNRS. 29 rue de Navacelles, 34090 Montpellier, France
| | - Miguel A Andrade-Navarro
- Institute of Organismic and Molecular Evolution, Faculty of Biology, Johannes Gutenberg University Mainz. Hans-Dieter-Hüsch-Weg 15, 55128 Mainz, Germany
| | - Pau Bernadó
- Centre de Biologie Structurale (CBS), Université de Montpellier, INSERM, CNRS. 29 rue de Navacelles, 34090 Montpellier, France.
| |
Collapse
|
16
|
Ke Z, Weng J, Xu X. Calculating 13 C NMR chemical shifts of large molecules using the eXtended ONIOM method at high accuracy with a low cost. J Comput Chem 2023; 44:2347-2357. [PMID: 37572044 DOI: 10.1002/jcc.27201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 07/15/2023] [Accepted: 07/24/2023] [Indexed: 08/14/2023]
Abstract
Fragmentation-based methods for nuclear magnetic resonance (NMR) chemical shift calculations have become more and more popular in first-principles calculations of large molecules. However, there are many options for a fragmentation-based method to select, such as theoretical methods, fragmentation schemes, the number of levels of theory, etc. It is important to study the optimal combination of the options to achieve a good balance between accuracy and efficiency. Here we investigate different combinations of options used by a fragmentation-based method, the eXtended ONIOM (XO) method, for 13 C chemical shift calculations on a set of organic and biological molecules. We found that: (1) introducing Hartree-Fock exchange into density functional theory (DFT) could reduce the calculation error due to fragmentation in contrast to pure DFT functionals, while a hybrid functional, xOPBE, is generally recommended; (2) fragmentation schemes generated from the molecular tailoring approach (MTA) with small level parameter n, for example, n = 2 and the degree-based fragmentation method (DBFM) with n = 1, are sufficient to achieve satisfactory accuracy; (3) the two-level XO (XO2) NMR calculation is superior to the calculation with only one level of theory, as the second level (i.e., low level) of theory provides a way to well describe the long-range effect. These findings are beneficial to practical applications of fragmentation-based methods for NMR chemical shift calculations of large molecules.
Collapse
Affiliation(s)
- Zhipeng Ke
- Institute of Photochemistry and Photofunctional Materials, University of Shanghai for Science and Technology, Shanghai, China
- Collaborative Innovation Center of Chemistry for Energy Materials, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Ministry of Education Key Laboratory of Computational Physical Sciences, Department of Chemistry, Fudan University, Shanghai, China
| | - Jingwei Weng
- Collaborative Innovation Center of Chemistry for Energy Materials, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Ministry of Education Key Laboratory of Computational Physical Sciences, Department of Chemistry, Fudan University, Shanghai, China
| | - Xin Xu
- Collaborative Innovation Center of Chemistry for Energy Materials, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Ministry of Education Key Laboratory of Computational Physical Sciences, Department of Chemistry, Fudan University, Shanghai, China
- Hefei National Laboratory, Hefei, China
| |
Collapse
|
17
|
Schiavina M, Konrat R, Ceccolini I, Mateos B, Konrat R, Felli IC, Pierattelli R. Studies of proline conformational dynamics in IDPs by 13C-detected cross-correlated NMR relaxation. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2023; 354:107539. [PMID: 37632987 DOI: 10.1016/j.jmr.2023.107539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 08/07/2023] [Accepted: 08/09/2023] [Indexed: 08/28/2023]
Abstract
Intrinsically disordered proteins (IDPs) are significantly enriched in proline residues, which can populate specific local secondary structural elements called PPII helices, characterized by small packing densities. Proline is often thought to promote disorder, but it can participate in specific π·CH interactions with aromatic side chains resulting in reduced conformational flexibilities of the polypeptide. Differential local motional dynamics are relevant for the stabilization of preformed structural elements and can serve as nucleation sites for the establishment of long-range interactions. NMR experiments to probe the dynamics of proline ring systems would thus be highly desirable. Here we present a pulse scheme based on 13C detection to quantify dipole-dipole cross-correlated relaxation (CCR) rates at methylene CH2 groups in proline residues. Applying 13C-CON detection strategy provides exquisite spectral resolution allowing applications also to high molecular weight IDPs even in conditions approaching the physiological ones. The pulse scheme is illustrated with an application to the 220 amino acids long protein Osteopontin, an extracellular cytokine involved in inflammation and cancer progression, and a construct in which three proline-aromatic sequence patches have been mutated.
Collapse
Affiliation(s)
- Marco Schiavina
- Department of Chemistry "Ugo Schiff" and Magnetic Resonance Center, University of Florence, Via Luigi Sacconi 6, 50019 Sesto Fiorentino, Florence, Italy
| | - Ruth Konrat
- Department of Structural and Computational Biology, University of Vienna, Max F. Perutz Laboratories Vienna Biocenter Campus 5, 1030 Vienna, Austria
| | - Irene Ceccolini
- Department of Structural and Computational Biology, University of Vienna, Max F. Perutz Laboratories Vienna Biocenter Campus 5, 1030 Vienna, Austria
| | - Borja Mateos
- Department of Structural and Computational Biology, University of Vienna, Max F. Perutz Laboratories Vienna Biocenter Campus 5, 1030 Vienna, Austria
| | - Robert Konrat
- Department of Structural and Computational Biology, University of Vienna, Max F. Perutz Laboratories Vienna Biocenter Campus 5, 1030 Vienna, Austria.
| | - Isabella C Felli
- Department of Chemistry "Ugo Schiff" and Magnetic Resonance Center, University of Florence, Via Luigi Sacconi 6, 50019 Sesto Fiorentino, Florence, Italy.
| | - Roberta Pierattelli
- Department of Chemistry "Ugo Schiff" and Magnetic Resonance Center, University of Florence, Via Luigi Sacconi 6, 50019 Sesto Fiorentino, Florence, Italy.
| |
Collapse
|
18
|
Simmons JR, Gasmi-Seabrook G, Rainey JK. Structural features, intrinsic disorder, and modularity of a pyriform spidroin 1 core repetitive domain. Biochem Cell Biol 2023; 101:271-283. [PMID: 36802452 DOI: 10.1139/bcb-2022-0338] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2023] Open
Abstract
Orb-weaving spiders produce up to seven silk types, each with distinct biological roles, protein compositions, and mechanics. Pyriform (or piriform) silk is composed of pyriform spidroin 1 (PySp1) and is the fibrillar component of attachment discs that attach webs to substrates and to each other. Here, we characterize the 234-residue repeat unit (the "Py unit") from the core repetitive domain of Argiope argentata PySp1. Solution-state nuclear magnetic resonance (NMR) spectroscopy-based backbone chemical shift and dynamics analysis demonstrate a structured core flanked by disordered tails, structuring that is maintained in a tandem protein of two connected Py units, indicative of structural modularity of the Py unit in the context of the repetitive domain. Notably, AlphaFold2 predicts the Py unit structure with low confidence, echoing low confidence and poor agreement to the NMR-derived structure for the Argiope trifasciata aciniform spidroin (AcSp1) repeat unit. Rational truncation, validated through NMR spectroscopy, provided a 144-residue construct retaining the Py unit core fold, enabling near-complete backbone and side chain 1H, 13C, and 15N resonance assignment. A six α-helix globular core is inferred, flanked by regions of intrinsic disorder that would link helical bundles in tandem repeat proteins in a beads-on-a-string architecture.
Collapse
Affiliation(s)
- Jeffrey R Simmons
- Department of Biochemistry& Molecular Biology, Dalhousie University, Halifax, NS B3H 4R2, Canada
| | | | - Jan K Rainey
- Department of Biochemistry& Molecular Biology, Dalhousie University, Halifax, NS B3H 4R2, Canada
- Department of Chemistry, Dalhousie University, Halifax, NS B3H 4R2, Canada
- School of Biomedical Engineering, Dalhousie University, Halifax, NS B3H 4R2, Canada
| |
Collapse
|
19
|
Mons E, Kim RQ, Mulder MPC. Technologies for Direct Detection of Covalent Protein-Drug Adducts. Pharmaceuticals (Basel) 2023; 16:547. [PMID: 37111304 PMCID: PMC10146396 DOI: 10.3390/ph16040547] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 03/29/2023] [Accepted: 04/03/2023] [Indexed: 04/08/2023] Open
Abstract
In the past two decades, drug candidates with a covalent binding mode have gained the interest of medicinal chemists, as several covalent anticancer drugs have successfully reached the clinic. As a covalent binding mode changes the relevant parameters to rank inhibitor potency and investigate structure-activity relationship (SAR), it is important to gather experimental evidence on the existence of a covalent protein-drug adduct. In this work, we review established methods and technologies for the direct detection of a covalent protein-drug adduct, illustrated with examples from (recent) drug development endeavors. These technologies include subjecting covalent drug candidates to mass spectrometric (MS) analysis, protein crystallography, or monitoring intrinsic spectroscopic properties of the ligand upon covalent adduct formation. Alternatively, chemical modification of the covalent ligand is required to detect covalent adducts by NMR analysis or activity-based protein profiling (ABPP). Some techniques are more informative than others and can also elucidate the modified amino acid residue or bond layout. We will discuss the compatibility of these techniques with reversible covalent binding modes and the possibilities to evaluate reversibility or obtain kinetic parameters. Finally, we expand upon current challenges and future applications. Overall, these analytical techniques present an integral part of covalent drug development in this exciting new era of drug discovery.
Collapse
Affiliation(s)
- Elma Mons
- Department of Cell and Chemical Biology, Leiden University Medical Center, 2300 RC Leiden, The Netherlands; (E.M.)
- Institute of Biology Leiden, Leiden University, 2333 BE Leiden, The Netherlands
| | - Robbert Q. Kim
- Department of Cell and Chemical Biology, Leiden University Medical Center, 2300 RC Leiden, The Netherlands; (E.M.)
| | - Monique P. C. Mulder
- Department of Cell and Chemical Biology, Leiden University Medical Center, 2300 RC Leiden, The Netherlands; (E.M.)
| |
Collapse
|
20
|
Stengel D, Saric M, Johnson HR, Schiller T, Diehl J, Chalek K, Onofrei D, Scheibel T, Holland GP. Tyrosine's Unique Role in the Hierarchical Assembly of Recombinant Spider Silk Proteins: From Spinning Dope to Fibers. Biomacromolecules 2023; 24:1463-1474. [PMID: 36791420 DOI: 10.1021/acs.biomac.2c01467] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
Abstract
Producing recombinant spider silk fibers that exhibit mechanical properties approaching native spider silk is highly dependent on the constitution of the spinning dope. Previously published work has shown that recombinant spider silk fibers spun from dopes with phosphate-induced pre-assembly (biomimetic dopes) display a toughness approaching native spider silks far exceeding the mechanical properties of fibers spun from dopes without pre-assembly (classical dopes). Dynamic light scattering experiments comparing the two dopes reveal that biomimetic dope displays a systematic increase in assembly size over time, while light microscopy indicates liquid-liquid-phase separation (LLPS) as evidenced by the formation of micron-scale liquid droplets. Solution nuclear magnetic resonance (NMR) shows that the structural state in classical and biomimetic dopes displays a general random coil conformation in both cases; however, some subtle but distinct differences are observed, including a more ordered state for the biomimetic dope and small chemical shift perturbations indicating differences in hydrogen bonding of the protein in the different dopes with notable changes occurring for Tyr residues. Solid-state NMR demonstrates that the final wet-spun fibers from the two dopes display no structural differences of the poly(Ala) stretches, but biomimetic fibers display a significant difference in Tyr ring packing in non-β-sheet, disordered helical domains that can be traced back to differences in dope preparations. It is concluded that phosphate pre-orders the recombinant silk protein in biomimetic dopes resulting in LLPS and fibers that exhibit vastly improved toughness that could be due to aromatic ring packing differences in non-β-sheet domains that contain Tyr.
Collapse
Affiliation(s)
- Dillan Stengel
- Department of Chemistry and Biochemistry, San Diego State University, 5500 Campanile Dr, San Diego, California 92182-1030, United States
| | - Merisa Saric
- Lehrstuhl Biomaterialien, Fakultät für Ingenieurwissenschaften, Universität Bayreuth, Prof.-Rüdiger-Bormann-Street 1, Bayreuth 95447, Germany
| | - Hannah R Johnson
- Department of Chemistry and Biochemistry, San Diego State University, 5500 Campanile Dr, San Diego, California 92182-1030, United States
| | - Tim Schiller
- Lehrstuhl Biomaterialien, Fakultät für Ingenieurwissenschaften, Universität Bayreuth, Prof.-Rüdiger-Bormann-Street 1, Bayreuth 95447, Germany
| | - Johannes Diehl
- Lehrstuhl Biomaterialien, Fakultät für Ingenieurwissenschaften, Universität Bayreuth, Prof.-Rüdiger-Bormann-Street 1, Bayreuth 95447, Germany
| | - Kevin Chalek
- Department of Chemistry and Biochemistry, San Diego State University, 5500 Campanile Dr, San Diego, California 92182-1030, United States
| | - David Onofrei
- Department of Chemistry and Biochemistry, San Diego State University, 5500 Campanile Dr, San Diego, California 92182-1030, United States
| | - Thomas Scheibel
- Lehrstuhl Biomaterialien, Fakultät für Ingenieurwissenschaften, Universität Bayreuth, Prof.-Rüdiger-Bormann-Street 1, Bayreuth 95447, Germany
| | - Gregory P Holland
- Department of Chemistry and Biochemistry, San Diego State University, 5500 Campanile Dr, San Diego, California 92182-1030, United States
| |
Collapse
|
21
|
Dal Colle MCS, Fittolani G, Delbianco M. Synthetic Approaches to Break the Chemical Shift Degeneracy of Glycans. Chembiochem 2022; 23:e202200416. [PMID: 36005282 PMCID: PMC10087674 DOI: 10.1002/cbic.202200416] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 08/24/2022] [Indexed: 01/25/2023]
Abstract
NMR spectroscopy is the leading technique for determining glycans' three-dimensional structure and dynamic in solution as well as a fundamental tool to study protein-glycan interactions. To overcome the severe chemical shift degeneracy of these compounds, synthetic probes carrying NMR-active nuclei (e. g., 13 C or 19 F) or lanthanide tags have been proposed. These elegant strategies permitted to simplify the complex NMR analysis of unlabeled analogues, shining light on glycans' conformational aspects and interaction with proteins. Here, we highlight some key achievements in the synthesis of specifically labeled glycan probes and their contribution towards the fundamental understanding of glycans.
Collapse
Affiliation(s)
- Marlene C. S. Dal Colle
- Department of Biomolecular SystemsMax-Planck-Institute of Colloids and InterfacesAm Mühlenberg 114476PotsdamGermany
- Department of Chemistry and BiochemistryFreie Universität BerlinArnimallee 2214195BerlinGermany
| | - Giulio Fittolani
- Department of Biomolecular SystemsMax-Planck-Institute of Colloids and InterfacesAm Mühlenberg 114476PotsdamGermany
- Department of Chemistry and BiochemistryFreie Universität BerlinArnimallee 2214195BerlinGermany
| | - Martina Delbianco
- Department of Biomolecular SystemsMax-Planck-Institute of Colloids and InterfacesAm Mühlenberg 114476PotsdamGermany
| |
Collapse
|
22
|
Romero JA, Putko P, Urbańczyk M, Kazimierczuk K, Zawadzka-Kazimierczuk A. Linear discriminant analysis reveals hidden patterns in NMR chemical shifts of intrinsically disordered proteins. PLoS Comput Biol 2022; 18:e1010258. [PMID: 36201530 PMCID: PMC9578625 DOI: 10.1371/journal.pcbi.1010258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 10/18/2022] [Accepted: 09/20/2022] [Indexed: 11/27/2022] Open
Abstract
NMR spectroscopy is key in the study of intrinsically disordered proteins (IDPs). Yet, even the first step in such an analysis-the assignment of observed resonances to particular nuclei-is often problematic due to low peak dispersion in the spectra of IDPs. We show that the assignment process can be aided by finding "hidden" chemical shift patterns specific to the amino acid residue types. We find such patterns in the training data from the Biological Magnetic Resonance Bank using linear discriminant analysis, and then use them to classify spin systems in an α-synuclein sample prepared by us. We describe two situations in which the procedure can greatly facilitate the analysis of NMR spectra. The first involves the mapping of spin systems chains onto the protein sequence, which is part of the assignment procedure-a prerequisite for any NMR-based protein analysis. In the second, the method supports assignment transfer between similar samples. We conducted experiments to demonstrate these cases, and both times the majority of spin systems could be unambiguously assigned to the correct residue types.
Collapse
Affiliation(s)
- Javier A. Romero
- Centre of New Technologies, University of Warsaw, Warsaw, Poland
| | - Paulina Putko
- Centre of New Technologies, University of Warsaw, Warsaw, Poland
| | - Mateusz Urbańczyk
- Institute of Physical Chemistry, Polish Academy of Sciences, Warsaw, Poland
| | | | - Anna Zawadzka-Kazimierczuk
- Biological and Chemical Research Centre, Faculty of Chemistry, University of Warsaw, Warsaw, Poland
- * E-mail: (KK); (AZK)
| |
Collapse
|
23
|
Schiavina M, Pontoriero L, Tagliaferro G, Pierattelli R, Felli IC. The Role of Disordered Regions in Orchestrating the Properties of Multidomain Proteins: The SARS-CoV-2 Nucleocapsid Protein and Its Interaction with Enoxaparin. Biomolecules 2022; 12:1302. [PMID: 36139141 PMCID: PMC9496478 DOI: 10.3390/biom12091302] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 09/09/2022] [Accepted: 09/11/2022] [Indexed: 11/16/2022] Open
Abstract
Novel and efficient strategies need to be developed to interfere with the SARS-CoV-2 virus. One of the most promising pharmaceutical targets is the nucleocapsid protein (N), responsible for genomic RNA packaging. N is composed of two folded domains and three intrinsically disordered regions (IDRs). The globular RNA binding domain (NTD) and the tethered IDRs are rich in positively charged residues. The study of the interaction of N with polyanions can thus help to elucidate one of the key driving forces responsible for its function, i.e., electrostatics. Heparin, one of the most negatively charged natural polyanions, has been used to contrast serious cases of COVID-19 infection, and we decided to study its interaction with N at the molecular level. We focused on the NTR construct, which comprises the NTD and two flanking IDRs, and on the NTD construct in isolation. We characterized this interaction using different nuclear magnetic resonance approaches and isothermal titration calorimetry. With these tools, we were able to identify an extended surface of NTD involved in the interaction. Moreover, we assessed the importance of the IDRs in increasing the affinity for heparin, highlighting how different tracts of these flexible regions modulate the interaction.
Collapse
Affiliation(s)
| | | | | | - Roberta Pierattelli
- Magnetic Resonance Center (CERM) and Department of Chemistry “Ugo Schiff”, University of Florence, Via L. Sacconi 6, 50019 Sesto Fiorentino, Italy
| | - Isabella C. Felli
- Magnetic Resonance Center (CERM) and Department of Chemistry “Ugo Schiff”, University of Florence, Via L. Sacconi 6, 50019 Sesto Fiorentino, Italy
| |
Collapse
|
24
|
Pontoriero L, Schiavina M, Korn SM, Schlundt A, Pierattelli R, Felli IC. NMR Reveals Specific Tracts within the Intrinsically Disordered Regions of the SARS-CoV-2 Nucleocapsid Protein Involved in RNA Encountering. Biomolecules 2022; 12:biom12070929. [PMID: 35883485 PMCID: PMC9312987 DOI: 10.3390/biom12070929] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 06/28/2022] [Accepted: 06/29/2022] [Indexed: 12/23/2022] Open
Abstract
The SARS-CoV-2 nucleocapsid (N) protein is crucial for the highly organized packaging and transcription of the genomic RNA. Studying atomic details of the role of its intrinsically disordered regions (IDRs) in RNA recognition is challenging due to the absence of structure and to the repetitive nature of their primary sequence. IDRs are known to act in concert with the folded domains of N and here we use NMR spectroscopy to identify the priming events of N interacting with a regulatory SARS-CoV-2 RNA element. 13C-detected NMR experiments, acquired simultaneously to 1H detected ones, provide information on the two IDRs flanking the N-terminal RNA binding domain (NTD) within the N-terminal region of the protein (NTR, 1–248). We identify specific tracts of the IDRs that most rapidly sense and engage with RNA, and thus provide an atom-resolved picture of the interplay between the folded and disordered regions of N during RNA interaction.
Collapse
Affiliation(s)
- Letizia Pontoriero
- Magnetic Resonance Center (CERM) and Department of Chemistry “Ugo Schiff”, University of Florence, Via L. Sacconi 6, Sesto Fiorentino, 50019 Florence, Italy; (L.P.); (M.S.)
| | - Marco Schiavina
- Magnetic Resonance Center (CERM) and Department of Chemistry “Ugo Schiff”, University of Florence, Via L. Sacconi 6, Sesto Fiorentino, 50019 Florence, Italy; (L.P.); (M.S.)
| | - Sophie M. Korn
- Center for Biomolecular Magnetic Resonance (BMRZ), Institute for Molecular Biosciences, Johann Wolfgang Goethe-University, Max-von-Laue-Str. 9, 60438 Frankfurt, Germany;
| | - Andreas Schlundt
- Center for Biomolecular Magnetic Resonance (BMRZ), Institute for Molecular Biosciences, Johann Wolfgang Goethe-University, Max-von-Laue-Str. 9, 60438 Frankfurt, Germany;
- Correspondence: (A.S.); (R.P.); (I.C.F.)
| | - Roberta Pierattelli
- Magnetic Resonance Center (CERM) and Department of Chemistry “Ugo Schiff”, University of Florence, Via L. Sacconi 6, Sesto Fiorentino, 50019 Florence, Italy; (L.P.); (M.S.)
- Correspondence: (A.S.); (R.P.); (I.C.F.)
| | - Isabella C. Felli
- Magnetic Resonance Center (CERM) and Department of Chemistry “Ugo Schiff”, University of Florence, Via L. Sacconi 6, Sesto Fiorentino, 50019 Florence, Italy; (L.P.); (M.S.)
- Correspondence: (A.S.); (R.P.); (I.C.F.)
| |
Collapse
|